WO2015065123A1 - 연료전지 및 그의 제조방법 - Google Patents

연료전지 및 그의 제조방법 Download PDF

Info

Publication number
WO2015065123A1
WO2015065123A1 PCT/KR2014/010394 KR2014010394W WO2015065123A1 WO 2015065123 A1 WO2015065123 A1 WO 2015065123A1 KR 2014010394 W KR2014010394 W KR 2014010394W WO 2015065123 A1 WO2015065123 A1 WO 2015065123A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
surfactant
carrier
present application
fuel cell
Prior art date
Application number
PCT/KR2014/010394
Other languages
English (en)
French (fr)
Inventor
김광현
황교현
김상훈
조준연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016521235A priority Critical patent/JP6153662B2/ja
Priority to EP14858233.1A priority patent/EP3000781B1/en
Priority to US14/904,305 priority patent/US9698429B2/en
Priority to CN201480040863.XA priority patent/CN105431375B/zh
Publication of WO2015065123A1 publication Critical patent/WO2015065123A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to a fuel cell and a method of manufacturing the same.
  • the fuel cell is particularly attracting attention due to its advantages such as high efficiency, no pollutants such as NO x and SO x , and abundant fuel.
  • a fuel cell is a device that generates electrical energy by electrochemically reacting fuel and an oxidant.
  • the fuel cell uses hydrogen as fuel and oxygen as oxidant, and the electrode catalyzes the reduction of anode and oxygen that catalyzes the hydrogen oxidation reaction (HOR). Which consists of a cathode.
  • the electrode in a fuel cell contains a catalyst which catalyzes this, and platinum is commonly used as a catalyst material.
  • platinum has a problem of high cost and low allowance for impurities, much research has been made on preparing and using a catalyst which provides better electrochemical activity and stability than pure platinum while reducing the amount of platinum used.
  • This research mainly proposed a method for increasing the activity of platinum itself or an electrode catalyst in the form of an alloy of platinum and transition metal, but recently, interest in the form of nanoparticle structure having electrochemical activity and stability has been increasing. .
  • Synthesis methods of metal nanoparticles include a method of reducing metal ions with a reducing agent in a solution, a method using gamma rays, and an electrochemical method, but conventional methods are difficult to synthesize nanoparticles having a uniform size and shape, or may be organic solvents.
  • the economical mass production of high quality nanoparticles has been difficult due to various reasons, such as environmental pollution and high cost.
  • metal nanoparticles are easily unstable by heat treatment temperature or reaction temperature, they are often dispersed and used in a carrier. Therefore, the development of a method capable of efficiently supporting high-quality metal nanoparticles of uniform size on a carrier has been required.
  • An object of the present application is to provide a fuel cell and a method for manufacturing the same, including a carrier-metal nanoparticle complex in which uniform nano-sized metal particles are supported on a carrier as an electrode catalyst.
  • At least one of the cathode and the anode comprises a carrier-metal nanoparticle complex in which a metal nanoparticle comprising a first metal and a second metal and comprising one or more cavities continuous from an outer surface is supported on the carrier. It provides a fuel cell.
  • At least one of the cathode and the anode comprises a carrier-metal nanoparticle complex in which a metal nanoparticle comprising a first metal and a second metal and comprising one or more cavities continuous from an outer surface thereof is supported on the carrier. It provides a method for producing a fuel cell.
  • At least one electrode includes a carrier-metal nanoparticle complex
  • the carrier-metal nanoparticle is a complex in which metal nanoparticles having a uniform size of several nanometers are supported on a carrier.
  • the dispersion and the supporting ratio of the carrier can be excellent in the excellent catalyst effect.
  • the metal nanoparticles supported on the carrier may include a cavity, and may utilize a contact area where a reaction occurs to the inner surface area of the metal nanoparticles through the cavity, and thus, catalyst efficiency may be greatly increased.
  • FIG. 1 briefly illustrates a surface of a surfactant forming a micelle in the preparation of a carrier-metal nanoparticle composite according to an exemplary embodiment of the present application.
  • TEM transmission electron microscope
  • FIG. 4 and 5 show transmission electron microscope (TEM) images of the carrier-metal nanoparticle composite prepared by Preparation Example 2.
  • FIG. 4 and 5 show transmission electron microscope (TEM) images of the carrier-metal nanoparticle composite prepared by Preparation Example 2.
  • Figure 6 shows a transmission electron microscope (TEM) image of a conventional carrier-metal nanoparticle composite.
  • Figure 7 schematically shows the structure of the carrier-metal nanoparticle composite according to one embodiment of the present application.
  • FIG. 9 schematically shows a structure of a membrane electrode assembly for a fuel cell according to an exemplary embodiment of the present application.
  • FIG. 10 schematically shows a fuel cell according to one embodiment of the present application.
  • the present application is a cathode; Anode; And an electrolyte membrane provided between the cathode and the anode,
  • At least one of the cathode and the anode comprises a carrier-metal nanoparticle complex in which a metal nanoparticle comprising a first metal and a second metal and comprising one or more cavities continuous from an outer surface is supported on the carrier.
  • Haha provides a fuel cell.
  • the present application also provides a carrier-metal nanoparticle complex comprising a metal nanoparticle comprising a first metal and a second metal, the metal nanoparticle comprising one or more cavities continuous from an outer surface thereof.
  • a fuel cell according to an embodiment of the present application is a form in which a catalyst layer of an anode and a catalyst layer of a cathode are in contact with an electrolyte membrane, and may be manufactured according to conventional methods known in the art.
  • the cathode; Anode; And it may be prepared by thermal compression at 100 to 400 °C in the state in which the electrolyte membrane located between the cathode and the anode in close contact.
  • the anode may include an anode catalyst layer and an anode gas diffusion layer.
  • the anode gas diffusion layer may again include an anode microporous layer and an anode substrate.
  • the cathode may include a cathode catalyst layer and a cathode gas diffusion layer.
  • the cathode gas diffusion layer may again include a cathode microporous layer and a cathode substrate.
  • FIG. 8 schematically illustrates the principle of electricity generation of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which is an electrolyte membrane (M) and the electrolyte membrane (M). It consists of an anode (A) and a cathode (C) electrode formed on both sides of the.
  • MEA membrane electrode assembly
  • A electrolyte membrane
  • C cathode
  • FIG. 8 which illustrates a principle of electricity generation of a fuel cell
  • an oxidation reaction of a fuel (F) such as hydrogen or a hydrocarbon such as methanol and butane occurs at an anode (A) electrode to generate hydrogen ions (H + ) and electrons (e ⁇ ).
  • the membrane-electrode assembly refers to an electrode (cathode and anode) which is an electrode (cathode and anode) in which an electrochemical catalytic reaction between fuel and air occurs and a polymer membrane in which hydrogen ions are transferred. And a single unitary unit to which the electrolyte membrane is bonded.
  • FIG. 9 schematically illustrates the structure of a fuel cell membrane electrode assembly, wherein the fuel cell membrane electrode assembly includes an electrolyte membrane 10 and anodes and cathodes positioned opposite to each other with the electrolyte membrane 10 interposed therebetween. do.
  • the anode is composed of an anode catalyst layer 20 and an anode gas diffusion layer 50, and the anode gas diffusion layer 50 is again composed of an anode microporous layer 30 and an anode substrate 40.
  • the anode gas diffusion layer is provided between the anode catalyst layer and the electrolyte membrane.
  • the cathode is composed of a cathode catalyst layer 21 and a cathode gas diffusion layer 51
  • the cathode gas diffusion layer 51 is composed of a cathode microporous layer 31 and a cathode substrate 41.
  • the cathode gas diffusion layer is provided between the cathode catalyst layer and the electrolyte membrane.
  • FIG. 9 illustrates an anode and a cathode divided into a catalyst layer and a gas diffusion layer, but the present application is not limited thereto, and the structure of the anode and the cathode may be changed as necessary.
  • At least one of the catalyst layer of the anode and the catalyst layer of the cathode may include the carrier-metal nanoparticle complex as a catalyst.
  • the remainder is preferably a catalyst selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy.
  • the catalysts can be used on their own as well as supported on a carbon-based carrier.
  • the reaction area can be increased to increase the catalytic activity and further increase the performance of the fuel cell. Can be.
  • the introduction of the catalyst layer may be carried out by conventional methods known in the art, for example, the catalyst ink may be directly coated on the electrolyte membrane or coated on the gas diffusion layer to form the catalyst layer.
  • the coating method of the catalyst ink is not particularly limited, but spray coating, tape casting, screen printing, blade coating, die coating or spin coating may be used.
  • Catalytic inks can typically consist of a catalyst, a polymer ionomer, and a solvent.
  • the gas diffusion layer serves as a passage for the reaction gas and water together with a role as a current conductor, and has a porous structure. Therefore, the gas diffusion layer may include a conductive substrate. As the conductive substrate, carbon paper, carbon cloth, or carbon felt may be preferably used.
  • the gas diffusion layer may further include a microporous layer between the catalyst layer and the conductive substrate. The microporous layer may be used to improve the performance of the fuel cell in low-humidity conditions, and serves to reduce the amount of water flowing out of the gas diffusion layer so that the electrolyte membrane is in a sufficient wet state.
  • the present application provides a stack comprising a bipolar plate interposed between one or more of the membrane-electrode assembly and the membrane-electrode assembly; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • a fuel cell according to an embodiment of the present application includes a stack, a fuel supply unit, and an oxidant supply unit.
  • a fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or two or more membrane electrode assemblies as described above, and includes two or more separators interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidizing agent, and may be used by injecting oxygen or air into the pump 70.
  • the fuel supply unit 80 serves to supply fuel to the stack 60, and to the fuel tank 81 storing fuel and the pump 82 supplying fuel stored in the fuel tank 81 to the stack 60.
  • fuel hydrogen or hydrocarbon fuel in gas or liquid state may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • the fuel cell may be a polymer electrolyte fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct dimethyl ether fuel cell.
  • One embodiment of the present application provides a carrier-metal nanoparticle composite including a first metal and a second metal, the metal nanoparticles including one or more cavities continuous from an outer surface thereof, supported on the carrier. do.
  • the cavity may refer to an empty space continuous from one region of the outer surface of the metal nanoparticle.
  • the cavity may be formed in the form of a tunnel from one or two or more regions of the outer surface of the metal nanoparticle to one region of the interior of the metal nanoparticle.
  • the cavity may be formed in the form of a tunnel penetrating the metal nanoparticle from one or two or more regions of the outer surface of the metal nanoparticle.
  • the tunnel form may be a straight line, a continuous form of a curve or a straight line, it may be a continuous form of a mixture of curves and straight lines.
  • FIG. 7 schematically shows the structure of the carrier-metal nanoparticle composite according to one embodiment of the present application.
  • the metal nanoparticles 2 are supported on the carrier 1.
  • the metal nanoparticle 2 has three cavities 5. Although three cavities are described in FIG. 7, the cavities may be one or more.
  • FIG. 7 illustrates a structure formed in the form of a tunnel from one region of the outer surface of the metal nanoparticles to an inner region of the metal nanoparticle, the structure may be formed in another structure such as a tunnel penetrating the metal nanoparticles. It may be.
  • the cavity may serve to utilize the inner surface area of the metal nanoparticle. Specifically, when the metal nanoparticles are used for a catalyst or the like, the cavity may serve to increase the surface area that can be in contact with the reactants. Therefore, the cavity may serve to exhibit high activity of the metal nanoparticles.
  • the surface area of the metal nanoparticle may increase by 20% to 50% compared to the metal nanoparticles when there is no cavity.
  • the diameter of the cavity may be 5% or more and 30% or less, specifically 5% to 20%, more specifically 5% to 15% of the particle diameter of the metal nanoparticle.
  • the diameter of the cavity is less than 5% of the particle size of the metal nanoparticles, the activity of the metal nanoparticles may not be sufficiently exhibited.
  • the diameter of the cavity exceeds 30% of the particle diameter of the metal nanoparticles, the shape of the metal nanoparticles may not be maintained. Therefore, when the diameter of the cavity is 5% or more and 30% or less, specifically 5% to 20% and more specifically 5% to 15% or less of the particle diameter of the metal nanoparticle, the reaction through the cavity It may have the advantage of sufficiently widening the contact area with the material.
  • any one or more of the cavities may be penetrating the metal nanoparticles.
  • the cavity may be continuous to one inner region of the metal nanoparticle.
  • the cavity may be cylindrical.
  • the cavity may be bowl-shaped.
  • cylindrical shape does not necessarily mean a perfect cylinder, and an approximate shape means a cylindrical shape.
  • the bowl type may be a hemispherical shape or a calabash shape.
  • the diameter of the cylindrical cavity can be kept constant.
  • the cylindrical cavity of the present application may be formed continuously with a difference in diameter of about 10%.
  • the particle diameter of the metal nanoparticle may be 1 nm or more and 30 nm or less, more specifically 20 nm or less, or 12 nm or less, or 10 nm or less.
  • the average particle diameter of the metal nanoparticles may be 6 nm or less. If the particle diameter of the metal nanoparticle is 30 nm or less, the advantage that the nanoparticles can be used in various fields is great. Moreover, when the particle diameter of a metal nanoparticle is 20 nm or less, it is more preferable.
  • the particle diameter of the metal nanoparticles is 10 nm or less, the surface area of the particles becomes wider, and thus, there is an advantage in that the application possibility that can be used in various fields becomes larger. For example, if the metal nanoparticles formed in the particle size range is used as a catalyst, the efficiency can be significantly increased.
  • the particle diameter of the said metal nanoparticle means the largest value among the diameters of the cross section of a metal nanoparticle.
  • the average particle diameter of the metal nanoparticles is measured for 200 or more metal nanoparticles using graphic software (MAC-View), and the average particle diameter is measured through the obtained statistical distribution. it means.
  • the average particle diameter of the metal nanoparticle is 1 nm or more and 30 nm or less, 1 nm or more and 20 nm or less, 1 nm or more and 12 nm or less, 1 nm or more and 10 nm or less, 1 nm or more and 6 nm It may be:
  • one or more metal nanoparticles may be prepared in the preparation of the metal nanoparticles.
  • the particle diameter of the metal nanoparticles may be in the range of 80% to 120% of the average particle diameter of the metal nanoparticles.
  • the particle diameter of the metal nanoparticles may be in the range of 90% to 110% of the average particle diameter of the metal nanoparticles. If it is out of the above range, since the size of the metal nanoparticles becomes entirely non-uniform, it may be difficult to secure the specific physical properties required by the metal nanoparticles.
  • the effect of improving the efficiency may be somewhat insufficient. Therefore, when within the range of 80% to 120% of the average particle diameter of the metal nanoparticles of the present specification, by forming a nanoparticle of a uniform size, it can exhibit excellent physical properties as nanoparticles.
  • the content of the metal nanoparticles comprising one or more cavities continuous from the outer surface of the present specification may be 50% or more and 100% or less of the total nanoparticles. have. Specifically, the content of the metal nanoparticle including one or more cavities continuous from the outer surface may be 70% or more and 100% or less of the entire nanoparticle.
  • the metal nanoparticle may include one cavity. That is, the metal nanoparticle may include only one cavity, or may include a plurality of cavity. The plurality means two or more.
  • the metal nanoparticles may have a spherical shape.
  • the spherical shape does not mean only a perfect spherical shape, but may include an approximately spherical shape.
  • the metal nanoparticle may not have a spherical outer surface, and a radius of curvature may not be constant in one metal nanoparticle.
  • FIG. 1 A schematic diagram of the metal nanoparticles according to an exemplary embodiment of the present application is shown in FIG. 1.
  • the carrier-metal nanoparticle composite in which the metal nanoparticles are supported on the carrier is shown in FIGS. 2 to 5.
  • the metal nanoparticles may include an alloy of the first metal and the second metal.
  • the metal nanoparticles may be formed of an alloy of the first metal and the second metal in a region excluding the cavity.
  • the metal nanoparticles may be a mixture of the first metal and the second metal uniformly.
  • the first metal may be selected from the group consisting of metals, metalloids, lanthanum group metals, and actinium group metals belonging to Groups 3 to 15 of the periodic table.
  • the first metal is platinum (Pt); Ruthenium (Ru); Rhodium (Rh); Molybdenum (Mo); Osmium (Os); Iridium (Ir); Rhenium (Re); Palladium (Pd); Vanadium (V); Tungsten (W); Cobalt (Co); Iron (Fe); Selenium (Se); Nickel (Ni); Bismuth (Bi); Tin (Sn); Chromium (Cr); Titanium (Ti); Gold (Au); Cerium (Ce); Silver (Ag); And it may be selected from the group consisting of copper (Cu).
  • the second metal may be different from the first metal.
  • the second metal may be selected from the group consisting of metals, metalloids, lanthanum group metals, and actinium group metals belonging to Groups 3 to 15 of the periodic table.
  • the second metal is platinum (Pt); Ruthenium (Ru); Rhodium (Rh); Molybdenum (Mo); Osmium (Os); Iridium (Ir); Rhenium (Re); Palladium (Pd); Vanadium (V); Tungsten (W); Cobalt (Co); Iron (Fe); Selenium (Se); Nickel (Ni); Bismuth (Bi); Tin (Sn); Chromium (Cr); Titanium (Ti); Gold (Au); Cerium (Ce); Silver (Ag); And it may be selected from the group consisting of copper (Cu).
  • the first metal may be selected from the group consisting of platinum (Pt), silver (Ag), palladium (Pd), and gold (Au), and more specifically, platinum (Pt).
  • the second metal is ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd), vanadium (V), tungsten ( W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium (Cr), titanium (Ti), cerium (Ce), silver ( Ag) and copper (Cu) may be selected from the group consisting of, and more specifically, may be nickel (Ni).
  • the first metal is ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium (Cr), titanium It may be selected from the group consisting of (Ti), cerium (Ce), silver (Ag) and copper (Cu), more specifically may be nickel (Ni).
  • the second metal may be selected from the group consisting of platinum (Pt), silver (Ag), palladium (Pd), and gold (Au), and more specifically, platinum (Pt).
  • the first metal or the second metal may be different from each other, and the first metal or the second metal may be nickel.
  • the first metal or the second metal may be different from each other, and the first metal or the second metal may be platinum.
  • the first metal may be nickel, and the second metal may be platinum.
  • the carrier may be a carbonaceous material or inorganic fine particles.
  • the carbon carrier is carbon nanotubes (CNT), graphite, graphite, graphene, activated carbon, porous carbon, carbon black, carbon nano fiber. ), Carbon nano wire, carbon nanohorn, carbon aerogel, carbon nano ring, carbon nano ring, fullerene (C60) and Super P It may be selected.
  • the carbon black includes denka black, Ketjen black, acetylene black, and the like.
  • the carbon nanotubes may include one or a mixture of SWCNT, DWCNT, MWCNT, functionalized SWCNT, functionalized DWCNT, functionalized MWCNT, purified SWCNT, purified DWCNT or purified MWCNT.
  • Carbon nanotubes form a tube-like shape by seamlessly rolling up a graphite sheet.
  • One tube is called Single Walled Carbon Nanotube (SWCNT), and two tubes are curled (Double-Walled Carbon Nanotube: DWCNT). When the tube is curled, it is called Multi-Walled Carbon Nanotube (MWCNT).
  • the inorganic fine particles may be selected from the group consisting of alumina, silica, titania and zirconia.
  • the supporting ratio of the metal nanoparticle to the carrier may be 10 wt% to 70 wt%.
  • At least one of the cathode and the anode At least one of the cathode and the anode
  • a method of manufacturing a fuel cell wherein the metal nanoparticle comprising a first metal and a second metal and comprising one or more cavities continuous from an outer surface thereof comprises a carrier-metal nanoparticle composite supported on a carrier.
  • the cathode, anode and carrier-metal nanoparticle composite are the same as described above.
  • At least one of forming the cathode and forming the anode further includes preparing the carrier-metal nanoparticle composite
  • a solvent, a first metal salt in the solvent to provide a first metal ion or an atomic end ion containing the first metal ion, a second metal ion in the solvent or a second providing an atomic end ion comprising the second metal ion Forming a solution comprising a metal salt, a first surfactant forming a micelle in the solvent, and a second surfactant forming a micelle in the solvent with the first surfactant;
  • It may include the step of forming the metal nanoparticles on a carrier by adding a reducing agent to the solution.
  • a solvent, a first metal salt in the solvent to provide a first metal ion or an atomic end ion containing the first metal ion, a second metal ion in the solvent or a second providing an atomic end ion comprising the second metal ion Forming a solution comprising a metal salt, a first surfactant forming a micelle in the solvent, and a second surfactant forming a micelle in the solvent with the first surfactant; Adding and stirring a carrier to the solution;
  • the metal nanoparticle comprises a first metal and a second metal and comprises one or more cavities continuous from an outer surface
  • a method for preparing a carrier-metal nanoparticle composite in which the metal nanoparticles are supported on a carrier is provided.
  • the method for preparing the carrier-metal nanoparticle composite will be described in more detail.
  • a carrier-metal nanoparticle composite having efficiently supported metal nanoparticles having a uniform size in several nano-sizes on a carrier can be prepared.
  • the conventional method not only it was difficult to prepare several nano-sized metal nanoparticles, but also it was more difficult to produce a uniform size, and the supporting ratio and dispersion were poor.
  • the manufacturing method of the present application since uniform metal nanoparticles of several nanometers in size can be prepared by a simple method on a carrier, a process of supporting the carrier is not required separately, and the supporting ratio and dispersion degree can be improved. There is an advantage.
  • the method of preparing the carrier-metal nanoparticle composite has an advantage that the reduction potential between the first metal ion and the second metal ion is not considered because the reduction potential is not used. Since the manufacturing method uses a charge between metal ions, it is simpler than a conventional manufacturing method using a reduction potential, so that mass production is easy and a metal nanoparticle composite supported on a carrier can be manufactured at low cost. . Furthermore, since the reduction potential is not used, there is an advantage in that various metal salts can be used because the restriction of the metal salt to be used is reduced as compared with the conventional method for preparing metal nanoparticles.
  • the forming of the solution may include forming the micelle in the solution by the first and second surfactants.
  • the manufacturing method includes an atomic group ion including the first metal ion or the first metal ion; And the atomic group ion including the second metal ion or the second metal ion may form the metal nanoparticle.
  • the first metal ion or the atomic group ion including the first metal ion has a charge opposite to the charge at the outer end of the first surfactant
  • the second metal ion or the first metal ion Atomic ion, including the bimetallic ion may have a charge equal to the charge at the outer end of the first surfactant
  • the first metal ion or the atomic group ion including the first metal ion may be positioned at an outer end of the first surfactant forming the micelle in a solution to surround the outer surface of the micelle. Furthermore, the atomic group ion including the second metal ion or the second metal ion may have a form surrounding the outer surface of the atomic group ion including the first metal ion or the first metal ion.
