WO2017187838A1 - 電子写真感光体、プロセスカートリッジ及び画像形成装置 - Google Patents

電子写真感光体、プロセスカートリッジ及び画像形成装置 Download PDF

Info

Publication number
WO2017187838A1
WO2017187838A1 PCT/JP2017/010965 JP2017010965W WO2017187838A1 WO 2017187838 A1 WO2017187838 A1 WO 2017187838A1 JP 2017010965 W JP2017010965 W JP 2017010965W WO 2017187838 A1 WO2017187838 A1 WO 2017187838A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
image
photosensitive layer
image carrier
Prior art date
Application number
PCT/JP2017/010965
Other languages
English (en)
French (fr)
Inventor
智文 清水
岡田 英樹
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to JP2018514194A priority Critical patent/JP6601557B2/ja
Priority to EP17789127.2A priority patent/EP3451064B1/en
Priority to US16/092,013 priority patent/US10545418B2/en
Priority to CN201780023658.6A priority patent/CN109074008B/zh
Publication of WO2017187838A1 publication Critical patent/WO2017187838A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061443Amines arylamine diamine benzidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0596Macromolecular compounds characterised by their physical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0635Heterocyclic compounds containing one hetero ring being six-membered
    • G03G5/0638Heterocyclic compounds containing one hetero ring being six-membered containing two hetero atoms

