WO2019054722A1 - 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법 - Google Patents

담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법 Download PDF

Info

Publication number
WO2019054722A1
WO2019054722A1 PCT/KR2018/010615 KR2018010615W WO2019054722A1 WO 2019054722 A1 WO2019054722 A1 WO 2019054722A1 KR 2018010615 W KR2018010615 W KR 2018010615W WO 2019054722 A1 WO2019054722 A1 WO 2019054722A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carrier
polymer
carbon
substituted
Prior art date
Application number
PCT/KR2018/010615
Other languages
English (en)
French (fr)
Inventor
이원균
김상훈
황교현
조준연
김광현
최란
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180079687A external-priority patent/KR102110659B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880046918.6A priority Critical patent/CN110891683A/zh
Priority to US16/631,097 priority patent/US20200164352A1/en
Publication of WO2019054722A1 publication Critical patent/WO2019054722A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a carrier-nanoparticle complex, a catalyst containing the same, an electrochemical cell or a fuel cell including the catalyst, and a method for manufacturing the same.
  • Carbon black is generally used as a carrier of a fuel cell catalyst.
  • carbon black is used as the support, there arises a problem of durability due to corrosion of carbon.
  • a crystalline carbon has a problem in that it is difficult to disperse in a polar solvent because of its strong surface water repellency. For this reason, platinum is not uniformly dispersed in the process of loading the platinum on the carbon support, and the platinum is aggregated.
  • the present specification is intended to provide a carrier-nanoparticle composite, a catalyst containing the same, an electrochemical cell including the catalyst, or a fuel cell and a method of manufacturing the same.
  • the present disclosure relates to a carbon carrier; A polymer layer provided on the surface of the carbon carrier and including a polymer having a pyridine group in a side chain; And metal nanoparticles provided on the polymer layer, wherein the polymer having a pyridine group in the side chain comprises a repeating unit represented by the following formula (1).
  • L is a direct bond or a substituted or unsubstituted alkylene group
  • R 1 to R 4 are the same or different from each other and are each independently hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • a 1 to A 3 are the same or different from each other and each independently represents hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • n is an integer from 3 to 200;
  • the present disclosure also provides a catalyst comprising the carrier-nanoparticle complexes described above.
  • the present invention also provides an electrochemical cell comprising the above-described catalyst.
  • a membrane-electrode assembly comprising a membrane-electrode assembly, a membrane-electrode assembly, and a cathode catalyst layer, wherein at least one of the anode catalyst layer and the cathode catalyst layer comprises the carrier- Electrode assembly.
  • the present invention also relates to a method of manufacturing a carbon carrier, comprising: forming a polymer layer containing a polymer having a pyridine group in a side chain in a carbon carrier; And forming a metal nanoparticle on a polymer layer of the carbon support by adding a carbon carrier and a metal precursor having the polymer layer formed thereon to a solvent, wherein the polymer having a pyridine group in the side chain is a repeating unit represented by the following formula Wherein the method comprises the steps of:
  • L is a direct bond or a substituted or unsubstituted alkylene group
  • R 1 to R 4 are the same or different from each other and are each independently hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • a 1 to A 3 are the same or different from each other and each independently represents hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • n is an integer from 3 to 200;
  • the carrier-nanoparticle composite according to one embodiment of the present invention has an advantage of excellent dispersibility of metal nanoparticles.
  • the carrier-nanoparticle composite according to one embodiment of the present invention has an advantage that the amount of supported metal nanoparticles is large.
  • 1 is a schematic view showing an electricity generation principle of a fuel cell.
  • FIG. 2 is a schematic view showing the structure of a membrane electrode assembly for a fuel cell.
  • FIG 3 is a schematic view showing one embodiment of a fuel cell.
  • Example 4 is an image of the carrier-nanoparticle composite prepared in Example 1 by transmission electron microscope.
  • Example 5 is an image of the carrier-nanoparticle composite prepared in Example 2 by transmission electron microscope.
  • Example 6 is an image of the carrier-nanoparticle composite prepared in Example 3 by transmission electron microscope.
  • Example 7 is an image of the carrier-nanoparticle composite prepared in Example 4 by transmission electron microscope.
  • Example 8 is an image of the carrier-nanoparticle composite prepared in Example 5 by transmission electron microscope.
  • the present disclosure relates to a carbon carrier; A polymer layer provided on the surface of the carbon carrier and including a polymer having a pyridine group in a side chain; And metal nanoparticles provided on the polymer layer, wherein the polymer having a pyridine group in the side chain comprises a repeating unit represented by the following formula (1).
  • L is a direct bond or a substituted or unsubstituted alkylene group
  • R 1 to R 4 are the same or different from each other and are each independently hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • a 1 to A 3 are the same or different from each other and each independently represents hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • n is an integer from 3 to 200;
  • the carbon carrier is not particularly limited as long as it is a carrier having carbon as a main component, but carbon carriers such as carbon black, carbon nanotubes (CNT), graphite, graphene, activated carbon, mesoporous carbon, Carbon fiber, and carbon nanowire.
  • the carbon nanotubes may include one or more selected from the group consisting of carbon fibers and carbon nanowires.
  • a part or all of the surface of the carbon carrier may be provided with a polymer layer.
  • a polymer layer may be provided in an amount of 50% or more and 100% or less of the surface of the carbon support, and more specifically, a polymer layer of 75% or more and 100% or less may be provided.
  • the carbon support may be a crystalline carbon support.
  • the carbon carrier may be a non-pretreated crystalline carbon carrier, an acid-treated crystalline carbon carrier, or a crystalline carbon carrier treated with a base.
  • the crystalline carbon carrier refers to carbon having a half-width of a peak near 2 ° (2Theta) 26 ° of 2.0 or less in the graph measured by X-ray diffraction spectroscopy (XRD).
  • the crystalline carbon carrier may be a carrier in which carbon black is heat-treated at a high temperature of 1000 ° C or higher to increase the crystallinity.
  • Carbon nanotubes CNT
  • graphite graphene
  • carbon fiber Carbon nanowires
  • crystalline carbon carrier When a crystalline carbon carrier is treated with an acid or a base, properties such as imparting defects or imparting functional groups to the carbon surface may be generated.
  • the polymer layer includes a polymer having a pyridine group on the side chain and provided on the surface of the carbon support.
  • substituted or unsubstituted A halogen group; A nitrile group; A nitro group; A hydroxy group; A carbonyl group; An ester group; Imide; An amine group; Phosphine oxide groups; An alkoxy group; An aryloxy group; An alkyloxy group; Arylthioxy group; An alkylsulfoxy group; Arylsulfoxy group; A substituted or unsubstituted silyl group; Boron group; An alkyl group; A cycloalkyl group; An alkenyl group; An aryl group; Aralkyl groups; An aralkenyl group; An alkylaryl group; An alkylamine group; An aralkylamine group; A heteroarylamine group; An arylamine group; Arylphosphine groups; And a heterocyclic group, or a substituted or unsubstituted one in which at least two of the above-exemplified substituents
  • a substituent to which at least two substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, But are not limited to, pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, But are not limited to, dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 4-methylhexyl, 5-methylhexyl and the like.
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, (Diphenyl-1-yl) vinyl-1-yl, stilbenyl, stilenyl, and the like.
  • L may be a direct bond
  • L may be a substituted or unsubstituted alkylene group.
  • A1 to A3 may be the same or different from each other and each independently hydrogen or a substituted or unsubstituted alkyl group.
  • A1 to A3 may be hydrogen.
  • A1 to A3 are the same or different from each other and each independently may be an alkyl group.
  • the repeating unit represented by the formula (1) may be a repeating unit represented by the following formula (2).
  • a 1 to A 3, L and n are as defined in the formula (1).
  • the repeating unit represented by the formula (1) may be a repeating unit represented by the following formula (3).
  • n is as defined in the formula (1).
  • the weight average molecular weight of the polymer may be 500 g / mol or more and 1,000,000 g / mol or less.
  • the metal nanoparticles may bind to the nitrogen element of the pyridine group of the polymer layer.
  • the nitrogen element of the pyridine group of the polymer layer functions as a place where the metal nanoparticles can be anchored, and the pyridine group of the polymer layer contributes to enhance stability and dispersibility of the metal nanoparticles do.
  • the metal nanoparticles may be selected from the group consisting of platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd) Tungsten, cobalt, iron, selenium, nickel, bismuth, tin, chromium, titanium, gold, And may include one or two or more metals selected from the group consisting of cerium (Ce), silver (Ag), and copper (Cu).
  • the metal nanoparticles include platinum (Pt); And a platinum alloy in which iron (Fe), cobalt (Co), nickel (Ni), palladium (Pd), rhodium (Rh) or ruthenium (Ru) and platinum (Pt) are alloyed.
  • the average particle diameter of the metal nanoparticles may be 2 nm or more and 20 nm or less, specifically, 3 nm or more and 10 nm or less. In this case, the metal nanoparticles do not aggregate on the carbon carrier and are well dispersed, so that the catalyst efficiency is high.
  • the average particle diameter of the metal nanoparticles means the average length of the longest line connecting the two points on the surface of the metal nanoparticles.
  • It can mean the average length of the longest line of lines connecting two points.
  • the metal nanoparticles may have a spherical shape.
  • the term " sphere " does not mean only a complete sphere but may include a sphere having a substantially spherical shape.
  • the metal nanoparticles may not have a smooth outer surface of the spherical shape, and the radius of curvature may not be uniform in one metal nanoparticle.
  • the metal nanoparticles may be solid particles containing one metal, solid particles containing two or more metals, core-shell particles containing two or more metals, hollow metal particles containing one or more metals , Bowl-shaped particles containing one or more metals, yoke shell particles containing two or more metals, porous particles containing one or more metals, and the like.
  • the content of the metal nanoparticles may be 20 wt% or more and 70 wt% or less based on the total weight of the carrier-nanoparticle composite. Specifically, the content of the metal nanoparticles relative to the total weight of the carrier-nanoparticle composite may be 30 wt% or more and 60 wt% or less.
  • the present disclosure provides a catalyst comprising the carrier-nanoparticle complex.
  • the present disclosure provides an electrochemical cell comprising the catalyst.
  • the electrochemical cell means a cell using a chemical reaction.
  • the type of the electrochemical cell is not particularly limited as long as the polymer electrolyte membrane is provided.
  • the electrochemical cell may be a fuel cell, a metal secondary battery, or a flow cell.
  • the present invention provides an electrochemical cell module comprising an electrochemical cell as a unit cell.
  • the electrochemical cell module may be formed by stacking a bipolar plate between flow cells according to one embodiment of the present application.
