WO2017191718A1 - 排気還流弁 - Google Patents

排気還流弁 Download PDF

Info

Publication number
WO2017191718A1
WO2017191718A1 PCT/JP2017/013176 JP2017013176W WO2017191718A1 WO 2017191718 A1 WO2017191718 A1 WO 2017191718A1 JP 2017013176 W JP2017013176 W JP 2017013176W WO 2017191718 A1 WO2017191718 A1 WO 2017191718A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
seat
valve body
flow rate
seat surface
Prior art date
Application number
PCT/JP2017/013176
Other languages
English (en)
French (fr)
Inventor
貴樹 稲垣
吉岡 衛
成人 伊東
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Priority to US16/090,659 priority Critical patent/US10655572B2/en
Priority to CN201780024483.0A priority patent/CN109072826B/zh
Priority to DE112017002343.2T priority patent/DE112017002343T5/de
Publication of WO2017191718A1 publication Critical patent/WO2017191718A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/226Shaping or arrangements of the sealing

Definitions

  • the present invention relates to an exhaust gas recirculation valve that is provided in an exhaust gas recirculation passage that recirculates a part of exhaust gas discharged from an engine to the engine as exhaust gas recirculation gas and is used to adjust the flow rate of the exhaust gas recirculation gas.
  • FIG. 12 is a sectional view of the valve portion 61 in the fully closed state.
  • FIG. 13 is a cross-sectional view showing the valve portion 61 in the valve opening state in the low opening range.
  • FIG. 14 is a sectional view showing the valve portion 61 in a fully opened state.
  • the valve portion 61 includes a valve housing 63 having a flow path 62 therein, and a valve seat 64, a valve body 65, and a distal end portion of a rotary shaft 66 are disposed in the flow path 62.
  • the rotary shaft 66 is cantilevered by the valve housing 63 with a pin 66a formed at the tip thereof as a free end.
  • the valve body 65 is fixed to the pin 66a. 12 to 14, the flow path 62 above the valve seat 64 hits the upstream side of the EGR gas, and the flow path 62 below the valve seat 64 hits the downstream side of the EGR gas.
  • the valve seat 64 has an annular shape, and includes a valve hole 67 and an annular seat surface 67 a formed at the edge of the valve hole 67.
  • the valve body 65 has a disc shape, and an annular seal surface 65a corresponding to the seat surface 67a of the valve seat 64 is formed on the outer periphery thereof.
  • the axis Lp of the pin 66a extends parallel to the axis L1 of the rotating shaft 66 and is eccentrically arranged in the radial direction of the rotating shaft 66. Then, as shown in FIG.
  • the annular valve seat 64 is press-fitted into a stepped portion 62 a formed in the flow path 62 and fixed.
  • the valve seat 64 has an annular flat upper surface 64a adjacent to the seat surface 67a.
  • the upper surface 64 a is disposed so as to face the flow path 62.
  • the flat lower surface 64b of the valve seat 64 does not face the flow path 62 because it is press-fitted into the stepped portion 62a.
  • the first side portion 71 of the valve body 65 moves between the upper surface 64a and the lower surface 64b of the valve seat 64 in a certain opening range (low opening region) after opening, It moves to the downstream side of the lower surface 64b of the valve seat 64. Therefore, as shown in FIG. 13, the opening area SB of the second side portion 72 of the valve element 65 is larger than the opening area SA of the first side portion 71 in the low opening degree region immediately after the valve opening. For this reason, the flow angle resolution of EGR gas (resolution of the EGR gas flow rate with respect to the rotation angle of the valve body 65) is not sufficiently improved in the low opening range. On the other hand, as shown in FIG.
  • the present invention has been made in view of the above circumstances, and its object is to improve the flow angle resolution of the exhaust recirculation gas in the low opening range and to increase the flow rate of the exhaust recirculation gas in the high opening range.
  • An object of the present invention is to provide an exhaust gas recirculation valve that can achieve the above.
  • a housing a flow path that is provided in the housing and through which exhaust recirculation gas flows, a valve seat that is disposed in the flow path and includes a valve hole, and a valve
  • the seat includes an annular seat surface formed in the valve hole, a valve body disposed in the flow path and provided so as to be seated on the valve seat, and the valve body has a disk shape and is formed on the seat surface.
  • a corresponding annular sealing surface is formed on the outer periphery, and includes a mounting portion to which the valve body is attached, and a rotary shaft that is rotated to open and close the valve body, and the valve body is seated on the valve seat.
  • the valve hole of the valve seat Taper upstream flow rate adjustment that expands upstream from the surface upstream of the exhaust gas recirculation gas And purpose to include.
  • the restriction of the flow rate is released, and the exhaust gas recirculation gas is smoothly guided downstream by the upstream flow rate adjustment unit. That is, in the middle opening range and the high opening range, separation of the exhaust recirculation gas flow is reduced, and the pressure loss of the exhaust recirculation gas is reduced.
  • the valve body is divided into a first side and a second side with a virtual plane along the axis of the rotation axis as a boundary,
  • the first side portion rotates from the seat surface toward the downstream side of the exhaust gas recirculation gas, and the second side portion from the seat surface to the upstream flow rate adjustment unit.
  • valve opening in the fully closed state of the valve body is 0%, the valve opening increases with the valve opening operation, and the valve opening in the fully opened state of the valve body Is 100%, the height dimension of the upstream flow rate adjustment part in the axial direction of the valve hole is defined by the valve opening when the seal surface of the second side begins to move upstream from the upstream flow rate adjustment part
  • the valve opening is set to 30 to 40%.
  • the height dimension of the upstream flow rate adjusting portion of the valve hole is set to 30 to 40% of the valve opening of the valve body. Therefore, the valve opening of 30 to 40% or less becomes a low opening range, and the flow rate of the exhaust gas recirculation is restricted in this range.
  • the valve opening degree exceeding 40% becomes the middle opening degree range and the high opening degree range, and in this range, the exhaust gas recirculation gas is smoothly guided downstream by the upstream flow rate adjustment unit.
  • the valve hole of the valve seat is located on the downstream side of the exhaust recirculation gas from the seat surface, and has an inner diameter portion having a minimum inner diameter. And a tapered downstream flow rate adjusting portion that is located downstream from the inner diameter portion and is expanded toward the downstream side.
  • the first angle formed by the seat surface and the upstream flow rate adjusting portion in the axial direction of the valve hole, the seat surface and the inner diameter portion form.
  • the purpose is that each of the second angle, the third angle formed by the inner diameter portion and the downstream flow rate adjusting portion, is set within 20 °.
  • each of the first angle, the second angle, and the third angle is set within 20 °.
  • Each of the boundary between the upstream flow rate adjustment unit, the boundary between the seat surface and the inner diameter portion, and the boundary between the inner diameter portion and the downstream flow rate adjustment unit is a relatively gentle corner. Thereby, separation of the flow of the exhaust gas recirculation gas at the corners is reduced, and the pressure loss of the exhaust gas recirculation gas is reduced.
  • the exhaust gas recirculation valve can improve the flow angle resolution of the exhaust gas recirculation gas in the low opening range, and the exhaust recirculation gas flow rate in the medium opening range and high opening range. Can be increased.
  • the flow angle resolution can be improved, and the flow rate of the exhaust gas recirculation gas can be increased in the middle opening range and the high opening range where the valve opening exceeds 40%.
  • the flow rate angular resolution of the exhaust gas recirculation gas can be further improved in the low opening range, In the high opening range, the flow rate of the exhaust gas recirculation gas can be further increased.
  • the flow rate of the exhaust gas recirculation gas can be further increased in the middle opening range and the high opening range with respect to the effect of the configuration of the above (3).
  • FIG. 8 is an enlarged cross-sectional view showing a portion surrounded by a chain line square in FIG.
  • the analysis figure which shows the flow-velocity distribution of the EGR gas in the valve part in a fully open state about comparison with one embodiment.
  • the EGR valve of this embodiment is provided in an exhaust gas recirculation passage (EGR passage) for flowing a part of exhaust discharged from the engine to the exhaust passage as exhaust gas recirculation gas (EGR gas) to the intake passage and returning it to the engine. , Used to adjust the flow rate of EGR gas.
  • This EGR valve is constituted by an electrically operated valve having a variable opening.
  • a “double eccentric valve” configuration described in Japanese Patent No. 5759646 is adopted as a basic structure having characteristics of large flow rate, high response, and high resolution.
  • FIG. 1 is a perspective view showing the EGR valve 1 of this embodiment.
