WO2017177696A1 - 自主清洁设备 - Google Patents

自主清洁设备 Download PDF

Info

Publication number
WO2017177696A1
WO2017177696A1 PCT/CN2016/108611 CN2016108611W WO2017177696A1 WO 2017177696 A1 WO2017177696 A1 WO 2017177696A1 CN 2016108611 W CN2016108611 W CN 2016108611W WO 2017177696 A1 WO2017177696 A1 WO 2017177696A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
cleaning device
dust box
autonomous cleaning
sensing module
Prior art date
Application number
PCT/CN2016/108611
Other languages
English (en)
French (fr)
Inventor
李行
王子涛
李智军
夏勇峰
Original Assignee
北京小米移动软件有限公司
北京石头世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京石头世纪科技有限公司 filed Critical 北京小米移动软件有限公司
Publication of WO2017177696A1 publication Critical patent/WO2017177696A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4008Arrangements of switches, indicators or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4041Roll shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4077Skirts or splash guards
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4094Accessories to be used in combination with conventional vacuum-cleaning devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • A47L5/30Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle with driven dust-loosening tools, e.g. rotating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0405Driving means for the brushes or agitators
    • A47L9/0411Driving means for the brushes or agitators driven by electric motor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • A47L9/0477Rolls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/12Dry filters
    • A47L9/122Dry filters flat
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/14Bags or the like; Rigid filtering receptacles; Attachment of, or closures for, bags or receptacles
    • A47L9/1409Rigid filtering receptacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2826Parameters or conditions being sensed the condition of the floor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2831Motor parameters, e.g. motor load or speed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2847Surface treating elements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2857User input or output elements for control, e.g. buttons, switches or displays
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2884Details of arrangements of batteries or their installation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2889Safety or protection devices or systems, e.g. for prevention of motor over-heating or for protection of the user
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/227Handing over between remote control and on-board control; Handing over between remote control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/243Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • G05D1/622Obstacle avoidance
    • G05D1/628Obstacle avoidance following the obstacle profile, e.g. a wall or undulated terrain
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning

Definitions

  • the present disclosure relates to the field of smart cleaning technology, and more particularly to an autonomous cleaning device.
  • the application of intelligent products in daily life has become more and more popular, and a variety of independent cleaning equipments have appeared, such as sweeping self-cleaning equipment and mopping ground self-cleaning equipment.
  • the self-cleaning device can automatically perform the cleaning operation, which is convenient for the user.
  • the functions of the self-cleaning equipment are gradually stronger, the functional modules of the self-cleaning equipment are also increased, and the internal structure of the self-contained equipment is also more and more complicated.
  • the self-cleaning equipment fails and needs to be repaired, the disassembly time and difficulty of the single machine are both Greatly increased, bringing great difficulties to maintenance personnel.
  • the present disclosure proposes a modular autonomous cleaning device to solve the above technical problems.
  • An autonomous cleaning device includes: a device body, a driving module, a cleaning module, and a sensing module; wherein the driving module, the cleaning module, and the sensing module are separately detachably assembled The device body.
  • the device body includes a chassis and an upper casing fixed to the chassis; wherein the driving module is disposed on the chassis, and the sensing module is mounted on the upper casing position.
  • the preset position of the upper casing is a receiving cavity that matches the sensing module, and the sensing module is assembled to the receiving cavity.
  • the sensing module is fixed to the upper casing by a plurality of first connecting members.
  • the device body further includes a protective cover mounted above the receiving cavity, the circumferential side of the protective cover is hollowed out, and the sensing module is located between the receiving cavity and the protective cover.
  • the circumferential side of the protective cover is composed of at least one column, and the column has a small width.
  • the protective cover is pre-detached.
  • the protective cover is fixed to the upper casing by a plurality of second connecting members.
  • the protective cover is made of a combination of high strength nylon and glass fiber.
  • a waterproof and dustproof hole is disposed on a circumference of the sensing module, and a through hole corresponding to the waterproof and dustproof hole is disposed on the upper casing.
  • the device body further includes an upper cover, and the sensing module partially protrudes from the upper cover.
  • the device body further includes a control component disposed under the sensing module, and the sensing module includes a connector disposed on a lower surface thereof and electrically connected to the control component.
  • the device body includes a forward portion and a rear portion, and the sensing module is located at the backward portion.
  • the sensing module is a laser ranging device.
  • the driving module includes a driving wheel module, and the driving wheel module includes a left driving wheel module and a right driving wheel module, and the left driving wheel module and the right driving wheel are laterally defined along the device body. The axes are opposite.
  • the driving module further includes at least one driven wheel for assisting support and movement of the device body.
  • the cleaning module includes:
  • a secondary air duct disposed between the dust box assembly and the power component, wherein an inner wall of the secondary air duct is curved on a windward side;
  • the primary air duct is fitted to the power component such that the cleaning object cleaned by the cleaning component is transported by the wind generated by the power component into the dust box assembly;
  • the secondary air duct is coupled to The power component is configured to smoothly guide the wind outputted by the dust box assembly to the air inlet of the power component in the predetermined direction.
  • the primary air duct is in the shape of a bell mouth, and a corresponding cross-sectional area at any one of the first air passages is reversed with respect to a separation distance between the one and the cleaning component.
  • the secondary air duct has a bell mouth shape, and an air outlet of the secondary air duct is coupled to the power unit.
  • the roller brush assembly includes a roller brush and a brush bar;
  • the roller brush includes a rotating shaft, a rubber brush member and a brush member disposed on the rotating shaft;
  • the rubber brush member forms a small deviation angle between the cylindrical surface of the roller brush and the direction of the rotating shaft, so that the wind strength of the rubber brush member reaches a preset strength; and the brush Forming a large deviation angle between the cylindrical surface of the roller brush and the direction of the rotating shaft, so that when a plurality of brush clusters constituting the brush member are sequentially arranged along the rotating shaft direction, the roller is The circumferential coverage angle of the cylindrical surface of the brush reaches a preset angle.
  • the intermediate position of the rubber brush member is curved along the traveling direction, so that the wind generated by the power component can collect the cleaning object at an intermediate position of the rubber brush member; wherein the rubber brush The intermediate position of the piece reaches the first stage air duct later than the other positions.
  • the dust box assembly comprises: a dust box and a filter mesh that can be fitted to the dust box, wherein the dust box forms at least two sides openings; one side opening is an air inlet of the dust box, and another One side opening is an air outlet of the dust box; wherein the screen is installed at the air outlet and covers the air outlet.
  • the sensing module is disposed adjacent to the dust box.
  • each function module in the autonomous cleaning device of the present disclosure is separately installed in a reserved space on the device body, and can be independently detached from the device body, thereby
  • the damaged function module can be easily disassembled and repaired or replaced with a new functional module, which greatly improves the maintenance efficiency of the self-cleaning device.
  • the measurement accuracy of the sensing module itself is easily affected by the temperature, the use time and other factors, and the modular sensing module is easy to disassemble. The user can directly disassemble the sensing module for debugging, maintenance and replacement.
  • the direct mounting of the sensing module to the upper housing reduces the length chain length of the component mounting, thereby improving mounting accuracy and further improving the accuracy of the measurement data.
  • the protective cover on the upper part of the sensing module is designed separately to increase the material strength of the protective cover, thereby reducing the width of the peripheral side of the protective cover and reducing the blocking of the laser beam emission and reflection.
  • 1 to 4 are schematic structural views of an autonomous cleaning device according to an exemplary embodiment
  • FIG. 5 is a cross-sectional view showing an autonomous cleaning device according to an exemplary embodiment
  • FIG. 6 is a plan exploded view of a module structure of an autonomous cleaning device, according to an exemplary embodiment
  • FIG. 7 is an exploded perspective view of a module structure of an autonomous cleaning device, according to an exemplary embodiment
  • FIG. 8 is a structural exploded view of a device body in an autonomous cleaning device, according to an exemplary embodiment
  • FIG. 9 is a schematic structural view of an upper casing of an autonomous cleaning device according to an exemplary embodiment.
  • FIG. 10 is a schematic structural view of an assembly sensing module portion on an upper casing according to an exemplary embodiment
  • FIG. 11 is a schematic structural view showing a sensing module mounted on an upper casing according to an exemplary embodiment
  • FIG. 12 is a schematic structural view showing a top cover with a protective cover according to an exemplary embodiment
  • FIG. 13 is an exploded structural diagram of a sensing module portion according to an exemplary embodiment
  • FIG. 14 is a bottom view of a sensing module, according to an exemplary embodiment
  • FIG. 15 is an exploded perspective view of a left driving wheel module according to an exemplary embodiment
  • FIG. 16 is a perspective structural view of a main brush module in a roller brush assembly according to an exemplary embodiment
  • Figure 17 is an exploded perspective view of the main brush module shown in Figure 16;
  • FIG. 18 is a schematic structural view of a roller brush of the main brush module shown in FIG. 16;
  • Figure 19 is a perspective view showing the structure of the roller brush cover of the main brush module shown in Figure 16;
  • FIG. 20 is a schematic exploded view of the floating system bracket of the main brush module shown in FIG. 16;
  • 21 is a cross-sectional view of a cleaning module of an autonomous cleaning device, according to an exemplary embodiment
  • FIG. 22 is a schematic perspective structural view showing a primary air passage and a roller brush cooperating according to an exemplary embodiment
  • FIG. 23 is a schematic cross-sectional view showing a first air duct and a brush bar cooperating according to an exemplary embodiment
  • FIG. 24 is a schematic exploded view showing the structure of an autonomous cleaning device according to an exemplary embodiment
  • FIG. 25 is a schematic exploded view showing another dust box assembly according to an exemplary embodiment
  • FIG. 26 is a schematic exploded view showing still another dust box assembly according to an exemplary embodiment
  • Figure 27 is a plan view corresponding to the cleaning module shown in Figure 21;
  • FIG. 28 is a cross-sectional view of a secondary air duct and a power component, according to an exemplary embodiment
  • Figure 29 is a right side elevational view of the cleaning module of Figure 21;
  • FIG. 1 to 4 are schematic structural views of an autonomous cleaning device according to an exemplary embodiment
  • FIG. 5 is a cross section of an autonomous cleaning device according to an exemplary embodiment. Figure.
  • the self-cleaning device 100 can be a self-cleaning device, a mopping autonomous cleaning device, or the like.
  • the autonomous cleaning device 100 can include a device body 110, a sensing system 120, a control system 130, a driving module 140, a cleaning system 150, Energy system 160 and human-machine interaction system 170.
  • the apparatus body 110 includes a forward portion 1101 and a rearward portion 1102 in the direction of travel, having an approximately circular shape (both front and rear are circular), and may have other shapes including, but not limited to, an approximate D-shape of the front rear circle.
  • the sensing system 120 includes a sensing module 121 located above the device body 110, a buffer 122 located at the forward portion 1101 of the device body 110, a cliff sensor 123 and an ultrasonic sensor (not shown), and an infrared sensor (not shown) a sensor, a magnetometer (not shown), an accelerometer (not shown), a gyroscope (not shown), an odometer (not shown), etc., to the control system 130 provides various location information and motion status information for the machine.
  • the sensing module 121 of the present disclosure includes, but is not limited to, a camera, a laser ranging device (LDS).
  • the laser ranging device of the triangulation method is taken as an example to illustrate how to determine the position.
  • the basic principle of the triangulation method is based on the equivalence relation of similar triangles, and will not be described here.
  • the laser distance measuring device includes a light emitting unit (not shown) and a light receiving unit (not shown).
  • the light emitting unit may include a light source that emits light
  • the light source may include a light emitting element such as an infrared or visible light emitting diode (LED) that emits infrared light or visible light.
  • the light source may be a light emitting element that emits a laser beam.
  • a laser diode (LD) is taken as an example of a light source.
  • a light source using a laser beam can make the measurement more accurate than other light.
  • infrared light or visible light emitted by a light emitting diode is affected by ambient factors (such as the color or texture of an object) compared to a laser beam, and may be reduced in measurement accuracy.
  • the laser diode (LD) can be a point laser, which measures the two-dimensional position information of the obstacle, or a line laser, and measures the three-dimensional position information within a certain range of the obstacle.
  • the light receiving unit may include an image sensor on which a spot of light reflected or scattered by the obstacle is formed.
  • the image sensor may be a collection of a plurality of unit pixels in a single row or in multiple rows. These light receiving elements can convert an optical signal into an electrical signal.
  • the image sensor may be a complementary metal oxide semiconductor (CMOS) sensor or a charge coupled device (CCD) sensor, which is preferably a complementary metal oxide semiconductor (CMOS) sensor due to cost advantages.
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the light receiving unit may include a light receiving lens assembly. Light reflected or scattered by the obstacle may travel through the light receiving lens assembly to form an image on the image sensor.
  • the light receiving lens assembly may include a single or multiple lenses.
  • a base (not shown) may be used to support the light emitting unit and the light receiving unit, and the light emitting unit and the light receiving unit are disposed on the base and spaced apart from each other by a specific distance.
  • the base may be rotatably disposed on the apparatus main body 110, or the base itself may be rotated without rotating, and the emitted light and the received light may be rotated by providing the rotating element.
  • the rotational angular velocity of the rotating element can be obtained by setting an optocoupler element and a code wheel.
  • the optocoupler element senses a missing tooth on the code wheel, and the instantaneous angular velocity can be obtained by dividing the slippage time of the tooth gap distance and the distance between the tooth gaps.
  • the higher the density of the missing teeth on the code disc the higher the accuracy and accuracy of the measurement, but the more precise the structure and the higher the calculation amount; on the contrary, the smaller the density of the missing teeth, the accuracy of the measurement and The lower the accuracy, the smaller the structure, the smaller the calculation, and the lower the cost.
  • a data processing device (not shown) connected to the light receiving unit, such as a DSP, records and transmits the obstacle distance value at all angles in the 0 degree angle direction with respect to the autonomous cleaning device to the data processing in the control system 130.
  • a unit such as an application processor (AP) containing a CPU, the CPU runs a particle filter based positioning algorithm to obtain the current position of the autonomous cleaning device, and maps according to the position for navigation.
  • the positioning algorithm preferably uses Instant Location and Map Construction (SLAM).
  • the laser ranging device based on the triangulation method can measure the distance value at infinity distance beyond a certain distance in principle, in practice, long-distance measurement, for example, implementation of more than 6 meters is very difficult, mainly because of the light receiving.
  • the size of the pixel unit on the sensor of the unit is limited, and is also affected by the photoelectric conversion speed of the sensor, the data transmission speed between the sensor and the connected DSP, and the calculation speed of the DSP.
  • the measurement value obtained by the laser ranging device affected by the temperature may also undergo an unacceptable change of the system, mainly because the thermal expansion deformation of the structure between the light-emitting unit and the light-receiving unit causes an angle change between the incident light and the outgoing light, and the light-emitting unit There is also a temperature drift problem with the light receiving unit itself. After long-term use of the laser distance measuring device, the deformation caused by the accumulation of various factors such as temperature changes and vibrations will seriously affect the measurement results. The accuracy of the measurement results directly determines the accuracy of the map, and is the basis for further implementation of the strategy of the independent cleaning equipment.
  • the forward portion 1101 of the apparatus body 110 can carry a buffer 122 that detects the travel path of the autonomous cleaning device 100 via a sensor system, such as an infrared sensor, while the drive wheel module 141 is propelling the autonomous cleaning device to walk on the ground during cleaning.
  • a sensor system such as an infrared sensor
  • One or more events (or objects) in the autonomous cleaning device may control the drive wheel module 141 to cause the autonomous cleaning device to perform the event (or object) detected by the buffer 122, such as an obstacle or a wall.
  • the event (or object) responds, for example, away from an obstacle.
  • the control system 130 is disposed on a circuit board within the device body 110, and includes a computing processor in communication with a non-transitory memory such as a hard disk, a flash memory, a random access memory, such as a central processing unit, an application processor, and application processing.
  • the device uses a positioning algorithm, such as SLAM, to map an instant map in the environment in which the autonomous cleaning device is located, based on the obstacle information fed back by the laser ranging device.
  • the distance information and the speed information fed back by the sensing device comprehensively determine the working state of the sweeping machine, such as Pass the door, the carpet, on the cliff, stuck above or below, the dust box is full, picked up, etc., and will give specific next action actions for different situations. Slightly, the work of the self-cleaning equipment is more in line with the requirements of the owner and has a better user experience. Further, the control system 130 can greatly improve the cleaning efficiency of the autonomous cleaning device based on the cleaning path and the cleaning mode of the map information planning, which is the most efficient and reasonable.
  • the drive module 140 can operate the autonomous cleaning device 100 to travel across the ground based on drive commands having distance and angle information, such as x, y, and ⁇ components.
  • the drive module 140 includes a drive wheel module 141.
  • the drive wheel module 141 can simultaneously control the left and right wheels.
  • the drive wheel module 141 preferably includes a left drive wheel module 1411 and a right drive wheel module 1412, respectively.
  • the left drive wheel module 1411 and the right drive wheel module 1422 are disposed along a transverse axis defined by the apparatus body 110.
  • the autonomous cleaning device may include one or more driven wheels 142 including, but not limited to, a universal wheel.
  • the drive wheel module 141 includes a traveling wheel and a drive motor and a control circuit that controls the drive motor.
  • the drive wheel module 141 can also be connected to a circuit for measuring the drive current and an odometer.
  • the drive wheel module 141 can be detachably coupled to the apparatus body 110 for easy assembly and disassembly.
  • the drive wheel module 141 can have an offset drop suspension system that is movably fastened, such as rotatably attached to the autonomous cleaning apparatus body 110, and receives a spring that is biased downward and away from the autonomous cleaning apparatus body 110. Offset.
  • the spring bias allows the drive wheel to maintain contact and traction with the ground with a certain amount of grounding force while the cleaning components of the autonomous cleaning device 100 also contact the ground 10 with a certain pressure.
  • the cleaning system 150 can be a dry cleaning system and/or a wet cleaning system.
  • the main cleaning function is derived from the brushing structure, the dust box structure, the fan structure, the air outlet, and the cleaning system 150 formed by the connecting members between the four.
  • a roller brush structure with some interference with the ground sweeps the garbage on the ground and rolls it to the front of the suction port between the brush structure and the dust box structure, and then is sucked by the fan structure and passes through the dust box structure. Inhale the dust box structure.
  • the dust removal capacity of the sweeper can be characterized by the Dust picking efficiency (DPU).
  • the cleaning efficiency of the DPU is affected by the structure and material of the brush, and is affected by the dust suction port, the dust box structure, the fan structure, the air outlet, and the four.
  • the wind utilization rate of the air duct formed by the connecting parts is affected by the type and power of the wind turbine, which is a responsible system design problem.
  • the increased dust removal capacity is more important for energy-limited cleaning robots. Because the improvement of dust removal ability directly reduces the energy requirements, that is to say, the original machine that can clean 80 square meters of ground can be evolved to charge 180 square meters or more. And the battery life of the battery that reduces the number of times of charging is also greatly increased, so that the frequency of replacing the battery by the user is also increased.
  • the dry cleaning system can also include an edge brush 152 having a rotating shaft that is angled relative to the ground for moving debris into the roller brushing area of the cleaning system 150.
  • Energy system 160 includes rechargeable batteries, such as nickel metal hydride batteries and lithium batteries.
  • the rechargeable battery can be connected with a charging control circuit, a battery pack charging temperature detecting circuit and a battery undervoltage monitoring circuit, and the charging control circuit, the battery pack charging temperature detecting circuit, and the battery undervoltage monitoring circuit are connected to the single chip control circuit.
  • the host is placed on the side of the fuselage or The charging electrode underneath is connected to the charging post for charging. If the exposed charging electrode is stained with dust, the plastic body around the electrode melts and deforms due to the accumulation effect of electric charge during the charging process, and even the electrode itself is deformed, and normal charging cannot be continued.
  • the human-computer interaction system 170 includes buttons on the host panel, the buttons are for the user to select functions, and may also include a display screen and/or an indicator light and/or a speaker, the display screen, the indicator light and the speaker display the current state of the machine or Feature selection; also includes a mobile client program.
  • the mobile phone client can display the map of the environment where the device is located and the location of the machine, and can provide the user with richer and more user-friendly functions.
