WO2017183410A1 - ステアリングシステムの異音検出方法及びステアリングシステムの評価装置 - Google Patents

ステアリングシステムの異音検出方法及びステアリングシステムの評価装置 Download PDF

Info

Publication number
WO2017183410A1
WO2017183410A1 PCT/JP2017/013227 JP2017013227W WO2017183410A1 WO 2017183410 A1 WO2017183410 A1 WO 2017183410A1 JP 2017013227 W JP2017013227 W JP 2017013227W WO 2017183410 A1 WO2017183410 A1 WO 2017183410A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering system
sound
column shaft
microphone
steering
Prior art date
Application number
PCT/JP2017/013227
Other languages
English (en)
French (fr)
Inventor
佐藤 佳宏朗
武藤 泰之
将幸 金津
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/573,735 priority Critical patent/US10634647B2/en
Priority to JP2017538742A priority patent/JP6225368B1/ja
Priority to EP17785752.1A priority patent/EP3447460A4/en
Priority to BR112018015685-0A priority patent/BR112018015685A2/ja
Priority to CN201780012028.9A priority patent/CN108700454A/zh
Priority to KR1020187021399A priority patent/KR20180134840A/ko
Publication of WO2017183410A1 publication Critical patent/WO2017183410A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/06Steering behaviour; Rolling behaviour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present invention relates to a method for detecting abnormal noise of a steering system and a steering system evaluation apparatus.
  • the final inspection for abnormal noise caused by the steering system is performed by a test driver inspecting and evaluating the abnormal noise caused by the steering system by distinguishing it from other noises in a vehicle running test.
  • tire road noise and engine noise are dominant in the vehicle cabin noise, and the S / N ratio of abnormal noise caused by the steering system is small. Often difficult.
  • a microphone or an acceleration is attached to the lower portion of the electric power steering device by repeatedly inputting vibrations to the gear meshing portion and causing the abnormal noise caused by the rotation of the gear meshing portion. It is known to detect with a sensor (see, for example, Patent Document 1).
  • An object of the present invention is to provide a method for detecting an abnormal sound of a steering system and an evaluation device for the steering system that can accurately detect an abnormal noise generated from the steering system by increasing the S / N ratio.
  • the present invention has the following configuration.
  • a method for detecting abnormal noise of a steering system comprising: a column shaft that rotatably supports a steering wheel; and detecting abnormal noise from a steering system that steers wheels according to rotation of the column shaft, Using a microphone disposed facing the column shaft end of the column shaft on the steering wheel side, the sound from the column shaft end is measured,
  • An abnormal sound detection method for a steering system wherein an abnormal sound detection signal caused by the steering system is generated from a sound signal output from the microphone.
  • An evaluation device for a steering system that includes a column shaft that rotatably supports a steering wheel, and detects abnormal noise from a steering system that steers a wheel according to the rotation of the column shaft, A microphone disposed facing the column shaft end of the column shaft on the steering wheel side; A gantry comprising a vibrator for supporting the steering system and applying vibration; While applying vibration to the pedestal by the vibrator, the sound from the column shaft end is measured using the microphone, and abnormal noise caused by the steering system is detected from the sound signal output from the microphone.
  • a steering system evaluation apparatus comprising:
  • abnormal noise generated from the steering system can be detected accurately.
  • 2 is a spectrogram of a detected audio signal in the first embodiment. It is the spectrogram of the detected audio
  • FIG. 1 is a perspective view of a steering system that detects abnormal noise by the abnormal noise detection method of the present invention.
  • the traveling direction of the vehicle will be described as the front, and the reverse direction opposite to the traveling direction will be referred to as the rear.
  • the steering wheel 13 is supported on the rear end portion of the column shaft 15 so as to be rotatable.
  • the column shaft 15 is rotatably supported by the steering column 17 in a state where the cylindrical steering column 17 is inserted in the axial direction.
  • the front end portion of the column shaft 15 is connected to the rear end portion of the intermediate shaft 21 via the universal joint 19.
  • the front end portion of the intermediate shaft 21 is connected to the input shaft 27 of the steering gear unit 25 via another universal joint 23.
  • the steering gear unit 25 transmits the rotation of the input shaft 27 to a pair of left and right steering shafts 29 connected to the front wheels of the vehicle and extending in the vehicle width direction.
  • FIG. 2 is a schematic configuration diagram of a steering wheel and a detection device in which a microphone is installed.
  • the abnormal noise detection method according to this configuration detects an abnormal noise from the steering system using the microphone 31 and the detection device 33.
  • the microphone 31 has a sound collecting unit 35 at the tip, and the sound collecting unit 35 captures sound and outputs a sound signal.
  • the microphone 31 for example, various types such as a dynamic microphone and a condenser microphone can be used.
  • the microphone 31 is disposed so as to face the steering wheel 13. At that time, the steering wheel 13 removes an attachment member such as an air bag module from the wheel body, and exposes the end 45 of the column shaft 15.
  • an attachment member such as an air bag module
  • the end portion 54 is a male screw portion is shown, but a configuration in which components attached to the end portion 45 are exposed may be used.
  • the microphone 31 is disposed on the vehicle rear side with respect to the column shaft 15, and the sound collection unit 35 of the microphone 31 is disposed at a position facing the end 45 of the column shaft 15.
  • the microphone 31 is connected to the detection device 33 via the signal cable 32.
  • the detection device 33 includes a frequency analysis unit 37, a rattle sound component extraction unit 39, and an evaluation unit 41.
  • the frequency analysis unit 37 performs frequency analysis based on the sound signal output from the microphone 31.
  • the rattle sound component extraction unit 39 extracts a rattle sound component resulting from a collision when each component constituting the steering system 11 is relatively displaced from the frequency analysis result by the frequency analysis unit 37.