  • the battery module may be specifically used as a power source for an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage device.
  • anode catalyst layer, the cathode catalyst layer, and the polymer electrolyte membrane provided between the anode catalyst layer and the cathode catalyst layer, wherein at least one of the anode catalyst layer and the cathode catalyst layer comprises the carrier-nanoparticle composite to provide.
  • the membrane electrode assembly may further include a cathode gas diffusion layer provided on an opposite surface of a surface of the anode catalyst layer on which the polymer electrolyte membrane is provided and a cathode gas diffusion layer provided on a surface opposite to a surface of the cathode catalyst layer on which the polymer electrolyte membrane is provided .
  • the present specification provides a fuel cell including the membrane electrode assembly.
  • FIG. 1 schematically shows an electricity generating principle of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which includes an electrolyte membrane M and an electrolyte membrane M, And an anode (A) and a cathode (C) formed on both sides of the cathode (C).
  • MEA membrane electrode assembly
  • FIG. 1 Showing the electricity generating principle of a fuel cell 1, an anode (A) in the hydrogen or methanol, butane and the oxidation of the fuel (F) of the hydrocarbon and so on up the hydrogen ions (H +) and electron (e -), such as And the hydrogen ions move to the cathode C through the electrolyte membrane M.
  • the hydrogen ions transferred through the electrolyte membrane (M) react with the oxidizing agent (O) such as oxygen, and water (W) is produced. This reaction causes electrons to migrate to the external circuit.
  • O oxidizing agent
  • the membrane electrode assembly for a fuel cell includes an electrolyte membrane 10, a cathode 50 positioned opposite to the electrolyte membrane 10, And an anode 51 may be provided.
  • the cathode includes a cathode catalyst layer 20 and a cathode gas diffusion layer 40 sequentially from an electrolyte membrane 10.
  • the anode includes an anode catalyst layer 21 and an anode gas diffusion layer 41 successively from the electrolyte membrane 10, .
  • the catalyst according to the present specification may be included in at least one of the cathode catalyst layer and the anode catalyst layer in the membrane electrode assembly.
  • FIG. 3 schematically shows the structure of a fuel cell, which includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or more of the membrane electrode assemblies described above and includes a separator interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer the fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply part 70 serves to supply the oxidant to the stack 60.
  • oxygen is typically used, and oxygen or air can be injected into the oxidizing agent supplying portion 70 and used.
  • the fuel supply unit 80 serves to supply the fuel to the stack 60 and includes a fuel tank 81 for storing the fuel and a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 Lt; / RTI >
  • a fuel tank 81 for storing the fuel
  • a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 Lt; / RTI >
  • gas or liquid hydrogen or hydrocarbon fuel may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • At least one of the anode catalyst layer and the cathode catalyst layer may comprise a carrier-nanoparticle complex according to the present invention as a catalyst.
  • the anode catalyst layer and the cathode catalyst layer may each include an ionomer.
  • the ratio (Ionomer / Complex, I / C) of the ionomer (Ionomer) of the anode catalyst layer to the carrier-nanoparticle complex is 0.3 to 0.7.
  • the ratio (Ionomer / Complex, I / C) of the ionomer (Ionomer) of the cathode catalyst layer and the carrier-nanoparticle complex is 0.3 to 0.7.
  • the amount of the ionomer required for the catalyst layer may be reduced by 20% by weight or more, specifically by 30% by weight or more, and more specifically by 50% by weight or more. In other words, it is possible to reduce the content of expensive ionomers and maintain the hydrogen ion conductivity at a constant level with a small ionomer content.
  • the ionomer provides a path for ions generated by the reaction between the fuel and the catalyst, such as hydrogen or methanol, to move to the electrolyte membrane.
  • the ionomer may be a polymer having a cation-exchange group selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group and derivatives thereof in the side chain.
  • the ionomer may be at least one selected from the group consisting of fluorine-based polymers, benzimidazole-based polymers, polyimide-based polymers, polyetherimide-based polymers, polyphenylene sulfide-based polymers, polysulfone-based polymers, polyether- , A polyether-ether ketone-based polymer, or a polyphenylquinoxaline-based polymer.
  • the polymeric ionomer may be Nafion.
  • the present invention relates to a process for producing a carbon carrier, comprising the steps of: forming a polymer layer containing a polymer having a pyridine group in a side chain in a carbon carrier; And forming a metal nanoparticle on a polymer layer of the carbon support by adding a carbon carrier and a metal precursor having the polymer layer formed thereon to a solvent, wherein the polymer having a pyridine group in the side chain is a repeating unit represented by the following formula Wherein the method comprises the steps of:
  • L is a direct bond or a substituted or unsubstituted alkylene group
  • R 1 to R 4 are the same or different from each other and are each independently hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • a 1 to A 3 are the same or different from each other and each independently represents hydrogen, a halogen group, a hydroxy group, a nitro group, a nitrile group, or a substituted or unsubstituted alkyl group,
  • n is an integer from 3 to 200;
  • the method for preparing the carrier-nanoparticle complex may be as described above for the carrier-nanoparticle complex.
  • the step of forming the polymer layer forms a polymer layer including a polymer having a pyridine group in a side chain in a carbon carrier.
  • the step of forming the polymer layer includes the steps of: preparing a first solution including a carbon carrier, a polymer having a pyridine group in a side chain, and a first solvent; And stirring the first solution to form a polymer layer comprising a carbon carrier and a polymer having a pyridine group in the side chain.
  • the first solvent is not particularly limited as long as it can dissolve the polymer having a pyridine group in the side chain.
  • the solvent may be an aqueous solution comprising at least one of nitric acid, sulfuric acid and hydrochloric acid; Alcohols such as methanol, ethanol, propanol and isopropanol; Or dimethylformamide.
  • potassium nitrate potassium nitrate (KNO 3 ) may be further added to the first solution.
  • the content of the carbon support may be 10 wt% or more and 90 wt% or less based on the solid content of the first solution.
  • the content of the polymer having a pyridine group in the side chain may be 10 wt% or more and 90 wt% or less based on the solids weight of the first solution.
  • the total content of the solid content of the first solution excluding the first solvent may be 0.05 wt% or more and 20 wt% or less based on the total weight of the first solution, 1 solvent may be 80 wt% or more and 99.95 wt% or less.
  • the stirring time of the first solution may be 3 hours or longer and 72 hours or shorter.
  • the carbon support may be a crystalline carbon support.
  • the crystalline carbon support may be used as the carbon support without any pretreatment.
  • the method of manufacturing the carrier-nanoparticle composite may further include a step of treating the crystalline carbon support with an acid or base before the step of forming the polymer layer have.
  • a carbon carrier and a metal precursor on which the polymer layer is formed are added to a solvent to form metal nanoparticles on the polymer layer of the carbon support.
  • the forming of the metal nanoparticles comprises: preparing a second solution including a carbon support having a polymer layer formed thereon, a metal precursor and a second solvent; Stirring the second solution; And reducing the metal precursor to form metal nanoparticles.
  • the metal precursor is a material before being reduced to metal nanoparticles, and the metal precursor may be selected depending on the kind of the metal nanoparticles.
  • the kind of the metal precursor is not limited, but the metal precursor is a salt containing a metal ion or an atomic group ion including the metal ion, and can serve as a metal.
  • the metal precursor may include one or more metal precursors having different metal ions or atomic ions.
  • the solvent of the second solution may comprise water or a polyhydric alcohol having two or more hydroxyl groups.
  • the polyhydric alcohol may include at least one of ethylene glycol, diethylene glycol, and propylene glycol, although it is not particularly limited as long as it has two or more hydroxyl groups.
  • the second solution for forming the metal nanoparticles on the polymer layer of the carbon support does not contain a surfactant. In this case, there is no need to remove the surfactant after the synthesis of the catalyst, and there is no advantage in that the active sites are not reduced by the surfactant.
  • the second solution may further include basic compounds such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and lithium hydroxide.
  • basic compounds such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and lithium hydroxide.
  • the content of the carbon support on which the polymer layer is formed may be 0.01 wt% or more and 3 wt% or less based on the total weight of the second solution.
  • the content of the metal precursor may be 0.01 wt% or more and 4 wt% or less based on the total weight of the second solution.
  • the content of the second solvent may be 93 wt% or more and 99 wt% or less based on the total weight of the second solution.
  • the method of preparing the carrier-nanoparticle composite may further include forming metal nanoparticles on the polymer layer of the carbon support, and then removing the solvent.
  • the step of removing the solvent may be a step of drying the carrier-nanoparticle complex by removing the solvent.
  • the method for preparing a carrier-nanoparticle composite may further include the step of heat-treating or acid-treating the metal nanoparticles after the step of forming the metal nanoparticles.
  • the metal nanoparticles When the metal nanoparticles are heat-treated, the metal nanoparticles provided on the polymer layer of the carbon support can be sintered.
  • the heat treatment step may be a heat treatment in a hydrogen or argon atmosphere.
  • the heat treatment temperature may be 180 ° C or higher and 600 ° C or lower.
  • the supported metal nanoparticles can be sintered without being agglomerated by heat treatment while minimizing the chemical deformation of the polymer layer.
  • surface modification of the catalyst particles and the carrier may impart new surface characteristics or enhance the surface characteristics of the metal nanoparticles carried on the carrier and the carrier.
  • the acid treatment solution may be sulfuric acid, hydrochloric acid nitric acid or the like at a concentration of 1 M or less.
  • the acid treatment temperature may be 80 ⁇ ⁇ or lower, specifically, from room temperature to 80 ⁇ ⁇ .
  • the acid treatment time may be 30 minutes or longer and 5 hours or shorter.
  • the reaction was carried out at 160 DEG C for 3 hours and then washed with ethanol and water. At this time, the particles are reduced by ethylene glycol, which is a solvent, and the supported particles are platinum solid particles.
  • Metal particles were carried directly on the Denka black phase in the same manner as in Example 2, except that P4VP was not coated on the surface of Denka black.
  • # 3855 was directly coated with metal particles in the same manner as in Example 3, except that P4VP was not coated on the surface of # 3855.
  • FIGS. 4 to 13 it can be seen that the carriers of Examples 1 to 5, which are coated with P4VP as a whole, show a homogeneous loading and dispersing property and almost no voids of the carrier.
  • Particle bearing ratio (%) Actual carrying amount X 100 / Target carrying amount
  • the actual loading amount is the content of Pt measured by ICP analysis
  • the target loading amount is a value calculated based on the weight of the precursor used in relation to the total weight of the carrier.
  • Example 5 in which the surface of FX100 was treated with base showed better effect than Example 4 in which FX100 not treated with base was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

