WO2017191945A1 - 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법 - Google Patents

담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법 Download PDF

Info

Publication number
WO2017191945A1
WO2017191945A1 PCT/KR2017/004560 KR2017004560W WO2017191945A1 WO 2017191945 A1 WO2017191945 A1 WO 2017191945A1 KR 2017004560 W KR2017004560 W KR 2017004560W WO 2017191945 A1 WO2017191945 A1 WO 2017191945A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carrier
polymer
group
ion exchange
Prior art date
Application number
PCT/KR2017/004560
Other languages
English (en)
French (fr)
Inventor
조준연
김광현
황교현
김상훈
최란
이원균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018553155A priority Critical patent/JP6769008B2/ja
Priority to US16/097,606 priority patent/US11245119B2/en
Priority to CN201780026963.0A priority patent/CN109075350B/zh
Priority to EP17792847.0A priority patent/EP3435460B1/en
Publication of WO2017191945A1 publication Critical patent/WO2017191945A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to a carrier-nanoparticle composite, a catalyst comprising the same, an electrochemical cell or a fuel cell including the catalyst, and a method of manufacturing the same.
  • Carbon black is generally used as a support for a fuel cell catalyst. However, when carbon black is used as a support, problems of durability due to corrosion of carbon occur.
  • the present specification is to provide a carrier-nanoparticle composite, a catalyst comprising the same, an electrochemical cell or a fuel cell including the catalyst, and a method of manufacturing the same.
  • a carbon carrier A polymer layer provided on the surface of the carbon carrier and having an amine group and a hydrogen ion exchange group represented by Formula 12; And it provides a carrier-nanoparticle composite comprising a metal nanoparticle provided on the polymer layer.
  • X is a monovalent cation group.
  • the present specification provides a catalyst comprising the carrier-nanoparticle complex.
  • the present disclosure provides an electrochemical cell including the catalyst.
  • the present specification includes an anode catalyst layer, a cathode catalyst layer and a polymer electrolyte membrane provided between the anode catalyst layer and the cathode catalyst layer, wherein at least one of the anode catalyst layer and the cathode catalyst layer includes the carrier-nanoparticle composite. Provide the conjugate.
  • the present specification is to form a polymer layer having an amine group and a hydrogen ion exchange group represented by the following formula (12) on a carbon carrier; And adding a carbon carrier and a metal precursor on which the polymer layer is formed to a solvent to form metal nanoparticles on the polymer layer of the carbon carrier.
  • X is a monovalent cation group.
  • the carrier-nanoparticle composite according to one embodiment of the present specification has an advantage of excellent dispersibility of metal nanoparticles.
  • the carrier-nanoparticle composite according to one embodiment of the present specification has an advantage of excellent thermal stability.
  • the carrier-nanoparticle complex according to one embodiment of the present specification can deliver protons to the active metal site well, thereby increasing the utilization rate of the metal nanoparticles.
  • FIG. 1 is a schematic diagram illustrating a principle of electricity generation of a fuel cell.
  • FIG. 2 is a view schematically showing the structure of a membrane electrode assembly for a fuel cell.
  • FIG 3 is a view schematically showing an embodiment of a fuel cell.
  • Figure 4 is a schematic diagram of the surface of the carrier-nanoparticle composite of an embodiment of the present specification.
  • FIG. 5 is a TEM measurement image of the carrier-nanoparticle composite prepared in Example 1.
  • Example 6 is a FT-IR analysis graph for Example 1 and Comparative Example 1 together with PEI.
  • Example 7 is a FT-IR analysis graph for Example 1 and Comparative Example 1 together with Nafion.
  • Example 8 is a graph showing the results of unit cell performance in Examples 1-2 and Comparative Example 1 together with a commercial catalyst.
  • a carbon carrier A polymer layer provided on the surface of the carbon carrier and having an amine group and a hydrogen ion exchange group represented by Formula 12; And it provides a carrier-nanoparticle composite comprising a metal nanoparticle provided on the polymer layer.
  • X is a monovalent cation group.
  • the carbon carrier is carbon black, carbon nanotubes (CNT), graphite (Graphite), graphene (Graphene), activated carbon, porous carbon (Mesoporous Carbon), carbon fiber (Carbon fiber) and carbon nano wire (Carbon nano wire) It may include one or more selected from the group consisting of.
  • Some or all of the surface of the carbon carrier may be provided with a polymer layer. 50% or more and 100% or less of the polymer layer on the surface of the carbon carrier may be provided, specifically, 75% or more and 100% or less may be provided with the polymer layer.
  • the nitrogen element content of the amine group is 0.01% by weight or more and 5% by weight or less
  • the sulfur element content of the hydrogen ion exchange group of Formula 12 is 0.01% by weight or more and 1% by weight. It may be: If the content of sulfur element exceeds 1% by weight, the surface of the carrier becomes too hydrophilic and may adversely affect the water discharge from the cell.
  • the polymer layer includes a polyalkyleneimine having an amine group and a hydrogen ion exchange polymer having the hydrogen ion exchange group, or a polyalkyleneimine having an amine group and a polymer derived from a hydrogen ion exchange polymer having the hydrogen ion exchange group. can do.
  • the weight ratio (PEI / Ionomer) of the polyalkyleneimine (PEI) and the hydrogen ion exchange polymer (Ionomer) may be 15 or more and 100 or less.
  • the polyalkyleneimine may be a polymer having an aliphatic hydrocarbon main chain and including at least 10 or more amine groups in the main chain and the side chain.
  • the amine group includes a primary amine group, a secondary amine group, a tertiary amine group, and a quaternary amine group
  • the amine groups included in the main chain and the side chain of the polyalkyleneimine are a primary amine group, a secondary amine group, At least one of the tertiary amine group and the quaternary amine group may be ten or more.
  • the weight average molecular weight of the polyalkyleneimine may be 500 or more and 1,000,000 or less.
  • the polyalkyleneimine may include at least one of a repeating unit represented by the following Formula 1 and a repeating unit represented by the following Formula 2.
  • E1 and E2 are each independently an alkylene group having 2 to 10 carbon atoms
  • R is a substituent represented by any one of the following Formulas 3 to 5
  • o and p are each an integer of 1 to 1000
  • A1 to A3 are each independently an alkylene group having 2 to 10 carbon atoms, and R1 to R3 are each independently a substituent represented by any one of Formulas 6 to 8,
  • A4 to A6 are each independently an alkylene group having 2 to 10 carbon atoms, R4 to R6 are each independently a substituent represented by Formula 9,
  • A7 is an alkylene group having 2 to 10 carbon atoms.
  • the polyalkyleneimine may include at least one of a compound represented by Formula 10 and a compound represented by Formula 11 below.
  • X1, X2, Y1, Y2 and Y3 are each independently an alkylene group having 2 to 10 carbon atoms
  • R is a substituent represented by any one of the following Formulas 3 to 5
  • q is 1 to 1000 Is an integer
  • n and m are each an integer of 1 to 5
  • l is an integer of 1 to 200
  • A1 to A3 are each independently an alkylene group having 2 to 10 carbon atoms, and R1 to R3 are each independently a substituent represented by any one of Formulas 6 to 8,
  • A4 to A6 are each independently an alkylene group having 2 to 10 carbon atoms, R4 to R6 are each independently a substituent represented by Formula 9,
  • A7 is an alkylene group having 2 to 10 carbon atoms.
  • the alkylene group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 10. Specific examples include, but are not limited to, ethylene group, propylene group, isopropylene group, butylene group, t-butylene group, pentylene group, hexylene group, heptylene group and the like.
  • the hydrogen ion exchange polymer includes a hydrogen ion exchange group represented by the following formula (12).
  • X is a monovalent cation group.
  • the amine group on the surface of the polymer layer is bonded with platinum particles, which are metal nanoparticles, and H + is transferred to the platinum particles, which are active metal sites, through the hydrogen ion exchanger of the polymer layer on the surface of the carbon carrier. It is easy to use platinum particles.
  • the hydrogen ion exchange polymer is not particularly limited as long as it includes a hydrogen ion exchange group represented by Chemical Formula 12, and those commonly used in the art may be used.
  • the hydrogen ion exchange polymer may be a hydrocarbon-based polymer, a partially fluorine-based polymer or a fluorine-based polymer.
  • the hydrocarbon-based polymer may be a hydrocarbon-based sulfonated polymer without a fluorine group, on the contrary, the fluorine-based polymer may be a sulfonated polymer saturated with a fluorine group, and the partial fluorine-based polymer may be a sulfonated polymer not saturated with a fluorine group. have.
  • the hydrogen ion exchange polymer may be a perfluorosulfonic acid polymer, a hydrocarbon polymer, an aromatic sulfone polymer, an aromatic ketone polymer, a polybenzimidazole polymer, a polystyrene polymer, a polyester polymer, a polyimide polymer, polyvinylidene Fluoride polymer, polyether sulfone polymer, polyphenylene sulfide polymer, polyphenylene oxide polymer, polyphosphazene polymer, polyethylene naphthalate polymer, polyester polymer, doped polybenzimidazole polymer It may be one or two or more polymers selected from the group consisting of polyether ketone-based polymer, polyphenylquinoxaline-based polymer, polysulfone-based polymer, polypyrrole-based polymer and polyaniline-based polymer.
  • the polymer may be a single copolymer, an alternating copolymer, a random copo
  • hydrogen ion exchange polymer examples include Nafion, sulfonated polyetheretherketone (sPEEK), sulfonated polyetherketone (sPEK), sulfonated (polyetherketone), polyvinylidene fluoride-graft-polystyrene sulfonic acid It may include at least one of (poly (vinylidene fluoride) -graft-poly (styrene sulfonic acid), PVDF-g-PSSA) and sulfonated poly fluorenyl ether ketone (Sulfonated poly (fluorenyl ether ketone)).
  • the amine group of the polyalkylene imine and the hydrogen ion exchange group of the hydrogen ion exchange polymer may have a sulfonamide bond structure (Sulfonamide, -SO 2 -NH-) through a chemical reaction by bonding.
  • the polymer layer may include polymers crosslinked with each other through a crosslinking agent capable of reacting with an amine group of the polyalkylene imine and a hydrogen ion exchange group of the hydrogen ion exchange polymer.
  • the crosslinking agent is not particularly limited as long as it can crosslink the amine group of the polyalkylene imine and the hydrogen ion exchange group of the hydrogen ion exchange polymer.
  • POCl 3 may be used.
  • the polymer layer is a hydrogen ion exchange polymer (P1-SO 3 H) of the hydrogen-ion exchange polymer and the amine group (P2-NH 2 ) of the polyalkylene imine crosslinked with each other by POCl 3 as a crosslinking agent
  • the sulfonamide bond structure (Sulfonamide, -SO 2 -NH-) may include a polymer formed.
  • P1 is a hydrogen ion exchange polymer except -SO 3 H which is a hydrogen ion exchange group
  • P2 is a polyalkyleneimine except -NH 2 in an amine group.
  • the metal nanoparticle may be bonded to the amine group of the polymer layer, and specifically, may be bonded to the amine group of the polyalkyleneimine.
  • the metal nanoparticles are platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd), vanadium (V), Tungsten (W), Cobalt (Co), Iron (Fe), Selenium (Se), Nickel (Ni), Bismuth (Bi), Tin (Sn), Chromium (Cr), Titanium (Ti), Gold (Au), It may include one or two or more metals selected from the group consisting of cerium (Ce), silver (Ag), and copper (Cu).
  • the metal nanoparticles are platinum (Pt); And a platinum alloy in which iron (Fe), cobalt (Co), nickel (Ni), palladium (Pd), rhodium (Rh), or ruthenium (Ru) and platinum (Pt) are alloyed.
  • the average particle diameter of the metal nanoparticles may be 2 nm or more and 20 nm or less, and specifically 3 nm or more and 10 nm or less.
  • the metal nanoparticles are well dispersed without agglomeration with each other on the carbon carrier, and thus there is an advantage of high catalytic efficiency.
  • the average particle diameter of the metal nanoparticle means an average of the length of the longest line among the lines connecting two points of the surface of the metal nanoparticle.
  • the metal nanoparticles may have a spherical shape.
  • the spherical shape does not mean only a perfect spherical shape, but may include an approximately spherical shape.
  • the metal nanoparticle may not have a spherical outer surface, and a radius of curvature may not be constant in one metal nanoparticle.
  • the content of the metal nanoparticles may be 15 wt% or more and 50 wt% or less with respect to the total weight of the carrier-nanoparticle composite. Specifically, the content of the metal nanoparticles may be 20 wt% or more and 40 wt% or less with respect to the total weight of the carrier-nanoparticle composite.
  • the present specification provides a catalyst including the carrier-nanoparticle complex.
  • the present specification provides an electrochemical cell including the catalyst.