Definitions

  • the present invention relates to an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus.
  • the electrophotographic photoreceptor is used in an electrophotographic image forming apparatus.
  • the electrophotographic photosensitive member for example, a single layer type electrophotographic photosensitive member or a multilayer type electrophotographic photosensitive member is used.
  • the electrophotographic photoreceptor includes a photosensitive layer.
  • the single layer type electrophotographic photosensitive member includes a single layer type photosensitive layer having a charge generation function and a charge transport function as a photosensitive layer.
  • the multilayer electrophotographic photoreceptor includes, as a photosensitive layer, a charge generation layer having a charge generation function and a charge transport layer having a charge transport function.
  • the white spot phenomenon is, for example, a minute image defect (more specifically, a diameter of 0.5 mm or more and 2.5 mm or less in an area (image area) formed by transferring a toner image onto a recording medium. This is a phenomenon in which a circular image defect) occurs.
  • a compound represented by the following chemical formula (E-1) (hereinafter sometimes referred to as the compound (E-1)) or the following chemical formula (E-2) ) (Hereinafter sometimes referred to as compound (E-2)).
  • the photosensitive layer provided in the electrophotographic photoreceptor described in Patent Document 1 contains, for example, a compound represented by the following chemical formula (E-3) (hereinafter sometimes referred to as compound (E-3)). To do.
  • the electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer.
  • the photosensitive layer is a single layer type photosensitive layer containing at least a charge generating agent, an electron transport agent, a hole transport agent, and a binder resin.
  • the electron transport agent includes a naphthoquinone derivative represented by the general formula (1).
  • the triboelectric charge amount of the calcium carbonate when the photosensitive layer and the calcium carbonate are rubbed is +7 ⁇ C / g or more.
  • R 11 and R 12 are each independently an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms which may have a substituent, and a substituent.
  • the group represented by at least one of R 11 and R 12 is substituted with one or more halogen atoms.
  • the process cartridge of the present invention includes the above-described electrophotographic photosensitive member.
  • the image forming apparatus of the present invention includes an image carrier, a charging unit, an exposure unit, a developing unit, and a transfer unit.
  • the image carrier is the above-described electrophotographic photosensitive member.
  • the charging unit charges the surface of the image carrier to a positive polarity.
  • the exposure unit exposes the charged surface of the image carrier to form an electrostatic latent image on the surface of the image carrier.
  • the developing unit develops the electrostatic latent image as a toner image.
  • the transfer unit transfers the toner image from the surface of the image carrier to a recording medium while being in contact with the surface of the image carrier.
  • the electrophotographic photoreceptor of the present invention can suppress the occurrence of white spot phenomenon.
  • the process cartridge and the image forming apparatus of the present invention can suppress the occurrence of the white spot phenomenon.
  • 1 is a schematic cross-sectional view illustrating an example of an electrophotographic photosensitive member according to a first embodiment of the present invention.
  • 1 is a schematic cross-sectional view illustrating an example of an electrophotographic photosensitive member according to a first embodiment of the present invention.
  • 1 is a schematic cross-sectional view illustrating an example of an electrophotographic photosensitive member according to a first embodiment of the present invention. It is a figure which shows an example of the image forming apparatus which concerns on 2nd embodiment of this invention.
  • 1 is a 1 H-NMR spectrum of a naphthoquinone derivative (1-4). It is a figure which shows the outline
  • a compound and its derivatives may be generically named by adding “system” after the compound name.
  • “polymer” is added after the compound name to indicate the polymer name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
  • a halogen atom an alkyl group having 1 to 8 carbon atoms, an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 3 carbon atoms, carbon
  • each group has the following meaning.
  • halogen group examples include a fluorine atom (fluoro group), a chlorine atom (chloro group), a bromine atom (bromo group), or an iodine atom (iodo group).
  • An alkyl group having 1 to 8 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 8 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, A neopentyl group, an n-hexyl group, an n-heptyl group or an n-octyl group can be mentioned.
  • alkyl group having 1 to 6 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, A neopentyl group or a hexyl group is mentioned.
  • An alkyl group having 1 to 4 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, and a t-butyl group.
  • An alkyl group having 1 to 3 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • alkoxy group having 1 to 6 carbon atoms is unsubstituted.
  • alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, s-butoxy group, t-butoxy group, pentoxy group, and hexyloxy. Groups.
  • An aryl group having 6 to 14 carbon atoms is unsubstituted.
  • Examples of the aryl group having 6 to 14 carbon atoms include an unsubstituted aromatic monocyclic hydrocarbon group having 6 to 14 carbon atoms and an unsubstituted aromatic condensed bicyclic carbon group having 6 to 14 carbon atoms.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
  • An aryl group having 6 to 10 carbon atoms is unsubstituted.
  • the aryl group having 6 to 10 carbon atoms is, for example, an unsubstituted aromatic monocyclic hydrocarbon group having 6 to 10 carbon atoms, or an unsubstituted aromatic condensed bicyclic carbon group having 6 to 10 carbon atoms. It is a hydrogen group or an unsubstituted aromatic condensed tricyclic hydrocarbon group having 6 to 10 carbon atoms.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
  • An aralkyl group having 7 to 20 carbon atoms is unsubstituted.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include a phenylmethyl group, a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a phenylpentyl group, a phenylhexyl group, a 1-naphthylmethyl group, and a 2-naphthylmethyl group.
  • 9-anthracenemethyl group or 9-phenanthrylmethyl group are examples of the aralkyl group having 7 to 20 carbon atoms.
  • An aralkyl group having 7 to 14 carbon atoms is unsubstituted.
  • Examples of the aralkyl group having 7 to 14 carbon atoms include a phenylmethyl group, a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a phenylpentyl group, a phenylhexyl group, a 1-naphthylmethyl group, and a 2-naphthylmethyl group.
  • a cycloalkyl group having 3 to 10 carbon atoms is unsubstituted.
  • the cycloalkyl group having 3 to 10 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
  • a cycloalkyl group having 5 to 7 carbon atoms is unsubstituted.
  • Examples of the cycloalkyl group having 5 to 7 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • a cycloalkylidene group having 3 to 10 carbon atoms is unsubstituted.
  • the cycloalkylidene group having 3 to 10 carbon atoms include a cyclopropylidene group, a cyclobutylidene group, a cyclopentylidene group, a cyclohexylidene group, a cycloheptylidene group, a cyclooctylidene group, and a cyclononylidene group. Or a cyclohexylidene group is mentioned.
  • a cycloalkylidene group having 5 to 7 carbon atoms is unsubstituted.
  • Examples of the cycloalkylidene group having 5 to 7 carbon atoms include a cyclopentylidene group, a cyclohexylidene group, and a cycloheptylidene group.
  • the first embodiment of the present invention relates to an electrophotographic photoreceptor.
  • an electrophotographic photoreceptor hereinafter sometimes referred to as a photoreceptor
  • FIGS. 1A to 1C show an example of the photoreceptor 1 according to the first embodiment.
  • the photoreceptor 1 includes a conductive substrate 2 and a photosensitive layer 3, for example.
  • the photosensitive layer 3 is provided directly or indirectly on the conductive substrate 2.
  • the photosensitive layer 3 may be provided directly on the conductive substrate 2.
  • the photoreceptor 1 may further include an intermediate layer.
  • the intermediate layer 4 may be provided between the conductive substrate 2 and the photosensitive layer 3.
  • the photosensitive layer 3 may be exposed as the outermost layer.
  • the photoreceptor 1 may further include a protective layer.
  • a protective layer 5 may be provided on the photosensitive layer 3.
  • the photosensitive layer is a monolayer type photosensitive layer containing at least a charge generating agent, an electron transport agent, a hole transport agent, and a binder resin.
  • the electron transporting agent includes a naphthoquinone derivative represented by the general formula (1) (hereinafter sometimes referred to as a naphthoquinone derivative (1)).
  • the triboelectric charge amount of calcium carbonate when the photosensitive layer and calcium carbonate are rubbed is +7 ⁇ C / g or more.
  • the photoreceptor according to the first embodiment can suppress the occurrence of the white spot phenomenon. The reason is presumed as follows.
  • An electrophotographic image forming apparatus includes an image carrier (photosensitive member), a charging unit, an exposure unit, a developing unit, and a transfer unit.
  • the transfer unit transfers the toner image developed by the developing unit to a recording medium (for example, recording paper). More specifically, the transfer unit transfers the toner image developed on the surface of the photoreceptor to a recording medium. As a result, a toner image is formed on the recording medium.
  • the recording medium may be rubbed on the surface of the photoreceptor, and the recording medium may be charged (so-called triboelectric charging).
  • the recording medium tends to be charged to the same polarity as the charged polarity (positive polarity) of the photoconductor and the chargeability tends to decrease, or tends to be charged to the opposite polarity (negative polarity) (so-called reverse charging).
  • minute components for example, paper dust
  • minute components adhere to the image area on the surface of the photoreceptor a defect (white spot) may occur in the image formed on the recording medium.
  • a phenomenon in which such an image defect occurs is called a white spot phenomenon.
  • the method for evaluating the occurrence of the white spot phenomenon will be described in detail in Examples.
  • the photosensitive layer contains the naphthoquinone derivative (1).
  • the naphthoquinone derivative (1) has a halogen atom, and the triboelectric charge amount of calcium carbonate when rubbing the photosensitive layer with calcium carbonate is +7 ⁇ C / g or more.
  • the recording medium even if the recording medium rubs against the surface of the photoconductor in the transfer portion, the recording medium has the same polarity as the charged polarity of the photoconductor and the chargeability is not easily lowered. It tends to be less prone to reverse charging. Therefore, it is considered that minute components (for example, paper dust) are less likely to adhere to the surface of the photoreceptor, and the occurrence of the white spot phenomenon is suppressed.
  • the triboelectric charge amount of calcium carbonate is +7 ⁇ C / g or more, preferably +7 ⁇ C / g or more and +15 ⁇ C / g or less.
  • Calcium carbonate is the main component of paper powder. If the triboelectric charge amount of calcium carbonate is less than +7 ⁇ C / g, the repulsive force acting between the photoconductor and the paper dust is not sufficiently large, so the paper dust tends to adhere to the surface of the photoconductor, and the white spot phenomenon Will occur.
  • the thickness of the photosensitive layer is not particularly limited as long as it can sufficiently function as a photosensitive layer.
  • the thickness of the photosensitive layer is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the photosensitive layer may further contain an additive.
  • an additive a conductive substrate, a charge generator, an electron transport agent, a hole transport agent, a binder resin, an additive, and an intermediate layer will be described as each element of the photoreceptor.
  • a method for manufacturing the photoreceptor will be described.
  • the conductive substrate is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor.
  • the conductive substrate may be formed of a material having at least a surface portion having conductivity.
  • An example of the conductive substrate is a conductive substrate formed of a conductive material.
  • Another example of the conductive substrate is a conductive substrate coated with a conductive material.
  • the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, and indium.
  • These materials having conductivity may be used alone or in combination of two or more. Examples of the combination of two or more include alloys (more specifically, aluminum alloy, stainless steel, brass, etc.).
  • aluminum or an aluminum alloy is preferable because charge transfer from the photosensitive layer to the conductive substrate is good.
  • the shape of the conductive substrate is appropriately selected according to the structure of the image forming apparatus.
  • Examples of the shape of the conductive substrate include a sheet shape or a drum shape.
  • the thickness of the conductive substrate is appropriately selected according to the shape of the conductive substrate.
  • the charge generator is not particularly limited as long as it is a charge generator for a photoreceptor.
  • the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, trisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, indigo pigments, azurenium pigments, cyanine Pigments, inorganic photoconductive materials (more specifically, selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, amorphous silicon, etc.) powders, pyrylium pigments, ansanthrone pigments, triphenylmethane pigments, selenium pigments , Toluidine pigments, pyrazoline pigments or quinacridone pigments.
  • a charge generating agent may be used individually by 1 type, and may be used in combination of 2
  • the phthalocyanine pigment examples include metal-free phthalocyanine represented by the chemical formula (C-1) (hereinafter sometimes referred to as compound (C-1)) or metal phthalocyanine.
  • the metal phthalocyanine examples include titanyl phthalocyanine represented by the chemical formula (C-2) (hereinafter sometimes referred to as the compound (C-2)), hydroxygallium phthalocyanine or chlorogallium phthalocyanine.
  • the phthalocyanine pigment may be crystalline or non-crystalline.
  • the crystal shape of the phthalocyanine pigment (for example, X type, ⁇ type, ⁇ type, Y type, V type or II type) is not particularly limited, and phthalocyanine pigments having various crystal shapes are used.
  • Examples of the crystal of metal-free phthalocyanine include a metal-free phthalocyanine X-type crystal (hereinafter sometimes referred to as X-type metal-free phthalocyanine).
  • Examples of the crystals of titanyl phthalocyanine include ⁇ -type, ⁇ -type, and Y-type crystals of titanyl phthalocyanine (hereinafter sometimes referred to as ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, and Y-type titanyl phthalocyanine, respectively).
  • Examples of the crystal of hydroxygallium phthalocyanine include a V-type crystal of hydroxygallium phthalocyanine.
  • Examples of chlorogallium phthalocyanine crystals include chlorogallium phthalocyanine type II crystals.
  • the charge generator is preferably a phthalocyanine-based pigment, and more preferably a metal-free phthalocyanine.
  • the charge generating agent preferably contains an X-type metal-free phthalocyanine in order to further suppress the white spot phenomenon.
  • Y-type titanyl phthalocyanine has a main peak at 27.2 ° of the Bragg angle (2 ⁇ ⁇ 0.2 °) in the CuK ⁇ characteristic X-ray diffraction spectrum, for example.
  • the main peak in the CuK ⁇ characteristic X-ray diffraction spectrum is a peak having the first or second highest intensity in a range where the Bragg angle (2 ⁇ ⁇ 0.2 °) is 3 ° or more and 40 ° or less.
  • An santhrone pigment is preferably used as a charge generating agent in a photoreceptor applied to an image forming apparatus using a short wavelength laser light source.
  • the wavelength of the short wavelength laser light is, for example, not less than 350 nm and not more than 550 nm.
  • the content of the charge generating agent is preferably 0.1 parts by weight or more and 50 parts by weight or less, and 0.5 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the binder resin contained in the photosensitive layer. More preferably.
  • the electron transport agent includes a naphthoquinone derivative (1).
  • the naphthoquinone derivative (1) is represented by the general formula (1).
  • R 11 and R 12 are each independently an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms that may have a substituent, and a substituent.
  • the group represented by at least one of R 11 and R 12 is substituted with one or more halogen atoms.
  • alkyl groups having 1 to 8 carbon atoms represented by R 11 and R 12 an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or isobutyl group is more preferable.
  • the alkyl group having 1 to 8 carbon atoms may be substituted with one or more halogen atoms. Examples of the alkyl group having 1 to 8 carbon atoms substituted with one or more halogen atoms include a chloromethyl group.
  • aryl groups having 6 to 14 carbon atoms that may have a substituent represented by R 11 and R 12 6 to 10 carbon atoms that may have a substituent.
  • the aryl group is preferably a phenyl group which may have a substituent.
  • the aryl group having 6 to 14 carbon atoms, which may have a substituent may be substituted with one or more halogen atoms.
  • the substituent of the aryl group having 6 to 14 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, More preferably, it is a group.
  • the aryl group having 6 to 14 carbon atoms and having an alkyl group having 1 to 6 carbon atoms is preferably a 4-methylphenyl group.
  • aralkyl groups having 7 to 20 carbon atoms that may have a substituent represented by R 11 and R 12 in the general formula (1) 7 to 14 carbon atoms that may have a substituent.
  • the aralkyl group is preferably.
  • the aralkyl group having 7 to 20 carbon atoms which may have a substituent may be substituted with one or a plurality of halogen atoms.
  • the substituent of the aralkyl group having 7 to 20 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • cycloalkyl groups having 3 to 10 carbon atoms which may have a substituent represented by R 11 and R 12 in the general formula (1) 5 to 7 carbon atoms which may have a substituent.
  • the following cycloalkyl groups are preferred.
  • the cycloalkyl group having 3 to 10 carbon atoms which may have a substituent may be substituted with one or a plurality of halogen atoms.
  • the substituent that the cycloalkyl group having 3 to 10 carbon atoms has is preferably an alkyl group having 1 to 6 carbon atoms.
  • a group represented by R 11 and R 12 (an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms which may have a substituent, and a substituent)
  • the total number of halogen atoms in the group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms which may have a substituent. It is preferably 1 or more and 3 or less, more preferably 1 or 2.
  • the total number of halogen atoms contained in the groups represented by R 11 and R 12 is 1 or more and 3 or less, the effect of suppressing the white spot phenomenon by the naphthoquinone derivative (1) is further increased.
  • the halogen atom of the group represented by R 11 and R 12 a chlorine atom or a fluorine atom is preferable.
  • R 11 and R 12 are preferably different from each other. Since the naphthoquinone derivative (1) in which R 11 and R 12 are different from each other, that is, the naphthoquinone derivative (1) having an asymmetric structure, has high solubility in a solvent, a coating solution for forming a photosensitive layer of the photoreceptor is prepared. Easy to do.