  • the first metal salt and the second metal salt may form metal nanoparticles including the first metal and the second metal, respectively, by a reducing agent.
  • the surfactant outer end may refer to the micelle outer part of the first or second surfactant forming the micelle.
  • the surfactant outer end of the present application may mean the head of the surfactant.
  • the outer end of the present application can determine the charge of the surfactant.
  • the surfactant of the present application may be classified as ionic or nonionic according to the kind of the outer end, and the ionicity may be positive, negative, zwitterionic or amphoteric.
  • the zwitterionic surfactant contains both positive and negative charges. If the positive and negative charge of the surfactant of the present application is pH dependent, it may be an amphoteric surfactant, which may be zwitterionic in a certain pH range.
  • the anionic surfactant in the present specification may mean that the outer end of the surfactant is negatively charged, the cationic surfactant may mean that the outer end of the surfactant is positively charged.
  • the metal nanoparticles supported on the carrier manufactured by the method may have a cavity formed in one or two or more regions.
  • the cavity may mean an empty space continuous from one region of the outer surface of the metal nanoparticle.
  • the cavity may be formed in the form of a tunnel from one region of the outer surface.
  • the tunnel form may be a straight line, a continuous form of a curve or a straight line, it may be a continuous form of a mixture of curves and straight lines.
  • the cavity may be any empty space continuous from the outer surface of the metal nanoparticle to the inner or outer region of the metal nanoparticle.
  • the cavity may be an empty space from one region of the metal nanoparticle to an inner region of the metal nanoparticle, or may be an empty space from one region of the metal nanoparticle to another region of the metal nanoparticle.
  • the cavity may serve to utilize the inner surface area of the metal nanoparticle. Specifically, when the metal nanoparticles are used for a catalyst or the like, the cavity may serve to increase the surface area that can be in contact with the reactants. Therefore, the cavity may serve to exhibit high activity of the metal nanoparticles.
  • the metal nanoparticles supported on the carrier prepared by the manufacturing method may be metal nanoparticles including one or two or more cavities without internal hollow.
  • the preparation method comprises a concentration of the second surfactant; Chain length; The size of the outer end; Alternatively, by adjusting the type of charge, a cavity may be formed in one or two or more regions of the metal nanoparticles.
  • the first surfactant may form a micelle in a solution so that the metal ion or the atomic ion containing the metal ion forms the basic form of the metal nanoparticle or the form of the metal nanoparticle. It may serve to form, and the second surfactant may serve to form a cavity of the metal nanoparticles supported on the carrier.
  • the forming of the solution may include adjusting the size or number of the cavities by varying concentrations of the first and second surfactants.
  • the molar concentration of the second surfactant may be 0.01 to 0.05 times the molar concentration of the first surfactant. That is, the molar concentration of the second surfactant may be 1/100 to 1/20 times the molar concentration of the first surfactant. Specifically, the molar concentration of the second surfactant may be 1/30 to 1/10 of the molar concentration of the first surfactant.
  • the first surfactant and the second surfactant may form micelles according to the concentration ratio.
  • the cavity size or the number of the cavity of the metal nanoparticles supported on the carrier may be adjusted.
  • the carrier-metal nanoparticle composite in which the metal nanoparticles including one or more bowl-type particles are supported on the carrier may be prepared by continuously forming the cavity.
  • the forming of the solution may include adjusting the size of the cavity by adjusting the size of the outer end of the second surfactant.
  • the forming of the solution may include adjusting a chain length of the second surfactant differently from a chain length of the first surfactant to form a cavity in the second surfactant region. It may include the step.
  • the chain length of the second surfactant may be 0.5 to 2 times the chain length of the first surfactant.
  • the chain length may be determined by the number of carbons.
  • the chain length of the second surfactant is different from the chain length of the first surfactant, so that the metal salt bonded to the outer end of the second surfactant is the shell portion of the metal nanoparticles It can be prevented from forming.
  • the forming of the solution may include controlling the charge of the second surfactant differently from the charge of the first surfactant to form a cavity.
  • a first metal ion or a first metal ion having a charge opposite to the first and second surfactants is formed at the outer ends of the first and second surfactants that form micelles in a solvent.
  • Atom containing ion may be located.
  • the second metal ion opposite to the charge of the first metal ion may be positioned on an outer surface of the first metal ion.
  • the first metal ion and the second metal ion formed at the outer end of the first surfactant may form a shell portion of the metal nanoparticle, and the outer side of the second surfactant The first metal ion and the second metal ion positioned at the end may not form the shell and may form a cavity.
  • the first surfactant when the first surfactant is an anionic surfactant, in the forming of the solution, the first surfactant forms a micelle, and the micelle is a first metal ion or a first agent. It may be surrounded by a cation of atomic monoions containing one metal ion. Furthermore, atomic monoions including the second metal ion of the anion may surround the cation. Further, in the step of forming a metal nanoparticle by adding a reducing agent, the cation surrounding the micelles may form a first shell, the anion surrounding the cation may form a second shell.
  • the first surfactant when the first surfactant is a cationic surfactant, in the forming of the solution, the first surfactant forms a micelle, and the micelle is a first metal ion It may be surrounded by anion of the atomic monoion containing a. Furthermore, atomic group ions including a cation second metal ion or a second metal ion may surround the anion. In addition, in the step of forming a metal nanoparticle by adding a reducing agent, the anion surrounding the micelle may form a first shell, the cation surrounding the anion may form a second shell.
  • the forming of the metal nanoparticle may include filling the first and second surfactant regions forming the micelle with metal.
  • the first metal salt and the second metal salt may be filled in the micelle.
  • metal nanoparticles including one or two or more cavities may be manufactured without hollowing.
  • both the first surfactant and the second surfactant may be cationic surfactants.
  • both the first surfactant and the second surfactant may be anionic surfactants.
  • micelles may be formed by making the chain length of the second surfactant different from the chain length of the first surfactant. .
  • the first and second metal ions located at the outer end of the second surfactant are positioned at the outer ends of the first surfactant. It is not adjacent to the ions and no shell portion is formed.
  • any one of the first surfactant and the second surfactant may be an anionic surfactant, and the other may be a cationic surfactant. That is, in one exemplary embodiment of the present application, the first and second surfactants may have different charges.
  • the lengths of the chains may be different to form a cavity of the metal nanoparticles.
  • the principle in which the cavities are formed is the same as when the aforementioned first and second surfactants have the same charge.
  • the cavity of the metal nanoparticle may be formed even if the chain lengths of the first and second surfactants are the same. have.
  • the outer end of the first surfactant adjacent to the second end of the second surfactant of the micelle is charged with each other to form a neutral, the metal ion is not located. Therefore, the portion where the metal ion is not located does not form the shell portion, thereby forming the cavity of the metal nanoparticles.
  • the first surfactant may be an anionic surfactant or a cationic surfactant
  • the second surfactant may be a nonionic surfactant
  • the second surfactant when the second surfactant is a nonionic surfactant, since the metal ion is not located at the outer end of the second surfactant, the cavity of the metal nanoparticles may be formed. Therefore, when the second surfactant is nonionic, it is possible to form a cavity of the metal nanoparticle even when the length of the chain is the same or different from the first surfactant.
  • the first surfactant may be an anionic surfactant or a cationic surfactant
  • the second surfactant may be a zwitterionic surfactant
  • the second surfactant when the second surfactant is a zwitterionic surfactant, since the metal ion is not located at the outer end of the second surfactant, the cavity of the metal nanoparticles can be formed. . Therefore, when the second surfactant is zwitterionic, it is possible to form a cavity of the metal nanoparticle even when the length of the chain is the same or different from the first surfactant.
  • the anionic surfactants include N-dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate, sodium 1-haptansulfonate, potassium laurate, triethanolamine stearate, ammonium lauryl sulfate, Lithium dodecyl sulfate, sodium lauryl sulfate, sodium dodecyl sulfate, alkyl polyoxyethylene sulfate, sodium alginate, dioctyl sodium sulfosuccinate, phosphatidyl glycerol, phosphatidyl inositol, phosphatidylserine, phosphatidic acid and salts thereof, glycerol Reel esters, sodium carboxymethylcellulose, bile acids and salts thereof, cholic acid, deoxycholic acid, glycocolic acid, taurocholic acid, glycodeoxycholic acid, alkyl sulfonates, aryl
  • the cationic surfactant is quaternary ammonium compound, benzalkonium chloride, cetyltrimethylammonium bromide, chitosan, lauryldimethylbenzylammonium chloride, acyl carnitine hydrochloride, alkylpyridinium halide, cetyl pyridinium chloride, cationic Lipids, polymethylmethacrylate trimethylammonium bromide, sulfonium compounds, polyvinylpyrrolidone-2-dimethylaminoethyl methacrylate dimethyl sulfate, hexadecyltrimethyl ammonium bromide, phosphonium compounds, benzyl-di (2-chloroethyl Ethylammonium bromide, coconut trimethyl ammonium chloride, coconut trimethyl ammonium bromide, coconut methyl dihydroxyethyl ammonium chloride, coconut methyl dihydroxyethyl ammonium bromide
  • the nonionic surfactants of the present application are polyoxyethylene fatty alcohol ethers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, sorbitan esters, Glyceryl Ester, Glycerol Monostearate, Polyethylene Glycol, Polypropylene Glycol, Polypropylene Glycol Ester, Cetyl Alcohol, Cetostearyl Alcohol, Stearyl Alcohol, Arylalkyl Polyether Alcohol, Polyoxyethylene Polyoxypropylene Copolymer, Poloxamer , Poloxamine, methylcellulose, hydroxycellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxy propylcellulose, hydroxy propylmethylcellulose, hydroxypropylmethylcellulose phthalate, amorphous cellulose, polysaccharides, starch, starch derivatives, Hydroxyethyl starch, polyvinyl alcohol, triethanolamine stearate, amine oxide,
  • the zwitterionic surfactants of the present application are betaine, alkyl betaine, alkyl amido betaine, amido propyl betaine, coco ampocarboxyglycinate, sacosinate aminopropionate, aminoglycinate, Dazolinium betaine, amphoteric midazolines, N-alkyl-N, N-dimethylammonio-1-propanesulfonate, 3-colamido-1-propyldimethylammonio-1-propanesulfonate, dode It may be selected from the group consisting of silphosphocholine and sulfo-betaine. However, the present invention is not limited thereto.
  • the concentration of the first surfactant may be at least 1 times and at most 5 times the critical micelle concentration with respect to the solvent. Specifically, the concentration of the first surfactant may be two times the critical micelle concentration with respect to the solvent.
  • the critical micelle concentration means a lower limit of the concentration at which the surfactant forms a group of molecules or ions (micro micelles) in a solution.
  • the most important property of a surfactant is that the surfactant has a tendency to adsorb on the interface, such as the air-liquid interface, the air-solid interface and the liquid-solid interface. If the surfactants are free in the sense that they do not exist in agglomerated form, they are called monomers or unimers, and as the unimer concentration is increased they aggregate to form the entity of small agglomerates, ie Form micelles. Such concentration may be referred to as critical micelle concentration.
  • the concentration of the first surfactant When the concentration of the first surfactant is less than one times the critical micelle concentration, the concentration of the first surfactant adsorbed to the first metal salt may be relatively low. Accordingly, the amount of core particles formed may also be reduced as a whole.
  • the concentration of the first surfactant exceeds 5 times the critical micelle concentration, the concentration of the first surfactant may be relatively high, and the metal nanoparticles may aggregate. Therefore, when the concentration of the first surfactant is not less than 1 times and not more than 5 times the critical micelle concentration with respect to the solvent, the formation of the metal nanoparticles may be smoothly performed.
  • the size of the metal nanoparticles may be controlled by controlling the first surfactant and / or the first and second metal salts surrounding the micelle to form micelles.
  • the size of the metal nanoparticle may be adjusted by the chain length of the first surfactant forming the micelle. Specifically, when the chain length of the first surfactant is short, the size of the micelle is reduced, and thus the size of the metal nanoparticles may be reduced.
  • the carbon number of the chain of the first surfactant may be 15 or less. Specifically, the carbon number of the chain may be 8 or more and 15 or less. Alternatively, the carbon number of the chain may be 10 or more and 12 or less.
  • the size of the metal nanoparticle may be controlled by adjusting the type of counter ions of the first surfactant forming the micelle. Specifically, the larger the size of the counter ion of the first surfactant, the weaker the bonding force with the head portion of the outer end of the first surfactant may be the size of the micelle, thereby increasing the size of the metal nanoparticles. .
  • the first surfactant when the first surfactant is an anionic surfactant, the first surfactant includes NH 4 + , K + , Na + or Li + as a counter ion. It may be.
  • the first surfactant when the counter ion of the first surfactant is NH 4 + , when the counter ion of the first surfactant is K + , when the counter ion of the first surfactant is Na + , the first surfactant
  • the size of the metal nanoparticles may be reduced in the order of the counter ion of Li + .
  • the first surfactant when the first surfactant is a cationic surfactant, the first surfactant may include I ⁇ , Br ⁇ , or Cl ⁇ as a counter ion.
  • the metal nanoparticles in the order of the counter ion of the first surfactant is Cl ⁇
  • the size of can be made smaller.
  • the size of the metal nanoparticle may be controlled by adjusting the size of the head portion of the outer end of the first surfactant forming the micelle. Furthermore, when the size of the head portion of the first surfactant formed on the outer surface of the micelle is increased, the repulsive force between the head portions of the first surfactant is increased, thereby increasing the micelle, and thus the size of the metal nanoparticles is increased. Can be large.
  • the size of the metal nanoparticles can be determined by the combined action of the above-described elements.
  • the metal salt is not particularly limited as long as it can be ionized in a solution to provide metal ions.
  • the metal salt may be ionized in a solution state to provide an anion of a cation including a metal ion or an atomic monoion including a metal ion.
  • the first metal salt and the second metal salt may be different from each other.
  • the first metal salt may provide a cation including a metal ion
  • the second metal salt may provide an anion of atomic group ions including a metal ion.
  • the first metal salt may provide a cation of Ni 2+
  • the second metal salt may provide an anion of PtCl 4 2 ⁇ .
  • the first metal salt and the second metal salt are not particularly limited as long as they can be ionized in a solution to provide a metal ion or an atomic group ion including a metal ion.
  • the first metal salt and the second metal salt are each independently selected from the group consisting of metals, metalloids, lanthanum group metals, and actinium group metals belonging to groups 3 to 15 of the periodic table. It may be a salt of the thing.
  • the first metal salt and the second metal salt are different from each other, and each independently, platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir) , Rhenium (Re), palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn) It may be a salt of a metal selected from the group consisting of Cr (chromium), titanium (Ti), gold (Au), cerium (Ce), silver (Ag) and copper (Cu).
  • the first metal salt is ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium ( Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium (Cr), titanium ( It may be a salt of a metal selected from the group consisting of Ti), cerium (Ce), silver (Ag), and copper (Cu), and more particularly, may be a salt of nickel (Ni).
  • the second metal salt is platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium ( Re), palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium ( It may be a salt of a metal selected from the group consisting of Cr), titanium (Ti), gold (Au), cerium (Ce), silver (Ag) and copper (Cu). More specifically, it may be a salt of a metal consisting of platinum (Pt), palladium (Pd) and gold (Au), and even more specifically, may be a salt of platinum (Pt).
  • the first metal salt and the second metal salt are each independently a halide such as nitrate, chloride, bromide, and iodide of a metal. (Halide), hydroxide (Hydroxide) or sulfur oxides (Sulfate).
  • halide such as nitrate, chloride, bromide, and iodide of a metal.
  • Hydroxide Hydroxide
  • sulfur oxides Sulfate
  • the molar ratio of the first metal salt and the second metal salt in the step of forming the solution may be 1: 5 to 10: 1.
  • the molar ratio of the first metal salt and the second metal salt may be 2: 1 to 5: 1.
  • the atomic percentage ratio of the first metal and the second metal may be 1: 5 to 10: 1.
  • the atomic percentage ratio may be an atomic percentage ratio of the first metal and the second metal when the metal nanoparticle is formed of an alloy of the first metal and the second metal.
  • the forming of the solution may further include adding a stabilizer.
  • the stabilizer may be, for example, one or two or more mixtures selected from the group consisting of disodium phosphate, dipotassium phosphate, disodium citrate and trisodium citrate.
  • the step of adding and stirring the carrier to the solution may be performed for 5 minutes to 120 minutes, more specifically for 10 minutes to 90 minutes, even more specifically for 20 minutes to 60 minutes Can be.
  • the manufacturing method according to the exemplary embodiment of the present application has the advantage that the metal salts are uniformly dispersed since the first metal salt and the second metal salt are dispersed in the carrier before the metal nanoparticles are formed. Accordingly, when metal nanoparticles are formed, less aggregation of particles occurs. In addition, there is an advantage that the adhesion or bonding strength between the carrier and the metal nanoparticles is increased.
  • the carrier is as described above.
  • the adding and stirring the carrier may include dispersing the carrier in a solvent.
  • the carrier when the carrier is dispersed in a solvent and added to the solution, entanglement of the carrier and the particles may be reduced.
  • the forming of the metal nanoparticles on the carrier by adding a reducing agent to the solution may include adding a nonionic surfactant together with the reducing agent.
  • the nonionic surfactant is adsorbed on the surface of the metal nanoparticles, and serves to uniformly disperse the metal nanoparticles formed on the carrier in the solution. Therefore, the metal particles are prevented from being agglomerated or precipitated, and the metal nanoparticles can be formed to a uniform size.
  • Specific examples of the nonionic surfactant are the same as those of the nonionic surfactant described above.
  • the solvent may be a solvent including water.
  • the solvent may be water or a mixture of water and an alcohol having 1 to 6 carbon atoms by dissolving the first metal salt and the second metal salt, and more specifically, may be water. have.
  • water since no organic solvent is used, the post-treatment process of treating the organic solvent in the manufacturing process is not necessary, and thus, there is a cost saving effect and an environmental pollution prevention effect.
  • the manufacturing method may be performed at room temperature. Specifically, it may be carried out at a temperature in the range of 4 ° C or more and 35 ° C or less, and more specifically 15 ° C or more and 28 ° C or less.
  • Forming the solution in one embodiment of the present application is a temperature in the range of room temperature, specifically 4 °C 100 °C, more specifically 4 °C 35 °C, even more specifically 15 °C 28 °C This can be done at If the organic solvent is used as the solvent, there is a problem that the production should be performed at a high temperature of more than 100 °C. Since the present application can be manufactured at room temperature, the manufacturing method is simple, there is a process advantage, and the cost reduction effect is large.
  • the forming of the solution may be performed for 5 minutes to 120 minutes, more specifically for 10 minutes to 90 minutes, and even more specifically for 20 minutes to 60 minutes.
  • the step of adding and stirring the carrier to the solution and the step of adding the reducing agent to the solution to form the metal nanoparticles on the carrier are also performed at room temperature, specifically 4 ° C. to 100 ° C. More specifically, it may be carried out at 4 °C or more and 35 °C or less, even more specifically 15 °C to 28 °C. If the organic solvent is used as the solvent, there is a problem that the production should be performed at a high temperature of more than 100 °C. Since the present application can be manufactured at room temperature, the manufacturing method is simple, there is a process advantage, and the cost reduction effect is large.
  • the step of adding and stirring the carrier to the solution may be performed by stirring for 5 minutes to 120 minutes, more specifically for 10 minutes to 90 minutes, and even more specifically for 20 minutes to 60 minutes. Can be.
  • a metal nanoparticle on the carrier by adding a reducing agent to the solution for 5 minutes to 120 minutes, more specifically 10 minutes to 90 minutes, even more specifically 20 minutes to 60 It can be done by stirring for minutes.
  • the standard reduction potential of the reducing agent may be -0.23V or less.
  • the reducing agent is not particularly limited as long as it is a standard reducing agent of -0.23V or less, specifically, -4V or more and -0.23V or less, and has a reducing power capable of reducing dissolved metal ions to precipitate as metal particles.
  • the reducing agent may be at least one selected from the group consisting of NaBH 4 , NH 2 NH 2 , LiAlH 4 and LiBEt 3 H.
  • the manufacturing method may further include removing a surfactant inside the cavity after forming the metal nanoparticle including the cavity.
  • the removal method is not particularly limited and may be, for example, a method of washing with water.
  • the surfactant may be an anionic surfactant and / or a cationic surfactant.
  • the solution may be centrifuged to precipitate the carrier-metal nanoparticle complex included in the solution. Only the separated carrier-metal nanoparticle complex can be recovered after centrifugation. If necessary, the firing process of the carrier-metal nanoparticle composite may be additionally performed.
  • a carrier-metal nanoparticle complex in which metal nanoparticles having a uniform size in several nano-sizes is supported on a carrier may be prepared.
  • Conventional methods have made it difficult to produce several nano-sized metal nanoparticles supported on a carrier, as well as more uniformly.
  • the first metal salt may be a salt including a first metal ion, which is a precursor of the first metal, or an atomic group ion including the first metal ion, and may serve to provide a first metal.
  • the second metal salt may be a salt including a second metal ion, which is a precursor of the second metal, or an atomic group ion including the second metal ion, and may serve to provide a second metal.
  • ALS ammonium lauryl sulfate
  • the molar ratio of Ni (NO 3 ) 2 to K 2 PtCl 4 was 3: 1, the concentration of ALS was twice that of the critical micelle concentration (CMC) for water, and the concentration of DDAPS was 1 / time of the ALS concentration. 10 moles. Thereafter, carbon dispersed in water was added to the solution, stirred for 30 minutes, and reacted for 30 minutes by adding a reducing agent, NaBH 4 .
  • TEM 2 and 3 show transmission electron microscope (TEM) images of the carrier-metal nanoparticle composite prepared according to Preparation Example 1.
  • DTAB was dissolved in water and stirred for 30 minutes to form a solution: the molar ratio of Ni (NO 3 ) 2 to K 2 PtCl 4 was 3: 1, and the concentration of ALS was critical micelle to water. concentration: CMC), and the concentration of DTAB was 1/5 mol of ALS concentration, after which carbon dispersed in water was added to the solution and stirred for 30 minutes, followed by addition of reducing agent NaBH 4 for 30 minutes. Reacted.
  • TEM transmission electron microscope
  • Figure 9 is a transmission electron microscope (TEM) image of the conventional carrier-metal nanoparticle composite, it can be seen that the metal nanoparticles are in the form of a solid (solid) sphere is not formed.
  • TEM transmission electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