  • the EGR valve 1 includes a valve unit 6 composed of a double eccentric valve, a motor unit 7 incorporating a motor 22 (see FIG. 4), and a speed reduction mechanism unit incorporating a plurality of gears 31 to 33 (see FIG. 4).
  • the valve part 6 includes a pipe part 9 having a flow path 11 through which EGR gas flows. In the flow path 11, a part of the valve seat 12, the valve body 13 and the rotating shaft 14 is arranged. The rotational force of the motor 22 (see FIG. 4) is transmitted to the rotating shaft 14 via a plurality of gears 31 to 33 (see FIG. 4).
  • FIG. 2 is a perspective view of the valve portion 6 in a fully closed state where the valve body 13 is seated on the valve seat 12 and is shown in a perspective view.
  • FIG. 3 is a perspective view of the valve portion 6 in a fully opened state where the valve body 13 is farthest from the valve seat 12 and is shown in a perspective view.
  • a step portion 11 a is formed in the flow path 11, and the valve seat 12 is press-fitted and fixed to the step portion 11 a.
  • the valve seat 12 has an annular shape and includes a valve hole 16 in the center.
  • An annular seat surface 16 a is formed at the axial direction intermediate portion of the valve hole 16.
  • the valve body 13 provided so as to be seated on the valve seat 12 has a disc shape, and an annular seal surface 13a corresponding to the seat surface 16a is formed on the outer periphery thereof.
  • the valve body 13 is fixed to the distal end portion of the rotating shaft 14 and rotates integrally with the rotating shaft 14.
  • the rotating shaft 14 includes a pin 14 a as an attachment portion to which the valve body 13 is attached at the tip thereof, and is rotated to open and close the valve body 13. 2 and 3, the flow path 11 above the valve seat 12 with respect to the valve seat 12 indicates the upstream side of the EGR gas, and the flow path 11 below the valve seat 12 indicates the downstream side of the EGR gas.
  • the valve body 13 is disposed in the upstream flow path 11. As shown in FIG.
  • the EGR valve 1 rotates the rotary shaft 14 from a fully closed state in which the valve body 13 is seated on the valve seat 12 and the seal surface 13a contacts the seat surface 16a. As shown in FIG. 3, the valve element 13 is configured to rotate and open until the valve is fully opened.
  • FIG. 4 shows a plan view of the EGR valve 1 in the fully closed state.
  • the EGR valve 1 includes a body 21, a motor 22, a speed reduction mechanism 23, and a return mechanism 24 in addition to the valve seat 12, the valve body 13, and the rotating shaft 14 as main components.
  • the body 21 includes an aluminum valve housing 25 including the flow path 11 and the pipe portion 9, and a synthetic resin end frame 26 that closes the opening end of the valve housing 25.
  • the rotating shaft 14 and the valve body 13 are provided in the valve housing 25.
  • the rotating shaft 14 includes a pin 14a that protrudes from the tip thereof.
  • the rotating shaft 14 has a distal end side having a pin 14 a as a free end, and the distal end side is disposed in the flow path 11.
  • the rotary shaft 14 is cantilevered so as to be rotatable with respect to the valve housing 25 via two bearings (first bearing 27 and second bearing 28) arranged apart along the base end side.
  • the first bearing 27 is constituted by a ball bearing
  • the second bearing 28 is constituted by a needle bearing.
  • the valve body 13 is fixed to the pin 14 a and disposed in the flow path 11.
  • the end frame 26 is fixed to the valve housing 25 by a plurality of clips (not shown).
  • An opening sensor 29 for detecting the opening of the valve body 13 is provided on the inner side of the end frame 26 so as to correspond to the proximal end of the rotating shaft 14. This sensor 29 is comprised by Hall IC etc., and it is comprised so that the rotation angle of the rotating shaft 14 may be detected as a valve opening degree.
  • a main gear 31 is fixed to the base end portion of the rotating shaft 14.
  • a return spring 30 is provided between the main gear 31 and the valve housing 25 to urge the valve body 13 in the closing direction.
  • a recess 31a is formed on the back side of the main gear 31, and the magnet 36 is accommodated in the recess 31a.
  • the magnet 36 is pressed and fixed to the main gear 31 by a pressing plate 37 formed from a leaf spring from above. Therefore, when the main gear 31 rotates integrally with the valve body 13 and the rotary shaft 14, the magnetic field of the magnet 36 changes, and the opening sensor 29 detects the change in the magnetic field as the valve opening. Yes.
  • the motor 22 is housed and fixed in a housing recess 25a formed in the valve housing 25. That is, the motor 22 is fixed to the valve housing 25 via the retaining plates 38 and the leaf springs 39 provided at both ends thereof while being accommodated in the accommodating recess 25a.
  • the motor 22 is drivingly connected to the rotary shaft 14 via the speed reduction mechanism 23 in order to open and close the valve body 13. That is, the motor gear 33 is fixed on the output shaft (not shown) of the motor 22.
  • the motor gear 33 is drivingly connected to the main gear 31 via the intermediate gear 32.
  • the intermediate gear 32 is a two-stage gear including a large-diameter gear 32 a and a small-diameter gear 32 b, and is rotatably supported by the valve housing 25 via a pin shaft 34.
  • the motor gear 33 is connected to the large diameter gear 32a, and the main gear 31 is connected to the small diameter gear 32b.
  • the main gear 31 and the intermediate gear 32 are formed of a resin material for weight reduction.
  • a rubber gasket 40 is provided at the joint between the valve housing 25 and the end frame 26.
  • the gasket 40 is disposed in a circumferential groove formed on the outer periphery of the open end surface of the end frame 26.
  • FIG. 5 is a sectional view showing the valve portion 6 in the fully closed state.
  • the valve part 6 in the valve opening state in a low opening degree region is shown with sectional drawing.
  • the valve part 6 in a fully open state is shown with sectional drawing.
  • the axis L1 of the rotary shaft 14 extends parallel to the radial direction of the valve body 13 and the valve hole 16, and is decentered from the center P1 of the valve hole 16 in the radial direction of the valve hole 16. Is done.
  • the sealing surface 13a of the valve body 13 is arranged eccentrically in the direction (downward) in which the axis L2 of the valve body 13 extends from the axis L1 of the rotating shaft 14.
  • valve body 13 By rotating the valve body 13 together with the rotary shaft 14 about the axis L1 of the rotary shaft 14, the seal surface 13a of the valve body 13 contacts the seat surface 16a of the valve seat 12 (see FIG. 5) and a fully open position (see FIG. 7) furthest away from the seat surface 16a.
  • the valve body 13 includes a substantially cylindrical protrusion 13c that protrudes from the plate surface 13b and is fixed to the rotating shaft 14.
  • the protrusion 13c is fixed to the pin 14a at a position shifted from the axis L1 of the rotating shaft 14 in the radial direction of the rotating shaft 14.
  • An assembly hole 13d is formed in the projection 13c, and the projection 13c is fixed to the pin 14a by press-fitting the pin 14a into the assembly hole 13d.
  • the protrusion 13c is disposed on the axis L2 of the valve body 13, and the valve body 13 including the protrusion 13c is formed so as to have a two-fold symmetrical shape about the axis L2 of the valve body 13.
  • valve body 13 starts to rotate in the valve opening direction (the direction of the arrow F1 shown in FIG. 5, ie, the clockwise direction in FIG. 5) from the fully closed state shown in FIG.
  • the surface 13a starts to move away from the seat surface 16a of the valve seat 12 and starts to move along the rotation trajectories T1 and T2 around the axis L1 of the rotation shaft 14.
  • the valve body 13 extends along the axis L1 of the rotating shaft 14, and the first side portion with a virtual plane V1 extending parallel to the direction of the axis L2 of the valve body 13 as a boundary. 51 (the right part shown with dots in FIGS. 5 to 7) and the second side part 52 (the left part without dots in FIGS. 5 to 7).
  • the first side portion 51 rotates toward the downstream side of the valve hole 16, and the second side The side portion 52 is configured to rotate toward the upstream side of the valve hole 16.
  • the seal surface 13a of the valve body 13 rotates along the rotation trajectories T1 and T2 around the axis L1 of the rotating shaft 14.
  • the annular valve seat 12 is press-fitted into the step portion 11a formed in the flow path 11,
  • the valve seat 12 is fixed to the valve housing 25 in the flow path 11.
  • a gap G ⁇ b> 1 is provided between the lower outer periphery of the valve seat 12 and the valve housing 25.
  • this gap G1 can be provided by forming a recess in the lower outer periphery of the valve seat 12.
  • FIG. 8 is an enlarged cross-sectional view showing a portion surrounded by a chain line square S1 in FIG.
  • the valve seat 12 is formed so that the intermediate part of the valve hole 16 in the direction of the axis L3 can be confined.
  • a sheet surface 16a is formed at the intermediate portion.
  • the valve hole 16 includes a tapered upstream flow rate adjusting portion 16b whose diameter is increased toward the upstream side on the upstream side of the EGR gas from the seat surface 16a.
  • the valve hole 16 has an inner diameter portion 16c having a minimum inner diameter on the downstream side of the EGR gas from the seat surface 16a, and a tapered shape that is positioned downstream from the inner diameter portion 16c and expands toward the downstream side. And a downstream flow rate adjustment unit 16d.