  • the evaluation unit 41 obtains an evaluation value based on the rattle sound component extracted by the rattle sound component extraction unit 39, and evaluates the abnormal sound of the steering system 11.
  • FIG. 3 is an explanatory diagram showing details of the arrangement of the microphone 31.
  • the distance L between the end portion 45 of the column shaft 15 and the microphone 31 is 50 mm or less.
  • the microphone 31 is preferably installed as close as possible to the end 45 of the column shaft 15 so as not to interfere with the column shaft 15, and the distance L is more preferably 10 mm or less.
  • the microphone 31 is preferably disposed on the axis X of the column shaft 15. However, if the sound collecting unit 35 faces the end 45 of the column shaft 15, the microphone 31 is inclined with respect to the axis X of the column shaft 15. It may be. For example, although depending on the directivity of the microphone 31, the inclination angle ⁇ from the axis X of the column shaft 15 may be within a range of ⁇ 50 °, preferably ⁇ 30 °.
  • the microphone 31 is preferably installed in a state where the space 45 including only the air layer is provided between the end portion 45 of the column shaft 15 and the microphone 31. That is, the microphone 31 is installed in a state where sound is not blocked or hardly blocked from the end 45 of the column shaft 15.
  • FIG. 4 is an explanatory view showing one form of abnormal noise detection of a steering system mounted on a vehicle.
  • an abnormal noise from the steering system 11 is detected while the vehicle V is running with the steering system 11 mounted on the vehicle V.
  • the detection device 33 is operated to drive the vehicle V.
  • uneven roads such as cobblestone roads such as Belgian roads and cobblestone roads in which some rounded stones are embedded in the ground regularly or irregularly at a pitch of 10 cm to 100 cm.
  • R is run at a speed of 10 km / h to 40 km / h.
  • a sound emitted from the end 45 of the column shaft 15 is detected using the microphone 31 while the vehicle V is traveling.
  • the microphone 31 outputs the detected sound to the detection device 33 as a sound signal.
  • the detection device 33 inputs the sound signal from the microphone 31 to the frequency analysis unit 37 and performs frequency analysis.
  • the frequency analysis unit 37 obtains a frequency spectrum that is a sound pressure intensity distribution for each frequency of the sound signal, and outputs the obtained frequency spectrum to the rattle sound component extraction unit.
  • the rattle sound component extraction unit 39 extracts a rattle sound component that is an abnormal sound signal caused by the steering system 11 from the frequency spectrum output from the frequency analysis unit 37.
  • the rattle sound component extraction unit 39 uses a high-pass filter, a low-pass filter, or a band-pass filter from the input frequency spectrum, and the sound pressure intensity in the frequency band of 300 Hz to 8 kHz with a sense of rattle sound. Are selectively extracted, and the signal is used as an abnormal sound signal. It is more preferable to extract the rattle sound frequency band from 500 Hz to 5 kHz and extract the sound pressure intensity in the frequency band.
  • the evaluation unit 41 evaluates the steering system 11 by determining whether or not the sound pressure intensity of the obtained abnormal sound signal is within a preset allowable range, for example.
  • the abnormal noise of the steering system 11 is detected by the microphone 31 arranged at the position opposite to the end 45 of the column shaft 15. Since all the components of the steering system 11 are connected to the end portion 45 of the column shaft 15, sound in the steering system 11 is emitted from the end portion 45 of the column shaft 15. By detecting this sound, the noise inside the steering system can be accurately grasped. Since the steering wheel 13 itself amplifies sound using the end portion 45 of the column shaft 15 as a sound source, the microphone 31 is disposed at a position facing the steering wheel 13 to further improve the S / N ratio of the sound signal. be able to.
  • the abnormal noise of the steering system 11 can be measured with higher sensitivity.
  • FIG. 5 is an explanatory view schematically showing the positional relationship between the column shaft 15 and the microphone 31.
  • a space S consisting only of an air layer is formed between the end 45 of the column shaft 15 and the microphone 31.
  • the present invention is not limited thereto, and a member 47 such as a sheet or a cover that does not shield sound propagation or has a low shielding effect may be disposed in a part of the space S.
  • the member 47 has an effect of passing a specific frequency component including a rattle sound and blocking other frequency components, the signal processing by the rattle sound component extraction unit 39 can be simplified or omitted. .
  • the rattle sound is more accurately extracted by selectively extracting the sound pressure intensity in the frequency band of 300 Hz to 8 kHz including the frequency band of the rattle sound caused by the steering system 11 from the sound measured by the microphone 31.
  • the noise is always stable and accurate without being affected by other sound components such as tire noise when the vehicle travels. Can be evaluated.
  • the support structure of the microphone 31 is not limited as long as the microphone 31 is disposed so as to face the end portion 45 of the column shaft 15.
  • the microphone 31 is preferably supported integrally with the steering wheel 13. If the microphone 31 is supported on the steering wheel 13 in this manner, the microphone 31 does not interfere with the operation of the steering wheel 13, and the surrounding members There is no interference.
  • the noise from the steering system 11 is measured using only the microphone 31, but the vibration sensor 43 for detecting vibration may be used in combination.
  • the vibration sensor 43 is attached to a position connected to the column shaft 15 such as the end 45 of the column shaft 15, and the vibration of the column shaft 15 is detected by the vibration sensor 43.
  • the vibration sensor 43 outputs the detected vibration to the detection device 33 as a vibration detection signal.
  • the detection device 33 evaluates the input vibration detection signal together with the sound pressure intensity described above.
  • vibration sensor 43 various types of sensors such as a MEMS acceleration sensor applying a MEMS (Micro Electro Mechanical System) technology and a piezoelectric acceleration sensor can be used as the acceleration sensor.
  • MEMS acceleration sensor applying a MEMS (Micro Electro Mechanical System) technology
  • piezoelectric acceleration sensor can be used as the acceleration sensor.