본 명세서는 탄소 담체; 상기 탄소 담체 상에 구비된 고분자층; 및 상기 고분자층 상에 구비된 금속 나노 입자를 포함하는 담체-나노입자 복합체, 이를 포함하는 촉매, 상기 촉매를 포함하는 전기화학 전지 또는 연료 전지 및 이의 제조방법에 관한 것이다.

Description

담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
본 출원은 2017년 09월 12일에 한국 특허청에 제출된 한국 특허 출원 제10-2017-0116264호의 출원일 및 2018년 07월 10일에 한국 특허청에 제출된 한국 특허 출원 제10-2018-0079687호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 담체-나노입자 복합체, 이를 포함하는 촉매, 상기 촉매를 포함하는 전기화학 전지 또는 연료 전지 및 이의 제조방법에 관한 것이다.
연료전지 촉매의 담지체로 카본 블랙(Carbon Black)이 일반적으로 사용되고 있다. 하지만 카본 블랙을 담지체로 사용한 경우에는 탄소의 부식으로 인한 내구성의 문제가 발생한다.
이러한 문제점을 개선하기 위해 부식 저항성이 강한 결정성 탄소인 카본나노튜브(Carbonnanotube, CNT), 카본나노파이버(Carbonnanofiber, CNF), 카본나노케이지(Carbonnanocage, CNC) 등에 대한 연구가 활발히 진행되고 있다. 그러나, 이러한 결정성 탄소는 표면 발수성이 강하여 극성 용매에서 분산이 잘되지 않는 문제점이 있다. 이러한 이유로 백금을 탄소 담지체에 로딩하는 과정에서 백금이 고르게 분산되지 않고 뭉치게 되는 문제점이 있었다.
본 명세서는 담체-나노입자 복합체, 이를 포함하는 촉매, 상기 촉매를 포함하는 전기화학 전지 또는 연료 전지 및 이의 제조방법을 제공하고자 한다.
본 명세서는 탄소 담체; 상기 탄소 담체의 표면에 구비되고 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층; 및 상기 고분자층 상에 구비된 금속 나노 입자를 포함하고, 상기 측쇄에 피리딘기를 갖는 고분자는 하기 화학식 1로 표시되는 반복단위를 포함하는 것인 담체-나노입자 복합체를 제공한다.
[화학식 1]
상기 화학식 1에서,
L은 직접결합 또는 치환 또는 비치환된 알킬렌기이며,
R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
n은 3 내지 200의 정수이다.
또한, 본 명세서는 전술한 담체-나노입자 복합체를 포함하는 촉매를 제공한다.
또한, 본 명세서는 전술한 촉매를 포함하는 전기화학 전지를 제공한다.
또한, 본 명세서는 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 전술한 담체-나노입자 복합체를 포함하는 것인 막 전극 접합체를 제공한다.
또한, 본 명세서는 탄소 담체에 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층을 형성하는 단계; 및 상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계를 포함하고, 상기 측쇄에 피리딘기를 갖는 고분자는 하기 화학식 1로 표시되는 반복단위를 포함하는 것인 담체-나노입자 복합체의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2018010615-appb-I000002
상기 화학식 1에서,
L은 직접결합 또는 치환 또는 비치환된 알킬렌기이며,
R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
n은 3 내지 200의 정수이다.
본 명세서의 일 실시상태에 따른 담체-나노입자 복합체는 금속나노입자의 분산성이 우수한 장점이 있다.
본 명세서의 일 실시상태에 따른 담체-나노입자 복합체는 금속나노입자의 담지양이 많은 장점이 있다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 연료전지용 막 전극 접합체의 구조를 개략적으로 나타낸 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 4는 실시예 1에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 5는 실시예 2에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 6은 실시예 3에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 7은 실시예 4에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 8은 실시예 5에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 9는 비교예 1에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 10은 비교예 2에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 11은 비교예 3에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 12는 비교예 4에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
도 13은 비교예 5에서 제조된 담체-나노입자 복합체를 투과전자현미경으로 측정한 이미지이다.
[부호의 설명]
10: 전해질막
20, 21: 촉매층
40, 41: 기체확산층
50: 캐소드
51: 애노드
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서는 탄소 담체; 상기 탄소 담체의 표면에 구비되고 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층; 및 상기 고분자층 상에 구비된 금속 나노 입자를 포함하고, 상기 측쇄에 피리딘기를 갖는 고분자는 하기 화학식 1로 표시되는 반복단위를 포함하는 것인 담체-나노입자 복합체를 제공한다.
[화학식 1]
Figure PCTKR2018010615-appb-I000003
상기 화학식 1에서,
L은 직접결합 또는 치환 또는 비치환된 알킬렌기이며,
R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
n은 3 내지 200의 정수이다.
상기 탄소 담체는 탄소를 주 성분으로 한 담체라면 특별히 한정하지 않으나, 카본블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire)로 이루어진 군에서 선택되는 1 종 이상을 포함할 수 있다.
상기 탄소 담체의 표면의 일부 또는 전체는 고분자층이 구비될 수 있다. 상기 탄소 담체 표면의 50% 이상 100% 이하는 고분자층이 구비될 수 있으며, 구체적으로, 75% 이상 100% 이하는 고분자층이 구비될 수 있다.
상기 탄소 담체는 결정성 탄소 담체일 수 있다. 구체적으로, 상기 탄소 담체는 전처리를 하지 않은 결정성 탄소 담체, 산처리된 결정성 탄소 담체 또는 염기로 처리된 결정성 탄소 담체일 수 있다.
상기 결정성 탄소 담체는 X-선회절 분석법(X-ray Diffraction Spectroscopy, XRD)으로 측정된 그래프에서 2θ(2Theta) 26° 근처의 피크(peak)의 반치폭이 2.0 이하인 카본을 의미한다.
상기 결정성 탄소 담체는 카본블랙을 1000℃ 이상의 고온에서 열처리를 실시하여 결정성을 높인 담체일 수 있으며, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire)로 이루어진 군에서 선택되는 1 종 이상을 포함할 수 있다.
결정성 탄소 담체를 산 또는 염기로 처리를 할 경우, 탄소 표면에 결함 부여 또는 관능기 부여와 같은 특성이 생성될 수 있다.
상기 고분자층은 탄소 담체의 표면에 구비되고 측쇄에 피리딘기를 갖는 고분자를 포함한다.