  • the seat surface 16a of the valve seat 12 and the seal surface 13a of the valve body 13 have the same shape over the entire circumference of the valve hole 16 and the valve body 13, respectively. Is formed. That is, the width and cross-sectional shape of the seat surface 16a and the width and cross-sectional shape of the seal surface 13a are formed the same over the entire circumference of the valve hole 16 and the valve body 13, respectively.
  • the third angle ⁇ 3 formed by the downstream flow rate adjustment unit 16d is set within 20 °.
  • the second angle ⁇ 2 is also an angle (seat surface angle) ⁇ 1 of the seat surface 16a with respect to the axis L3 of the valve hole 16, and the sum of the first angle ⁇ 1 and the second angle ⁇ 2 is also the axis L3.
  • the angle of the upstream flow rate adjustment unit 16b (upstream flow rate adjustment unit angle) ⁇ 2 (> ⁇ 1).
  • the sheet surface angle ⁇ 1 can be set to an angle within the range of “10 to 30 °”.
  • valve opening degree in the fully closed state of the valve body 13 is set to “0%”, the valve opening degree increases with the opening operation of the valve body 13, and the valve opening degree in the fully opened state of the valve body 13 is set to “100”. % ".
  • the height H1 of the upstream flow rate adjusting portion 16b in the direction of the axis L3 of the valve hole 16 is such that the seal surface 13a of the second side portion 52 starts to move to the flow path 11 upstream from the upstream flow rate adjusting portion 16b.
  • the valve opening is set to a value in the range of “30 to 40%”. In this embodiment, for example, “40%” can be set.
  • the valve body 13 rotates about the axis L1 of the rotary shaft 14, whereby the valve body 13 has a seal surface 13a whose seat is the seat of the valve seat 12.
  • the fully closed position in contact with the surface 16a and the fully open position in which the seal surface 13a is farthest from the seat surface 16a are moved.
  • the valve hole 16 of the valve seat 12 is closed by the valve body 13 and the flow of EGR gas in the valve hole 16 is blocked.
  • the valve body 13 rotates from the fully closed state and performs a valve opening operation
  • a part of the valve body 13 (the second side portion 52) is moved to the seat surface 16a of the valve seat 12. Move upstream from upstream.
  • the second side portion 52 of the valve body 13 moves while facing the upstream flow rate adjustment unit 16b, and the intermediate opening range that has passed the low opening range and In the high opening range, the second side portion 52 moves upstream of the valve hole 16.
  • the flow rate of the EGR gas is reduced to a very small amount between the valve body 13 and the upstream flow rate adjustment unit 16b, and the intermediate opening range and the high opening range are set.
  • the restriction of the flow rate is released, and the EGR gas is smoothly guided downstream by the upstream flow rate adjustment unit 16b. That is, in the middle opening range and the high opening range, separation of the flow of the EGR gas is reduced, and the pressure loss of the EGR gas is reduced. Therefore, for the EGR valve 1, the flow rate angular resolution of the EGR gas can be improved in the low opening range, and the EGR gas flow rate can be increased in the medium opening range and the high opening range.
  • the height dimension H1 of the upstream flow rate adjustment unit 16b is set to 40% of the valve opening degree of the valve body 13, so that the valve opening degree of 40% or less is a low opening degree region. In this range, the flow rate of EGR gas is reduced. On the other hand, the valve opening degree exceeding 40% becomes the middle opening degree region and the high opening degree region, and in this range, the EGR gas is smoothly guided downstream by the upstream flow rate adjustment unit 16b. For this reason, in the valve hole 16 upstream from the seat surface 16a, the flow angle resolution of the EGR gas can be improved in a low opening range where the valve opening is 40% or less, and the valve opening is higher than 40%. In the opening range, the flow rate of EGR gas can be increased.
  • the inner diameter portion 16c and the downstream flow rate adjustment portion 16d are disposed on the downstream side of the seat surface 16a, so that the valve body 13 is in a fully closed state.
  • a part (first side portion 51) of the valve body 13 moves from the seat surface 16a of the valve hole 16 toward the downstream side.
  • the first side portion 51 of the valve body 13 moves while facing the inner diameter portion 16 c and the downstream flow rate adjustment portion 16 d, and then moves downstream from the valve hole 16.
  • each of the first angle ⁇ 1, the second angle ⁇ 2, and the third angle ⁇ 3 is set within 20 °, so that the seat surface 16a and the upstream flow rate adjustment unit 16b
  • Each of the boundary, the boundary between the seat surface 16a and the inner diameter portion 16c, and the boundary between the inner diameter portion 16c and the downstream flow rate adjustment portion 16d is a relatively gentle corner. Thereby, separation of the flow of the EGR gas at these corners is reduced, and the pressure loss of the exhaust gas recirculation gas is reduced. For this reason, it is possible to further increase the EGR gas flow rate in the middle opening degree range and the high opening degree range for the EGR valve 1.
  • FIG. 9 is an analysis diagram showing the flow rate distribution of EGR gas in the valve portion 6 when the valve element 13 is in a fully opened state according to this embodiment.
  • FIG. 10 is an analytical view showing the flow rate distribution of EGR gas in the valve portion when the valve element 65 is fully opened, as a comparative example (conventional example).
  • this embodiment as shown by being surrounded by chain line squares S2 and S3 in FIG. 9, in the valve hole 16 of the valve seat 12, separation of the flow of EGR gas hardly occurs on the inner wall, and the EGR gas is relatively smooth. I can see it flowing.
  • FIG. 9 is an analysis diagram showing the flow rate distribution of EGR gas in the valve portion 6 when the valve element 13 is in a fully opened state according to this embodiment.
  • FIG. 10 is an analytical view showing the flow rate distribution of EGR gas in the valve portion when the valve element 65 is fully opened, as a comparative example (conventional example).
  • FIG. 9 as shown by being surrounded by chain line squares S2 and S3 in FIG. 9,
  • the valve hole 67 of the valve seat 64 has a large separation in the flow of the EGR gas at the inner wall, as shown by the chain line squares S4 and S5 in FIG. It turns out that it is difficult to flow. As can be seen from this comparison, in this embodiment, separation of the flow of the EGR gas is reduced in the valve hole 16, thereby reducing the pressure loss of the EGR gas, so that the flow rate of the EGR gas can be increased.
  • FIG. 11 is a graph showing the relationship of the flow rate of the EGR gas with respect to the valve opening degree of the EGR valve in comparison with the present embodiment and the conventional example.
  • the flow rate can be reduced as compared with the conventional example, and the medium opening exceeding “40%”. It can be seen that in this embodiment, the flow rate can be increased in the present embodiment as compared with the conventional example.
  • the gap G1 is provided between the lower outer periphery of the valve seat 12 and the valve housing 25, when the valve seat 12 is press-fitted into the step portion 11a, the load applied to the valve seat 12 is reduced.
  • the gap G1 is provided between the lower outer periphery of the valve seat 12 and the valve housing 25, but the gap between the valve housing 25 and the outer periphery of the valve seat 12 corresponding to the height of the seat surface 16a.
  • G1 is preferably provided.
  • the load applied to the outer peripheral portion of the valve seat 12 corresponding to the height of the seat surface 16a is reduced when the valve seat 12 is press-fitted into the step portion 11a, and the deformation of the seat surface 16a can be more effectively suppressed.
  • shaving powder may be generated, but this shaving powder can be accumulated in the gap G1. For this reason, it is possible to prevent the shaving powder from being sandwiched between the step portion 11a and the valve seat 12 to change the height of the valve seat 12.
  • the seal surface 13a slides on the seat surface 16a. There is no contact. For this reason, rubbing between the valve body 13 and the valve seat 12 can be suppressed, and the valve body 13 can be quickly opened or closed, and the sealing surface 13a of the valve body 13 and the seat surface 16a of the valve seat 12 can be operated. And wear can be reduced. As a result, the responsiveness and durability of opening and closing can be improved for the EGR valve 1.
  • valve body 13 is arranged on the upstream side of the EGR gas with respect to the valve seat 12 in the flow path 11. Therefore, when the valve body 13 is fully closed, the pressure of the EGR gas is This acts in the direction of pressing the valve body 13 against the valve seat 12. For this reason, the sealing performance between the valve seat 12 and the valve body 13, that is, between the seat surface 16a and the seal surface 13a can be further improved.
  • the inner diameter portion 16c and the downstream flow rate adjustment portion 16d are provided downstream of the seat surface 16a in the valve hole 16 of the valve seat 12, but these may be omitted.
  • the height H1 of the upstream flow rate adjustment unit 16b is set to “40%” in terms of the valve opening, but is set to an arbitrary value within the range of “30 to 40%”. be able to.
  • the present invention can be used for an EGR device installed in a gasoline engine or a diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Lift Valve (AREA)