  • the detection device 33 may perform evaluation based on the detected vibration intensity, or may perform frequency analysis on the input vibration detection signal and perform evaluation based on the spectrum intensity in a specific frequency band. By using the spectrum intensity, the noise component is reduced, and highly accurate evaluation is possible. In addition, a more reliable evaluation can be performed by a synergistic effect with the evaluation based on the sound pressure intensity.
  • FIG. 6 is an explanatory diagram showing an embodiment for detecting an abnormal noise of the steering system alone.
  • abnormal noise detection is performed in a state where the steering system 11 is mounted alone on the gantry 51.
  • the gantry 51 includes a rectangular bottom plate portion 53, column portions 55 erected at each corner of the bottom plate portion 53, and a frame body 57 fixed to the upper ends of these column portions 55, and the steering system 11. Is supported in the same manner as in-vehicle.
  • the gantry 51 is provided with a vibrator 61.
  • the vibrator 61 can arbitrarily apply vibration to the steering system 11 supported by the gantry 51. For example, by applying the same vibration pattern to the steering system 11 as that generated when the vehicle V travels, the steering system 11 is imparted with vibration applied during actual traveling while being supported by the gantry 51.
  • the portion to which vibration is applied may be the steering shaft 29 that is a tie rod, and the excitation direction may be not only the axial direction of the steering shaft 29 but also the vertical direction.
  • the steering gear unit 25 may be vibrated in the vertical direction.
  • each of the above parts may be individually excited or simultaneously excited. Thereby, a pseudo driving state can be reproduced in the steering system 11.
  • the sound generated from the steering system 11 is measured by using the microphone 31 and the detection device (evaluation device) 33 similar to the configuration shown in FIG. Can be evaluated. Further, the steering system 11 may be evaluated using the microphone 31 and the vibration sensor 43 at the same time. In that case, the reliability of the evaluation result can be further improved.
  • the abnormal noise generated from the steering system 11 can be detected accurately and reliably in a situation close to the time when the vehicle V is traveling without mounting the steering system 11 on the vehicle V.
  • each of the abnormal noise detection methods described above by arranging the microphone 31 at a position opposite to the end 45 of the column shaft 15, it is possible to reliably detect abnormal noise such as a rattle sound emitted from the steering system 11. In addition, it is possible to accurately detect the rattle sound, which was difficult to detect with the microphone placed at the ear position of the test driver, with an intensity suitable for human hearing. In addition, even when there is no space for installing the microphone 31 below the steering system 11, it can be easily attached to the column shaft 15 and the degree of freedom in abnormal noise inspection can be improved.
  • the present invention is not limited to the above-described embodiments, but can be modified by those skilled in the art based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. Application is also within the scope of the present invention and is within the scope of protection.
  • Example 1 a sound emitted from the column shaft 15 was detected using the microphone 31 disposed at a position facing the end 45 of the column shaft 15. The distance L between the column shaft 15 and the microphone 31 was 15 mm. Further, as Comparative Example 1, sound was detected by a microphone placed at the ear position of the test driver.
  • FIG. 7 is a spectrogram of the detected sound signal in Example 1
  • FIG. 8 is a spectrogram of the detected sound signal in Comparative Example 1.
  • an intermittent peak which is a rattle sound component
  • Comparative Example 1 As shown in FIG. 7, in Example 1, an intermittent peak, which is a rattle sound component, was detected at 500 Hz to 2000 Hz.
  • Comparative Example 1 As shown in FIG. 8, intermittent peaks that are rattle sound components were not clearly detected.
  • FIG. 9 is a graph showing average spectra in Example 1 and Comparative Example 1. Comparing the average spectra of Example 1 and Comparative Example 1 from the figure, in Example 1, the dominant peak level at 500 Hz to 2000 Hz is high.
  • FIG. 10 is a graph showing a spectrum when the frequency spectrum of the sound pressure of Example 1 shown in FIG. 9 is subjected to a mask process using a bandpass filter.
  • the spectral intensity of the rattle sound component can be selectively extracted by performing mask processing with a band pass filter of 300 Hz to 5000 Hz. This makes it possible to diagnose and evaluate rattle sounds in line with human hearing.
  • a method for detecting abnormal noise of a steering system comprising: a column shaft that rotatably supports a steering wheel; and detecting abnormal noise from a steering system that steers a wheel according to rotation of the column shaft, Using a microphone disposed facing the column shaft end of the column shaft on the steering wheel side, the sound from the column shaft end is measured,
  • An abnormal sound detection method for a steering system wherein an abnormal sound detection signal caused by the steering system is generated from a sound signal output from the microphone.
  • the abnormal noise from the steering system is amplified and the S / N ratio is increased. Can be detected in an improved state. Further, since the sound signal of the measured sound has a large S / N ratio, it is possible to easily detect an abnormal sound caused by the steering system.
  • An evaluation apparatus for a steering system that includes a column shaft that rotatably supports a steering wheel, and detects abnormal noise from a steering system that steers a wheel according to the rotation of the column shaft, A microphone disposed facing the column shaft end of the column shaft on the steering wheel side; A gantry comprising a vibrator for supporting the steering system and applying vibration; While applying vibration to the pedestal by the vibrator, the sound from the column shaft end is measured using the microphone, and abnormal noise caused by the steering system is detected from the sound signal output from the microphone.
  • a steering system evaluation apparatus comprising: According to this steering system evaluation apparatus, it is possible to detect an abnormal noise during traveling of the steering system in a pseudo manner, and to easily evaluate the generated abnormal noise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