본 출원은 연료전지 및 그의 제조방법에 관한 것이다.

Description

연료전지 및 그의 제조방법
본 출원은 2013년 11월 1일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0132413호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 연료전지 및 그의 제조방법에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 수 있는 에너지에 대한 관심이 높아지고 있다. 이러한 대체에너지의 하나로서 연료전지는 고효율이고, NOx 및 SOx 등의 공해 물질을 배출하지 않으며, 사용되는 연료가 풍부하다는 등의 장점으로 인해 특히 주목받고 있다.
연료전지는 연료와 산화제를 전기화학적으로 반응시켜 전기에너지를 발생시키는 장치이다. 연료전지는 수소를 연료로, 산소를 산화제로 이용하며, 전극은 수소의 산화반응(Hydrogen Oxidation Reaction, HOR)에 촉매 작용을 하는 애노드와 산소의 환원반응(Oxygen Reduction Reaction, ORR)에 촉매 작용을 하는 캐소드로 이루어진다. 연료전지에서의 전극은 이러한 촉매 작용을 하는 촉매를 포함하는데, 촉매 재료로 통상 사용되는 것은 백금이다. 그러나, 백금은 고비용 및 불순물에 대한 허용치가 낮은 문제점이 있어 백금의 사용량을 줄이면서 순수 백금보다 우수한 전기화학적 활성 및 안정성을 제공하는 촉매를 제조 및 사용하는 것에 대해 많은 연구가 이루어지고 있다. 이러한 연구는 주로 백금 자체의 활성을 증대시키는 방안 또는 백금과 전이금속과의 합금 형태의 전극촉매를 제안하는 것이었으나, 최근에는 전기화학적 활성 및 안정성을 가지는 나노입자 구조의 형태에 대한 관심이 높아지고 있다.
금속 나노입자의 합성방법에는 용액 상에서 환원제로 금속 이온을 환원시키는 방법, 감마선을 이용한 방법, 전기화학적 방법 등이 있으나, 기존의 방법들은 균일한 크기와 모양을 갖는 나노입자 합성이 어렵거나, 유기 용매를 이용함으로써 환경 오염, 고비용(high cost) 등이 문제되는 등 여러 가지 이유로 고품질 나노입자의 경제적인 대량 생산이 힘들었다.
또한, 금속 나노입자는 열처리 온도나 반응온도에 의해 불안정하기 쉽기 때문에 담체에 분산시켜서 사용하는 경우가 많다. 따라서, 균일한 크기의 고품질 금속 나노입자를 담체에 효율적으로 담지할 수 있는 방법의 개발이 요구되었다.
본 출원이 해결하려는 과제는, 균일한 나노 크기의 금속 입자가 담체에 담지된 담체-금속 나노입자복합체를 전극촉매로 포함하는 연료전지 및 그의 제조방법을 제공하는 것이다.
본 출원이 해결하려는 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 출원의 하나의 실시상태는
캐소드; 애노드; 및 상기 캐소드 및 애노드 사이에 구비된 전해질막을 포함하고,
상기 캐소드 및 애노드 중 적어도 하나는 제1 금속 및 제2 금속을 포함하고, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 포함하는 것인 연료전지를 제공한다.
본 출원의 하나의 실시상태는
전해질막을 준비하는 단계;
상기 전해질막의 일면에 캐소드를 형성하는 단계; 및
상기 전해질막의 타면에 애노드를 형성하는 단계를 포함하고,
상기 캐소드 및 애노드 중에서 적어도 하나는 제1 금속 및 제2 금속을 포함하고, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 포함하는 것인 연료전지의 제조방법을 제공한다.
본 출원의 연료전지는 적어도 하나의 전극이 담체-금속 나노입자 복합체를 포함하고, 상기 담체-금속 나노입자는 수 나노미터로 균일한 크기의 금속 나노입자가 담체에 담지된 복합체로서, 금속 나노입자의 담체에 대한 분산도 및 담지율이 우수하여 우수한 촉매의 효과를 나타낼 수 있다.
또한, 상기 담체에 담지된 상기 금속 나노입자는 공동(cavity)을 포함하고, 공동을 통하여 금속 나노입자의 내부 표면적까지 반응이 일어나는 접촉면적으로 활용할 수 있으므로, 촉매 효율이 획기적으로 증가하는 장점이 있다.
도 1은 본 출원의 하나의 실시상태에 따른 담체-금속 나노입자 복합체의 제조 과정에서 계면활성제가 미셀을 형성하는 모습을 간략하게 나타낸 것이다.
도 2와 도 3은 제조예 1에 의하여 제조된 담체-금속 나노입자 복합체의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 4와 도 5는 제조예 2에 의하여 제조된 담체-금속 나노입자 복합체의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 6은 종래의 담체-금속 나노입자 복합체의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 7은 본 출원의 하나의 실시상태에 따른 담체-금속 나노입자 복합체의 구조를 간략하게 나타낸 것이다.
도 8은 연료전지의 전기 발생 원리를 간략하게 나타낸 것이다.
도 9는 본 출원의 하나의 실시상태에 따른, 연료전지용 막전극 접합체의 구조를 간략하게 나타낸 것이다.
도 10은 본 출원의 하나의 실시상태에 따른, 연료전지를 간략하게 나타낸 것이다.
본 출원의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시상태들을 참조하면 명확해질 것이다. 그러나, 본 출원은 이하에서 개시되는 실시상태들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이고, 단지 본 실시상태들은 본 출원의 개시가 완전하도록 하며, 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 출원은 청구항의 범주에 의해 정의될 뿐이다. 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.
다른 정의가 없다면, 본 명세서에서 사용되는 본 명세서에서 사용되는 기술 및 과학적 용어를 포함하는 모든 용어는 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 본 출원을 상세히 설명한다.
본 출원은 캐소드; 애노드; 및 상기 캐소드 및 애노드 사이에 구비된 전해질막을 포함하고,
상기 캐소드 및 애노드 중 적어도 하나는 제1 금속 및 제2 금속을 포함하고, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 포하하는 연료전지를 제공한다.
또한, 본 출원은 제1 금속 및 제2 금속을 포함하고, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 제공한다.
본 출원의 일 구현예에 따른 연료전지는 애노드의 촉매층과 캐소드의 촉매층이 전해질막에 접촉하도록 하는 형태로서, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 캐소드; 애노드; 및 상기 캐소드와 애노드 사이에 위치하는 전해질막을 밀착시킨 상태에서 100 내지 400℃로 열압착하여 제조될 수 있다.
상기 애노드는 애노드 촉매층과 애노드 기체확산층을 포함할 수 있다. 애노드 기체확산층은 다시 애노드 미세 기공층과 애노드 기재를 포함할 수 있다.
상기 캐소드는 캐소드 촉매층과 캐소드 기체확산층을 포함할 수 있다. 캐소드 기체확산층은 다시 캐소드 미세 기공층과 캐소드 기재를 포함할 수 있다.
도 8은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(M)과 이 전해질막(M)의 양면에 형성되는 애노드(A) 및 캐소드(C) 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 8을 참조하면, 애노드(A) 전극에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료(F)의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(M)을 통해 캐소드(C) 전극으로 이동한다. 캐소드(C) 전극에서는 전해질막(M)을 통해 전달된 수소 이온과, 산소와 같은 산화제(O)및 전자가 반응하여 물(W)이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
전술한 바와 같이, 막-전극 접합체(MEA)는 연료와 공기의 전기화학 촉매 반응이 일어나는 전극(캐소드와 애노드)과 수소 이온의 전달이 일어나는 고분자 막의 접합체를 의미하는 것으로서, 전극(캐소드와 애노드)과 전해질막이 접착된 단일의 일체형 유니트(unit)이다.
도 9는 연료전지용 막 전극 접합체의 구조를 개략적으로 도시한 것으로, 연료전지용 막 전극 접합체는 전해질막(10)과, 이 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 애노드 및 캐소드를 구비한다.
애노드는 애노드 촉매층(20)과 애노드 기체확산층(50)으로 구성되고, 애노드 기체확산층(50)은 다시 애노드 미세 기공층(30)과 애노드 기재(40)로 구성된다. 여기서, 애노드 기체확산층은 애노드 촉매층과 전해질막 사이에 구비된다.
캐소드는 캐소드 촉매층(21)과 캐소드 기체확산층(51)으로 구성되고, 캐소드 기체확산층(51)은 다시 캐소드 미세 기공층(31)과 캐소드 기재(41)로 구성된다. 여기서, 캐소드 기체확산층은 캐소드 촉매층과 전해질막 사이에 구비된다.
도 9는 애노드 및 캐소드를 촉매층 및 기체확산층으로 구분된 애노드 및 캐소드를 기재하고 있으나, 본 출원이 이에만 한정되는 것은 아니며, 애노드 및 캐소드의 구조는 필요에 따라 변경될 수 있다.
상기 애노드의 촉매층 및 상기 캐소드의 촉매층 중 적어도 하나는 상기 담체-금속 나노입자 복합체를 촉매로 포함할 수 있다. 나머지는 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이금속 합금으로 이루어진 군에서 선택되는 촉매가 바람직하게 사용될 수 있다. 상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
상기 담체-금속 나노입자 복합체를 촉매로 사용하는 경우, 상기 금속 나노입자가 공동에 의해 넓은 표면적을 가지므로, 반응면적이 증가하여 촉매 활성을 높이는 효과를 가질 수 있고, 나아가 연료전지의 성능을 높일 수 있다.
촉매층을 도입하는 과정은 당해 기술 분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 촉매 잉크를 전해질막에 직접적으로 코팅하거나 기체확산층에 코팅하여 촉매층을 형성할 수 있다. 이때 촉매 잉크의 코팅 방법은 특별하게 제한되는 것은 아니지만, 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅, 다이 코팅 또는 스핀 코팅 방법 등을 사용할 수 있다. 촉매 잉크는 대표적으로 촉매, 폴리머 이오노머(polymer ionomer) 및 용매로 이루어질 수 있다.
상기 기체확산층은 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다. 따라서, 상기 기체확산층은 도전성 기재를 포함하여 이루어질 수 있다. 도전성 기재로는 탄소 페이퍼(Carbon paper), 탄소 천(Carbon cloth) 또는 탄소 펠트(Carbon felt)가 바람직하게 사용될 수 있다. 상기 기체확산층은 촉매층 및 도전성 기재 사이에 미세기공층을 더 포함하여 이루어질 수 있다. 상기 미세기공층은 저가습 조건에서의 연료전지의 성능을 향상시키기 위하여 사용될 수 있으며, 기체확산층 밖으로 빠져나가는 물의 양을 적게 하여 전해질막이 충분한 습윤 상태에 있도록 하는 역할을 한다.
구체적으로, 본 출원은 하나 또는 둘 이상의 상기 막-전극 접합체와 상기 막-전극 접합체들 사이에 개재되는 바이폴라 플레이트를 포함하는 스택; 연료를 상기 스택으로 공급하는 연료공급부; 및 산화제를 상기 스택으로 공급하는 산화제공급부를 포함하는 것을 특징으로 하는 고분자 전해질형 연료전지를 제공한다.
본 출원의 일 구현예에 따른 연료전지는 스택, 연료공급부 및 산화제공급부를 포함하여 이루어진다.
도 10은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 연료전지는 고분자 전해질 연료전지, 직접 액체 연료전지, 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지, 또는 직접 디메틸에테르 연료전지 등이 가능하다.
본 출원의 하나의 실시상태는 제1 금속 및 제2 금속을 포함하고, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 제공한다.
본 출원의 하나의 실시상태에서, 상기 공동(cavity)은 상기 금속 나노입자의 외측 표면의 일 영역으로부터 연속되는 빈 공간을 의미할 수 있다. 상기 공동은 금속 나노입자의 외측 표면의 1 또는 2 이상의 영역으로부터 상기 금속 나노입자의 내부의 일 영역에 이르기까지 하나의 터널의 형태로 형성될 수 있다. 또한, 상기 공동은 금속 나노입자의 외측 표면의 1 또는 2 이상의 영역으로부터 상기 금속 나노입자를 관통하는 터널의 형태로 형성될 수 있다. 상기 터널 형태는 일직선이 될 수 있고 곡선 또는 직선의 연속적인 형태일 수 있으며, 곡선과 직선이 혼합된 연속적인 형태가 될 수 있다.
도 7은 본 출원의 하나의 실시상태에 따른 담체-금속 나노입자 복합체의 구조를 간략하게 나타낸 것이다. 도 7을 참고하여 설명하면, 담체(1)에 금속 나노입자(2)가 담지되어 있다. 상기 금속 나노입자(2)는 3개의 공동(5)을 가지고 있다. 도 7에는 3개의 공동이 기재되어 있으나, 상기 공동은 1개 이상일 수 있다. 또한, 도 7에는 금속 나노입자의 외측 표면의 일 영역으로부터 내부의 일 영역에 이르기까지 하나의 터널의 형태로 형성된 구조를 예시하였으나, 금속 나노입자를 관통하는 터널의 형태 등의 다른 구조로 형성될 수도 있다.
상기 공동은 상기 금속 나노입자의 내부 표면적을 활용할 수 있도록 하는 역할을 할 수 있다. 구체적으로, 상기 공동은 상기 금속 나노입자가 촉매 등의 용도로 사용되는 경우, 반응물질과 접할 수 있는 표면적을 증가시키는 역할을 할 수 있다. 그러므로, 상기 공동은 상기 금속 나노입자의 높은 활성을 나타내도록 하는 역할을 할 수 있다.
구체적으로, 본 출원의 상기 금속 나노입자는 상기 공동(cavity)을 포함함으로 인하여, 공동(cavity)이 없는 경우의 금속 나노입자에 비하여 표면적이 20% 내지 50% 증가할 수 있다.
본 출원의 하나의 실시상태에서, 상기 공동(cavity)의 직경은 상기 금속 나노입자 입경의 5 % 이상 30% 이하, 구체적으로 5% 내지 20%, 더욱 구체적으로 5% 내지 15%일 수 있다.
상기 공동(cavity)의 직경이 금속 나노입자 입경의 5 % 미만인 경우, 상기 금속 나노입자의 활성이 충분히 발휘되지 않을 수 있다. 또한, 상기 공동(cavity)의 직경이 금속 나노입자 입경의 30%를 초과하는 경우, 상기 금속 나노입자의 형태가 유지되지 않을 수 있다. 그러므로, 상기 공동(cavity)의 직경이 상기 금속 나노입자 입경의 5 % 이상 30% 이하, 구체적으로 5% 내지 20%, 더욱 구체적으로 5% 내지 15% 이하일 경우, 상기 공동(cavity)을 통한 반응물질과의 접촉면적을 충분히 넓힐 수 있는 장점을 가질 수 있다.
본 출원의 하나의 실시상태에서, 상기 공동 중 어느 하나 이상은 상기 금속 나노입자를 관통하는 것일 수 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 공동은 상기 금속 나노입자의 내부 일 영역까지 연속하는 것일 수 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 공동은 원통형일 수 있다. 또는, 상기 공동은 보울(bowl)형일 수 있다.
본 명세서에서 상기 원통형이랑 반드시 완전한 원통을 의미하는 것은 아니며, 대략적인 형태가 원통형인 것을 의미한다.
본 명세서에서 상기 보울형이란, 반구형의 형태일 수도 있고, 호리병 모양일 수도 있다.
상기 원통형 공동의 직경은 일정하게 유지될 수 있다. 구체적으로, 본 출원의 상기 원통형 공동은 직경이 10% 내외의 차이를 나타내며 연속적으로 형성된 것일 수 있다.
본 출원의 하나의 실시상태에서 상기 금속 나노입자의 입경은 1 ㎚ 이상 30 ㎚ 이하일 수 있고, 더욱 구체적으로 20 ㎚ 이하일 수 있고, 또는 12 ㎚ 이하, 또는 10 ㎚ 이하일 수 있다. 또는, 상기 금속 나노입자의 평균 입경은 6 nm 이하일 수 있다. 금속 나노입자의 입경이 30 ㎚ 이하인 경우, 나노입자를 여러 분야에서 이용할 수 있는 장점이 크다. 또한, 금속 나노입자의 입경이 20 ㎚ 이하인 경우, 더욱 바람직하다. 또한, 금속 나노입자의 입경이 10 ㎚ 이하인 경우 입자의 표면적이 더욱 넓어지므로, 여러 분야에서 이용할 수 있는 응용 가능성이 더욱 커지는 장점이 있다. 예를 들어, 상기 입경 범위로 형성된 금속 나노입자가 촉매로 사용되면, 그 효율이 현저하게 상승될 수 있다.