Abstract

EGR弁は、流路(11)を有する弁ハウジング(25)を含み、流路(11)には、弁孔(16)を含む弁座(12)と、弁座(12)に着座可能な弁体(13)と、弁体(13)を先端に固定した回転軸(14)の一部が配置される。弁座(12)の弁孔(16)には、環状のシート面(16a)が形成される。円板状の弁体(13)の外周には、シート面(16a)に対応する環状のシール面(13a)が形成される。弁体(13)が弁座(12)に着座してシール面(13a)がシート面(16a)に接触する全閉状態から、回転軸(14)を回転させることにより、弁体(13)が回動して開弁動作する。弁座(12)の弁孔(16)には、シート面(16a)よりEGRガスの上流側にて、上流側へ向けて拡径されるテーパ状の上流側流量調整部(16b)が設けられる。

Description

排気還流弁
 この発明は、エンジンから排出される排気の一部を排気還流ガスとしてエンジンへ還流する排気還流通路に設けられ、排気還流ガスの流量を調節するために使用される排気還流弁に関する。
 従来、この種の技術として、例えば、下記の特許文献1に記載される二重偏心弁を備えた排気還流弁(Exhaust Gas Recirculation Valve:EGR弁)が知られている。このEGR弁は、二重偏心弁より構成される弁部を備える。図12に、全閉状態の弁部61を断面図により示す。図13に、低開度域での開弁状態の弁部61を断面図により示す。図14に、全開状態の弁部61を断面図により示す。この弁部61は、内部に流路62を有する弁ハウジング63を含み、流路62の中には弁座64、弁体65及び回転軸66の先端部が配置される。回転軸66は、その先端に形成されたピン66aを自由端として弁ハウジング63に片持ち支持される。弁体65は、このピン66aに固定される。図12~図14において、弁座64より上側の流路62が、EGRガスの上流側に当たり、弁座64より下側の流路62がEGRガスの下流側に当たる。
 より詳細には、図12~図14に示すように、弁座64は環状をなし、弁孔67と弁孔67の縁部に形成された環状のシート面67aとを含む。弁体65は円板状をなし、その外周に弁座64のシート面67aに対応する環状のシール面65aが形成される。また、ピン66aの軸線Lpは、回転軸66の軸線L1に対して平行に延びると共に、回転軸66の径方向へ偏心して配置される。そして、図12に示すように、弁体65が弁座64に着座した全閉状態から、回転軸66がその軸線L1を中心に回転されることにより、図13に示すように、弁体65が開弁方向へ回動され、シール面65aがシート面67aから離れ、流路62が開かれる。その後、弁体65が更に回動されることにより、図14に示すように、弁体65が全開状態まで開弁される。
 ここで、環状の弁座64は、流路62に形成された段部62aに圧入されて固定される。この圧入状態において、弁座64は、シート面67aに隣接して環状の平坦な上面64aを有する。この上面64aは流路62に面して配置される。一方、弁座64の平坦な下面64bは、段部62aに圧入されているので流路62に面していない。
特許第5759646号公報
 ところが、特許文献1に記載のEGR弁では、弁座64のシート面67aに隣接した平坦な上面64aが流路62に面しているので、図12及び図13に示すように、弁体65が全閉状態から開弁動作する過程で、弁体65の右側部分(第1の側部)71は弁座64のシート面67aから下方へ回動し、弁体65の左側部分(第2の側部)72は弁座64のシート面67aから上方へ回動する。このとき、弁体65の第2の側部72は、図13に示すように、開弁と同時に弁座64の上面64aから流路62の上流側へ移動し始める。これに対し、弁体65の第1の側部71は、開弁後、ある開度範囲(低開度域)では、弁座64の上面64aと下面64bとの間を移動し、その後、弁座64の下面64bよりも下流側へ移動することになる。従って、図13に示すように、開弁直後の低開度域では、弁体65の第2の側部72の開口面積SBが、第1の側部71の開口面積SAよりも大きくなる。このため、低開度域では、EGRガスの流量角度分解能(EGRガス流量の弁体65の回動角度に対する分解能)の向上が十分ではなかった。一方、図14に示すように、低開度域を超えた高開度域(全開状態)では、上流側から流れてくるEGRガスが、弁座64と弁体65の間を通過するが、弁座64の上面64aの内縁に角部があることから、その角部にてEGRガスの流れに剥離が生じ、EGRガスの圧損が増大する。このため、EGR弁を通過するEGRガス流量を増大させることができなかった。
 この発明は、上記事情に鑑みてなされたものであって、その目的は、低開度域では排気還流ガスの流量角度分解能を向上させ、高開度域では排気還流ガスの流量増を図ることを可能とした排気還流弁を提供することにある。
 (1)上記目的を達成するために、本発明の一態様は、ハウジングと、ハウジングに設けられ、排気還流ガスが流れる流路と、流路に配置され、弁孔を含む弁座と、弁座は、弁孔に形成された環状のシート面を含むことと、流路に配置され、弁座に着座可能に設けられた弁体と、弁体は、円板状をなし、シート面に対応する環状のシール面が外周に形成されることと、弁体が取り付けられる取付部を含み、弁体を開閉するために回転される回転軸とを備え、弁体が弁座に着座してシール面がシート面に接触する全閉状態から、回転軸を回転させることにより、弁体が回動して開弁動作するように構成された排気還流弁において、弁座の弁孔は、シート面より排気還流ガスの上流側にて、上流側へ向けて拡径されるテーパ状の上流側流量調整部を含むことを趣旨とする。
 上記(1)の構成によれば、弁体が全閉状態から開弁動作するとき、弁体の一部が、弁座のシート面から上流へ向けて移動する。このとき、弁開度の低開度域では、弁体の一部が上流側流量調整部と対向しながら移動し、低開度域を過ぎた中開度域及び高開度域では、弁体の一部が弁孔より上流において移動する。従って、シート面より上流の弁孔において、低開度域では、弁体と弁孔の上流側流量調整部との間で排気還流ガスの流量がより微量に絞られ、中開度域及び高開度域では、その流量の絞りが解放され、上流側流量調整部にて排気還流ガスが下流へ向けて滑らかに案内される。すなわち、中開度域及び高開度域では、排気還流ガスの流れの剥離が低減し、排気還流ガスの圧損が低減する。
 (2)上記目的を達成するために、上記(1)の構成において、弁体は、回転軸の軸線に沿った仮想面を境として第1の側部と第2の側部に分けられ、弁体が全閉状態から開弁動作するときに、第1の側部がシート面から排気還流ガスの下流側へ向けて回動し、第2の側部がシート面から上流側流量調整部へ向けて回動するように構成され、弁体の全閉状態における弁開度を0%とし、弁体の開弁動作に伴い弁開度が増加し、弁体の全開状態における弁開度を100%とすると、弁孔の軸線方向における上流側流量調整部の高さ寸法が、第2の側部のシール面が上流側流量調整部より上流へ移動し始めるときの弁開度により規定され、その弁開度が30~40%に設定されることを趣旨とする。
 上記(2)の構成によれば、上記(1)の構成の作用に加え、弁孔の上流側流量調整部の高さ寸法が、弁体の弁開度の30~40%に設定されるので、30~40%以下の弁開度が低開度域となり、この範囲では排気還流ガスの流量が絞られる。一方、40%を超える弁開度が中開度域及び高開度域となり、この範囲では上流側流量調整部にて排気還流ガスが下流へ向けて滑らかに案内される。
 (3)上記目的を達成するために、上記(1)又は(2)の構成において、弁座の弁孔は、シート面より排気還流ガスの下流側に位置し、最小内径を有する内径部と、内径部より下流側に位置し、下流側へ向けて拡径されるテーパ状の下流側流量調整部とを含むことを趣旨とする。