ステアリングホイールを回転可能に支持するコラムシャフトを有し、コラムシャフトの回転に応じて車輪を転舵させるステアリングシステムからの異音を検出する。コラムシャフトのステアリングホイール側のコラムシャフト端部に対面して配置されるマイクロホンを用いて、コラムシャフト端部からの音を計測する。そして、マイクロホンから出力される音信号からステアリングシステムに起因する異音検出信号を生成する。

Description

ステアリングシステムの異音検出方法及びステアリングシステムの評価装置
 本発明は、ステアリングシステムの異音検出方法及びステアリングシステムの評価装置に関する。
 ステアリングシステムに起因する異音の最終検査は、車両の走行試験において、テストドライバーがステアリングシステムに起因する異音をそれ以外の騒音と聞き分けて評価することで行われる。しかし、車両の車室内の騒音はタイヤロードノイズやエンジンノイズが支配的であり、ステアリングシステムに起因する異音のS/N比は小さいため、ステアリングシステムに起因する異音を聴感で聞き分けることは困難な場合が多い。
 また、テストドライバーの耳位置近傍に設置したマイクロホンで音を検出し、その音信号に基づいて評価を行うとしても、ステアリングシステムに起因する異音の成分のみを抽出することは難しいのが実情であった。
 そこで、ステアリングシステムに起因する異音を検出する技術として、ギヤ噛合部に繰り返し振動を入力し、ギヤ噛合部の回転に原因して生ずる異音を電動パワーステアリング装置の下部に取り付けたマイク又は加速度センサで検出することが知られている(例えば、特許文献1参照)。
日本国特許第4382647号公報
 しかしながら、上記特許文献1の技術では、電動ステアリング装置の下部で検出した異音と実際に車内で聞こえる異音とは必ずしも一致せず、検出された音や振動に問題がなくても車両の走行試験で不合格になる場合があった。また、マイク又は加速度センサの取り付けスペースが確保できないこともあり、電動ステアリング装置を車両に組み付けた状態でステアリングシステム全体の評価を行うことが難しかった。
 本発明の目的は、ステアリングシステムから発生する異音をS/N比を高めて正確に検出可能なステアリングシステムの異音検出方法及びステアリングシステムの評価装置を提供することにある。
 本発明は下記構成からなる。
(1) ステアリングホイールを回転可能に支持するコラムシャフトを有し、前記コラムシャフトの回転に応じて車輪を転舵させるステアリングシステムからの異音を検出するステアリングシステムの異音検出方法であって、
 前記コラムシャフトの前記ステアリングホイール側のコラムシャフト端部に対面して配置されるマイクロホンを用いて、前記コラムシャフト端部からの音を計測し、
 前記マイクロホンから出力される音信号から前記ステアリングシステムに起因する異音検出信号を生成する
ステアリングシステムの異音検出方法。
(2) ステアリングホイールを回転可能に支持するコラムシャフトを有し、前記コラムシャフトの回転に応じて車輪を転舵させるステアリングシステムからの異音を検出するステアリングシステムの評価装置であって、
 前記コラムシャフトの前記ステアリングホイール側のコラムシャフト端部に対面して配置されるマイクロホンと、
 前記ステアリングシステムを支持し、振動を付与する加振器を備える架台と、
 前記加振器により前記架台に振動を付与しながら、前記マイクロホンを用いて、前記コラムシャフト端部からの音を計測し、前記マイクロホンから出力される音信号から前記ステアリングシステムに起因する異音検出信号を生成する検出装置と、
を備えるステアリングシステムの評価装置。
 本発明によれば、ステアリングシステムから発生する異音を正確に検出できる。
本発明の異音検出方法により異音を検出するステアリングシステムの斜視図である。 マイクロホンが設置されたステアリングホイール及び検出装置の概略構成図である。 マイクロホンの配置についての詳細を示す説明図である。 車両に搭載されたステアリングシステムの異音検出の一形態を示す説明図である。 コラムシャフトとマイクロホンとの配置関係を模式的に示す説明図である。 ステアリングシステム単体の異音を検出する一形態を示す説明図である。 実施例1における検出された音声信号のスペクトログラムである。 比較例1における検出された音声信号のスペクトログラムである。 実施例1及び比較例1における平均スペクトルを示すグラフである。 図9に示す実施例1の音圧の周波数スペクトルに、バンドパスフィルターによるマスク処理を施した場合のスペクトルを示すグラフである。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は本発明の異音検出方法により異音を検出するステアリングシステムの斜視図である。以下、車両の進行方向を前方、進行方向とは反対の後退方向を後方と称して説明する。
 ステアリングシステム11は、ステアリングホイール13が、コラムシャフト15の後端部に回転操作可能に支持される。コラムシャフト15は、円筒状のステアリングコラム17を軸方向に挿通した状態で、このステアリングコラム17に回転自在に支持する。コラムシャフト15は、その前端部が、自在継手19を介して中間シャフト21の後端部に接続される。中間シャフト21の前端部は、別の自在継手23を介して、ステアリングギヤユニット25の入力軸27に接続される。ステアリングギヤユニット25は、入力軸27の回転を、車両の前車輪に連結されて車幅方向に延出した左右一対の操舵軸29に伝達する。
 このステアリングシステム11においては、ステアリングホイール13が回転操作されることで、コラムシャフト15及び中間シャフト21を介して入力軸27が回転される。そして、入力軸27の回転に伴って操舵軸29が軸方向に移動し、前車輪が転舵されて舵角が付与される。
 図2はマイクロホンが設置されたステアリングホイール及び検出装置の概略構成図である。本構成による異音検出方法は、マイクロホン31と、検出装置33とを用いてステアリングシステムからの異音を検出する。
 マイクロホン31は、先端に集音部35を有し、この集音部35で音を捉え、音信号を出力する。このマイクロホン31としては、例えば、ダイナミックマイクやコンデンサマイク等の種々の方式のものが使用可能である。
 マイクロホン31は、ステアリングホイール13に対面して配置される。その際、ステアリングホイール13は、エアバックモジュール等の付属部材をホイール本体から取り外し、コラムシャフト15の端部45を露出させた状態にする。ここでは一例として端部54が雄ねじ部である場合を示しているが、端部45に取り付けられた部品が露出した構成であってもよい。
 マイクロホン31は、コラムシャフト15よりも車両後方側に配置され、マイクロホン31の集音部35を、コラムシャフト15の端部45との対向位置に配置される。
 マイクロホン31は、信号ケーブル32を介して検出装置33に接続される。検出装置33は、周波数分析部37と、ラトル音成分抽出部39と、評価部41とを備える。検出装置33の処理内容の詳細については後述するが、周波数分析部37は、マイクロホン31から出力される音信号に基づいて周波数分析を行う。ラトル音成分抽出部39は、周波数分析部37による周波数分析結果から、ステアリングシステム11を構成する各部品が相対変位した際の衝突に起因するラトル音成分を抽出する。評価部41は、ラトル音成分抽出部39が抽出したラトル音成分に基づいて評価値を求め、ステアリングシステム11の異音の評価を行う。
 図3はマイクロホン31の配置についての詳細を示す説明図である。