  • the autonomous cleaning device 100 can travel on the ground by various combinations of movements of three mutually perpendicular axes defined by the body 110: the transverse axis x, the front and rear axes y and the center vertical axis z.
  • the forward driving direction along the front and rear axis y is indicated as "forward”
  • the backward driving direction along the front and rear axis y is indicated as "backward”.
  • the transverse axis x extends substantially between the right and left wheels of the robot along an axis defined by the center point of the drive wheel module 141.
  • the autonomous cleaning device 100 can be rotated about the x-axis.
  • the rearward portion When the forward portion of the autonomous cleaning device 100 is inclined upward, the rearward portion is “upwardly” when it is inclined downward, and when the forward portion of the autonomous cleaning device 100 is inclined downward, and the backward portion is inclined upward, it is “downward”. . Additionally, the autonomous cleaning device 100 can be rotated about the z-axis. In the forward direction of the robot, when the autonomous cleaning device 100 is tilted to the right side of the Y-axis to "right turn", when the autonomous cleaning device 100 is tilted to the left side of the y-axis to "left turn".
  • the sensing module is an eye of the autonomous cleaning device 100, and is an inductive device of such an autonomous cleaning device 100, and thus requires high installation precision.
  • existing autonomous cleaning devices integrate a sensing module, such as an LDS, on a control board in the main body of the device; or are fixed to the chassis and connected to the control board with a flexible cable.
  • the size chain length is easy to cause large errors in the LDS measurement data.
  • the LDS is mounted on the main board or the chassis.
  • the LDS frame needs to be matched with the upper case of the fixed components or even the decorative cover. Therefore, the size chain is long and fits with the outer frame of the LDS.
  • the error is relatively large; and the parts such as the upper and lower shells are greatly deformed due to the large size, which may result in inaccurate installation position of the LDS, that is, the position of the LDS relative to the center of the whole machine is not accurate, so feedback to the processor
  • the distance data cannot be accurately coordinate-converted, resulting in a large error in the distance data of the robot.
  • LDS-laser ranging sensor is very demanding in accuracy, and it is obviously affected by temperature, stress, vibration and other factors. There is drift problem with time. Therefore, the error introduced in the assembly process has no influence on the measurement data. ignore.
  • FIG. 6 is a plan exploded view of a chassis of an autonomous cleaning device according to an exemplary embodiment
  • FIG. 7 is an exploded perspective view of a module structure of the autonomous cleaning device according to an exemplary embodiment
  • FIG. 8 is a structural exploded view of a device body in an autonomous cleaning device, according to an exemplary embodiment.
  • the autonomous cleaning device 100 includes: a device body 110 , a sensing module 121 , a driving module 140 , a cleaning module , a battery module , and the like.
  • the driving module 140, the cleaning module, and the sensing module 121 can be separately detachably mounted on the device body 100, thereby realizing that each module portion can be separately assembled from and detached from the device body 110. .
  • the apparatus main body 110 includes a chassis 102, a bottom case 101 fixed to the lower side of the chassis 102, an upper case 103 fixed above the chassis 102, and an upper cover 104 fixed above the upper case 103.
  • the bottom case 101 is located below the chassis 102, on the one hand, to prevent the water and dust on the ground from entering the receiving space entering the chassis 102 to pollute the interface of each module, that is, waterproof and dustproof; on the other hand, the respective modules and the chassis 102 can be protected. Foreign object impact is damaged; finally, it can also play a decorative role.
  • the chassis 102 is the main carrier for loading each module, so the material properties and processing precision requirements of various aspects such as hardness and toughness are high.
  • the chassis 102 needs to be placed in the accommodating space in addition to the accommodating space for accommodating each module.
  • the interface of the electrical connection, the mechanical connection, and the interface of the electrical connection are selected at the corner of the inner side of the fuselage of the accommodation space, and are not easily disturbed.
  • the interface of the mechanical connection is selected at the corner of the outer side of the fuselage of the accommodation space, such as a screw. Can be arranged in the position of the triangle, with strong structural stability.
  • the upper casing 103 is located above the chassis 102.
  • the LDS provides a receiving space for carrying the LDS module.
  • the receiving space satisfies the requirements for accurate positioning of the LDS, and can also protect the LDS from external force damage, and the disassembly of the LDS no longer needs to be disassembled.
  • the upper cover 104 and the upper casing 103 are opened; on the other hand, the upper casing 103 can also protect against water, dust and external forces.
  • the upper casing 103 also has a hole for the dust box, the indicator light, and the interactive panel to provide a receiving space for the cliff sensor.
  • the upper cover 104 mainly plays a decorative role and contributes little to the structural hardness.
  • the protective upper cover 104 of the LDS functions to protect the LDS from external forces and to transmit the reflected and reflected beams of the laser beam.
  • the sensing module 121 is an LDS module.
  • the driving module includes a driving wheel module and at least one driven wheel.
  • the driving wheel module further includes left and right driving wheel modules (1411, 1412).
  • the present disclosure includes a driven wheel 1413 that cooperates with the left and right drive wheel modules (1411, 1412) to drive the apparatus body 100 to move.
  • the cleaning module includes a floating roller brush assembly 1 and an edge brush 152.
  • the sensing module 121 is mounted upward on the upper casing 103.
  • the driving module, the cleaning module and the battery module are mounted downward on the chassis 102, and the dust box assembly is assembled upward on the chassis 102. Both the upper casing 103 and the chassis 102 are provided with matching shapes for the corresponding modules.
  • the space side wall hardness is sufficiently high, and perpendicular to the upper casing 103 and the chassis 102, providing a safe and secure space for each module in an extreme environment. It will not be squeezed by external forces.
  • the accommodating space also includes mechanical connecting components, such as screws and bayonet, so that the module and the housing have an interference fit and a tight connection.
  • FIG. 9 is a schematic structural view of an upper casing of an autonomous cleaning device according to an exemplary embodiment.
  • the sensing module 121 is mounted on the preset position of the upper casing 103.
  • the preset position is the accommodating cavity 1031 matched by the sensing module 121, that is, an accommodating space is reserved on the upper casing 103 for the sensing module 121 to be assembled.
  • the preset position can satisfy the accurate positioning function of the sensing module 121, and can also protect the sensing module 121 from external force damage.
  • the preset position is located at a rearward portion of the apparatus body 110 such that the sensing module 121 is located at a rearward portion of the apparatus body 110.
  • the device body 110 further includes a protective cover 1032 mounted on the receiving cavity 1031 , and the sensing module 121 is located between the receiving cavity 1031 and the protective cover 1032 .
  • the protective cover 1032 is fixed to the upper casing 103 to cover the sensing module 121.
  • the sensing module 121 is fixed on the upper casing 103 through the first connecting member, and the protective cover 1032 can be fixed on the upper casing 103 through the second connecting member, so that the module can be easily detached from the device body 110 to implement the module.
  • the first connecting member and the second connecting member may be selected from screws.
  • other connecting members that can be easily disassembled are also included in the present disclosure.
  • the protective cover 1032 is made of a combination of high-strength nylon and glass fiber, so that the protective cover 1032 has a strong hardness, can withstand external forces from various directions, and can provide better sensing module 121. protection of.
  • the circumferential side of the protective cover 1302 is hollowed out so as not to affect the detection of the surrounding obstacle condition by the sensing module 121.
  • the peripheral side of the protective cover 1032 is composed of at least one upright which meets the strength requirements and does not block the emission and reception of the laser beam too wide.
  • the number of columns is three, and the width of the column is reduced as much as possible under the premise of using high-strength materials.
  • a separate high strength material design can be provided for the boot 1032 to achieve a reduction in the width of the post.
  • the sensing component is arranged on the chassis, and the protective cover and the upper casing are integrated.
  • the overall high-strength material design greatly increases the cost, so the width of the circumferential side column is wide, and the emission of the ranging laser is blocked. And receiving.
  • the upper cover 104 is mounted on the upper casing 103.
  • the upper cover 104 is provided with a relief hole 1041 corresponding to the sensing module 121.
  • the sensing module 121 partially protrudes from the upper cover through the relief hole 1041. 104. Since the protective cover 1032 is covered on the sensing module 121, the protective cover 1032 also partially protrudes from the upper cover 104.
  • the upper cover 104 further includes a pivotally connected body cover. In the embodiment of the present disclosure, the sensing module 121 is disposed adjacent to the dust box assembly.
  • the sensing module 121 When the sensing module 121 is installed, the upper housing 103 and the bottom housing 102 need not be disassembled, only the upper cover 104 needs to be opened, and then the sensing module 121 is fixed on the upper housing 103 by screws 1212. A plurality of connection holes 1033 corresponding to the upper casing 103 are provided on the side. Optionally, the sensing module 121 in the present disclosure passes through four screws 1212. It is fixed on the upper cover 104. After the sensing module 121 is fixed, the protective cover 1032 is fixed to the upper casing 103 by a plurality of screws 1213. The protective cover 1032 covers the sensing module 121.
  • the upper casing 103 further includes a plurality of supporting cylinders 1034 corresponding to the circumferential side of the protective cover 1032 for supporting the protective cover 1032, thereby making the protective cover 1032 and the sensing module There is a certain safety distance between the groups 121, so as to prevent the external force from being applied to the protective cover 1032, the protective cover 1032 directly transmits the force to the sensing module 121.
  • the sensing module 121 When the sensing module 121 is disassembled, it is not necessary to disassemble the upper casing 103 and/or the chassis 102 first, but it can be directly disassembled after the upper cover 104 is opened. Specifically, the protective cover 1032 is pre-detached by screwing the screw 1213 with a screwdriver, and then the screw 1212 on the sensing module 121 is removed, so that the sensing module 121 can be directly disassembled or replaced.
  • the receiving chamber 1031 and the LDS of the LDS each have a water leakage port, and when water enters the space, the water will flow out of the water hole without causing the LDS to fail.
  • the peripheral side of the sensing module 121 is provided with a waterproof dustproof hole 1214
  • the upper casing 103 is provided with a through hole (not shown) corresponding to the waterproof dustproof hole 1214, so that the water flowing on the LDS is smoothed.
  • the dustproof and waterproof hole 1214 flows downward and is conducted out of the apparatus body through the through hole in the upper casing 103.
  • a through hole may be disposed in the upper casing 103, and a guide groove may be disposed below the through hole to prevent water droplets from flowing to other positions on the lower surface.
  • FIG. 14 is a bottom view of a sensing module, according to an exemplary embodiment.
  • the sensing module 121 further includes a connector 1211 disposed on a lower surface of the sensing module 121.
  • the connector 1211 and the control component (ie, the circuit board) in the device body 110 pass heat. Plug-in electrical connection.
  • the control component is located below the sensing module 121 and can be fixed to the chassis 102.
  • the connector 1211 is a vertical plug-in connector, which has a certain tolerance capability, so that the sensing module 121 can be easily disassembled, and the problems of cable management and crimping caused by the cable can be avoided.
  • the left and right drive wheel modules are each composed of a wheel body 14111, a motor 14112, a spring 14113, and a Hall sensor 14114.
  • the main unit of the self-cleaning equipment is placed on the ground, and most of the wheels are retracted into the fuselage by gravity.
  • the spring 14113 is stretched; when the main body is picked up from the ground, the spring force of the spring 14113 pulls the wheel out of the fuselage, while Huo
  • the sensor 14114 is triggered to notify the motherboard that the machine has been lifted.
  • the main functional structures of the left and right drive wheel modules are basically the same, and the structure of the partial shape is adjusted according to the position of the assembly.
  • the left drive wheel module 1411 is described below as an example.
  • the left drive wheel module is described below.
  • the 1411 includes an upper housing 14115, a lower housing 14116, and a driving body fixed between the upper housing 14115 and the lower housing 14116.
  • the driving body includes a wheel body 14111, a motor 14112, a spring 14113, and a Hall sensor 14114.
  • a connector (not shown) of the wheel module 1411 is disposed in the lower housing 14115.
  • the driving body is electrically connected to the connector through the gold finger 14117, and the connector is further connected to the mating position of the device body to realize the driving wheel module. control. Wherein, the driving body is fixed between the upper casing 14115 and the lower casing 14116 by screws.
  • FIG. 16 is a cross-sectional view of a cleaning module of an automatic cleaning device according to an exemplary embodiment; wherein, the automatic cleaning device shown in FIG. 17 is the autonomous cleaning device 100 as shown in FIGS. 1 to 4 or In other similar devices, the cleaning module of the autonomous cleaning device 100 may correspond to the cleaning system 150 of the autonomous cleaning device 100 described above.
  • FIG. 16 shows the direction information of the automatic cleaning device in an exemplary embodiment, including the direction of travel along the y-axis (where the left direction of the y-axis is assumed to be the forward drive direction, ie, "+"; The right direction of the y-axis is the backward drive direction, that is, "-”) and the vertical direction along the z-axis.
  • the cleaning module is disposed in the main body of the device.
  • the air inlet of the cleaning module is disposed on the bottom casing, and the air outlet is disposed on a side of the main body of the device.
  • the cleaning module of the present disclosure may include: a roller brush assembly 1, a dust box assembly 2, a power component 3, a primary air duct 4, and a secondary air duct 5.
  • the roller brush assembly 1, the dust box assembly 2 and the power component 3 are sequentially arranged along the traveling direction of the autonomous cleaning device, that is, the y direction, and the primary air channel 4 is located between the roller brush assembly 1 and the dust box assembly 2, and the secondary air is The track 5 is located between the dust box assembly 2 and the power unit 3.
  • the embodiment shown in FIG. 16 can form the following air duct: the roller brush assembly 1 ⁇ the primary air duct 4 ⁇ the dust box assembly 2 ⁇ the secondary air passage 5 ⁇ the power component 3, so that the wind generated by the power component 3 can be
  • the flow from the roller brush assembly 1 to the power component 3 is achieved by the air passage described above, and the flow direction is indicated by the direction of the arrow in FIG.
  • the reduction in the loss of vacuum is mainly dependent on the avoidance of air leakage, that is, the sealing treatment.
  • the reduction of air volume loss mainly depends on the smooth and non-steep wind path structure. Specifically, it mainly includes: whether the wind enters the air duct from the lower end of the roller brush without loss, and the wind is blown from the lower end of the roller brush to the dust box into the fan. The number of reflections, whether a large amount of turbulence is generated when the cross-sectional area of the air duct changes.
  • the overall structural design of the wind path is an organic whole, and the structural change of one part will greatly change the efficiency of the whole machine.
  • roller brush is used as the roller brush assembly 1
  • the wider the width, the wider the single cleaning width, and the dust box is used as the dust box assembly 2, which is disposed in the outer casing together with the components such as the traveling wheel, and the width is not limited, and In order to increase the vacuum pressure to The garbage is sucked into the dust box, and the entrance of the dust box cannot be wide.
  • the cross section is gradually smaller; the outlet of the dust box is filtered by the filter net, in order to Avoiding the clogging of the filter screen, affecting the smooth passage of the air duct, the cross-sectional area of the dust box outlet is usually large, and the fan as the power component 3 has a smaller entrance aperture than the dust box outlet, so there is a second air duct between the dust box and the fan, and The cross section is also gradually smaller.
  • some self-cleaning equipment such as iROBOT's Roomba series sweeping robots
  • the air path structure optimized for these two air ducts is not adopted.
  • the wind path will include roller brushes, dust boxes, fans, and even two air ducts with smaller cross-sections, the difference in air duct shape makes the suction efficiency very different.
  • the air passage structure in the present disclosure allows the wind to self-floating the lower end of the roller brush to enter the air passage, and the floating roller brush can be closely adhered to the ground in the to-be-cleaned area at different heights, and the air volume loss is small.
  • the realization of the floating roller brush is derived from the soft material properties of the primary air duct and the structural design that allows the roller brush to expand up and down as the terrain changes.
  • the roller brush passes through the roller accommodating cavity and enters the first-stage air channel.
  • the shape of the first air channel smoothes the net pressure value of the wind, and moves the garbage obliquely upward into the dust box; the inclination of the first air channel causes the wind to enter the dust box After that, the dust box is reflected off the dust box at a large reflection angle; the garbage entering the dust box falls into the bottom of the dust box by gravity, and the wind moving obliquely upward is reflected by the top of the dust box at a large reflection angle and then exits from the filter screen. Blowing out into the secondary air duct; wherein the secondary air duct is designed to allow the wind blown from the screen to enter the fan port in a certain direction with minimal loss.
  • the roller brush assembly 1 in the autonomous cleaning device of the present disclosure may be a roller brush assembly.
  • 16 is a perspective view showing the structure of the main brush module in the roller brush assembly
  • FIG. 17 is a schematic exploded view of the main brush module shown in FIG. 16 (the viewing angle in FIG. 17 is viewed from the bottom to the bottom along the z-axis)
  • the main brush module may include a roller brush 11 and a brush bar 12, and the brush bar 12 further includes a floating system bracket 131 and a roller cover 122.
  • FIG. 18 shows a schematic structural view of the roller brush 11.
  • the roller brush 11 in the roller brush assembly may be a rubber mixing brush, that is, the rotating shaft 111 of the roller brush 11 is simultaneously provided with a rubber brush member 112 and a brush member 113, so that the floor, the blanket, etc. can be taken into consideration.
  • the growth direction of the strip of the rubber brush member 112 and the brush of the brush member 113 is substantially the same as the radial direction of the rotating shaft 111, and the strip width of the rubber member 112, the brush width of the brush member 113, and the first air passage.
  • the width of the inlet end 41 of the 4 is substantially the same; wherein, in the middle, the upper micro-bending row shown in FIG. 18 is a rubber brush member 112, and the row in a wave shape is a brush member 113, each of which is on the roller brush 11.
  • At least one rubber brush member 112 and at least one brush member 113 may be included.
  • the brush member 112 and the brush member 113 are not arranged in a parallel or nearly parallel manner, but have a A larger angle is included to ensure that the brush member 112 and the brush member 113 can each perform their own application functions.
  • the wind Due to the large gap between the brush clusters 113A on the brush member 113, the wind is easily lost from between the slits, and the help for forming a vacuum environment is relatively small. Therefore, by providing the rubber brush member 112, a wind effect can be formed, and when the wind strength reaches a preset strength, the sweeping of the cleaning object can be assisted, so that the cleaning object can be swept in the brush 11 and the wind is blown. Next, it is more conveniently transported to the dust box assembly 2.
  • the rubber brush member 112 is arranged in a nearly straight line in the cylindrical surface of the roller brush 11, and the intermediate position of the rubber brush member 112 is bent toward the end of the rolling direction of the roller brush 11.
  • the wind generated by the power component 3 is concentrated at the intermediate position where the rubber brush member 112 forms a bend, thereby enabling it to further collect the cleaning objects.
  • the floating system bracket 131 has an air path guiding arc structure 1211 from the air inlet (lower end in the drawing) to the first air duct 4, and the arc of the arc structure 1211 and the first air duct 4
  • the line shape 40 is uniform in curvature, and thus the arcuate structure 1211 increases the efficiency of wind entering the air duct, reducing wind volume loss.