 上記(3)の構成によれば、上記(1)又は(2)の構成の作用に加え、弁体が全閉状態から開弁動作するとき、弁体の一部が、弁孔のシート面から下流へ向けて移動する。このとき、弁体の一部が、内径部及び下流側流量調整部と対向しながら移動し、その後、弁孔より下流において移動する。従って、シート面より下流の弁孔において、弁体の一部が内径部及び下流側流量調整部と対向するときは、弁体と内径部及び下流側流量調整部との間で排気還流ガスの流量がより微量に絞られ、弁体の一部が弁孔より下流において移動するときは、内径部及び下流側流量調整部にて排気還流ガスが下流へ向けて滑らかに案内される。
 (4)上記目的を達成するために、上記(3)の構成において、弁孔の軸線方向における、シート面と上流側流量調整部とがなす第1の角度、シート面と内径部とがなす第2の角度、内径部と下流側流量調整部とがなす第3の角度のそれぞれが20°以内に設定されることを趣旨とする。
 上記(4)の構成によれば、上記(3)の構成の作用に加え、第1の角度、第2の角度及び第3の角度のそれぞれが20°以内に設定されるので、シート面と上流側流量調整部との境界、シート面と内径部との境界、内径部と下流側流量調整部との境界のそれぞれが比較的緩やかな角部となる。これにより、それら角部での排気還流ガスの流れの剥離が低減し、排気還流ガスの圧損が低減する。
 上記(1)の構成によれば、排気還流弁につき、低開度域では排気還流ガスの流量角度分解能を向上させることができ、中開度域及び高開度域では排気還流ガスの流量を増加させることができる。
 上記(2)の構成によれば、上記(1)の構成の効果に加え、シート面より上流の弁孔において、弁開度が30~40%以下となる低開度域では排気還流ガスの流量角度分解能を向上させることができ、弁開度が40%を超える中開度域及び高開度域では排気還流ガスの流量を増加させることができる。
 上記(3)の構成によれば、上記(1)又は(2)の構成の効果に対し、低開度域では排気還流ガスの流量角度分解能を更に向上させることができ、中開度域及び高開度域では排気還流ガスの流量を更に増加させることができる。
 上記(4)の構成によれば、上記(3)の構成の効果に対し、中開度域及び高開度域では排気還流ガスの流量の更なる増加を図ることができる。
一実施形態に係り、EGR弁を示す斜視図。 一実施形態に係り、全閉状態における弁部を一部破断して示す斜視図。 一実施形態に係り、全開状態における弁部を一部破断して示す斜視図。 一実施形態に係り、全閉状態におけるEGR弁を示す平断面図。 一実施形態に係り、全閉状態における弁部を示す断面図。 一実施形態に係り、低開度域での開弁状態における弁部を示す断面図。 一実施形態に係り、全開状態における弁部を示す断面図。 一実施形態に係り、図7の鎖線四角で囲んだ部分を示す拡大断面図。 一実施形態に係り、全開状態における弁部でのEGRガスの流速分布を示す解析図。 一実施形態に係り、対比例につき、全開状態における弁部でのEGRガスの流速分布を示す解析図。 一実施形態に係り、EGR弁の弁開度に対するEGRガスの流量特性を示すグラフ。 従来例に係り、全閉状態における弁部を示す断面図。 従来例に係り、低開度域での開弁状態における弁部を示す断面図。 従来例に係り、全開状態における弁部を示す断面図。
 以下、本発明における排気還流弁(EGR弁)を具体化した一実施形態につき図面を参照して詳細に説明する。
 この実施形態のEGR弁は、エンジンから排気通路へ排出される排気の一部を排気還流ガス(EGRガス)として吸気通路へ流してエンジンへ還流するための排気還流通路(EGR通路)に設けられ、EGRガスの流量を調節するために使用される。このEGR弁は、開度可変な電動弁により構成される。このEGR弁につき、大流量、高応答及び高分解能の特性を有する基本構造として、例えば、日本特許第5759646号公報に記載される「二重偏心弁」の構成が採用される。
 図1に、この実施形態のEGR弁1を斜視図により示す。EGR弁1は、二重偏心弁より構成される弁部6と、モータ22(図4参照)を内蔵したモータ部7と、複数のギヤ31~33(図4参照)を内蔵した減速機構部8とを備える。弁部6は、内部にEGRガスが流れる流路11を有する管部9を含む。この流路11の中には、弁座12、弁体13及び回転軸14の一部が配置される。回転軸14には、モータ22(図4参照)の回転力が複数のギヤ31~33(図4参照)を介して伝達されるようになっている。
 図2に、弁体13が弁座12に着座した全閉状態における弁部6を一部破断して斜視図により示す。図3に、弁体13が弁座12から最も離れた全開状態における弁部6を一部破断して斜視図により示す。図2、図3に示すように、流路11には段部11aが形成され、その段部11aに弁座12が圧入され、固定される。弁座12は、円環状をなし、中央に弁孔16を含む。弁孔16の軸線方向中間部には、環状のシート面16aが形成される。弁座12に着座可能に設けられた弁体13は、円板状をなし、その外周には、シート面16aに対応する環状のシール面13aが形成される。弁体13は回転軸14の先端部に固定され、回転軸14と一体的に回動するようになっている。回転軸14は、その先端に弁体13が取り付けられる取付部としてのピン14aを含み、弁体13を開閉するために回転されるようになっている。図2、図3において、弁座12を境として弁座12より上側の流路11がEGRガスの上流側を示し、弁座12より下側の流路11がEGRガスの下流側を示す。そして、この実施形態で、弁体13は、上流側の流路11に配置される。このEGR弁1は、図2に示すように、弁体13が弁座12に着座してシール面13aがシート面16aに接触する全閉状態から、回転軸14を回転させることにより、図3に示すように、弁体13が回動して全開状態まで開弁動作するように構成される。
 図4に、全閉状態のEGR弁1を平断面図により示す。このEGR弁1は、主要な構成要素として、弁座12、弁体13及び回転軸14の他に、ボディ21、モータ22、減速機構23及び戻し機構24を備える。この実施形態で、ボディ21は、流路11及び管部9を含むアルミ製の弁ハウジング25と、同弁ハウジング25の開口端を閉鎖する合成樹脂製のエンドフレーム26とを含む。回転軸14及び弁体13は、弁ハウジング25に設けられる。回転軸14は、その先端から突出するピン14aを含む。回転軸14は、ピン14aを有する先端側を自由端とし、その先端側が流路11に配置される。また、回転軸14は、その基端側に沿って離れて配置された2つの軸受(第1軸受27と第2軸受28)を介して弁ハウジング25に対し回転可能に片持ち支持される。第1軸受27はボールベアリングにより構成され、第2軸受28はニードルベアリングにより構成される。弁体13は、ピン14aに固定されて流路11内に配置される。
 図4において、エンドフレーム26は、弁ハウジング25に対し複数のクリップ(図示略)により固定される。エンドフレーム26の内側には、回転軸14の基端に対応して配置され、弁体13の開度を検出するための開度センサ29が設けられる。このセンサ29は、ホールIC等により構成され、回転軸14の回転角度を弁開度として検出するように構成される。回転軸14の基端部には、メインギヤ31が固定される。メインギヤ31と弁ハウジング25との間には、弁体13を閉方向へ付勢するためのリターンスプリング30が設けられる。メインギヤ31の裏側には、凹部31aが形成され、その凹部31aに磁石36が収容される。この磁石36は、その上から板ばねより形成される押さえ板37によりメインギヤ31に押さえ付けられて固定される。従って、メインギヤ31が、弁体13及び回転軸14と一体的に回転することにより、磁石36の磁界が変化し、その磁界の変化を開度センサ29が弁開度として検出するようになっている。