  • the electrochemical cell means a battery using a chemical reaction, and if the polymer electrolyte membrane is provided, the type thereof is not particularly limited.
  • the electrochemical cell may be a fuel cell, a metal secondary battery, or a flow battery.
  • the present specification provides an electrochemical cell module that includes an electrochemical cell as a unit cell.
  • the electrochemical cell module may be formed by inserting and stacking bipolar plates between flow cells according to one embodiment of the present application.
  • the battery module may be used as a power source for an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage device.
  • the present specification includes an anode catalyst layer, a cathode catalyst layer, and a polymer electrolyte membrane provided between the anode catalyst layer and the cathode catalyst layer, wherein at least one of the anode catalyst layer and the cathode catalyst layer includes the carrier-nanoparticle composite. to provide.
  • the membrane electrode assembly may further include an anode gas diffusion layer provided on a surface opposite to a surface of the anode catalyst layer provided with a polymer electrolyte membrane and a cathode gas diffusion layer provided on an opposite surface of the cathode catalyst layer provided with a polymer electrolyte membrane.
  • the present specification provides a fuel cell including the membrane electrode assembly.
  • FIG. 1 schematically illustrates the principle of electricity generation of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which is an electrolyte membrane (M) and the electrolyte membrane (M). It consists of an anode (A) and a cathode (C) formed on both sides of the.
  • MEA membrane electrode assembly
  • An oxidation reaction of a fuel (F) such as hydrogen or a hydrocarbon such as methanol and butane occurs to generate hydrogen ions (H + ) and electrons (e ⁇ ).
  • hydrogen ions move to the cathode C through the electrolyte membrane M.
  • the cathode C reacts with hydrogen ions transferred through the electrolyte membrane M, an oxidizing agent O such as oxygen, and electrons to generate water W. This reaction causes the movement of electrons in the external circuit.
  • FIG. 2 schematically shows the structure of a fuel cell membrane electrode assembly, wherein the fuel cell membrane electrode assembly includes an electrolyte membrane 10 and a cathode 50 positioned to face each other with the electrolyte membrane 10 therebetween;
  • An anode 51 may be provided.
  • the cathode is provided with a cathode catalyst layer 20 and a cathode gas diffusion layer 40 sequentially from the electrolyte membrane 10, and the anode is provided with an anode catalyst layer 21 and an anode gas diffusion layer 41 sequentially from the electrolyte membrane 10. It may be provided.
  • the catalyst according to the present specification may be included in at least one of a cathode catalyst layer and an anode catalyst layer in a membrane electrode assembly.
  • FIG. 3 schematically illustrates the structure of a fuel cell, in which the fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or two or more membrane electrode assemblies as described above, and includes two or more separators interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidant, and may be used by injecting oxygen or air into the oxidant supply unit 70.
  • the fuel supply unit 80 serves to supply fuel to the stack 60, and to the fuel tank 81 storing fuel and the pump 82 supplying fuel stored in the fuel tank 81 to the stack 60.
  • fuel hydrogen or hydrocarbon fuel in gas or liquid state may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • At least one of the anode catalyst layer and the cathode catalyst layer may include a carrier-nanoparticle complex according to the present specification as a catalyst.
  • the anode catalyst layer and the cathode catalyst layer may each include an ionomer.
  • the ratio (Ionomer / Complex, I / C) of the ionomer and the carrier-nanoparticle complex of the anode catalyst layer is 0.3 to 0.7.
  • the ratio (Ionomer / Complex, I / C) of the ionomer and the carrier-nanoparticle complex of the cathode catalyst layer is 0.3 to 0.7.
  • the I / C ratio used in the commercial catalyst is 0.8 to 1 (Book "PEM fuel cell Electrocatalyst and catalyst layer", page 895), considering the carrier-nanoparticle complex according to the present specification as a catalyst
  • the amount of the ionomer required for the catalyst layer may be reduced by 20% by weight or more, specifically, by 30% by weight or more, and more specifically, by 50% by weight or more. In other words, it is possible to reduce the content of expensive ionomers and to maintain a hydrogen ion conductivity of a certain degree or more even with a small amount of ionomers.
  • the ionomer serves to provide a passage for ions generated by the reaction between a fuel such as hydrogen or methanol and a catalyst to the electrolyte membrane.
  • the ionomer may be a polymer having a cation exchange group selected from the group consisting of sulfonic acid group, carboxylic acid group, phosphoric acid group, phosphonic acid group and derivatives thereof in the side chain.
  • the ionomer may be a fluorine polymer, a benzimidazole polymer, a polyimide polymer, a polyetherimide polymer, a polyphenylene sulfide polymer, a polysulfone polymer, a polyether sulfone polymer, a polyether ketone polymer It may include one or more hydrogen ion conductive polymer selected from polyether ether ketone polymer, or polyphenylquinoxaline polymer.
  • the polymer ionomer may be Nafion.
  • a step of forming a polymer layer having an amine group and a hydrogen ion exchange group represented by the following formula (12) on a carbon carrier And adding a carbon carrier and a metal precursor on which the polymer layer is formed to a solvent to form metal nanoparticles on the polymer layer of the carbon carrier.
  • X is a monovalent cation group.
  • the preparation method of the carrier-nanoparticle complex may be cited as described above with respect to the carrier-nanoparticle complex.
  • the method for preparing the carrier-nanoparticle composite includes forming a polymer layer having an amine group and a hydrogen ion exchange group represented by the following Chemical Formula 12 on a carbon carrier.
  • the forming of the polymer layer may include a carbon carrier comprising a polyalkyleneimine and a polyalkyleneimine having a amine group or a solution containing a hydrogen ion exchange polymer and a polymer derived from a hydrogen ion exchange polymer having the hydrogen ion exchange group. It may be a step of forming a polymer layer in a solution.
  • the method of preparing a carrier-nanoparticle complex may include adding a carbon carrier, a polyalkyleneimine and a hydrogen ion exchange polymer to a solvent to prepare a first solution; And it may include the step of stirring the first solution.
  • the first solution may further include a crosslinking agent.
  • the crosslinking agent may have a reactor capable of reacting with an amine group of the polyalkylene imine and a hydrogen ion exchange group of the hydrogen ion exchange polymer, respectively.
  • the method for preparing a carrier-nanoparticle complex may include adding a carbon carrier and a polymer derived from a hydrogen ion exchange polymer having a polyalkyleneimine and a hydrogen ion exchange group to a solvent to prepare a first solution; And it may include the step of stirring the first solution.
  • the solvent of the first solution is not particularly limited, but may include at least one of water, ethanol, 2-propanol, and isopropanol.
  • the content of the carbon carrier may be 14 wt% or more and 30 wt% or less.
  • the content of the polyalkyleneimine may be 65% by weight or more and 85% by weight or less.
  • the content of the hydrogen ion exchange polymer may be 0.1% by weight or more and 5% by weight or less.
  • the content of the carbon carrier may be greater than 0 wt% and less than or equal to 3 wt% based on the solids weight of the first solution.
  • the content of the carbon carrier is 14 based on the solids weight of the first solution. It is 30% by weight or more by weight, the content of the polymer derived from the hydrogen ion exchange polymer having a polyalkyleneimine and a hydrogen ion exchange group may be 70% by weight or more and 86% by weight or less.
  • the total content of solids of the first solution excluding the solvent may be 0.3% by weight or more and 20% by weight or less, and based on the total weight of the first solution, the content of the solvent May be 80% by weight or more and 99.7% by weight or less.
  • the stirring time of the first solution may be 3 hours or more and 72 hours or less.
  • the method of preparing the carrier-nanoparticle composite includes adding a carbon carrier and a metal precursor on which the polymer layer is formed to a solvent to form metal nanoparticles on the polymer layer of the carbon carrier.
  • Forming the metal nanoparticles on the polymer layer of the carbon carrier may include adding a carbon carrier and a metal precursor on which the polymer layer is formed to a solvent to prepare a second solution; Adjusting the pH of the second solution; And it may include the step of stirring the second solution.
  • the metal precursor is a material before reduction to the metal nanoparticles, and the metal precursor may be selected according to the type of the metal nanoparticles.
  • the solvent of the second solution may include a polyhydric alcohol having two or more hydroxyl groups.
  • the polyhydric alcohol is not particularly limited as long as it has two or more hydroxyl groups, but may include at least one of ethylene glycol, diethylene glycol, and propylene glycol.
  • the second solution for forming the metal nanoparticles on the polymer layer of the carbon carrier does not include a surfactant. In this case, there is no need to remove the surfactant after the catalytic synthesis and there is no reduction of the active point by the surfactant.
  • the content of the carbon carrier on which the polymer layer is formed may be 0.1 wt% or more and 3 wt% or less.
  • the content of the metal precursor may be 0.1 wt% or more and 4 wt% or less.
  • the content of the solvent may be 93% by weight or more and 98% by weight or less.
  • the pH of the second solution may be adjusted to 10-11, and if the pH of the second solution can be adjusted, the pH control method is not particularly limited but by adding a certain amount of NaOH I can regulate it.
  • the method of preparing the carrier-nanoparticle composite may further include removing the solvent after forming the metal nanoparticles on the polymer layer of the carbon carrier.
  • the removing of the solvent may include removing the solvent and sintering the metal nanoparticles provided on the polymer layer of the carbon carrier.
  • the solvent removal step may be a step of heat treatment in hydrogen or argon atmosphere.
  • the heat treatment temperature may be 180 ° C or more and 300 ° C or less. Below 180 ° C., the solvent may not be completely removed, and above 300 ° C., the polymer on the surface of the carbon carrier may decompose or deform.
  • PEI polyethyleneimine
  • IPA isopropyl alcohol
  • PEI polyethyleneimine
  • a transmission electron microscope (TEM) measurement image of the carrier-nanoparticle composite prepared in Example 1 is shown in FIG. 5.
  • Infrared spectroscopy measured on the basis of raw carbon black for Comparative Example 1 on which only PEI and Example 1 on which PEI and Nafion are supported together with PEI used in Example 1
  • the graph is shown in FIG. 6, with Nafion used in Example 1, with reference to Comparative Example 1 loaded with PEI only and Example 1 loaded with PEI and nafion as reference.
  • Infrared spectroscopy (FT-IR) graphs are measured and shown in FIG. 7. As a result, it was confirmed that PEI was supported in Comparative Example 1 and Example 1, and it was confirmed that Nafion was supported in the composite of Example 1.
  • N and S in carbon carriers coated with PEI and nafion polymers were measured using pyrolysis ion chromatoghrapy.
  • Example 1 Example 2, Comparative Example 1 and a commercial catalyst were mixed with isopropyl alcohol and 5 wt% nafion solution, respectively, to obtain a well dispersed ink. At this time, the commercial catalyst was used 40wt% Pt / C of Johnson Matthey.
  • the catalyst ink was coated on a nafion membrane by using a spray equipment, and then hot pressed at 140 ° C to prepare a membrane electrode assembly.
  • the size of the membrane electrode assembly was 2.5 cm ⁇ 2.5 cm, H 2 / Air was supplied under 100% humidification conditions, and the performance of a single cell was measured in an atmosphere of 80 ° C., and Pt per unit area was 0.4 mg / cm. 2 was.
  • the results are shown in FIG. 8 and Table 3.
  • Example 1 the current density was higher than that of Comparative Example 1 and the commercial catalyst, and high current density was shown in the low voltage region, which is the material transfer region.
  • Example 2 which had a higher ionomer content, the performance was somewhat lowered and much of the advantages in the mass transfer area were also offset. It is thought that when the amount of ionomer is more than 1wt%, the surface of the carrier becomes more hydrophilic and the discharge of water generated is rather hindered.
  • Example 1 even when used to reduce the content of the ionomer to about 22% compared to the commercial catalyst in the preparation of the catalyst ink showed better performance.
  • the -SO 3 - functional group on the surface of the carbon carrier was able to transfer hydrogen ions sufficiently even with a smaller amount of ionomer. It is generally known that the optimum ionomer amount in the preparation of catalyst inks is between 33% and 50% of the catalyst weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