  • the brush member 113 forms a large deviation angle between the cylindrical surface of the roller brush 11 and the direction of the rotation axis; for each brush member 113, by forming the above-mentioned large deviation angle,
  • a larger coverage angle of the roller brush 11 is achieved in the circumferential direction, for example, the circumferential coverage angle of the roller brush 11 reaches a predetermined angle.
  • the cleanliness and cleaning efficiency can be improved by enlarging the circumferential coverage angle of the roller brush 11.
  • the roller brush 11 can clean the bottom surface; and when the circumferential coverage angle of the brush member 113 to the roller brush 11 reaches 360°, it can ensure that the roller brush 11 can always perform the cleaning operation during the rolling process. .
  • the brush member 113 needs to be in contact with the ground for cleaning during the cleaning process; wherein, due to the soft characteristics of the brush member 113, a certain deformation will be generated during the cleaning process to form a "support" effect on the entire autonomous cleaning device. . Then, if the circumferential coverage angle of the brush member 113 to the roller brush 11 is insufficient, a height difference is formed between the formation of the circumferential cover and the region where the circumferential cover is not formed, resulting in a bump in the z-axis direction of the autonomous cleaning device.
  • the brush member 113 can achieve a 360° circumferential coverage angle, it can ensure the continuous and stable output of the autonomous cleaning device by eliminating bumps and jitter, and can reduce the autonomy.
  • the noise generated by the cleaning equipment can also avoid impact on the motor and help to extend the service life of the self-cleaning equipment.
  • FIG. 19 shows a schematic perspective view of the roller brush cover 122 in the roller brush assembly
  • the roller cover 122 may include an anti-wrap guard. 1221 and a soft strip 1222 located behind the anti-wrap guard 1221 in the direction of travel.
  • the anti-winding shield 1221 can block large volume on the one hand
  • the cleaning object enters the air duct to form a blockage, and on the other hand, an elongated object such as a wire is blocked from entering the brush bar 12 to be entangled.
  • the roller cover 122 is located below the roller brush 11 in the z-axis direction, and can prevent the oversized cleaning object from being caught inside the roller brush assembly, affecting the normal cleaning operation.
  • the soft strip 1222 is located below the anti-wrap guard 1221 on the z-axis, and the soft strip 1222 is located at the end of the running direction of the roller 11 on the y-axis, between the soft strip 1222 and the roller 11 Keep a certain distance (such as 1.5-3mm), and by fitting it to the ground, it can intercept and pick up a small part of the cleaning object that is not directly rolled up by the roller brush 11, so that it sweeps the roller brush 11 Under the blow of the wind, it is caught between the roller brush 11 and the brush basket 12, thereby entering the primary air passage 4.
  • the position and angle of the soft strip 1222 is selected such that the cleaning object is always in the optimal cleaning and suction position, avoiding the remaining behind the soft strip 1222.
  • the end of the anti-wrap guard 1221 in the traveling direction (which may be the negative direction of the y-axis of FIG. 19, that is, the right end of the anti-wrap guard 1221) may be provided with a matching direction of travel of the autonomous cleaning device.
  • the obstacle assisting member 1221A on the one hand, the obstacle assisting member 1221A can assist the autonomous cleaning device to act as a barrier (ie, over the obstacle), and on the other hand, the obstacle assisting member 1221A can abut the upper surface of the soft strip 1222.
  • the bottom edge of the soft strip 1222 can always be attached to the surface to be cleaned (such as the ground, the table top, etc.) when the self-cleaning device is in the working state, and the soft strip 1222 is prevented from being rubbed by the cleaned surface.
  • the obstacle is rolled up, affecting the subsequent cleaning effect.
  • the obstacle assisting member 1221A may be a protrusion formed by the end of the anti-wrap guard 1221 in the traveling direction downward (ie, the z-axis negative direction, which appears as "above” in FIG. 19).
  • the floating system bracket 131 may include a fixed bracket 1312, a floating bracket 1313, and the like, and a first air duct 4, a roller motor 1314, and the like are also mounted on the floating system bracket 131.
  • Two mounting holes 1312A in the left-right direction are provided on the fixing bracket 1312, and two mounting shafts 1313A in the left-right direction are disposed on the floating bracket 1313, and the limit between each mounting shaft 1313A and the corresponding mounting hole 1312A is adopted.
  • the floating bracket 1313 can achieve "floating" in the up and down direction in a positional and rotational fit.
  • the floating bracket 1313 is rotated to the lowest position under the influence of gravity, regardless of the floor, carpet or other non-smooth cleaning surface, within the floating path of the roller brush 11, the floating The roller brush 11 installed in the system bracket 131 can be closely attached to the surface to be cleaned to achieve the most efficient cleaning of the floor.
  • Different types of cleaning surfaces have a good grounding effect and contribute significantly to the sealing of the air duct.
  • the upper and lower "floating" of the floating bracket 1313 can reduce the interaction between the roller brush 11 and the like and the obstacle 6, thereby facilitating the self-cleaning device to easily achieve the obstacle.
  • the first air duct 4 is located between the fixed bracket 1312 and the floating bracket 1313, so that the floating roller brush 11 presents a flexible requirement for the first air duct 4, because the rigid air passage cannot absorb the floating change of the roller brush 11,
  • the demand is realized by the soft material of the first-stage air duct 4; therefore, when the first-stage air duct 4 is made of a soft material such as soft rubber, it can pass through the obstacle crossing process.
  • the floating bracket 1313 presses the first air passage 4 to deform it, thereby smoothly achieving "floating" upward.
  • the cleaning surface of the rough surface such as the carpet can reduce the mutual interference between the roller brush 11 and the carpet by the "floating" action of the floating bracket 1313, thereby reducing the roller motor 1314 from being affected.
  • the resistance helps to reduce the power consumption of the brush motor 1314 and extend its service life.
  • the wind generated by the power component 3 can convey the cleaning object such as dust swept by the roller brush assembly 1 into the dust box assembly 2 by the guiding action of the primary air duct 4.
  • the primary air passage 4 may be in the shape of a bell mouth, and the corresponding cross-sectional area at any one of the primary air passages 4 is reversed with respect to the one between the roller brush assembly 1 and the roller assembly 1
  • the spacing distance in other words, the relatively large side of the "flare" faces the roller brush assembly 1, the relatively smaller side faces the dust box assembly 2.
  • the static pressure value at the corresponding position is increased, that is, an increasing suction force is formed;
  • FIG. 22 is a schematic perspective view showing the interaction between the primary air passage 4 and the roller brush 11.
  • the inlet end 41 of the primary air duct 4 adjacent to the roller brush 11 has a larger sectional area
  • the outlet end 42 away from the roller brush 11 has a smaller sectional area.
  • the inlet end 41 may have a trapezoidal cross section, and the narrower second edge 412 is a trapezoidal upper base and the wider first edge 411 is a trapezoidal lower base.
  • the cross section of the inlet end 41 may take other shapes.
  • the two waists corresponding to the above-mentioned "trapezoid” may adopt an arc shape or the like, and the present disclosure does not limit this.
  • the static pressure value at the corresponding position is increased, and then dust, garbage, etc.
  • the wind generated by the power component 3 can provide sufficient suction so that the cleaning object swept to the inlet end 41 can be sucked into the dust box assembly 2 as much as possible. Helps improve cleaning efficiency.
  • the inlet end 41 of the primary air duct 4 can be connected to the roller brush holder 12 as the roller brush assembly of the roller brush assembly 1, and through the opening in the roller brush housing 12 toward the roller brush 11;
  • the primary air duct 4 includes two side walls in the rolling direction of the roller brush 11: a first side wall 43 on the rear side in the traveling direction, in the traveling direction
  • the second side wall 44 of the front side can be configured in the following manner.
  • the first side wall 43 may be disposed along a tangential direction of the circular cross-sectional area of the brush bar 12.
  • the brush bar 12 may include a plurality of portions such as a left arc structure and a right L-shaped structure in a cross section, wherein the arc portion in the left arc structure corresponds to the circle shown in FIG. a dotted line area, and thus the circular dotted line area corresponding to the curved portion may correspond to the circular cross-sectional area described above; correspondingly, the first side wall 43 of the primary air duct 4 may be along a tangential direction of the circular dotted line area
  • the primary air duct 4 since the primary air duct 4 is located obliquely above the roller brush assembly and is biased toward the rear of the roller brush 11 in the traveling direction, the first side wall 43 can be vertically oriented. Settings.
  • the cleaning object after the roller brush 11 sweeps the cleaning object from the ground, the cleaning object first moves along the gap between the roller brush 11 and the brush bar 12; and as the cleaning object passes from the roller brush structure to the first air channel
  • the movement of 4 by arranging the first side wall 43 along the tangential direction, so that the movement trajectory of the cleaning object and the flow of the wind direction are not blocked by the first side wall 43, ensuring that the cleaning object smoothly enters through the first air passage 4.
  • the inlet end of the primary air passage 4 41 when the roller brush assembly 1 is a roller brush assembly, and the primary air passage 4 is biased toward the rear of the roller brush 1 in the traveling direction, the inlet end of the primary air passage 4 41.
  • the dust brush assembly at the obliquely lower side of the front side (such as the left side in FIG. 21) toward the traveling direction (the left side in FIG. 21) and the outlet end 42 are connected to the rear side of the traveling direction (such as the right side in FIG. 21).
  • the air inlet 211 of the dust box assembly 2 is located at the non-top side (i.e., the air outlet port 212 is not located at the dust box top 214, such as at the right side wall in Fig. 21).
  • the second side wall 44 of the primary air duct 4 is inclined obliquely rearward (i.e., as close as possible to the horizontal plane) toward the horizontal plane, even if the second side wall 44 forms an angle as large as possible in the vertical direction of the z-axis.
  • the z-axis is set, but that would greatly lose the air volume, thereby greatly reducing the suction efficiency; and in the embodiment of the present disclosure, by increasing the angle between the first side wall 44 and the z-axis under limited internal space conditions, The wind direction can be guided obliquely upwards, and after the wind enters the interior of the dust box assembly 2, after being reflected at a large angle from the dust box top 214, the screen 22 is discharged through the screen 22 at the air outlet 212 in a nearly horizontal direction.
  • the reflected wind path design has little loss of air volume.
  • the primary air duct 4 guides the wind to the inside of the dust box assembly 2 When the wind and its wrapped cleaning object are directly blown to the dust box top 214 of the dust box assembly 2; and since the wind is directly blown toward the dust box top 214, the air outlet 212 of the dust box assembly 2 is not located in the dust box. At the top 214, it is necessary to reflect at a large incident angle at the top 214 of the dust box. After the wind is turned, the air outlet 212 enters the secondary air passage 5; after the wind enters the dust box assembly 2, the cross-sectional area changes.
  • the cleaning object falls from the top of the dust box 214 due to the decrease in wind speed, thereby remaining in the dust box assembly 2; at the same time, although the wind speed is lowered and the wind direction is changed, although the wind itself can be blown toward the air outlet 212 And entering the secondary air duct 5, but can not continue to blow the cleaning object to the air outlet 212, so when the screen 22 is provided at the air outlet 212 of the dust box assembly 2, the cleaning object can be prevented from being directly blown to the screen 22
  • the surface prevents the cleaning object from blocking the surface of the filter 22, which helps to improve the air volume utilization.
  • the top of the apparatus main body 110 is provided with a accommodating chamber 13, and the dust box assembly 2 can be placed in the accommodating chamber 13 to be mounted in the apparatus main body 110.
  • the accommodating cavity 13 may also be located at other positions of the device body 110, such as the rear of the device body 110 (refer to the y-axis rearward direction shown in FIG. 4), etc., and the disclosure is not limited thereto.
  • the dust box assembly 2 may be provided with a non-contact sensing element 31, and the non-contact induction mating element 32 is disposed in the device body 110;
  • the non-contact sensing element 31 and the non-contact sensing matching component 32 can realize non-contact type matching induction within a certain range, thereby eliminating the need for complicated mechanical structure and assembly relationship, as long as the non-contact sensing element 31 and the non-contact sensing are ensured.
  • the mating component 32 is in the range of the inductive distance, so that the fitting induction between the two can be realized, thereby realizing the in-position detection of the dust box assembly 2.
  • the non-contact sensing element 31 can be matched in the case where the dust box assembly 2 is mounted to the apparatus body 110.
  • the non-contact inductive mating component 32 enables the non-contact inductive mating component 32 to sense the non-contact inductive component 31. Since the non-contact sensing scheme is adopted between the two, compared with the mechanical structure that needs to be assembled each time, the accidental conditions such as extrusion, breaking, material aging, etc., which may be caused by the assembly process, can be avoided, thereby improving the application process. Reliability in the middle.
  • the non-contact sensing element 31 can be a magnetic sheet
  • the non-contact sensing mating element 32 can be a Hall sensor.
  • the dust sensor assembly 2 can be mounted to the apparatus main body 110, and the Hall sensor can directly sense the magnetic sheet, thereby realizing The in-position detection of the dust box assembly 2 where the magnetic sheet is located.
  • the present disclosure does not limit the sensing direction between the non-contact sensing element 31 and the non-contact sensing matching element 32, and thus the Hall sensor can be used as a non-contact sensing similar to the above embodiment.
  • the component 31 is mounted in the dust box assembly 2, and the magnetic disk is mounted in the device body 110 as a non-contact induction mating component 32.
  • the above-described in-position detection can also be implemented, and details are not described herein again.
  • the non-contact sensing element 31 can be installed at any position in the dust box assembly 2, which is not limited by the disclosure; similarly, the non-contact induction mating element 32 can be mounted to the device body 110. Any position in the present disclosure is not limited by this disclosure. However, for the non-contact sensing element 31, different in-position detection effects can be achieved by changing its mounting position on the dust box assembly 2.
  • the dust box assembly 2 may include a dust box 21 and a screen 22, and the screen 22 is detachably mounted on the dust box 21, so that the non-contact sensing element 31 has two mounting positions: installation In the dust box 21, or mounted on the screen 22.
  • the device cannot detect the dust box assembly 2, and thus the detection result is that the dust box assembly 2 is not in place; (2) the user installs the filter screen 22 to the dust box 21, and then the user installs the complete dust box assembly 2 to the device body 110, The autonomous cleaning device can determine that the dust box assembly 2 is in place.
  • the dust box assembly 2 does contain the dust box 21 and the filter screen 22, thereby preventing the gas from being blown into the fan structure without being filtered by the filter net 22, preventing dust, granular waste, etc. from being It is then blown into the fan structure and causes damage to the fan structure. Since the accumulated dust on the filter screen 22 greatly reduces the air volume and affects the dust collection efficiency, the filter screen often needs the user to clean and keep the clean air path unobstructed.
  • the user may forget to replace it and directly put the dust box 21 It is placed in the main body of the device 110, and once it is turned on, it directly causes dust and the like to enter the fan structure and cause damage.
  • autonomous cleaning equipment such as a sweeping robot to scrap the fan due to forgetting to install the filter 22. Due to the sheet-like structure of the screen 22, it is difficult to design a mechanical member thereon for in-position identification.
  • the non-contact sensing element 31 is mounted at any position on the frame of the screen 22, for example, the magnetic sheet is embedded in the plastic frame of the screen 22.
  • At least two sides of the dust box 21 may be formed: one side opening is the air inlet 211 on the dust box 21 shown in FIG. 26, and the other side opening is the air outlet 212 on the dust box 21.
  • the filter screen 22 can be installed at the air outlet 212, and the filter screen 22 is covered by the air outlet 212 to ensure that the cleaning object such as dust is retained in the dust box 21, and the air outlet 212 is prevented from being blown into the subsequent fan structure. in.
  • the dust box 21 may be further divided into a dust box main body 21A and a side wall 21B provided with an air inlet 211. Since the air inlet 211 is disposed on the side wall 21B, the size of the side wall 21B is inevitably larger than that of the air inlet 211. Therefore, after the side wall 21B is detached, the pouring opening 213 having a larger size than the air inlet 211 can be formed, so that the dust box 21 is convenient for the user. Clean objects such as dust collected in the product are poured.
  • Figure 27 is a plan view corresponding to the air passage structure shown in Figure 21.
  • the roller brush assembly 1, the dust box assembly 2, and the power member 3 are sequentially arranged in the traveling direction (i.e., the y-axis direction) of the autonomous cleaning device, the dust box assembly 2 and the power member 3 are still on the x-axis.
  • the directions i.e., the left and right directions of the autonomous cleaning device
  • y-axis directions i.e., "left to right” in Fig. 17
  • the motion in the axial direction i.e., "from bottom to top” in Figure 17), that is, the "turning" of the wind during the flow.
  • the dust box assembly 2 and the power unit 3 may also not deviate from each other in the x-axis direction, and the present disclosure does not limit this.
  • the secondary air passage 5 has a bell mouth shape (a side having a relatively large cross-sectional area near the dust box assembly 2 and a side closer to the power member 3) is relatively small, so that the wind is gathered to The air inlet of the power unit 3.
  • the windward side of the inner wall of the secondary air duct 5 is arranged in an arc shape, and on the one hand, the wind output from the dust box assembly 2 can be guided in the x-axis direction to be blown toward the air inlet of the power component 3, and on the other hand It can be matched with the flow of wind to avoid blocking or disturbing turbulence, which helps to reduce airflow loss and improve air volume utilization.
  • FIG. 28 is a cross-sectional view of a secondary air duct and power component, according to an exemplary embodiment.
  • the end of the secondary air duct 5 remote from the dust box assembly 2 forms an air outlet 52, and the air outlet 52 is also coupled to the air inlet 311 of the power unit 3.
  • the plane where the air outlet 52 is located intersects with the horizontal plane, that is, the air outlet 52 is inclined to the horizontal plane; then, when the power component 3 is an axial flow fan, and the air inlet 311 and the axis of the axial flow fan (the direction of the rotation axis can be seen in FIG. 28)
  • the marked dotted line direction is in the same direction, it actually appears that the axial flow fan is placed obliquely to the horizontal plane.
  • the wind flows inside the secondary air duct 5 and enters the power component 3 from the secondary air duct 5, and basically flows in the horizontal plane. Therefore, when the wind is blown into the axial fan by the secondary air duct 5, the wind direction is substantially parallel to the direction of the rotating shaft, so that the axial flow fan as the power component 3 can achieve the maximum conversion efficiency (such as the efficiency of converting electric energy into wind energy);
  • the wind flows substantially along the horizontal plane inside the secondary air duct 5, but when entering the power component 3 by the secondary air duct 5, it needs to be turned in the vertical direction. The flow is such that the conversion efficiency of the axial flow fan as the power unit 3 is minimized.
  • FIG. 29 is a right side view corresponding to the air passage structure shown in FIG. 21. As shown in FIG. 29, when the air outlet 52 is located on the top side of the secondary air duct 5, the side wall toward the air outlet 52 is the bottom side, and thus The convex structure 53 shown in Fig.
  • Each functional module in the autonomous cleaning device of the present disclosure is respectively installed in a reserved space reserved on the main body of the device, and can be separately detached from the main body of the device, so that the damaged functional module can be easily disassembled and repaired or replaced separately.
  • the new function module greatly improves the maintenance efficiency of the self-cleaning equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自主清洁设备(100),包括:设备主体(110),包括底盘(102)、以及固定于所述底盘(102)的上壳体(103);驱动模组(140),连接至所述底盘(102),用于驱动所述自主清洁设备(100)根据预设线路行进;清洁模组,分布于所述设备主体(110)内;感知模组(121),装配于所述上壳体(103)的预设位置,用于获取所述自主清洁设备(100)四周的障碍物情况;其中,所述驱动模组(140)、所述清洁模组和所述感知模组(121)可分别拆卸地装配于所述设备主体(110)。该自主清洁设备(100)中的各个功能模组分别安装在设备主体(110)上预留的容纳空间中,可以从设备主体(110)上独立拆卸下来,从而可以便捷地将损坏的功能模组单独拆卸下来维修或者更换新的功能模组,大大提高了自主清洁设备(100)的维修效率。