 コラムシャフト15の端部45とマイクロホン31との間の距離Lは、50mm以下とする。なお、マイクロホン31は、コラムシャフト15と干渉しない程度にコラムシャフト15の端部45に近付けて設置するのが好ましく、距離Lを10mm以下とするのがより好ましい。
 マイクロホン31は、コラムシャフト15の軸線X上に配置されることが好ましいが、集音部35がコラムシャフト15の端部45と対向していれば、コラムシャフト15の軸線Xに対して傾斜していてもよい。例えば、マイクロホン31の指向性にもよるが、コラムシャフト15の軸線Xからの傾き角θは±50°、好ましくは±30°の範囲であればよい。
 上記のようにマイクロホン31は、コラムシャフト15の端部45とマイクロホン31との間を、空気層のみからなる空間Sとした状態で設置することが好ましい。つまり、マイクロホン31は、コラムシャフト15の端部45との間で音が遮断されない、又は殆ど遮断されない状態で設置させる。
 次に、上記のステアリングシステム11に対する異音検出方法について説明する。
<車両走行検査>
 まず、ステアリングシステム11を、車両に搭載し、車両と一体にされた状態で異音を検出する形態を説明する。
(異音の検出)
 図4は車両に搭載されたステアリングシステムの異音検出の一形態を示す説明図である。図示例の形態においては、ステアリングシステム11を車両Vに搭載した状態で、車両Vを走行させながら、ステアリングシステム11からの異音を検出する。
 まず、検出装置33を作動させて車両Vを走行させる。このとき、例えば、ベルジアン路等の石畳の路面や、丸みを帯びた石の一部を10cm~100cmのピッチで規則的又は不規則に地面に埋め込んで並べた玉石路等の、凹凸のある道路Rを10km/h~40km/hの速度で走行させる。
 そして、車両Vの走行中に、マイクロホン31を用いてコラムシャフト15の端部45から発せられる音を検出する。マイクロホン31は、検出された音を音信号として検出装置33に出力する。
(異音信号の処理)
 検出装置33は、マイクロホン31からの音信号を、周波数分析部37に入力し、周波数分析を行う。周波数分析部37は、音信号の周波数毎の音圧強度分布である周波数スペクトルを求め、求めた周波数スペクトルを、ラトル音成分抽出部に出力する。
 ラトル音成分抽出部39は、周波数分析部37から出力される周波数スペクトルから、ステアリングシステム11に起因する異音信号であるラトル音成分を抽出する。具体的には、ラトル音成分抽出部39は、入力された周波数スペクトルから、ハイパスフィルター、ローパスフィルター、あるいはバンドパスフィルターを用いて、ラトル音となる聴感で300Hz~8kHzの周波数帯の音圧強度を選択的に抽出し、その信号を異音信号とする。なお、ラトル音の抽出周波数帯としては、500Hz~5kHzの周波数帯とし、その周波数帯の音圧強度を抽出するのがより好ましい。
(異音信号の評価)
 評価部41は、得られた異音信号の音圧強度が、例えば、予め設定した許容範囲内であるか否かを判断し、ステアリングシステム11を評価する。
 本方式によるステアリングシステムの異音検出方法によれば、コラムシャフト15の端部45の対向位置に配置されたマイクロホン31によって、ステアリングシステム11の異音を検出する。ステアリングシステム11は、全ての部品がコラムシャフト15の端部45に繋がっているため、コラムシャフト15の端部45からステアリングシステム11内の音が発せられる。この音を検出することで、ステアリングシステム内部の騒音を正確に把握できる。また、コラムシャフト15の端部45を音源として、ステアリングホイール13そのものが音を増幅するため、ステアリングホイール13の対向位置にマイクロホン31を配置することで、音信号のS/N比をより向上させることができる。
 これにより、ステアリングシステム11の作動時に、ステアリングシステム11の各構成部品同士が接触して生じるラトル音を、マイクロホン31から高感度で計測できる。
 また、コラムシャフト15の端部45とマイクロホン31との間の距離Lを50mm以下とすることで、より高感度にステアリングシステム11の異音を計測できる。
 図5はコラムシャフト15とマイクロホン31との配置関係を模式的に示す説明図である。同図に示すように、コラムシャフト15の端部45とマイクロホン31との間は、空気層のみからなる空間Sとしている。しかし、これに限らず、空間Sの一部に、音の伝播を遮蔽しない又は遮蔽効果の低いシートやカバー等の部材47が配置されていてもよい。
 例えば、部材47が、ラトル音を含む特定周波数成分を通過させ、他の周波数成分を遮る効果を有していれば、ラトル音成分抽出部39による信号処理を簡単化、又は省略することもできる。
 本方式では、マイクロホン31で計測された音から、ステアリングシステム11に起因するラトル音の周波数帯域を含む300Hz~8kHzの周波数帯の音圧強度を選択的に抽出することで、ラトル音をより正確に評価できる。これにより、ステアリングシステム11を搭載した車両Vを走行させて異音を検出する際、車両走行時のタイヤノイズ等、他の音成分による影響を受けることなく、常に安定して正確な異音の評価が行える。
 また、マイクロホン31は、コラムシャフト15の端部45に対向して配置されていれば、その支持構造は限定されない。マイクロホン31は、ステアリングホイール13に一体的に支持させるのが好ましく、このようにマイクロホン31をステアリングホイール13に支持させれば、マイクロホン31がステアリングホイール13の操作に邪魔にならず、周囲部材との干渉を生じることもない。
<変形例>
 上記例では、マイクロホン31のみを用いてステアリングシステム11からの異音を計測しているが、振動を検出する振動センサ43を併用してもよい。その場合、図3に示すように、振動センサ43をコラムシャフト15の端部45等のコラムシャフト15に接続される位置に取り付け、この振動センサ43によりコラムシャフト15の振動を検出する。振動センサ43は、検出した振動を振動検出信号として検出装置33に出力する。検出装置33は、入力された振動検出信号を前述した音圧強度と併せて評価する。
 振動センサ43としては、加速度センサとしては、MEMS(Micro Electro Mechanical System)技術を応用したMEMS加速度センサや、圧電型加速度センサ等、種々の方式のセンサが使用可能である。
 検出装置33は、検出された振動の強度に基づいて評価してもよく、入力された振動検出信号を周波数分析して、特定の周波数帯のスペクトル強度に基づいて評価してもよい。スペクトル強度を用いることで、ノイズ成分が低減して高精度な評価が可能となる。また、音圧強度に基づく評価との相乗効果によって、より信頼性の高い評価が行える。
<ステアリングシステムの単体検査>
 次に、ステアリングシステム単体の異音を検出する形態を説明する。
 図6はステアリングシステム単体の異音を検出する一形態を示す説明図である。図示例の形態においては、ステアリングシステム11を架台51に単体で搭載した状態で異音検出を行う。
 架台51は、矩形状の底板部53と、底板部53の各角部に立設された柱部55と、これらの柱部55の上端に固定された枠体57とを備え、ステアリングシステム11を車載時と同様に支持する。
 架台51には、加振器61が設けられる。加振器61は、架台51に支持されたステアリングシステム11に振動を任意に付与できる。例えば、車両Vが走行する際に生じる振動と同じ振動パターンをステアリングシステム11に付与することで、ステアリングシステム11は、架台51に支持された状態で実走行時に加わる振動が付与される。なお、図示していないが、振動を付与する部位は、タイロッドである操舵軸29であってもよく、加振方向は操舵軸29の軸方向だけでなく、鉛直方向であってもよい。また、ステアリングギヤユニット25を鉛直方向に加振しても良い。更に、上記各部を個別に加振してもよく、同時に加振してもよい。これにより、ステアリングシステム11に擬似的な走行状態を再現できる。