  • any one of R 11 and R 12 is substituted with an alkyl group having 1 to 3 carbon atoms substituted with one or more halogen atoms, or one or more halogen atoms. It preferably represents a phenyl group. At the same time, the other of R 11 and R 12 preferably represents a phenyl group which may have an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 4 carbon atoms.
  • the halogen atom is preferably a chlorine atom or a fluorine atom.
  • one of R 11 and R 12 represents one or more phenyl groups substituted with halogen atoms, the other of R 11 and R 12, 1 to 4 carbon atoms It is preferable to represent the alkyl group.
  • any one of R 11 and R 12 represents a phenyl group substituted with one or more halogen atoms, and the other of R 11 and R 12 represents an alkyl group having 1 to 4 carbon atoms
  • the naphthoquinone derivative (1) has a greater effect of suppressing the white spot phenomenon.
  • R 11 and R 12 represents a phenyl group substituted with one or more halogen atoms
  • the substitution position of the halogen atom in the phenyl group is ortho position (o position), meta position (m position). ), Para-position (p-position) or at least one of them, and meta-position is preferable.
  • the phenyl group substituted with one or more halogen atoms include a 4-chlorophenyl group, a 4-fluorophenyl group, and a 3,5-dichlorophenyl group. Among these, a 3,5-dichlorophenyl group is exemplified. Particularly preferred.
  • naphthoquinone derivative (1) examples include naphthoquinone derivatives represented by the chemical formulas (1-1) to (1-5) (hereinafter referred to as naphthoquinone derivatives (1-1) to (1-5), respectively). There are).
  • any one of R 11 and R 12 is substituted with one or more halogen atoms
  • a naphthoquinone derivative in which the other of R 11 and R 12 represents an alkyl group having 1 to 4 carbon atoms, that is, a naphthoquinone derivative (1-5) is more effective in suppressing the white spot phenomenon.
  • the naphthoquinone derivative (1-5) contains two halogen atoms (halogen substituents) having a high electronegativity, so that the naphthoquinone derivative (1-1) to (1-4) has a structure. This is thought to be because the effect of positively charging the paper dust when it comes into contact with the paper dust is great.
  • the naphthoquinone derivative (1) includes, for example, a reaction represented by the reaction formula (R-1) (hereinafter sometimes referred to as reaction (R-1)) and a reaction represented by the reaction formula (R-2) (hereinafter referred to as reaction). (It may be described as (R-2)) or by a method analogous thereto.
  • the method for producing the naphthoquinone derivative (1) includes, for example, reaction (R-1) and reaction (R-2).
  • reaction (R-1) first, 1 equivalent of the compound represented by the general formula (a1) (2,3-dihalogeno-1,4-naphthoquinone. Hereinafter, it may be referred to as dihalogenonaphthoquinone (a1). ) And 2 equivalents of the compound represented by chemical formula (a2) (potassium phthalimide; hereinafter sometimes referred to as potassium phthalimide (a2)) are heated in a solvent and stirred and refluxed. Is allowed to cool to room temperature (about 25 ° C.) to produce a reaction intermediate.
  • a1 1 equivalent of the compound represented by the general formula (a1) (2,3-dihalogeno-1,4-naphthoquinone.
  • a2 potassium phthalimide
  • the mixture is heated and stirred in the presence of hydrazine (NH 2 NH 2 ) to react the reaction intermediate (decomposition of hydrazine), and 1 equivalent of the compound (2,3-diamino-1) represented by the chemical formula (A) , 4-naphthoquinone (hereinafter sometimes referred to as diaminonaphthoquinone (A)).
  • hydrazine NH 2 NH 2
  • X represents a halogen atom (halogen group).
  • the halogen atom (halogen group) represented by X is preferably a chlorine atom (chloro group).
  • reaction (R-1) when dihalogenonaphthoquinone (a1) and potassium phthalimide (a2) are stirred and refluxed in a solvent, the reflux temperature is preferably 50 ° C. or more and 100 ° C. or less, and the reflux time is It is preferably 2 hours or more and 8 hours or less.
  • the solvent include acetonitrile, N, N-dimethylformamide (DMF), tetrahydrofuran, or dimethyl sulfoxide.
  • the heating temperature is preferably 50 ° C. or more and 100 ° C. or less, and the heating time is It is preferably 0.5 hours or more and 2 hours or less.
  • R 11 and R 12 are each synonymous with R 11 and R 12 in the general formula (1).
  • reaction (R-2) is a dehydration reaction subsequent to the addition reaction of diaminonaphthoquinone (A) to the diketone derivative (B), approximately 1 mole of diaminonaphthoquinone (A) is equivalent to about 1 mole of diketone derivative (A). B) is preferably added.
  • the reflux temperature is preferably 50 ° C. or more and 100 ° C. or less, and the reflux time is 2 It is preferable that the time is not less than 6 hours.
  • the solvent include methanol, ethanol, isopropanol, and butanol.
  • the acid catalyst include acetic acid, concentrated sulfuric acid, and paratoluenesulfonic acid.
  • the amount of the acid catalyst is preferably 0.2 mol or more and 0.8 mol or less with respect to 1 mol of diaminonaphthoquinone (A).
  • the acid catalyst may function as a solvent.
  • a solvent distillation step or a purification step may be included as necessary.
  • a known method more specifically, reduced-pressure solvent distillation or the like
  • a known method more specifically, filtration, chromatography, crystal folding, etc.
  • the electron transport agent may further contain another electron transport agent other than the naphthoquinone derivative (1) in addition to the naphthoquinone derivative (1).
  • Another electron transport agent is appropriately selected from known electron transport agents.
  • Examples of other electron transfer agents include quinone compounds (quinone compounds other than naphthoquinone derivatives (1)), diimide compounds, hydrazone compounds, malononitrile compounds, thiopyran compounds, trinitrothioxanthone compounds, 3, 4,5,7-tetranitro-9-fluorenone compound, dinitroanthracene compound, dinitroacridine compound, tetracyanoethylene, 2,4,8-trinitrothioxanthone, dinitrobenzene, dinitroacridine, succinic anhydride, maleic anhydride Examples include acid or dibromomaleic anhydride.
  • Examples of the quinone compound include diphenoquinone compounds, azoquinone compounds, anthraquinone compounds, nitroanthraquinone compounds, and dinitroanthraquinone compounds. These electron transfer agents may be used alone or in combination of two or more.
  • the content of the electron transport agent is preferably 5 parts by mass or more and 100 parts by mass or less, and more preferably 10 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the binder resin contained in the photosensitive layer. preferable.
  • the content of the naphthoquinone derivative (1) in the electron transfer agent is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass with respect to the total mass of the electron transfer agent. It is particularly preferred.
  • hole transport agent for example, a nitrogen-containing cyclic compound or a condensed polycyclic compound can be used.
  • the nitrogen-containing cyclic compound and the condensed polycyclic compound include diamine derivatives (more specifically, benzidine derivatives, N, N, N ′, N′-tetraphenylphenylenediamine derivatives, N, N, N ′).
  • N′-tetraphenylnaphthylenediamine derivative or N, N, N ′, N′-tetraphenylphenanthrylenediamine derivative, etc. oxadiazole compounds (more specifically, 2,5-di (4 -Methylaminophenyl) -1,3,4-oxadiazole etc.), styryl compounds (more specifically 9- (4-diethylaminostyryl) anthracene etc.), carbazole compounds (more specifically polyvinylcarbazole) Etc.), organic polysilane compounds, pyrazoline compounds (more specifically, 1-phenyl-3- (p-dimethylaminophenyl) pyrazoli Etc.), hydrazone compounds, indole compounds, oxazole compounds, isoxazole compounds, thiazole compounds, thiadiazole compounds, imidazole compounds, pyrazole compound, or triazole-based compounds.
  • These hole transport agents may be used
  • R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are each independently an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms. Represents a group.
  • r, s, v and w each independently represent an integer of 0 or more and 5 or less.
  • t and u each independently represents an integer of 0 or more and 4 or less.
  • R 21 to R 26 each independently preferably represents an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms. More preferably, it represents a methyl group. It is preferable that r, s, v and w each independently represent 0 or 1. t and u preferably represent 0.
  • a compound represented by the chemical formula (H-1) (hereinafter sometimes referred to as the compound (H-1)) is preferable.
  • the content of the hole transport agent is preferably 10 parts by mass or more and 200 parts by mass or less, and preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the binder resin contained in the photosensitive layer. More preferred.
  • the binder resin disperses and fixes a charge generating agent or the like in the photosensitive layer.
  • the binder resin include a thermoplastic resin, a thermosetting resin, and a photocurable resin.
  • the thermoplastic resin include polycarbonate resin, polyarylate resin, styrene-butadiene resin, styrene-acrylonitrile resin, styrene-maleic acid resin, acrylic acid resin, styrene-acrylic acid resin, polyethylene resin, and ethylene-vinyl acetate resin.
  • Chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer resin, vinyl chloride-vinyl acetate resin, alkyd resin, polyamide resin, urethane resin, polysulfone resin, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyester resin or A polyether resin is mentioned.
  • a thermosetting resin a silicone resin, an epoxy resin, a phenol resin, a urea resin, or a melamine resin is mentioned, for example.
  • the photocurable resin include an epoxy-acrylic acid resin (more specifically, an acrylic acid derivative adduct of an epoxy compound) or a urethane-acrylic acid resin (more specifically, an acrylic acrylic resin). Acid derivative adducts, etc.).
  • These binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a polycarbonate resin is preferable because a photosensitive layer having an excellent balance of workability, mechanical strength, optical characteristics, and abrasion resistance can be obtained.
  • a polycarbonate resin represented by the general formula (3) (hereinafter sometimes referred to as a polycarbonate resin (3)) is preferable.
  • R 31 , R 32 , R 33 and R 34 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 32 and R 33 may represent a cycloalkylidene group having 3 to 10 carbon atoms formed by bonding to each other.
  • n and m are integers of 0 or more.
  • n + m 100 is satisfied.
  • n represents an integer of 60 or more and 100 or less.
  • R 31 and R 34 preferably represent a hydrogen atom.
  • R 32 and R 33 preferably represent a cycloalkylidene group having 3 to 10 carbon atoms formed by bonding to each other, and a cycloalkylidene group having 5 to 7 carbon atoms formed by bonding to each other. Is more preferable, and cyclohexylidene groups formed by bonding to each other are particularly preferable.
  • polycarbonate resin (3) examples include polycarbonate resins represented by the chemical formulas (R-1) to (R-2) (hereinafter referred to as polycarbonate resins (R-1) to (R-2), respectively). There is).
  • the viscosity average molecular weight of the binder resin is preferably 40000 or more, and more preferably 40000 or more and 52500 or less.
  • the viscosity average molecular weight of the binder resin is 40000 or more, it is easy to improve the wear resistance of the photoreceptor.
  • the viscosity average molecular weight of the binder resin is 52500 or less, the binder resin is easily dissolved in the solvent at the time of forming the photosensitive layer, and the viscosity of the coating solution for the photosensitive layer does not become too high. As a result, it becomes easy to form a photosensitive layer.
  • the photosensitive layer may contain various additives as long as the electrophotographic characteristics of the photoreceptor are not adversely affected.
  • Additives include, for example, deterioration inhibitors (more specifically, antioxidants, radical scavengers, quenchers or ultraviolet absorbers), softeners, surface modifiers, extenders, thickeners, dispersions. Stabilizers, waxes, acceptors, donors, surfactants, plasticizers, sensitizers or leveling agents can be mentioned.
  • antioxidant examples include hindered phenol, hindered amine, paraphenylenediamine, arylalkane, hydroquinone, spirochroman, spiroidanone, or a derivative thereof, an organic sulfur compound, or an organic phosphorus compound.
  • middle layer contains resin (resin for intermediate
  • resin resin for intermediate
  • the presence of the intermediate layer makes it easy to suppress a rise in resistance by smoothing the flow of current generated when the photosensitive member is exposed while maintaining an insulating state to the extent that leakage can be suppressed.
  • the inorganic particles include metal (more specifically, aluminum, iron, copper, etc.) particles, metal oxide (more specifically, titanium oxide, alumina, zirconium oxide, tin oxide, zinc oxide, etc.). Or particles of a non-metal oxide (more specifically, silica or the like). These inorganic particles may be used individually by 1 type, and may use 2 or more types together.
  • the intermediate layer resin is not particularly limited as long as it can be used as a resin for forming the intermediate layer.
  • the intermediate layer may contain various additives as long as the electrophotographic characteristics of the photoreceptor are not adversely affected.
  • the additive is the same as the additive for the photosensitive layer.
  • the method for manufacturing the photoreceptor 1 includes, for example, a photosensitive layer forming step.
  • the photosensitive layer coating solution is applied onto the conductive substrate 2, and the solvent contained in the applied photosensitive layer coating solution is removed to form the photosensitive layer 3.
  • the photosensitive layer coating solution contains at least a charge generating agent, a naphthoquinone derivative (1) as an electron transport agent, a hole transport agent, a binder resin, and a solvent.
  • the coating solution for the photosensitive layer is prepared by dissolving or dispersing a charge generator, a naphthoquinone derivative (1) as an electron transport agent, a hole transport agent, and a binder resin in a solvent.
  • An additive may be added to the photosensitive layer coating solution as necessary.
  • the solvent contained in the photosensitive layer coating solution is not particularly limited as long as each component contained in the photosensitive layer coating solution can be dissolved or dispersed.
  • the solvent include alcohol (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbon (more specifically, n-hexane, octane, cyclohexane, etc.), aromatic hydrocarbon ( More specifically, benzene, toluene, xylene and the like), halogenated hydrocarbon (more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.), ether (more specifically, dimethyl ether, diethyl ether, Tetrahydrofuran, ethylene glycol dimethyl ether or diethylene glycol dimethyl ether), ketone (more specifically, acetone, methyl ethyl ketone, cyclohexanone, etc.), ester (more specifically,
  • the photosensitive layer coating solution is prepared by mixing each component and dispersing in a solvent.
  • a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser is used.
  • the photosensitive layer coating solution may contain, for example, a surfactant or a leveling agent in order to improve the dispersibility of each component or the surface smoothness of the formed photosensitive layer 3.
  • the method for applying the photosensitive layer coating solution is not particularly limited as long as it is a method that can uniformly apply the photosensitive layer coating solution onto the conductive substrate 2.
  • Examples of the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
  • the method for removing the solvent contained in the photosensitive layer coating solution is not particularly limited as long as it is a method capable of evaporating the solvent in the photosensitive layer coating solution.
  • Examples of the method for removing the solvent include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned.
  • the heat treatment conditions are preferably, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
  • the manufacturing method of the photoreceptor 1 may further include one or both of a step of forming the intermediate layer 4 and a step of forming the protective layer 5 as necessary.
  • a known method is appropriately selected.
  • the photosensitive member 1 is used as an image carrier in an image forming apparatus, for example.
  • the photoreceptor according to the first embodiment has been described above.
  • the photoreceptor according to the first embodiment can suppress the occurrence of the white spot phenomenon.
  • the second embodiment of the present invention relates to an image forming apparatus.
  • the image forming apparatus includes an image carrier, a charging unit, an exposure unit, a developing unit, and a transfer unit.
  • the charging unit charges the surface of the image carrier to positive polarity.
  • the exposure unit exposes the surface of the charged image carrier to form an electrostatic latent image on the surface of the image carrier.
  • the developing unit develops the electrostatic latent image as a toner image.
  • the transfer unit transfers the toner image from the surface of the image carrier to a recording medium while being in contact with the surface of the image carrier.
  • the image carrier is the photoreceptor according to the first embodiment.
  • the image forming apparatus can suppress the occurrence of the white spot phenomenon.
  • the reason is presumed as follows.
  • the image forming apparatus according to the second embodiment adopting the direct transfer method when the image carrier and the recording medium come into contact with each other in the transfer unit, the recording medium tends to be rubbed and charged positively.
  • the surface of the image carrier In the charging portion, the surface of the image carrier is charged to a positive polarity. For this reason, electrostatic repulsion acts between the surface of the image carrier and the frictionally charged recording medium.
  • minute components for example, paper dust
  • the recording medium for example, paper
  • FIG. 2 shows an exemplary configuration of the image forming apparatus 100.
  • the image forming apparatus 100 is not particularly limited as long as it is an electrophotographic image forming apparatus.
  • the image forming apparatus 100 may be, for example, a monochrome image forming apparatus or a color image forming apparatus.
  • the image forming apparatus 100 employs, for example, a tandem method.
  • the tandem image forming apparatus 100 will be described as an example.
  • the image forming apparatus 100 includes image forming units 40a, 40b, 40c, and 40d, a transfer belt 50, and a fixing unit 52.
  • image forming units 40a, 40b, 40c, and 40d are referred to as an image forming unit 40.
  • the image forming unit 40 includes the image carrier 1, a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48.
  • the image carrier 1 is provided at the center position of the image forming unit 40.
  • the image carrier 1 is provided to be rotatable in the arrow direction (counterclockwise).
  • a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48 are provided in order from the upstream side in the rotation direction of the image carrier 1 with the charging unit 42 as a reference.
  • the image forming unit 40 may further include one or both of a cleaning unit (not shown) and a charge removal unit (not shown).
  • the charging unit 42 charges the surface of the image carrier 1 to a positive polarity.
  • the charging unit 42 is a non-contact type or contact type charging unit. Examples of the non-contact charging unit 42 include a corotron charger and a scorotron charger. Examples of the contact-type charging unit 42 include a charging roller or a charging brush.