 この実施形態で、モータ22は、弁ハウジング25に形成された収容凹部25aに収容されて固定される。すなわち、モータ22は、収容凹部25aに収容された状態で、その両端に設けられた留め板38と板ばね39を介して弁ハウジング25に固定される。モータ22は、弁体13を開閉駆動するために減速機構23を介して回転軸14に駆動連結される。すなわち、モータ22の出力軸(図示略)上には、モータギヤ33が固定される。このモータギヤ33は、中間ギヤ32を介してメインギヤ31に駆動連結される。中間ギヤ32は、大径ギヤ32aと小径ギヤ32bを含む二段ギヤであり、ピンシャフト34を介して弁ハウジング25に回転可能に支持される。大径ギヤ32aには、モータギヤ33が連結され、小径ギヤ32bには、メインギヤ31が連結される。この実施形態では、メインギヤ31と中間ギヤ32が、軽量化のために樹脂材料より形成される。
 加えて、図4に示すように、弁ハウジング25とエンドフレーム26との接合部分には、ゴム製のガスケット40が設けられる。ガスケット40は、エンドフレーム26の開口端面の外周に形成された周溝に配置される。このように、弁ハウジング25とエンドフレーム26との間にガスケット40が設けられることで、モータ部7と減速機構部8の内部が大気に対して密閉可能に設けられる。
 従って、図2に示すように、弁体13の全閉状態から、モータ22が通電により作動し、モータギヤ33が回転することにより、その回転が中間ギヤ32により減速されてメインギヤ31に伝達される。これにより、回転軸14及び弁体13が、リターンスプリング30の付勢力に抗して回動され、流路11が開かれる。すなわち、弁体13が開弁される。また、弁体13をある開度に保持するために、モータ22に通電により回転力を発生させることにより、その回転力がモータギヤ33、中間ギヤ32及びメインギヤ31を介し保持力として回転軸14及び弁体13に伝達される。この保持力がリターンスプリング30の付勢力に均衡することにより、弁体13がある開度に保持される。
 図5に、全閉状態における弁部6を断面図により示す。図6に、低開度域での開弁状態における弁部6を断面図により示す。図7に、全開状態における弁部6を断面図により示す。図5~図7に示すように、回転軸14の軸線L1は、弁体13及び弁孔16の径方向と平行に伸び、弁孔16の中心P1から弁孔16の径方向へ偏心して配置される。また、弁体13のシール面13aが、回転軸14の軸線L1から弁体13の軸線L2が伸びる方向(下方)へ偏心して配置される。また、弁体13を、回転軸14の軸線L1を中心に回転軸14と共に回動させることにより、弁体13のシール面13aが、弁座12のシート面16aに接触する全閉位置(図5参照)とシート面16aから最も離れる全開位置(図7参照)との間で移動可能に構成される。
 図5~図7に示すように、弁体13は、その板面13bから突出して回転軸14に固定される略円柱状の突部13cを含む。この突部13cは、回転軸14の軸線L1から回転軸14の径方向へずれた位置にてピン14aに固定される。突部13cには組付孔13dが形成され、ピン14aがこの組付孔13dに圧入されることにより、突部13cがピン14aに固定される。また、突部13cは、弁体13の軸線L2上に配置され、突部13cを含む弁体13が、弁体13の軸線L2を中心に2回対称形状をなすように形成される。
 この実施形態では、図5に示す全閉状態から弁体13が開弁方向(図5に示す矢印F1の方向、すなわち図5において時計方向)へ回動し始めると同時に、弁体13のシール面13aが、弁座12のシート面16aから離れ始めると共に、回転軸14の軸線L1を中心とする回動軌跡T1,T2に沿って移動し始めるようになっている。
 図5~図7に示すように、弁体13は、回転軸14の軸線L1に沿って伸びると共に、弁体13の軸線L2の方向と平行に伸びる仮想面V1を境として第1の側部51(図5~図7においてドットを付して示す右側の部分。)と第2の側部52(図5~図7においてドットを付さない左側の部分。)に二分される。そして、図5に示す全閉状態から弁体13が矢印F1に示す開弁方向へ回動するとき、第1の側部51は弁孔16の下流側へ向けて回動し、第2の側部52は弁孔16の上流側へ向けて回動するように構成される。これと共に、弁体13のシール面13aが、回転軸14の軸線L1を中心にした回動軌跡T1,T2に沿って回動するようになっている。
 ここで、この実施形態では、図2、図3、図5~図7に示すように、円環状をなす弁座12が、流路11に形成された段部11aに圧入されることにより、弁座12が流路11の中にて弁ハウジング25に固定される。この圧入状態において、弁座12の外周下部と弁ハウジング25との間には、隙間G1が設けられる。この実施形態では、弁座12の外周下部に凹みを形成することで、この隙間G1を設けることができる。
 次に、弁座12の弁孔16の形状について詳しく説明する。図8に、図7の鎖線四角S1で囲んだ部分を拡大断面図により示す。図8に示すように、弁座12は、その弁孔16の軸線L3方向の中間部が括れるように形成される。この中間部にシート面16aが形成される。弁孔16は、シート面16aよりEGRガスの上流側にて、上流側へ向けて拡径されるテーパ状の上流側流量調整部16bを含む。また、弁孔16は、シート面16aよりEGRガスの下流側に、最小内径を有する内径部16cと、その内径部16cより下流側に位置し、下流側へ向けて拡径されるテーパ状の下流側流量調整部16dとを含む。ここで、図2、図3、図5~図7に示すように、弁座12のシート面16aと弁体13のシール面13aは、それぞれ弁孔16及び弁体13の全周にわたって同一形状をなすように形成される。すなわち、シート面16aの幅や断面形状と、シール面13aの幅や断面形状は、それぞれ弁孔16及び弁体13の全周にわたって同じに形成される。弁孔16の上流側流量調整部16b、内径部16c及び下流側流量調整部16dについても同様である。
 ここで、弁孔16の軸線L3方向における、シート面16aと上流側流量調整部16bとがなす第1の角度α1、シート面16aと内径部16cとがなす第2の角度α2、内径部16cと下流側流量調整部16dとがなす第3の角度α3のそれぞれが20°以内に設定される。ここで、第2の角度α2は、弁孔16の軸線L3に対するシート面16aの角度(シート面角度)β1でもあり、第1の角度α1と第2の角度α2との和は、同じく軸線L3に対する上流側流量調整部16bの角度(上流側流量調整部角度)β2(>β1)である。この実施形態では、シート面角度β1を「10~30°」の範囲内の角度に設定することができる。
 また、この実施形態では、図5~図7に示すように、弁体13が全閉状態から開弁動作するときに、第1の側部51がシート面16aから下流側流量調整部16dへ向けて回動し、第2の側部52がシート面16aから上流側流量調整部16bへ向けて回動するように構成される。ここで、弁体13の全閉状態における弁開度を「0%」とし、弁体13の開弁動作に伴い弁開度が増加し、弁体13の全開状態における弁開度を「100%」とする。そして、弁孔16の軸線L3方向における上流側流量調整部16bの高さ寸法H1は、第2の側部52のシール面13aが上流側流量調整部16bより上流の流路11へ移動し始めるときの弁開度により規定され、その弁開度が「30~40%」の範囲の値に設定される。この実施形態では、例えば「40%」に設定することができる。