본 명세서에 있어서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아민기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 치환 또는 비치환된 실릴기; 붕소기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 및 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 L은 직접결합일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 L은 치환 또는 비치환된 알킬렌기일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 수소 또는 치환 또는 비치환된 알킬기일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 A1 내지 A3는 수소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 알킬기일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 반복단위는 하기 화학식 2로 표시되는 반복단위일 수 있다.
[화학식 2]
Figure PCTKR2018010615-appb-I000004
상기 화학식 2에서, A1 내지 A3, L 및 n은 화학식 1의 정의와 같다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 반복단위는 하기 화학식 3으로 표시되는 반복단위일 수 있다.
[화학식 3]
Figure PCTKR2018010615-appb-I000005
상기 화학식 3에서, n은 화학식 1의 정의와 같다.
상기 고분자의 중량평균분자량은 500g/mol 이상 1000000g/mol 이하일 수 있다.
상기 금속 나노 입자는 상기 고분자층의 피리딘기의 질소 원소와 결합할 수 있다.
상기 금속 나노 입자가 담지할 때, 상기 고분자층의 피리딘기의 질소 원소는 금속 나노 입자가 정박할 수 있는 자리로 작용하여, 고분자층의 피리딘기가 금속 나노 입자의 안정성 및 분산성을 높이는 데에 기여한다.
상기 금속 나노 입자는 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택되는 하나 또는 2 이상의 금속을 포함할 수 있다. 구체적으로, 상기 금속 나노 입자는 백금(Pt); 및 철(Fe), 코발트(Co), 니켈(Ni), 팔라듐(Pd), 로듐(Rh) 또는 루테늄(Ru)과 백금(Pt)이 합금된 백금합금을 포함할 수 있다.
상기 금속 나노 입자의 평균 입경은 2nm 이상 20nm 이하일 수 있으며, 구체적으로 3nm 이상 10nm 이하일 수 있다. 이 경우 탄소 담체 상에 금속 나노 입자가 서로 응집되지 않고 잘 분산되어 촉매효율이 높은 장점이 있다.
여기서, 상기 금속 나노 입자의 평균 입경은 금속 나노 입자의 표면의 두 점을 잇는 선들 중 가장 긴 선의 길이의 평균을 의미하며, 예를 들면, 투과전자현미경으로 측정된 이미지에서 금속 나노 입자의 표면의 두 점을 잇는 선들 중 가장 긴 선의 길이의 평균을 의미할 수 있다.
상기 금속 나노 입자는 구 형상일 수 있다. 본 명세서에서, 구 형상이란, 완전한 구형만을 의미하는 것은 아니고, 대략적으로 구 형태의 모양인 것을 포함할 수 있다. 예를 들면, 상기 금속 나노 입자는 구 형상의 외표면이 평탄하지 않을 수 있으며, 하나의 금속 나노 입자에서 곡률반경이 일정하지 않을 수도 있다.
상기 금속 나노 입자는 1 종의 금속을 포함하는 솔리드 입자, 2종 이상의 금속을 포함하는 솔리드 입자, 2종 이상의 금속을 포함하는 코어-쉘 입자, 1종 또는 2종 이상의 금속을 포함하는 중공 금속 입자, 1종 또는 2종 이상의 금속을 포함하는 보울형 입자, 2종 이상의 금속을 포함하는 요크쉘 입자, 1종 또는 2종 이상의 금속을 포함하는 다공성 입자 등 중 선택될 수 있다.
상기 담체-나노입자 복합체의 총 중량에 대하여 상기 금속 나노 입자의 함량은 20 중량% 이상 70 중량% 이하일 수 있다. 구체적으로, 상기 담체-나노입자 복합체의 총 중량에 대하여 상기 금속 나노 입자의 함량은 30 중량% 이상 60 중량% 이하일 수 있다.
본 명세서는 상기 담체-나노입자 복합체를 포함하는 촉매를 제공한다.
본 명세서는 상기 촉매를 포함하는 전기화학 전지를 제공한다.
상기 전기화학 전지는 화학반응을 이용한 전지를 의미하며 고분자 전해질막이 구비된다면 그 종류를 특별히 한정하지 않으나, 예를 들면, 상기 전기화학 전지는 연료전지, 금속 이차 전지 또는 흐름전지일 수 있다.
본 명세서는 전기화학 전지를 단위전지로 포함하는 것인 전기화학 전지모듈을 제공한다.
상기 전기화학 전지 모듈은 본 출원의 하나의 실시 상태에 따른 흐름 전지 사이에 바이폴라(bipolar) 플레이트를 삽입하여 스택킹(stacking)하여 형성될 수 있다.
상기 전지 모듈은 구체적으로 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장장치의 전원으로 사용될 수 있다.
본 명세서는 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 상기 담체-나노입자 복합체를 포함하는 것인 막 전극 접합체를 제공한다.
상기 막 전극 접합체는 상기 애노드 촉매층의 고분자 전해질막이 구비된 면의 반대면에 구비된 애노드 기체확산층 및 상기 캐소드 촉매층의 고분자 전해질막이 구비된 면의 반대면에 구비된 캐소드 기체확산층을 더 포함할 수 있다.
본 명세서는 상기 막 전극 접합체를 포함하는 연료 전지를 제공한다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(M)과 이 전해질막(M)의 양면에 형성되는 애노드(A) 및 캐소드(C)로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(A)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료(F)의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(M)을 통해 캐소드(C)으로 이동한다. 캐소드(C)에서는 전해질막(M)을 통해 전달된 수소 이온과, 산소와 같은 산화제(O) 및 전자가 반응하여 물(W)이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
도 2는 연료전지용 막 전극 접합체의 구조를 개략적으로 도시한 것으로, 연료전지용 막 전극 접합체는 전해질막(10)과, 이 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 캐소드(50) 및 애노드(51)를 구비할 수 있다. 상기 캐소드에는 전해질막(10)으로부터 순차적으로 캐소드 촉매층(20)과 캐소드 기체확산층(40)이 구비되고, 상기 애노드에는 전해질막(10)으로부터 순차적으로 애노드 촉매층(21) 및 애노드 기체확산층(41)이 구비될 수 있다.
본 명세서에 따른 촉매는 막 전극 접합체에서, 캐소드 촉매층 및 애노드 촉매층 중 적어도 하나에 포함될 수 있다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 산화제 공급부(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 본 명세서에 따른 담체-나노입자 복합체를 촉매로서 포함할 수 있다.
상기 애노드 촉매층 및 캐소드 촉매층은 각각 이오노머를 포함할 수 있다.
상기 애노드 촉매층 이 상기 담체-나노입자 복합체를 포함하는 경우, 상기 애노드 촉매층의 이오노머(Ionomer)와 상기 담체-나노입자 복합체(Complex)의 비율(Ionomer/Complex, I/C)은 0.3 내지 0.7이다.
상기 캐소드 촉매층이 상기 담체-나노입자 복합체를 포함하는 경우, 상기 캐소드 촉매층의 이오노머(Ionomer)와 상기 담체-나노입자 복합체(Complex)의 비율(Ionomer/Complex, I/C)은 0.3 내지 0.7이다.
일반적으로 상용촉매에서 사용하는 I/C 비율은 0.8 ~ 1인 점(Book “PEM fuel cell Electrocatalyst and catalyst layer”, page 895)을 고려할 때, 본 명세서에 따른 담체-나노입자 복합체를 촉매로서 포함하는 경우, 촉매층에 필요한 이오노머의 함량을 기준으로 20중량% 이상 줄일 수 있으며, 구체적으로, 30중량% 이상 줄일 수 있으며, 더 구체적으로, 50중량% 이상 줄일 수 있다. 다시 말하면, 비싼 이오노머의 함량을 줄일 수 있고, 적은 이오노머의 함량으로도 일정 이상의 수소이온 전도도를 유지할 수 있는 장점이 있다.