  • the image forming apparatus 100 can include a charging roller as the charging unit 42.
  • the charging roller comes into contact with the surface of the image carrier 1.
  • a minute component adheres to the surface of the image carrier 1
  • the minute component is pressed against the surface of the image carrier 1 by the charging roller that has come into contact. Thereby, a minute component is easily fixed on the surface of the image carrier 1.
  • the image forming apparatus 100 includes the image carrier 1 that can suppress the occurrence of the white spot phenomenon caused by the adhesion of minute components derived from the recording medium P. For this reason, even when the image forming apparatus 100 includes a charging roller as the charging unit 42, it is difficult for minute components to adhere to the surface of the image carrier 1, and the occurrence of the white spot phenomenon can be suppressed.
  • the exposure unit 44 exposes the surface of the charged image carrier 1. As a result, an electrostatic latent image is formed on the surface of the image carrier 1.
  • the electrostatic latent image is formed based on image data input to the image forming apparatus 100.
  • the developing unit 46 supplies toner to the surface of the image carrier 1 and develops the electrostatic latent image as a toner image.
  • the developing unit 46 can clean the surface of the image carrier 1. That is, the image forming apparatus 100 can employ a so-called blade cleaner-less method.
  • the developing unit 46 can remove components remaining on the surface of the image carrier 1 (hereinafter sometimes referred to as residual components).
  • An example of the residual component is a toner component, and more specifically, a toner or a free external additive.
  • Another example of the residual component is a non-toner component (a minute component), and more specifically, paper dust.
  • a cleaning unit for example, a cleaning blade
  • the image carrier 1 can suppress the occurrence of the white spot phenomenon caused by the adhesion of minute components derived from the recording medium P. Therefore, even if the image forming apparatus 100 provided with such an image carrier 1 adopts a blade cleaner-less system, minute components, particularly paper dust, hardly remain on the surface of the image carrier 1. As a result, the image forming apparatus 100 can suppress the occurrence of the white spot phenomenon.
  • condition (a) A contact developing method is adopted, and a peripheral speed (rotational speed) difference is provided between the image carrier 1 and the developing unit 46.
  • the peripheral speed of the developing unit 46 is preferably faster than the peripheral speed of the image carrier 1.
  • Condition (b) assumes that the charging polarity of the toner, the surface potential of the unexposed area of the image carrier 1, the surface potential of the exposed area of the image carrier 1 and the potential of the developing bias are all positive. ing. That is, it is assumed that the development method is a reversal development method. Note that the surface potential of the unexposed area and the exposed area of the image carrier 1 are determined by the charging unit 42 after the toner image is transferred from the image carrier 1 to the recording medium P and the charging unit 42 performs the next round of image bearing. Measured before charging the surface of the body 1.
  • the electrostatic repulsive force that acts between the residual toner and the exposed area of the image carrier 1 acts between the residual toner and the developing unit 46. Smaller than electric repulsion. Therefore, the residual toner in the exposed area of the image carrier 1 is held on the surface of the image carrier 1. The toner held in the exposure area of the image carrier 1 is used as it is for image formation.
  • the transfer belt 50 conveys the recording medium P between the image carrier 1 and the transfer unit 48.
  • the transfer belt 50 is an endless belt.
  • the transfer belt 50 is provided to be rotatable in the arrow direction (clockwise).
  • the transfer unit 48 transfers the toner image developed by the developing unit 46 from the surface of the image carrier 1 to the recording medium P.
  • the image carrier 1 is in contact with the recording medium P. That is, the image forming apparatus 100 employs a so-called direct transfer method.
  • An example of the transfer unit 48 is a transfer roller.
  • Each of the image forming units 40a to 40d sequentially superimposes toner images of a plurality of colors (for example, four colors of black, cyan, magenta, and yellow) on the recording medium P on the transfer belt 50.
  • the image forming apparatus 100 is a monochrome image forming apparatus, the image forming apparatus 100 includes an image forming unit 40a, and the image forming units 40b to 40d are omitted.
  • the fixing unit 52 heats and / or pressurizes the unfixed toner image transferred to the recording medium P by the transfer unit 48.
  • the fixing unit 52 is, for example, a heating roller and / or a pressure roller.
  • the toner image is fixed on the recording medium P by heating and / or pressurizing the toner image. As a result, an image is formed on the recording medium P.
  • the image forming apparatus according to the second embodiment has been described above.
  • the image forming apparatus according to the second embodiment can suppress the occurrence of the white spot phenomenon by including the photoconductor according to the first embodiment as an image carrier.
  • a process cartridge according to the third embodiment includes the photoconductor according to the first embodiment.
  • the process cartridge includes a unitized image carrier 1.
  • the process cartridge employs a configuration in which at least one selected from the group consisting of the charging unit 42, the exposure unit 44, the developing unit 46, and the transfer unit 48 is unitized in addition to the image carrier 1.
  • the process cartridge corresponds to each of the image forming units 40a to 40d, for example.
  • the process cartridge may further include one or both of a cleaning unit (not shown) and a charge removal unit (not shown).
  • the process cartridge is designed to be detachable from the image forming apparatus 100. Therefore, the process cartridge is easy to handle, and when the sensitivity characteristics and the like of the image carrier 1 are deteriorated, the process cartridge can be easily and quickly replaced including the image carrier 1.
  • the process cartridge according to the third embodiment has been described above.
  • the process cartridge according to the third embodiment can suppress the occurrence of the white spot phenomenon by including the photoconductor according to the first embodiment as an image carrier.
  • Photosensitive Material> The following electron transport agent, hole transport agent, charge generator and binder resin were prepared as materials for forming the photosensitive layer of the photoreceptor.
  • Electron transport agent Naphthoquinone derivatives (1-1) to (1-5) were prepared as electron transport agents. Naphthoquinone derivatives (1-1) to (1-5) were produced by the following methods, respectively.
  • reaction (r-1) 2,3-dichloro-1,4-naphthoquinone represented by the chemical formula (a1-1) is reacted with potassium phthalimide (a2) to give 2,3-diamino-1, 4-Naphthoquinone (diaminonaphthoquinone (A)) was obtained.
  • the yield of 2,3-diamino-1,4-naphthoquinone was 2.80 g, and the yield of 2,3-diamino-1,4-naphthoquinone from 2,3-dichloro-1,4-naphthoquinone was It was 74 mol%.
  • Table 1 shows 2,3-diamino-1,4-naphthoquinone (diaminonaphthoquinone (A)), diketone derivative (B) and naphthoquinone derivative (1) in reaction (r-2).
  • 1-1 to 1-5 in the column of naphthoquinone derivative (1) indicate naphthoquinone derivatives (1-1) to (1-5), respectively.
  • the diketone derivative (B-1) used in the reaction (r-2) was changed to any one of the diketone derivatives (B-2) to (B-5).
  • naphthoquinone derivatives (1-2) to (1-5) were obtained in place of the naphthoquinone derivative (1-1), respectively.
  • Table 1 shows the yield and yield of the naphthoquinone derivative (1).
  • a in the column of diaminonaphthoquinone (A) represents 2,3-diamino-1,4-naphthoquinone.
  • B-1 to B-5 in the diketone derivative (B) column represent diketone derivatives (B-1) to (B-5), respectively.
  • the diketone derivatives (B-2) to (B-5) are represented by the following chemical formulas (B-2) to (B-5), respectively.
  • FIG. 3 shows the 1 H-NMR spectrum of the naphthoquinone derivative (1-4).
  • the vertical axis represents signal intensity (unit: arbitrary unit), and the horizontal axis represents chemical shift (unit: ppm).
  • the chemical shift value of the naphthoquinone derivative (1-4) is shown below.
  • Naphthoquinone derivative (1-4): 1 H-NMR (270 MHz, CDCl 3 ) ⁇ 8.36-8.43 (m, 2H), 7.83-7.90 (m, 2H), 3.00 ( d, 2H), 2.86 (s, 2H), 2.36 (m, 1H), 1.02 (d, 6H).
  • the compound (C-1) described in the first embodiment was prepared.
  • the compound (C-1) is a metal-free phthalocyanine (X-type metal-free phthalocyanine) represented by the chemical formula (C-1).
  • the crystal structure of the compound (C-1) is X type.
  • Binder resin Polycarbonate resins (R-1) and (R-2) described in the first embodiment were prepared as binder resins.
  • single layer type photoreceptor Using the material for forming the photosensitive layer, single layer type photoreceptors (A-1) to (A-10) and single layer type photoreceptors (B-1) to (B-6) were produced.
  • the applied photosensitive layer coating solution was dried with hot air at 120 ° C. for 80 minutes. Thereby, a photosensitive layer (single-layer type photosensitive layer, film thickness 30 ⁇ m) was formed on the conductive substrate. As a result, a single layer type photoreceptor (A-1) was obtained.
  • the naphthoquinone derivative (1-1) as the electron transport agent used in the production of the single layer type photoreceptor (A-1) was changed to the type of electron transport agent shown in Table 2.
  • the binder resin used in the production of the single-layer type photoreceptor (A-1) was changed to the type of binder resin shown in Table 2.
  • Table 2 shows the structures of the photoconductors (A-1) to (A-10) and the photoconductors (B-1) to (B-6).
  • “resin”, “CGM”, “HTM”, and “ETM” represent a binder resin, a charge generator, a hole transport agent, and an electron transport agent, respectively.
  • R-1 and R-2 in the resin column indicate polycarbonate resins (R-1) and (R-2), respectively.
  • XH 2 Pc in the CGM column represents X-type metal-free phthalocyanine (compound (C-1)).
  • H-1 in the HTM column represents the compound (H-1).
  • 1-1 to 1-5 and E-1 to E-3 in the ETM column represent naphthoquinone derivatives (1-1) to (1-5) and compounds (E-1) to (E-3), respectively.
  • the surface of the single layer type photoreceptor was charged to positive polarity.
  • the charging condition was set to 31 rpm for the single layer type photoreceptor.
  • the surface potential of the single-layer type photoreceptor immediately after charging was set to + 600V.
  • monochromatic light (wavelength 780 nm, half-value width 20 nm, light energy 1.5 ⁇ J / cm 2 ) was extracted from the white light of the halogen lamp using a bandpass filter.
  • the surface of the monolayer type photoreceptor was irradiated with the extracted monochromatic light.
  • the surface potential of the single-layer photoreceptor was measured after 0.5 seconds had elapsed from the end of irradiation.
  • the measured surface potential was defined as a post-exposure potential (V L , unit: V).
  • V L post-exposure potential
  • Table 2 shows the post-exposure potential (V L ) of the measured single layer type photoreceptor. It should be noted that the smaller the absolute value of the post-exposure potential (V L ), the better the sensitivity characteristics of the single layer type photoreceptor.
  • FIG. 4 shows an outline of a triboelectric charge measuring device.
  • the triboelectric charge amount of calcium carbonate was measured by performing the following first step, second step, third step and fourth step.
  • a jig 10 was used to measure the triboelectric charge amount of calcium carbonate.
  • the jig 10 includes a first table 12, a rotation shaft 14, a rotation drive unit 16 (for example, a motor), and a second table 18.
  • the rotation drive unit 16 rotates the rotation shaft 14.
  • the rotation shaft 14 rotates around the rotation axis S of the rotation shaft 14.
  • the first table 12 is integrated with the rotation shaft 14 and rotates about the rotation axis S.
  • the second base 18 is fixed without rotating.
  • first photosensitive layer 30 In the first step, two photosensitive layers were prepared. Hereinafter, one of the photosensitive layers is referred to as a first photosensitive layer 30, and the other of the photosensitive layers is referred to as a second photosensitive layer 32.
  • Single-layer type photosensitive layer prepared when producing any of the above-mentioned single-layer type photoreceptors (A-1) to (A-10) and single-layer type photoreceptors (B-1) to (B-6)
  • the coating solution was applied to an overhead projector sheet (hereinafter sometimes referred to as an OHP sheet) wound around an aluminum pipe (diameter: 78 mm). The applied coating solution was dried at 120 ° C. for 80 minutes.
  • a sheet for evaluation of triboelectric chargeability on which a photosensitive layer having a thickness of 30 ⁇ m was formed was produced.
  • a first sheet comprising the first photosensitive layer 30 (film thickness L1: 30 ⁇ m) and the first OHP sheet 20 and a second sheet comprising the second photosensitive layer 32 (film thickness L2: 30 ⁇ m) and the second OHP sheet 22 are obtained.
  • Two sheets were obtained.
  • the size of the first OHP sheet 20 and the second OHP sheet 22 was 5 cm in length and 5 cm in width, respectively.
  • the first OHP sheet 20 and the first table 12 were bonded using a double-sided tape, and the first sheet was fixed to the first table 12.
  • the second OHP sheet 22 and the second table 18 were bonded using a double-sided tape, and the second sheet was fixed to the second table 18.
  • On the first photosensitive layer 30 provided in the first sheet 0.007 g of calcium carbonate was placed, and the calcium carbonate layer 24 was formed so that the film thickness was uniform.
  • the amount of calcium carbonate is 60 seconds in the third step, and the calcium carbonate is sufficiently and uniformly rubbed between the first photosensitive layer 30 and the second photosensitive layer 32. The amount can be charged uniformly.
  • the calcium carbonate layer 24 is centered on the rotation axis S so that the calcium carbonate layer 24 does not fall from between the first photosensitive layer 30 and the second photosensitive layer 32 by driving of the rotation driving unit 16 in the third step. Is formed inside. Then, the second photosensitive layer 32 and the calcium carbonate layer 24 are brought into contact with each other so that the first photosensitive layer 30 and the second photosensitive layer 32 face each other with the calcium carbonate layer 24 interposed therebetween. A second photosensitive layer 32 was placed thereon. Thereby, the 1st stand 12, the 1st OHP sheet 20, the 1st photosensitive layer 30, the layer 24 of calcium carbonate, the 2nd photosensitive layer 32, the 2nd OHP sheet 22, and the 2nd stand 18 were arranged in order from the bottom. . The centers of the first table 12, the first OHP sheet 20, the first photosensitive layer 30, the calcium carbonate layer 24, the second photosensitive layer 32, the second OHP sheet 22, and the second table 18 pass through the rotation axis S. Arranged.
  • the first photosensitive layer 30 was rotated at a rotational speed of 60 rpm for 60 seconds with the second photosensitive layer 32 fixed in an environment of a temperature of 23 ° C. and a humidity of 50% RH.
  • the rotation drive unit 16 is driven so that the rotation shaft 14, the first base 12, the first OHP sheet 20, and the first photosensitive layer 30 are rotated about the rotation axis S at a rotation speed of 60 rpm for 60 seconds. I let you. Thereby, calcium carbonate was rubbed between the first photosensitive layer 30 and the second photosensitive layer 32, and the calcium carbonate was charged.
  • the calcium carbonate charged in the third step was taken out from the jig 10 and sucked using a charge amount measuring device (a suction type small charge amount measuring device, “MODEL 212HS” manufactured by Trek).
  • the total amount of electricity Q (unit: ⁇ C) and mass M (unit: g) of the sucked calcium carbonate were measured using a charge amount measuring device.
  • Table 2 shows the measured triboelectric charge of calcium carbonate.
  • calcium carbonate tends to be positively charged with respect to the 1st photosensitive layer 30 and the 2nd photosensitive layer 32, so that the triboelectric charge amount of calcium carbonate is a positive value large.
  • the 1st photosensitive layer 30 and the 2nd photosensitive layer 32 are easy to be negatively charged with respect to calcium carbonate, so that the triboelectric charge amount of calcium carbonate is a large positive value.
  • images I images with a printing rate of 1%) were continuously printed on 20000 sheets of recording media under the condition of a single layer type photoreceptor rotating at 168 mm / sec.
  • an image II black solid image, length 297 mm ⁇ width 210 mm, A4 size
  • the recording medium on which the image II was formed was observed with the naked eye, and the presence or absence of image defects in the formed image was observed.
  • the image defect the number of white spots appearing in the black solid image was counted.
  • Table 2 shows the number of white spots appearing in the black solid image. It is shown that the smaller the number of white spots, the more the occurrence of image defects (occurrence of white spot phenomenon) due to the adhesion of paper dust is suppressed.
  • the photosensitive layer has a charge generator, a hole transport agent, and a naphthoquinone derivative (1-1) to ( 1-5) any one of them.
  • Naphthoquinone derivatives (1-1) to (1-5) are naphthoquinone derivatives (1).
  • the triboelectric charge amount of calcium carbonate is +9.0 ⁇ C / g or more and +9.4 ⁇ C / g or less.
  • the number of white spots is 26 or more and 34 or less.
  • the photosensitive layer includes compounds (E-1) to (E) as charge generating agents, hole transporting agents, and electron transporting agents. -3) any one of them.
  • Compounds (E-1) to (E-3) are not naphthoquinone derivatives (1).
  • the triboelectric charge amount of calcium carbonate is +5.3 ⁇ C / g or more and +6.9 ⁇ C / g or less, that is, less than +7 ⁇ C / g.
  • the number of white spots is 44 or more and 100 or less.
  • Photoreceptors (A-1) to (A-10) having a photosensitive layer containing a naphthoquinone derivative (1) contain compounds (E-1) to (E-3) that are not naphthoquinone derivatives (1). It is clear that the occurrence of the white spot phenomenon can be suppressed as compared with the photoconductors (B-1) to (B-6) provided with the photosensitive layer. Further, the image forming apparatus including the photoconductors (A-1) to (A-10) suppresses the occurrence of the white spot phenomenon as compared with the image forming apparatus including the photoconductors (B-1) to (B-6). Obviously you can.
  • the photosensitive layer has a naphthoquinone derivative (1) as an electron transport agent. -5) is contained.
  • the naphthoquinone derivative (1-5) is a naphthoquinone derivative (1) having a phenyl group substituted with a plurality of halogen atoms and an alkyl group.
  • the numbers of white spots are 28 and 26, respectively.
  • the photosensitive layer contains the naphthoquinone derivative (1) having a phenyl group substituted with a halogen atom and an alkyl group as an electron transport agent, and a photoreceptor (A-9) provided with this photosensitive layer. ) And (A-10) clearly have a particularly great effect of suppressing the occurrence of the white spot phenomenon.
  • the photoreceptor and the process cartridge according to the present invention can be used in an image forming apparatus.
  • the image forming apparatus according to the present invention can be used in a copying machine and a printer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