본 명세서는 탄소 담체; 상기 탄소 담체의 표면에 구비되고 아민기 및 수소이온 교환기를 갖는 고분자층; 및 상기 고분자층 상에 구비된 금속 나노 입자를 포함하는담체-나노입자 복합체, 이를 포함하는 촉매, 상기 촉매를 포함하는 전기화학 전지 또는 연료 전지 및 이의 제조방법에 관한 것이다.

Description

담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
본 발명은 2016년 05월 02일에 한국특허청에 제출된 한국 특허 출원 제10-2016-0054223호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 담체-나노입자 복합체, 이를 포함하는 촉매, 상기 촉매를 포함하는 전기화학 전지 또는 연료 전지 및 이의 제조방법에 관한 것이다.
연료전지 촉매의 담지체로 카본 블랙(Carbon Black)이 일반적으로 사용되고 있다. 하지만 카본 블랙을 담지체로 사용한 경우에는 탄소의 부식으로 인한 내구성의 문제가 발생한다.
이러한 문제점을 개선하기 위해 부식 저항성이 강한 결정성 탄소인 카본나노튜브(Carbonnanotube, CNT), 카본나노파이버(Carbonnanofiber, CNF), 카본나노케이지(Carbonnanocage, CNC) 등에 대한 연구가 활발히 진행되고 있다. 그러나, 이러한 결정성 탄소는 표면 발수성이 강하여 극성 용매에서 분산이 잘되지 않는 문제점이 있다. 이러한 이유로 백금을 탄소 담지체에 로딩하는 과정에서 백금이 고르게 분산되지 않고 뭉치게 되는 문제점이 있었다.
본 명세서는 담체-나노입자 복합체, 이를 포함하는 촉매, 상기 촉매를 포함하는 전기화학 전지 또는 연료 전지 및 이의 제조방법을 제공하고자 한다.
본 명세서는 탄소 담체; 상기 탄소 담체의 표면에 구비되고 아민기 및 하기 화학식 12로 표시되는 수소이온 교환기를 갖는 고분자층; 및 상기 고분자층 상에 구비된 금속 나노 입자를 포함하는 담체-나노입자 복합체를 제공한다.
[화학식 12]
-SO3 -X
상기 화학식 12에서, 상기 X는 1가의 양이온기이다.
또한, 본 명세서는 상기 담체-나노입자 복합체를 포함하는 촉매를 제공한다.
또한, 본 명세서는 상기 촉매를 포함하는 전기화학 전지를 제공한다.
또한, 본 명세서는 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 상기 담체-나노입자 복합체를 포함하는 것인 막 전극 접합체를 제공한다.
또한, 본 명세서는 탄소 담체에 아민기 및 하기 화학식 12로 표시되는 수소이온 교환기를 갖는 고분자층을 형성하는 단계; 및 상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계를 포함하는 담체-나노입자 복합체의 제조방법을 제공한다.
[화학식 12]
-SO3 -X
상기 화학식 12에서, 상기 X는 1가의 양이온기이다.
본 명세서의 일 실시상태에 따른 담체-나노입자 복합체는 금속나노입자의 분산성이 우수한 장점이 있다.
본 명세서의 일 실시상태에 따른 담체-나노입자 복합체는 열적 안정성이 우수한 장점이 있다.
본 명세서의 일 실시상태에 따른 담체-나노입자 복합체는 활성 금속 사이트(site)에 양성자(proton)를 잘 전달해 줄 수 있어 금속 나노 입자의 이용율을 증대시킬 수 있다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 연료전지용 막 전극 접합체의 구조를 개략적으로 나타낸 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 4는 본 명세서의 일 실시상태의 담체-나노입자 복합체의 표면에서의 반응모식도이다.
도 5는 실시예 1에서 제조된 담체-나노입자 복합체의 TEM측정 이미지이다.
도 6은 PEI와 함께, 실시예 1 및 비교예 1에 대한 FT-IR 분석 그래프이다.
도 7은 나피온과 함께, 실시예 1 및 비교예 1에 대한 FT-IR 분석 그래프이다.
도 8은 상용촉매와 함께, 실시예 1-2 및 비교예 1에 관한 단전지 성능 결과 그래프이다.
<부호의 설명>
10: 전해질막
20, 21: 촉매층
40, 41: 기체확산층
50: 캐소드
51: 애노드
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서는 탄소 담체; 상기 탄소 담체의 표면에 구비되고 아민기 및 하기 화학식 12로 표시되는 수소이온 교환기를 갖는 고분자층; 및 상기 고분자층 상에 구비된 금속 나노 입자를 포함하는 담체-나노입자 복합체를 제공한다.
[화학식 12]
-SO3 -X
상기 화학식 12에서, 상기 X는 1가의 양이온기이다.
상기 탄소 담체는 카본블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire)로 이루어진 군에서 선택되는 1 종 이상을 포함할 수 있다.
상기 탄소 담체의 표면의 일부 또는 전체는 고분자층이 구비될 수 있다. 상기 탄소 담체 표면의 50% 이상 100% 이하는 고분자층이 구비될 수 있으며, 구체적으로, 75% 이상 100% 이하는 고분자층이 구비될 수 있다.
상기 고분자층의 표면의 전체 원소를 기준으로, 아민기의 질소원소의 함량은 0.01중량% 이상 5중량% 이하이고, 상기 화학식 12의 수소이온 교환기의 황원소의 함량은 0.01중량% 이상 1중량%이하일 수 있다. 황원소의 함량이 1 중량%을 초과하면 오히려 담체 표면이 너무 친수적으로 되어 cell에서의 물배출에 있어서 역효과가 나타날 수 있다.
상기 고분자층은 아민기를 갖는 폴리알킬렌이민 및 상기 수소이온 교환기를 갖는 수소이온 교환 고분자를 포함하거나, 아민기를 갖는 폴리알킬렌이민 및 상기 수소이온 교환기를 갖는 수소이온 교환 고분자로 유래된 고분자를 포함할 수 있다.
상기 폴리알킬렌이민(PEI)과 상기 수소이온 교환 고분자(Ionomer)의 중량비(PEI/Ionomer)는 15이상 100 이하일 수 있다.
상기 폴리알킬렌이민은 지방족 탄화수소 주쇄를 가지며, 주쇄 및 측쇄에 아민기를 적어도 10개 이상 포함하는 고분자일 수 있다. 이때의 아민기는 1차 아민기, 2차 아민기, 3차 아민기 및 4차 아민기를 포함하며, 상기 폴리알킬렌이민의 주쇄 및 측쇄에 포함된 아민기는 1차 아민기, 2차 아민기, 3차 아민기 및 4차 아민기 중 적어도 하나가 10개 이상일 수 있다.
상기 폴리알킬렌이민의 중량평균분자량은 500 이상 1,000,000 이하일 수 있다.
상기 폴리알킬렌이민은 하기 화학식 1로 표시되는 반복단위 및 하기 화학식 2로 표시되는 반복단위 중 적어도 하나를 포함할 수 있다.
[화학식 1]
Figure PCTKR2017004560-appb-I000001
[화학식 2]
Figure PCTKR2017004560-appb-I000002
상기 화학식 1 및 2에서, E1 및 E2는 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며, R은 하기 화학식 3 내지 5 중 어느 하나로 표시되는 치환기이고, o 및 p는 각각 1 내지 1000의 정수이며,
[화학식 3]
Figure PCTKR2017004560-appb-I000003
[화학식 4]
Figure PCTKR2017004560-appb-I000004
[화학식 5]
Figure PCTKR2017004560-appb-I000005
상기 화학식 3 내지 5에서, A1 내지 A3은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며, R1 내지 R3은 각각 독립적으로 하기 화학식 6 내지 8 중 어느 하나로 표시되는 치환기이고,
[화학식 6]
Figure PCTKR2017004560-appb-I000006
[화학식 7]
Figure PCTKR2017004560-appb-I000007
[화학식 8]
Figure PCTKR2017004560-appb-I000008
상기 화학식 6 내지 8에서, A4 내지 A6은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며, R4 내지 R6은 각각 독립적으로 하기 화학식 9로 표시되는 치환기이고,
[화학식 9]
Figure PCTKR2017004560-appb-I000009
상기 화학식 9에서, A7은 탄소수 2 내지 10인 알킬렌기이다.
상기 폴리알킬렌이민은 하기 화학식 10으로 표시되는 화합물 및 하기 화학식 11로 표시되는 화합물 중 적어도 하나를 포함할 수 있다.
[화학식 10]
Figure PCTKR2017004560-appb-I000010
[화학식 11]
Figure PCTKR2017004560-appb-I000011