상기 이오노머는 수소나 메탄올과 같은 연료와 촉매간의 반응에 의하여 생성된 이온이 전해질막으로 이동하기 위한 통로를 제공하여 주는 역할을 한다.
상기 이오노머는 측쇄에 술폰산기, 카르복실산기, 인산기, 포스폰산기 및 이들의 유도체로 이루어진 군에서 선택된 양이온 교환기를 갖는 고분자를 사용할 수 있다. 구체적으로, 상기 이오노머는 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌설파이드계 고분자, 폴리설폰계 고분자, 폴리에테르설폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 또는 폴리페닐퀴녹살린계 고분자 중에서 선택된 1종 이상의 수소이온 전도성 고분자를 포함할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 고분자 이오노머는 나피온일 수 있다.
본 명세서는 탄소 담체에 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층을 형성하는 단계; 및 상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계를 포함하고, 상기 측쇄에 피리딘기를 갖는 고분자는 하기 화학식 1로 표시되는 반복단위를 포함하는 것인 담체-나노입자 복합체의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2018010615-appb-I000006
상기 화학식 1에서,
L은 직접결합 또는 치환 또는 비치환된 알킬렌기이며,
R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
n은 3 내지 200의 정수이다.
상기 담체-나노입자 복합체의 제조방법은 담체-나노입자 복합체에 대하여 상술한 바를 인용할 수 있다.
상기 고분자층을 형성하는 단계는 탄소 담체에 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층을 형성한다.
상기 고분자층을 형성하는 단계는 탄소 담체, 측쇄에 피리딘기를 갖는 고분자 및 제1 용매를 포함하는 제1 용액을 제조하는 단계; 및 상기 제1 용액을 교반하여 탄소 담체에 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층을 형성하는 단계를 포함할 수 있다.
상기 제1 용액에서, 상기 제1 용매는 측쇄에 피리딘기를 갖는 고분자를 용해시킬 수 있다면 특별히 한정하지 않는다. 예를 들면, 상기 용매는 질산, 황산 및 염산 중 적어도 하나를 포함하는 수용액; 메탄올, 에탄올, 프로판올, 이소프로판올 등의 알코올; 또는 디메틸포름아마이드일 수 있다.
상기 제1 용액에서, 상기 제1 용매로 질산, 황산 및 염산 중 적어도 하나를 포함하는 수용액을 사용하는 경우, 질산칼륨(KNO3)을 제1 용액에 더 첨가할 수 있다.
상기 제1 용액의 고형분 중량을 기준으로, 상기 탄소 담체의 함량은 10 중량% 이상 90중량% 이하일 수 있다.
상기 제1 용액의 고형분 중량을 기준으로, 상기 측쇄에 피리딘기를 갖는 고분자의 함량은 10중량% 이상 90중량% 이하일 수 있다.
상기 제1 용액의 총 중량을 기준으로, 제1 용매를 제외한 상기 제1 용액의 고형분의 총 함량은 0.05중량% 이상 20중량% 이하일 수 있으며, 상기 제1 용액의 총 중량을 기준으로, 상기 제1 용매의 함량은 80중량% 이상 99.95중량% 이하일 수 있다.
상기 제1 용액을 교반하는 시간은 3시간 이상 72시간 이하일 수 있다.
상기 탄소 담체는 결정성 탄소 담체일 수 있다. 상기 고분자층을 형성하는 단계에서, 탄소 담체로서 결정성 탄소 담체를 전처리없이 사용할 수 있다.
상기 탄소 담체로서 결정성 탄소 담체를 사용하는 경우, 상기 담체-나노입자 복합체의 제조방법은 상기 고분자층을 형성하는 단계 전에, 상기 결정성 탄소 담체를 산 또는 염기로 처리하는 단계를 더 포함할 수 있다.
상기 금속 나노 입자를 형성하는 단계는 상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성한다.
상기 금속 나노 입자를 형성하는 단계는 고분자층이 형성된 탄소 담체, 금속 전구체 및 제2 용매를 포함하는 제2 용액을 제조하는 단계; 상기 제2 용액을 교반하는 단계; 및 상기 금속 전구체를 환원시켜 금속 나노 입자를 형성하는 단계를 포함할 수 있다.
상기 금속 전구체는 금속 나노 입자로 환원되기 전의 물질이며, 상기 금속 전구체는 금속 나노 입자의 종류에 따라 선택될 수 있다.
상기 금속 전구체의 종류를 한정하지 않으나, 금속 전구체는 금속이온 또는 상기 금속이온을 포함하는 원자단이온을 포함하는 염으로서, 금속을 제공하는 역할을 할 수 있다.
제조하고자 하는 금속 나노 입자의 금속 성분에 따라, 상기 금속 전구체는 서로 다른 금속이온 또는 원자단이온을 갖는 1 이상의 금속 전구체를 포함할 수 있다.
상기 제2 용액의 용매는 물 또는 2 이상의 히드록시기를 갖는 다가 알코올을 포함할 수 있다. 상기 다가 알코올은 2 이상의 히드록시기를 가진다면 특별히 한정하지 않으나, 에틸렌 글리콜, 다이에틸렌 글리콜 및 프로필렌 글리콜 중 적어도 하나를 포함할 수 있다.
상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하기 위한 상기 제2 용액은 계면활성제를 포함하지 않는다. 이 경우 촉매합성 후 계면활성제를 제거하는 단계가 필요없고 계면활성제에 의한 활성점 감소가 없는 장점이 있다.
상기 제2 용액의 용매로 다가 알코올을 사용하는 경우, 상기 제2 용액은 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬 등의 염기성 화합물을 더 포함할 수 있다. 이 경우 형성되는 금속 나노 입자의 입경이 작아지는 장점이 있다. 구체적으로, 제2 용액의 용매로 다가 알코올을 사용하는 경우, 용액 내의 OH- 농도가 높아짐에 따라 정전기적 반발력으로 인해 응집되지 않고 입자가 더 작은 사이즈로 생성된다.
상기 제2 용액의 총 중량을 기준으로, 상기 고분자층이 형성된 탄소 담체의 함량은 0.01중량% 이상 3중량% 이하일 수 있다.
상기 제2 용액의 총 중량을 기준으로, 상기 금속 전구체의 함량은 0.01중량% 이상 4중량% 이하일 수 있다.
상기 제2 용액의 총 중량을 기준으로, 상기 제2 용매의 함량은 93중량% 이상 99중량% 이하일 수 있다.
상기 담체-나노입자 복합체의 제조방법은 탄소 담체의 고분자층 상에 금속 나노 입자를 형성한 후, 용매를 제거하는 단계를 더 포함할 수 있다.
상기 용매를 제거하는 단계는 용매가 제거되어 담체-나노입자 복합체를 건조하는 단계일 수 있다.
상기 담체-나노입자 복합체의 제조방법은 상기 금속 나노 입자를 형성하는 단계 후에, 상기 금속 나노 입자를 열처리하거나, 산처리하는 단계를 더 포함할 수 있다.
상기 금속 나노 입자를 열처리하는 경우, 탄소 담체의 고분자층 상에 구비된 금속 나노 입자가 소결될 수 있다.
상기 열처리 단계는 수소 또는 아르곤 분위기에서 열처리하는 단계일 수 있다. 이때, 열처리 온도는 180℃ 이상 600℃ 이하일 수 있다. 이 경우 고분자층의 화학적 변형을 최소로 하면서 담지된 금속 나노 입자가 열처리에 의해 응집되지 않고 소결될 수 있는 장점이 있다.
상기 금속 나노 입자를 산처리하는 경우, 촉매 입자와 담체의 표면 개질로 인해, 담체 및 담체에 담지된 금속 나노 입자에 새로운 표면특성을 부여하거나 내제된 표면특성을 강화할 수 있다.
상기 산처리시, 산처리 용액은 1M 농도 이하의 황산, 염산 질산 등일 수 있다.
상기 산처리시, 산처리 온도는 80℃이하일 수 있고, 구체적으로 상온 이상 80℃이하일 수 있다.
상기 산처리시, 산처리 시간은 30분 이상 5 시간 이하일 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예]
[실시예 1]
폴리(4-비닐 피리딘)(Poly(4-vinyl pyridine), P4VP) 3g, 1M 염산(HCl) 60ml을 물 1L에 첨가하여 충분히 교반하여 용해시켜주었다. 그 후, KNO3 6g을 추가로 용해시킨 뒤, Vulcan XC-72R(Cabot社의 카본 블랙, 비결정성 입자, BET 값: 250m2/g 반치폭: 3.817) 1.8g을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 P4VP로 코팅된 Vulcan XC-72R를 제조했다.