電子写真感光体(1)は、導電性基体(2)と、感光層(3)とを備える。感光層(3)は、電荷発生剤と、電子輸送剤と、正孔輸送剤と、バインダー樹脂とを少なくとも含有する単層型感光層である。電子輸送剤は、一般式(1)で表されるナフトキノン誘導体を含む。感光層(3)と炭酸カルシウムとを摩擦させたときの炭酸カルシウムの摩擦帯電量は、+7μC/g以上である。一般式(1)中、R11 及びR12 は、それぞれ明細書に記載のR11 及びR12 と同義であり、少なくともいずれかはハロゲン原子で置換されている。

Description

電子写真感光体、プロセスカートリッジ及び画像形成装置
 本発明は、電子写真感光体、プロセスカートリッジ及び画像形成装置に関する。
 電子写真感光体は、電子写真方式の画像形成装置に用いられる。電子写真感光体としては、例えば、単層型電子写真感光体又は積層型電子写真感光体が用いられる。電子写真感光体は、感光層を備える。単層型電子写真感光体は、感光層として、電荷発生の機能と電荷輸送の機能とを有する単層型感光層を備える。積層型電子写真感光体は、感光層として、電荷発生の機能を有する電荷発生層と、電荷輸送の機能を有する電荷輸送層とを備える。
 電子写真方式の画像形成装置で画像を形成すると、白点現象と呼ばれる画像不良が発生する場合があった。白点現象とは、例えば、トナー像が記録媒体上に転写されて形成される領域(画像領域)に、微小の画像欠陥(より具体的には、直径が0.5mm以上2.5mm以下の円状の画像欠陥)が生じる現象である。
 従来の電子写真感光体が備える感光層には、例えば、下記化学式(E-1)で表される化合物(以下、化合物(E-1)と記載することがある)又は下記化学式(E-2)で表される化合物(以下、化合物(E-2)と記載することがある)が含有されている。
Figure JPOXMLDOC01-appb-C000005
 また、特許文献1に記載の電子写真感光体が備える感光層は、例えば、下記化学式(E-3)で表される化合物(以下、化合物(E-3)と記載することがある)を含有する。
特開平10-324682号公報
 しかし、上述した従来の電子写真感光体及び特許文献1に記載の電子写真感光体は、白点現象の発生を十分に抑制することができなかった。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、白点現象の発生を抑制する電子写真感光体を提供することである。また、本発明の別の目的は、白点現象の発生を抑制するプロセスカートリッジ及び画像形成装置を提供することである。
 本発明の電子写真感光体は、導電性基体と、感光層とを備える。前記感光層は、電荷発生剤と、電子輸送剤と、正孔輸送剤と、バインダー樹脂とを少なくとも含有する単層型感光層である。前記電子輸送剤は、一般式(1)で表されるナフトキノン誘導体を含む。前記感光層と炭酸カルシウムとを摩擦させたときの前記炭酸カルシウムの摩擦帯電量は、+7μC/g以上である。
Figure JPOXMLDOC01-appb-C000006
 前記一般式(1)中、R11及びR12は、各々独立に、炭素原子数1以上8以下のアルキル基、置換基を有してもよい炭素原子数6以上14以下のアリール基、置換基を有してもよい炭素原子数7以上20以下のアラルキル基及び置換基を有してもよい炭素原子数3以上10以下のシクロアルキル基からなる群より選択される基を表す。R11及びR12の少なくとも何れか一方が表す前記基は、1又は複数のハロゲン原子で置換されている。
 本発明のプロセスカートリッジは、上述の電子写真感光体を備える。
 本発明の画像形成装置は、像担持体と、帯電部と、露光部と、現像部と、転写部とを備える。前記像担持体は、上述の電子写真感光体である。前記帯電部は、前記像担持体の表面を正極性に帯電する。前記露光部は、帯電された前記像担持体の前記表面を露光して、前記像担持体の前記表面に静電潜像を形成する。前記現像部は、前記静電潜像をトナー像として現像する。前記転写部は、前記像担持体の前記表面と接触しながら、前記トナー像を前記像担持体の前記表面から記録媒体に転写する。
 本発明の電子写真感光体は、白点現象の発生を抑制することができる。また、本発明のプロセスカートリッジ及び画像形成装置は、白点現象の発生を抑制することができる。
本発明の第一実施形態に係る電子写真感光体の一例を示す概略断面図である。 本発明の第一実施形態に係る電子写真感光体の一例を示す概略断面図である。 本発明の第一実施形態に係る電子写真感光体の一例を示す概略断面図である。 本発明の第二実施形態に係る画像形成装置の一例を示す図である。 ナフトキノン誘導体(1-4)の1H-NMRスペクトルである。 摩擦帯電量の測定装置の概要を示す図である。
 以下、本発明の実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されない。本発明は、本発明の目的の範囲内で、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨は限定されない。
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。また、化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。
 以下、ハロゲン原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上6以下のアルキル基、炭素原子数1以上4以下のアルキル基、炭素原子数1以上3以下のアルキル基、炭素原子数1以上6以下のアルコキシ基、炭素原子数6以上14以下のアリール基、炭素原子数6以上10以下のアリール基、炭素原子数7以上20以下のアラルキル基、炭素原子数7以上14以下のアラルキル基、炭素原子数3以上10以下のシクロアルキル基、炭素原子数5以上7以下のシクロアルキル基、炭素原子数3以上10以下のシクロアルキリデン基及び炭素原子数5以上7以下のシクロアルキリデン基は、何ら規定していなければ、それぞれ次の意味である。
 ハロゲン原子(ハロゲン基)としては、例えば、フッ素原子(フルオロ基)、塩素原子(クロロ基)、臭素原子(ブロモ基)又はヨウ素原子(ヨード基)が挙げられる。
 炭素原子数1以上8以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-へプチル基又はn-オクチル基が挙げられる。
 炭素原子数1以上6以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上6以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基又はヘキシル基が挙げられる。
 炭素原子数1以上4以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上4以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基又はt-ブチル基が挙げられる。
 炭素原子数1以上3以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上3以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基又はイソプロピル基が挙げられる。
 炭素原子数1以上6以下のアルコキシ基は、非置換である。炭素原子数1以上6以下のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基又はヘキシルオキシ基が挙げられる。
 炭素原子数6以上14以下のアリール基は、非置換である。炭素原子数6以上14以下のアリール基は、例えば、炭素原子数6以上14以下の非置換の芳香族単環炭化水素基、炭素原子数6以上14以下の非置換の芳香族縮合二環炭化水素基又は炭素原子数6以上14以下の非置換の芳香族縮合三環炭化水素基である。炭素原子数6以上14以下のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基又はフェナントリル基が挙げられる。
 炭素原子数6以上10以下のアリール基は、非置換である。炭素原子数6以上10以下のアリール基は、例えば、炭素原子数6以上10以下の非置換の芳香族単環炭化水素基、炭素原子数6以上10以下の非置換の芳香族縮合二環炭化水素基又は炭素原子数6以上10以下の非置換の芳香族縮合三環炭化水素基である。炭素原子数6以上10以下のアリール基としては、例えば、フェニル基又はナフチル基が挙げられる。
 炭素原子数7以上20以下のアラルキル基は、非置換である。炭素原子数7以上20以下のアラルキル基としては、例えば、フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、1-ナフチルメチル基、2-ナフチルメチル基、9-アントラセンメチル基又は9-フェナントリルメチル基が挙げられる。
 炭素原子数7以上14以下のアラルキル基は、非置換である。炭素原子数7以上14以下のアラルキル基としては、例えば、フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、1-ナフチルメチル基又は2-ナフチルメチル基が挙げられる。
 炭素原子数3以上10以下のシクロアルキル基は、非置換である。炭素原子数3以上10以下のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基、シクロノニル基又はシクロデシル基が挙げられる。
 炭素原子数5以上7以下のシクロアルキル基は、非置換である。炭素原子数5以上7以下のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基又はシクロへプチル基が挙げられる。
 炭素原子数3以上10以下のシクロアルキリデン基は、非置換である。炭素原子数3以上10以下のシクロアルキリデン基としては、例えば、シクロプロピリデン基、シクロブチリデン基、シクロペンチリデン基、シクロヘキシリデン基、シクロへプチリデン基、シクロオクチリデン基、シクロノニリデン基又はシクロデキリデン基が挙げられる。
 炭素原子数5以上7以下のシクロアルキリデン基は、非置換である。炭素原子数5以上7以下のシクロアルキリデン基としては、例えば、シクロペンチリデン基、シクロヘキシリデン基又はシクロへプチリデン基が挙げられる。
<第一実施形態:電子写真感光体>
 本発明の第一実施形態は、電子写真感光体に関する。以下、図1A~図1Cを参照して、電子写真感光体(以下、感光体と記載することがある)の構造を説明する。図1A~図1Cは、第一実施形態に係る感光体1の一例を示す。
 図1Aに示すように、感光体1は、例えば、導電性基体2と感光層3とを備える。感光層3は、導電性基体2上に直接又は間接に設けられる。例えば、図1Aに示すように、導電性基体2上に感光層3を直接設けてもよい。感光体1は、更に中間層を備えてもよい。図1Bに示すように、中間層4は、導電性基体2と感光層3との間に設けられてもよい。また、図1A及び図1Bに示すように、感光層3が最外層として露出してもよい。感光体1は、更に保護層を備えてもよい。図1Cに示すように、感光層3上に保護層5が備えられてもよい。
 感光層は、電荷発生剤と、電子輸送剤と、正孔輸送剤と、バインダー樹脂とを少なくとも含有する単層型感光層である。電子輸送剤は、一般式(1)で表されるナフトキノン誘導体(以下、ナフトキノン誘導体(1)と記載することがある)を含む。感光層と炭酸カルシウムとを摩擦させたときの炭酸カルシウムの摩擦帯電量は、+7μC/g以上である。第一実施形態に係る感光体は、白点現象の発生を抑制することができる。その理由は、以下のように推測される。
 ここで、便宜上、白点現象について説明する。電子写真方式の画像形成装置は、像担持体(感光体)と、帯電部と、露光部と、現像部と、転写部とを備える。画像形成装置が直接転写方式を採用する場合、転写部は、現像部により現像されたトナー像を記録媒体(例えば、記録紙)に転写する。より詳細には、転写部は、感光体の表面に現像されたトナー像を記録媒体に転写する。その結果、記録媒体上にトナー像が形成される。
 トナー像の転写において、記録媒体は感光体の表面で摺擦され、記録媒体が帯電(いわゆる摩擦帯電)することがある。かかる場合、記録媒体が感光体の帯電極性(正極性)に対して同極性に帯電して帯電性が低下する傾向又は逆極性(負極性)に帯電(いわゆる逆帯電)する傾向がある。記録媒体がこのように帯電すると、記録媒体が有する微小な成分(例えば、紙粉)が感光体の表面に移動して付着することがある。そして、微小な成分が感光体の表面の画像領域に付着すると、記録媒体上に形成された画像に欠陥(白点)が生じることがある。このような画像欠陥が生じる現象を白点現象という。白点現象の発生の評価方法は、実施例にて詳細に説明する。
 第一実施形態に係る感光体では、感光層がナフトキノン誘導体(1)を含有する。ナフトキノン誘導体(1)は、ハロゲン原子を有し、感光層と炭酸カルシウムとを摩擦したときの炭酸カルシウムの摩擦帯電量は、+7μC/g以上である。このため、第一実施形態に係る感光体は、転写部において記録媒体が感光体の表面と摺擦しても、記録媒体は感光体の帯電極性に対して同極性で帯電性が低下しにくい傾向及び逆帯電しにくい傾向にある。よって、感光体の表面に微小な成分(例えば、紙粉)が付着しにくくなり、白点現象の発生が抑制されると考えられる。
 炭酸カルシウムの摩擦帯電量の測定は、実施例で詳細に説明する。炭酸カルシウムの摩擦帯電量は、+7μC/g以上であり、+7μC/g以上+15μC/g以下であることが好ましい。炭酸カルシウムは、紙粉の主成分である。炭酸カルシウムの摩擦帯電量が+7μC/g未満であると、感光体と紙粉との間に作用する斥力が十分に大きくないため、紙粉が感光体の表面に付着し易くなり、白点現象が発生する。
 感光層の厚さは、感光層として充分に作用できる限り、特に限定されない。感光層の厚さは、5μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましい。
 感光層は、添加剤を更に含有してもよい。以下、感光体の各要素として導電性基体、電荷発生剤、電子輸送剤、正孔輸送剤、バインダー樹脂、添加剤及び中間層を説明する。また、感光体の製造方法も説明する。
[1.導電性基体]
 導電性基体は、感光体の導電性基体として用いることができる限り、特に限定されない。導電性基体は、少なくとも表面部が導電性を有する材料で形成されていればよい。導電性基体の一例としては、導電性を有する材料で形成される導電性基体が挙げられる。導電性基体の別の例としては、導電性を有する材料で被覆される導電性基体が挙げられる。導電性を有する材料としては、例えば、アルミニウム、鉄、銅、錫、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム又はインジウムが挙げられる。これらの導電性を有する材料を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上の組合せとしては、例えば、合金(より具体的には、アルミニウム合金、ステンレス鋼又は真鍮等)が挙げられる。これらの導電性を有する材料の中でも、感光層から導電性基体への電荷の移動が良好であることから、アルミニウム又はアルミニウム合金が好ましい。
 導電性基体の形状は、画像形成装置の構造に合わせて適宜選択される。導電性基体の形状としては、例えば、シート状又はドラム状が挙げられる。また、導電性基体の厚さは、導電性基体の形状に応じて適宜選択される。
[2.電荷発生剤]
 電荷発生剤は、感光体用の電荷発生剤である限り、特に限定されない。電荷発生剤としては、例えば、フタロシアニン系顔料、ペリレン系顔料、ビスアゾ顔料、トリスアゾ顔料、ジチオケトピロロピロール顔料、無金属ナフタロシアニン顔料、金属ナフタロシアニン顔料、スクアライン顔料、インジゴ顔料、アズレニウム顔料、シアニン顔料、無機光導電材料(より具体的には、セレン、セレン-テルル、セレン-ヒ素、硫化カドミウム又はアモルファスシリコン等)の粉末、ピリリウム顔料、アンサンスロン系顔料、トリフェニルメタン系顔料、スレン系顔料、トルイジン系顔料、ピラゾリン系顔料又はキナクリドン系顔料が挙げられる。電荷発生剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 フタロシアニン系顔料としては、例えば、化学式(C-1)で表される無金属フタロシアニン(以下、化合物(C-1)と記載することがある)又は金属フタロシアニンが挙げられる。金属フタロシアニンとしては、例えば、化学式(C-2)で表されるチタニルフタロシアニン(以下、化合物(C-2)と記載することがある)、ヒドロキシガリウムフタロシアニン又はクロロガリウムフタロシアニンが挙げられる。フタロシアニン系顔料は、結晶であってもよく、非結晶であってもよい。フタロシアニン系顔料の結晶形状(例えば、X型、α型、β型、Y型、V型又はII型)については特に限定されず、種々の結晶形状を有するフタロシアニン系顔料が使用される。
Figure JPOXMLDOC01-appb-C000007
 無金属フタロシアニンの結晶としては、例えば、無金属フタロシアニンのX型結晶(以下、X型無金属フタロシアニンと記載することがある)が挙げられる。チタニルフタロシアニンの結晶としては、例えば、チタニルフタロシアニンのα型、β型又はY型結晶(以下、それぞれα型チタニルフタロシアニン、β型チタニルフタロシアニン及びY型チタニルフタロシアニンと記載することがある)が挙げられる。ヒドロキシガリウムフタロシアニンの結晶としては、ヒドロキシガリウムフタロシアニンのV型結晶が挙げられる。クロロガリウムフタロシアニンの結晶としては、クロロガリウムフタロシアニンのII型結晶が挙げられる。
 例えば、デジタル光学式の画像形成装置には、700nm以上の波長領域に感度を有する感光体を用いることが好ましい。デジタル光学式の画像形成装置としては、例えば、半導体レーザーのような光源を使用した、レーザービームプリンター又はファクシミリが挙げられる。700nm以上の波長領域で高い量子収率を有することから、電荷発生剤としては、フタロシアニン系顔料が好ましく、無金属フタロシアニンがより好ましい。ナフトキノン誘導体(1)を含有する感光層を備える感光体において、白点現象をより抑制するためには、電荷発生剤は、X型無金属フタロシアニンを含むことが好ましい。
 Y型チタニルフタロシアニンは、CuKα特性X線回折スペクトルにおいて、例えば、ブラッグ角(2θ±0.2°)の27.2°に主ピークを有する。CuKα特性X線回折スペクトルにおける主ピークとは、ブラッグ角(2θ±0.2°)が3°以上40°以下である範囲において、1番目又は2番目に大きな強度を有するピークである。
 短波長レーザー光源を用いた画像形成装置に適用される感光体には、電荷発生剤として、アンサンスロン系顔料が好適に用いられる。短波長レーザー光の波長は、例えば、350nm以上550nm以下である。
 電荷発生剤の含有量は、感光層に含有されるバインダー樹脂100質量部に対して、0.1質量部以上50質量部以下であることが好ましく、0.5質量部以上30質量部以下であることがより好ましい。
[3.電子輸送剤]
 電子輸送剤は、ナフトキノン誘導体(1)を含む。ナフトキノン誘導体(1)は、一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、R11及びR12は、各々独立に、炭素原子数1以上8以下のアルキル基、置換基を有してもよい炭素原子数6以上14以下のアリール基、置換基を有してもよい炭素原子数7以上20以下のアラルキル基及び置換基を有してもよい炭素原子数3以上10以下のシクロアルキル基からなる群より選択される基を表す。R11及びR12の少なくとも何れか一方が表す基は、1又は複数のハロゲン原子で置換されている。
 一般式(1)中、R11及びR12の表す炭素原子数1以上8以下のアルキル基の中でも、炭素原子数1以上4以下のアルキル基が好ましく、メチル基又はイソブチル基がより好ましい。炭素原子数1以上8以下のアルキル基は、1又は複数のハロゲン原子で置換されていてもよい。1又は複数のハロゲン原子で置換された炭素原子数1以上8以下のアルキル基としては、例えば、クロロメチル基が挙げられる。
 一般式(1)中、R11及びR12の表す置換基を有してもよい炭素原子数6以上14以下のアリール基の中でも、置換基を有してもよい炭素原子数6以上10以下のアリール基が好ましく、置換基を有してもよいフェニル基がより好ましい。置換基を有してもよい炭素原子数6以上14以下のアリール基は、1又は複数のハロゲン原子で置換されていてもよい。炭素原子数6以上14以下のアリール基が有する置換基は、炭素原子数1以上6以下のアルキル基であることが好ましく、炭素原子数1以上3以下のアルキル基であることがより好ましく、メチル基であることが更に好ましい。炭素原子数1以上6以下のアルキル基を有する炭素原子数6以上14以下のアリール基としては、4-メチルフェニル基が好ましい。
 一般式(1)中、R11及びR12の表す置換基を有してもよい炭素原子数7以上20以下のアラルキル基の中でも、置換基を有してもよい炭素原子数7以上14以下のアラルキル基が好ましい。置換基を有してもよい炭素原子数7以上20以下のアラルキル基は、1又は複数のハロゲン原子で置換されていてもよい。炭素原子数7以上20以下のアラルキル基が有する置換基は、炭素原子数1以上6以下のアルキル基であることが好ましい。
 一般式(1)中、R11及びR12の表す置換基を有してもよい炭素原子数3以上10以下のシクロアルキル基の中でも、置換基を有してもよい炭素原子数5以上7以下のシクロアルキル基が好ましい。置換基を有してもよい炭素原子数3以上10以下のシクロアルキル基は、1又は複数のハロゲン原子で置換されていてもよい。炭素原子数3以上10以下のシクロアルキル基が有する置換基は、炭素原子数1以上6以下のアルキル基であることが好ましい。
 一般式(1)中、R11及びR12の表す基(炭素原子数1以上8以下のアルキル基、置換基を有してもよい炭素原子数6以上14以下のアリール基、置換基を有してもよい炭素原子数7以上20以下のアラルキル基及び置換基を有してもよい炭素原子数3以上10以下のシクロアルキル基からなる群より選択される基)が有するハロゲン原子の総数は、1以上3以下であることが好ましく、1又は2であることがより好ましい。R11及びR12の表す基が有するハロゲン原子の総数が1以上3以下であると、ナフトキノン誘導体(1)による白点現象を抑制する効果が更に大きい。また、R11及びR12の表す基が有するハロゲン原子としては、塩素原子又はフッ素原子が好ましい。
 一般式(1)中、R11とR12とは互いに異なることが好ましい。R11とR12とが互いに異なるナフトキノン誘導体(1)、すなわち、非対称構造のナフトキノン誘導体(1)は、溶剤への溶解性が高いため、感光体の感光層を形成するための塗布液を調製し易い。
 一般式(1)中、R11及びR12の何れか一方は、1若しくは複数のハロゲン原子で置換されている炭素原子数1以上3以下のアルキル基又は1若しくは複数のハロゲン原子で置換されているフェニル基を表すことが好ましい。同時に、R11及びR12の他方は、炭素原子数1以上3以下のアルキル基を有してもよいフェニル基又は炭素原子数1以上4以下のアルキル基を表すことが好ましい。ハロゲン原子は、塩素原子又はフッ素原子であることが好ましい。