 本構成の場合も、図2に示す構成と同様のマイクロホン31と検出装置(評価装置)33を用いて、ステアリングシステム11から発生する音を計測することで、人間の知覚に沿ったステアリングシステム11の評価が行える。また、マイクロホン31と振動センサ43とを同時に使用して、ステアリングシステム11の評価を行ってもよい。その場合、評価結果の信頼性をより向上できる。
 このように、本方式によれば、ステアリングシステム11を車両Vに搭載させることなく、車両Vの走行時に近い状況で、ステアリングシステム11から生じる異音を正確、且つ確実に検出できる。
 上記の各異音検出方法によれば、コラムシャフト15の端部45の対向位置にマイクロホン31を配置することで、ステアリングシステム11から発せられるラトル音等の異音を確実に検出できる。また、テストドライバーの耳位置に配置されたマイクロホンでは検出が困難であったラトル音を、人の聴覚に即した強度で、正確に検出できる。また、マイクロホン31をステアリングシステム11の下部に設置するスペースがない場合でも、簡便にコラムシャフト15に取り付け可能となり、異音検査の自由度を向上できる。
 以上説明したように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 ここで、車両Vを、例えば車速15km/hで凹凸路上を走行させた際のステアリングシステム11の異音を検出した結果を説明する。
 実施例1として、コラムシャフト15の端部45との対向位置に配置したマイクロホン31を用いて、コラムシャフト15から発せられる音を検出した。コラムシャフト15とマイクロホン31との距離Lは15mmとした。また、比較例1として、テストドライバーの耳位置に配置したマイクロホンによって音を検出した。
(評価結果)
 図7は実施例1における検出された音信号のスペクトログラムであり、図8は比較例1における検出された音声信号のスペクトログラムである。図7に示すように、実施例1では、500Hz~2000Hzにラトル音成分である断続的なピークが検出された。これに対して比較例1では、図8に示すように、ラトル音成分である断続的なピークが明瞭に検出されなかった。
 図9は実施例1及び比較例1における平均スペクトルを示すグラフである。同図より実施例1及び比較例1の平均スペクトルを比較すると、実施例1では、500Hz~2000Hzにおける支配的なピークレベルが高い。
 図10は図9に示す実施例1の音圧の周波数スペクトルに、バンドパスフィルターによるマスク処理を施した場合のスペクトルを示すグラフである。同図に示すように、300Hz~5000Hzのバンドパスフィルターによりマスク処理を施すと、ラトル音成分のスペクトル強度を選択的に抽出できる。これにより、人の聴覚に即したラトル音の診断や評価が可能となる。
 以上の通り、本明細書には次の事項が開示されている。
(1)ステアリングホイールを回転可能に支持するコラムシャフトを有し、前記コラムシャフトの回転に応じて車輪を転舵させるステアリングシステムからの異音を検出するステアリングシステムの異音検出方法であって、
 前記コラムシャフトの前記ステアリングホイール側のコラムシャフト端部に対面して配置されるマイクロホンを用いて、前記コラムシャフト端部からの音を計測し、
 前記マイクロホンから出力される音信号から前記ステアリングシステムに起因する異音検出信号を生成する
ステアリングシステムの異音検出方法。
 このステアリングシステムの異音検出方法によれば、コラムシャフト端部に対面するマイクロホンにより、コラムシャフト端部からの音を計測することで、ステアリングシステムからの異音が増幅されて、S/N比が改善された状態で検出できる。また、計測された音の音信号は、S/N比が大きいため、ステアリングシステムに起因する異音を容易に検出できる。
(2) 前記ステアリングホイールが前記コラムシャフトに取り付けられた状態で行う(1)に記載のステアリングシステムの異音検出方法。
 このステアリングシステムの異音検出方法によれば、実走行時と略同じ状態で異音検出が行え、検出精度を向上できる。
(3)前記コラムシャフト端部と前記マイクロホンとの間の距離を50mm以下にする(1)に記載のステアリングシステムの異音検出方法。
 このステアリングシステムの異音検出方法によれば、コラムシャフト端部とマイクロホンとの距離を近付けることで、コラムシャフト端部からの音をより大きな音圧で計測できる。
(4)前記コラムシャフト端部と前記マイクロホンとの間は、空気層のみからなる空間である(1)~(3)のいずれか一つに記載のステアリングシステムの異音検出方法。
 このステアリングシステムの異音検出方法によれば、コラムシャフト端部からの音を遮蔽されることなく、そのまま計測できる。
(5)前記マイクロホンにより計測された音の周波数スペクトルを求め、
 求めた前記周波数スペクトルの300Hz~8kHzの周波数帯のスペクトル強度を抽出した信号を前記異音検出信号とする(1)~(4)のいずれか一つに記載のステアリングシステムの異音検出方法。
 このステアリングシステムの異音検出方法によれば、計測された音の音信号からラトル音成分が選択的に抽出されるため、ステアリングシステムの異音をより正確に評価できる。
(6)前記ステアリングシステムを搭載した車両を走行させて前記マイクロホンによる音の検出を行う(1)~(5)のいずれか一つに記載のステアリングシステムの異音検出方法。
 このステアリングシステムの異音検出方法によれば、ステアリングシステムの車両搭載状態における異音検出が行え、より高精度な評価が行える。
(7)加振器を備える架台に搭載された前記ステアリングシステムを、前記加振器により前記架台に振動を付与しながら前記マイクロホンによる音の検出を行う(1)~(5)のいずれか一つに記載のステアリングシステムの異音検出方法。
 このステアリングシステムの異音検出方法によれば、擬似的にステアリングシステムの走行時の異音を検出でき、発生する異音の評価を簡便に行える。
(8) ステアリングホイールを回転可能に支持するコラムシャフトを有し、前記コラムシャフトの回転に応じて車輪を転舵させるステアリングシステムからの異音を検出するステアリングシステムの評価装置であって、
 前記コラムシャフトの前記ステアリングホイール側のコラムシャフト端部に対面して配置されるマイクロホンと、
 前記ステアリングシステムを支持し、振動を付与する加振器を備える架台と、
 前記加振器により前記架台に振動を付与しながら、前記マイクロホンを用いて、前記コラムシャフト端部からの音を計測し、前記マイクロホンから出力される音信号から前記ステアリングシステムに起因する異音検出信号を生成する検出装置と、
を備えるステアリングシステムの評価装置。
 このステアリングシステムの評価装置によれば、擬似的にステアリングシステムの走行時の異音を検出でき、発生する異音の評価を簡便に行える。
 本出願は2016年4月21日出願の日本国特許出願(特願2016-85437)に基づくものであり、その内容はここに参照として取り込まれる。
 11 ステアリングシステム
 13 ステアリングホイール
 15 コラムシャフト
 29 操舵軸
 31 マイクロホン
 33 検出装置(評価装置)
 45 端部(コラムシャフト端部)
 51 架台
 61 加振器
 S 空間
 V 車両