상기 P4VP로 코팅된 Vulcan XC-72R 65mg을 25ml 에틸렌 글리콜에 분산시킨 다음, PtCl4 74.1mg과 수산화 나트륨 50mg 첨가했다. 이때, 수산화 나트륨으로부터 해리된 히드록시기(OH-): PtCl4의 Pt 의 몰비는 5.7:1이었다.
160℃에서 3시간 동안 반응시킨 후 에탄올과 물로 세척했다. 이때, 용매인 에틸렌 글리콜에 의해 환원되며, 담지된 입자는 백금 솔리드 입자이다.
[실시예 2]
폴리(4-비닐 피리딘)(Poly(4-vinyl pyridine), P4VP) 3g, 1M 염산(HCl) 60ml을 물 1L에 첨가하여 충분히 교반하여 용해시켜주었다. 그 후, KNO3 6g을 추가로 용해시킨 뒤, Denka black(Denka社의 아세틸렌블랙, 비결정성 입자 BET 값: 70m2/g) 1.8g을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 P4VP로 코팅된 Denka black을 제조했다.
상기 P4VP로 코팅된 Denka black 65mg을 25ml 에틸렌 글리콜에 분산시킨 다음, PtCl4 74.1mg과 수산화 나트륨 50mg 첨가했다. 160℃에서 3시간 동안 반응시킨 후 에탄올과 물로 세척했다. 이때, 용매인 에틸렌 글리콜에 의해 환원되며, 담지된 입자는 백금 솔리드 입자이다.
[실시예 3]
폴리(4-비닐 피리딘)(Poly(4-vinyl pyridine), P4VP) 3g, 1M 염산(HCl) 60ml을 물 1L에 첨가하여 충분히 교반하여 용해시켜주었다. 그 후, KNO3 6g을 추가로 용해시킨 뒤, #3855 (Tokai carbon社의 흑연화 카본블랙, 결정성 입자, BET 값: 90m2/g 반치폭: 1.754) 1.8g을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 P4VP로 코팅된 #3855를 제조했다.
상기 P4VP로 코팅된 #3855 65mg을 25ml 에틸렌 글리콜에 분산시킨 다음, PtCl4 74.1mg과 수산화 나트륨 50mg 첨가했다. 160℃에서 3시간 동안 반응시킨 후 에탄올과 물로 세척했다. 이때, 용매인 에틸렌 글리콜에 의해 환원되며, 담지된 입자는 백금 솔리드 입자이다.
[실시예 4]
폴리(4-비닐 피리딘)(Poly(4-vinyl pyridine), P4VP) 3g, 1M 염산(HCl) 60ml을 물 1L에 첨가하여 충분히 교반하여 용해시켜주었다. 그 후, KNO3 6g을 추가로 용해시킨 뒤, FX100(Cabot社의 고결정성카본, 결정성 입자, BET 값: 90m2/g, 반치폭: 1.754) 1.8g을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 P4VP로 코팅된 FX100를 제조했다.
상기 P4VP로 코팅된 FX100 65mg을 25ml 에틸렌 글리콜에 분산시킨 다음, PtCl4 74.1mg과 수산화 나트륨 50mg 첨가했다. 160℃에서 3시간 동안 반응시킨 후 에탄올과 물로 세척했다. 이때, 용매인 에틸렌 글리콜에 의해 환원되며, 담지된 입자는 백금 솔리드 입자이다.
[실시예 5]
1.6M의 NaOH 1.25L에 FX100 4g을 투여한 후, 초음파 처리 및 교반을 충분히 진행한 뒤, 원심분리로 회수하여 염기처리된 FX100을 제조했다.
폴리(4-비닐 피리딘)(Poly(4-vinyl pyridine), P4VP) 3g, 1M 염산(HCl) 60ml을 물 1L에 첨가하여 충분히 교반하여 용해시켜주었다. 그 후, KNO3 6g을 추가로 용해시킨 뒤, 염기처리된 FX100 1.8g을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 염기처리된 FX100의 표면을 P4VP로 코팅한 담체를 제조했다.
상기 P4VP로 코팅된 염기처리된 FX100 65mg을 25ml 에틸렌 글리콜에 분산시킨 다음, PtCl4 74.1mg과 수산화 나트륨 50mg 첨가했다. 160℃에서 3시간 동안 반응시킨 후 에탄올과 물로 세척했다. 이때, 용매인 에틸렌 글리콜에 의해 환원되며, 담지된 입자는 백금 솔리드 입자이다.
[비교예 1]
Denka black의 표면에 P4VP를 코팅하지 않는 것을 제외하고, 실시예 2와 동일한 방법으로, Denka black 상에 직접적으로 금속 입자를 담지했다.
[비교예 2]
#3855의 표면에 P4VP를 코팅하지 않는 것을 제외하고, 실시예 3과 동일한 방법으로, #3855 상에 직접적으로 금속 입자를 담지했다.
[비교예 3]
FX100의 표면에 P4VP를 코팅하지 않는 것을 제외하고, 실시예 4와 동일한 방법으로, FX100 상에 직접적으로 금속 입자를 담지했다.
[비교예 4]
폴리피리딘 (Poly(2,5 pyridine)) 250mg, 1M 염산(HCl) 5ml을 물 85mL에 첨가하여 충분히 교반하여 용해시켜주었다. 그 후, KNO3 500mg을 추가로 용해시킨 뒤, FX100 150mg을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 폴리피리딘으로 코팅된 FX100을 제조했다.
상기 폴리피리딘으로 코팅된 FX100 65mg을 25ml 에틸렌 글리콜에 분산시킨 다음, PtCl4 74.1mg과 수산화 나트륨 50mg 첨가했다. 160℃에서 3시간 동안 반응시킨 후 에탄올과 물로 세척했다. 이때, 용매인 에틸렌 글리콜에 의해 환원되며, 담지된 입자는 백금 솔리드 입자이다.
[비교예 5]
폴리(2-비닐 피리딘) (Poly(2-vinyl pyridine), P2VP) 1g, 1M 염산(HCl) 20ml을 물 330mL에 첨가하여 충분히 교반하여 용해시켜주었다. 그 후, KNO3 2g을 추가로 용해시킨 뒤, FX100 600mg을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 P2VP로 코팅된 FX100을 제조했다.
상기 P2VP로 코팅된 FX100 65mg을 25ml 에틸렌 글리콜에 분산시킨 다음, PtCl4 74.1mg과 수산화 나트륨 50mg 첨가했다. 160℃에서 3시간 동안 반응시킨 후 에탄올과 물로 세척했다. 이때, 용매인 에틸렌 글리콜에 의해 환원되며, 담지된 입자는 백금 솔리드 입자이다.
[실험예 1]
실시예 1 내지 5 및 비교예 1 내지 5에서 제조된 담체-나노입자 복합체에 대한 투과전자현미경으로 측정한 이미지를 도 4 내지 도 13에 각각 도시했다.
상기 도 4 내지 도 13을 통해, 전체적으로 P4VP를 코팅한 실시예 1 내지 5의 담체가 균일한 담지 분산성을 보이며, 담체의 미담지 부분이 거의 없는 모습을 볼 수 있다.
고분자를 코팅하지 않은 담체의 경우, 미담지된 담체의 부분이 관찰되며, 특히 결정성 카본의 경우 미담지된 담체의 부분이 더 많이 관찰된다.
폴리피리딘으로 코팅한 비교예 4의 담체 및 P2VP로 코팅한 비교예 5의 담체의 경우에는, 담체를 균일하게 코팅하지 못하고 고분자가 따로 떨어져서 존재하는 모습과 백금 솔리드 입자가 응집된 모습이 관찰되었다. 이러한 부분들은 추후 전극 설계를 하였을 때 저항요소로 작용할 수 있으며, 탄소 담체에 코팅되지 않고 탄소 담체와 이격되어 응집된 고분자에 담지된 금속 나노 입자는 카본과의 계면 형성이 어려워 촉매활성을 발휘할 수 없게 된다.
[실험예 2]
실시예 1 내지 5 및 비교예 1 내지 5에서 제조된 담체-나노입자 복합체에서 백금 솔리드 입자가 담지된 담지율을 하기 식 1을 통해 계산하여 하기 표 1에 나타냈다.
[식 1]
입자 담지율(%) = 실제 담지량 Ⅹ 100 / 타겟 담지량
이때, 실제 담지량은 ICP분석을 통해 측정된 Pt의 함유량이며, 타겟 담지량은 담체의 총 중량대비로 사용되는 전구체의 중량을 통해 계산된 값이다.
[표 1]
Figure PCTKR2018010615-appb-I000007
상기 표 1을 통해, P4VP의 코팅의 효과는 #3855과 FX100과 같은 고결정성카본에 적용하였을 때 가장 높은 효과를 보임을 알 수 있다. 또한, FX100의 표면을 염기로 처리한 실시예 5는 염기로 처리하지 않은 FX100를 사용한 실시예 4보다 좋은 효과가 나타남을 확인하였다.