 一般式(1)中、R11及びR12の何れか一方は、1又は複数のハロゲン原子で置換されているフェニル基を表し、R11及びR12の他方は、炭素原子数1以上4以下のアルキル基を表すことが好ましい。R11及びR12の何れか一方が、1又は複数のハロゲン原子で置換されているフェニル基を表し、R11及びR12の他方が、炭素原子数1以上4以下のアルキル基を表す場合、ナフトキノン誘導体(1)は、白点現象を抑制する効果が更に大きい。R11及びR12の何れか一方が、1又は複数のハロゲン原子で置換されているフェニル基を表す場合、フェニル基におけるハロゲン原子の置換位置は、オルト位(o位)、メタ位(m位)、パラ位(p位)又はこれらの少なくとも1つが挙げられ、メタ位が好ましい。1又は複数のハロゲン原子で置換されているフェニル基としては、例えば、4-クロロフェニル基、4-フルオロフェニル基又は3,5-ジクロロフェニル基が挙げられ、これらの中でも、3,5-ジクロロフェニル基が特に好ましい。
 ナフトキノン誘導体(1)の具体例としては、化学式(1-1)~(1-5)で表されるナフトキノン誘導体(以下、それぞれナフトキノン誘導体(1-1)~(1-5)と記載することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 ナフトキノン誘導体(1-1)~(1-5)の中では、上述のとおり、一般式(1)において、R11及びR12の何れか一方が1又は複数のハロゲン原子で置換されているフェニル基を表し、R11及びR12の他方が炭素原子数1以上4以下のアルキル基を表すナフトキノン誘導体、すなわち、ナフトキノン誘導体(1-5)が、白点現象を抑制する効果が更に大きい点で好ましい。これは、ナフトキノン誘導体(1-5)中に電気陰性度の高いハロゲン原子(ハロゲン置換基)が2個含まれるため、ナフトキノン誘導体(1-1)~(1-4)の構造の化合物に比べ、紙粉と接触したときに紙粉を正帯電させる効果が大きいためであると考えられる。
(ナフトキノン誘導体(1)の製造方法)
 ナフトキノン誘導体(1)は、例えば、反応式(R-1)で表す反応(以下、反応(R-1)と記載することがある)及び反応式(R-2)で表す反応(以下、反応(R-2)と記載することがある)に従って又はこれに準ずる方法によって製造される。ナフトキノン誘導体(1)の製造方法は、例えば、反応(R-1)と、反応(R-2)とを含む。
Figure JPOXMLDOC01-appb-C000010
 反応(R-1)では、まず、1当量の一般式(a1)で表される化合物(2,3-ジハロゲノ-1,4-ナフトキノン。以下、ジハロゲノナフトキノン(a1)と記載することがある)と、2当量の化学式(a2)で表される化合物(フタルイミドカリウム。以下、フタルイミドカリウム(a2)と記載することがある)とを、溶媒中、加温して攪拌還流した後、反応系を室温(約25℃)まで放冷することにより、反応中間体を生成する。次いで、ヒドラジン(NH2NH2)の存在下にて加熱攪拌して、反応中間体を反応させ(ヒドラジン分解)、1当量の化学式(A)で表される化合物(2,3-ジアミノ-1,4-ナフトキノン。以下、ジアミノナフトキノン(A)と記載することがある)を生成する。
 一般式(a1)中、Xは、ハロゲン原子(ハロゲン基)を表す。Xの表すハロゲン原子(ハロゲン基)は、塩素原子(クロロ基)であることが好ましい。
 反応(R-1)では、1モルのジハロゲノナフトキノン(a1)に対して、2モル以上4モル以下のフタルイミドカリウム(a2)を添加することが好ましい。1モルのジハロゲノナフトキノン(a1)に対して2モル以上のフタルイミドカリウム(a2)を添加すると、ジアミノナフトキノン(A)の収率を向上させ易い。一方、1モルのジハロゲノナフトキノン(a1)に対して4モル以下のフタルイミドカリウム(a2)を添加すると、反応(R-1)後に未反応のフタルイミドカリウム(a2)が残留し難く、ジアミノナフトキノン(A)の精製が容易となる。
 反応(R-1)において、ジハロゲノナフトキノン(a1)とフタルイミドカリウム(a2)とを溶媒中で攪拌還流する際、還流温度は、50℃以上100℃以下であることが好ましく、還流時間は、2時間以上8時間以下であることが好ましい。溶媒としては、例えば、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン又はジメチルスルホキシドが挙げられる。
 反応(R-1)において、上述の攪拌還流後に、ヒドラジン(NH2NH2)の存在下で加熱攪拌する際、加熱温度は、50℃以上100℃以下であることが好ましく、加熱時間は、0.5時間以上2時間以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 反応(R-2)では、1当量のジアミノナフトキノン(A)と、1当量の一般式(B)で表される化合物(ジケトン誘導体、以下、ジケトン誘導体(B)と記載することがある)とを、溶媒中、酸触媒の存在下にて加温して攪拌還流した後、反応系から溶媒を留去して、1当量のナフトキノン誘導体(1)を生成する。
 一般式(B)中、R11及びR12は、それぞれ一般式(1)中のR11及びR12と同義である。
 反応(R-2)は、ジアミノナフトキノン(A)のジケトン誘導体(B)への付加反応に続く脱水反応であるので、1モルのジアミノナフトキノン(A)に対して、ほぼ当モルのジケトン誘導体(B)を添加することが好ましい。
 反応(R-2)において、ジアミノナフトキノン(A)とジケトン誘導体(B)とを溶媒中で攪拌還流する際、還流温度は、50℃以上100℃以下であることが好ましく、還流時間は、2時間以上6時間以下であることが好ましい。溶媒としては、例えば、メタノール、エタノール、イソプロパノール又はブタノールが挙げられる。酸触媒としては、例えば、酢酸、濃硫酸又はパラトルエンスルホン酸が挙げられる。酸触媒の量は、ジアミノナフトキノン(A)1モルに対して0.2モル以上0.8モル以下であることが好ましい。酸触媒は、溶媒として機能してもよい。
 ナフトキノン誘導体(1)の製造では、必要に応じて他の工程(例えば、溶媒留去工程又は精製工程)を含んでもよい。溶媒留去工程を行う場合、例えば公知の方法(より具体的には、減圧溶媒留去等)が挙げられる。精製工程を行う場合、例えば、公知の方法(より具体的には、ろ過、クロマトグラフィー又は晶折等)が挙げられる。
 電子輸送剤は、ナフトキノン誘導体(1)に加えて、ナフトキノン誘導体(1)以外の別の電子輸送剤を更に含んでもよい。別の電子輸送剤は、公知の電子輸送剤から適宜選択される。
 別の電子輸送剤としては、例えば、キノン系化合物(ナフトキノン誘導体(1)以外のキノン系化合物)、ジイミド系化合物、ヒドラゾン系化合物、マロノニトリル系化合物、チオピラン系化合物、トリニトロチオキサントン系化合物、3,4,5,7-テトラニトロ-9-フルオレノン系化合物、ジニトロアントラセン系化合物、ジニトロアクリジン系化合物、テトラシアノエチレン、2,4,8-トリニトロチオキサントン、ジニトロベンゼン、ジニトロアクリジン、無水コハク酸、無水マレイン酸又はジブロモ無水マレイン酸が挙げられる。キノン系化合物としては、例えば、ジフェノキノン系化合物、アゾキノン系化合物、アントラキノン系化合物、ニトロアントラキノン系化合物又はジニトロアントラキノン系化合物が挙げられる。これらの電子輸送剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 電子輸送剤の含有量は、感光層に含有されるバインダー樹脂100質量部に対して、5質量部以上100質量部以下であることが好ましく、10質量部以上80質量部以下であることがより好ましい。
 電子輸送剤中のナフトキノン誘導体(1)の含有率は、電子輸送剤の合計質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが特に好ましい。
[4.正孔輸送剤]
 正孔輸送剤としては、例えば、含窒素環式化合物又は縮合多環式化合物を使用することができる。含窒素環式化合物及び縮合多環式化合物としては、例えば、ジアミン誘導体(より具体的には、ベンジジン誘導体、N,N,N’,N’-テトラフェニルフェニレンジアミン誘導体、N,N,N’,N’-テトラフェニルナフチレンジアミン誘導体又はN,N,N’,N’-テトラフェニルフェナントリレンジアミン誘導体等)、オキサジアゾール系化合物(より具体的には、2,5-ジ(4-メチルアミノフェニル)-1,3,4-オキサジアゾール等)、スチリル化合物(より具体的には、9-(4-ジエチルアミノスチリル)アントラセン等)、カルバゾール化合物(より具体的には、ポリビニルカルバゾール等)、有機ポリシラン化合物、ピラゾリン系化合物(より具体的には、1-フェニル-3-(p-ジメチルアミノフェニル)ピラゾリン等)、ヒドラゾン系化合物、インドール系化合物、オキサゾール系化合物、イソオキサゾール系化合物、チアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピラゾール系化合物又はトリアゾール系化合物が挙げられる。これらの正孔輸送剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらの正孔輸送剤のうち、一般式(2)で表される化合物(ベンジジン誘導体)が好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(2)中、R21、R22、R23、R24、R25及びR26は、各々独立に、炭素原子数1以上6以下のアルキル基又は炭素原子数1以上6以下のアルコキシ基を表す。r、s、v及びwは、各々独立に、0以上5以下の整数を表す。t及びuは、各々独立に、0以上4以下の整数を表す。
 一般式(2)中、R21~R26は、各々独立に、炭素原子数1以上6以下のアルキル基を表すことが好ましく、炭素原子数1以上3以下のアルキル基を表すことがより好ましく、メチル基を表すことが更に好ましい。r、s、v及びwは、各々独立に、0又は1を表すことが好ましい。t及びuは、0を表すことが好ましい。
 一般式(2)で表される化合物の中でも、化学式(H-1)で表される化合物(以下、化合物(H-1)と記載することがある)が好ましい。
Figure JPOXMLDOC01-appb-C000013
 正孔輸送剤の含有量は、感光層に含有されるバインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましい。
[5.バインダー樹脂]
 バインダー樹脂は、電荷発生剤等を感光層中に分散させ、固定させる。バインダー樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリアリレート樹脂、スチレン-ブタジエン樹脂、スチレン-アクリロニトリル樹脂、スチレン-マレイン酸樹脂、アクリル酸系樹脂、スチレン-アクリル酸樹脂、ポリエチレン樹脂、エチレン-酢酸ビニル樹脂、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー樹脂、塩化ビニル-酢酸ビニル樹脂、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂又はポリエーテル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂又はメラミン樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシ-アクリル酸系樹脂(より具体的には、エポキシ化合物のアクリル酸誘導体付加物等)又はウレタン-アクリル酸系樹脂(より具体的には、ウレタン化合物のアクリル酸誘導体付加物等)が挙げられる。これらのバインダー樹脂は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 これらの樹脂の中では、加工性、機械的強度、光学的特性及び耐摩耗性のバランスに優れた感光層が得られることから、ポリカーボネート樹脂が好ましい。ポリカーボネート樹脂としては、例えば、一般式(3)で表されるポリカーボネート樹脂(以下、ポリカーボネート樹脂(3)と記載することがある)が好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(3)中、R31、R32、R33及びR34は、各々独立に、水素原子又は炭素原子数1以上6以下のアルキル基を表す。R32とR33とは、互いに結合して形成される炭素原子数3以上10以下のシクロアルキリデン基を表してもよい。n及びmは、0以上の整数である。n+m=100を満たす。nは、60以上100以下の整数を表す。
 一般式(3)中、R31及びR34は、水素原子を表すことが好ましい。R32とR33とは、互いに結合して形成される炭素原子数3以上10以下のシクロアルキリデン基を表すことが好ましく、互いに結合して形成される炭素原子数5以上7以下のシクロアルキリデン基を表すことがより好ましく、互いに結合して形成されるシクロヘキシリデン基を表すことが特に好ましい。
 ポリカーボネート樹脂(3)としては、例えば、化学式(R-1)~(R-2)で表されるポリカーボネート樹脂(以下、それぞれポリカーボネート樹脂(R-1)~(R-2)と記載することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 バインダー樹脂の粘度平均分子量は、40000以上であることが好ましく、40000以上52500以下であることがより好ましい。バインダー樹脂の粘度平均分子量が40000以上であると、感光体の耐摩耗性を向上させ易い。バインダー樹脂の粘度平均分子量が52500以下であると、感光層の形成時にバインダー樹脂が溶剤に溶解し易くなり、感光層用塗布液の粘度が高くなり過ぎない。その結果、感光層を形成し易くなる。
[6.添加剤]
 感光体の電子写真特性に悪影響を与えない範囲で、感光層は、各種の添加剤を含有してもよい。添加剤としては、例えば、劣化防止剤(より具体的には、酸化防止剤、ラジカル捕捉剤、消光剤又は紫外線吸収剤等)、軟化剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、アクセプター、ドナー、界面活性剤、可塑剤、増感剤又はレベリング剤が挙げられる。酸化防止剤としては、例えば、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノン若しくはこれらの誘導体、有機硫黄化合物又は有機燐化合物が挙げられる。
[7.中間層]
 中間層は、例えば、無機粒子及び中間層に用いられる樹脂(中間層用樹脂)を含有する。中間層の存在により、リーク発生を抑制し得る程度の絶縁状態を維持しつつ、感光体を露光した時に発生する電流の流れを円滑にして、抵抗の上昇を抑制し易くなる。
 無機粒子としては、例えば、金属(より具体的には、アルミニウム、鉄又は銅等)の粒子、金属酸化物(より具体的には、酸化チタン、アルミナ、酸化ジルコニウム、酸化スズ又は酸化亜鉛等)の粒子又は非金属酸化物(より具体的には、シリカ等)の粒子が挙げられる。これらの無機粒子は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 中間層用樹脂としては、中間層を形成する樹脂として用いることができる限り、特に限定されない。
 中間層は、感光体の電子写真特性に悪影響を与えない範囲で、各種の添加剤を含有してもよい。添加剤は、感光層の添加剤と同様である。
[8.感光体の製造方法]
 図1Aを参照して、感光体1の製造方法の一例について説明する。感光体1の製造方法は、例えば、感光層形成工程を有する。感光層形成工程では、感光層用塗布液を、導電性基体2上に塗布し、塗布した感光層用塗布液に含まれる溶剤を除去して感光層3を形成する。感光層用塗布液は、電荷発生剤と、電子輸送剤としてのナフトキノン誘導体(1)と、正孔輸送剤と、バインダー樹脂と、溶剤とを少なくとも含む。感光層用塗布液は、電荷発生剤と、電子輸送剤としてのナフトキノン誘導体(1)と、正孔輸送剤と、バインダー樹脂とを、溶剤に溶解又は分散させることにより調製される。感光層用塗布液には、必要に応じて添加剤を加えてもよい。
 感光層用塗布液に含まれる溶剤は、感光層用塗布液に含まれる各成分を溶解又は分散できる限り、特に限定されない。溶剤としては、例えば、アルコール(より具体的には、メタノール、エタノール、イソプロパノール又はブタノール等)、脂肪族炭化水素(より具体的には、n-ヘキサン、オクタン又はシクロヘキサン等)、芳香族炭化水素(より具体的には、ベンゼン、トルエン又はキシレン等)、ハロゲン化炭化水素(より具体的には、ジクロロメタン、ジクロロエタン、四塩化炭素又はクロロベンゼン等)、エーテル(より具体的には、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル又はジエチレングリコールジメチルエーテル等)、ケトン(より具体的には、アセトン、メチルエチルケトン又はシクロヘキサノン等)、エステル(より具体的には、酢酸エチル又は酢酸メチル等)、ジメチルホルムアルデヒド、N,N-ジメチルホルムアミド(DMF)又はジメチルスルホキシドが挙げられる。これらの溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの溶剤のうち、感光体1の製造時の作業性を向上させるためには、ハロゲン化炭化水素以外の溶剤が好ましい。
 感光層用塗布液は、各成分を混合し、溶剤に分散することにより調製される。混合又は分散には、例えば、ビーズミル、ロールミル、ボールミル、アトライター、ペイントシェーカー又は超音波分散器が用いられる。
 感光層用塗布液は、各成分の分散性又は形成される感光層3の表面平滑性を向上させるために、例えば、界面活性剤又はレベリング剤を含有してもよい。
 感光層用塗布液を塗布する方法としては、例えば、導電性基体2上に均一に感光層用塗布液を塗布できる方法である限り、特に限定されない。塗布方法としては、例えば、ディップコート法、スプレーコート法、スピンコート法又はバーコート法が挙げられる。
 感光層用塗布液に含まれる溶剤を除去する方法は、感光層用塗布液中の溶剤を蒸発させ得る方法である限り、特に限定されない。溶剤を除去する方法としては、例えば、加熱、減圧又は加熱と減圧との併用が挙げられる。より具体的には、高温乾燥機又は減圧乾燥機を用いて、熱処理(熱風乾燥)する方法が挙げられる。熱処理条件は、例えば、40℃以上150℃以下の温度、かつ3分間以上120分間以下の時間であることが好ましい。
 なお、感光体1の製造方法は、必要に応じて、中間層4を形成する工程及び保護層5を形成する工程の一方又は両方を更に含んでいてもよい。中間層4を形成する工程及び保護層5を形成する工程では、公知の方法が適宜選択される。
 感光体1は、例えば、画像形成装置において像担持体として使用される。
 以上、第一実施形態に係る感光体を説明した。第一実施形態に係る感光体は、白点現象の発生を抑制することができる。
<第二実施形態:画像形成装置>
 本発明の第二実施形態は、画像形成装置に関する。第二実施形態に係る画像形成装置は、像担持体と、帯電部と、露光部と、現像部と、転写部とを備える。帯電部は、像担持体の表面を正極性に帯電する。露光部は、帯電された像担持体の表面を露光して、像担持体の表面に静電潜像を形成する。現像部は、静電潜像をトナー像として現像する。転写部は、像担持体の表面と接触しながら、トナー像を像担持体の表面から記録媒体に転写する。像担持体は、第一実施形態に係る感光体である。
 第二実施形態に係る画像形成装置は、白点現象の発生を抑制することができる。その理由は、以下のように推測される。直接転写方式を採用する第二実施形態に係る画像形成装置では、転写部において像担持体と記録媒体とが接触すると、記録媒体は摩擦されて正極性に帯電する傾向がある。帯電部において像担持体の表面は正極性に帯電される。このため、像担持体の表面と、摩擦帯電された記録媒体との間で静電的斥力が作用する。その結果、記録媒体(例えば、紙)に由来する微小成分(例えば、紙粉)が像担持体の表面に付着し難く、白点現象の発生が抑制されると考えられる。
 以下、図2を参照して、画像形成装置100を説明する。図2は、画像形成装置100の構成の一例を示す。
 画像形成装置100は、電子写真方式の画像形成装置である限り、特に限定されない。画像形成装置100は、例えば、モノクロ画像形成装置であってもよいし、カラー画像形成装置であってもよい。画像形成装置100がカラー画像形成装置である場合、画像形成装置100は、例えば、タンデム方式を採用する。以下、タンデム方式の画像形成装置100を例に挙げて説明する。
 画像形成装置100は、画像形成ユニット40a、40b、40c及び40dと、転写ベルト50と、定着部52とを備える。以下、区別する必要がない場合には、画像形成ユニット40a、40b、40c及び40dの各々を、画像形成ユニット40と記載する。
 画像形成ユニット40は、像担持体1と、帯電部42と、露光部44と、現像部46と、転写部48とを備える。画像形成ユニット40の中央位置に、像担持体1が設けられる。像担持体1は、矢符方向(反時計回り)に回転可能に設けられる。像担持体1の周囲には、帯電部42を基準として像担持体1の回転方向の上流側から順に、帯電部42、露光部44、現像部46及び転写部48が設けられる。なお、画像形成ユニット40には、クリーニング部(不図示)及び除電部(不図示)の一方又は両方が更に備えられてもよい。
 帯電部42は、像担持体1の表面を正極性に帯電する。帯電部42は、非接触方式又は接触方式の帯電部である。非接触方式の帯電部42としては、例えば、コロトロン帯電器又はスコロトロン帯電器が挙げられる。接触方式の帯電部42としては、例えば、帯電ローラー又は帯電ブラシが挙げられる。
 画像形成装置100は、帯電部42として帯電ローラーを備えることができる。像担持体1の表面を帯電するときに、帯電ローラーは像担持体1の表面と接触する。像担持体1の表面に微小成分が付着している場合には、接触した帯電ローラーによって微小成分が像担持体1の表面に押圧される。これにより、像担持体1の表面に微小成分が固着し易い。しかし、画像形成装置100は、記録媒体Pに由来する微小成分の付着により引き起こされる白点現象の発生を抑制可能な像担持体1を備えている。このため、画像形成装置100は、帯電部42として帯電ローラーを備える場合であっても、微小成分が像担持体1の表面に固着しにくく、白点現象の発生を抑制することができる。
 露光部44は、帯電された像担持体1の表面を露光する。これにより、像担持体1の表面に静電潜像が形成される。静電潜像は、画像形成装置100に入力された画像データに基づいて形成される。
 現像部46は、像担持体1の表面にトナーを供給し、静電潜像をトナー像として現像する。
 現像部46は、像担持体1の表面を清掃することができる。すなわち、画像形成装置100は、いわゆるブレードクリーナーレス方式を採用することができる。現像部46は、像担持体1の表面に残留する成分(以下、残留成分と記載することがある)を除去することができる。残留成分の一例は、トナー成分であり、より具体的には、トナー又は遊離した外添剤である。残留成分の別の例は、非トナー成分(微小成分)であり、より具体的には、紙粉である。ブレードクリーナーレス方式を採用する画像形成装置100では、クリーニング部(例えば、クリーニングブレード)によって像担持体1の表面の残留成分が掻き取られない。そのため、ブレードクリーナーレス方式を採用する画像形成装置100では、通常、像担持体1の表面に残留成分が残り易い。しかし、像担持体1は、記録媒体Pに由来する微小成分の付着により引き起こされる白点現象の発生を抑制することができる。従って、このような像担持体1を備える画像形成装置100は、ブレードクリーナーレス方式を採用したとしても、像担持体1の表面に微小成分、特に紙粉が残りにくい。その結果、画像形成装置100は、白点現象の発生を抑制することができる。