본 명세서에서, 상기 상기 금속 나노입자의 입경이란, 금속 나노입자의 단면의 지름 중 제일 큰 값을 의미한다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자의 평균 입경은 그래픽 소프트웨어(MAC-View)를 사용하여 200개 이상의 금속 나노입자에 대해 측정하고, 얻어진 통계 분포를 통해 평균 입경을 측정한 값을 의미한다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자의 평균 입경은 1 nm 이상 30 nm 이하, 1 nm 이상 20 nm 이하, 1 nm 이상 12 nm 이하, 1 nm 이상 10 nm 이하, 1 nm 이상 6 nm 이하일 수 있다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자의 제조시 하나 이상의 금속 나노입자를 제조할 수 있다. 이 경우, 본 출원의 하나의 실시상태에서, 상기 금속 나노입자의 입경은 금속 나노입자들의 평균 입경의 80% 내지 120% 범위 이내 일 수 있다. 구체적으로, 상기 금속 나노입자의 입경은 금속 나노입자들의 평균 입경의 90% 내지 110% 범위 이내일 수 있다. 상기 범위를 벗어나는 경우, 금속 나노입자의 크기가 전체적으로 불균일해지므로, 금속 나노입자들에 의해 요구되는 특유의 물성치를 확보하기 어려울 수 있다. 예를 들어, 상기 금속 나노입자들의 평균 입경의 80% 내지 120% 범위를 벗어나는 금속 나노입자들이 촉매로 사용될 경우, 그 효율 개선 효과가 다소 미흡해질 수 있다. 그러므로, 본원 명세서의 상기 금속 나노입자들의 평균 입경의 80% 내지 120% 범위 이내인 경우, 균일한 크기의 나노입자를 형성하여, 나노입자로서의 우수한 물성을 나타낼 수 있다.
본 명세서에 따른 금속 나노입자를 2 이상 제조하는 경우, 본원 명세서의 상기 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자의 함량이 전체 나노입자의 50% 이상 100%이하일 수 있다. 구체적으로, 상기 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자의 함량이 전제 나노입자의 70% 이상 100%이하일 수 있다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자는 상기 공동을 1개 포함할 수 있다. 즉, 상기 금속 나노입자는 상기 공동을 1 개만을 포함할 수 있으며, 또는 복수개의 공동을 포함할 수 있다. 상기 복수개는 2 이상을 의미한다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자는 구 형상일 수 있다.
본 명세서에서 상기 구 형상이란, 완전한 구형만을 의미하는 것은 아니고, 대략적으로 구 형태의 모양인 것을 포함할 수 있다. 예를 들면, 상기 금속 나노입자는 구 형상의 외표면이 평탄하지 않을 수 있으며, 하나의 금속 나노입자에서 곡률반경이 일정하지 않을 수도 있다.
본 출원의 하나의 실시상태에 따른 상기 금속 나노입자의 모식도를 도 1에 나타내었다. 상기 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체는 도 2 내지 도 5에 나타내었다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자는 상기 제1 금속 및 상기 제2 금속의 합금을 포함할 수 있다. 구체적으로, 상기 금속 나노입자는 상기 공동을 제외한 영역이 상기 제1 금속 및 상기 제2 금속의 합금으로 이루어질 수 있다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자는 상기 제1 금속 및 상기 제2 금속이 균일하게 혼합되어 있을 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 금속은 주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택되는 것일 수 있다. 구체적으로, 상기 제1 금속은 백금(Pt); 루테늄(Ru); 로듐(Rh); 몰리브덴(Mo); 오스뮴(Os); 이리듐(Ir); 레늄(Re); 팔라듐(Pd); 바나듐(V); 텅스텐(W); 코발트(Co); 철(Fe); 셀레늄(Se); 니켈(Ni); 비스무트(Bi); 주석(Sn); 크롬(Cr); 타이타늄(Ti); 금(Au); 세륨(Ce); 은(Ag); 및 구리(Cu)로 이루어진 군에서 선택되는 것일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제2 금속은 상기 제1 금속과 상이할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제2 금속은 주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택되는 것일 수 있다. 구체적으로, 상기 제2 금속은 백금(Pt); 루테늄(Ru); 로듐(Rh); 몰리브덴(Mo); 오스뮴(Os); 이리듐(Ir); 레늄(Re); 팔라듐(Pd); 바나듐(V); 텅스텐(W); 코발트(Co); 철(Fe); 셀레늄(Se); 니켈(Ni); 비스무트(Bi); 주석(Sn); 크롬(Cr); 타이타늄(Ti); 금(Au); 세륨(Ce); 은(Ag); 및 구리(Cu)로 이루어진 군에서 선택되는 것일 수 있다.
구체적인 예로서, 본 출원의 하나의 실시상태에서, 상기 제1 금속은 백금(Pt), 은(Ag), 팔라듐(Pd) 및 금(Au)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 백금(Pt)일 수 있다. 이 경우, 상기 제2 금속은 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 니켈(Ni)일 수 있다.
구체적인 다른 예로서, 본 출원의 하나의 실시상태에서, 상기 제1 금속은 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 니켈(Ni)일 수 있다. 이 경우, 상기 제2 금속은 백금(Pt), 은(Ag), 팔라듐(Pd) 및 금(Au)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 백금(Pt)일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 니켈일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 백금일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 금속은 니켈이고, 상기 제2 금속은 백금일 수 있다.
본 출원의 하나의 실시상태에서 상기 담체는 탄소계 물질 또는 무기물 미립자일 수 있다.
상기 탄소 담체는 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄소(Activated carbon), 다공성 탄소(Mesoporous Carbon), 카본블랙(Carbon black), 탄소 나노 섬유(Carbon nano fiber), 탄소 나노 와이어(Carbon nano wire), 탄소 나노 혼(Carbon nanohorn), 탄소 에어로겔(Carbon aerogel), 탄소 나노링(Carbon nano ring), 플러렌(C60) 및 수퍼P(Super P)로 이루어진 군에서 선택되는 것일 수 있다.
상기 카본 블랙으로는 덴카 블랙, 케첸 블랙 또는 아세틸렌 블랙 등이 있다.
상기 탄소나노튜브는 SWCNT, DWCNT, MWCNT, 기능화된 SWCNT, 기능화된 DWCNT, 기능화된 MWCNT, 정제된 SWCNT, 정제된 DWCNT 또는 정제된 MWCNT 중에 하나 또는 이들의 혼합물을 포함할 수 있다. 탄소나노튜브는 흑연면(graphene sheet)이 이음매 없이 말려 튜브모양의 형상을 이루고 있다. 이 튜브가 하나일 경우를 단일벽 탄소나노튜브(Single Walled Carbon Nanotube: SWCNT)라 하고, 2개의 튜브가 말려 있을 경우를 이중벽 탄소나노튜브(Double-Walled Carbon Nanotube: DWCNT)라 하며, 2개 이상의 튜브가 말려 있을 경우를 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube: MWCNT)라 한다.
상기 무기물 미립자는 알루미나, 실리카, 티타니아 및 지르코니아로 이루어진 군에서 선택되는 것일 수 있다.
본 출원의 하나의 실시상태에 따라 제조한 담체-금속 나노입자복합체에서 금속 나노입자의 담체에 대한 담지율은 10 중량% 내지 70 중량%일 수 있다.
또한, 본 출원은
전해질막을 준비하는 단계;
상기 전해질막의 일면에 캐소드를 형성하는 단계; 및
상기 전해질막의 타면에 애노드를 형성하는 단계를 포함하고,
상기 캐소드 및 애노드 중 적어도 하나는
제1 금속 및 제2 금속을 포함하고, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 포함하는 것인 연료전지의 제조방법을 제공한다.
상기 캐소드, 애노드 및 담체-금속 나노입자 복합체는 전술한 바와 동일하다.
본 출원의 하나의 실시상태에 따르면, 상기 캐소드를 형성하는 단계 및 애노드를 형성하는 단계 중 적어도 하나의 단계는 상기 담체-금속 나노입자 복합체를 제조하는 단계를 더 포함하고,
상기 담체-금속 나노입자 복합체를 제조하는 단계는
용매, 상기 용매 중에서 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온을 제공하는 제1 금속염, 상기 용매 중에서 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온을 제공하는 제2 금속염, 상기 용매 중에서 미셀을 형성하는 제1 계면활성제, 및 상기 제1 계면활성제와 함께 상기 용매 중에서 미셀을 형성하는 제2 계면활성제를 포함하는 용액을 형성하는 단계;
상기 용액에 담체를 첨가하여 교반하는 단계; 및
상기 용액에 환원제를 첨가하여 담체 상에서 상기 금속 나노입자를 형성하는 단계를 포함할 수 있다.
본 출원의 하나의 실시상태는
용매, 상기 용매 중에서 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온을 제공하는 제1 금속염, 상기 용매 중에서 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온을 제공하는 제2 금속염, 상기 용매 중에서 미셀을 형성하는 제1 계면활성제, 및 상기 제1 계면활성제와 함께 상기 용매 중에서 미셀을 형성하는 제2 계면활성제를 포함하는 용액을 형성하는 단계; 상기 용액에 담체를 첨가하여 교반하는 단계;
및 상기 용액에 환원제를 첨가하여 담체 상에서 금속 나노입자를 형성하는 단계를 포함하고,
상기 금속 나노입자는 제1 금속 및 제2 금속을 포함하며, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하고,
상기 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체의 제조방법을 제공한다. 이하, 상기 담체-금속 나노입자 복합체의 제조방법에 대하여 더욱 상세하게 기술한다.
상기 제조방법에 따르면 수 나노크기로 균일한 크기를 가지는 금속 나노입자를 담체에 효율적으로 담지한 담체-금속 나노입자 복합체를 제조할 수 있다. 종래의 방법으로는 수 나노크기의 금속 나노입자를 제조하기 어려웠을 뿐만 아니라 균일한 크기로 제조하는 것은 더욱 어려웠고, 담지율과 분산도가 좋지 않았었다. 그러나, 본 출원의 제조방법에 의하면 수 나노미터 크기의 균일한 금속 나노입자를 담체 상에서 간단한 방법으로 제조할 수 있기 때문에 별도로 담체에 담지하는 공정이 필요하지 않고, 담지율과 분산도를 향상시킬 수 있는 장점이 있다.
상기 담체-금속 나노입자 복합체의 제조방법은 환원전위차를 이용하지 않기 때문에 제1 금속이온과 제2 금속이온 간의 환원전위를 고려하지 않는다는 장점이 있다. 상기 제조방법은 금속 이온 간의 전하(charge)를 이용하기 때문에, 종래 환원전위차를 이용하는 제조방법에 비해 단순하므로, 대량 생산이 용이하고, 저렴한 비용으로 담체에 담지된 금속 나노입자 복합체를 제조할 수 있다. 나아가, 환원전위차를 이용하지 않으므로, 종래의 금속 나노입자의 제조방법에 비하여 사용하는 금속염의 제약이 줄어들어 다양한 금속염을 사용할 수 있는 장점이 있다.
본 출원의 하나의 실시상태에서, 상기 용액을 형성하는 단계는 제1 및 제2계면활성제가 용액상에서 미셀(micelle)을 형성하는 단계를 포함할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제조방법은 상기 제1 금속이온 또는 제1 금속이온을 포함하는 원자단이온; 및 상기 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온이 상기 금속 나노입자를 형성할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온은 상기 제1 계면활성제 외측 단부의 전하와 반대되는 전하를 갖고, 상기 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온은 상기 제1 계면활성제 외측 단부의 전하와 같은 전하를 갖을 수 있다.
그러므로, 용액에서 미셀을 형성하는 상기 제1 계면활성제의 외측 단부에 상기 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온이 위치하여 상기 미셀의 외면을 둘러싸는 형태가 될 수 있다. 나아가, 상기 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온이, 상기 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온의 외면을 둘러싸는 형태가 될 수 있다. 상기 제1 금속염 및 상기 제2 금속염은 환원제에 의하여 각각 제1 금속 및 제2 금속을 포함하는 금속나노입자를 형성할 수 있다.
본 명세서에서 상기 계면활성제 외측 단부는 미셀을 형성하는 상기 제1 또는 제2 계면활성제의 미셀 외측부를 의미할 수 있다. 본 출원의 상기 계면활성제 외측 단부는 계면활성제의 머리를 의미할 수 있다. 또한, 본 출원의 상기 외측 단부는 상기 계면활성제의 전하를 결정할 수 있다.
또한, 본 출원의 계면활성제는 외측 단부의 종류에 따라 이온성 또는 비이온성으로 분류될 수 있으며, 상기 이온성은 양성, 음성, 양쪽이온성(zwitterionic) 또는 양쪽성(amphoteric)일 수 있다. 상기 양쪽이온성 계면활성제는 양성 및 음성 전하를 모두 함유한다. 본 출원의 계면활성제의 양성 및 음성 전하가 pH에 의존적이라면, 양쪽성 계면활성제일 수 있으며, 이는 일정 pH 범위에서 양쪽이온성일 수 있다. 구체적으로, 본 명세세에서의 음이온성 계면활성제는 계면활성제의 외측 단부가 음전하를 띠는 것을 의미할 수 있고, 양이온성 계면활성제는 계면활성제의 외측 단부가 양전하를 띠는 것을 의미할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제조방법에 의하여 제조되는 담체에 담지된 금속 나노입자는 1 또는 2 이상의 영역에 공동(cavity)이 형성될 수 있다.
본 명세서에서 상기 공동(cavity)은 상기 금속 나노입자의 외측 표면의 일 영역으로부터 연속되는 빈 공간을 의미할 수 있다. 상기 공동은 외측 표면의 일 영역으로부터 하나의 터널의 형태로 형성될 수 있다. 상기 터널 형태는 일직선이 될 수 있고 곡선 또는 직선의 연속적인 형태일 수 있으며, 곡선과 직선이 혼합된 연속적인 형태가 될 수 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 공동은 금속 나노입자의 외면으로부터 상기 금속 나노입자의 내부 또는 외부 영역까지 연속되는 임의의 빈 공간일 수 있다. 구체적으로, 상기 공동은 금속 나노입자의 일 영역으로부터 상기 금속 나노입자의 내부 일 영역에 이르는 빈 공간 일 수 있으며, 상기 금속 나노입자의 일 영역으로부터 금속 나노입자의 다른 일 영역에 이르는 빈 공간일 수도 있다.
상기 공동은 상기 금속 나노입자의 내부 표면적을 활용할 수 있도록 하는 역할을 할 수 있다. 구체적으로, 상기 공동은 상기 금속 나노입자가 촉매 등의 용도로 사용되는 경우, 반응물질과 접할 수 있는 표면적을 증가시키는 역할을 할 수 있다. 그러므로, 상기 공동은 상기 금속 나노입자의 높은 활성을 나타내도록 하는 역할을 할 수 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 제조방법에 의하여 제조되는 담체에 담지된 금속 나노입자는 내부 중공 없이, 1 또는 2 이상의 공동을 포함하는 금속 나노입자일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제조방법은 상기 제2 계면활성제의 농도; 체인 길이; 외측 단부의 크기; 또는 전하 종류를 조절하여, 상기 금속 나노입자의 1 또는 2이상의 영역에 공동(cavity)을 형성할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제는 용액에서 미셀을 형성하여 상기 금속이온 또는 금속이온을 포함하는 원자단이온이 금속 나노입자의 기본적인 형태 또는 금속 나노입자의 형태를 형성하는 쉘부를 형성하도록 하는 역할을 할 수 있고, 상기 제2 계면활성제는 상기 담체에 담지된 금속 나노입자의 공동을 형성하도록 하는 역할을 할 수 있다.