상기 화학식 10 및 11에서, X1, X2, Y1, Y2 및 Y3는 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며, R은 하기 화학식 3 내지 5 중 어느 하나로 표시되는 치환기이고, q는 1 내지 1000의 정수이며, n 및 m은 각각 1 내지 5의 정수이고, l은 1 내지 200의 정수이며,
[화학식 3]
Figure PCTKR2017004560-appb-I000012
[화학식 4]
Figure PCTKR2017004560-appb-I000013
[화학식 5]
Figure PCTKR2017004560-appb-I000014
상기 화학식 3 내지 5에서, A1 내지 A3은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며, R1 내지 R3은 각각 독립적으로 하기 화학식 6 내지 8 중 어느 하나로 표시되는 치환기이고,
[화학식 6]
Figure PCTKR2017004560-appb-I000015
[화학식 7]
Figure PCTKR2017004560-appb-I000016
[화학식 8]
Figure PCTKR2017004560-appb-I000017
상기 화학식 6 내지 8에서, A4 내지 A6은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며, R4 내지 R6은 각각 독립적으로 하기 화학식 9로 표시되는 치환기이고,
[화학식 9]
Figure PCTKR2017004560-appb-I000018
상기 화학식 9에서, A7은 탄소수 2 내지 10인 알킬렌기이다.
본 명세서에서,
Figure PCTKR2017004560-appb-I000019
는 치환기의 치환위치를 의미한다.
본 명세서에 있어서, 상기 알킬렌기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 2 내지 10인 것이 바람직하다. 구체적인 예로는 에틸렌기, 프로필렌기, 이소프로필렌기, 부틸렌기, t-부틸렌기, 펜틸렌기, 헥실렌기, 헵틸렌기 등이 있으나, 이에만 한정되는 것은 아니다.
상기 수소이온 교환 고분자는 하기 화학식 12로 표시되는 수소이온 교환기를 포함한다.
[화학식 12]
-SO3 -X
상기 화학식 12에서, 상기 X는 1가의 양이온기이다.
상기 고분자층 상에 아민기와 결합되어 있는 금속 나노 입자에 수소이온 교환기를 통해 양성자(proton)를 전달하기에 용이하여 금속 나노 입자의 이용율을 증대시킬 수 있다.
도 4에 도시된 바와 같이, 고분자층의 표면의 아민기와 금속 나노 입자인 백금 입자가 결합되어 있고, 활성금속 사이트인 백금 입자에 탄소 담체 표면에 있는 고분자층의 수소이온 교환기를 통해 H+을 전달하여 백금 입자를 이용하기 쉽다.
상기 수소이온 교환 고분자는 상기 화학식 12로 표시되는 수소이온 교환기를 포함한다면, 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 이용할 수 있다.
상기 수소이온 교환 고분자는 탄화수소계 고분자, 부분불소계 고분자 또는 불소계 고분자일 수 있다. 상기 탄화수소계 고분자는 플루오린기가 없는 탄화수소계 술폰화 고분자일 수 있으며, 반대로 불소계 고분자는 플루오린기로 포화된 술폰화 고분자일 수 있고, 상기 부분불소계 고분자는 플루오린기로 포화되지 않은 술폰화 고분자일 수 있다.
상기 수소이온 교환 고분자는 퍼플루오르술폰산계 고분자, 탄화수소계 고분자, 방향족 술폰계 고분자, 방향족 케톤계 고분자, 폴리벤즈이미다졸계 고분자, 폴리스티렌계 고분자, 폴리에스테르계 고분자, 폴리이미드계 고분자, 폴리비닐리덴 플루오라이드계 고분자, 폴리에테르술폰계 고분자, 폴리페닐렌설파이드계 고분자, 폴리페닐렌옥사이드계 고분자, 폴리포스파젠계 고분자, 폴리에틸렌나프탈레이트계 고분자, 폴리에스테르계 고분자, 도핑된 폴리벤즈이미다졸계 고분자, 폴리에테르케톤계 고분자, 폴리페닐퀴녹살린계 고분자, 폴리술폰계 고분자, 폴리피롤계 고분자 및 폴리아닐린계 고분자로 이루어진 군에서 선택되는 하나 또 는 둘 이상의 고분자일 수 있다. 상기 고분자는 단일 공중합체, 교대 공중합체, 랜덤 공중합체, 블록 공중합체, 멀티블록 공중합체 또는 그라프트 공중합체일 수 있으나, 이에 한정되는 것은 아니다.
상기 수소이온 교환 고분자의 예로는 나피온(Nafion), 술폰화 폴리에테르에테르케톤 (sPEEK, Polyetheretherketone) 술폰화 폴리에테르케톤 (sPEK, sulfonated (polyetherketone)), 폴리비닐리덴 플로라이드-그라프트-폴리스티렌 술폰산 (poly (vinylidene fluoride)-graft-poly(styrene sulfonic acid), PVDF-g-PSSA) 및 술폰화 폴리플루로레닐 에테르케톤 (Sulfonated poly (fluorenyl ether ketone)) 중 적어도 하나를 포함할 수 있다.
상기 폴리알킬렌이민의 아민기와 상기 수소이온 교환 고분자의 수소이온 교환기는 인접하다면, 결합하여 화학 반응을 통해 술폰아미드 결합구조(Sulfonamide, -SO2-NH-)를 가질 수 있다.
상기 고분자층은 상기 폴리알킬렌이민의 아민기와 상기 수소이온 교환 고분자의 수소이온 교환기에 각각 반응할 수 있는 가교제를 통해 서로 가교결합된 고분자를 포함할 수 있다.
상기 가교제는 폴리알킬렌이민의 아민기와 상기 수소이온 교환 고분자의 수소이온 교환기를 가교결합시킬 수 있다면 특별히 한정하지 않으나, 예를 들면, POCl3 등을 사용할 수 있다.
하기 반응식 1과 같이, 상기 고분자층은 가교제인 POCl3에 의해 수소이온 교환 고분자의 수소이온 교환기(P1-SO3H)와 상기 폴리알킬렌이민의 아민기(P2-NH2)가 서로 가교결합되어 술폰아미드 결합구조(Sulfonamide, -SO2-NH-)가 형성된 고분자를 포함할 수 있다.
[반응식 1]
Figure PCTKR2017004560-appb-I000020
상기 반응식에서, P1은 수소이온 교환기인 -SO3H를 제외한 수소이온 교환 고분자이며, P2는 아민기 중 -NH2를 제외한 폴리알킬렌이민이다.
상기 금속 나노 입자는 상기 고분자층의 아민기와 결합할 수 있으며, 구체적으로, 상기 폴리알킬렌이민의 아민기와 결합할 수 있다.
상기 금속 나노 입자는 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택되는 하나 또는 2 이상의 금속을 포함할 수 있다. 구체적으로, 상기 금속 나노 입자는 백금(Pt); 및 철(Fe), 코발트(Co), 니켈(Ni), 팔라듐(Pd), 로듐(Rh) 또는 루테늄(Ru)과 백금(Pt)이 합금된 백금합금을 포함할 수 있다.
상기 금속 나노 입자의 평균 입경은 2nm 이상 20nm 이하일 수 있으며, 구체적으로 3nm 이상 10nm 이하일 수 있다. 이 경우 탄소 담체 상에 금속 나노 입자가 서로 응집되지 않고 잘 분산되어 촉매효율이 높은 장점이 있다. 여기서, 상기 금속 나노 입자의 평균 입경은 금속 나노 입자의 표면의 두 점을 잇는 선들 중 가장 긴 선의 길이의 평균을 의미한다.
상기 금속 나노 입자는 구 형상일 수 있다. 본 명세서에서, 구 형상이란, 완전한 구형만을 의미하는 것은 아니고, 대략적으로 구 형태의 모양인 것을 포함할 수 있다. 예를 들면, 상기 금속 나노 입자는 구 형상의 외표면이 평탄하지 않을 수 있으며, 하나의 금속 나노 입자에서 곡률반경이 일정하지 않을 수도 있다.
상기 담체-나노입자 복합체의 총 중량에 대하여 상기 금속 나노 입자의 함량은 15 중량% 이상 50 중량% 이하일 수 있다. 구체적으로, 상기 담체-나노입자 복합체의 총 중량에 대하여 상기 금속 나노 입자의 함량은 20 중량% 이상 40 중량% 이하일 수 있다.
본 명세서는 상기 담체-나노입자 복합체를 포함하는 촉매를 제공한다.
본 명세서는 상기 촉매를 포함하는 전기화학 전지를 제공한다.
상기 전기화학 전지는 화학반응을 이용한 전지를 의미하며 고분자 전해질막이 구비된다면 그 종류를 특별히 한정하지 않으나, 예를 들면, 상기 전기화학 전지는 연료전지, 금속 이차 전지 또는 흐름전지일 수 있다.
본 명세서는 전기화학 전지를 단위전지로 포함하는 것인 전기화학 전지모듈을 제공한다.
상기 전기화학 전지 모듈은 본 출원의 하나의 실시 상태에 따른 흐름 전지 사이에 바이폴라(bipolar) 플레이트를 삽입하여 스택킹(stacking)하여 형성될 수 있다.
상기 전지 모듈은 구체적으로 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장장치의 전원으로 사용될 수 있다.