 現像部46が像担持体1の表面を効率的に清掃するためには、以下に示す条件(a)及び条件(b)を満たすことが好ましい。
条件(a):接触現像方式を採用し、像担持体1と現像部46との間に周速(回転速度)差が設けられる。
条件(b):像担持体1の表面電位と、現像バイアスの電位とが以下の数式(b-1)及び数式(b-2)を満たす。
  0(V)<現像バイアスの電位(V)<像担持体1の未露光領域の表面電位(V)・・・(b-1)
  現像バイアスの電位(V)>像担持体1の露光領域の表面電位(V)>0(V)・・・(b-2)
 条件(a)に示す接触現像方式を採用し、像担持体1と現像部46との間に周速差が設けられていると、像担持体1の表面は現像部46と接触し、像担持体1の表面の付着成分が現像部46との摩擦により除去される。現像部46の周速は、像担持体1の周速よりも速いことが好ましい。
 条件(b)では、トナーの帯電極性、像担持体1の未露光領域の表面電位、像担持体1の露光領域の表面電位及び現像バイアスの電位は、何れも正極性である場合を想定している。つまり、現像方式が反転現像方式である場合を想定している。なお、像担持体1の未露光領域の表面電位及び露光領域の表面電位は、転写部48がトナー像を像担持体1から記録媒体Pへ転写した後、帯電部42が次周回の像担持体1の表面を帯電する前に測定される。
 条件(b)の数式(b-1)を満たすと、像担持体1に残留したトナー(以下、残留トナーと記載することがある)と像担持体1の未露光領域との間に作用する静電的斥力が、残留トナーと現像部46との間に作用する静電的斥力に比べ大きくなる。このため、像担持体1の未露光領域の残留トナーは、像担持体1の表面から現像部46へと移動し、回収される。
 条件(b)の数式(b-2)を満たすと、残留トナーと像担持体1の露光領域との間に作用する静電的斥力が、残留トナーと現像部46との間に作用する静電的斥力に比べ小さくなる。このため、像担持体1の露光領域の残留トナーは、像担持体1の表面に保持される。像担持体1の露光領域に保持されたトナーは、そのまま画像形成に使用される。
 転写ベルト50は、像担持体1と転写部48との間に記録媒体Pを搬送する。転写ベルト50は、無端状のベルトである。転写ベルト50は、矢符方向(時計回り)に回転可能に設けられる。
 転写部48は、現像部46によって現像されたトナー像を、像担持体1の表面から記録媒体Pへ転写する。像担持体1から記録媒体Pにトナー像が転写されるときに、像担持体1は記録媒体Pと接触している。すなわち、画像形成装置100は、いわゆる直接転写方式を採用する。転写部48としては、例えば、転写ローラーが挙げられる。
 画像形成ユニット40a~40dの各々によって、転写ベルト50上の記録媒体Pに、複数色(例えば、ブラック、シアン、マゼンタ及びイエローの4色)のトナー像が順に重ねられる。なお、画像形成装置100がモノクロ画像形成装置である場合には、画像形成装置100は、画像形成ユニット40aを備え、画像形成ユニット40b~40dは省略される。
 定着部52は、転写部48によって記録媒体Pに転写された未定着のトナー像を、加熱及び/又は加圧する。定着部52は、例えば、加熱ローラー及び/又は加圧ローラーである。トナー像を加熱及び/又は加圧することにより、記録媒体Pにトナー像が定着する。その結果、記録媒体Pに画像が形成される。
 以上、第二実施形態に係る画像形成装置を説明した。第二実施形態に係る画像形成装置は、像担持体として第一実施形態に係る感光体を備えることで、白点現象の発生を抑制することができる。
<第三実施形態:プロセスカートリッジ>
 本発明の第三実施形態は、プロセスカートリッジに関する。第三実施形態に係るプロセスカートリッジは、第一実施形態に係る感光体を備える。
 引き続き、図2を参照して、第三実施形態に係るプロセスカートリッジについて説明する。プロセスカートリッジは、ユニット化された像担持体1を備える。プロセスカートリッジは、像担持体1に加えて、帯電部42、露光部44、現像部46及び転写部48からなる群より選択される少なくとも1つをユニット化した構成が採用される。プロセスカートリッジは、例えば、画像形成ユニット40a~40dの各々に相当する。プロセスカートリッジには、クリーニング部(不図示)及び除電部(不図示)の一方又は両方が更に備えられてもよい。プロセスカートリッジは、画像形成装置100に対して着脱自在に設計される。そのため、プロセスカートリッジは取り扱いが容易であり、像担持体1の感度特性等が劣化した場合に、像担持体1を含めて容易かつ迅速に交換することができる。
 以上、第三実施形態に係るプロセスカートリッジを説明した。第三実施形態に係るプロセスカートリッジは、像担持体として第一実施形態に係る感光体を備えることで、白点現象の発生を抑制することができる。
 以下、実施例を用いて本発明を更に具体的に説明する。しかし、本発明は実施例の範囲に何ら限定されない。
<1.感光体の材料>
 感光体の感光層を形成するための材料として、以下の電子輸送剤、正孔輸送剤、電荷発生剤及びバインダー樹脂を準備した。
[1-1.電子輸送剤]
 電子輸送剤として、ナフトキノン誘導体(1-1)~(1-5)を準備した。ナフトキノン誘導体(1-1)~(1-5)は、それぞれ以下の方法で製造した。
[1-1-1.ナフトキノン誘導体(1-1)の製造]
 反応式(r-1)及び反応式(r-2)で表される反応(以下、それぞれ反応(r-1)及び(r-2)と記載することがある)に従ってナフトキノン誘導体(1-1)を製造した。
Figure JPOXMLDOC01-appb-C000016
 反応(r-1)では、化学式(a1-1)で表される2,3-ジクロロ-1,4-ナフトキノンと、フタルイミドカリウム(a2)とを反応させて、2,3-ジアミノ-1,4-ナフトキノン(ジアミノナフトキノン(A))を得た。
 詳しくは、2,3-ジクロロ-1,4-ナフトキノン4.54g(0.020モル)と、フタルイミドカリウム7.40g(0.040モル)と、アセトニトリル100mLとをフラスコに投入し、アセトニトリル溶液を調製した。アセトニトリル溶液を加温し、80℃で5時間攪拌還流した。還流後の反応系を室温(約25℃)まで放冷し、生じた黄色固体(反応中間体)をろ取した。
 次いで、黄色固体に20質量%ヒドラジン水溶液200mLを加え、反応系を室温(約25℃)で30分間攪拌した。反応系を加温し、80℃付近で1時間攪拌した。熱時ろ過を行い、固体をろ取した。得られた固体を水洗後乾燥させて、2,3-ジアミノ-1,4-ナフトキノンを得た。2,3-ジアミノ-1,4-ナフトキノンの収量は、2.80gであり、2,3-ジクロロ-1,4-ナフトキノンからの2,3-ジアミノ-1,4-ナフトキノンの収率は、74モル%であった。
Figure JPOXMLDOC01-appb-C000017
 反応(r-2)では、2,3-ジアミノ-1,4-ナフトキノン(ジアミノナフトキノン(A))と、化学式(B-1)で表されるジケトン誘導体(ジケトン誘導体(B-1))とを反応させて、ナフトキノン誘導体(1-1)を得た。
 詳しくは、2,3-ジアミノ-1,4-ナフトキノン1.88g(0.010モル)と、ジケトン誘導体(B-1)2.58g(0.010モル)と、エタノール100mLとをフラスコに投入し、エタノール溶液を調製した。エタノール溶液に酢酸0.30g(0.005モル)を加え、反応系を加温し、80℃で4時間攪拌還流した。還流後の反応系からエタノールを留去し、残渣を得た。展開溶媒としてクロロホルムを用い、シリカゲルカラムクロマトグラフィーにより、得られた残渣を精製して、ナフトキノン誘導体(1-1)を得た。ナフトキノン誘導体(1-1)の収量は、2.46gであり、2,3-ジアミノ-1,4-ナフトキノンからのナフトキノン誘導体(1-1)の収率は、60モル%であった。
[1-1-2.ナフトキノン誘導体(1-2)~(1-5)の製造]
 反応(r-2)において以下の点を変更した以外は、ナフトキノン誘導体(1-1)の製造と同様の方法で、ナフトキノン誘導体(1-2)~(1-5)をそれぞれ製造した。なお、ナフトキノン誘導体(1-2)~(1-5)の製造において、反応(r-1)は、ナフトキノン誘導体(1-1)の製造における反応(r-1)と全く同一である。また、ナフトキノン誘導体(1-2)~(1-5)の製造において、各原料は、ナフトキノン誘導体(1-1)の製造において対応する原料のモル数と同じモル数で添加した。
 表1に、反応(r-2)における2,3-ジアミノ-1,4-ナフトキノン(ジアミノナフトキノン(A))、ジケトン誘導体(B)及びナフトキノン誘導体(1)を示す。表1中、ナフトキノン誘導体(1)欄の1-1~1-5は、それぞれナフトキノン誘導体(1-1)~(1-5)を示す。反応(r-2)で使用するジケトン誘導体(B-1)を、ジケトン誘導体(B-2)~(B-5)の何れかに変更した。これらの結果、反応(r-2)において、ナフトキノン誘導体(1-1)の代わりに、それぞれナフトキノン誘導体(1-2)~(1-5)が得られた。
 表1に、ナフトキノン誘導体(1)の収量及び収率を示す。なお、表1中、ジアミノナフトキノン(A)欄のAは、2,3-ジアミノ-1,4-ナフトキノンを示す。また、ジケトン誘導体(B)欄のB-1~B-5は、それぞれジケトン誘導体(B-1)~(B-5)を示す。ジケトン誘導体(B-2)~(B-5)は、それぞれ下記化学式(B-2)~(B-5)で表される。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-C000019
 次に、プロトン核磁気共鳴分光計(日本分光株式会社製、270MHz)を用いて、製造したナフトキノン誘導体(1-1)~(1-5)の1H-NMRスペクトルを測定した。溶媒としてCDCl3を用いた。内部標準試料としてテトラメチルシラン(TMS)を用いた。これらのうち、ナフトキノン誘導体(1-4)を代表例として挙げる。
 図3は、ナフトキノン誘導体(1-4)の1H-NMRスペクトルを示す。図3中、縦軸は信号強度(単位:任意単位)を示し、横軸は化学シフト(単位:ppm)を示す。以下に、ナフトキノン誘導体(1-4)の化学シフト値を示す。
ナフトキノン誘導体(1-4):1H-NMR(270MHz,CDCl3) δ=8.36-8.43(m,2H)、7.83-7.90(m,2H)、3.00(d,2H)、2.86(s,2H)、2.36(m,1H)、1.02(d,6H).
 1H-NMRスペクトル及び化学シフト値により、ナフトキノン誘導体(1-4)が得られていることを確認した。他のナフトキノン誘導体(1-1)~(1-3)及び(1-5)も同様にして、1H-NMRスペクトル及び化学シフト値により、それぞれナフトキノン誘導体(1-1)~(1-3)及び(1-5)が得られていることを確認した。
[1-1-3.化合物(E-1)~(E-3)の準備]
 電子輸送剤として、化合物(E-1)~(E-3)を準備した。
[1-2.正孔輸送剤]
 正孔輸送剤として、第一実施形態で説明した化合物(H-1)を準備した。
[1-3.電荷発生剤]
 電荷発生剤として、第一実施形態で説明した化合物(C-1)を準備した。化合物(C-1)は、化学式(C-1)で表される無金属フタロシアニン(X型無金属フタロシアニン)である。また、化合物(C-1)の結晶構造はX型である。
[1-4.バインダー樹脂]
 バインダー樹脂として、第一実施形態で説明したポリカーボネート樹脂(R-1)及び(R-2)を準備した。
<2.単層型感光体の製造>
 感光層を形成するための材料を用いて、単層型感光体(A-1)~(A-10)及び単層型感光体(B-1)~(B-6)を製造した。
[2-1.単層型感光体(A-1)の製造]
 容器内に、電荷発生剤としての化合物(C-1)3質量部と、正孔輸送剤としての化合物(H-1)55質量部と、電子輸送剤としてのナフトキノン誘導体(1-1)30質量部と、バインダー樹脂としてのポリカーボネート樹脂(R-1)100質量部と、溶剤としてのテトラヒドロフラン600質量部とを投入した。容器の内容物を、ボールミルを用いて12時間混合して、溶剤に材料を分散させた。これにより、感光層用塗布液を得た。感光層用塗布液を、導電性基体としてのアルミニウム製のドラム状支持体上に、ディップコート法を用いて塗布した。塗布した感光層用塗布液を、120℃で80分間熱風乾燥させた。これにより、導電性基体上に、感光層(単層型感光層、膜厚30μm)を形成した。その結果、単層型感光体(A-1)が得られた。
[2-2.単層型感光体(A-2)~(A-10)及び単層型感光体(B-1)~(B-6)の製造]
 以下の点を変更した以外は、単層型感光体(A-1)の製造と同様の方法で、単層型感光体(A-2)~(A-10)及び単層型感光体(B-1)~(B-6)をそれぞれ製造した。導電性基体上に形成した感光層の膜厚は、何れも30μmであった。
 単層型感光体(A-1)の製造に用いた電子輸送剤としてのナフトキノン誘導体(1-1)を、表2に示す種類の電子輸送剤に変更した。単層型感光体(A-1)の製造に用いたバインダー樹脂を、表2に示す種類のバインダー樹脂に変更した。なお、表2に感光体(A-1)~(A-10)及び感光体(B-1)~(B-6)の構成を示す。表2中、樹脂、CGM、HTM及びETMは、それぞれバインダー樹脂、電荷発生剤、正孔輸送剤及び電子輸送剤を示す。表2中、樹脂欄のR-1及びR-2は、それぞれポリカーボネート樹脂(R-1)及び(R-2)を示す。CGM欄のx-H2Pcは、X型無金属フタロシアニン(化合物(C-1))を示す。HTM欄のH-1は、化合物(H-1)を示す。ETM欄の1-1~1-5及びE-1~E-3は、それぞれナフトキノン誘導体(1-1)~(1-5)及び化合物(E-1)~(E-3)を示す。
<3.感光体の評価>
[3-1.単層型感光体の電気特性(感度特性)の評価]
 製造した単層型感光体(A-1)~(A-10)及び単層型感光体(B-1)~(B-6)のそれぞれに対して、電気特性(感度特性)を評価した。電気特性の評価は、温度23℃及び湿度50%RH(相対湿度)の環境下で行った。
 ドラム感度試験機(ジェンテック株式会社製)を用いて、単層型感光体の表面を正極性に帯電させた。帯電条件を、単層層型感光体の回転数31rpmに設定した。帯電直後の単層型感光体の表面電位を+600Vに設定した。次いで、バンドパスフィルターを用いて、ハロゲンランプの白色光から単色光(波長780nm、半値幅20nm、光エネルギー1.5μJ/cm2)を取り出した。取り出された単色光を、単層型感光体の表面に照射した。照射が終了してから0.5秒経過した時の単層型感光体の表面電位を測定した。測定された表面電位を、露光後電位(VL、単位:V)とした。測定された単層型感光体の露光後電位(VL)を、表2に示す。なお、露光後電位(VL)の絶対値が小さいほど、単層型感光体の感度特性が優れていることを示す。
[3-2.単層型感光体の電気特性(摩擦帯電性)の評価]
 感光層と炭酸カルシウムとを摩擦させたときの炭酸カルシウムの帯電量(摩擦帯電量)を測定した。炭酸カルシウムは、紙粉の主成分である。以下、図4を参照して、感光層と炭酸カルシウムとを摩擦させたときの炭酸カルシウムの摩擦帯電量を測定する方法を説明する。図4は、摩擦帯電量の測定装置の概要を示す。炭酸カルシウムの摩擦帯電量は、下記の第一ステップ、第二ステップ、第三ステップ及び第四ステップを行うことにより測定した。炭酸カルシウムの摩擦帯電量の測定には、治具10を使用した。
 図4に示すように、治具10は、第一台12と、回転シャフト14と、回転駆動部16(例えば、モーター)と、第二台18とを備えている。回転駆動部16は、回転シャフト14を回転する。回転シャフト14は、回転シャフト14の回転軸Sを中心に回転する。第一台12は、回転シャフト14と一体になって、回転軸Sを中心に回転する。第二台18は、回転することなく固定されている。
(第一ステップ)
 第一ステップでは、感光層を2個準備した。以下、感光層の一方を第一感光層30と記載し、感光層の他方を第二感光層32と記載する。上述の単層型感光体(A-1)~(A-10)及び単層型感光体(B-1)~(B-6)の何れかを作製する際に調製した単層型感光層用塗布液を、アルミパイプ(直径:78mm)に巻きつけたオーバーヘッドプロジェクタシート(以下、OHPシートと記載することがある)に塗布した。塗布した塗布液を、120℃で80分間乾燥した。これにより、膜厚30μmの感光層が形成された摩擦帯電性評価用のシートを作製した。その結果、第一感光層30(膜厚L1:30μm)と第一OHPシート20とを備える第一シート及び第二感光層32(膜厚L2:30μm)と第二OHPシート22とを備える第二シートを得た。第一OHPシート20及び第二OHPシート22の大きさは、それぞれ、縦5cm及び横5cmであった。
(第二ステップ)
 第二ステップでは、炭酸カルシウム0.007gを第一感光層30上に乗せた。そして、炭酸カルシウムの層24上に第二感光層32を載せた。具体的な手順は以下の通りであった。
 まず、両面テープを用いて第一OHPシート20と第一台12とを接着させ、第一シートを第一台12に固定した。両面テープを用いて第二OHPシート22と第二台18とを接着させ、第二シートを第二台18に固定した。第一シートが備える第一感光層30上に、0.007gの炭酸カルシウムを載せ、膜厚が均一になるようにして、炭酸カルシウムの層24を形成した。炭酸カルシウムの量は、第三ステップにおいて回転時間60秒間で、第一感光層30及び第二感光層32との間で炭酸カルシウムが十分にかつ万遍なく摩擦され、炭酸カルシムが十分にかつ万遍なく帯電できる量である。炭酸カルシウムの層24は、第三ステップにおける回転駆動部16の駆動により、第一感光層30と第二感光層32との間から溺れ落ちないように回転軸Sを中心に第一感光層30の内側に形成されている。そして、第一感光層30と第二感光層32とが炭酸カルシウムの層24を介して対向するように、第二感光層32と炭酸カルシウムの層24とを接触させて炭酸カルシウムの層24上に第二感光層32を載せた。これにより、下から順に、第一台12、第一OHPシート20、第一感光層30、炭酸カルシウムの層24、第二感光層32、第二OHPシート22及び第二台18が配置された。第一台12、第一OHPシート20、第一感光層30、炭酸カルシウムの層24、第二感光層32、第二OHPシート22及び第二台18の各中心が、回転軸Sを通るように配置された。
(第三ステップ)
 第三ステップでは、温度23℃及び湿度50%RHの環境下で、第二感光層32を固定したまま、回転速度60rpmで60秒間、第一感光層30を回転させた。具体的には、回転シャフト14、第一台12、第一OHPシート20及び第一感光層30を、回転速度60rpmで60秒間、回転軸Sを中心に回転させるように回転駆動部16を駆動させた。これにより、炭酸カルシウムが第一感光層30との間及び第二感光層32との間で摩擦され、炭酸カルシウムが帯電した。
(第四ステップ)
 第四ステップでは、第三ステップで帯電させた炭酸カルシウムを治具10から取出し、帯電量測定装置(吸引式小型帯電量測定装置、トレック社製「MODEL 212HS」)を用いて吸引した。吸引された炭酸カルシウムの総電気量Q(単位:μC)と質量M(単位:g)とを、帯電量測定装置を用いて測定した。式「摩擦帯電量=Q/M」から、炭酸カルシウムの摩擦帯電量(単位:μC/g)を算出した。
 測定された炭酸カルシウムの摩擦帯電量を表2に示す。なお、炭酸カルシウムの摩擦帯電量が大きい正の値であるほど、炭酸カルシウムは第一感光層30及び第二感光層32に対して正帯電し易いことを示す。また、炭酸カルシウムの摩擦帯電量が大きい正の値であるほど、炭酸カルシウムに対して第一感光層30及び第二感光層32は負帯電し易いことを示す。
[3-3.画像特性の評価(白点個数の測定)]
 単層型感光体(A-1)~(A-10)及び単層型感光体(B-1)~(B-6)のそれぞれに対して、画像特性を評価した。画像特性の評価は、温度32.5℃及び湿度80%RHの環境下で行った。評価機として、画像形成装置(京セラドキュメントソリューションズ株式会社製「モノクロプリンターFS-1300D」)を用いた。この画像形成装置は、接触現像方式、直接転写方式及びブレードクリーニングレス方式を採用する。この画像形成装置では、帯電部としてスコロトロン帯電器が備えられている。記録媒体として、京セラドキュメントソリューションズ株式会社販売「京セラドキュメントソリューションズブランド紙VM-A4」(A4サイズ)を使用した。評価機による評価には、一成分現像剤(試作品)を使用した。
 評価機を用いて、単層型感光体の回転速度168mm/秒の条件で、20000枚の記録媒体に画像I(印字率1%の画像)を連続して印刷した。続いて、1枚の記録媒体に画像II(黒ソリッド画像、縦297mm×横210mm A4サイズ)を印刷した。画像IIが形成された記録媒体を肉眼で観察し、形成画像における画像不良の有無を観察した。画像不良として、黒ソリッド画像内に現れる白点の数を数えた。感光体に紙粉が付着すると、黒ソリッド画像内に白点が現れる傾向がある。黒ソリッド画像内に現れる白点の数を表2に示す。白点の数が少ないほど、紙粉の付着に起因した画像不良の発生(白点現象の発生)が抑制されていることを示す。
Figure JPOXMLDOC01-appb-T000020
 表2に示すように、感光体(A-1)~(A-10)では、感光層は、電荷発生剤と、正孔輸送剤と、電子輸送剤としてナフトキノン誘導体(1-1)~(1-5)の何れか1種とを含有している。ナフトキノン誘導体(1-1)~(1-5)は、ナフトキノン誘導体(1)である。感光体(A-1)~(A-10)では、炭酸カルシウムの摩擦帯電量が+9.0μC/g以上+9.4μC/g以下である。また、感光体(A-1)~(A-10)では、白点の個数が26個以上34個以下である。
 表2に示すように、感光体(B-1)~(B-6)では、感光層は、電荷発生剤と、正孔輸送剤と、電子輸送剤として化合物(E-1)~(E-3)の何れか1種とを含有している。化合物(E-1)~(E-3)は、ナフトキノン誘導体(1)ではない。感光体(B-1)~(B-6)では、炭酸カルシウムの摩擦帯電量が+5.3μC/g以上+6.9μC/g以下、すなわち、+7μC/g未満である。また、感光体(B-1)~(B-6)では、白点の個数が44個以上100個以下である。
 ナフトキノン誘導体(1)を含有する感光層を備えた感光体(A-1)~(A-10)は、ナフトキノン誘導体(1)ではない化合物(E-1)~(E-3)を含有する感光層を備えた感光体(B-1)~(B-6)よりも、白点現象の発生を抑制できることが明らかである。また、感光体(A-1)~(A-10)を備える画像形成装置は、感光体(B-1)~(B-6)を備える画像形成装置よりも、白点現象の発生を抑制できることが明らかである。
 表2に示すように、感光体(A-1)~(A-10)の中でも、感光体(A-9)及び(A-10)では、感光層は、電子輸送剤としてナフトキノン誘導体(1-5)を含有している。ナフトキノン誘導体(1-5)は、複数のハロゲン原子で置換されているフェニル基と、アルキル基とを有するナフトキノン誘導体(1)である。感光体(A-9)及び(A-10)では、白点の個数がそれぞれ28個及び26個である。これにより、感光層が、ハロゲン原子で置換されているフェニル基と、アルキル基とを有するナフトキノン誘導体(1)を電子輸送剤として含有しており、この感光層を備えた感光体(A-9)及び(A-10)は、白点現象の発生を抑制する効果が特に大きいことが明らかである。
 本発明に係る感光体及びプロセスカートリッジは、画像形成装置に利用することができる。本発明に係る画像形成装置は、複写機、プリンターに利用することができる。