Claims (12)

  1. 탄소 담체;
    상기 탄소 담체의 표면에 구비되고 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층; 및
    상기 고분자층 상에 구비된 금속 나노 입자를 포함하고,
    상기 측쇄에 피리딘기를 갖는 고분자는 하기 화학식 1로 표시되는 반복단위를 포함하는 것인 담체-나노입자 복합체:
    [화학식 1]
    Figure PCTKR2018010615-appb-I000008
    상기 화학식 1에서,
    L은 직접결합 또는 치환 또는 비치환된 알킬렌기이며,
    R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
    A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
    n은 3 내지 200의 정수이다.
  2. 청구항 1에 있어서, 상기 L은 직접결합인 것인 담체-나노입자 복합체.
  3. 청구항 1에 있어서, 상기 고분자의 중량평균분자량은 500g/mol 이상 1000000g/mol 이하인 것인 담체-나노입자 복합체.
  4. 청구항 1에 있어서, 상기 탄소 담체는 결정성 탄소 담체인 것인 담체-나노입자 복합체.
  5. 청구항 1 내지 4 중 어느 한 항에 따른 담체-나노입자 복합체를 포함하는 촉매.
  6. 청구항 5의 촉매를 포함하는 전기화학 전지.
  7. 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 청구항 1 내지 4 중 어느 한 항에 따른 담체-나노입자 복합체를 포함하는 것인 막 전극 접합체.
  8. 탄소 담체에 측쇄에 피리딘기를 갖는 고분자를 포함하는 고분자층을 형성하는 단계; 및
    상기 고분자층이 형성된 탄소 담체 및 금속 전구체를 용매에 첨가하여 상기 탄소 담체의 고분자층 상에 금속 나노 입자를 형성하는 단계를 포함하고,
    상기 측쇄에 피리딘기를 갖는 고분자는 하기 화학식 1로 표시되는 반복단위를 포함하는 것인 담체-나노입자 복합체의 제조방법:
    [화학식 1]
    Figure PCTKR2018010615-appb-I000009
    상기 화학식 1에서,
    L은 직접결합 또는 치환 또는 비치환된 알킬렌기이며,
    R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
    A1 내지 A3는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐기, 히드록시기, 니트로기, 니트릴기, 또는 치환 또는 비치환된 알킬기이고,
    n은 3 내지 200의 정수이다.
  9. 청구항 8에 있어서, 상기 L은 직접결합인 것인 담체-나노입자 복합체의 제조방법.
  10. 청구항 8에 있어서, 상기 탄소 담체는 결정성 탄소 담체인 것인 담체-나노입자 복합체의 제조방법.
  11. 청구항 8에 있어서, 상기 고분자층을 형성하는 단계 전에, 상기 결정성 탄소 담체를 산 또는 염기로 처리하는 단계를 더 포함하는 담체-나노입자 복합체의 제조방법.
  12. 청구항 8에 있어서, 상기 금속 나노 입자를 형성하는 단계 후에, 상기 금속 나노 입자를 열처리하거나, 산처리하는 단계를 더 포함하는 담체-나노입자 복합체의 제조방법.
PCT/KR2018/010615 2017-09-12 2018-09-11 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법 WO2019054722A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880046918.6A CN110891683A (zh) 2017-09-12 2018-09-11 载体-纳米粒子复合物、包含该载体-纳米粒子复合物的催化剂及其制备方法
US16/631,097 US20200164352A1 (en) 2017-09-12 2018-09-11 Support-nanoparticle composite, catalyst containing same, and fabrication method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0116264 2017-09-12
KR20170116264 2017-09-12
KR10-2018-0079687 2018-07-10
KR1020180079687A KR102110659B1 (ko) 2017-09-12 2018-07-10 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2019054722A1 true WO2019054722A1 (ko) 2019-03-21