본 명세서는 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 상기 담체-나노입자 복합체를 포함하는 것인 막 전극 접합체를 제공한다.
상기 막 전극 접합체는 상기 애노드 촉매층의 고분자 전해질막이 구비된 면의 반대면에 구비된 애노드 기체확산층 및 상기 캐소드 촉매층의 고분자 전해질막이 구비된 면의 반대면에 구비된 캐소드 기체확산층을 더 포함할 수 있다.
본 명세서는 상기 막 전극 접합체를 포함하는 연료 전지를 제공한다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(M)과 이 전해질막(M)의 양면에 형성되는 애노드(A) 및 캐소드(C)로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(A)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료(F)의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(M)을 통해 캐소드(C)으로 이동한다. 캐소드(C)에서는 전해질막(M)을 통해 전달된 수소 이온과, 산소와 같은 산화제(O) 및 전자가 반응하여 물(W)이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
도 2는 연료전지용 막 전극 접합체의 구조를 개략적으로 도시한 것으로, 연료전지용 막 전극 접합체는 전해질막(10)과, 이 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 캐소드(50) 및 애노드(51)를 구비할 수 있다. 상기 캐소드에는 전해질막(10)으로부터 순차적으로 캐소드 촉매층(20)과 캐소드 기체확산층(40)이 구비되고, 상기 애노드에는 전해질막(10)으로부터 순차적으로 애노드 촉매층(21) 및 애노드 기체확산층(41)이 구비될 수 있다.
본 명세서에 따른 촉매는 막 전극 접합체에서, 캐소드 촉매층 및 애노드 촉매층 중 적어도 하나에 포함될 수 있다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 산화제 공급부(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 본 명세서에 따른 담체-나노입자 복합체를 촉매로서 포함할 수 있다.
상기 애노드 촉매층 및 캐소드 촉매층은 각각 이오노머를 포함할 수 있다.
상기 애노드 촉매층이 상기 담체-나노입자 복합체를 포함하는 경우, 상기 애노드 촉매층의 이오노머(Ionomer)와 상기 담체-나노입자 복합체(Complex)의 비율(Ionomer/Complex, I/C)은 0.3 내지 0.7이다.
상기 캐소드 촉매층이 상기 담체-나노입자 복합체를 포함하는 경우, 상기 캐소드 촉매층의 이오노머(Ionomer)와 상기 담체-나노입자 복합체(Complex)의 비율(Ionomer/Complex, I/C)은 0.3 내지 0.7이다.
일반적으로 상용촉매에서 사용하는 I/C 비율은 0.8 내지 1인 점(Book “PEM fuel cell Electrocatalyst and catalyst layer”, page 895)을 고려할 때, 본 명세서에 따른 담체-나노입자 복합체를 촉매로서 포함하는 경우, 촉매층에 필요한 이오노머의 함량을 기준으로 20중량% 이상 줄일 수 있으며, 구체적으로, 30중량% 이상 줄일 수 있으며, 더 구체적으로, 50중량% 이상 줄일 수 있다. 다시 말하면, 비싼 이오노머의 함량을 줄일 수 있고, 적은 이오노머의 함량으로도 일정 이상의 수소이온 전도도를 유지할 수 있는 장점이 있다.
상기 이오노머는 수소나 메탄올과 같은 연료와 촉매간의 반응에 의하여 생성된 이온이 전해질막으로 이동하기 위한 통로를 제공하여 주는 역할을 한다.
상기 이오노머는 측쇄에 술폰산기, 카르복실산기, 인산기, 포스폰산기 및 이들의 유도체로 이루어진 군에서 선택된 양이온 교환기를 갖는 고분자를 사용할 수 있다. 구체적으로, 상기 이오노머는 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌설파이드계 고분자, 폴리설폰계 고분자, 폴리에테르설폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 또는 폴리페닐퀴녹살린계 고분자 중에서 선택된 1종 이상의 수소이온 전도성 고분자를 포함할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 고분자 이오노머는 나피온일 수 있다.
본 명세서는 탄소 담체에 아민기 및 하기 화학식 12로 표시되는 수소이온 교환기를 갖는 고분자층을 형성하는 단계; 및 상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계를 포함하는 담체-나노입자 복합체의 제조방법을 제공한다.
[화학식 12]
-SO3 -X
상기 화학식 12에서, 상기 X는 1가의 양이온기이다.
상기 담체-나노입자 복합체의 제조방법은 담체-나노입자 복합체에 대하여 상술한 바를 인용할 수 있다.
상기 담체-나노입자 복합체의 제조방법은 탄소 담체에 아민기 및 하기 화학식 12로 표시되는 수소이온 교환기를 갖는 고분자층을 형성하는 단계를 포함한다.
상기 고분자층을 형성하는 단계는 탄소 담체를 폴리알킬렌이민 및 수소이온 교환 고분자를 포함하는 용액 또는 아민기를 갖는 폴리알킬렌이민 및 상기 수소이온 교환기를 갖는 수소이온 교환 고분자로 유래된 고분자를 포함하는 용액에 넣어 고분자층을 형성하는 단계일 수 있다.
상기 담체-나노입자 복합체의 제조방법은 탄소 담체, 폴리알킬렌이민 및 수소이온 교환 고분자를 용매에 첨가하여 제1 용액을 제조하는 단계; 및 상기 제1 용액을 교반하는 단계를 포함할 수 있다.
상기 제1 용액은 가교제를 더 포함할 수 있다. 상기 가교제는 상기 폴리알킬렌이민의 아민기와 상기 수소이온 교환 고분자의 수소이온 교환기에 각각 반응할 수 있는 반응기를 가질 수 있다.
상기 담체-나노입자 복합체의 제조방법은 탄소 담체, 및 폴리알킬렌이민과 수소이온 교환기를 갖는 수소이온 교환 고분자로 유래된 고분자를 용매에 첨가하여 제1 용액을 제조하는 단계; 및 상기 제1 용액을 교반하는 단계를 포함할 수 있다.
상기 제1 용액의 용매는 특별히 한정하지 않으나, 물, 에탄올(Ethanol), 2-프로판올(2-propanol) 및 이소프로판올(iso-propanol) 중 적어도 하나를 포함할 수 있다.
상기 제1 용액의 고형분 중량을 기준으로, 상기 탄소 담체의 함량은 14 중량% 이상 30중량% 이하일 수 있다.
상기 제1 용액의 고형분 중량을 기준으로, 상기 폴리알킬렌이민의 함량은 65중량% 이상 85중량% 이하일 수 있다.
상기 제1 용액의 고형분 중량을 기준으로, 상기 수소이온 교환 고분자의 함량은 0.1중량% 이상 5중량% 이하일 수 있다.
상기 제1 용매가 가교제를 더 포함하는 경우, 상기 제1 용액의 고형분 중량을 기준으로, 상기 탄소 담체의 함량은 0 중량% 초과 3중량% 이하일 수 있다.
상기 제1 용매가 탄소 담체, 및 폴리알킬렌이민과 수소이온 교환기를 갖는 수소이온 교환 고분자로 유래된 고분자를 포함하는 경우, 상기 제1 용액의 고형분 중량을 기준으로, 상기 탄소 담체의 함량은 14 중량% 이상 30중량% 이하이고, 상기 폴리알킬렌이민과 수소이온 교환기를 갖는 수소이온 교환 고분자로 유래된 고분자의 함량은 70중량% 이상 86중량% 이하일 수 있다.
상기 제1 용액의 총 중량을 기준으로, 용매를 제외한 상기 제1 용액의 고형분의 총 함량은 0.3중량% 이상 20중량% 이하일 수 있으며, 상기 제1 용액의 총 중량을 기준으로, 상기 용매의 함량은 80중량% 이상 99.7중량% 이하일 수 있다.
상기 제1 용액을 교반하는 시간은 3시간 이상 72시간 이하일 수 있다.
상기 담체-나노입자 복합체의 제조방법은 상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계를 포함한다.
상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계는 상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 제2 용액을 제조하는 단계; 상기 제2 용액의 pH를 조절하는 단계; 및 상기 제2 용액을 교반하는 단계를 포함할 수 있다.
상기 금속 전구체는 금속 나노 입자로 환원되기 전의 물질이며, 상기 금속 전구체는 금속 나노 입자의 종류에 따라 선택될 수 있다.
상기 제2 용액의 용매는 2 이상의 히드록시기를 갖는 다가 알코올을 포함할 수 있다. 상기 다가 알코올은 2 이상의 히드록시기를 가진다면 특별히 한정하지 않으나, 에틸렌 글리콜, 다이에틸렌 글리콜 및 프로필렌 글리콜 중 적어도 하나를 포함할 수 있다.