Description

自主清洁设备
本申请基于申请号为201610232698.9、申请日为2016年4年14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及智能清洁技术领域,尤其涉及一种自主清洁设备。
背景技术
随着通信技术的快速发展,智能产品在日常生活中的应用日趋普遍,出现了多种多样的自主清洁设备,例如扫地自主清洁设备、拖地自主清洁设备等。自主清洁设备可以自动地执行清洁操作,方便用户。然而,随着自主清洁设备的功能逐步强大,该自主清洁设备的功能模块也增多,自主设备内部的结构也越来越复杂,在自主清洁设备出现故障需要维修时,单机的拆卸时长和难度都大大增加,给维修人员带来很大的困难。
Irobot公司首先在扫地机领域实现了模块化,参见EP1969438B1所公开的内容,驱动轮模组和主刷模组是分离的、可从主机独立拆卸下来的。各个模组分别安装在主机框架上预留的容纳空间中,一旦某模组发生损坏,可以很方便地将损坏模组单独拆卸并安装新的模组,大大提高了模组更换和维修的效率。
随着随机清扫模式的缺陷越来越难以忽视,导航清扫的扫地机市场占比日益增加,拥有测距单元、拍照单元、摄像单元的扫地机越来越多,这些单元的模块化问题亟待解决。
发明内容
有鉴于此,本公开提出了一种模块化的自主清洁设备以解决上述技术问题。
为了达到上述目的,本公开所采用的技术方案为:
一种自主清洁设备,包括:设备主体、驱动模组、清洁模组、以及感知模组;其中,所述驱动模组、所述清洁模组和所述感知模组可分别拆卸地装配于所述设备主体。
可选的,所述设备主体包括底盘、以及固定于所述底盘的上壳体;其中,所述驱动模组设置于所述底盘,所述感知模组装配于所述上壳体的预设位置。
可选的,所述上壳体的预设位置为与所述感知模组匹配的容纳腔,所述感知模组装配于所述容纳腔。
可选的,所述感知模组通过多个第一连接件固定于所述上壳体。
可选的,所述设备主体还包括装配于所述容纳腔上方的保护罩,所述保护罩的周侧面镂空设置,所述感知模组位于所述容纳腔和所述保护罩之间。
可选的,所述保护罩的周侧面由至少一立柱构成,所述立柱具有较小的宽度。
可选的,当拆卸所述感知模组时,预先拆卸所述保护罩。
可选的,在拆卸感知模组之前,不必先拆卸所述上壳体和/或所述底盘。
可选的,所述保护罩通过多个第二连接件固定于所述上壳体。
可选的,所述保护罩由高强度尼龙和玻璃纤维的组合材料制成。
可选的,所述感知模组的周侧设置有防水防尘孔,所述上壳体上设置有与所述防水防尘孔对应的通孔。
可选的,所述设备主体还包括上盖,所述感知模组部分突出所述上盖。
可选的,所述设备主体还包括设置于所述感知模组下方的控制部件,所述感知模组包括设置于其下表面、与所述控制部件电连接的连接器。
可选的,所述设备主体包括前向部分和后向部分,所述感知模组位于所述后向部分。
可选的,所述感知模组为激光测距设备。
可选的,所述驱动模组包括驱动轮模块,所述驱动轮模块包括左驱动轮模块和右驱动轮模块,所述左驱动轮模块和所述右驱动轮沿所述设备主体界定的横向轴对置。
可选的,所述驱动模组还包括至少一个从动轮,用以辅助所述设备主体的支撑及移动。
可选的,所述清洁模组包括:
沿所述自主清洁设备的行进方向依次排列的滚刷组件、尘盒组件和动力部件;
一级风道,设置于所述清洁部件与所述尘盒组件之间;
二级风道,设置于所述尘盒组件与所述动力部件之间,所述二级风道的内壁迎风侧呈弧形;
其中,所述一级风道配合于所述动力部件,以使所述清洁部件清扫的清洁对象被所述动力部件产生的风输送至所述尘盒组件中;所述二级风道配合于所述动力部件,以使所述尘盒组件输出的风在所述预设方向上被平滑引导至所述动力部件的进风口。
可选的,所述一级风道呈喇叭口状,且所述一级风道上任一处对应的截面积反相关于该任一处与所述清洁部件之间的间隔距离。
可选的,所述二级风道呈喇叭口状,所述二级风道的出风口配合连接至所述动力部 件的进风口;其中,所述动力部件为轴流风机,且所述动力部件的进风口与所述轴流风机的转轴同向。
可选的,滚刷组件包括滚刷和滚刷仓;所述滚刷包括转轴、设置于所述转轴上的胶刷件和毛刷件;
其中,所述胶刷件在所述滚刷的圆柱面内与所述转轴方向之间形成较小偏差角,以使所述胶刷件的兜风强度达到预设强度;以及,所述毛刷件在所述滚刷的圆柱面内与所述转轴方向之间形成较大偏差角,以使组成所述毛刷件的若干毛刷簇沿所述转轴方向依次排布时,对所述滚刷的圆柱面内周向覆盖角度达到预设角度。
可选的,所述胶刷件的中间位置沿所述行进方向弯曲,以使所述动力部件产生的风在所述胶刷件的中间位置能够对清洁对象进行汇集;其中,所述胶刷件的中间位置较其他位置更晚到达所述一级风道。
可选的,所述尘盒组件包括:尘盒和可配合安装于所述尘盒的滤网,所述尘盒上形成至少两侧开口;一侧开口为所述尘盒的入风口,另一侧开口为所述尘盒的出风口;其中,所述滤网安装于所述出风口处,并覆盖所述出风口。
可选的,所述感知模组邻近所述尘盒设置。
本公开的实施例提供的技术方案可以包括以下有益效果:本公开的自主清洁设备中的各个功能模组分别安装在设备主体上预留的容纳空间中,可以从设备主体上独立拆卸下来,从而可以便捷地将损坏的功能模组单独拆卸下来维修或者更换新的功能模组,大大提高了自主清洁设备的维修效率。
感知模组自身的测量精度受温度、使用时间等因素影响很容易发生偏差甚至损坏,模块化的感知模组便于拆卸,用户可直接拆卸感知模组供调试、维修和更新换代。
感知模组直接安装到上壳体可以减少组件安装的尺寸链长度,从而提高安装精度,并进一步提高测量数据的准确度。
感知模组上部的保护罩单独设计,可以增加保护罩的材料强度,从而降低保护罩周侧立柱的宽度,减少对激光束发射和反射的阻挡。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1-图4是根据一示例性实施例示出的一种自主清洁设备的结构示意图;
图5是根据一示例性实施例示出的一种自主清洁设备的剖面示意图;
图6是根据一示例性实施例示出的自主清洁设备的模块结构平面分解图;
图7是根据一示例性实施例示出的自主清洁设备的模块结构立体分解图;
图8是根据一示例性实施例示出的自主清洁设备中设备主体的结构分解图;
图9是根据一示例性实施例示出的自主清洁设备的上壳体的结构示意图;
图10是根据一示例性实施例示出的上壳体上装配感知模组部分的结构示意图;
图11是根据一示例性实施例示出的上壳体上装配有感知模组的结构式示意图;
图12是根据一示例性实施例示出的上壳体上装配有保护罩的结构示意图;
图13是根据一示例性实施例示出的感知模组部分的分解结构示意图;
图14是根据一示例性实施例示出的感知模组的仰视图;
图15是根据一示例性实施例示出的左驱动轮模组的分解结构示意图;
图16是根据一示例性实施例示出的滚刷组件中的主刷模组的立体结构示意图;
图17是图16所示主刷模组的分解结构示意图;
图18是图16所示主刷模组的滚刷的结构示意图;
图19是图16所示主刷模组的滚刷盖的立体结构示意图;
图20是图16所示主刷模组的浮动系统支架的分解结构示意图;
图21是根据一示例性实施例示出的一种自主清洁设备的清洁模组的截面剖视图;
图22是根据一示例性实施例示出的一级风道与滚刷相互配合的立体结构示意图;
图23是根据一示例性实施例示出的一级风道与滚刷仓相互配合的截面示意图;
图24是根据一示例性实施例示出的一种自主清洁设备的结构分解示意图;
图25是根据一示例性实施例示出的另一种尘盒组件的结构分解示意图;
图26是根据一示例性实施例示出的又一种尘盒组件的结构分解示意图;
图27是图21所示清洁模组对应的俯视图;
图28是根据一示例性实施例示出的一种二级风道与动力部件的截面剖视图;
图29是图21所示清洁模组对应的右视图。
具体实施方式
以下将结合附图所示的具体实施方式对本公开进行详细描述。但这些实施方式并不限制本公开,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本公开的保护范围内。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括 多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
如图1-图5所示,图1-图4是根据一示例性实施例示出的一种自主清洁设备的结构示意图,图5是根据一示例性实施例示出的一种自主清洁设备的剖面图。
自主清洁设备100自主清洁设备100可以为扫地自主清洁设备、拖地自主清洁设备等,该自主清洁设备100可以包含设备主体110、感知系统120、控制系统130、驱动模组140、清洁系统150、能源系统160和人机交互系统170。
设备主体110在行进方向上包括前向部分1101和后向部分1102,具有近似圆形形状(前后都为圆形),也可具有其他形状,包括但不限于前方后圆的近似D形形状。
感知系统120包括位于设备主体110上方的感知模组121、位于设备主体110的前向部分1101的缓冲器122、悬崖传感器123和超声传感器(图中未示出)、红外传感器(图中未示出)、磁力计(图中未示出)、加速度计(图中未示出)、陀螺仪(图中未示出)、里程计(图中未示出)等传感装置,向控制系统130提供机器的各种位置信息和运动状态信息。其中,本公开的感知模组121包括但不限于摄像头、激光测距装置(LDS)。下面以三角测距法的激光测距装置为例说明如何进行位置确定。三角测距法的基本原理基于相似三角形的等比关系,在此不做赘述。
激光测距装置包括发光单元(图中未示出)和受光单元(图中未示出)。发光单元可以包括发射光的光源,光源可以包括发光元件,例如发射红外光线或可见光线的红外或可见光线发光二极管(LED)。优选地,光源可以是发射激光束的发光元件。在本实施例中,将激光二极管(LD)作为光源的例子。具体地,由于激光束的单色、定向和准直特性,使用激光束的光源可以使得测量相比于其它光更为准确。例如,相比于激光束,发光二极管(LED)发射的红外光线或可见光线受周围环境因素影响(例如对象的颜色或纹理),而在测量准确性上可能有所降低。激光二极管(LD)可以是点激光,测量出障碍物的二维位置信息,也可以是线激光,测量出障碍物一定范围内的三维位置信息。
受光单元可以包括图像传感器,在该图像传感器上形成由障碍物反射或散射的光点。图像传感器可以是单排或者多排的多个单位像素的集合。这些受光元件可以将光信号转换为电信号。图像传感器可以为互补金属氧化物半导体(CMOS)传感器或者电荷耦合元件(CCD)传感器,由于成本上的优势优选是互补金属氧化物半导体(CMOS)传感器。而且,受光单元可以包括受光透镜组件。由障碍物反射或散射的光可以经由受光透镜组件行进以在图像传感器上形成图像。受光透镜组件可以包括单个或者多个透镜。
基部(图中未示出)可以用于支撑发光单元和受光单元,发光单元和受光单元布置在基部上且彼此间隔一特定距离。为了测量自主清洁设备周围360度方向上的障碍物情 况,可以使基部可旋转地布置在设备主体110上,也可以基部本身不旋转而通过设置旋转元件而使发射光、接收光发生旋转。旋转元件的旋转角速度可以通过设置光耦元件和码盘获得,光耦元件感应码盘上的齿缺,通过齿缺间距的滑过时间和齿缺间距离值相除可得到瞬时角速度。码盘上齿缺的密度越大,测量的准确率和精度也就相应越高,但在结构上就更加精密,计算量也越高;反之,齿缺的密度越小,测量的准确率和精度相应也就越低,但在结构上可以相对简单,计算量也越小,可以降低一些成本。
与受光单元连接的数据处理装置(图中未示出),如DSP,将相对于自主清洁设备0度角方向上的所有角度处的障碍物距离值记录并传送给控制系统130中的数据处理单元,如包含CPU的应用处理器(AP),CPU运行基于粒子滤波的定位算法获得自主清洁设备的当前位置,并根据此位置制图,供导航使用。定位算法优选使用即时定位与地图构建(SLAM)。
基于三角测距法的激光测距装置虽然在原理上可以测量一定距离以外的无限远距离处的距离值,但实际上远距离测量,例如6米以上的实现是很有难度的,主要因为受光单元的传感器上像素单元的尺寸限制,同时也受传感器的光电转换速度、传感器与连接的DSP之间的数据传输速度、DSP的计算速度影响。激光测距装置受温度影响得到的测量值也会发生系统无法容忍的变化,主要是因为发光单元与受光单元之间的结构发生的热膨胀变形导致入射光和出射光之间的角度变化,发光单元和受光单元自身也会存在温漂问题。激光测距装置长期使用后,由于温度变化、振动等多方面因素累积而造成的形变也会严重影响测量结果。测量结果的准确性直接决定了绘制地图的准确性,是自主清洁设备进一步进行策略实行的基础,尤为重要。
设备主体110的前向部分1101可承载缓冲器122,在清洁过程中驱动轮模块141推进自主清洁设备在地面行走时,缓冲器122经由传感器系统,例如红外传感器,检测自主清洁设备100的行驶路径中的一或多个事件(或对象),自主清洁设备可通过由缓冲器122检测到的事件(或对象),例如障碍物、墙壁,而控制驱动轮模块141使自主清洁设备来对所述事件(或对象)做出响应,例如远离障碍物。
控制系统130设置在设备主体110内的电路主板上,包括与非暂时性存储器,例如硬盘、快闪存储器、随机存取存储器,通信的计算处理器,例如中央处理单元、应用处理器,应用处理器根据激光测距装置反馈的障碍物信息利用定位算法,例如SLAM,绘制自主清洁设备所在环境中的即时地图。并且结合缓冲器122、悬崖传感器123和超声传感器、红外传感器、磁力计、加速度计、陀螺仪、里程计等传感装置反馈的距离信息、速度信息综合判断扫地机当前处于何种工作状态,如过门槛,上地毯,位于悬崖处,上方或者下方被卡住,尘盒满,被拿起等等,还会针对不同情况给出具体的下一步动作策 略,使得自主清洁设备的工作更加符合主人的要求,有更好的用户体验。进一步地,控制系统130能基于SLAM绘制的即使地图信息规划最为高效合理的清扫路径和清扫方式,大大提高自主清洁设备的清扫效率。
驱动模组140可基于具有距离和角度信息,例如x、y及θ分量,的驱动命令而操纵自主清洁设备100跨越地面行驶。驱动模组140包含驱动轮模块141,驱动轮模块141可以同时控制左轮和右轮,为了更为精确地控制机器的运动,优选驱动轮模块141分别包括左驱动轮模块1411和右驱动轮模块1412。左驱动轮模块1411和右驱动轮模块1422沿着由设备主体110界定的横向轴对置。为了自主清洁设备能够在地面上更为稳定地运动或者更强的运动能力,自主清洁设备可以包括一个或者多个从动轮142,从动轮包括但不限于万向轮。驱动轮模块141包括行走轮和驱动马达以及控制驱动马达的控制电路,驱动轮模块141还可以连接测量驱动电流的电路和里程计。驱动轮模块141可以可拆卸地连接到设备主体110上,方便拆装和维修。驱动轮模块141可具有偏置下落式悬挂系统,以可移动方式紧固,例如以可旋转方式附接,到自主清洁设备主体110,且接收向下及远离自主清洁设备主体110偏置的弹簧偏置。弹簧偏置允许驱动轮以一定的着地力维持与地面的接触及牵引,同时自主清洁设备100的清洁部件也以一定的压力接触地面10。
清洁系统150可为干式清洁系统和/或湿式清洁系统。作为干式清洁系统,主要的清洁功能源于滚刷结构、尘盒结构、风机结构、出风口以及四者之间的连接部件所构成的清扫系统150。与地面具有一定干涉的滚刷结构将地面上的垃圾扫起并卷带到滚刷结构与尘盒结构之间的吸尘口前方,然后被风机结构产生并经过尘盒结构的有吸力的气体吸入尘盒结构。扫地机的除尘能力可用垃圾的清扫效率DPU(Dust pick up efficiency)进行表征,清扫效率DPU受滚刷结构和材料影响,受吸尘口、尘盒结构、风机结构、出风口以及四者之间的连接部件所构成的风道的风力利用率影响,受风机的类型和功率影响,是个负责的系统设计问题。相比于普通的插电吸尘器,除尘能力的提高对于能源有限的清洁机器人来说意义更大。因为除尘能力的提高直接有效降低了对于能源要求,也就是说原来充一次电可以清扫80平米地面的机器,可以进化为充一次电清扫180平米甚至更多。并且减少充电次数的电池的使用寿命也会大大增加,使得用户更换电池的频率也会增加。更为直观和重要的是,除尘能力的提高是最为明显和重要的用户体验,用户会直接得出扫得是否干净/擦得是否干净的结论。干式清洁系统还可包含具有旋转轴的边刷152,旋转轴相对于地面成一定角度,以用于将碎屑移动到清洁系统150的滚刷区域中。
能源系统160包括充电电池,例如镍氢电池和锂电池。充电电池可以连接有充电控制电路、电池组充电温度检测电路和电池欠压监测电路,充电控制电路、电池组充电温度检测电路、电池欠压监测电路再与单片机控制电路相连。主机通过设置在机身侧方或 者下方的充电电极与充电桩连接进行充电。如果裸露的充电电极上沾附有灰尘,会在充电过程中由于电荷的累积效应,导致电极周边的塑料机体融化变形,甚至导致电极本身发生变形,无法继续正常充电。
人机交互系统170包括主机面板上的按键,按键供用户进行功能选择;还可以包括显示屏和/或指示灯和/或喇叭,显示屏、指示灯和喇叭向用户展示当前机器所处状态或者功能选择项;还可以包括手机客户端程序。对于路径导航型清洁设备,在手机客户端可以向用户展示设备所在环境的地图,以及机器所处位置,可以向用户提供更为丰富和人性化的功能项。
为了更加清楚地描述机器人的行为,进行如下方向定义:自主清洁设备100可通过相对于由主体110界定的如下三个相互垂直轴的移动的各种组合在地面上行进:横向轴x、前后轴y及中心垂直轴z。沿着前后轴y的前向驱动方向标示为“前向”,且沿着前后轴y的后向驱动方向标示为“后向”。横向轴x实质上是沿着由驱动轮模块141的中心点界定的轴心在机器人的右轮与左轮之间延伸。其中,自主清洁设备100可以绕x轴转动。当自主清洁设备100的前向部分向上倾斜,后向部分向下倾斜时为“上仰”,且当自主清洁设备100的前向部分向下倾斜,后向部分向上倾斜时为“下俯”。另外,自主清洁设备100可以绕z轴转动。在机器人的前向方向上,当自主清洁设备100向Y轴的右侧倾斜为“右转”,当自主清洁设备100向y轴的左侧倾斜为“左转”。
在本公开的技术方案中,感知模组为自主清洁设备100的眼睛,是此类自主清洁设备100的感应器件,因此对安装精度要求很高。然而,现有自主清洁设备将感知模组,例如LDS,集成在设备主体内的控制主板上;或者固定于底盘上,用柔性线缆连接到控制主板,这些方案所面临的问题如下:
(1)尺寸链长,容易导致LDS测量数据出现较大误差。将LDS安装在主板或者底盘上,LDS的外框除了与主板或者底盘匹配外,还需要与固定各部件的上壳、甚至装饰上盖匹配,因此尺寸链较长,与LDS的外框的配合误差比较大;且上下壳等零件本身由于尺寸较大而导致加工变形也较大,可能造成LDS的安装位置不准确,也即LDS相对于整机中心的位置不准确,因此反馈给处理器的距离数据不能被准确地坐标转换,使得机器人的距离数据产生较大误差。LDS—激光测距传感器是对精度要求非常高的,受温度、应力、振动等因素影响都很明显,随时间推移还有漂移问题,因此在装配过程中引入的误差对测量数据的影响是不容忽视的。
(2)LDS更换、修理拆装难度高。感知模组一旦损坏就需要拆掉整机,再进行修理或者更换元器件。用户不得不将整机寄回加工商或者规定维修点进行维修,如此不仅给维修人员造成维修困难等问题,而且维修周期长,给用户带来很多不便。
为了解决上述技术问题,本公开的技术方案中提出了对感知模组、滚刷组件、尘盒组件、驱动模组的模块化方案。下面配合图5至图11所示的示意图进行说明。
如图6至图8所示,图6是根据一示例性实施例示出的自主清洁设备的底盘平面分解图;图7是根据一示例性实施例示出的自主清洁设备的模块结构立体分解图;图8是根据一示例性实施例示出的自主清洁设备中设备主体的结构分解图。