Claims (5)

  1.  ステアリングホイールを回転可能に支持するコラムシャフトを有し、前記コラムシャフトの回転に応じて車輪を転舵させるステアリングシステムからの異音を検出するステアリングシステムの異音検出方法であって、
     前記コラムシャフトの前記ステアリングホイール側のコラムシャフト端部に対面して配置されるマイクロホンを用いて、前記コラムシャフト端部からの音を計測し、
     前記マイクロホンから出力される音信号から前記ステアリングシステムに起因する異音検出信号を生成する
    ステアリングシステムの異音検出方法。
  2.  前記ステアリングホイールが前記コラムシャフトに取り付けられた状態で行う請求項1に記載のステアリングシステムの異音検出方法。
  3.  前記ステアリングシステムを搭載した車両を走行させて前記マイクロホンによる音の検出を行う請求項1又は請求項2に記載のステアリングシステムの異音検出方法。
  4.  加振器を備える架台に搭載された前記ステアリングシステムを、前記加振器により前記架台に振動を付与しながら前記マイクロホンによる音の検出を行う
    請求項1又は請求項2に記載のステアリングシステムの異音検出方法。
  5.  ステアリングホイールを回転可能に支持するコラムシャフトを有し、前記コラムシャフトの回転に応じて車輪を転舵させるステアリングシステムからの異音を検出するステアリングシステムの評価装置であって、
     前記コラムシャフトの前記ステアリングホイール側のコラムシャフト端部に対面して配置されるマイクロホンと、
     前記ステアリングシステムを支持し、振動を付与する加振器を備える架台と、
     前記加振器により前記架台に振動を付与しながら、前記マイクロホンを用いて、前記コラムシャフト端部からの音を計測し、前記マイクロホンから出力される音信号から前記ステアリングシステムに起因する異音検出信号を生成する検出装置と、
    を備えるステアリングシステムの評価装置。
PCT/JP2017/013227 2016-04-21 2017-03-30 ステアリングシステムの異音検出方法及びステアリングシステムの評価装置 WO2017183410A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/573,735 US10634647B2 (en) 2016-04-21 2017-03-30 Abnormal noise detection method of steering system and evaluation device of steering system
JP2017538742A JP6225368B1 (ja) 2016-04-21 2017-03-30 ステアリングシステムの異音検出方法及びステアリングシステムの評価装置
EP17785752.1A EP3447460A4 (en) 2016-04-21 2017-03-30 METHOD FOR DETECTING ABNORMAL NOISE IN STEERING SYSTEM AND STEERING SYSTEM APPRAISAL DEVICE
BR112018015685-0A BR112018015685A2 (ja) 2016-04-21 2017-03-30 An allophone detecting method of a steering system, and an evaluation system of a steering system
CN201780012028.9A CN108700454A (zh) 2016-04-21 2017-03-30 转向系统的异常噪声检测方法和转向系统的评价装置
KR1020187021399A KR20180134840A (ko) 2016-04-21 2017-03-30 스티어링 시스템의 이음 검출 방법 및 스티어링 시스템의 평가 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085437 2016-04-21
JP2016-085437 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183410A1 true WO2017183410A1 (ja) 2017-10-26

Family

ID=60116814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013227 WO2017183410A1 (ja) 2016-04-21 2017-03-30 ステアリングシステムの異音検出方法及びステアリングシステムの評価装置

Country Status (7)

Country Link
US (1) US10634647B2 (ja)
EP (1) EP3447460A4 (ja)
JP (2) JP6225368B1 (ja)
KR (1) KR20180134840A (ja)
CN (1) CN108700454A (ja)
BR (1) BR112018015685A2 (ja)
WO (1) WO2017183410A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865892A (zh) * 2021-09-01 2021-12-31 浙江航驱汽车科技有限公司 一种电动助力转向器整车与eolt台架换向噪声相关性分析方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118621A (ja) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 能動騒音低減装置、車両、及び、異常判定方法
CN109144026A (zh) * 2018-06-28 2019-01-04 郑州轻工业学院 Eps控制器的故障检测方法及故障检测装置
US10718686B2 (en) 2018-10-29 2020-07-21 GM Global Technology Operations LLC Test procedure for determining steering intermediate shaft rattle
JP7283096B2 (ja) 2019-02-04 2023-05-30 株式会社ジェイテクト 検査装置及び検査用学習モデル生成装置
JP6627004B1 (ja) 2019-02-28 2019-12-25 西川ゴム工業株式会社 グラスランの異音評価方法
DE102019209634B4 (de) * 2019-07-02 2021-08-26 Zf Friedrichshafen Ag Computerimplementiertes Verfahren zum maschinellen Lernen von Fahrbahnmarkierungen mittels Audiosignalen, Steuergerät für automatisierte Fahrfunktionen, Verfahren und Computerprogramm zum Erkennen von Fahrbahnmarkierungen
DE102019214406A1 (de) * 2019-09-20 2021-03-25 Robert Bosch Gmbh Lenkvorrichtung und Verfahren zur Herstellung einer Lenkvorrichtung
DE102019216784B3 (de) * 2019-10-30 2020-12-17 Thyssenkrupp Ag Prüfvorrichtung und Verfahren zur Beurteilung des Geräuschverhaltens einer Baugruppe
KR20210147155A (ko) * 2020-05-27 2021-12-07 현대모비스 주식회사 조향계 소음 판별 장치
CN111855240A (zh) * 2020-06-24 2020-10-30 江西江铃集团新能源汽车有限公司 汽车转向系统噪声测试台架
CN115524402A (zh) * 2021-04-28 2022-12-27 安徽蓝格利通新材应用股份有限公司 一种空调外机用减振材料噪音测试装置的测试方法
CN113432895A (zh) * 2021-06-23 2021-09-24 坤泰车辆系统(常州)有限公司 一种转向器异响监测装置和方法
CN116183254B (zh) * 2023-04-27 2023-07-25 豫北转向系统(新乡)股份有限公司 一种电动管柱噪声的检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274395A (ja) * 2001-03-16 2002-09-25 Koyo Seiko Co Ltd 動力伝達継手及びこれを含む電動式動力舵取装置
JP2006076533A (ja) * 2004-09-13 2006-03-23 Favess Co Ltd 車両用操舵装置
JP2006153729A (ja) * 2004-11-30 2006-06-15 Showa Corp 電動パワーステアリング装置の異音検出方法及び装置
JP2007205886A (ja) * 2006-02-01 2007-08-16 Jtekt Corp 音又は振動の解析方法及び音又は振動の解析装置
US20140100714A1 (en) * 2012-10-04 2014-04-10 Ford Global Technologies, Llc Vehicular squeak and rattle detection