본 출원의 하나의 실시상태에서, 상기 용액을 형성하는 단계는 상기 제1 및 제2 계면활성제의 농도를 달리하여 상기 공동의 크기 또는 개수를 조절하는 단계를 포함할 수 있다. 구체적으로, 상기 제2 계면활성제의 몰농도는 상기 제1 계면활성제 몰농도의 0.01 내지 0.05 배일 수 있다. 즉, 상기 제2 계면활성제의 몰농도는 상기 제1 계면활성제 몰농도의 1/100 내지 1/20배 일 수 있다. 구체적으로, 상기 제2 계면활성제의 몰농도는 상기 제1 계면활성제 몰농도의 1/30 내지 1/10일 수 있다.
본 출원의 하나의 실시상태에서, 상기 용액을 형성하는 단계에서 상기 제1 계면활성제와 상기 제2 계면활성제는 상기 농도비에 따라 미셀을 형성할 수 있다.
상기 제1 및 제2 계면활성제의 몰농도비를 조절하여 상기 담체에 담지된 금속 나노입자의 공동 크기 또는 공동의 개수를 조절할 수 있다. 나아가, 상기 공동이 연속적으로 형성되게 하여 보울형 입자를 1 이상 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 제조할 수도 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 용액을 형성하는 단계는 상기 제2 계면활성제의 외측 단부의 크기를 조절하여 상기 공동의 크기를 조절하는 단계를 포함할 수 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 용액을 형성하는 단계는 상기 제2 계면활성제의 체인 길이를 상기 제1 계면활성제의 체인 길이와 상이하게 조절하여 상기 제2 계면활성제 영역에 공동을 형성하는 단계를 포함할 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 제2 계면활성제의 체인 길이는 상기 제1 계면활성제의 체인 길이의 0.5 내지 2 배일 수 있다. 구체적으로, 상기 체인 길이는 탄소의 개수에 의하여 결정될 수 있다.
본 출원의 하나의 실시상태에서, 상기 제2 계면활성제의 체인길이를 제1 계면활성제의 체인 길이와 상이하게 함으로서, 상기 제2 계면활성제의 외측 단부에 결합되는 금속염이 상기 금속 나노입자의 쉘부를 형성하지 않도록 할 수 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 용액을 형성하는 단계는 상기 제2 계면활성제의 전하를 상기 제1 계면활성제의 전하와 상이하게 조절하여 공동을 형성하는 단계를 포함할 수 있다.
본 출원의 하나의 실시상태에서, 용매 중에서 미셀을 형성하는 상기 제1 및 제2 계면활성제의 외측 단부에 상기 제1 및 제2 계면활성제와 반대되는 전하의 제1 금속이온 또는 제1 금속이온을 포함하는 원자단이온이 위치할 수 있다. 또한, 상기 제1 금속이온 외면에는 상기 제1 금속이온의 전하와 반대되는 상기 제2 금속이온이 위치할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제의 외측 단부에 형성된 상기 제1 금속이온 및 상기 제2 금속이온은 상기 금속 나노입자의 쉘부를 형성할 수 있으며, 상기 제2 계면활성제의 외측 단부에 위치하는 제1 금속이온 및 상기 제2 금속이온은 상기 쉘을 형성하지 못하며 공동을 형성할 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 제1 계면활성제가 음이온성 계면활성제인 경우, 상기 용액을 형성하는 단계에서 상기 제1 계면활성제는 미셀을 형성하고, 상기 미셀은 제1 금속이온 또는 제1 금속이온을 포함하는 원자단이온의 양이온으로 둘러싸일 수 있다. 나아가, 음이온의 제2 금속이온을 포함하는 원자단이온이 상기 양이온을 둘러쌀 수 있다. 나아가, 환원제를 첨가하여 금속 나노입자를 형성하는 단계에서, 상기 미셀을 둘러싼 양이온이 제1 쉘을 형성하고, 상기 양이온을 둘러싸는 음이온이 제2 쉘을 형성할 수 있다.
또한, 본 출원의 하나의 실시상태에 따르면, 상기 제1 계면활성제가 양이온성 계면활성제인 경우, 상기 용액을 형성하는 단계에서 상기 제1 계면활성제는 미셀을 형성하고, 상기 미셀은 제1 금속이온을 포함하는 원자단이온의 음이온으로 둘러싸일 수 있다. 나아가, 양이온의 제2 금속이온 또는 제2 금속이온을 포함하는 원자단 이온이 상기 음이온을 둘러쌀 수 있다. 나아가, 환원제를 첨가하여 금속 나노입자를 형성하는 단계에서, 상기 미셀을 둘러싼 음이온이 제1 쉘을 형성하고, 상기 음이온을 둘러싸는 양이온이 제2 쉘을 형성할 수 있다.
또한, 본 출원의 하나의 실시상태에서, 상기 금속 나노입자를 형성하는 단계는 상기 미셀을 형성하는 제1 및 제2 계면활성제 영역을 금속으로 채우는 단계를 포함할 수 있다. 구체적으로, 상기 제2 계면활성제의 체인 길이가 미셀을 형성하는 제1 계면활성제의 길이보다 길거나 짧은 경우에, 상기 제1 금속염 및 제2 금속염이 미셀 내부에 채워질 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 및 제2 계면활성제의 내부가 금속으로 채워지는 경우, 중공 없이 공동을 1 또는 2 이상 포함하는 금속 나노입자를 제조할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제 및 상기 제2 계면활성제는 모두 양이온성 계면활성제일 수 있다.
또는, 본 출원의 하나의 실시상태에서, 상기 제1 계면활성제 및 상기 제2 계면활성제는 모두 음이온성 계면활성제일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 및 제2 계면활성제가 동일한 전하를 갖는 경우, 제2 계면활성제의 체인 길이를 상기 제1 계면활성제의 체인 길이와 상이하게 하여 미셀을 형성할 수 있다.
구체적으로, 제2 계면활성제의 체인 길이의 차이에 의하여, 제2 계면활성제의 외측 단부에 위치하는 제1 및 제2 금속이온은 상기 제1 계면활성제의 외측 단부에 위치하는 제1 및 제2 금속이온과 인접하지 않게 되어 쉘부를 형성하지 않게 된다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제 및 상기 제2 계면활성제 중 어느 하나는 음이온성 계면활성제이고, 나머지 하나는 양이온성 계면활성제일 수 있다. 즉, 본 출원의 하나의 실시상태는 상기 제1 및 제2 계면활성제는 서로 다른 전하를 가질 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 및 제2 계면활성제가 서로 다른 전하를 갖는 경우, 체인의 길이를 상이하게 하여 상기 금속 나노입자의 공동을 형성할 수 있다. 이 경우, 공동이 형성되는 원리는 상기 전술한 제1 및 제2 계면활성제가 동일한 전하를 가질 경우와 같다.
본 출원의 하나의 실시상태에서, 상기 제1 및 제2 계면활성제가 서로 다른 전하를 갖는 경우, 상기 제1 및 제2 계면활성제의 체인의 길이가 동일하더라도 상기 금속 나노입자의 공동을 형성할 수 있다. 이 경우, 미셀의 상기 제2 계면활성제의 외측 단부와 인접하는 상기 제1 계면활성제의 외측 단부는 서로 전하를 주고 받아 중성을 이루게 되어, 금속이온이 위치하지 않게 된다. 그러므로, 금속이온이 위치하지 않은 부분은 쉘부를 형성하지 않게 되어, 상기 금속 나노입자의 공동을 형성할 수 있게 된다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제는 음이온성 계면활성제 또는 양이온성 계면활성제이고, 상기 제2 계면활성제는 비이온성 계면활성제일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제2 계면활성제가 비이온성 계면활성제인 경우, 제2 계면활성제의 외측 단부에는 금속이온이 위치하지 않기 때문에 상기 금속 나노입자의 공동을 형성할 수 있게 된다. 그러므로, 상기 제2 계면활성제가 비이온성인 경우, 체인의 길이가 제1 계면활성제와 동일 또는 상이한 경우에도 상기 금속 나노입자의 공동을 형성할 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제는 음이온성 계면활성제 또는 양이온성 계면활성제이고, 상기 제2 계면활성제는 양쪽 이온성 계면활성제일 수 있다.
본 출원의 하나의 실시상태에서, 상기 제2 계면활성제가 양쪽 이온성 계면활성제인 경우, 제2 계면활성제의 외측 단부에는 금속이온이 위치하지 않기 때문에 상기 금속 나노입자의 공동을 형성할 수 있게 된다. 그러므로, 상기 제2 계면활성제가 양쪽 이온성인 경우, 체인의 길이가 제1 계면활성제와 동일 또는 상이한 경우에도 상기 금속 나노입자의 공동을 형성할 수 있다.
상기 음이온성 계면활성제는 N-도데실-N,N-디메틸-3-암모니오-1-프로판설포네이트, 소듐 1-햅테인설포네이트, 칼륨 라우레이트, 트리에탄올아민 스테아레이트, 암모늄 라우릴 설페이트, 리튬 도데실설페이트, 소듐 라우릴설페이트, 소듐 도데실설페이트, 알킬 폴리옥시에틸렌 설페이트, 소듐 알기네이트, 디옥틸 소듐 술포숙시네이트, 포스파티딜 글리세롤, 포스파티딜 이노시톨, 포스파티딜세린, 포스파티드산 및 그의 염, 글리세릴 에스테르, 소듐 카르복시메틸셀룰로즈, 담즙산 및 그의 염, 콜산, 데옥시콜산, 글리코콜산, 타우로콜산, 글리코데옥시콜산, 알킬 술포네이트, 아릴 술포네이트, 알킬 포스페이트, 알킬 포스포네이트, 스테아르산 및 그의 염, 칼슘 스테아레이트, 포스페이트, 카르복시메틸셀룰로스 소듐, 디옥틸술포숙시네이트, 소듐 술포숙신산의 디알킬에스테르, 인지질 및 칼슘 카르복시메틸셀룰로즈로 구성된 군으로부터 선택되는 것일 수 있다. 다만, 이에 한정되는 것은 아니다.
상기 양이온성 계면활성제는 4급(quaternary) 암모늄 화합물, 벤즈알코늄 클로라이드, 세틸트리메틸암모늄 브로마이드, 키토산, 라우릴디메틸벤질암모늄 클로라이드, 아실 카르니틴 히드로클로라이드, 알킬피리디늄 할라이드, 세틸 피리디늄 클로라이드, 양이온성 지질, 폴리메틸메타크릴레이트 트리메틸암모늄 브로마이드, 술포늄 화합물, 폴리비닐피롤리돈-2-디메틸아미노에틸 메타크릴레이트 디메틸 설페이트, 헥사데실트리메틸 암모늄 브로마이드, 포스포늄 화합물, 벤질-디(2-클로로에틸)에틸암모늄브로마이드, 코코넛 트리메틸 암모늄 클로라이드, 코코넛 트리메틸 암모늄 브로마이드, 코코넛 메틸 디히드록시에틸 암모늄 클로라이드, 코코넛 메틸 디히드록시에틸 암모늄 브로마이드, 데실 트리에틸 암모늄 클로라이드, 데실 디메틸 히드록시에틸 암모늄 클로라이드 브로마이드, (C12-C15)-디메틸 히드록시에틸 암모늄 클로라이드, (C12-C15)-디메틸 히드록시에틸 암모늄 클로라이드 브로마이드, 코코넛 디메틸 히드록시 에틸 암모늄 클로라이드, 코코넛 디메틸 히드록시에틸 암모늄 브로마이드, 미리스틸 트리메틸 암모늄 메틸설페이트, 라우릴 디메틸 벤질 암모늄 클로라이드, 라우릴 디메틸 벤질 암모늄 브로마이드, 라우릴 디메틸 (에테녹시)4 암모늄 클로라이드, 라우릴 디메틸 (에테녹시)4 암모늄 브로마이드, N-알킬(C12-C18) 디메틸벤질 암모늄클로라이드, N-알킬(C14-C18) 디메틸-벤질 암모늄 클로라이드, N-테트라데실디메틸벤질 암모늄 클로라이드 일수화물, 디메틸 디데실 암모늄 클로라이드, N-알킬(C12-C14) 디메틸 1-나프틸메틸 암모늄 클로라이드, 트리메틸암모늄 할라이드 알킬-트리메틸암모늄 염, 디알킬-디메틸암모늄 염, 라우릴 트리메틸 암모늄 클로라이드, 에톡실화 알킬아미도알킬디알킬암모늄 염, 에톡실화 트리알킬 암모늄 염, 디알킬벤젠 디알킬암모늄 클로라이드, N-디데실디메틸 암모늄 클로라이드, N-테트라데실디메틸벤질 암모늄 클로라이드 일수화물, N-알킬(C12-C14) 디메틸 1-나프틸메틸 암모늄클로라이드, 도데실디메틸벤질 암모늄 클로라이드, 디알킬 벤젠알킬 암모늄클로라이드, 라우릴 트리메틸 암모늄 클로라이드, 알킬벤질 메틸 암모늄 클로라이드, 알킬 벤질 디메틸 암모늄브로마이드, C12 트리메틸 암모늄 브로마이드, C15 트리메틸암모늄 브로마이드, C17 트리메틸 암모늄 브로마이드, 도데실벤질 트리에틸 암모늄 클로라이드, 폴리디알릴디메틸암모늄 클로라이드, 디메틸 암모늄 클로라이드, 알킬디메틸암모늄 할로게니드, 트리세틸 메틸 암모늄 클로라이드, 세틸트리메틸암모늄 브로마이드, 데실트리메틸암모늄 브로마이드, 도데실트리에틸암모늄 브로마이드, 테트라데실트리메틸암모늄 브로마이드, 메틸 트리옥틸암모늄 클로라이드, 폴리쿼트(POLYQUAT) 10, 테트라부틸암모늄브로마이드, 벤질 트리메틸암모늄 브로마이드, 콜린 에스테르, 벤즈알코늄 클로라이드, 스테아르알코늄 클로라이드, 세틸 피리디늄 브로마이드, 세틸 피리디늄 클로라이드, 4급화(quaternized) 폴리옥시에틸알킬아민의 할라이드 염, "미라폴(MIRAPOL)" (폴리쿼터늄-2), "알카쿼트(Alkaquat)" (알킬 디메틸 벤질암모늄 클로라이드, 로디아(Rhodia)에 의해 제조됨), 알킬 피리디늄 염, 아민, 아민 염, 이미드 아졸리늄 염, 양성자화 4급 아크릴아미드, 메틸화 4급 중합체, 양이온성구아 검, 벤즈알코늄 클로라이드, 도데실 트리메틸 암모늄 브로마이드, 트리에탄올아민 및 폴옥사민으로 구성된 군으로부터 선택되는 것일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 출원의 상기 비이온성 계면활성제는 폴리옥시에틸렌 지방(fatty) 알코올 에테르, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 지방산 에스테르, 폴리옥시에틸렌 알킬에테르, 폴리옥시에틸렌 피마자유 유도체, 소르비탄에스테르, 글리세릴 에스테르, 글리세롤 모노스테아레이트, 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리프로필렌 글리콜 에스테르, 세틸 알코올, 세토스테아릴 알코올, 스테아릴 알코올, 아릴알킬 폴리에테르 알코올, 폴리옥시에틸렌폴리옥시프로필렌 공중합체, 폴록사머, 폴락사민, 메틸셀룰로즈, 히드록시셀룰로즈, 히드록시메틸셀룰로스, 히드록시에틸셀룰로스, 히드록시 프로필셀룰로즈, 히드록시 프로필메틸셀룰로즈, 히드록시프로필메틸셀룰로스 프탈레이트, 비결정성 셀룰로즈, 다당류, 전분, 전분 유도체, 히드록시에틸 전분, 폴리비닐 알코올, 트리에탄올아민 스테아레이트, 아민 옥시드, 덱스트란, 글리세롤, 아카시아 검, 콜레스테롤, 트래거캔스, 및 폴리비닐피롤리돈으로 구성된 군으로부터 선택되는 것일 수 있다.
본 출원의 상기 양쪽 이온성 계면활성제는 베타인, 알킬 베타인, 알킬아미도 베타인, 아미도 프로필 베타인, 코코암포카르복시글리시네이트, 사코시네이트 아미노프로피오네이트, 아미노글리시네이트, 이미다졸리늄 베타인, 양쪽성이미다졸린, N-알킬-N,N-디메틸암모니오-1-프로판술폰에이트, 3-콜아미도-1-프로필디메틸암모니오-1-프로판술폰에이트, 도데실포스포콜린 및 설포-베타인으로 구성된 군으로 부터 선택되는 것일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제의 농도는 용매에 대한 임계미셀농도의 1배 이상 5배 이하일 수 있다. 구체적으로, 상기 제1 계면활성제의 농도는 용매에 대한 임계미셀농도의 2배일 수 있다.
본 명세서에서 상기 임계미셀농도(critical micelle concentration, CMC)는 계면활성제가 용액 중에서 분자 또는 이온의 집단(미셀)을 형성하게 되는 농도의 하한을 의미한다.
계면활성제의 가장 중요한 특성은 계면활성제가 계면, 예를 들면 공기-액체 계면, 공기-고체 계면 및 액체-고체 계면상에서 흡착하는 경향을 갖는 것이다. 계면활성제가 응집된 형태로 존재하지 않는다는 의미에서 유리(free)되어 있는 경우, 그들은 모노머 또는 유니머(unimer)로 불리며, 유니머 농도를 증가시키면 그들은 응집하여 작은 응집체의 실체(entity), 즉, 미셀(micelle)을 형성한다. 이러한 농도를 임계 미셀 농도(Critical Micell Concentration)라 할 수 있다.
상기 제1 계면 활성제의 농도가 임계 미셀농도의 1배 미만이면, 제1 금속염에 흡착되는 제1 계면 활성제의 농도가 상대적으로 적어질 수 있다. 이에 따라, 형성되는 코어 입자의 양도 전체적으로 적어질 수 있다. 한편, 제1 계면활성제의 농도가 임계 미셀농도의 5배를 초과하면, 제1 계면활성제의 농도가 상대적으로 많아져서 금속 나노입자가 응집될 수 있다. 그러므로, 상기 제1 계면활성제의 농도가 용매에 대한 임계미셀농도의 1배 이상 5배 이하인 경우, 상기 금속 나노입자의 형성이 원활하게 이루어질 수 있다.