如图6所示,自主清洁设备100包括:设备主体110、感知模块121、驱动模组140、清洁模组、电池模块等。在本公开中,驱动模组140、清洁模组和感知模组121可分别拆卸地装配于设备主体100,从而实现了各个模组部分可以单独装配于设备主体110及从设备主体110上拆卸下来。
如图7、8所示,设备主体110包括底盘102、固定于底盘102下方的底壳101,固定于底盘102上方的上壳体103、以及固定于上壳体103上方的上盖104。底壳101位于底盘102下方,一方面可以防止地面的水和灰尘进入进入底盘102的容置空间污染到各个模块的接口,也即防水防尘;另一方面可以保护各个模块和底盘102,被异物撞击受到损坏;最后,还可以起到装饰作用。底盘102是装载各个模块的主要承载体,因此其硬度、韧性等各方面材料特性和加工精度要求都较高,底盘102上除包括容纳各个模块的容纳空间外,还需要在容纳空间中留出电连接、机械连接的接口,电连接的接口选择在容纳空间的靠机身内侧的角落处,不容易受干扰,机械连接的接口选择在容纳空间的靠机身外侧的边角处,例如螺丝可以按三角形位置排列,具有较强的结构稳定性。上壳体103位于底盘102上方,一方面为LDS提供容纳空间承载LDS模组,该容纳空间满足LDS准确定位的要求,还能够保护LDS不受外力破坏,且LDS的拆卸不再需要拆开整机,打开上盖104和上壳体103;另一方面上壳体103也可以起到防水防尘防外力的保护作用。上壳体103还开孔供尘盒、指示灯、交互面板通过,提供悬崖传感器的容纳空间。上盖104主要起到装饰作用,对结构硬度贡献不大。LDS的保护上盖104起到保护LDS免受外力伤害和供激光束的发射和反射光束通过的作用。
感应模组121为LDS模组,驱动模组包括驱动轮模块和至少一个从动轮,驱动轮模块进一步包括左、右驱动轮模组(1411、1412)。本公开包括一个从动轮1413,配合左、右驱动轮模组(1411、1412)驱动设备主体100移动。清洁模组包括浮动滚刷组件1和边刷152。感应模组121向上装配在上壳体103上,驱动模组、清洁模组和电池模块向下装配在底盘102上,尘盒组件向上装配在底盘102上。上壳体103和底盘102上都为相应模块留置形状相匹配的空间,空间侧壁硬度足够高,且垂直于上壳体103和底盘102,为各个模块提供了安全牢固的空间,在极限环境下也不会受到外力挤压。容置空间中还留有电连接插口,例如金手指,供各个模块与电路主板电连接,接收控制信号和反馈测 量值。容置空间中还包括机械连接部件,例如螺丝、卡口,使得模块与壳体之间过盈配合、紧密连接。
如图9所示,图9是根据一示例性实施例示出的自主清洁设备的上壳体的结构示意图。该感知模组121装配于上壳体103的预设位置,该预设位置为感知模组121匹配的容纳腔1031,即上壳体103上预留有一个容置空间供感知模组121装配入,该预设位置即能满足感知模组121的准确定位功能,还能可以保护感知模组121,免受外力破坏。该预设位置位于设备主体110的后向部分,从而使感知模组121位于设备主体110的后向部分。
进一步地,如图9至图13所示,为了保护感知模组121,该设备主体110还包括装配于容纳腔1031上方的保护罩1032,感知模组121位于容纳腔1031和保护罩1032之间。具体地,在感知模组121装配于容纳腔1031后,再将保护罩1032固定到上壳体103上,以覆盖在该感知模组121上。其中,该感知模组121通过第一连接件固定在上壳体103上,保护罩1032可以通过第二连接件固定在上壳体103上,从而可以便于从设备主体110上拆卸下来,实现模块化的目的。可选的,该第一连接件和第二连接件可以选用螺钉,当然,其他可以实现便于拆装的连接件也包含在本公开中。
一可选实施例中,该保护罩1032采用高强度尼龙和玻璃纤维的组合材料,从而使保护罩1032具有较强的硬度,可承受来自各个方向的外力,能为感知模组121提供更好的保护。在本公开中,该保护罩1302的周侧面为镂空设置,从而不影响该感知模组121对四周障碍物情况的探测。保护罩1032的周侧面由至少一立柱构成,该立柱既要满足强度要求,又不能太宽阻挡激光束的发射和接收。优选的,立柱的数量为3个,在选用高强度材料的前提下,尽可能减少立柱的宽度。由于LDS保护罩1032与上壳体103的分开设计,可以为保护罩1032做单独的高强度材料设计,从而实现立柱宽度的降低。而传统的设计中,感应组件设置在底盘上,保护罩和上壳体是一体的,做整体高强度材料设计是大幅增加成本的,因此周侧柱的宽度较宽,阻挡测距激光的发射和接收。
在保护罩1032装配后,将上盖104装配于上壳体103上,上盖104对应于感知模组121的位置处开设有避让孔1041,感知模组121通过该避让孔1041部分突出上盖104,由于保护罩1032覆盖在感知模组121上,保护罩1032也有部分突出于上盖104。进一步地,该上盖104还包括枢轴连接的主体盖,在本公开的实施例中,感知模组121邻近尘盒组件设置。
在安装感知模组121时,无需拆开上壳体103与底壳102,仅需要打开上盖104,然后将感知模组121通过螺钉1212固定在上壳体103上,感知模组121在周侧设置有多个与上壳体103对应的连接孔1033。可选的,本公开中感知模组121通过4个螺钉1212 固定在上盖104上。待感知模组121固定后,再将保护罩1032通过多个螺钉1213固定在上壳体103上,该保护罩1032覆盖在感知模组121上。进一步地,该上壳体103上还包括多个支撑柱体1034,该多个支撑柱体1034对应在保护罩1032的周侧,用以支撑该保护罩1032,从而使保护罩1032与感知模组121之间具有一定的安全间距,避免施压外力于保护罩1032时,导致保护罩1032直接传导力于感知模组121。
在拆卸感知模组121时,不必先拆卸上壳体103和/底盘102,而是在打开上盖104后可以直接拆卸。具体地,通过借助螺丝刀拧开螺丝1213预先拆卸保护罩1032,而后再拆卸感知模组121上的螺钉1212,从而可以直接将感知模块121拆卸下来或者换新。
在本公开中,LDS的容纳腔1031和LDS本身都有漏水口,当有水进入此空间时,水会顺漏水孔流出,而不会造成LDS失效。具体地,感知模组121的周侧设置有防水防尘孔1214,上壳体103上设置有与防水防尘孔1214对应的通孔(未图示),以使流在LDS上的水顺着该防尘防水孔1214向下流,并经过上壳体103上的通孔导流出设备主体。进一步地,在LDS的马达的下方位置,上壳体103上可以设置通孔,该通孔的下方可以设置导流槽,避免水滴在下表面漫流至其他位置。
在本公开中,如图14所示,图14是根据一示例性实施例示出的感知模组的仰视图。为了便于该感知模组121的拆卸,该感知模组121还包括设置于该感知模组121下表面的连接器1211,该连接器1211与设备主体110内的控制部件(即电路主板)通过热插拔式电连接。控制部件位于感知模组121的下方,可以固定在底盘102上。该连接器1211为竖直方向插拔式连接器,具有一定的容差能力,从而使该感知模组121拆卸方便,而且可以避免使用线缆带来的理线困难、压线等问题。
如图15所示,左、右驱动轮模组均由轮体14111、马达14112、弹簧14113、霍尔传感器14114组成。自主清洁设备的主机放在地面上,受重力作用轮子大部分缩入机身中,弹簧14113被拉伸;主机从地面被拿起时,弹簧14113的弹力将轮子拉出机身外侧,同时霍尔传感器14114被触发,通知主板机器被抬起。左、右驱动轮模组的主要功能结构基本上相同,部分形状上的结构因所装配的位置不同而有所调整,下面以左驱动轮模组1411为例进行描述,该左驱动轮模组1411包括上部壳体14115、下部壳体14116以及固定在上部壳体14115和下部壳体14116之间的驱动主体,驱动主体包括轮体14111、马达14112、弹簧14113、霍尔传感器14114,该左驱动轮模组1411的连接器(未标示)设置在下部壳体14115,驱动主体通过金手指14117电连接于连接器,连接器再通过连接于设备主体的配合位置,实现对该驱动轮模组的控制。其中,该驱动主体通过螺丝固定在上部壳体14115与下部壳体14116之间。
在本公开的技术方案中,通过对相当于上述自主清洁设备100中的清洁系统150进 行改进,可以得到优化结构下的清洁模组,从而在相同的动力条件下,能够降低清洁模组中的气流损失,提高吸尘效率。下面结合实施例,对本公开的技术方案进行描述。
图16是根据一示例性实施例示出的一种自动清洁设备的清洁模组的截面剖视图;其中,当图17所示的自动清洁设备为如图1至图4所示的自主清洁设备100或者其他类似设备时,该自主清洁设备100的清洁模组可以对应于上述自主清洁设备100的清洁系统150。为了便于描述,图16示出了自动清洁设备在一示例性实施例中的方向信息,包括沿y轴的行进方向(其中,假定y轴左侧方向为前向驱动方向,即“+”;y轴右侧方向为后向驱动方向,即“-”)和沿z轴的垂直方向。
如图16所示,清洁模组分布于设备主体内,该清洁模组的入风口设置于底壳上,出风口设置于设备主体的侧面。本公开的清洁模组可以包括:滚刷组件1、尘盒组件2、动力部件3、一级风道4和二级风道5。
其中,滚刷组件1、尘盒组件2和动力部件3沿自主清洁设备的行进方向即y方向依次排列,且一级风道4位于滚刷组件1与尘盒组件2之间、二级风道5位于尘盒组件2与动力部件3之间。那么,图16所示的实施例可以形成下述风道:滚刷组件1→一级风道4→尘盒组件2→二级风道5→动力部件3,使得动力部件3产生的风可以通过上述风道实现由滚刷组件1向动力部件3的流动,且流动方向由图21中的箭头方向示出;其中,动力部件3产生的风在滚刷组件1、一级风道4与尘盒组件2之间流动时,可以将滚刷组件1清扫的灰尘、颗粒状垃圾等清洁对象输送至尘盒组件2中,实现清洁操作。
清扫效率DPU是自主清洁设备的清洁能力的准确体现,由吸入效率和滚刷扫动效率二者共同决定,此处讨论吸入效率为主,吸入效率是吸尘能力的准确体现,体现了将电能转化为机械能的效率,吸入效率=吸入功率/输入功率,输入功率是风机马达的输入的电能,吸入功率=风量*真空度,输入功率增加到一定值后,开始产生吸入的风量,随着输入功率的增加,风量不断增加,真空度逐渐减小,而吸入功率则是先增加后减小,使输入功率工作在吸入功率较高的范围内。
对于同一输入功率而言,风量和真空度都是越大越能得到高的吸入效率。真空度的损失减少主要依赖于漏风的避免,也即密封处理。风量的损失减少主要依赖于平滑无陡变的风路结构,具体来说主要包括:风从滚刷下端是否无损地进入风道,风从滚刷下端吹向尘盒进入风机的过程中被大角度反射的次数,风道截面积发生变化时是否产生大量的紊流等等。风路的整体结构设计作为有机整体,一个部件的结构改变都会对整机吸尘效率产生巨大变化。
因为滚刷作为滚刷组件1,其宽度越宽则单次清洁宽度越宽,而尘盒作为尘盒组件2,其与行走轮等部件共同设置在外壳内,宽度受限不能很宽,而且为了增加真空净压以将 垃圾抽吸到尘盒当中,尘盒的入口也不能很宽,因此在滚刷和尘盒之间存在第一风道,且截面是渐小的;尘盒的出口由滤网过滤空气,为了避免滤网的堵塞影响风道畅通,尘盒出口截面积通常较大,而风机作为动力部件3,其入口孔径则远小于尘盒出口,因此尘盒和风机之间存在第二风道,且截面也是渐小的。目前虽然存在部分自主清洁设备的风路中采用这样的两个风道,例如iROBOT的Roomba系列扫地机器人,但并未采用针对这两个风道做优化设计的风路结构。
实际上,虽然风路中都会包括滚刷、尘盒、风机,甚至会存在两个截面渐小的风道,但风道形状的区别却使得吸入效率大相径庭。
本公开中的风路结构使风自浮动的滚刷下端进入风道,因浮动滚刷可以在不同高度的待清扫区域中都可以和地面严密贴合,风量损失很小。浮动滚刷的实现源于一级风道的软性材料性质和使滚刷随地形变化而上下伸缩的结构设计。
滚刷经过滚刷容纳腔进入一级风道,一级风道的形状使风的净压值平滑升高,将垃圾斜向上运动进入尘盒;一级风道的倾斜度使风进入尘盒后,在尘盒顶部以大反射角反射离开尘盒;进入尘盒的垃圾在重力的作用下落入尘盒底部,而斜向上运动的风被尘盒顶部以大反射角反射后从滤网出口吹出,进入二级风道;其中,二级风道的设计目的是为了使从滤网吹出的风尽量少损失地以一定方向进入风机口。
下面对清洁模组中的各个结构做详细描述:
1、滚刷组件1的结构
作为一示例性实施例,本公开的自主清洁设备中的滚刷组件1可以为滚刷组件。图16示出了滚刷组件中的主刷模组的立体结构示意图,图17为图16所示主刷模组的分解结构示意图(图17中的视角为沿z轴由下向上进行观察);如图16-19所示,该主刷模组可以包括滚刷11和滚刷仓12,滚刷仓12进一步包括浮动系统支架131和滚刷盖122。
1)滚刷11
图18示出了滚刷11的结构示意图。如图18所示,该滚刷组件中的滚刷11可以为胶毛混合刷,即滚刷11的转轴111上同时设置有胶刷件112和毛刷件113,这样可以兼顾地板、毛毯等多种清洁环境。胶刷件112的胶条、毛刷件113的毛刷的生长方向与转轴111的径向基本一致,且胶刷件112的胶条宽度、毛刷件113的毛刷宽度与一级风道4的入口端41的宽度基本一致;其中,图18所示的中间微向上弯曲的一排为一个胶刷件112、呈波浪型的一排为一个毛刷件113,每个滚刷11上可以包括至少一个胶刷件112和至少一个毛刷件113。
胶刷件112和毛刷件113并非采取平行或接近平行的设置方式,而是两者之间具有 较大的夹角,以确保胶刷件112和毛刷件113能够各自实现自身的应用功能。
(1)胶刷件112
由于毛刷件113上的毛刷簇113A之间存在较大缝隙,使得风很容易从缝隙之间流失,对形成真空环境形成的帮助比较小。因此,通过设置胶刷件112,可以形成兜风效果,并且当兜风强度达到预设强度时,即可协助实现对清洁对象的扫动,使得清洁对象可以在滚刷11的扫动和风的吹动下,更方便地被输送至尘盒组件2中。
比如图18所示的实施例中,胶刷件112采用在滚刷11的圆柱面内沿接近直线的方式进行排布,并使得胶刷件112的中间位置向滚刷11的滚动方向末端弯曲,以使动力部件3产生的风汇聚在胶刷件112形成弯曲的中间位置,从而使其能够进一步对清洁对象进行汇集。另外,图17中可以看出,浮动系统支架131有从进风处(图中下端)到一级风道4的风路引导弧状结构1211,且该弧状结构1211和一级风道4的弧线形状40是曲率一致的,因而该弧状结构1211提高了风进入风道的效率,减少了风量损失。
(2)毛刷件113
在本公开的实施例中,毛刷件113在滚刷11的圆柱面内与转轴方向之间形成较大偏差角;对于每个毛刷件113而言,通过形成上述较大偏差角,可使组成该毛刷件113的若干毛刷簇113A沿转轴方向依次排布时,在周向上实现对滚刷11的更大覆盖角度,比如对滚刷11的周向覆盖角度达到预设角度。
一方面,通过扩大对滚刷11的周向覆盖角度,可以提升清洁度和清洁效率。滚刷11在滚动过程中,可以实现对底面的清扫;而当毛刷件113对滚刷11的周向覆盖角度达到360°时,才能够确保滚刷11在滚动过程中始终能够实现清扫操作。
另一方面,毛刷件113在清洁过程中需要接触地面进行清扫;其中,由于毛刷件113的柔软特性,将在清扫过程中产生一定的形变,形成对整个自主清洁设备的“支撑”效果。那么,如果毛刷件113对滚刷11的周向覆盖角度不足时,将导致形成周向覆盖与未形成周向覆盖的区域之间形成高度差,造成自主清洁设备在z轴方向上的颠簸或抖动,影响清洁操作的执行;因此,当毛刷件113能够实现360°周向覆盖角度时,可以通过消除颠簸、抖动,从而既能够确保自主清洁设备维持持续稳定的输出,而且能够降低自主清洁设备产生的噪音,还可以避免对电机造成冲击,有助于延长自主清洁设备的使用寿命。
2)滚刷盖122
在本公开的技术方案中,当滚刷组件1为滚刷组件时,图19示出了该滚刷组件中的滚刷盖122的立体结构示意图,该滚刷盖122可以包括防缠绕护挡1221和在行进方向上位于该防缠绕护挡1221后方的软胶刮条1222。防缠绕护挡1221一方面可以阻挡大体积 的清洁对象进入风道形成堵塞,另一方面阻挡电线等细长物体进入滚刷仓12产生缠绕。
结合图16可知,滚刷盖122在z轴方向上位于滚刷11下方,可以阻挡规格过大的清洁对象卷入滚刷组件内部,影响正常的清洁操作。而软胶刮条1222在z轴上位于防缠绕护挡1221的下方,且软胶刮条1222在y轴上位于滚刷11的行进方向末端,该软胶刮条1222与滚刷11之间保持一定距离(如1.5-3mm),并通过贴合于地面,使其可以将一小部分未被滚刷11直接卷起的清洁对象拦截并撮起,从而使其在滚刷11的扫动和风的吹动下被卷入滚刷11与滚刷仓12之间,从而进入一级风道4。软胶刮条1222的位置和角度的选择使得清洁对象始终位于最佳的清扫和抽吸位置,避免在软胶胶条1222之后还有所遗留。
如图19所示,防缠绕护挡1221在行进方向上的末端(可以为图19的y轴负方向,即防缠绕护挡1221的右端)可以设有配合于自主清洁设备的行进方向的越障协助件1221A,一方面该越障协助件1221A可以协助自主清洁设备起到越障(即越过障碍)作用,另一方面该越障协助件1221A可以抵于软胶刮条1222的上表面,使该软胶刮条1222的底部边缘在自主清洁设备处于工作状态时能够始终贴合于被清洁面(如地面、桌面等),而避免该软胶刮条1222因被清洁面上的垃圾等障碍物而被卷起,影响后续的清洁效果。
在一实施例中,越障协助件1221A可以为防缠绕护挡1221在行进方向上的末端向下(即z轴负方向,表现为图19中的“上方”)形成的凸起。
3)浮动系统支架131
如图20所示,浮动系统支架131可以包括:固定支架1312和浮动支架1313等,且在该浮动系统支架131上还安装有一级风道4和滚刷电机1314等。在固定支架1312上设有左右方向上的两个安装孔1312A,而浮动支架1313上设有左右方向上的两个安装轴1313A,则通过每个安装轴1313A与相应安装孔1312A之间的限位和转动配合,该浮动支架1313可以实现沿上下方向上的“浮动”。
因此,当自主清洁设备处于正常的清扫过程时,浮动支架1313在重力影响下转动至最低位置,无论在地板、地毯或者其他不光滑清洁表面上,在滚刷11的浮动路径范围内,该浮动系统支架131中安装的滚刷11都可以紧贴于被清洁面,以实现最高效率的贴地清扫,不同类型清洁表面上都具有较好的贴地效果,对风道的密封性贡献明显。
而当被清洁面上存在障碍物6时,通过浮动支架1313的上下“浮动”,可以降低滚刷11等与障碍物6之间的相互作用,从而协助自主清洁设备轻松实现越障。其中,一级风道4位于固定支架1312与浮动支架1313之间,因而浮动的滚刷11对一级风道4提出了柔性需求,因为刚性的风道无法吸收滚刷11的浮动变化,该需求由一级风道4的软性材料实现;所以,当一级风道4采用如软胶等软性材料制成时,可以在越障过程中,通 过浮动支架1313挤压一级风道4而使其产生形变,从而顺利实现向上“浮动”。
此外,在正常的清扫过程中,针对地毯等粗糙表面的被清洁面,通过浮动支架1313的“浮动”作用,可以减少滚刷11等与地毯之间的相互干涉,从而减少滚刷电机1314受到的阻力,有助于降低滚刷电机1314的功耗,并延长其使用寿命。
2、一级风道4的结构
在本公开的技术方案中,通过一级风道4的引导作用,使得动力部件3产生的风可以将滚刷组件1清扫的灰尘等清洁对象输送至尘盒组件2中。
从整体结构而言,如图21所示,一级风道4可以呈喇叭口状,且一级风道4上任一处对应的截面积反相关于该任一处与滚刷组件1之间的间隔距离;换言之,“喇叭口”的相对较大侧朝向滚刷组件1、相对较小侧朝向尘盒组件2。