 以上説明したこの実施形態のEGR弁1の構成によれば、弁体13が回転軸14の軸線L1を中心に回動することにより、弁体13は、そのシール面13aが弁座12のシート面16aに接触する全閉位置と、シール面13aがシート面16aから最も離れる全開位置との間で移動する。そして、弁体13が全閉位置に配置された状態(全閉状態)では、弁座12の弁孔16が弁体13により塞がれ、弁孔16におけるEGRガスの流れが遮断される。このとき、弁体13と弁座12との間が、シール面13aとシート面16aとの接触により封止されるので、弁座12を弁体13に押さえ付ける特別な弾性部材を設けることなく、EGRガスの漏れが防止される。すなわち、弁座12に弁体13を押し当てるための特別な弾性部材を設けることなく、弁座12のシート面16aと弁体13のシール面13aとの構成のみにより、EGR弁1の全閉状態におけるシール性を確保することができる。
 この実施形態の構成によれば、弁体13が全閉状態から回動して開弁動作するとき、弁体13の一部(第2の側部52)が、弁座12のシート面16aから上流へ向けて移動する。このとき、弁開度の低開度域では、弁体13の第2の側部52が、上流側流量調整部16bと対向しながら移動し、低開度域を過ぎた中開度域及び高開度域では、その第2の側部52が弁孔16より上流において移動することになる。従って、シート面16aより上流の弁孔16において、低開度域では、弁体13と上流側流量調整部16bとの間でEGRガスの流量が微量に絞られ、中開度域及び高開度域では、その流量の絞りが解放され、上流側流量調整部16bにてEGRガスが下流へ向けて円滑に案内される。すなわち、中開度域及び高開度域では、EGRガスの流れの剥離が低減し、EGRガスの圧損が低減する。このため、EGR弁1につき、低開度域ではEGRガスの流量角度分解能を向上させることができ、中開度域及び高開度域ではEGRガスの流量を増加させることができる。
 この実施形態の構成によれば、上流側流量調整部16bの高さ寸法H1が、弁体13の弁開度の40%に設定されるので、40%以下の弁開度が低開度域となり、この範囲でEGRガスの流量が絞られる。一方、40%を超える弁開度が中開度域及び高開度域となり、この範囲では上流側流量調整部16bにてEGRガスが下流へ向けて滑らかに案内される。このため、シート面16aより上流の弁孔16において、弁開度が40%以下となる低開度域ではEGRガスの流量角度分解能を向上させることができ、弁開度が40%を超える高開度域ではEGRガスの流量を増加させることができる。
 また、この実施形態の構成によれば、弁座12の弁孔16において、シート面16aの下流側に内径部16c及び下流側流量調整部16dが配置されるので、弁体13が全閉状態から開弁動作するとき、弁体13の一部(第1の側部51)が、弁孔16のシート面16aから下流へ向けて移動する。このとき、弁体13の第1の側部51が、内径部16c及び下流側流量調整部16dと対向しながら移動し、その後、弁孔16より下流において移動することになる。従って、シート面16aより下流の弁孔16において、弁体13の第1の側部51が内径部16c及び下流側流量調整部16dと対向するときは、弁体13と内径部16c及び下流側流量調整部16dとの間でEGRガスの流量がより微量に絞られ、第1の側部51が弁孔16より下流において移動するときは、内径部16c及び下流側流量調整部16dにてEGRガスが下流へ向けて滑らかに案内される。この意味で、EGR弁1につき、低開度域ではEGRガスの流量角度分解能を更に向上させることができ、中開度域及び高開度域では、EGRガスの流量を更に増加させることができる。
 この実施形態の構成によれば、第1の角度α1、第2の角度α2及び第3の角度α3のそれぞれが20°以内に設定されるので、シート面16aと上流側流量調整部16bとの境界、シート面16aと内径部16cとの境界、内径部16cと下流側流量調整部16dとの境界のそれぞれが比較的緩やかな角部となる。これにより、それら角部でのEGRガスの流れの剥離が低減し、排気還流ガスの圧損が低減する。このため、EGR弁1につき、中開度域及び高開度域ではEGRガス流量の更なる増加を図ることができる。
 図9に、この実施形態に係り、弁体13の全開状態における弁部6でのEGRガスの流速分布を解析図により示す。図10に、対比例(従来例)として、同じく弁体65の全開状態における弁部でのEGRガスの流速分布を解析図により示す。この実施形態では、図9において、鎖線四角S2,S3で囲んで示すように、弁座12の弁孔16では、その内壁でEGRガスの流れに剥離が生じ難く、EGRガスが比較的滑らかに流れることがわかる。これに対し、対比例では、図10において、鎖線四角S4,S5で囲んで示すように、弁座64の弁孔67では、その内壁でEGRガスの流れに大きな剥離が生じ、EGRガスが少し流れ難いことがわかる。この比較からもわかるように、この実施形態では、弁孔16において、EGRガスの流れの剥離が低減し、これによってEGRガスの圧損が低減するので、EGRガスの流量を増加させることができる。
 図11に、EGR弁の弁開度に対するEGRガスの流量の関係を、本実施形態と従来例とを比較してグラフにより示す。図11に示すように、弁開度が「0~40%」となる低開度域において、本実施形態では従来例よりも流量を低減することができ、「40%」を超える中開度域及び高開度域において、本実施形態では従来例よりも流量を増加できることがわかる。
 この実施形態の構成によれば、弁座12の外周下部と弁ハウジング25との間に隙間G1が設けられるので、弁座12を段部11aに圧入するときに、弁座12にかかる荷重が低減され、弁座12の変形、特にはシート面16aの変形を抑えることができる。この実施形態では、弁座12の外周下部と弁ハウジング25との間に隙間G1が設けられるが、シート面16aの高さに対応する弁座12の外周部まで弁ハウジング25との間に隙間G1を設けることが好ましい。これにより、弁座12の段部11aへの圧入時に、シート面16aの高さに対応する弁座12の外周部にかかる荷重が低減され、シート面16aの変形をより有効に抑えることができる。更に、弁座12の段部11aへの圧入時には、削れ粉が生じることがあるが、この削れ粉を隙間G1に溜めることができる。このため、削れ粉が段部11aと弁座12との間に挟まれて弁座12の高さが変わってしまうことを防止することができる。
 加えて、この実施形態の構成によれば、弁体13が全閉状態から開弁し始めるとき、あるいは、弁体13が弁座12に着座するときは、シール面13aがシート面16aに摺接することがない。このため、弁体13と弁座12との擦れが抑えられ、弁体13を速やかに開弁動作又は閉弁動作することができ、弁体13のシール面13aと弁座12のシート面16aとの摩耗を低減することができる。この結果、EGR弁1につき、開弁及び閉弁の応答性と耐久性を向上させることができる。
 また、この実施形態の構成によれば、流路11において、弁体13が弁座12よりもEGRガスの上流側に配置されるので、弁体13の全閉状態では、EGRガスの圧力が弁体13を弁座12へ押し付ける方向へ作用することになる。このため、弁座12と弁体13との間、すなわちシート面16aとシール面13aとの間のシール性を更に向上させることができる。
 なお、この発明は前記実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜に変更して実施することができる。
 (1)前記実施形態では、弁座12の弁孔16において、シート面16aより下流に内径部16c及び下流側流量調整部16dを設けたが、これらを省略することもできる。
 (2)前記実施形態では、上流側流量調整部16bの高さ寸法H1を、弁開度で「40%」に設定したが、「30~40%」の範囲内の任意の値に設定することができる。
 この発明は、ガソリンエンジンやディーゼルエンジンに装備されるEGR装置に利用することができる。
1 EGR弁
11 流路
12 弁座
13 弁体
13a シール面
14 回転軸
14a ピン(取付部)
16 弁孔
16a シート面
16b 上流側流量調整部
16c 内径部
16d 下流側流量調整部
25 弁ハウジング
51 第1の側部
52 第2の側部