Claims (14)

  1.  導電性基体と、感光層とを備える電子写真感光体であって、
     前記感光層は、電荷発生剤と、電子輸送剤と、正孔輸送剤と、バインダー樹脂とを少なくとも含有する単層型感光層であり、
     前記電子輸送剤は、一般式(1)で表されるナフトキノン誘導体を含み、
     前記感光層と炭酸カルシウムとを摩擦させたときの前記炭酸カルシウムの摩擦帯電量は、+7μC/g以上である、電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001
     前記一般式(1)中、
     R11及びR12は、各々独立に、炭素原子数1以上8以下のアルキル基、置換基を有してもよい炭素原子数6以上14以下のアリール基、置換基を有してもよい炭素原子数7以上20以下のアラルキル基及び置換基を有してもよい炭素原子数3以上10以下のシクロアルキル基からなる群より選択される基を表し、
     R11及びR12の少なくとも何れか一方が表す前記基は、1又は複数のハロゲン原子で置換されている。
  2.  前記一般式(1)中、
     前記炭素原子数6以上14以下のアリール基が有する前記置換基は、炭素原子数1以上6以下のアルキル基であり、
     前記炭素原子数7以上20以下のアラルキル基が有する前記置換基は、炭素原子数1以上6以下のアルキル基であり、
     前記炭素原子数3以上10以下のシクロアルキル基が有する前記置換基は、炭素原子数1以上6以下のアルキル基である、請求項1に記載の電子写真感光体。
  3.  前記一般式(1)中、
     R11及びR12の表す前記基が有する前記ハロゲン原子の総数は、1以上3以下である、請求項1に記載の電子写真感光体。
  4.  前記一般式(1)中、
     R11とR12とは互いに異なる、請求項1に記載の電子写真感光体。
  5.  前記一般式(1)中、
     R11及びR12の何れか一方は、1若しくは複数のハロゲン原子で置換されている炭素原子数1以上3以下のアルキル基又は1若しくは複数のハロゲン原子で置換されているフェニル基を表し、
     R11及びR12の他方は、炭素原子数1以上3以下のアルキル基を有してもよいフェニル基又は炭素原子数1以上4以下のアルキル基を表し、
     前記ハロゲン原子は、塩素原子又はフッ素原子である、請求項1に記載の電子写真感光体。
  6.  前記一般式(1)中、
     R11及びR12の何れか一方は、1又は複数のハロゲン原子で置換されているフェニル基を表し、
     R11及びR12の他方は、炭素原子数1以上4以下のアルキル基を表す、請求項5に記載の電子写真感光体。
  7.  前記ナフトキノン誘導体は、化学式(1-1)、(1-2)、(1-3)、(1-4)又は(1-5)で表される、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000002
  8.  前記正孔輸送剤は、一般式(2)で表される化合物を含む、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000003
     前記一般式(2)中、
     R21、R22、R23、R24、R25及びR26は、各々独立に、炭素原子数1以上6以下のアルキル基又は炭素原子数1以上6以下のアルコキシ基を表し、
     r、s、v及びwは、各々独立に、0以上5以下の整数を表し、
     t及びuは、各々独立に、0以上4以下の整数を表す。
  9.  前記バインダー樹脂は、一般式(3)で表されるポリカーボネート樹脂を含む、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000004
     前記一般式(3)中、
     R31、R32、R33及びR34は、各々独立に、水素原子又は炭素原子数1以上6以下のアルキル基を表し、
     R32とR33とは、互いに結合して形成される炭素原子数3以上10以下のシクロアルキリデン基を表してもよく、
     n及びmは、0以上の整数であり、
     n+m=100を満たし、
     nは、60以上100以下の整数を表す。
  10.  請求項1に記載の電子写真感光体を備える、プロセスカートリッジ。
  11.  像担持体と、
     前記像担持体の表面を正極性に帯電する帯電部と、
     帯電された前記像担持体の前記表面を露光して、前記像担持体の前記表面に静電潜像を形成する露光部と、
     前記静電潜像をトナー像として現像する現像部と、
     前記像担持体の前記表面と接触しながら、前記トナー像を前記像担持体の前記表面から記録媒体に転写する転写部とを備え、
     前記像担持体は、請求項1に記載の電子写真感光体である、画像形成装置。
  12.  前記帯電部は、帯電ローラーである、請求項11に記載の画像形成装置。
  13.  前記現像部は、前記像担持体の前記表面と接触しながら、前記静電潜像を前記トナー像として現像する、請求項11に記載の画像形成装置。
  14.  前記現像部は、前記像担持体の前記表面を清掃する、請求項11に記載の画像形成装置。
PCT/JP2017/010965 2016-04-25 2017-03-17 電子写真感光体、プロセスカートリッジ及び画像形成装置 WO2017187838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018514194A JP6601557B2 (ja) 2016-04-25 2017-03-17 電子写真感光体、プロセスカートリッジ及び画像形成装置
EP17789127.2A EP3451064B1 (en) 2016-04-25 2017-03-17 Electrophotographic photoreceptor, process cartridge and image-forming device
US16/092,013 US10545418B2 (en) 2016-04-25 2017-03-17 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
CN201780023658.6A CN109074008B (zh) 2016-04-25 2017-03-17 电子照相感光体、处理盒及图像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016087037 2016-04-25
JP2016-087037 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017187838A1 true WO2017187838A1 (ja) 2017-11-02

Family

ID=60161358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010965 WO2017187838A1 (ja) 2016-04-25 2017-03-17 電子写真感光体、プロセスカートリッジ及び画像形成装置

Country Status (5)

Country Link
US (1) US10545418B2 (ja)
EP (1) EP3451064B1 (ja)
JP (1) JP6601557B2 (ja)
CN (1) CN109074008B (ja)
WO (1) WO2017187838A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190812B1 (en) * 1999-10-25 2001-02-20 Kyocera Mita Corporation Single-layer type electrophotosensitive material and image forming apparatus using the same
JP2001305755A (ja) * 2000-04-26 2001-11-02 Kyocera Mita Corp 単層型電子写真感光体、及びそれを使用した画像形成装置
JP2001312075A (ja) * 2000-04-27 2001-11-09 Kyocera Mita Corp 単層型電子写真感光体、及びそれを使用した除電システムを有さない画像形成装置
WO2008146665A1 (ja) * 2007-05-25 2008-12-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子並びに有機エレクトロルミネッセンス表示装置
JP2014092594A (ja) * 2012-10-31 2014-05-19 Kyocera Document Solutions Inc 電子写真感光体及び画像形成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102757A (en) * 1988-09-13 1992-04-07 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member and image forming process
DE69214002T2 (de) * 1991-04-24 1997-02-20 Canon Kk Elektrophotographisches, lichtempfindliches Element und elektrophotographisches Gerät sowie Vorrichtungseinheit und Faksimile-Gerät unter Verwendung desselben
US5393628A (en) * 1992-06-25 1995-02-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and electrophotographic apparatus employing the same
JP3375849B2 (ja) * 1997-05-23 2003-02-10 京セラミタ株式会社 ナフトキノン誘導体およびこれを用いた電子写真感光体
EP1241529A3 (en) * 2001-03-12 2003-10-22 Kyocera Mita Corporation Electrophotosensitive material
JP2005070122A (ja) * 2003-08-27 2005-03-17 Kyocera Mita Corp 電子写真感光体および画像形成装置
US7413835B2 (en) * 2005-07-14 2008-08-19 Xerox Corporation Imaging members
JP5266037B2 (ja) * 2008-12-24 2013-08-21 京セラドキュメントソリューションズ株式会社 単層型電子写真感光体及び画像形成装置
JP5686648B2 (ja) * 2011-03-29 2015-03-18 京セラドキュメントソリューションズ株式会社 正帯電単層型電子写真感光体、及び画像形成装置
JP5814212B2 (ja) * 2012-10-31 2015-11-17 京セラドキュメントソリューションズ株式会社 電子写真感光体及び画像形成装置
CN105693631A (zh) * 2016-03-11 2016-06-22 吉林奥来德光电材料股份有限公司 一种芳杂环化合物及其制备方法以及一种有机电致发光器件
JP2017197438A (ja) * 2016-04-25 2017-11-02 京セラドキュメントソリューションズ株式会社 ナフトキノン誘導体及び電子写真感光体
JP6677212B2 (ja) * 2017-04-12 2020-04-08 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6760207B2 (ja) * 2017-06-12 2020-09-23 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6690602B2 (ja) * 2017-06-12 2020-04-28 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190812B1 (en) * 1999-10-25 2001-02-20 Kyocera Mita Corporation Single-layer type electrophotosensitive material and image forming apparatus using the same
JP2001305755A (ja) * 2000-04-26 2001-11-02 Kyocera Mita Corp 単層型電子写真感光体、及びそれを使用した画像形成装置
JP2001312075A (ja) * 2000-04-27 2001-11-09 Kyocera Mita Corp 単層型電子写真感光体、及びそれを使用した除電システムを有さない画像形成装置
WO2008146665A1 (ja) * 2007-05-25 2008-12-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子並びに有機エレクトロルミネッセンス表示装置
JP2014092594A (ja) * 2012-10-31 2014-05-19 Kyocera Document Solutions Inc 電子写真感光体及び画像形成装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Synthesis of original benzo[g]quinoxaline-5, 10-diones by bis-SRN1 methodology", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 41, no. 2, 2004, pages 221 - 225, XP055300901 *
See also references of EP3451064A4 *

Also Published As

Publication number Publication date
CN109074008A (zh) 2018-12-21
JP6601557B2 (ja) 2019-11-06
US20190086825A1 (en) 2019-03-21
EP3451064B1 (en) 2021-06-23
US10545418B2 (en) 2020-01-28
EP3451064A4 (en) 2019-12-25
JPWO2017187838A1 (ja) 2019-03-14
EP3451064A1 (en) 2019-03-06
CN109074008B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
JP6729157B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
CN108693722B (zh) 电子照相感光体、处理盒和图像形成装置
CN109031901B (zh) 电子照相感光体、处理盒和图像形成装置
JP6604429B2 (ja) キノン誘導体及び電子写真感光体
JP2018036374A (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP6481650B2 (ja) 電子写真感光体
JP2019002951A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6455459B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6477568B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JPWO2018061368A1 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6601557B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6583546B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6565862B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6515878B2 (ja) 電子写真感光体、画像形成装置、及びプロセスカートリッジ
JP6421780B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6569808B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2017197438A (ja) ナフトキノン誘導体及び電子写真感光体
JP6593532B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2018194703A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6551359B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2018194702A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6508129B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6565861B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
WO2018123425A1 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789127

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017789127

Country of ref document: EP

Effective date: 20181126