在该实施例中,通过将一级风道4的截面积配置为逐渐递减的喇叭口状,使得相应位置处的静压值随之递增,即形成越来越大的吸力;那么,当灰尘、垃圾等清洁对象被滚刷组件1扫动并带至一级风道4后,随着清洁对象逐步远离滚刷组件1、逐步靠近尘盒组件2(同样逐步靠近动力部件3),虽然滚刷组件1向清洁对象施加的扫动力逐渐减小,但由于动力部件3向清洁对象施加的吸力逐渐增大,从而能够确保清洁对象被吸引和输送至尘盒组件2中。
进一步地,当滚刷组件1为滚刷组件时,如图21所示,一级风道4的入口端朝向滚刷组件的滚刷11,且入口端41的在水平面上与行进方向垂直的方向(即x轴方向)上的宽度从上向下递增。为了便于理解,针对图21所示的一级风道4与滚刷11之间的配合关系,图22示出了一级风道4与滚刷11相互配合的立体结构示意图。如图22所示,一级风道4上靠近滚刷11的入口端41具有较大截面积、远离滚刷11的出口端42具有较小截面积。其中,基于入口端41的上述“递增”特征,该入口端41的截面可以呈梯形,且较窄的第二边沿412为梯形的上底边、较宽的第一边沿411为梯形的下底边;当然,只要符合上述“递增”特征,入口端41的截面也可以采用其他形状,比如对应于上述“梯形”的两腰可以采用弧形等,本公开并不对此进行限制。
在该实施例中,通过在一级风道4的入口端41处采用梯形或类似的符合上述“递增”特征的形状,使得相应位置处的静压值随之递增,那么当灰尘、垃圾等清洁对象被滚刷11扫动并带至入口端41时,动力部件3产生的风能够提供足够的吸力,使得被扫至入口端41的清洁对象能够尽可能地被吸入尘盒组件2中,有助于提升清洁效率。
如图21所示,一级风道4的入口端41可以连接至作为滚刷组件1的滚刷组件的滚刷仓12,并通过该滚刷仓12上的开口朝向滚刷11;其中,如图23所示,一级风道4在滚刷11的滚动方向上包括两个侧壁:位于行进方向的后侧的第一侧壁43、位于行进方向 的前侧的第二侧壁44,两者可以通过下述方式进行配置。
1)第一侧壁43
在一实施例中,第一侧壁43可以沿滚刷仓12的圆形截面区域的切线方向设置。比如图23所示,滚刷仓12在截面上可以包括左侧弧形结构和右侧L型结构等多个部分,其中左侧弧形结构中的弧形部分对应于图23所示的圆形虚线区域,因而该弧形部分对应的该圆形虚线区域可以相当于上述的圆形截面区域;相应地,一级风道4的第一侧壁43可以沿该圆形虚线区域的切线方向设置,比如在图23所示的相对位置关系中,由于一级风道4位于滚刷组件的斜上方且在行进方向上偏向滚刷11的后方,因而第一侧壁43可以沿竖直方向设置。
在该实施例中,滚刷11从地面上扫动清洁对象后,清洁对象首先沿滚刷11与滚刷仓12之间的缝隙运动;而随着清洁对象由滚刷结构向一级风道4的移动,通过将第一侧壁43沿上述切线方向设置,使得清洁对象的运动轨迹和风向的流动均不会受到第一侧壁43的阻挡,确保清洁对象顺利通过一级风道4进入尘盒组件2中。
2)第二侧壁44
在一实施例中,结合图21与图23,当滚刷组件1为滚刷组件,且一级风道4在行进方向上偏向于滚刷1的后方时,一级风道4的入口端41朝向行进方向的前侧(比如图21中的左侧)斜下方处的滚刷11、出口端42连接至行进方向的后侧(比如图21中的右侧)斜上方处的尘盒组件2的入风口211,且尘盒组件2的出风口212位于非顶侧处(即出风口212不位于尘盒顶部214处,比如图21中位于右侧壁处)。
其中,一级风道4的第二侧壁44朝水平面斜向后倾斜(即尽可能接近水平面),也即使第二侧壁44形成与z轴竖直方向尽可能大的夹角。实际上,由于自主清洁设备的内部空间有限,导致滚刷结构、一级风道4与尘盒组件2等之间的设置十分紧凑,且最节省空间的方式是将一级风道4完全沿z轴设置,但那会大大损失风量,从而大大降低吸入效率;而在本公开的实施例中,在有限的内部空间条件下,通过增加第一侧壁44与z轴之间的夹角,可以对风向做斜向上引导,使风进入尘盒组件2的内部后,与尘盒顶部214大角度反射后,通过出风口212处的滤网22以接近水平的方向排出,这种一次大角度反射的风路设计对风量的损失很小。
并且,由于一级风道4的入口端41朝向左下方的滚刷11、出口端42连接至尘盒组件2的入风口211,因而一级风道4在将风引导至尘盒组件2内部时,可使风及其裹挟的清洁对象直接吹向尘盒组件2的尘盒顶部214;而由于风在直接吹向尘盒顶部214时,尘盒组件2的出风口212并非位于该尘盒顶部214处,因而需要在尘盒顶部214处发生大入射角的反射,转换风向后由出风口212进入二级风道5;风进入尘盒组件2后截面积变 大,导致风速的下降,清洁对象由于风速下降而从尘盒顶部214处下落,从而留存于尘盒组件2中;同时,由于风速下降和风向的改变,所以虽然风自身能够吹向出风口212并进入二级风道5,但是无法继续将清洁对象吹向出风口212处,因而当尘盒组件2的出风口212处设置有滤网22时,可以避免清洁对象直接被吹向滤网22表面,防止清洁对象对滤网22的表面造成阻塞,有助于提升风量利用率。
3、尘盒组件2
如图24所示,设备主体110的顶部设有容纳腔13,且尘盒组件2可置入该容纳腔13中,以安装至设备主体110中。当然,容纳腔13还可以位于设备主体110的其他位置,比如设备主体110后方(可参考图4所示y轴后向)侧边处等,本公开并不对此进行限制。
如图24所示,为了实现对尘盒组件2的在位检测,尘盒组件2中可以设置有非接触式感应元件31,且设备主体110中设置有非接触式感应配合元件32;其中,非接触式感应元件31与非接触式感应配合元件32可在一定范围内实现非接触式的配合感应,因而无需复杂的机械结构和装配关系,只要确保非接触式感应元件31与非接触式感应配合元件32处于可感应的距离范围内,即可实现两者之间的配合感应,从而实现对尘盒组件2的在位检测。
因此,通过事先对非接触式感应元件31与非接触式感应配合元件32的感应距离范围进行配置,可令非接触式感应元件31可在尘盒组件2被安装至设备主体110的情况下配合于非接触式感应配合元件32,使非接触式感应配合元件32能够感应到非接触式感应元件31。由于两者之间采用非接触式的感应方案,因而相比于每次均需要相互装配的机械结构,可以避免装配过程可能造成的挤压、折断、材料老化等意外状况,从而提升其应用过程中的可靠性。
在一示例性实施例中,非接触式感应元件31可以为磁片,而非接触式感应配合元件32可以为霍尔传感器。通过配置磁片的磁场强度与霍尔传感器的感应灵敏度之间的匹配关系,可使尘盒组件2被安装至设备主体110的情况下,该霍尔传感器恰好能够感应到磁片,从而实现对磁片所处尘盒组件2的在位检测。
当然,正如上文所述,本公开并不限制非接触式感应元件31与非接触式感应配合元件32之间的感应方向,因而类似于上述实施例,可以将霍尔传感器作为非接触式感应元件31而安装于尘盒组件2中,并将磁片作为非接触式感应配合元件32而安装于设备主体110中,同样可以实现上述在位检测,此处不再赘述。
在本公开的技术方案中,非接触式感应元件31可以安装于尘盒组件2中的任意位置,本公开并不对此进行限制;类似地,非接触式感应配合元件32可以安装于设备主体110 中的任意位置,本公开也并不对此进行限制。然而,对于非接触式感应元件31而言,通过改变其在尘盒组件2上的安装位置,可以实现不同的在位检测效果。
如图25所示,尘盒组件2可以包括:尘盒21和滤网22,且滤网22可拆卸地安装于该尘盒21上,因而非接触式感应元件31存在两种安装位置:安装于尘盒21中,或者安装于滤网22上。
假定非接触式感应元件31安装于滤网22上。那么,由于滤网22与尘盒21之间的体积和形状均相差较大,导致对于用户而言不可能单独将滤网22安装至设备主体110,而遗漏尘盒21,所以将导致下述两种安装情况:(1)用户未将滤网22安装至尘盒21,而单独将尘盒21安装至设备主体110,此时由于非接触式感应元件31位于滤网22上,因而自主清洁设备无法检测到尘盒组件2,因而检测结果为尘盒组件2不在位;(2)用户将滤网22安装至尘盒21,那么用户将完整的尘盒组件2安装至设备主体110后,自主清洁设备可以确定尘盒组件2在位。
因此,通过将非接触式感应元件31安装于滤网22上,不仅可以对尘盒组件2进行完整的在位检测,而且可以对滤网22进行检测,确保自主清洁设备得到“尘盒组件2在位”的检测结果时,该尘盒组件2中确实包含尘盒21和滤网22,从而避免气体在不经过滤网22过滤的情况下吹入风机结构,防止灰尘、颗粒状垃圾等被随之吹入风机结构并对风机结构造成损坏。由于滤网22上累积灰尘会大大降低风量影响吸尘效率,滤网是经常需要用户清理保持干净风路通畅的,用户在清理滤网22后很可能忘记将其装回而直接将尘盒21放入设备主体110,一旦开机清扫直接导致灰尘垃圾等进入风机结构造成损坏。实际上诸如扫地机器人等自主清洁设备由于忘装滤网22而导致的风机报废也是不少见的。由于滤网22的片状结构,导致在其上设计机械件进行在位识别是困难的。
可选择地,将非接触式感应元件31安装在滤网22的框架任意位置上,例如将磁片嵌装在滤网22的塑料框架上。
IV、尘盒组件2
在本公开的技术方案中,尘盒21上可以形成至少两侧开口:一侧开口为图26所示的尘盒21上的入风口211,另一侧开口为尘盒21上的出风口212;其中,滤网22可以安装于出风口212处,并通过使得滤网22覆盖该出风口212,确保灰尘等清洁对象滞留于尘盒21中,避免由出风口212被吹入后续的风机结构中。
在一示例性实施例中,如图26所示,尘盒21可以进一步拆分为:尘盒主体21A和设有入风口211的侧壁21B。由于入风口211设置于侧壁21B上,因而侧壁21B的规格必然大于入风口211,所以在将侧壁21B拆卸后,可形成规格大于入风口211的倾倒口213,便于用户对尘盒21中收集的灰尘等清洁对象进行倾倒。
4、二级风道5的平滑引导
图27为图21所示风路结构对应的俯视图。如图27所示,滚刷组件1、尘盒组件2和动力部件3在沿自主清洁设备的行进方向(即y轴方向)依次排列的同时,尘盒组件2与动力部件3还在x轴方向(即自主清洁设备的左右方向)上相互偏离,因而风从尘盒组件2吹向动力部件3时,同时存在沿y轴方向(即图17中的“由左向右”)和沿x轴方向(即图17中的“由下向上”)上的运动,即风在流动过程中存在“转弯”。尘盒组件2与动力部件3也可在x轴方向上无相互偏离,本公开并不对此进行限制。
如图27所示,二级风道5呈喇叭口状(靠近尘盒组件2的一侧截面积相对较大、靠近动力部件3的一侧截面积相对较小),以使风被聚拢至动力部件3的进风口。风从尘盒组件2吹入二级风道5时,由于截面积的减小,风是直接吹向二级风道5的迎风侧51的内壁;所以,在本公开的技术方案中,通过将该二级风道5的内壁迎风侧配置为弧形,一方面可以在x轴方向上对尘盒组件2输出的风进行引导,使其被吹向动力部件3的进风口,另一方面可以配合于风的流动,避免对其造成阻挡或干扰产生紊流,从而有助于降低气流损失、提高风量利用率。
同时,结合图21与图27可知,清洁对象被滚刷组件1清扫后,通过动力部件3产生的风(以及一级风道4的结构配合)被输送至尘盒组件2中,因而通过提升风路结构的风量利用率、降低气流损失,可以增加风对清洁对象的输送强度,从而提升自主清洁设备的清洁度和清洁效率。
5、动力部件3的倾斜配置
图28是根据一示例性实施例示出的一种二级风道与动力部件的截面剖视图。如图28所示,二级风道5远离尘盒组件2(图28中未示出)的端部形成出风口52,而该出风口52还配合连接至动力部件3的进风口311。其中,出风口52所处平面与水平面相交,即出风口52倾斜于水平面;那么,当动力部件3为轴流风机,且进风口311与该轴流风机的转轴(转轴方向可参见图28中标示的点划线方向)同向时,实际上表现为该轴流风机倾斜于水平面放置。
当出风口52和进风口311所处平面垂直于水平面时,风在二级风道5内部流动以及由二级风道5进入动力部件3的过程中,基本上都是在水平面内实现流动,因而风由二级风道5吹入轴流风机时,风向基本上平行于转轴方向,从而可使作为动力部件3的轴流风机实现最大的转换效率(比如将电能转换为风能的效率);而当出风口52和进风口311所处平面平行于水平面时,风在二级风道5内部基本沿水平面流动,但由二级风道5进入动力部件3时,需要转而沿竖直方向流动,使得作为动力部件3的轴流风机的转换效率最小。
然而,由于自动清洁部件的内部空间十分有限,无法实现出风口52和进风口311所处平面垂直于水平面,所以在本公开的技术方案中,通过尽量增大作为动力部件3的轴流风机与水平面之间的夹角,一方面可以对自动清洁部件的内部空间进行合理利用,另一方面可使轴流风机的转换效率尽可能地最大化。
在本公开的技术方案中,针对风在二级风道5中的流动过程,还可以使二级风道5上朝向出风口52处的侧壁向外凸起,以增加二级风道5在出风口52处的内腔容量,使动力部件3产生的风在出风口52处的能量损失低于预设损失。比如图29为图21所示风路结构对应的右视图,如图29所示,当出风口52位于二级风道5的顶侧时,朝向出风口52处的侧壁为底侧,因而可以向下形成图29所示的凸起结构53,从而增加二级风道5在出风口52处的内腔容量,使得风在出风口52处改变风向(在出风口52所处平面并非垂直于水平面的情况下)并吹入动力部件3的情况下,提供更大的缓冲空间,以降低风在出风口52处的能量损失。
6、整机风道的全密封
从前面的分析可知,真空度和风量同样对于高的吸入效率有重要贡献。在本公开的技术方案中,对风道风路结构中各部件连接处存在的所有缝隙处都进行密封处理,比如在缝隙处填充软胶等,从而避免漏风,也即降低真空度的损失。另一方面,在风机的出风口处采用软胶件3132,将风全部导出主机,软胶件3132的使用除了可以避免漏风(即降低真空度)外,还可以避免灰尘进入自动清洁设备内部的电机等处,有助于延长自动清洁设备的使用寿命。
本公开的自主清洁设备中的各个功能模组分别安装在设备主体上预留的容纳空间中,可以从设备主体上独立拆卸下来,从而可以便捷地将损坏的功能模组单独拆卸下来维修或者更换新的功能模组,大大提高了自主清洁设备的维修效率。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由本申请的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种自主清洁设备,其特征在于,包括:设备主体、驱动模组、清洁模组、以及感知模组;其中,所述驱动模组、所述清洁模组和所述感知模组可分别拆卸地装配于所述设备主体。
  2. 根据权利要求1所述的自主清洁设备,其特征在于,所述设备主体包括底盘、以及固定于所述底盘的上壳体;其中,所述驱动模组设置于所述底盘,所述感知模组装配于所述上壳体的预设位置。
  3. 根据权利要求2所述的自主清洁设备,其特征在于,所述上壳体的预设位置为与所述感知模组匹配的容纳腔,所述感知模组装配于所述容纳腔。
  4. 根据权利要求3所述的自主清洁设备,其特征在于,所述感知模组通过多个第一连接件固定于所述上壳体。
  5. 根据权利要求3所述的自主清洁设备,其特征在于,所述设备主体还包括装配于所述容纳腔上方的保护罩,所述保护罩的周侧面镂空设置,所述感知模组位于所述容纳腔和所述保护罩之间。
  6. 根据权利要求5所述的自主清洁设备,其特征在于,所述保护罩的周侧面由至少一立柱构成,所述立柱具有较小的宽度。
  7. 根据权利要求5所述的自主清洁设备,其特征在于,当拆卸所述感知模组时,预先拆卸所述保护罩。
  8. 根据权利要求5所述的自主清洁设备,其特征在于,在拆卸感知模组之前,不必先拆卸所述上壳体和/或所述底盘。
  9. 根据权利要求5所述的自主清洁设备,其特征在于,所述保护罩通过多个第二连接件固定于所述上壳体。
  10. 根据权利要求5所述的自主清洁设备,其特征在于,所述保护罩由高强度尼龙和玻璃纤维的组合材料制成。
  11. 根据权利要求1所述的自主清洁设备,其特征在于,所述感知模组的周侧设置 有防水防尘孔,所述上壳体上设置有与所述防水防尘孔对应的通孔。
  12. 根据权利要求1所述的自主清洁设备,其特征在于,所述设备主体还包括上盖,所述感知模组部分突出所述上盖。
  13. 根据权利要求1所述的自主清洁设备,其特征在于,所述设备主体还包括设置于所述感知模组下方的控制部件,所述感知模组包括设置于其下表面、与所述控制部件电连接的连接器。
  14. 根据权利要求1所述的自主清洁设备,其特征在于,所述设备主体包括前向部分和后向部分,所述感知模组位于所述后向部分。
  15. 根据权利要求1至14中任一项所述的自主清洁设备,其特征在于,所述感知模组为激光测距设备。
  16. 根据权利要求1所述的自主清洁设备,其特征在于,所述驱动模组包括驱动轮模块,所述驱动轮模块包括左驱动轮模块和右驱动轮模块,所述左驱动轮模块和所述右驱动轮沿所述设备主体界定的横向轴对置。
  17. 根据权利要求16所述的自主清洁设备,其特征在于,所述驱动模组还包括至少一个从动轮,用以辅助所述设备主体的支撑及移动。
  18. 根据权利要求1所述的自主清洁设备,其特征在于,所述清洁模组包括:
    沿所述自主清洁设备的行进方向依次排列的滚刷组件、尘盒组件和动力部件;
    一级风道,设置于所述清洁部件与所述尘盒组件之间;
    二级风道,设置于所述尘盒组件与所述动力部件之间,所述二级风道的内壁迎风侧呈弧形;
    其中,所述一级风道配合于所述动力部件,以使所述清洁部件清扫的清洁对象被所述动力部件产生的风输送至所述尘盒组件中;所述二级风道配合于所述动力部件,以使所述尘盒组件输出的风在所述预设方向上被平滑引导至所述动力部件的进风口。
  19. 根据权利要求18所述的自主清洁设备,其特征在于,所述一级风道呈喇叭口状,且所述一级风道上任一处对应的截面积反相关于该任一处与所述清洁部件之间的间隔距 离。
  20. 根据权利要求19所述的自主清洁设备,其特征在于,所述二级风道呈喇叭口状,所述二级风道的出风口配合连接至所述动力部件的进风口;其中,所述动力部件为轴流风机,且所述动力部件的进风口与所述轴流风机的转轴同向。
  21. 根据权利要求18所述的自主清洁设备,其特征在于,滚刷组件包括滚刷和滚刷仓;所述滚刷包括转轴、设置于所述转轴上的胶刷件和毛刷件;
    其中,所述胶刷件在所述滚刷的圆柱面内与所述转轴方向之间形成较小偏差角,以使所述胶刷件的兜风强度达到预设强度;以及,所述毛刷件在所述滚刷的圆柱面内与所述转轴方向之间形成较大偏差角,以使组成所述毛刷件的若干毛刷簇沿所述转轴方向依次排布时,对所述滚刷的圆柱面内周向覆盖角度达到预设角度。
  22. 根据权利要求21所述的自主清洁设备,其特征在于,所述胶刷件的中间位置沿所述行进方向弯曲,以使所述动力部件产生的风在所述胶刷件的中间位置能够对清洁对象进行汇集;其中,所述胶刷件的中间位置较其他位置更晚到达所述一级风道。
  23. 根据权利要求18所述的自主清洁设备,其特征在于,所述尘盒组件包括:尘盒和可配合安装于所述尘盒的滤网,所述尘盒上形成至少两侧开口;一侧开口为所述尘盒的入风口,另一侧开口为所述尘盒的出风口;其中,所述滤网安装于所述出风口处,并覆盖所述出风口。
  24. 根据权利要求23所述的自主清洁设备,其特征在于,所述感知模组邻近所述尘盒设置。
PCT/CN2016/108611 2016-04-14 2016-12-05 自主清洁设备 WO2017177696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610232698.9A CN105982611A (zh) 2016-04-14 2016-04-14 自主清洁设备
CN201610232698.9 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017177696A1 true WO2017177696A1 (zh) 2017-10-19