Family

ID=65722901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010615 WO2019054722A1 (ko) 2017-09-12 2018-09-11 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2019054722A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314760A (en) * 1991-01-09 1994-05-24 The Dow Chemical Company Electrochemical cell electrode
WO2004027904A1 (ja) * 2002-09-19 2004-04-01 Fujitsu Limited 燃料電池用触媒、その製造方法および燃料電池
JP2011228014A (ja) * 2010-04-15 2011-11-10 Aisin Seiki Co Ltd 固体高分子型燃料電池用膜電極接合体
KR20110132893A (ko) * 2010-06-03 2011-12-09 이화여자대학교 산학협력단 금속 나노입자가 담지된 탄소나노구조체, 이의 제조방법 및 이의 연료전지용 전극 촉매로의 응용
US20140349843A1 (en) * 2011-09-16 2014-11-27 Stc.Unm Structured Cathode Catalysts for Fuel Cell Application Derived From Metal-Nitrogen-Carbon Precursors, Using Hierarchically Structured Silica as a Sacrificial Support

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314760A (en) * 1991-01-09 1994-05-24 The Dow Chemical Company Electrochemical cell electrode
WO2004027904A1 (ja) * 2002-09-19 2004-04-01 Fujitsu Limited 燃料電池用触媒、その製造方法および燃料電池
JP2011228014A (ja) * 2010-04-15 2011-11-10 Aisin Seiki Co Ltd 固体高分子型燃料電池用膜電極接合体
KR20110132893A (ko) * 2010-06-03 2011-12-09 이화여자대학교 산학협력단 금속 나노입자가 담지된 탄소나노구조체, 이의 제조방법 및 이의 연료전지용 전극 촉매로의 응용
US20140349843A1 (en) * 2011-09-16 2014-11-27 Stc.Unm Structured Cathode Catalysts for Fuel Cell Application Derived From Metal-Nitrogen-Carbon Precursors, Using Hierarchically Structured Silica as a Sacrificial Support

Similar Documents

Publication Publication Date Title
WO2017135709A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2017191945A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2018093020A1 (ko) 촉매 및 이의 제조방법
WO2018062769A1 (ko) 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지
WO2011122757A2 (ko) 금속 산화물 나노선을 함유하는 혼합 촉매 제조방법, 이에 의해 제조된 혼합 촉매를 포함하는 전극 및 연료전지
EP1788655A1 (en) Polymer membrane for fuel cell, method of preparing same, and membrane-electrode assemby for fuel cell comprising same
WO2019066534A2 (ko) 라디칼 스케빈져, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 그리고 이를 포함하는 연료 전지
WO2018194263A1 (ko) 연료전지 촉매용 인화철 나노입자 제조방법 및 이에 의해 제조된 인화철 나노입자
WO2015065123A1 (ko) 연료전지 및 그의 제조방법
WO2019093765A2 (ko) 자동차용 연료전지를 위한 다기능성 비백금 담지 촉매 및 그 제조 방법
WO2017142344A1 (ko) 코어-쉘 입자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 연료 전지 또는 전기화학 전지 및 코어-쉘 입자의 제조방법
WO2019059570A1 (ko) 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
WO2016163773A1 (ko) 고분자 전해질막, 이를 포함하는 전기화학 전지 및 흐름전지, 고분자 전해질막의 제조방법 및 흐름 전지용 전해액
WO2015069069A1 (ko) 연료전지 및 이의 제조방법
WO2015060477A1 (ko) 전극 촉매, 이의 제조방법, 및 이를 포함하는 막전극 접합체와 연료전지
WO2015080497A1 (ko) 연료전지 및 이의 제조방법
WO2016111411A1 (ko) 건식 개질 촉매 및 제조방법, 해당 촉매를 이용한 건식 개질 방법
KR102121114B1 (ko) 담체-나노 입자 복합체, 이를 포함하는 촉매 및 촉매를 포함하는 전기화학 전지 및 담체-나노 입자 복합체의 제조방법
WO2019054722A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2017052222A1 (ko) 담체-나노입자 복합체, 이의 제조방법, 및 이를 포함하는 막전극 접합체
WO2022103158A1 (ko) 음이온 교환막 수전해용 산화 전극
WO2019031792A1 (ko) 연료 전지용 촉매의 제조방법
WO2019059625A9 (ko) 담체-나노 입자 복합체, 이를 포함하는 촉매 및 촉매를 포함하는 전기화학 전지 및 담체-나노 입자 복합체의 제조방법
WO2023075566A1 (ko) 백금-알칼리토금속 합금을 포함하는 복합체, 이를 포함하는 연료전지 및 수전해 전지 그리고 이의 제조방법
WO2022245068A1 (ko) 수전해용 환원 촉매 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856781

Country of ref document: EP

Kind code of ref document: A1