상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하기 위한 상기 제2 용액은 계면활성제를 포함하지 않는다. 이 경우 촉매합성 후 계면활성제를 제거하는 단계가 필요없고 계면활성제에 의한 활성점 감소가 없는 장점이 있다.
상기 제2 용액의 총 중량을 기준으로, 상기 고분자층이 형성된 탄소 담체의 함량은 0.1중량% 이상 3중량% 이하일 수 있다.
상기 제2 용액의 총 중량을 기준으로, 상기 금속 전구체의 함량은 0.1중량% 이상 4중량% 이하일 수 있다.
상기 제2 용액의 총 중량을 기준으로, 상기 용매의 함량은 93중량% 이상 98중량% 이하일 수 있다.
상기 제2 용액의 pH를 조절하는 단계에서, 제2 용액의 pH는 10-11로 조절될 수 있으며, 제2 용액의 pH를 조절할 수 있다면 pH 조절방법을 특별히 한정하지 않으나 일정량의 NaOH를 첨가하여 조절할 수 있다.
상기 담체-나노입자 복합체의 제조방법은 탄소 담체의 고분자층 상에 금속 나노 입자를 형성한 후, 용매를 제거하는 단계를 더 포함할 수 있다.
상기 용매를 제거하는 단계는 용매가 제거되고 탄소 담체의 고분자층 상에 구비된 금속 나노 입자가 소결될 수 있다.
상기 용매제거단계는 수소 또는 아르곤 분위기에서 열처리하는 단계일 수 있다. 이때, 열처리 온도는 180℃ 이상 300℃ 이하일 수 있다. 180℃ 미만에서는 용매가 완전히 제거가 되지 않을 수 있고 300℃ 초과에서는 카본 담체 표면의 고분자가 분해되거나 변형될 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예]
[실시예 1]
polyethyleneimine(PEI, Mw. 1800) 1g과 5wt% nafion solution(in propanol/물) 240mg을 물/ 이소프로필알코올(IPA) 200ml에 용해시킨 뒤, raw carbon black 240mg을 넣고 24시간 교반했다. 이 후 증류수로 세척 및 건조하여 PEI와 nafion으로 표면 개질된 카본담체를 얻었다.
PtCl4 0.22mmol과 PEI와 nafion으로 표면 개질된 카본 담체 65mg을 ethylene glycol 25ml에 용해시킨 후 pH를 11으로 조절한 후 일정시간 교반했다. 이를 160℃까지 승온 후 3시간 교반시킨 뒤 냉각했다. 에탄올(EtOH)로 세척 후 건조한 뒤 Ar 또는 Ar/수소분위기에서 1시간 열처리했다. ICP(inductively coupled plasma) 분석결과 Pt는 40 중량% 담지되었다.
[실시예 2]
polyethyleneimine(PEI, Mw. 1800) 1g과 5wt% nafion solution(in propanol/물) 1.2g을 물/이소프로필알코올(IPA) 200ml에 용해시킨 뒤, raw carbon black 240mg을 넣고 24시간 교반했다. 이 후 증류수로 세척 및 건조하여 PEI와 nafion으로 표면 개질된 카본담체를 얻었다.
PtCl4 0.22mmol과 PEI와 nafion으로 표면 개질된 카본 담체 65mg을 ethylene glycol 25ml에 용해시킨 후 pH를 11으로 조절한 후 일정시간 교반했다. 이를 160℃까지 승온 후 3시간 교반시킨 뒤 냉각했다. 에탄올(EtOH)로 세척 후 건조한 뒤 Ar 또는 Ar/수소분위기에서 1시간 열처리했다. ICP(inductively coupled plasma) 분석결과 Pt는 40 중량% 담지되었다.
[비교예 1]
폴리에틸렌이민(polyethyleneimine(PEI), Mw. 1800) 1g을 물 200ml에 용해시킨 뒤, raw carbon black 240mg과 KNO3 6g을 넣고 24시간 교반했다. 증류수로 세척 및 건조하여 PEI 코팅된 카본담체를 얻었다.
PtCl4 0.22mmol과 PEI 코팅된 카본 담체 65mg을 에틸렌글리콜(ethylene glycol) 25ml에 용해시킨 후 pH를 11으로 조절한 후 일정시간 교반시킨다. 160℃까지 승온 후 3시간 교반시킨 뒤 냉각했다. EtOH로 세척 후 건조한 뒤 Ar 또는 Ar/수소분위기에서 1시간 열처리했다. ICP(inductively coupled plasma) 분석결과 Pt는 40 중량% 담지되었다.
[실험예 1]
상기 실시예 1에서 제조된 담체-나노입자 복합체에 대한 투과전자현미경(TEM) 측정 이미지를 도 5에 도시했다.
[실험예 2]
실시예 1에 사용된 PEI과 함께, PEI만 담지된 비교예 1과 PEI와 나피온이 담지된 실시예 1에 대하여 raw carbon black을 기준(reference)으로 하여 측정된 적외선 분광분석(FT-IR) 그래프를 도 6에 나타내고, 실시예 1에 사용된 나피온과 함께, PEI만 담지된 비교예 1과 PEI와 나피온(nafion)이 담지된 실시예 1에 대하여 raw carbon black을 기준(reference)으로 하여 측정된 적외선 분광분석(FT-IR) 그래프를 도 7에 나타냈다. 그 결과, 비교예 1 및 실시예 1에 PEI가 담지되어 있음을 확인하고, 실시예 1의 복합체에 나피온이 담지되어 있음을 확인했다.
[실험예 3]
PEI 및 nafion 고분자가 코팅된 카본 담체에서의 N과 S의 함량을 pyrolysis ion chromatoghrapy를 이용하여 측정하였다.
N(wt%) S(wt%)
실시예 1 1.96 0.37
실시예 2 2.03 1.01
[실험예 4]
PEI 및 nafion 고분자가 코팅된 카본 담체(실시예 1)와 질산으로 산처리한 카본의 표면장력 및 접촉각을 측정하였다. 이때, 상기 산처리한 카본은 5M 질산으로 90℃에서 6시간 처리를 한 카본을 사용하였다.
접촉각은 KRUSS 사의 K100 모델을 사용하여 측정하였다. Surface tension은 물에 대해서 측정을 하였다. 표 2에서 보듯이 실시예 1의 경우, 접촉각이 47° 정도로 산처리한 카본보다 작아 담체 표면이 좀 더 친수적인 것을 알 수 있고, surface tension의 경우도 산처리 카본보다 커서 표면이 친수적이고 물을 더 잡아두는 특성이 있음을 알 수 있다. 또한, 이러한 친수적인 특성 때문에 잉크 제조시 촉매의 분산 측면에서 좀 더 유리할 수 있어 좀 더 균일한 전극층을 형성하는데 유리할 수 있다.
Figure PCTKR2017004560-appb-T000001
[실험예 5]
실시예 1, 실시예 2, 비교예 1 및 상용촉매를 각각 이소프로필 알콜(isopropyl alcohol)과 5wt% nafion solution과 혼합하여 잘 분산된 잉크로 만들었다. 이때, 상기 상용촉매는 Johnson Matthey 사의 40wt% Pt/C를 사용했다.
실시예 1 및 2의 경우는 nafion ionomer를 I/C(ionomer/carbon)=0.48이 되도록, 비교예 1과 상용촉매는 I/C=0.75가 되도록 첨가하였다. 촉매 잉크는 spray장비를 이용하여 nafion membrane에 코팅한 후, 140℃에서 hot press하여 막 전극 접합체를 준비하였다.
막 전극 접합체의 크기는 2.5㎝ × 2.5㎝이고, H2/Air를 100 % 가습조건에서 공급하며, 80℃ 분위기에서 단전지(single cell)의 성능을 측정하였으며, 단위 면적당 Pt는 0.4mg/cm2이었다. 그 결과는 도 8 및 표 3에 기재했다.
실시예 1의 경우, 비교예 1 및 상용촉매와 비교하여 전류밀도도 높고 물질전달 영역인 low voltage 영역에서 높은 전류밀도를 나타내었다. 이는 담체에 존재하는 ionomer의 -SO3 - 작용기가 백금 입자로 수소 이온을 보다 더 잘 전달해주기 때문에 활성도 높아지고 특히 물질전달 영역에서 다른 촉매들 보다 좋은 성능을 나타내는 것이다. Ionomer 함량이 더 많았던 실시예 2의 경우, 성능이 다소 낮아지고 물질 전달 영역에서의 장점도 많이 상쇄되었다. 이는 ionomer의 양이 1wt% 이상으로 많아지면 오히려 담체 표면이 더 친수적으로 되어 발생하는 물의 배출이 오히려 방해받는 것으로 생각된다. 또한, 실시예 1의 경우, 촉매 잉크 제조시 ionomer의 함량을 상용촉매 대비 약 22%로 줄여 사용을 하였음에도 더 좋은 성능을 나타내었다. 카본 담체 표면에 -SO3 - 작용기가 있어 더 적은 양의 ionomer로도 충분히 수소이온을 전달할 수 있었다. 일반적으로 촉매 잉크 제조시 최적의 ionomer 양은 촉매 중량의 33% 내지 50% 사이에 있다고 알려져 있다.
Figure PCTKR2017004560-appb-T000002