Family

ID=57043957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108611 WO2017177696A1 (zh) 2016-04-14 2016-12-05 自主清洁设备

Country Status (5)

Country Link
US (5) US10932636B2 (zh)
EP (1) EP3231340B1 (zh)
CN (2) CN111973085B (zh)
ES (1) ES2902416T3 (zh)
WO (1) WO2017177696A1 (zh)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106998980B (zh) 2014-12-10 2021-12-17 伊莱克斯公司 使用激光传感器检测地板类型
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
EP3430424B1 (en) 2016-03-15 2021-07-21 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
CN111973085B (zh) 2016-04-14 2022-09-30 北京小米移动软件有限公司 自主清洁设备
US10732127B2 (en) * 2016-10-26 2020-08-04 Pixart Imaging Inc. Dirtiness level determining system and surface cleaning machine
JP6609538B2 (ja) * 2016-11-18 2019-11-20 日立グローバルライフソリューションズ株式会社 電動送風機及びこれを有する電気掃除機
CN106691316A (zh) * 2016-11-23 2017-05-24 河池学院 一种多功能智能清洁机器人
AU2017385735B2 (en) 2016-12-30 2021-03-25 Lg Electronics Inc. Cleaner
AU2017385736B2 (en) * 2016-12-30 2020-05-21 Lg Electronics Inc. Robot cleaner
CN106510558A (zh) * 2017-01-03 2017-03-22 上海量明科技发展有限公司 飞行式清理机器人及其清扫方法
US20200031226A1 (en) * 2017-03-15 2020-01-30 Aktiebolaget Electrolux Estimating wheel slip of a robotic cleaning device
CN106901665A (zh) * 2017-04-17 2017-06-30 沈昱成 多功能模块化智能家居服务机器人
CN107028561B (zh) * 2017-05-03 2022-08-23 深圳银星智能集团股份有限公司 清洁设备
CN114886340A (zh) * 2017-05-19 2022-08-12 科沃斯机器人股份有限公司 自移动清洗机器人的自清洁方法及自移动清洗机器人
KR20220025250A (ko) 2017-06-02 2022-03-03 에이비 엘렉트로룩스 로봇 청소 장치 전방의 표면의 레벨차를 검출하는 방법
CN107092260B (zh) * 2017-06-09 2020-11-20 北京小米移动软件有限公司 移动机器人及该移动机器人跨越障碍物的方法
CN107300918B (zh) * 2017-06-21 2020-12-25 上海思依暄机器人科技股份有限公司 一种改变运动状态的控制方法及控制装置
CN109199236A (zh) * 2017-06-30 2019-01-15 沈阳新松机器人自动化股份有限公司 室内硬质地面清洗机器人
KR102014141B1 (ko) 2017-08-07 2019-10-21 엘지전자 주식회사 로봇청소기
KR102024089B1 (ko) 2017-08-07 2019-09-23 엘지전자 주식회사 로봇 청소기
KR102014140B1 (ko) 2017-08-07 2019-08-26 엘지전자 주식회사 청소기
KR102021828B1 (ko) 2017-08-07 2019-09-17 엘지전자 주식회사 청소기
KR102033936B1 (ko) 2017-08-07 2019-10-18 엘지전자 주식회사 로봇청소기
KR102000068B1 (ko) * 2017-08-07 2019-07-15 엘지전자 주식회사 청소기
CN109421055A (zh) * 2017-08-25 2019-03-05 科沃斯机器人股份有限公司 自移动机器人
KR20200058400A (ko) 2017-09-26 2020-05-27 에이비 엘렉트로룩스 로봇 청소 장치의 이동 제어
AU2018356126B2 (en) * 2017-10-25 2021-07-29 Lg Electronics Inc. Artificial intelligence moving robot which learns obstacles, and control method therefor
CN109960251B (zh) * 2017-12-26 2021-12-28 沈阳新松机器人自动化股份有限公司 一种用于底盘的全向感应避障机构
CN108175337B (zh) * 2017-12-30 2024-01-26 常州摩本智能科技有限公司 扫地机器人及其行走的方法
CN108209749B (zh) * 2017-12-30 2020-11-10 嘉兴市楚汉电器有限公司 高效快洁智能扫地机
CN108013833B (zh) * 2017-12-30 2020-11-06 嘉兴市楚汉电器有限公司 新型智能扫地机
CN108125627B (zh) * 2017-12-30 2020-11-06 嘉兴市迅程信息技术有限公司 智能扫地机
CN108152904A (zh) * 2018-01-19 2018-06-12 国家电网公司 光纤复合架空地线绝缘接续盒
KR102045003B1 (ko) 2018-01-25 2019-11-14 엘지전자 주식회사 로봇청소기의 제어방법
US10722022B2 (en) 2018-03-29 2020-07-28 Omachron Intellectual Property Inc Rotatable brush for surface cleaning apparatus
US10932631B2 (en) 2018-03-29 2021-03-02 Omachron Intellectual Property Inc. Rotatable brush for surface cleaning apparatus
US10722087B2 (en) 2018-03-29 2020-07-28 Omachron Intellectual Property Inc. Rotatable brush for surface cleaning apparatus
US10888205B2 (en) 2018-03-29 2021-01-12 Omachron Intellectual Property Inc. Rotatable brush for surface cleaning apparatus
US10765279B2 (en) 2018-03-29 2020-09-08 Omachron Intellectual Property Inc. Rotatable brush for surface cleaning apparatus
CN108762273B (zh) * 2018-06-05 2021-09-10 北京智行者科技有限公司 一种清扫方法
US11364589B2 (en) 2018-07-12 2022-06-21 Boa-Franc, S.E.N.C. Method of making wood flooring boards
WO2020037516A1 (zh) * 2018-08-21 2020-02-27 广州艾若博机器人科技有限公司 吸尘导向结构、吸尘机构以及扫地机器人
CN109186463B (zh) * 2018-09-04 2021-12-07 浙江梧斯源通信科技股份有限公司 应用于可移动机器人的防跌落方法
CN109330543B (zh) * 2018-09-27 2021-02-23 嘉善县姚庄中心学校 一种布沙发的清洁装置
CN111035319B (zh) * 2018-10-12 2022-06-24 广东美的白色家电技术创新中心有限公司 扫地机器人的壳体以及扫地机器人
CN116530880A (zh) * 2018-10-24 2023-08-04 高启嘉 擦地机
CN109452905A (zh) * 2018-11-22 2019-03-12 深圳飞科机器人有限公司 自主移动设备
CN111374609A (zh) * 2018-12-29 2020-07-07 北京石头世纪科技股份有限公司 智能清洁设备
CN109589050B (zh) 2019-01-08 2021-07-06 云鲸智能科技(东莞)有限公司 一种控制清洁模式的方法和清洁机器人
CN109864666A (zh) * 2019-03-04 2019-06-11 广东乐生智能科技有限公司 清洁机器人被困的判断方法
CN110151067A (zh) * 2019-05-31 2019-08-23 尚科宁家(中国)科技有限公司 扫地机
TWI693507B (zh) * 2019-06-03 2020-05-11 大陸商信泰光學(深圳)有限公司 測距裝置(十一)
CN110244826B (zh) * 2019-06-03 2024-02-06 柳州铁道职业技术学院 带有清理装置的主机及其台式计算机
CN110150848B (zh) * 2019-06-28 2024-01-19 福州大学 可移动的智能清洁办公桌
JP7231503B2 (ja) * 2019-06-28 2023-03-01 株式会社マキタ 光学センサ及びロボット集じん機
CN110279357B (zh) * 2019-07-09 2021-09-21 湖南人文科技学院 一种用于智能扫地机激光测距模块的变速结构
CN111012255A (zh) * 2019-12-30 2020-04-17 江苏美的清洁电器股份有限公司 一种集成部件、清洁机器人及清洁机器人系统
KR102341712B1 (ko) * 2020-03-30 2021-12-20 김대현 측위 정확도가 높은 이동로봇 및 이의 동작방법
CN111657796A (zh) * 2020-06-18 2020-09-15 长沙班固智能科技有限公司 一种基于物联网的用于智能家居的多媒体设备
CN112022024B (zh) * 2020-07-16 2022-10-04 美智纵横科技有限责任公司 自移动清洁装置及自移动清洁装置控制方法
CN112027399A (zh) * 2020-08-20 2020-12-04 五邑大学 一种多功能智能清洁垃圾桶
US10947685B1 (en) 2020-09-10 2021-03-16 Jay Hirshberg Object-gathering apparatus
CN112134168B (zh) * 2020-09-28 2022-07-12 山东盛帆电子科技有限公司 一种具有驱鸟功能的防尘配电柜
CN112515550A (zh) * 2020-09-29 2021-03-19 深圳市银星智能科技股份有限公司 自主清洁设备
CN115067802A (zh) * 2021-03-15 2022-09-20 科沃斯机器人股份有限公司 自移动设备、系统、模块及控制方法
CN113576326B (zh) * 2021-07-07 2023-01-24 北京顺造科技有限公司 一种自动清洁设备
EP4122367A3 (en) * 2021-07-23 2023-04-12 Bissell Inc. Filter assembly and floor cleaner
USD990802S1 (en) * 2021-08-05 2023-06-27 Shenzhen Haitao Optimization Technology Co., Ltd. Sweeping robot
CN113465686B (zh) * 2021-09-02 2021-11-23 江苏洁路宝环保科技有限公司 一种扫地机的智能检测装置
EP4216783B1 (en) * 2021-09-17 2024-01-31 Yunjing Intelligence Innovation (Shenzhen) Co., Ltd. Cleaning robot
CN113796800A (zh) * 2021-09-28 2021-12-17 深圳市杉川机器人有限公司 一种地面清洁设备
CN114343495B (zh) * 2021-12-31 2023-03-10 深圳市杉川机器人有限公司 基站及清洁单元更换方法
CA212645S (en) * 2022-01-05 2023-09-25 Beijing Roborock Tech Co Ltd Cleaning robot
CN216932996U (zh) * 2022-01-11 2022-07-12 北京石头世纪科技股份有限公司 自动清洁设备
CN116831477A (zh) * 2022-01-11 2023-10-03 北京石头世纪科技股份有限公司 自动清洁设备
CN216984738U (zh) * 2022-01-11 2022-07-19 北京石头世纪科技股份有限公司 自动清洁设备
JP1738309S (ja) * 2022-01-21 2023-03-06 掃除ロボット
CN114569011B (zh) * 2022-03-25 2023-09-05 微思机器人(深圳)有限公司 一种沿墙行走方法、装置、扫地机器人及存储介质
CN114554330B (zh) * 2022-04-20 2022-07-12 广州市星康科技有限公司 一种可拆卸式具有防尘清灰结构的扬声器
CN114668341A (zh) * 2022-05-05 2022-06-28 上海龙旗科技股份有限公司 一种智能机器人
CN115336937B (zh) * 2022-08-17 2023-12-29 深圳朝晖兴科技有限公司 一种实验室自动清洁机器人避障导航装置
CN115251762B (zh) * 2022-09-02 2023-06-30 北京石头世纪科技股份有限公司 清洁设备及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060064330A (ko) * 2004-12-08 2006-06-13 주식회사유진로보틱스 청소용 로봇 및 그 청소방법
CN201782706U (zh) * 2010-04-09 2011-04-06 燕成祥 自动吸尘器的感应脱困装置
CN102083352A (zh) * 2008-04-24 2011-06-01 进展机器人有限公司 用于机器人使能的移动产品的定位、位置控制和导航系统的应用
CN202005711U (zh) * 2011-03-31 2011-10-12 泰怡凯电器(苏州)有限公司 可自动分离的机器人
JP2013031509A (ja) * 2011-08-01 2013-02-14 Industrial Technology Research Inst 吸引清掃モジュール
CN204260674U (zh) * 2014-11-10 2015-04-15 江苏美的春花电器股份有限公司 扫地机器人
CN104714219A (zh) * 2015-04-10 2015-06-17 招商局重庆交通科研设计院有限公司 激光测距传感器保护罩及激光测距仪
CN204612006U (zh) * 2015-05-12 2015-09-02 林鸿志 一种模块化智能空气净化器
CN105982611A (zh) * 2016-04-14 2016-10-05 北京小米移动软件有限公司 自主清洁设备

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US85608A (en) * 1869-01-05 Harris pearson and harvy pearson
US5440216A (en) * 1993-06-08 1995-08-08 Samsung Electronics Co., Ltd. Robot cleaner
JP3237551B2 (ja) * 1996-12-16 2001-12-10 株式会社イナックス 衛生洗浄装置の乾燥装置
US7571511B2 (en) * 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6883201B2 (en) * 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US7337492B2 (en) * 2002-07-25 2008-03-04 Toshiba Tec Kabushiki Kaisha Vacuum cleaner having a noise blocking member facing an intake vent of a motor fan
CN2564619Y (zh) * 2002-08-15 2003-08-06 张东年 聚集强风清扫车
KR20050012047A (ko) * 2003-07-24 2005-01-31 삼성광주전자 주식회사 회전 물걸레 청소유닛을 구비한 로봇청소기
JP2005211365A (ja) * 2004-01-30 2005-08-11 Funai Electric Co Ltd 自律走行ロボットクリーナー
CN2780370Y (zh) * 2005-01-31 2006-05-17 田永茂 除尘器
EP1850725B1 (en) * 2005-02-18 2010-05-19 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US7389166B2 (en) * 2005-06-28 2008-06-17 S.C. Johnson & Son, Inc. Methods to prevent wheel slip in an autonomous floor cleaner
US7578020B2 (en) * 2005-06-28 2009-08-25 S.C. Johnson & Son, Inc. Surface treating device with top load cartridge-based cleaning system
ES2423296T3 (es) * 2005-12-02 2013-09-19 Irobot Corporation Robot modular
EP2816434A3 (en) * 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
EP2781178B1 (en) * 2007-05-09 2021-04-21 iRobot Corporation Autonomous coverage robot
US10117553B2 (en) * 2008-03-17 2018-11-06 Aktiebolaget Electrolux Cleaning nozzle for a vacuum cleaner
JP2010029401A (ja) * 2008-07-29 2010-02-12 Mitsubishi Electric Corp 電気掃除機
CN201468351U (zh) * 2009-06-26 2010-05-19 邹海峰 修磨指甲用微型吸尘器的新结构
CN201572039U (zh) * 2009-08-28 2010-09-08 泰怡凯电器(苏州)有限公司 地面处理系统
CN102217914B (zh) * 2010-04-14 2015-05-27 科沃斯机器人有限公司 机器人系统
CN102727144B (zh) * 2011-03-31 2015-10-14 科沃斯机器人有限公司 多功能机器人及其自动分离功能模块的控制装置和方法
EP2713844B1 (en) * 2011-04-29 2019-03-27 iRobot Corporation Resilient and compressible roller and autonomous coverage robot
KR101303158B1 (ko) * 2011-07-25 2013-09-09 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
JP6219850B2 (ja) * 2012-02-02 2017-10-25 アクティエボラゲット エレクトロラックス 掃除機ノズル用クリーニング装置
CN202553812U (zh) * 2012-05-16 2012-11-28 成浩 一种清洁机器人集尘装置
GB2502131B (en) * 2012-05-17 2014-11-05 Dyson Technology Ltd Autonomous vacuum cleaner
CN202843513U (zh) * 2012-10-17 2013-04-03 科沃斯机器人科技(苏州)有限公司 地面清洁装置
US9591958B2 (en) * 2013-02-27 2017-03-14 Omachron Intellectual Property Inc. Surface cleaning apparatus
KR101450569B1 (ko) * 2013-03-05 2014-10-14 엘지전자 주식회사 로봇 청소기
KR102020210B1 (ko) * 2013-04-11 2019-11-05 삼성전자주식회사 센서 모듈 및 이를 구비하는 로봇 청소기
CN104708625A (zh) * 2013-12-12 2015-06-17 姚萍 智能清洁机器人系统
CN203662684U (zh) * 2014-01-14 2014-06-25 深圳市银星智能科技股份有限公司 一种清洁机器人
CN203736114U (zh) * 2014-03-04 2014-07-30 科沃斯机器人科技(苏州)有限公司 用于真空吸尘器的吸嘴及具有该吸嘴的清洁装置
EP3130011A4 (en) * 2014-04-07 2018-02-28 Crystal Is, Inc. Ultraviolet light-emitting devices and methods
CN204071952U (zh) * 2014-06-06 2015-01-07 苏州科沃斯商用机器人有限公司 清洁装置
CN104172993B (zh) * 2014-08-21 2018-01-16 广东宝乐机器人股份有限公司 一种在智能扫地机上具有多种清洁方式的方法及其装置
CN204146956U (zh) * 2014-09-02 2015-02-11 番禺得意精密电子工业有限公司 智能清洁机器人
GB2529849B (en) * 2014-09-03 2017-06-14 Dyson Technology Ltd A robot cleaner
KR102320204B1 (ko) * 2014-09-24 2021-11-02 삼성전자주식회사 로봇 청소기 및 이를 포함하는 로봇 청소기 시스템
US9526390B2 (en) * 2015-01-20 2016-12-27 Lg Electronics Inc. Robot cleaner
CN205006792U (zh) * 2015-06-30 2016-02-03 杭州信多达电器有限公司 一种扫地机的吸尘风道结构
CN204909317U (zh) * 2015-07-28 2015-12-30 广东路美仕环保设备科技有限公司 吸风道过滤网后洗尘的扫地机
US20170049288A1 (en) * 2015-08-18 2017-02-23 Nilfisk, Inc. Mobile robotic cleaner
CN205885370U (zh) * 2016-04-14 2017-01-18 北京小米移动软件有限公司 自主清洁设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060064330A (ko) * 2004-12-08 2006-06-13 주식회사유진로보틱스 청소용 로봇 및 그 청소방법
CN102083352A (zh) * 2008-04-24 2011-06-01 进展机器人有限公司 用于机器人使能的移动产品的定位、位置控制和导航系统的应用
CN201782706U (zh) * 2010-04-09 2011-04-06 燕成祥 自动吸尘器的感应脱困装置
CN202005711U (zh) * 2011-03-31 2011-10-12 泰怡凯电器(苏州)有限公司 可自动分离的机器人
JP2013031509A (ja) * 2011-08-01 2013-02-14 Industrial Technology Research Inst 吸引清掃モジュール
CN204260674U (zh) * 2014-11-10 2015-04-15 江苏美的春花电器股份有限公司 扫地机器人
CN104714219A (zh) * 2015-04-10 2015-06-17 招商局重庆交通科研设计院有限公司 激光测距传感器保护罩及激光测距仪
CN204612006U (zh) * 2015-05-12 2015-09-02 林鸿志 一种模块化智能空气净化器
CN105982611A (zh) * 2016-04-14 2016-10-05 北京小米移动软件有限公司 自主清洁设备

Also Published As

Publication number Publication date
CN105982611A (zh) 2016-10-05
EP3231340B1 (en) 2021-11-17
US20210137337A1 (en) 2021-05-13
US20170296021A1 (en) 2017-10-19
CN111973085A (zh) 2020-11-24
US10932636B2 (en) 2021-03-02
CN111973085B (zh) 2022-09-30
US20210378475A1 (en) 2021-12-09
ES2902416T3 (es) 2022-03-28
US11998160B2 (en) 2024-06-04
EP3231340A1 (en) 2017-10-18
US20210378473A1 (en) 2021-12-09
US20210378474A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2017177696A1 (zh) 自主清洁设备
WO2017177685A1 (zh) 自动清洁设备的风路结构和自动清洁设备
CN205885370U (zh) 自主清洁设备
US20240122433A1 (en) Cleaning device and sweeping assembly thereof
WO2021042994A1 (zh) 一种智能清洁设备
WO2021042959A1 (zh) 密封结构及智能清洁设备
CN105982620B (zh) 自动清洁设备的风道结构、风路结构和自动清洁设备
CN210077563U (zh) 清洁机器人及应用于清洁机器人的盖板翻转机构
TWI769511B (zh) 清潔元件及智慧清潔設備
WO2020186583A1 (zh) 自主清洁器
US20220313051A1 (en) Blocking plug and intelligent cleaning device
WO2020177181A1 (zh) 自主清洁器
WO2023134154A1 (zh) 自动清洁设备
CN105982622B (zh) 自动清洁设备的风道结构、风路结构和自动清洁设备
CN211674026U (zh) 清洁机器人及应用于清洁机器人的供水机构
WO2020177182A1 (zh) 手持吸尘设备
WO2023134052A1 (zh) 自动清洁设备
CN212261269U (zh) 清洁机器人及其边扫组件
WO2024041366A9 (zh) 自动清洁设备及系统
AU2022204218B2 (en) Camera Apparatus and Cleaning Robot
US20220408995A1 (en) Camera device and cleaning robot
EA046040B1 (ru) Блок камеры и робот-уборщик

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898508

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898508

Country of ref document: EP

Kind code of ref document: A1