본 출원의 하나의 실시상태에서, 미셀을 형성하는 상기 제1 계면활성제 및/또는 미셀을 둘러싸는 제1 및 제2 금속염을 조절하여 상기 금속 나노입자의 크기를 조절할 수 있다.
본 출원의 하나의 실시상태에서, 미셀을 형성하는 상기 제1 계면활성제의 체인 길이에 의하여 금속 나노입자의 크기를 조절할 수 있다. 구체적으로, 제1 계면활성제의 체인 길이가 짧으면 미셀의 크기가 작아지게 되어, 이에 따라 금속 나노입자의 크기가 작아질 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제의 체인의 탄소수는 15개 이하일 수 있다. 구체적으로, 상기 체인의 탄소수는 8개 이상 15개 이하일 수 있다. 또는 상기 체인의 탄소수는 10개 이상 12개 이하일 수 있다.
본 출원의 하나의 실시상태에서, 미셀을 형성하는 제1 계면활성제의 카운터 이온(counter ion)의 종류를 조절하여 상기 금속 나노입자의 크기를 조절할 수 있다. 구체적으로, 제1 계면활성제의 카운터 이온의 크기가 클수록, 제1 계면활성제의 외측 단부의 머리 부분과의 결합력이 약해져서 미셀의 크기가 커질 수 있으며, 이에 따라 상기 금속 나노입자의 크기가 커질 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제가 음이온성 계면활성제인 경우, 상기 제1 계면활성제는 카운터 이온(counter ion)으로서 NH4 +, K+, Na+ 또는 Li+을 포함하는 것일 수 있다.
구체적으로, 상기 제1 계면활성제의 카운터 이온이 NH4 +인 경우, 제1 계면활성제의 카운터이온이 K+인 경우, 상기 제1 계면활성제의 카운터 이온이 Na+인 경우, 상기 제1 계면활성제의 카운터이온이 Li+인 경우의 순서로 금속 나노입자의 크기가 작아질 수 있다.
본 출원의 하나의 실시상태에서, 상기 제1 계면활성제가 양이온성 계면활성제인 경우, 상기 제1 계면활성제는 카운터 이온으로서 I-, Br- 또는 Cl-을 포함하는 것일 수 있다.
구체적으로, 상기 제1 계면활성제의 카운터 이온이 I-인 경우, 상기 제1 계면활성제의 카운터이온이 Br-인 경우, 상기 제1 계면활성제의 카운터 이온이 Cl-인 경우의 순서로 금속 나노입자의 크기가 작아질 수 있다.
본 출원의 하나의 실시상태에서, 미셀을 형성하는 상기 제1 계면활성제의 외측 단부의 머리 부분의 크기를 조절하여 상기 금속 나노입자의 크기를 조절할 수 있다. 나아가, 미셀의 외면에 형성된 제1 계면활성제의 머리 부분의 크기를 크게하는 경우, 제1 계면활성제의 머리부분간의 반발력이 커지게 되어, 미셀이 커질 수 있으며, 이에 따라 상기 금속 나노입자의 크기가 커질 수 있다.
본 출원의 하나의 실시상태에서, 상기 금속 나노입자의 크기는 상기 기술된 요소들이 복합적으로 작용하여 결정될 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 금속염은 용액상에서 이온화하여 금속이온을 제공할 수 있는 것이라면 특별히 한정되지 않는다. 상기 금속염은 용액 상태에서 이온화하여 금속이온을 포함하는 양이온 또는 금속이온을 포함하는 원자단이온의 음이온을 제공할 수 있다. 상기 제1 금속염과 상기 제2 금속염은 서로 상이할 수 있다. 구체적으로, 상기 제1 금속염은 금속이온을 포함하는 양이온을 제공하고, 상기 제2 금속염은 금속이온을 포함하는 원자단 이온의 음이온을 제공할 수 있다. 구체적으로, 상기 제1 금속염은 Ni2+의 양이온을 제공할 수 있고, 상기 제2 금속염은 PtCl4 2-의 음이온을 제공할 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 제1 금속염 및 제2 금속염은 용액상에서 이온화하여 금속이온 또는 금속이온을 포함하는 원자단이온을 제공할 수 있는 것이면 특별히 한정되지 않는다.
본 출원의 하나의 실시상태에서, 상기 제1 금속염 및 제2 금속염은 각각 독립적으로, 주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택된 것의 염일 수 있다.
구체적으로, 상기 제1 금속염 및 상기 제2 금속염은 서로 상이하고, 각각 독립적으로, 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), Cr(크롬), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 금속의 염일 수 있다.
더욱 구체적으로, 본 출원의 하나의 실시상태에서, 상기 제1 금속염은 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 금속의 염일 수 있고, 더욱 더 구체적으로 니켈(Ni)의 염일 수 있다.
더욱 구체적으로, 본 출원의 하나의 실시상태에서, 상기 제2 금속염은 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 금속의 염일 수 있다. 더욱 구체적으로, 백금(Pt), 팔라듐(Pd) 및 금(Au)으로 이루어진 금속의 염일 수 있고, 더욱 더 구체적으로 백금(Pt)의 염일 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 제1 금속염 및 제2 금속염은 각각 독립적으로, 금속의 질산화물(Nitrate), 염화물(Chloride), 브롬화물(Bomide), 요오드화물(Iodide)과 같은 할로겐화물(Halide), 수산화물(Hydroxide) 또는 황산화물(Sulfate)일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 출원의 하나의 실시상태에 따르면, 상기 용액을 형성하는 단계에서의 상기 제1 금속염과 상기 제2 금속염의 몰비는 1:5 내지 10:1일 수 있다. 구체적으로, 상기 제1 금속염과 상기 제2 금속염의 몰비는 2:1 내지 5:1일 수 있다.
본 출원의 하나의 실시상태에서, 제1 금속과 제2 금속의 원자 백분율 비는 1:5 내지 10:1일 수 있다. 상기 원자 백분율 비는 상기 금속 나노입자가 제1 금속 및 상기 제2 금속의 합금으로 형성되는 경우, 제1 금속과 제2 금속의 원자 백분율 비일 수 있다.
본 출원의 하나의 실시상태에서, 상기 용액을 형성하는 단계는 안정화제를 더 첨가하는 단계를 더 포함할 수 있다.
안정화제로는 예를 들어, 인산이나트륨, 인산이칼륨, 시트르산이나트륨 및 시트르산삼나트륨으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 혼합물일 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 용액에 담체를 첨가하여 교반하는 단계는 5분 내지 120분 동안, 더욱 구체적으로 10분 내지 90분 동안, 더욱 더 구체적으로 20분 내지 60분 동안 수행할 수 있다.
본 출원의 하나의 실시상태에 따른 제조방법은 금속 나노입자가 형성되기 전에 제1 금속염과 제2 금속염이 담체에 분산되므로, 금속염들이 골고루 분산되는 장점이 있다. 이에 따라, 금속 나노입자들이 형성되었을 때 입자끼리의 응집이 덜 생기게 된다. 또한, 담체와 금속 나노입자간의 접착력 또는 결합력이 높아지는 장점이 있다.
본 출원의 하나의 실시상태에 따른 제조방법에서, 상기 담체는 전술한 바와 같다.
본 출원의 하나의 실시상태에 따르면, 상기 담체를 첨가하여 교반하는 단계는 상기 담체를 용매에 분산시키는 단계를 포함할 수 있다.
구체적으로, 용매에 담체를 분산시킨 후 상기 용액에 첨가하면, 담체 및 입자의 엉킴현상을 감소시킬 수 있다.
본 출원의 하나의 실시상태에서, 상기 용액에 환원제를 첨가하여 담체 상에서 금속 나노입자를 형성하는 단계는 상기 환원제와 함께 비이온성 계면활성제를 더 첨가하는 것을 포함할 수 있다.
상기 비이온성 계면활성제는 금속 나노입자의 표면에 흡착되어, 용액 내에서 담체 상에 형성된 금속 나노입자가 균일하게 분산될 수 있게 하는 역할을 한다. 그러므로, 금속입자가 뭉치거나 응집되어 침전되는 것을 방지하고 금속 나노입자가 균일한 크기로 형성될 수 있게 한다. 상기 비이온성 계면활성제의 구체적인 예시는 전술한 비이온성 계면활성제의 예시와 같다.
본 출원의 하나의 실시상태에서, 상기 용매는 물을 포함하는 용매일 수 있다. 구체적으로, 본 출원의 하나의 실시상태에 따르면, 상기 용매는 제1 금속염 및 제2 금속염을 용해시키는 것으로써, 물 또는 물과 탄소수 1 내지 6의 알코올의 혼합물일 수 있고, 보다 구체적으로 물일 수 있다. 상기 제조방법에서 용매로 물을 사용하는 경우 유기 용매를 사용하지 않으므로, 제조 공정 중에서 유기 용매를 처리하는 후 처리 공정이 필요하지 않게 되고, 따라서 비용 절감 효과 및 환경 오염 방지 효과가 있다.
본 출원의 하나의 실시상태에서, 상기 제조방법은 상온에서 수행될 수 있다. 구체적으로, 4 ℃ 이상 35 ℃ 이하의 범위의 온도, 보다 구체적으로 15 ℃ 이상 28 ℃ 이하에서 수행할 수 있다.
본 출원의 하나의 실시상태에서 상기 용액을 형성하는 단계는 상온, 구체적으로 4 ℃ 이상 100 ℃ 이하의 범위의 온도, 더욱 구체적으로 4℃ 이상 35℃ 이하, 더욱 더 구체적으로 15 ℃ 이상 28 ℃ 이하에서 수행할 수 있다. 용매로 유기용매를 사용하면 100 ℃가 넘는 고온에서 제조해야 하는 문제가 있다. 본 출원은 상온에서 제조할 수 있으므로, 제조 방법이 단순하여 공정상의 이점이 있고, 비용 절감 효과가 크다.
본 출원의 하나의 실시상태에 따르면, 상기 용액을 형성하는 단계는 5분 내지 120분 동안, 더욱 구체적으로 10분 내지 90분 동안, 더욱 더 구체적으로 20분 내지 60분 동안 수행할 수 있다.
본 출원의 하나의 실시상태에서 상기 용액에 담체를 첨가하여 교반하는 단계 및 상기 용액에 환원제를 첨가하여 담체 상에서 금속 나노입자를 형성하는 단계도 상온, 구체적으로 4 ℃ 이상 100 ℃ 이하의 범위의 온도, 더욱 구체적으로 4℃ 이상 35℃ 이하, 더욱 더 구체적으로 15 ℃ 이상 28 ℃ 이하에서 수행할 수 있다. 용매로 유기용매를 사용하면 100 ℃가 넘는 고온에서 제조해야 하는 문제가 있다. 본 출원은 상온에서 제조할 수 있으므로, 제조 방법이 단순하여 공정상의 이점이 있고, 비용 절감 효과가 크다.
본 출원의 하나의 실시상태에서 상기 용액에 담체를 첨가하여 교반하는 단계는 5분 내지 120분 동안, 더욱 구체적으로 10분 내지 90분 동안, 더욱 더 구체적으로 20분 내지 60분 동안 교반하여 수행할 수 있다.
본 출원의 하나의 실시상태에서 상기 용액에 환원제를 첨가하여 담체 상에서 금속 나노입자를 형성하는 단계는 5분 내지 120분 동안, 더욱 구체적으로 10분 내지 90분 동안, 더욱 더 구체적으로 20분 내지 60분 동안 교반하여 수행할 수 있다.
상기 환원제의 표준 환원 전위는 -0.23V이하일 수 있다. 상기 환원제는 표준 환원 -0.23V 이하, 구체적으로, -4V 이상 -0.23V 이하의 강한 환원제이면서, 용해된 금속 이온을 환원시켜 금속 입자로 석출시킬 수 있는 환원력을 갖는 것이라면 특별히 한정되지 않는다. 구체적으로, 상기 환원제는 NaBH4, NH2NH2, LiAlH4 및 LiBEt3H 로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다.
약한 환원제를 사용할 경우, 반응속도가 느리고, 용액의 후속적인 가열이 필요하는 등 연속공정화 하기 어려워 대량생산에 문제가 있을 수 있으며, 특히, 약한 환원제의 일종인 에틸렌 글리콜을 사용할 경우, 높은 점도에 의한 흐름 속도 저하로 연속공정에서의 생산성이 낮은 문제점이 있다. 그러므로 본 출원의 상기 환원제를 사용하는 경우에는 상기 문제점을 극복할 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 제조방법은 공동을 포함하는 금속 나노입자를 형성하는 단계 이후에 공동 내부의 계면활성제를 제거하는 단계를 더 포함할 수 있다. 제거 방법은 특별히 제한되지 않고, 예를 들어, 물로 세척하는 방법을 사용할 수 있다. 상기 계면활성제는 음이온성 계면활성제 및/또는 양이온성 계면활성제일 수 있다.
본 출원의 하나의 실시상태에 따르면, 상기 담체-금속 나노입자 복합체가 형성된 후, 용액에 포함된 담체-금속 나노입자 복합체를 석출하기 위하여 용액을 원심분리할 수 있다. 원심 분리 후 분리된 담체-금속 나노입자 복합체만을 회수할 수 있다. 필요에 따라, 담체-금속 나노입자 복합체의 소성 공정을 추가적으로 수행할 수 있다.
본 출원의 하나의 실시상태에 따르면, 수 나노크기로 균일한 크기를 가지는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 제조할 수 있다. 종래의 방법으로는 담체에 담지된 수 나노크기의 금속 나노입자를 제조하기 어려웠을 뿐만 아니라 균일한 크기로 제조하는 것은 더욱 어려웠다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
하기 실시예에서의 제1 금속염은 상기 제1 금속의 전구체인 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온을 포함하는 염으로서, 제1 금속을 제공하는 역할을 할 수 있다. 또한, 제2 금속염은 상기 제2 금속의 전구체인 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온을 포함하는 염으로서, 제2금속을 제공하는 역할을 할 수 있다.
[제조예 1]
제1 금속염으로 Ni(NO3)2, 제2 금속염으로 K2PtCl4, 제1 계면활성제로 암모늄 라우릴설페이트(ammonium lauryl sulfate: ALS), 제2 계면활성제로 N-도데실-N,N-디메틸-3-암모니오-1-프로판설포네이트(N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate: DDAPS)를 물에 용해한 후 30분 교반하여 용액을 형성하였다. Ni(NO3)2와 K2PtCl4의 몰비는 3:1이었고, ALS의 농도는 물에 대한 임계 미셸농도(critical micelle concentration: CMC)의 2배이며, DDAPS의 농도는 ALS 농도의 1/10몰이었다. 그 후 물에 분산시킨 카본을 상기 용액에 첨가하여 30분간 교반시킨 후 환원제인 NaBH4를 첨가하여 30분 동안 반응시켰다.
이후, 10,000 rpm에서 10분간 원심분리를 하여 위층의 상청액을 버리고 남은 침전물을 증류수에 재분산한 후 원심분리 과정을 반복하여 담체-금속 나노입자 복합체를 제조하였다.
도 2 및 도 3에 제조예 1에 따라 제조된 담체-금속 나노입자 복합체의 투과전자현미경(TEM) 이미지를 도시하였다.
[제조예 2]
제1 금속염으로 Ni(NO3)2, 제2 금속염으로 K2PtCl4, 제1 계면활성제로 암모늄 라우릴설페이트(ammonium lauryl sulfate: ALS), 제2 계면활성제로 도데실트리메틸암모늄 브로마이드(dodecyl-trimethylammonium bromide: DTAB 를 물에 용해한 후 30분 교반하여 용액을 형성하였다. Ni(NO3)2와 K2PtCl4의 몰비는 3:1이었고, ALS의 농도는 물에 대한 임계 미셸농도(critical micelle concentration: CMC)의 2배이며, DTAB의 농도는 ALS 농도의 1/5몰이었다. 그 후 물에 분산시킨 카본을 상기 용액에 첨가하여 30분간 교반시킨 후 환원제인 NaBH4를 첨가하여 30분 동안 반응시켰다.
이후, 10,000 rpm에서 10분간 원심분리를 하여 위층의 상청액을 버리고 남은 침전물을 증류수에 재분산한 후 원심분리 과정을 반복하여 담체-금속 나노입자 복합체를 제조하였다.
도 4 및 도 5에 제조예 2에 따라 제조된 담체-금속 나노입자 복합체의 투과전자현미경(TEM) 이미지를 도시하였다. 도 5를 살펴보면, 담체 상에서 형성된 금속 나노입자의 직경이 도면의 왼쪽부터 16.5nm, 12.2nm, 14.0nm, 13.0nm, 9.24nm, 14.4nm, 13.4nm, 11.0nm, 13.2nm임을 확인할 수 있다.
도면 2 내지 5에 도시된 바와 같이, 본 출원에 따른 담체-금속 나노입자 복합체의 금속 나노입자는 담체 상에서 공동이 형성되어 있는 것을 확인할 수 있다. 반면에, 도면 9는 종래의 담체-금속 나노입자 복합체의 투과전자현미경(TEM) 이미지로서, 상기 금속 나노입자는 공동이 형성되지 않은 솔리드(solid)의 구 형태인 것을 확인할 수 있다.
이상 첨부된 도면을 참조하여 본 출원의 실시예를 설명하였으나, 본 출원은 상기 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자는 본 출원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
[부호의 설명]
1: 담체
2: 금속 나노입자
3, 4: 공동(cavity)
10: 전해질막
20, 21: 촉매층
30, 31: 미세 기공층
40, 41: 전극 기재
50, 51: 기체확산층
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프