Claims (13)

  1. 탄소 담체;
    상기 탄소 담체의 표면에 구비되고 아민기 및 하기 화학식 12로 표시되는 수소이온 교환기를 갖는 고분자층; 및
    상기 고분자층 상에 구비된 금속 나노 입자를 포함하는 담체-나노입자 복합체:
    [화학식 12]
    -SO3 -X
    상기 화학식 12에서, 상기 X는 1가의 양이온기이다.
  2. 청구항 1에 있어서, 상기 고분자층은 아민기를 갖는 폴리알킬렌이민 및 상기 수소이온 교환기를 갖는 수소이온 교환 고분자를 포함하거나, 아민기를 갖는 폴리알킬렌이민 및 상기 수소이온 교환기를 갖는 수소이온 교환 고분자로 유래된 고분자를 포함하는 것인 담체-나노입자 복합체.
  3. 청구항 2에 있어서, 상기 폴리알킬렌이민은 하기 화학식 1로 표시되는 반복단위 및 하기 화학식 2로 표시되는 반복단위 중 적어도 하나를 포함하는 것인 담체-나노입자 복합체:
    [화학식 1]
    Figure PCTKR2017004560-appb-I000021
    [화학식 2]
    Figure PCTKR2017004560-appb-I000022
    상기 화학식 1 및 2에서,
    E1 및 E2는 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며,
    R은 하기 화학식 3 내지 5 중 어느 하나로 표시되는 치환기이고,
    o 및 p는 각각 1 내지 1000의 정수이며,
    [화학식 3]
    [화학식 4]
    Figure PCTKR2017004560-appb-I000024
    [화학식 5]
    Figure PCTKR2017004560-appb-I000025
    상기 화학식 3 내지 5에서,
    A1 내지 A3은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며,
    R1 내지 R3은 각각 독립적으로 하기 화학식 6 내지 8 중 어느 하나로 표시되는 치환기이고,
    [화학식 6]
    Figure PCTKR2017004560-appb-I000026
    [화학식 7]
    Figure PCTKR2017004560-appb-I000027
    [화학식 8]
    Figure PCTKR2017004560-appb-I000028
    상기 화학식 6 내지 8에서,
    A4 내지 A6은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며,
    R4 내지 R6은 각각 독립적으로 하기 화학식 9로 표시되는 치환기이고,
    [화학식 9]
    Figure PCTKR2017004560-appb-I000029
    상기 화학식 9에서,
    A7은 탄소수 2 내지 10인 알킬렌기이다.
  4. 청구항 2에 있어서, 상기 폴리알킬렌이민은 하기 화학식 10으로 표시되는 화합물 및 하기 화학식 11로 표시되는 화합물 중 적어도 하나를 포함하는 것인 담체-나노입자 복합체:
    [화학식 10]
    Figure PCTKR2017004560-appb-I000030
    [화학식 11]
    Figure PCTKR2017004560-appb-I000031
    상기 화학식 10 및 11에서,
    X1, X2, Y1, Y2 및 Y3는 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며,
    R은 하기 화학식 3 내지 5 중 어느 하나로 표시되는 치환기이고,
    q는 1 내지 1000의 정수이며,
    n 및 m은 각각 1 내지 5의 정수이고,
    l은 1 내지 200의 정수이며,
    [화학식 3]
    Figure PCTKR2017004560-appb-I000032
    [화학식 4]
    Figure PCTKR2017004560-appb-I000033
    [화학식 5]
    Figure PCTKR2017004560-appb-I000034
    상기 화학식 3 내지 5에서,
    A1 내지 A3은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며,
    R1 내지 R3은 각각 독립적으로 하기 화학식 6 내지 8 중 어느 하나로 표시되는 치환기이고,
    [화학식 6]
    Figure PCTKR2017004560-appb-I000035
    [화학식 7]
    Figure PCTKR2017004560-appb-I000036
    [화학식 8]
    Figure PCTKR2017004560-appb-I000037
    상기 화학식 6 내지 8에서,
    A4 내지 A6은 각각 독립적으로 탄소수 2 내지 10인 알킬렌기이며,
    R4 내지 R6은 각각 독립적으로 하기 화학식 9로 표시되는 치환기이고,
    [화학식 9]
    Figure PCTKR2017004560-appb-I000038
    상기 화학식 9에서,
    A7은 탄소수 2 내지 10인 알킬렌기이다.
  5. 청구항 1에 있어서, 상기 금속 나노 입자는 상기 고분자층의 아민기와 결합된 것인 담체-나노입자 복합체.
  6. 청구항 1에 있어서, 상기 고분자층의 표면의 전체 원소를 기준으로, 아민기의 질소원소의 함량은 0.01중량% 이상 5중량% 이하이고, 상기 화학식 12의 수소이온 교환기의 황원소의 함량은 0.01중량% 이상 1중량% 이하인 것인 담체-나노입자 복합체.
  7. 청구항 2에 있어서, 상기 폴리알킬렌이민과 상기 수소이온 교환 고분자의 중량비는 15 이상 100 이하인 것인 담체-나노입자 복합체.
  8. 청구항 1 내지 7 중 어느 한 항에 따른 담체-나노입자 복합체를 포함하는 촉매.
  9. 청구항 8의 촉매를 포함하는 전기화학 전지.
  10. 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 청구항 1 내지 7 중 어느 한 항에 따른 담체-나노입자 복합체를 포함하는 것인 막 전극 접합체.
  11. 청구항 10에 있어서, 상기 애노드 촉매층 및 캐소드 촉매층은 각각 이오노머를 포함하는 것인 막 전극 접합체.
  12. 탄소 담체에 아민기 및 하기 화학식 12로 표시되는 수소이온 교환기를 갖는 고분자층을 형성하는 단계; 및
    상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계를 포함하는 담체-나노입자 복합체의 제조방법:
    [화학식 12]
    -SO3 -X
    상기 화학식 12에서, 상기 X는 1가의 양이온기이다.
  13. 청구항 12에 있어서, 상기 고분자층을 형성하는 단계는 탄소 담체를 폴리알킬렌이민 및 수소이온 교환 고분자를 포함하는 용액 또는 아민기를 갖는 폴리알킬렌이민 및 상기 수소이온 교환기를 갖는 수소이온 교환 고분자로 유래된 고분자를 포함하는 용액에 넣어 고분자층을 형성하는 단계인 것인 담체-나노입자 복합체의 제조방법.
PCT/KR2017/004560 2016-05-02 2017-04-28 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법 WO2017191945A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018553155A JP6769008B2 (ja) 2016-05-02 2017-04-28 担体−ナノ粒子複合体、これを含む触媒およびその製造方法
US16/097,606 US11245119B2 (en) 2016-05-02 2017-04-28 Carrier-nanoparticle composite, catalyst comprising same, and method for producing same
CN201780026963.0A CN109075350B (zh) 2016-05-02 2017-04-28 载体-纳米颗粒复合体、包含其的催化剂及其制造方法
EP17792847.0A EP3435460B1 (en) 2016-05-02 2017-04-28 Carrier-nanoparticle composite, catalyst comprising same, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160054223A KR102096130B1 (ko) 2016-05-02 2016-05-02 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
KR10-2016-0054223 2016-05-02

Publications (1)

Publication Number Publication Date
WO2017191945A1 true WO2017191945A1 (ko) 2017-11-09