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2644858A (en) * 1951-05-11 1953-07-07 Kenneth W Small Steering wheel microphone
JPS5866330U (ja) * 1981-10-30 1983-05-06 豊田工機株式会社 脈動解析装置
JP3052655B2 (ja) * 1993-04-12 2000-06-19 日産自動車株式会社 車両振動測定方法
KR0174580B1 (ko) * 1994-01-06 1999-05-15 남일 자동차 핸들의 진동측정 및 분석장치
JP3141340B2 (ja) * 1995-03-20 2001-03-05 本田技研工業株式会社 前輪のアンバランス測定方法
JP3151717B2 (ja) * 1995-03-24 2001-04-03 本田技研工業株式会社 ステアリングシミーの判定方法
US5618995A (en) * 1995-07-05 1997-04-08 Ford Motor Company Vehicle vibration simulator
US7580782B2 (en) * 1995-10-30 2009-08-25 Automotive Technologies International, Inc. Vehicular electronic system with crash sensors and occupant protection systems
KR100347276B1 (ko) * 1999-12-24 2002-08-07 현대자동차주식회사 차량용 스티어링 휠 진동 시험장치
KR20020051723A (ko) * 2000-12-23 2002-06-29 이계안 자동차의 스티어링휠 진동 저감구조
DE10226477A1 (de) * 2002-06-14 2004-02-12 Audi Ag Lenksäule mit einem Lenkrad für ein Kraftfahrzeug
KR100486636B1 (ko) * 2002-06-28 2005-05-03 고등기술연구원연구조합 조향계의 진동 재현장치
JP3872441B2 (ja) * 2003-03-24 2007-01-24 トヨタ自動車株式会社 異音検出方法及びその装置
JP2005186830A (ja) * 2003-12-26 2005-07-14 Bridgestone Corp タイヤ異常検出装置
SE526936C2 (sv) * 2004-04-01 2005-11-22 A2 Acoustics Ab Anordning för vibrationsstyrning i motorfordon på så sätt att önskad vibrationskaraktär i ratten erhålles
KR100558696B1 (ko) * 2004-11-30 2006-03-10 한국타이어 주식회사 차량 전륜의 전류 위상차를 통한 조향핸들의 쉬미와세이크 진동량 측정장치
CN100587416C (zh) * 2006-01-30 2010-02-03 日产自动车株式会社 异常噪声校正确认设备和异常噪声校正确认方法
JP5063005B2 (ja) * 2006-02-01 2012-10-31 株式会社ジェイテクト 音又は振動の異常診断方法及び音又は振動の異常診断装置
DE102007020878B4 (de) * 2007-05-04 2020-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Prüfung von Umströmungsgeräuschen
WO2009064886A2 (en) * 2007-11-13 2009-05-22 Tk Holdings Inc. Vehicle communication system and method
US7742899B2 (en) * 2008-02-12 2010-06-22 Gm Global Technology Operations, Inc. Test procedure for determining steering rack rattle
JP5479371B2 (ja) * 2009-01-20 2014-04-23 本田技研工業株式会社 車載用能動型振動低減装置
JP2010184638A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 操舵装置
DE112010004222B4 (de) * 2009-10-29 2022-05-05 Joyson Safety Systems Acquisition Llc Lenkradsystem mit Audioeingabe, Lenkrad für ein Fahrzeug und Audioeingabesystem für ein Fahrzeuglenkrad
US9574972B2 (en) * 2011-01-05 2017-02-21 GM Global Technology Operations LLC Methods and systems for evaluating vehicle steering systems
CN102853899B (zh) * 2012-06-01 2014-07-16 浙江吉利汽车研究院有限公司杭州分公司 一种汽车转向噪声测量装置及测量方法
CN202869764U (zh) * 2012-09-26 2013-04-10 浙江吉利汽车研究院有限公司杭州分公司 一种新型转向盘和转向管柱多角度振动试验装置
CN103278340B (zh) * 2013-05-03 2016-01-06 华晨汽车集团控股有限公司 一种动力总成悬置振动噪声测试系统及其测试方法
FR3011328A1 (fr) * 2013-09-30 2015-04-03 Peugeot Citroen Automobiles Sa Excitateur pour un banc de test pour colonnes de direction
JP6369171B2 (ja) * 2014-07-02 2018-08-08 株式会社ジェイテクト 騒音測定方法
CN105466552B (zh) * 2015-12-18 2019-01-25 南京东华智能转向系统有限公司 一种电动助力转向管柱噪音检测台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274395A (ja) * 2001-03-16 2002-09-25 Koyo Seiko Co Ltd 動力伝達継手及びこれを含む電動式動力舵取装置
JP2006076533A (ja) * 2004-09-13 2006-03-23 Favess Co Ltd 車両用操舵装置
JP2006153729A (ja) * 2004-11-30 2006-06-15 Showa Corp 電動パワーステアリング装置の異音検出方法及び装置
JP2007205886A (ja) * 2006-02-01 2007-08-16 Jtekt Corp 音又は振動の解析方法及び音又は振動の解析装置
US20140100714A1 (en) * 2012-10-04 2014-04-10 Ford Global Technologies, Llc Vehicular squeak and rattle detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447460A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865892A (zh) * 2021-09-01 2021-12-31 浙江航驱汽车科技有限公司 一种电动助力转向器整车与eolt台架换向噪声相关性分析方法
CN113865892B (zh) * 2021-09-01 2024-05-17 浙江航驱汽车科技有限公司 一种电动助力转向器整车与eolt台架换向噪声相关性分析方法

Also Published As

Publication number Publication date
US20180120264A1 (en) 2018-05-03
JPWO2017183410A1 (ja) 2018-04-26
JP6879157B2 (ja) 2021-06-02
CN108700454A (zh) 2018-10-23
JP6225368B1 (ja) 2017-11-08
EP3447460A4 (en) 2019-11-27
JP2018036269A (ja) 2018-03-08
BR112018015685A2 (ja) 2018-12-26
EP3447460A1 (en) 2019-02-27
KR20180134840A (ko) 2018-12-19
US10634647B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6225368B1 (ja) ステアリングシステムの異音検出方法及びステアリングシステムの評価装置
JP2018036269A5 (ja)
JP2018520336A (ja) 超音波センサを含む車道の状態を認識するためのセンサ組立体、運転者支援システム、モータ車両ならびに関連する方法
US7971486B2 (en) Apparatus and method for the vibroacoustic inspection of a motor vehicles
KR101475578B1 (ko) 타이어 상태 판정 장치
JP5320956B2 (ja) 音源探査装置および音源探査方法
WO2004025231A3 (en) Acoustic sensing device, system and method for monitoring emissions from machinery
JP2007508203A (ja) 車両における安全システムの始動装置
US20170248552A1 (en) Sensor device for detecting moisture on a roadway having at least one structure-borne sound sensor
WO2016143492A1 (ja) 車両試験装置、車両試験方法及び車両試験装置用プログラム
EP1087214A2 (en) Method and system to detect unwanted noise
WO2007084352A3 (en) Method and apparatus for brake rotor testing
JP2010071866A (ja) 電動モータの検査方法及び検査装置
EP1736387A2 (en) Wheel-end mounted multipurpose acceleration sensing device
KR20210009760A (ko) 스티어링 휠 히티드 멀티 테스터 및 이를 이용한 스티어링 검사 시스템
ATE419977T1 (de) Verfahren und vorrichtung zur erkennung einer raddrehung in einem reifendrucküberwachungssystem
WO2018074249A1 (ja) 車両運転者の状態検知装置
JP4222872B2 (ja) タイヤ接地踏面観察装置
JP2001233213A (ja) 車両接近警報装置
JP5309772B2 (ja) 電動モータの検査方法
JPH08261884A (ja) ステアリングシミーの判定方法
KR101365366B1 (ko) 타이어 핸들링 성능 측정장치 및 측정방법
KR102215291B1 (ko) 휴대용 런아웃 측정장치
US20210237742A1 (en) Sensor device for detecting moisture on a roadway having at least one structure-borne sound sensor
KR101478212B1 (ko) 차량의 스티어링 롤링 커넥터 조립체의 불량 판정 장치 및 이를 이용한 불량 판정 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538742

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15573735

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187021399

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018015685

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017785752

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785752

Country of ref document: EP

Effective date: 20181121

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018015685

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180731