Claims (24)

  1. 캐소드; 애노드; 및 상기 캐소드 및 애노드 사이에 구비된 전해질막을 포함하고,
    상기 캐소드 및 애노드 중 적어도 하나는 제1 금속 및 제2 금속을 포함하고, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 금속 나노입자가 담체에 담지된 담체-금속 나노입자 복합체를 포함하는 것인 연료전지.
  2. 청구항 1에 있어서,
    상기 공동은 상기 금속 나노입자를 관통하는 것인 연료전지.
  3. 청구항 1에 있어서,
    상기 공동은 상기 금속 나노입자의 외측 표면으로부터 상기 금속 나노입자의 내부의 일 영역까지 연속하는 것인 연료전지.
  4. 청구항 1에 있어서,
    상기 공동은 원통형 또는 보울(bowl)형인 것인 연료전지.
  5. 청구항 1에 있어서,
    상기 금속 나노입자의 입경은 1 ㎚ 이상 30 ㎚ 이하인 것인 연료전지.
  6. 청구항 1에 있어서,
    상기 금속 나노입자의 입경은 1 ㎚ 이상 20 ㎚ 이하인 것인 연료전지.
  7. 청구항 1에 있어서,
    상기 금속 나노입자의 입경은 1 ㎚ 이상 12 ㎚ 이하인 것인 연료전지.
  8. 청구항 1에 있어서,
    상기 금속 나노입자의 입경은 1 ㎚ 이상 6 ㎚ 이하인 것인 연료전지.
  9. 청구항 1에 있어서,
    상기 공동의 직경은 상기 금속 나노입자 입경의 5 % 이상 30% 이하인 것인 연료전지.
  10. 청구항 1에 있어서,
    상기 금속 나노입자의 입경은 금속 나노입자들의 평균 입경의 80% 내지 120% 범위 이내인 것인 연료전지.
  11. 청구항 1에 있어서,
    상기 금속 나노입자는 구 형상인 것인 연료전지.
  12. 청구항 1에 있어서,
    상기 금속 나노입자는 상기 제1 금속 및 상기 제2 금속의 합금을 포함하는 것인 연료전지.
  13. 청구항 1에 있어서,
    상기 제1 금속 및 상기 제2 금속의 원자 백분율 비는 1:5 내지 10:1인 것인 연료전지.
  14. 청구항 1에 있어서,
    상기 제1 금속 및 상기 제2 금속은 각각 독립적으로,
    주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택되는 적어도 하나인 것인 연료전지.
  15. 청구항 1에 있어서,
    상기 제1 금속 및 상기 제2 금속은 각각 독립적으로,
    백금(Pt); 루테늄(Ru); 로듐(Rh); 몰리브덴(Mo); 오스뮴(Os); 이리듐(Ir); 레늄(Re); 팔라듐(Pd); 바나듐(V); 텅스텐(W); 코발트(Co); 철(Fe); 셀레늄(Se); 니켈(Ni); 비스무트(Bi); 주석(Sn); 크롬(Cr); 타이타늄(Ti); 금(Au); 세륨(Ce); 은(Ag); 및 구리(Cu)로 이루어진 군에서 선택되는 적어도 하나인 것인 연료전지.
  16. 청구항 1에 있어서,
    상기 담체는 탄소계 물질 또는 무기물 미립자인 것인 연료전지.
  17. 청구항 16에 있어서,
    상기 탄소계 물질은 카본블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소 섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire)로 이루어진 군에서 선택되는 적어도 하나인 것인 연료전지.
  18. 청구항 16에 있어서,
    상기 무기물 미립자는 알루미나, 실리카, 티타니아 및 지르코니아로 이루어진 군에서 선택되는 적어도 하나인 것인 연료전지.
  19. 청구항 1에 있어서,
    상기 금속 나노입자의 담체에 대한 담지율은 10 중량% 내지 70 중량%인 것인 연료전지.
  20. 청구항 1에 있어서,
    상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 니켈인 것인 연료전지.
  21. 청구항 1에 있어서,
    상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 백금인 것인 연료전지.
  22. 청구항 1에 있어서,
    상기 제1 금속은 니켈이고, 상기 제2 금속은 백금인 것인 연료전지.
  23. 전해질막을 준비하는 단계;
    상기 전해질막의 일면에 캐소드를 형성하는 단계; 및
    상기 전해질막의 타면에 애노드를 형성하는 단계를 포함하고,
    상기 캐소드 및 애노드 중에서 적어도 하나는
    상기 금속 나노입자는 제1 금속 및 제2 금속을 포함하며, 외측 표면으로부터 연속되는 1개 이상의 공동(cavity)을 포함하는 것인 연료전지의 제조방법.
  24. 청구항 23에 있어서, 상기 캐소드를 형성하는 단계 및 애노드를 형성하는 단계 중 적어도 하나의 단계는 상기 담체-금속 나노입자 복합체를 제조하는 단계를 더 포함하고,
    상기 담체-금속 나노입자 복합체를 제조하는 단계는
    용매, 상기 용매 중에서 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온을 제공하는 제1 금속염, 상기 용매 중에서 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온을 제공하는 제2 금속염, 상기 용매 중에서 미셀을 형성하는 제1 계면활성제, 및 상기 제1 계면활성제와 함께 상기 용매 중에서 미셀을 형성하는 제2 계면활성제를 포함하는 용액을 형성하는 단계;
    상기 용액에 담체를 첨가하여 교반하는 단계; 및
    상기 용액에 환원제를 첨가하여 담체 상에서 금속 나노입자를 형성하는 단계를 포함하는 것인 연료전지의 제조방법.
PCT/KR2014/010394 2013-11-01 2014-10-31 연료전지 및 그의 제조방법 WO2015065123A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016521235A JP6153662B2 (ja) 2013-11-01 2014-10-31 燃料電池およびその製造方法
EP14858233.1A EP3000781B1 (en) 2013-11-01 2014-10-31 Fuel cell and method for manufacturing same
US14/904,305 US9698429B2 (en) 2013-11-01 2014-10-31 Fuel cell and method of manufacturing same
CN201480040863.XA CN105431375B (zh) 2013-11-01 2014-10-31 燃料电池及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130132413 2013-11-01
KR10-2013-0132413 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015065123A1 true WO2015065123A1 (ko) 2015-05-07