Family

ID=60203101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004560 WO2017191945A1 (ko) 2016-05-02 2017-04-28 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11245119B2 (ko)
EP (1) EP3435460B1 (ko)
JP (1) JP6769008B2 (ko)
KR (1) KR102096130B1 (ko)
CN (1) CN109075350B (ko)
WO (1) WO2017191945A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022413B1 (ko) * 2016-11-21 2019-09-18 주식회사 엘지화학 촉매 및 이의 제조방법
KR102235219B1 (ko) * 2017-09-19 2021-04-01 주식회사 엘지화학 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
KR20200116806A (ko) * 2019-04-02 2020-10-13 현대자동차주식회사 다성분계 합금 촉매의 제조방법
CN113823831B (zh) * 2020-06-18 2023-06-09 中国科学院广州能源研究所 一种磺酸功能化聚乙烯亚胺类聚合物固态电解质
CN112675834B (zh) * 2021-01-12 2022-09-02 万华化学集团股份有限公司 一种铀基催化剂的制备方法、由其制备的催化剂和在氯化氢氧化制备氯气中的应用
CN114196990B (zh) * 2021-10-08 2023-07-25 鸿基创能科技(广州)有限公司 一种用于质子交换膜电解水装置的阴极催化剂浆料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060004780A (ko) * 2004-07-08 2006-01-16 삼성에스디아이 주식회사 담지 촉매 및 이를 이용한 연료전지
KR20060055632A (ko) * 2004-11-18 2006-05-24 한국과학기술연구원 이온전도성을 갖도록 개질된 담체를 이용한저온연료전지용 촉매, 그 제조방법, 상기 촉매를 이용한저온연료전지용 전극, 그 제조방법, 상기 촉매를 이용한저온연료전지용 막전극접합체, 그 제조방법, 상기 촉매를이용한 저온연료전지 및 그 제조방법
KR20070119230A (ko) * 2006-06-14 2007-12-20 삼성에스디아이 주식회사 연료 전지용 촉매, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템
KR20160007888A (ko) * 2014-07-08 2016-01-21 건국대학교 산학협력단 연료전지용 전극촉매 및 그 제조방법
KR20160022156A (ko) * 2014-08-19 2016-02-29 주식회사 엘지화학 담체-나노입자 복합체 및 이의 제조방법

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG73410A1 (en) * 1992-06-13 2000-06-20 Hoechst Ag Polymer electrolyte membrane and process for the production thereof
US6492295B2 (en) * 2000-03-15 2002-12-10 Japan Storage Battery Co., Ltd. Composite catalyst for solid polymer electrolyte type fuel cell and processes for producing the same
US20050053818A1 (en) * 2002-03-28 2005-03-10 Marc St-Arnaud Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
DE10309135A1 (de) * 2003-02-28 2004-09-09 Basf Ag Verfahren zur Herstellung eines zum Protonenaustausch befähigten Polymersystems auf der Basis von Polyaryletherketonen
JP2005122925A (ja) 2003-10-14 2005-05-12 Mitsubishi Heavy Ind Ltd 触媒担体、電極触媒、それらの製造方法、それらを用いた電極及び燃料電池
JP2005235688A (ja) 2004-02-23 2005-09-02 Cataler Corp 燃料電池用担持触媒、その製造方法及び燃料電池
KR100953545B1 (ko) 2004-03-23 2010-04-21 삼성에스디아이 주식회사 담지촉매 및 그 제조 방법
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
KR101117630B1 (ko) * 2004-06-23 2012-02-29 삼성에스디아이 주식회사 연료전지용 막-전극 접합체 및 그 제조방법
WO2006067872A1 (ja) * 2004-12-24 2006-06-29 Asahi Kasei Kabushiki Kaisha 高耐久性電極触媒層
KR100684836B1 (ko) * 2005-03-28 2007-02-20 삼성에스디아이 주식회사 연료전지용 촉매 복합체, 이의 제조방법, 이를 포함하는막-전극 어셈블리, 및 이를 포함하는 연료전지 시스템
JP4845609B2 (ja) * 2005-06-28 2011-12-28 三星エスディアイ株式会社 燃料電池用高分子電解質膜、これを含む燃料電池用膜−電極組立体、及びこれを含む燃料電池システム
KR100601101B1 (ko) 2005-09-23 2006-07-19 주식회사 엘지화학 연료전지용 백금 전극촉매의 제조방법
JP5151146B2 (ja) 2006-03-06 2013-02-27 トヨタ自動車株式会社 固体高分子型燃料電池及びそれに用いる固体高分子型燃料電池用meaの製造方法
US7993797B2 (en) * 2007-07-10 2011-08-09 GM Global Technology Operations LLC Chemically modified catalyzed support particles for electrochemical cells
JP2009231158A (ja) * 2008-03-25 2009-10-08 Toppan Printing Co Ltd 燃料電池用電極触媒層、膜電極接合体、燃料電池及び燃料電池用電極触媒層の製造方法
JP5396730B2 (ja) * 2008-03-26 2014-01-22 日産自動車株式会社 膜電極接合体
DE102008002457A1 (de) * 2008-06-16 2009-12-17 Elcomax Membranes Gmbh Verwendung eines protonenleitfähigkeitverleihenden Materials bei der Herstellung von Brennstoffzellen
JP5458801B2 (ja) * 2008-10-22 2014-04-02 新日鐵住金株式会社 燃料電池
WO2010047415A1 (ja) 2008-10-22 2010-04-29 新日本製鐵株式会社 固体高分子型燃料電池触媒、固体高分子型燃料電池用電極、及び燃料電池
JP4518203B2 (ja) * 2008-10-24 2010-08-04 トヨタ自動車株式会社 燃料電池用電極触媒の製造方法、及び燃料電池用電極触媒
JP5397241B2 (ja) * 2009-01-26 2014-01-22 新日鐵住金株式会社 固体高分子型燃料電池用触媒及びこれを用いた固体高分子型燃料電池用電極
TW201141604A (en) 2010-02-10 2011-12-01 Showa Denko Kk Method for producing fuel cell electrode catalyst, method for producing transition metal oxycarbonitride, fuel cell electrode catalyst and use thereof
JP6061329B2 (ja) * 2012-02-02 2017-01-18 国立大学法人九州大学 触媒層構成体及び同触媒層構成体の調製方法
KR101536623B1 (ko) 2014-05-13 2015-07-14 서울대학교산학협력단 술폰산기(-so3h)가 도입된 산점을 포함한 정렬된 구조의 중형기공성탄소에 담지된 귀금속 촉매, 그 제조방법 및 상기 촉매를 이용한 리그닌 모델 화합물 분해 방법
JP2016014080A (ja) * 2014-06-30 2016-01-28 旭化成ファインケム株式会社 スルホン酸/スルホン酸塩−基を有するポリアミン及びその製法
KR102022413B1 (ko) * 2016-11-21 2019-09-18 주식회사 엘지화학 촉매 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060004780A (ko) * 2004-07-08 2006-01-16 삼성에스디아이 주식회사 담지 촉매 및 이를 이용한 연료전지
KR20060055632A (ko) * 2004-11-18 2006-05-24 한국과학기술연구원 이온전도성을 갖도록 개질된 담체를 이용한저온연료전지용 촉매, 그 제조방법, 상기 촉매를 이용한저온연료전지용 전극, 그 제조방법, 상기 촉매를 이용한저온연료전지용 막전극접합체, 그 제조방법, 상기 촉매를이용한 저온연료전지 및 그 제조방법
KR20070119230A (ko) * 2006-06-14 2007-12-20 삼성에스디아이 주식회사 연료 전지용 촉매, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템
KR20160007888A (ko) * 2014-07-08 2016-01-21 건국대학교 산학협력단 연료전지용 전극촉매 및 그 제조방법
KR20160022156A (ko) * 2014-08-19 2016-02-29 주식회사 엘지화학 담체-나노입자 복합체 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435460A4 *

Also Published As

Publication number Publication date
JP6769008B2 (ja) 2020-10-14
EP3435460B1 (en) 2022-03-16
EP3435460A1 (en) 2019-01-30
US20200328430A1 (en) 2020-10-15
EP3435460A4 (en) 2019-05-08
JP2019520190A (ja) 2019-07-18
CN109075350B (zh) 2021-10-26
CN109075350A (zh) 2018-12-21
US11245119B2 (en) 2022-02-08
KR102096130B1 (ko) 2020-04-01
KR20170124386A (ko) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2017191945A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2017135709A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2018093020A1 (ko) 촉매 및 이의 제조방법
WO2019066534A2 (ko) 라디칼 스케빈져, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 그리고 이를 포함하는 연료 전지
WO2018062769A1 (ko) 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2020004848A1 (ko) 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지
WO2017171285A2 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2017142344A1 (ko) 코어-쉘 입자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 연료 전지 또는 전기화학 전지 및 코어-쉘 입자의 제조방법
WO2020138800A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2019059570A1 (ko) 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
WO2016068606A1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
KR20190032187A (ko) 담체-나노 입자 복합체, 이를 포함하는 촉매 및 촉매를 포함하는 전기화학 전지 및 담체-나노 입자 복합체의 제조방법
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2017188793A1 (ko) 연료전지용 막-전극 어셈블리
WO2019059625A9 (ko) 담체-나노 입자 복합체, 이를 포함하는 촉매 및 촉매를 포함하는 전기화학 전지 및 담체-나노 입자 복합체의 제조방법
WO2022145748A1 (ko) 막-전극 어셈블리 및 이를 포함하는 연료 전지
WO2019054722A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2022216138A1 (ko) 연료전지용 촉매층, 그의 제조방법, 막-전극 어셈블리, 그의 제조방법 및 연료전지
WO2019139415A1 (ko) 연료전지용 기체확산층, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료 전지 및 연료전지용 기체확산층의 제조방법
WO2019031792A1 (ko) 연료 전지용 촉매의 제조방법
WO2019039631A1 (ko) 웹구조의 전극촉매층과 이를 이용한 전기화학 셀용 막전극접합체 및 그 제조방법
WO2019059588A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553155

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017792847

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017792847

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792847

Country of ref document: EP

Kind code of ref document: A1