Claims (4)

  1.  ハウジングと、
     前記ハウジングに設けられ、排気還流ガスが流れる流路と、
     前記流路に配置され、弁孔を含む弁座と、
     前記弁座は、前記弁孔に形成された環状のシート面を含むことと、
     前記流路に配置され、前記弁座に着座可能に設けられた弁体と、
     前記弁体は、円板状をなし、前記シート面に対応する環状のシール面が外周に形成されることと、
     前記弁体が取り付けられる取付部を含み、前記弁体を開閉するために回転される回転軸と
    を備え、前記弁体が前記弁座に着座して前記シール面が前記シート面に接触する全閉状態から、前記回転軸を回転させることにより、前記弁体が回動して開弁動作するように構成された排気還流弁において、
     前記弁座の前記弁孔は、前記シート面より前記排気還流ガスの上流側にて、前記上流側へ向けて拡径されるテーパ状の上流側流量調整部を含むことを特徴とする排気還流弁。
  2.  前記弁体は、前記回転軸の軸線に沿った仮想面を境として第1の側部と第2の側部に分けられ、前記弁体が前記全閉状態から開弁動作するときに、前記第1の側部が前記シート面から前記排気還流ガスの下流側へ向けて回動し、前記第2の側部が前記シート面から前記上流側流量調整部へ向けて回動するように構成され、
     前記弁体の前記全閉状態における弁開度を0%とし、前記弁体の開弁動作に伴い前記弁開度が増加し、前記弁体の全開状態における前記弁開度を100%とすると、前記弁孔の軸線方向における前記上流側流量調整部の高さ寸法が、前記第2の側部の前記シール面が前記上流側流量調整部より上流へ移動し始めるときの前記弁開度により規定され、その弁開度が30~40%に設定される
    ことを特徴とする請求項1に記載の排気還流弁。
  3.  前記弁座の前記弁孔は、前記シート面より前記排気還流ガスの下流側に位置し、最小内径を有する内径部と、前記内径部より前記下流側に位置し、前記下流側へ向けて拡径されるテーパ状の下流側流量調整部とを含むことを特徴とする請求項1又は2に記載の排気還流弁。
  4.  前記弁孔の軸線方向における、前記シート面と前記上流側流量調整部とがなす第1の角度、前記シート面と前記内径部とがなす第2の角度、前記内径部と前記下流側流量調整部とがなす第3の角度のそれぞれが20°以内に設定されることを特徴とする請求項3に記載の排気還流弁。
PCT/JP2017/013176 2016-05-06 2017-03-30 排気還流弁 WO2017191718A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/090,659 US10655572B2 (en) 2016-05-06 2017-03-30 Exhaust gas recirculation valve
CN201780024483.0A CN109072826B (zh) 2016-05-06 2017-03-30 排气回流阀
DE112017002343.2T DE112017002343T5 (de) 2016-05-06 2017-03-30 Abgasrückführungsventil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093329A JP6698419B2 (ja) 2016-05-06 2016-05-06 排気還流弁
JP2016-093329 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017191718A1 true WO2017191718A1 (ja) 2017-11-09

Family

ID=60203767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013176 WO2017191718A1 (ja) 2016-05-06 2017-03-30 排気還流弁

Country Status (5)

Country Link
US (1) US10655572B2 (ja)
JP (1) JP6698419B2 (ja)
CN (1) CN109072826B (ja)
DE (1) DE112017002343T5 (ja)
WO (1) WO2017191718A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6768427B2 (ja) * 2016-06-01 2020-10-14 愛三工業株式会社 二重偏心弁
CN108493089A (zh) * 2018-05-23 2018-09-04 武汉华星光电技术有限公司 气流分配装置及干刻蚀设备
JP7428533B2 (ja) * 2020-02-14 2024-02-06 株式会社ミクニ 車両の排気バルブ装置
EP4080035A1 (en) 2021-04-21 2022-10-26 Volvo Truck Corporation Internal combustion engine system
GB2610406A (en) 2021-09-02 2023-03-08 Black & Decker Inc Seal

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149475A (ja) * 1978-03-10 1983-09-05 ゲブリユ−ダ−・アダムス・アルマツレン・エン・アパレ−ト・ジ−・エム・ビ−・エツチ・ウント・コンパニ・カ−・ゲ− 改良デイスク弁
JPS63190668U (ja) * 1987-05-29 1988-12-08
JP3017058U (ja) * 1995-04-17 1995-10-17 日機工業株式会社 回転弁のバルブシ−ト
US6698717B1 (en) * 2002-10-24 2004-03-02 Honeywell International Inc. Modified butterfly valve and assembly
US20090014675A1 (en) * 2007-04-17 2009-01-15 Barker James E Resilient seated butterfly valve with interchangeable off-center and on-center discs
JP2011007313A (ja) * 2009-06-29 2011-01-13 Supero Seiki Kk バタフライ弁
JP2012077845A (ja) * 2010-10-01 2012-04-19 Kurimoto Ltd 偏心バタフライ弁
US20120181468A1 (en) * 2009-08-04 2012-07-19 Borgwarner Inc. Engine breathing system valve and products including the same
WO2013190589A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 排気ガス循環バルブおよび製造方法
WO2015098954A1 (ja) * 2013-12-25 2015-07-02 愛三工業株式会社 二重偏心弁
JP2015218833A (ja) * 2014-05-19 2015-12-07 愛三工業株式会社 二重偏心弁

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980388A (en) * 1955-04-15 1961-04-18 Baldwin Lima Hamilton Corp Butterfly valve
JPS55134921A (en) 1979-04-10 1980-10-21 Nippon Denso Co Ltd Ignition coil for internal combustion engine
JPS5759646A (en) 1980-09-26 1982-04-10 Houwa Kikai Kogyo Kk Crusher
US4817916A (en) * 1987-03-09 1989-04-04 Jamesbury Corporation Butterfly valve
JP3638475B2 (ja) 1999-06-23 2005-04-13 株式会社巴技術研究所 低騒音バタフライ弁
JP2001317640A (ja) 2000-05-11 2001-11-16 Tomoe Tech Res Co バタフライ弁のシートリング
JP2011179625A (ja) * 2010-03-03 2011-09-15 Denso Corp ボールバルブ
JP2013199887A (ja) * 2012-03-26 2013-10-03 Keihin Corp 排気ガス再循環バルブ
WO2015098952A1 (ja) 2013-12-25 2015-07-02 愛三工業株式会社 二重偏心弁

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149475A (ja) * 1978-03-10 1983-09-05 ゲブリユ−ダ−・アダムス・アルマツレン・エン・アパレ−ト・ジ−・エム・ビ−・エツチ・ウント・コンパニ・カ−・ゲ− 改良デイスク弁
JPS63190668U (ja) * 1987-05-29 1988-12-08
JP3017058U (ja) * 1995-04-17 1995-10-17 日機工業株式会社 回転弁のバルブシ−ト
US6698717B1 (en) * 2002-10-24 2004-03-02 Honeywell International Inc. Modified butterfly valve and assembly
US20090014675A1 (en) * 2007-04-17 2009-01-15 Barker James E Resilient seated butterfly valve with interchangeable off-center and on-center discs
JP2011007313A (ja) * 2009-06-29 2011-01-13 Supero Seiki Kk バタフライ弁
US20120181468A1 (en) * 2009-08-04 2012-07-19 Borgwarner Inc. Engine breathing system valve and products including the same
JP2012077845A (ja) * 2010-10-01 2012-04-19 Kurimoto Ltd 偏心バタフライ弁
WO2013190589A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 排気ガス循環バルブおよび製造方法
WO2015098954A1 (ja) * 2013-12-25 2015-07-02 愛三工業株式会社 二重偏心弁
JP2015218833A (ja) * 2014-05-19 2015-12-07 愛三工業株式会社 二重偏心弁

Also Published As

Publication number Publication date
DE112017002343T5 (de) 2019-01-24
US20190203673A1 (en) 2019-07-04
CN109072826B (zh) 2020-10-27
CN109072826A (zh) 2018-12-21
JP2017201161A (ja) 2017-11-09
JP6698419B2 (ja) 2020-05-27
US10655572B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2017191718A1 (ja) 排気還流弁
JP5759646B1 (ja) 二重偏心弁、二重偏心弁製造方法
JP5759647B1 (ja) 二重偏心弁
JP2011043218A (ja) 流体制御弁
JP2013174131A (ja) 排気流路用弁装置
JP2011179625A (ja) ボールバルブ
JP2011047290A (ja) Egrバルブ
JP2014520993A (ja) 内燃機関の排ガス流を制御するための弁装置
JP2011144861A (ja) ボールバルブ
JP6859233B2 (ja) 二重偏心弁
JP5615117B2 (ja) 流路開閉弁
US8434736B2 (en) Fluid passage valve
JP6701436B2 (ja) バタフライバルブ及び排気ガス再循環バルブ
JP2003184583A (ja) 絞り弁装置
JP6424968B2 (ja) 流量可変バルブ機構及び過給機
KR102092773B1 (ko) 차량용 밸브
JP6673747B2 (ja) 二重偏心弁及びその製造方法
JP2011163423A (ja) ボールバルブ
JP5690537B2 (ja) 流路開閉弁
JP2019015249A (ja) 絞り弁装置
JP5751057B2 (ja) 弁装置
CN113108067A (zh) 阀装置
JP2012202465A (ja) バルブ装置
JP2011122659A (ja) バタフライバルブ
JP2012072783A (ja) 流路開閉弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792651

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792651

Country of ref document: EP

Kind code of ref document: A1