Family

ID=53004625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010394 WO2015065123A1 (ko) 2013-11-01 2014-10-31 연료전지 및 그의 제조방법

Country Status (6)

Country Link
US (1) US9698429B2 (ko)
EP (1) EP3000781B1 (ko)
JP (1) JP6153662B2 (ko)
KR (1) KR101628509B1 (ko)
CN (1) CN105431375B (ko)
WO (1) WO2015065123A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350678B2 (en) * 2013-06-07 2019-07-16 Lg Chem, Ltd. Metal nanoparticles
CN105792965B (zh) * 2013-11-29 2017-09-12 Lg化学株式会社 燃料电池及其制造方法
KR101768275B1 (ko) 2014-08-14 2017-08-14 주식회사 엘지화학 금속 나노입자의 제조방법
KR20180073133A (ko) * 2016-12-22 2018-07-02 현대자동차주식회사 연료전지용 하이브리드 촉매 및 그 제조 방법
US10756373B2 (en) 2017-12-22 2020-08-25 Chinbay Q. Fan Fuel cell system and method of providing surfactant fuel bubbles
CN109273731A (zh) * 2018-09-20 2019-01-25 南京邮电大学 一种3D多孔网状结构Pd3Pb合金及制备方法及其应用
US11192091B2 (en) 2019-03-22 2021-12-07 The Hong Kong University Of Science And Technology Palladium-ruthenium alloys for electrolyzers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073812A (ko) * 2007-02-07 2008-08-12 주식회사 엘지화학 연료전지용 막-전극 접합체 및 연료전지
JP2009500158A (ja) * 2005-07-08 2009-01-08 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング エーファオ ナノ多孔性触媒粒子、その製造、及びその使用
KR20100068029A (ko) * 2008-12-12 2010-06-22 주식회사 동진쎄미켐 연료 전지용 촉매 슬러리의 제조 방법
JP2010214330A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp コア‐シェル粒子の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058096A (ja) * 1998-07-31 2000-02-25 Sulzer Hexis Ag 高温燃料電池を有するプラント
JP3842177B2 (ja) * 2002-07-03 2006-11-08 独立行政法人科学技術振興機構 貴金属ナノチューブ及びその製造方法
JP5082187B2 (ja) * 2003-10-06 2012-11-28 日産自動車株式会社 固体高分子型燃料電池用電極触媒粒子の製造方法
DE102004011335A1 (de) * 2004-03-09 2005-09-22 Süd-Chemie AG Präparation von Metall/Metalloxid-Trägerkatalysatoren durch präkursorchemische Nanometallurgie in definierten Reaktionsräumen poröser Träger mittels metallorganischer und/oder anorganischer Präkursoren und metallhaltiger Reduktionsmittel
JP5234698B2 (ja) * 2004-03-29 2013-07-10 ヘクシス アクチェンゲゼルシャフト 高温度燃料電池のためのアノード材料
JP4487067B2 (ja) 2004-07-30 2010-06-23 国立大学法人 宮崎大学 白金ナノ粒子及びその製造方法
JP4934799B2 (ja) 2005-02-15 2012-05-16 国立大学法人 宮崎大学 スポンジ状白金ナノシートをカーボンに担持せしめてなる白金−カーボン複合体とその製造方法
JP4728093B2 (ja) * 2005-03-02 2011-07-20 独立行政法人科学技術振興機構 固/液界面に形成された吸着ミセル膜を反応場として形成される単結晶質の貴金属超薄膜ナノ粒子及びその製造方法
KR100601101B1 (ko) 2005-09-23 2006-07-19 주식회사 엘지화학 연료전지용 백금 전극촉매의 제조방법
US8389175B2 (en) * 2008-05-16 2013-03-05 Utc Power Corporation Fuel cell having a stabilized cathode catalyst
JP2010192160A (ja) * 2009-02-16 2010-09-02 Dainippon Printing Co Ltd 固体アルカリ形燃料電池、並びに、これに用いられる固定部材付き電解質膜及び固定部材付き電極
JP5204714B2 (ja) * 2009-04-07 2013-06-05 株式会社ノリタケカンパニーリミテド 合金微粒子およびその製造と利用
JP2011181359A (ja) 2010-03-02 2011-09-15 Sony Corp 触媒の製造方法及び触媒を担持する電極を有する燃料電池、並びに燃料電池を有する装置
US20130149632A1 (en) 2011-12-12 2013-06-13 Samsung Sdi Co., Ltd. Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
KR101359766B1 (ko) * 2011-12-21 2014-02-07 한국과학기술원 중공의 백금-팔라듐 이종 금속 촉매의 제조방법 및 이를 이용하여 제조된 촉매 및 양성자 교환막 연료전지
CN104081570A (zh) 2011-12-29 2014-10-01 3M创新有限公司 电化学电池电极
US9620786B2 (en) * 2012-04-23 2017-04-11 Lg Chem, Ltd. Method for fabricating core-shell particles and core-shell particles fabricated by the method
FR2992235B1 (fr) * 2012-06-25 2017-04-28 Centre Nat Rech Scient Nanoparticules creuses de platine pour piles a combustible
US9496559B2 (en) * 2012-08-07 2016-11-15 Atomic Energy Council-Institute Of Nuclear Energy Research Method for manufacturing solid oxide fuel cell anode with high stability and high efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500158A (ja) * 2005-07-08 2009-01-08 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング エーファオ ナノ多孔性触媒粒子、その製造、及びその使用
KR20080073812A (ko) * 2007-02-07 2008-08-12 주식회사 엘지화학 연료전지용 막-전극 접합체 및 연료전지
KR20100068029A (ko) * 2008-12-12 2010-06-22 주식회사 동진쎄미켐 연료 전지용 촉매 슬러리의 제조 방법
JP2010214330A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp コア‐シェル粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUO, SHAOJUN ET AL.: "High-Efficiency and Low-Cost Hybrid Nanomaterial as Enhancing Electrocatalyst: Spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity", J. PHYS. CHEM. C, vol. 111, 2007, pages 17104 - 17109, XP055298180 *

Also Published As

Publication number Publication date
US20160156043A1 (en) 2016-06-02
CN105431375B (zh) 2018-01-23
KR20150051183A (ko) 2015-05-11
US9698429B2 (en) 2017-07-04
CN105431375A (zh) 2016-03-23
JP6153662B2 (ja) 2017-06-28
EP3000781B1 (en) 2021-12-01
JP2016525264A (ja) 2016-08-22
EP3000781A4 (en) 2017-01-11
EP3000781A1 (en) 2016-03-30
KR101628509B1 (ko) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2015065123A1 (ko) 연료전지 및 그의 제조방법
WO2015065120A1 (ko) 연료전지 및 그의 제조방법
WO2015080497A1 (ko) 연료전지 및 이의 제조방법
Jha et al. Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell
WO2017135709A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2015069068A1 (ko) 연료전지용 촉매 및 이를 포함하는 연료전지
Wang et al. Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts
WO2014196786A1 (ko) 금속 나노입자의 제조방법
WO2015069069A1 (ko) 연료전지 및 이의 제조방법
WO2012157834A1 (ko) 실리카 코팅을 이용한 연료전지용 합금촉매의 제조방법
WO2016072755A1 (ko) 담체-나노입자 복합체, 이의 제조방법, 및 이를 포함하는 촉매
JP2008183508A (ja) 複合材料およびその製造方法
Li et al. Ionic liquids-noncovalently functionalized multi-walled carbon nanotubes decorated with palladium nanoparticles: A promising electrocatalyst for ethanol electrooxidation
WO2019059570A1 (ko) 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
WO2017052222A1 (ko) 담체-나노입자 복합체, 이의 제조방법, 및 이를 포함하는 막전극 접합체
Jiang et al. Synthesis of monodispersed Pt nanoparticles on plasma processed carbon nanotubes for methanol electro-oxidation reaction
CN114150354A (zh) 一种高强度高导电碳纳米管复合薄膜及其制备方法
Soehn et al. Design of gas diffusion electrodes using nanocarbon
Jeng et al. Application of low-voltage electrophoretic deposition to fabrication of direct methanol fuel cell electrode composite catalyst layer
WO2018101591A1 (ko) 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
KR20100043424A (ko) 금속 수산화물-카본 복합체, 그 제조방법 및 이를 이용한 연료전지용 막-전극 어셈블리의 제조방법
Theerakarunwong et al. Pt/C doped TiO2/SWNTs as catalyst for methanol oxidation
WO2019054722A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2022092987A1 (ko) 열플라즈마로 합성된 붕소화코발트 나노입자를 포함하는 수전해 촉매전극의 제조방법 및 이에 따른 수전해 촉매전극
Koh et al. Platinum catalysts on KOH-treated multi-walled carbon nanotubes for PEM fuel cell nano sized dense structured electrodes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040863.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014858233

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016521235

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904305

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE