WO2017176005A1 - 폴리에스테르 수지 - Google Patents

폴리에스테르 수지 Download PDF

Info

Publication number
WO2017176005A1
WO2017176005A1 PCT/KR2017/003438 KR2017003438W WO2017176005A1 WO 2017176005 A1 WO2017176005 A1 WO 2017176005A1 KR 2017003438 W KR2017003438 W KR 2017003438W WO 2017176005 A1 WO2017176005 A1 WO 2017176005A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
reaction
diol
dicarboxylic acid
temperature
Prior art date
Application number
PCT/KR2017/003438
Other languages
English (en)
French (fr)
Inventor
이유진
이수민
김성기
한민영
한동진
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Priority to EP17779305.6A priority Critical patent/EP3441414A4/en
Priority to CN201780018783.8A priority patent/CN108884215B/zh
Priority to JP2018546674A priority patent/JP6933657B6/ja
Priority to US16/078,207 priority patent/US20190055349A1/en
Publication of WO2017176005A1 publication Critical patent/WO2017176005A1/ko
Priority to US17/029,822 priority patent/US11939425B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2390/00Containers

Definitions

  • the present invention relates to a polyester resin.
  • PET Polyethylene terephthalate
  • PET Polyethylene terephthalate
  • PET is represented by polyester resins
  • the high crystallinity requires a high temperature during processing and there is a problem that the transparency of the molded product is inferior.
  • PET does not have good heat resistance, resulting in a problem that the shape of the bottle shaped PET is deformed during the high temperature filling process of the beverage.
  • the bottle heat crystallization process and heat settling process before and after forming the bottle may increase the heat resistance of the bottle, but this may reduce the transparency of the bottle.
  • Isosorbide not only improves heat resistance but also reduces crystallization rate.
  • the crystallization rate is high because of high molecular regularity.
  • the introduction of isosorbide into the polymer backbone lowers the regularity of the molecule and thus lowers the crystallization rate.
  • increasing the content of isosorbide changes from crystalline polymer to amorphous polymer.
  • polyester resins in which isosorbide is introduced into the polymer main chain may cause deterioration of physical properties such as yellowing at the time of molding, so it is recommended to work at a low temperature.
  • a method of improving moldability by adding an antioxidant or the like to an isosorbide-containing polyester resin has been proposed.
  • development of a technology capable of fundamentally improving the moldability of an isosorbide-containing polyester resin has been proposed. need. [Content of invention]
  • the present invention is to provide a polyester resin with less physical degradation such as yellowing after molding.
  • dicarboxylic acid containing terephthalic acid or derivatives thereof, or a diol including derivatives thereof and isosorbide is polymerized and derived from dicarboxylic acid or derivatives thereof.
  • Polyester resin according to an embodiment of the present invention is excellent in heat resistance and transparency, useful for bottle, sheet, multilayer sheet, stretched film and fiber applications, in particular has the advantage of less physical property degradation, such as yellowing phenomenon during processing.
  • an acid moiety derived from dicarboxylic acid or derivative thereof including terephthalic acid or a derivative thereof and diol including isosorbide is derived from dicarboxylic acid or derivative thereof.
  • a diol moiety derived from diol As a polyester resin, the diol portion derived from isosorbide is 0.5 to 20 mol3 ⁇ 4 with respect to the total diol portion derived from the diol, and isocyclo is dissolved in a chloroform at a concentration of 150 / zg / mL.
  • the polyester resin using a solvent in which nucleic acid and isopropyl alcohol were mixed in a volume ratio of 2.5: 97.5.
  • the present inventors provide a polyester resin that satisfies a specific peak area ratio in the above-described gas chromatography analysis result (when the content of isosorbide remaining in the polyester resin is reduced), and physical properties such as discoloration during molding.
  • the present invention has been accomplished by discovering that the degradation phenomenon can be remarkably improved.
  • esterification reactions or transesterifications of (i) dicarboxylic acids or derivatives thereof comprising derivatives thereof and (ii) diols containing from 0.5 to 25 mole percent isosorbide relative to the total diol Reaction step; And (b) polycondensation reaction of the esterification or transesterification reaction product to produce the polyester resin.
  • Esterification reaction or transesterification reaction was carried out for an average residence time of 1 to 24 hours at a temperature of (b) 400 to O.
  • Pressure reduction conditions of OlmmHg and from 150 to 3C TC The polycondensation reaction was carried out at an average residence time of 1 to 24 hours to obtain a polyester resin.
  • the method of preparing the polyester resin may be performed in a batch, semi-continuous, or continuous manner, wherein the esterified reaction reaction black is a transesterification reaction reaction and a polycondensation reaction reaction is performed under a volatile gas atmosphere.
  • the mixing of the polyester resin and other additives may be a simple mixing or a mixing through extrusion.
  • the solid phase reaction is continued.
  • the solid phase reaction is carried out by (c) crystallizing the pellets prepared by polycondensation reaction (melt polymerization) at 110 ° C to 210 ° C, and (d) under an inert gas atmosphere such as nitrogen, carbon dioxide, argon or 400 to O .
  • the average residence time may be performed for 1 to 150 hours at a reduced pressure of OlmmHg and at a temperature of 180 to 220 ° C.
  • the term 1 dicarboxylic acid or derivatives thereof means one or more compounds selected from dicarboxylic acids and derivatives of dicarboxylic acids.
  • 'Derivative 1 of dicarboxylic acid is an alkyl ester of dicarboxylic acid (lower alkyl ester having 1 to 4 carbon atoms such as monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester) It means anhydride.
  • terephthalic acid black or its derivatives are terephthalic acid; Monoalkyl or dialkyl terephthalates; And compounds that react with diol to form a terephthaloyl moiety, such as terephthalic anhydride.
  • the dicarboxylic acid black (i) is mainly used as a derivative thereof terephthalic acid or a derivative thereof. Specifically, as (i) dicarboxylic acid or a derivative thereof, terephthalic acid black or a derivative thereof may be used alone. In addition, (i) dicarboxylic acid or derivatives thereof include ' terephthalic acid or derivatives thereof, and dicarboxylic acid black other than terephthalic acid black derivatives thereof is a derivative thereof and aromatic dicarboxylic acid blacks having 8 to 14 carbon atoms are derivatives thereof. And one or more selected from the group consisting of aliphatic dicarboxylic acids having 4 to 12 carbon atoms or derivatives thereof.
  • the aromatic dicarboxylic acid having 8 to 14 carbon atoms or derivatives thereof includes isophthalic acid, dimethyl isophthalate, phthalic acid, dimethyl phthalate, phthalic anhydride, naphthalene dicarboxylic acid such as 2,6-naphthalene dicarboxylic acid, dimethyl 2, Dialkyl naphthalenes such as 6-naphthalene dicarboxyleat Aromatic dicarboxylic acids or derivatives thereof commonly used in the preparation of polyester resins such as dicarboxylates and diphenyl dicarboxylic acids may be included.
  • the aliphatic dicarboxylic acid having 4 to 12 carbon atoms or derivatives thereof includes 1,4-cyclonucleic acid dicarboxylic acid, cyclohexane dicarboxylic acid such as 1,3-cyclonucleic acid dicarboxylic acid, dimethyl 1,4- Cyclonucleic acid dicarboxylates such as cyclonucleic acid dicarboxylate, dimethyl 1,3—cyclonucleic acid dicarboxylate, sebacic acid, succinic acid, isodecyl succinic acid, maleic acid, maleic anhydride, fumaric acid, adipic acid, gluta Linear, branched or cyclic aliphatic dicarboxylic acids or derivatives thereof commonly used in the preparation of polyester resins such as lactic acid and azelaic acid may be included.
  • dicarboxylic acid or derivatives thereof terephthalic acid or derivatives thereof is 50 mol% or more, 60 mol% or more, 70 mol% or more, 80 mol% or more of the total (i) dicarboxylic acid or derivatives thereof 90 mol% or more may be included.
  • the (0 dicarboxylic acid or its derivative is 0 to 50 mol3 ⁇ 4, more than 0 mol% of dicarboxylic acid or derivative thereof other than terephthalic acid or derivative thereof, relative to all (i) dicarboxylic acid or derivative thereof. It may be included in an amount of 50 mol% or less or 0.1 to 40 mol%
  • a polyester resin that implements suitable physical properties within such a content range may be prepared.
  • the isosorbide (l, 4: 3,6_dianhydroglucitol) is used so that the diol portion derived from isosorbide is 0.5 to 20 mol% relative to the total diol portion derived from diol of the prepared polyester resin do. More specifically, the isosorbide may be used so that the diol portion derived from isosorbide is 1 to 20 mol% or 2 to 20 mol% relative to the total diol portion derived from the diol of the polyester resin prepared. It is possible to provide a polyester resin exhibiting appropriate crystallinity and heat resistance within this range.
  • the diol (ii) may include a compound commonly used in the preparation of polyester resins with other diols in addition to isosorbide, for example, 8 to 40 carbon atoms, aromatic diols having 8 to 33 carbon atoms, 20 blacks may include 2-12 aliphatic diol blacks, their combinations, and the like.
  • aromatic diol examples include polyoxyethylene-(2.0) -2,2-bis (4-hydroxyphenyl) propane, polyoxypropylene-(2.0) -2,2-bis (4-hydroxyphenyl) Propane, polyoxypropylene- (2.2) -polyoxyethylene— (2.0) -2,2-bis (4-hydroxyphenyl) propane, polyoxyethylene- (2.3) -2,2-bis (4-hydroxy Phenyl) propane, polyoxypropylene- (6) -2,2-bis (4-hydroxyphenyl) propane, polyoxypropylene- (2.3) -2,2-bis (4-hydroxyphenyl) propane, polyoxy Propylene- (2.4) -2,2-bis (4-hydroxyphenyl) propane, polyoxypropylene-(3.3) -2,2-bis (4-hydroxyphenyl) propane, polyoxyethylene-(3.0) — Bisphenol A to which ethylene oxide and / or propylene oxide are added, such as 2, 2-bis (4-hydroxyphenyl) propane, polyoxyethylene _ (6) -2, and
  • Nucleic acid diols (1,6—nucleic acid diols, etc.), neopentyl glycol (2,2-dimethyl-1,3-propanediol), 1,2-cyclonucleic acid diols, 1,4-cyclonucleodiol diols, 1,2 Linear such as cyclonucleic acid dimethanol, 1,3-cyclonucleic acid dimethanol, 1,4-cyclonucleic acid dimethane, tetramethylcyclobutanedi, etc.
  • the diol may include the diols listed above in addition to the isosorbide alone or in combination of two or more thereof, for example,
  • the ethylene glycol, 1,4-cyclohexanedimethanol, skilyoxyethylene- (2.0) -2,2-bis (4-hydroxyphenyl) propane and the like may be included alone or in combination of two or more thereof.
  • the main component of the remaining diol in addition to the isosorbide is preferably ethylene glycol, and in addition to the ethylene glycol, the content of the other diol used for improving physical properties is, for example, the total (ii) diol.
  • the molar ratio of (ii) diol to (i) dicarboxylic acid or derivative thereof needs to be adjusted before starting reaction.
  • the initial amount of (i) dicarboxylic acid or derivative thereof and (ii) diol that is, the amount added before the reaction starts, a polyester resin that satisfies the specific peak area ratio described above may be provided.
  • the initial mixed molar ratio of (i) dicarboxylic acid black to its derivative and (ii) diol is 1: 1.01.
  • dicarboxylic acid black is (i) dicarboxylic acid or derivative thereof and (ii) when dicarboxylic acid alkyl ester or dicarboxylic anhydride is used as its derivative.
  • the initial mixed molar ratio of diols can be adjusted from 1: 2.0 to 1: 2.1.
  • the content of (i) dicarboxylic acid black satisfies the specific peak area ratio described above by adjusting the contents of its derivatives and (ii) diols as described above, and the content of dicarboxylic acids or derivatives thereof and isosorbide remaining in the resin.
  • the specific molar ratio of (i) dicarboxylic acid black to its derivative and (ii) diol should be satisfied at the beginning of reaction, and if necessary during the reaction, (i) dicarboxylic acid or its derivative and / or (ii) ) Diols may be added.
  • a catalyst may be used.
  • Such catalysts include methylate of sodium and magnesium; Acetates, borates, fatty acids, carbonates such as Zn, Cd, Mn, Co, and Ca ⁇ Ba; Metal Mg; Oxides, such as Pb Zn, Sb, Ge, etc. can be illustrated.
  • the (a) esterification reaction or transesterification reaction is a batch formula, It can be carried out semi-continuously or continuously, and each raw material can be added separately, but it is preferable to add dicarboxylic acid or derivatives thereof to the diol in the form of a mixed slurry.
  • a polycondensation catalyst, a stabilizer, a colorant, a crystallization agent, an antioxidant, a branching agent, and the like may be added to the slurry before the start of the esterification reaction or transesterification reaction or to the product after completion of the reaction.
  • the addition time of the above-mentioned additives is not limited to this, and may be added at any time during the manufacturing step of the polyester resin.
  • the polycondensation catalyst one or more of conventional titanium, germanium, antimony, aluminum, tin compound, etc. may be appropriately selected and used.
  • Useful titanium-based catalysts include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, polybutyl titanate, 2-ethylnucleosil titanate, octylene glycol titanate, lactate titanate , Titanium amine titanate, acetyl.
  • Titanium dioxide / zirconium dioxide copolymer etc. can be illustrated.
  • useful germanium-based catalysts include germanium dioxide and copolymers using the same.
  • the stabilizer phosphorus-based compounds such as phosphoric acid, trimethyl phosphate and triethyl phosphate can be generally used, and the amount of the stabilizer is 10 to 200 ppm relative to the weight of the final polymer (polyester resin) based on the amount of phosphorus element. If the amount of the stabilizer is less than lOppm, the stabilization effect is insufficient, and the color of the polymer may change to yellow. If the amount of the stabilizer exceeds 200 ppm, the polymer of the desired high polymerization degree may not be obtained.
  • a colorant added to improve the color of the polymer conventional colorants such as cobalt acetate and cobalt propionate can be exemplified, and the addition amount thereof is based on the amount of cobalt element and the final polymer (polyester resin). 10 to the weight of. 200 ppm. If necessary, anthraquionone-based compounds, perinone-based compounds, azo-based compounds, methine-based compounds, etc. may be used as the organic compound colorant. Commercially available toners such as Clarient's Polysynthren Blue RLS Black or Clarient's Solvaperm Red BB can be used. The amount of the organic compound coloring agent may be adjusted to 0 to 50 ppm relative to the final polymer weight. If the colorant is used in an amount outside the above range, the yellow color of the polyester resin may not be sufficiently covered or the physical properties may be reduced.
  • toners such as Clarient's Polysynthren Blue RLS Black or Clarient's Solvaperm Red
  • crystallizing agent examples include crystal nucleating agents, ultraviolet absorbers, polyolefin resins, polyamide resins, and the like.
  • antioxidant a hindered phenolic antioxidant, a phosphite antioxidant, a thioether antioxidant, a mixture thereof, etc.
  • the branching agent is a conventional branching agent having a functional group of 3 or more, for example, trimellitic anhydride (tr imel l it ic anhydride), trimethylol propane, trimellitic acid (tr imel 1 itic acid) black may exemplify these mixtures.
  • the esterification is 200 to 300 ° C banung black is 230 and the temperature of 0 to 280 ° C to 10.0kgf / cm 2 (0 to 7355.6 ⁇ Hg), 0 to 5.0kgf / cm 2 (0 to 3677.8mmHg Or 0.1 to 3.0 kgf / cm 2 (73.6 to 2206.7 mmHg).
  • the (a) transesterification reaction is a temperature of 150 to 270 ° C or 180 to 260 ° C and 0 to 5.0 kgf / cm 2 (0 to 3677.8 mmHg) black 0.1 to 3.0 kgf / cm 2 (73.6 To 2206.7 mmHg).
  • the pressure described outside the parentheses means a gauge pressure, and pressure described in (the substrate being in kgf / cm 2 unit), the parentheses "mean the absolute pressure (as described in mmHg units).
  • the reaction time (average residence time) is usually 1 to 24 hours or 2 to 8 hours, and may vary depending on the reaction temperature, pressure, and molar ratio of diol to dicarboxylic acid or derivative thereof used.
  • the product obtained through the esterification or transesterification reaction can be made of a polyester resin of higher polymerization degree through the polycondensation reaction.
  • the polycondensation reaction is 150 to 300 ° C, 200 to 290 ° C black is a temperature of 260 to 290 ° C and 400 to O.
  • the decompression conditions of 400 to 0.01 Pa Hg are for removing glycol and the like and isosorbide as the uncoupling product. Therefore, when the decompression condition is out of the above range, there is a fear that the removal of by-products and uncoated aunge is uneven.
  • extension-condensation reaction temperature is outside the above range, there is a concern that the physical properties of the polyester resin may be lowered.
  • the polycondensation reaction is carried out for a necessary time until the desired intrinsic viscosity is reached, for example, for an average residence time of 1 to 24 hours.
  • the viscosity of the resin is not sufficiently high.
  • the viscosity of the resin becomes high, it is difficult for the raw material remaining in the reaction vessel to escape out of the system.
  • the reaction product obtained through polycondensation reaction pre-esterification or transesterification reaction is left at about 400 to ImmHg or about 200 to 3mmHg under reduced pressure for 0.2 to 3 hours, such as isosorbide remaining in the polyester resin. It is possible to effectively remove the loose water.
  • the temperature of the product may be controlled to be equal to or equal to the esterification reaction or the transesterification reaction temperature and the polycondensation reaction temperature.
  • the intrinsic viscosity of the polymer after the polycondensation reaction is suitably 0.30 to 1.0 dl / g. If the intrinsic viscosity is less than 0.30 dl / g, the reaction rate in the solid reaction is significantly lowered, and if the intrinsic viscosity exceeds 1.0 dl / g, the viscosity of the melt during the melt polymerization rises between the stirrer and the reaction vessel The shear stress of the polymer increases the likelihood of discoloration and also increases the amount of side reactions such as acetaldehyde.
  • the polyester resin according to one embodiment may be prepared through steps (a) and (b). Then, if necessary, after the polycondensation reaction, the solid phase reaction may be further performed to provide a polyester resin having a higher degree of polymerization.
  • the polymer obtained through the polycondensation reaction is discharged out of the reaction to granulate.
  • Granulation method is St rand type and extruded
  • the St rand cut ting method which cuts with a cutter after solidification, or the underwater cutt ing method which dips a die hole into a shell liquid, and extrudes directly into a shell liquid and cuts it with a cutter can be used.
  • the Strand cutting method keeps the temperature of the shell liquid low, so that the Strand is solidified so that there is no problem in cutting.
  • the crystalline polymer it is also possible to deliberately maintain a high temperature of the shell liquid in order to induce crystallization during discharge.
  • the granulated polymer may be additionally washed with (a) prior to the esterification reaction or transesterification reaction step to control the specific peak area ratios described above even if the initial dosage of (i) dicarboxylic acid or its derivatives and (ii) the diol is not controlled. It is possible to provide a polyester resin that satisfies.
  • the temperature of the water at the time of washing is preferably the same as the glass transition temperature of the polymer or black is about 5 to 20 ° C lower, it is not preferable because the fusion may occur at higher temperatures.
  • the temperature of water can be set according to the degree of crystallization.
  • Water washing of the granulated polymer enables removal of raw materials dissolved in water in uncoated raw materials such as isosorbide. Since the smaller the particles being the weight ratio of the surface area of particles of the particle size spread it is advantageously smaller. To achieve this goal, the particles can be prepared to have an average weight of about 15 mg or less.
  • the above polymer particles may be washed only with the same glass transition temperature of the polymer, or, or from about 5 to about 20 ° C and allowed to stand for 5 minutes to 10 hours in a low-temperature water.
  • the granulated polymer undergoes a crystallization step to prevent fusion during the solid phase reaction. It is possible to proceed in the atmosphere, inert gas, steam, steam-containing inert gas atmosphere or solution, and 110 ° C to 210 ° C black is crystallized at 120 ° C to 210 ° C. If the temperature is low, the rate at which the crystals of the particles are formed is too slow. If the temperature is high, the rate at which the surface of the particles melts faster than the rate at which the crystals are formed, causing the particles to stick together. As the crystallization of the particles increases the heat resistance of the particles, it is also possible to crystallize the crystallization by dividing the crystallization into several steps and increasing the temperature step by step.
  • Solid phase reaction is performed under inert gas atmosphere such as nitrogen, carbon dioxide, argon or At a reduced pressure of 400 to 0.01 Pa Hg and a temperature of 180 to 220 ° C., the average residence time may be performed for 1 to 150 hours. Through this solid reaction, the molecular weight is further increased, and the remaining raw materials and reaction cyclic oligomers, acetaldehyde, etc. generated in the reaction can be removed.
  • inert gas atmosphere such as nitrogen, carbon dioxide, argon or At a reduced pressure of 400 to 0.01 Pa Hg and a temperature of 180 to 220 ° C., the average residence time may be performed for 1 to 150 hours.
  • dicarboxylic acid black when the crystallized plymer is subjected to solid phase polymerization to have an intrinsic viscosity value of a predetermined level or more, (i) dicarboxylic acid black may be adjusted even if the initial dose of its derivative and (ii) diol or a water washing step are omitted.
  • the polyester resin which stratifies the specific peak area ratio mentioned above can be provided. Specifically, a unique measured in ortho-chlorophenol was dissolved in 15 bungan from 1.2g / dl 150 ° C at a concentration of 35 ° C.
  • the polyester resin prepared according to the above-described method has a structure in which an acid moiety derived from dicarboxylic acid or a derivative thereof and a diol moiety derived from diol are repeated.
  • acid moiety and diol moiety refer to a residue in which dicarboxylic acid or a derivative thereof and diol are polymerized to remove hydrogen, hydroxy group or alkoxy group from them.
  • the polyester resin is prepared according to the above-described method is 0.5 to 20 mol%, 1 to 20 mol% or 2 to 20 mol% of the diol portion derived from isosorbide relative to the total diol portion derived from diol Alternatively, the ratio range of the peak area described above may be satisfied.
  • the polyester resin is mostly dicarboxylic acid black is
  • the acid moiety derived from the derivative and the diol moiety derived from the diol may have a repeating structure, but due to the side reaction, the diol may react with other diols to include a structure in which the diols derived from the diol are partially connected to each other.
  • the residue derived from diethylene glycol may be included in about 6 mol% or less or about 4 mol% or less with respect to the residues derived from all diols in the polyester resin.
  • the polyester resin may exhibit a divided glass transition temperature as it includes residues derived from diethylene glycol in this range. Since the polyester resin may not include residues derived from diethylene glycol, the lower limit of the content of residues derived from diethylene glycol is 0 mol3 ⁇ 4.
  • the polyester resin may have a number average molecular weight of about 15,000 to 50, 000 g / mol black or 20, 000 to 40, 000 g / mol. If the molecular weight is less than the above range, the mechanical properties are lowered and it is difficult to secure the desired mechanical properties because it is not sufficiently stretched when developing into a bottle, a sheet, a multilayer sheet, a stretched film, or a fiber application. There may be a problem of deterioration.
  • the polyester resin may be dissolved in orthochlorophenol at a concentration of 1.2 g / dl due to a high degree of polymerization, and thus the intrinsic viscosity measured at 35 ° C. may be about 0.7 to 1.4 dl / g or about 0.8 to 1.2 dl / g.
  • the intrinsic viscosity is low, it is difficult to obtain the desired mechanical properties due to the insufficient elongation ratio when developing into a bottle, sheet, multi-layer sheet, stretched film, or textile applications.
  • productivity decreases during molding and gels may be formed.
  • the polyester resin may have a glass transition temperature (Tg) of about 80 to 105 ° C or 81 to 100 ° C. Within this range, the physical properties of the polyester resin can be satisfactorily exhibited without yellowing.
  • the polyester resin may or may not have a crystallization temperature (Tc) and a melting point (Tm) depending on the glass transition temperature (Tg) and DSC measurement conditions.
  • the polyester resin having a glass transition silver (Tg) of 80 ° C. to 85 ° C. may have a crystallization temperature (Tc) of 120 to 190 ° C. or 130 to 190 ° C.
  • the polyester resin having a glass transition temperature (Tg) of 85 ° C. to 105 ° C. may not have a crystallization temperature (Tc) or 130 to 190 ° C. black may be 140 to 180 ° C. Within this range, the polyester resin has an appropriate crystallization rate to enable solid phase polymerization and exhibit high transparency after molding.
  • the polyester resin having a glass transition temperature c) of 8 may have a melting point () of about 210 to 26 CTC or 220 ° C to 250 ° C.
  • Glass transition temperature (Tg) of 85 ° C. to Polyester resins in the range of 105 ° C. have no melting point (Tm), or may be between 200 and 250 ° C. or between 190 and 24 C C. Within these ranges, the polyester resins have adequate crystallinity to provide good heat resistance and mechanical properties. It can be processed at an appropriate temperature and there is no risk of yellowing, and there can be very little isosorbide remaining in the polyester resin.
  • Retention time is observed as a peak having an area proportional to the content, and therefore, the polyester resin may be analyzed by gas chromatography to determine specific retents.
  • the area ratio of the peaks identified in the ion time may be used to estimate the content of isosorbide remaining in the polyester resin, for example, in the polyester resin, the peak area ratio of the resin solution to the peak area of the standard solution is 1.0 or less. , 0.80 or less, 0.60 or less, 0.40 or less Black may appear to be 0.35 or less. A low content of a child Sound carbide remaining in the polyester resin can be guaranteed.
  • This polyester resin may not be a city "thermoforming the residual content of the child mimihayeo Sound carbide properties decrease rare provide high quality polymer product.
  • the polyester resin is obtained by injection molding at 290 ° C
  • the color b value measured using a color difference meter for a specimen having a size of 30 mm X 30 mm X 3 mm (width X length X thickness) may be -2.0 to 3.0, -1.5 to 2.0, -1.2 to 1.5, or -1.0 to 0.5 .
  • the polyester resin according to one embodiment has an advantage that the content of residual isosorbide is very small, so that physical properties such as yellowing during processing are reduced. Accordingly, the polyester resin may be utilized in various fields, and particularly, it is expected to be useful in injection molded articles, bottles, sheets, multilayer sheets, stretched films, and textile applications due to its excellent heat resistance and transparency.
  • the operation and effects of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited in any sense. The following physical or black analysis was evaluated or performed according to the following method.
  • Intrinsic Viscosity After dissolving 0.0002 g of 0.36 ⁇ of sample in 30 mL of ortho-chlorophenol at 150 ° C. for 15 minutes, the inherent viscosity of the sample was measured using a Ubbelodhe viscometer in a 35 ° C. thermostat. (2) The residue composition derived from the acid and diol in the polyester resin
  • the specific heat of the amorphous material increases.
  • the DSC curve shows a characteristic shift in the endothermic direction. Therefore, the temperature at which the maximum slope of the curve appears at the step where the DSC curve is first stepped during the temperature rising process is defined as the glass transition temperature (Tg) of the polyester resin, and the endothermic obtained during the temperature rising process.
  • Tg glass transition temperature
  • Tm melting point
  • Color of the chips The color of the particles produced as a result of the polycondensation reaction or the solid state polymerization reaction in the Examples and Comparative Examples was 1948. R.S. It is expressed as Hunter Lab Color space value devised by Hunter. After filling 26 g of the sample into the cell (KONICA MINOLTA, CM-A99). Color coordinate values were measured using a color difference meter (KONICA MINOLTA, CM-3600A). This operation was repeated three times and the color coordinate values were determined by averaging the three repetition values. Among the color coordinate values, Color L means brightness. The higher the value of L, the closer to white. Specifically, if L is 0 it is black and if L is 100 it is white. Color a represents green and red, meaning that the negative side is closer to green and the positive side is closer to red. Similarly, Color b represents blue and yellow, which is closer to blue on the negative side, and closer to yellow on the positive side.
  • the dried polyester resin was injected into a molding machine (BOY, 12M) having a screw silver temperature of 2901 :, mold temperature of 20 ° C. to form a specimen having a size of 30 mm X 30 mm X 3 mm (width X length X thickness).
  • the color of the injection molded specimen as described above was expressed as a Hunter Lab Color space value devised by RS Hunter in 1948. Specifically, color difference meter (KONICA MINOLTA, CM-3600A) was used to measure the color coordinate values of the prepared specimen. This operation was repeated three times and the color coordinate values were determined by averaging the three repetition values. (6) Determination of the area ratio (residual isosorbide (ISB) content) of residual isosorbide (ISB)
  • the polyester resin to be analyzed were freeze-pulverized. 0.5 g of the freeze milled sample was weighed and placed in ASE cel l. A component containing isosorbide remaining in the sample was extracted from the sample under the ASE process conditions described below. The solvent extracted through the ASE process was distilled under reduced pressure at room temperature to remove the solvent. Then, the obtained solute was dissolved in 5 mL of chloroform, and filtered through f iter of 0.45 si ze to remove insoluble content, thereby obtaining a pretreated sample.
  • the Dionex (ASE 200) model was used for the Accelerated Solvent Extract ion (ASE) process.
  • Cyclohexane Isopropyl alcoh was extracted from 0.5 g of the sample that was freeze-pulverized using a solvent mixed at a volume ratio of 2.5: 97.5, and a component containing isosorbide remaining in the sample.
  • the temperature of the oven was adjusted to 150 ° C.
  • the pressure was 1500 psi
  • nitrogen was used as the gas
  • preheating time, heating time, and extraction time were set to 1 minute, 7 minutes, and 10 minutes, respectively.
  • the temperature of the injector was 280 ° C
  • the detector was 320 ° C
  • the flow was 1 mL / min
  • the split was 1/10
  • the injection volume was ⁇
  • the carrier gas was nitrogen. This process was repeated three times for the same sample.
  • isosorbide was observed as a peak at the Retention time (RT) 20.1 minutes. Then, to compare with the analysis results of the polyester resin sample, the area of the peak obtained as a result of the analysis of the standard solution was determined. In addition, the pretreated polyester resin sample was analyzed by the method described above to obtain a peak area at RT where isosorbide was identified during analysis of the standard solution. The content of isosorbide remaining in the polyester resin is divided by the average peak area measured three times for the same sample by the peak area of the standard solution, that is, (average peak area of the polyester resin sample) / (peak of the standard solution) It is shown in Table 1 by substituting the area).
  • Ge02 l.Og was used as a catalyst, 1.46g of phosphoric acid as a stabilizer, and 0.7g of cobalt acetate as a colorant.
  • the temperature of the semiunggi was reduced to 90 ° C. over 90 minutes at room temperature, and maintained at 220 ° C. for 2 hours, and then raised to 260 ° C. over 2 hours. Then, Banunggi Visually observe the mixture inside and adjust the temperature of the reaction until the mixture becomes transparent.
  • the reactor pressure was lowered over 30 minutes to 5 Torr (absolute pressure: 5 ⁇ 3 ⁇ 4) at atmospheric pressure, and at the same time the temperature of the reactor was raised to 280 ° C for 1 hour, and the pressure of the reactor was increased to 1 Torr ( The polycondensation reaction was performed at below absolute pressure: ImmHg).
  • ImmHg absolute pressure
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.60 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to be stranded (strand), and after the solidification with the angle solution, it was granulated so that the average weight is about 12 to l1 ⁇ 2g.
  • the particles were left to crystallize at 140 ° C. for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced into the reactor at a rate of 50 L / min. At this time, raise the temperature of the counterunggi at a temperature of 40 ° C / hour to 140 ° C at room temperature, hold for 3 hours at 140 ° C, and then increase the temperature at a rate of 40 ° C / hour to 200 ° C at 200T: Maintained. The solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reactor became 0.90 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue included in the polyester resin prepared.
  • the residue derived from isosorbide was 2 mol% based on the total residue derived from diol, and the residue derived from ethylene glycol was 95 Molar 3 ⁇ 4>, residue from diethylene glycol was 3 mol%.
  • the temperature of the semi-ungunggi was reduced to 90 ° C. over 90 minutes at room temperature, and maintained at 220 ° C. for 2 hours, and then raised to 26 CTC over 2 hours. Then, the temperature of the reaction was maintained at 260 ° C. In this process, after confirming that 500 g of by-products were leaked through the column and the condenser, 12.3 g (0.20 mol) of ethylene glycol was further added to the reaction vessel. The mixture in the counterunggi was visually observed to maintain the temperature of the counterunggi at 260 ° C. until the mixture became transparent.
  • the nitrogen in the pressurized reaction vessel was purged to the outside to lower the pressure of the reaction vessel to atmospheric pressure, and then the mixture in the reactor was transferred to a 7 L volume reactor capable of vacuum reaction.
  • the pressure of the reaction vessel is reduced over 30 minutes to 5 Torr (absolute pressure: 5 kH H) at atmospheric pressure, and at the same time, the temperature of the reaction vessel is lowered over 1 hour to 280 ° C.
  • the polycondensation reaction was performed by keeping below Torr (absolute pressure: 1 Pa Hg).
  • the polycondensation reaction is carried out until the intrinsic viscosity (IV) of the complex in the reaction is 0.48 dl / g, and the solid state polymerization reaction is performed until the intrinsic viscosity (IV) of the particles in the reaction is 0.80 dl / g.
  • a polyester resin was prepared in the same manner as in Example 1 except for the progress.
  • the temperature of the reaction was raised over 90 minutes from room temperature to 220 ° C., and maintained at 220 ° C. for 2 hours, and then raised to 255 ° C. over 2 hours. Then, the mixture in the counterunggi was visually observed to maintain the temperature of the counterunggi at 255 ° C. until the mixture became transparent.
  • the nitrogen in the pressurized reaction vessel was purged to the outside to lower the pressure of the reaction vessel to normal pressure, and then the mixture in the reactor was transferred to a 7 L volume reactor capable of vacuum reaction.
  • the pressure of the reaction vessel was lowered over 30 minutes to 5 Torr (absolute pressure: 5 kHg) at atmospheric pressure, and at the same time, the temperature of the reaction vessel was raised to 280 ° C over 1 hour, and the pressure of the reaction vessel was increased to 1 Torr.
  • the polycondensation reaction was performed by keeping below (absolute pressure: ImmHg).
  • the stirring speed is set quickly. However, when the stirring power is weakened by the polycondensation reaction or the temperature of the black mixture rises above the set temperature, the stirring speed can be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction was 0.52 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the counterunggi and stranded, and after the solidification with a shell angle solution, the average weight was about 12 to 14mg.
  • the particles were left to crystallize at 160 ° C for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen in the reactor at a rate of 50 L / min Shed it.
  • the temperature of Banunggi was raised at a rate of 40 tV hours from phase silver to MCTC, and maintained at 140 ° C. for 3 hours, and then heated up at 200 ° C. at a rate of 40 ° C./hour and maintained at 20 CTC.
  • the solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reaction vessel became 0.9 dl / g.
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 6 mol% based on the total diol-derived residue, and the residue derived from ethylene glycol was 92. Mol%, the residue derived from diethylene glycol was 2 mol%.
  • Ge0 2 l. Og Ge0 2 l. Og, a stabilizer of 1.56 g of phosphoric acid (phosphoric acid), blue toner of Cl Synent's Polysynthren Blue RLS 0.016 g, and red toner of Clarient's Solvaperm Red BB 0.004 g were used.
  • the temperature of the reaction was raised over 90 minutes from room temperature to 220 ° C., maintained at 22 C C for 2 hours, and then over 2 hours to 255 ° C. Then, the mixture in the reaction vessel was visually observed to maintain the temperature of the reactor at 255 ° C. until the mixture became transparent.
  • the nitrogen in the pressurized reactor was purged to the outside to lower the pressure of the reactor to atmospheric pressure, and then the mixture in the reactor was transferred to a 7 L volume reactor capable of vacuum reaction.
  • the mixture was discharged to the outside of the counterunggi and stranded, which was granulated so as to have an average weight of about 12 to 14 mg after solidification with a liquid solution.
  • the particles thus obtained were stored in 70 ° C. water for 5 hours to remove the non-banung raw materials contained in the particles.
  • the residue derived from terephthalic acid was 100 mol3 ⁇ 4> with respect to the total acid-derived residue contained in the polyester resin thus prepared, and the residue derived from isosorbide was 6 mol 3 ⁇ 4> with the residue derived from ethylene glycol.
  • the residue derived from diethylene glycol was 2 mol%.
  • Dicarboxylic acid black has a molar ratio of its derivative and diol: 1: 1.20).
  • Ge0 2 l. Og Ge0 2 l. Og, phosphoric acid (phosphoric acid) 1.52g, Clarient's Polysynthren Blue RLS 0.02g for blue toner, Clarient's Solvaperm Red BB 0.004g for red toner.
  • the mixture was discharged to the outside of the reactor to be stranded, and after the solidification with the liquid solution, the average weight was about 12 to 14mg.
  • the particles were left to crystallize at 160 ° C for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was flowed at the rate of 50 L / min in the reaction vessel.
  • the temperature of the reactor is raised at a rate of 40 ° C / hour to 140 ° C at room temperature, and maintained at 140 ° C for three days, then heated up at a rate of 40 ° C / hour to 200 ° C and maintained at 20 C C It was.
  • the solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reaction mixture became 1.00 dl / g.
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 10 mol% based on the total residue derived from diol.
  • Ge0 2 l. Og Ge0 2 l. Og, phosphoric acid (1.5g) as stabilizer, Clarient's Polysynthren Blue RLS 0.020g as blue toner, Clarient's Solvaperm Red BB 0.004g, and lOOppm Iganox 1076 as antioxidant .
  • the temperature of the reaction was raised over 90 minutes from room temperature to 220 ° C., maintained at 22 C C for 2 hours, and then raised to 260 ° C over 2 hours. Then, the mixture in the counterunggi was visually observed to maintain the temperature of the reactor at 260 ° C until the mixture became transparent.
  • the nitrogen in the pressurized reaction vessel was purged to the outside to lower the pressure of the reaction vessel to atmospheric pressure, and then the mixture in the reaction vessel was transferred to a 7 L volume of the reaction vessel capable of vacuum reaction.
  • the pressure of the reaction vessel was lowered over 10 minutes from the atmospheric pressure to 100 Torr (absolute pressure: 100 mmHg) and maintained at this pressure state for 1 hour. Thereafter, the temperature of the TT reaction was reduced to 270 ° C. over 1 hour, and the pressure of the reaction was maintained at 1 Torr (absolute pressure: lmmHg) or less to conduct a polycondensation reaction.
  • the stirring speed is set rapidly. However, when the stirring power is weakened by the polycondensation reaction or the temperature of the black mixture is higher than the set temperature, the stirring speed can be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.55 dl / g.
  • the intrinsic viscosity of the mixture in the counterunggi reached the desired level, the mixture was discharged to the outside of the counterunggi to be stranded, and after granulation with the shell liquid, it was granulated to have an average weight of 12 to l1 ⁇ 2g.
  • the particles were left to crystallize at 160 ° C for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced to the reaction vessel at a rate of 50 L / min. At this time, the temperature of the reflecting unggi from room temperature to 14CTC raised at a rate of 40 ° C / hour, the mixture was kept for 3 hours at 140 ° C, to 200 ° C to w at a rate of 40 ° C / hour held at 200 ° C It was.
  • the solid state polymerization reaction is performed by It proceeded until intrinsic viscosity (IV) became 1. 10 dl / g.
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 12 mol% based on the total diol-derived residue, and the residue derived from ethylene glycol was 86.5. Mol%, The residue derived from diethylene glycol was 1.5 mol%.
  • the pressure of the reaction was lowered over 30 minutes to 5 Torr (absolute pressure: 5 mmHg) at atmospheric pressure, and the reactor was heated up to 275 ° C over 1 hour, and the pressure of the reaction was reduced to 2 Torr (absolute pressure). : 2 kV Hg) was carried out and the polycondensation reaction was performed.
  • the stirring speed is set rapidly, but the agitation force is weakened by the polycondensation reaction or the temperature of the mixture is increased. When the temperature rises above the set temperature, the stirring speed can be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction was 0.80 dl / g.
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 20 mol% based on the total residue derived from diol, and the residue derived from ethylene glycol was 79 The mole%, the residue derived from diethylene glycol was 1 mol%.
  • a 10L volume reactor with a column and a condenser that can be cooled by water is 824.lg (19.7mol) dimethyl glycol, 2236.5g (36.1mol) ethylene glycol, 633.lg (4.3mol) isosorbide.
  • was added dicarboxylic acid black had a molar ratio of its derivative and diol: 1: 2.05).
  • the particles were left to crystallize at 115 ° C. for 6 hours and then charged to a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced at the rate of 50 L / min. At this time, up to the temperature of the half unggi from the room temperature to 140 ° C 40 ° C / hour rate, 140 ° and kept for 3 hours at C, the temperature was raised to 40 ° rate of C / hour to 205 ° C 205 ° C Maintained at. The solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reaction mixture became 0.95 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue included in the polyester resin prepared.
  • the residue derived from isosorbide was 6 mol% based on the total residue derived from di, and the residue derived from ethylene glycol was 91. Mol%, The residue derived from diethylene glycol was 3 mol%.
  • the pressure of the reactor was reduced over 30 minutes to 5 Torr (absolute pressure: 5 ⁇ 3 ⁇ 4) at atmospheric pressure, and at the same time, the temperature of the reactor was raised to 280 ° C over 1 hour, and the pressure of the reactor was increased to 1 Torr.
  • the polycondensation reaction was performed by keeping below (absolute pressure: ImmHg).
  • ImmHg absolute pressure
  • the stirring speed is quickly set, but when the stirring power is weakened by the polycondensation reaction or the temperature of the mixture rises above the set temperature, the stirring speed can be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.54 dl / g.
  • the mixture was stranded by discharging the outer arc of the semi-unggigi, and then granulated with granular solution so that the average weight was about 12 to 14 mg.
  • the particles were left to crystallize at 140 ° C. for 1 hour and then introduced into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced at the rate of 50 L / min. At this time, the temperature of Banunggi is reduced to 40 ° C / hour to 140 ° C at room temperature, and maintained for 3 hours at 140 ° C, and then heated up at a rate of 40 ° C / hour to 200 ° C at 20 CTC Maintained. The solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reaction vessel became 0.9 dl / g.
  • IV intrinsic viscosity
  • the residue derived from terephthalic acid was 3 mol% of the residue derived from terephthalic acid with respect to the total acid-derived residue contained in the polyester resin thus prepared, and the residue derived from isosorbide was 6 mol% with respect to the residue derived from diol.
  • the residue derived from ethylene glycol was 92 mol%, and the residue derived from diethylene glycol was 2 mol%.
  • Ge0 2 l .Og as catalyst, phosphoric acid 1.52g as stabilizer, polysynthren Blue RLS 0.028g by Cl ar ient as blue toner, 0.004g Solvaperm Red BB from Clar i ent as red toner Used.
  • the temperature of the reaction was raised over 90 minutes to 220 ° C. at room temperature, and maintained at 220 ° C. for 2 hours, and then raised to 250 ° C. over 2 hours. Then, the mixture in the reaction vessel was visually observed to maintain the reactor temperature at 250 ° C. until the mixture became transparent.
  • the nitrogen in the pressurized reactor was purged to the outside to lower the pressure of the reactor to atmospheric pressure, and then the mixture in the reactor was transferred to a 7L volume reactor capable of vacuum reaction.
  • the pressure of the reactor was lowered over 10 minutes from normal pressure to 100 Torr (absolute pressure: 100 mmHg) and maintained at this pressure for 1 hour. Thereafter, the silver content of the reactor was raised to 280 ° C. over 1 hour, and the polycondensation reaction was performed by maintaining the pressure of the reaction vessel at 1 Torr (absolute pressure: _lmmHg) or less.
  • the stirring speed is quickly set, but when the stirring power is weakened by the polycondensation reaction or the temperature of the mixture rises above the set temperature, the stirring speed can be properly adjusted.
  • the expansion condensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction vessel became 0.80 dl / g.
  • the residue derived from terephthalic acid was 100 mol3 ⁇ 4 of the total acid-derived residue contained in the polyester resin thus prepared, and the residue derived from isosorbide was 10 mol% and the residue derived from ethylene glycol was 89 with respect to the residue derived from all diols. Mol%, the residue derived from diethylene glycol was 1 mol%.
  • Ge0 2 l. Og Ge0 2 l. Og, phosphoric acid (phosphoric acid) as 1.56g, Clarient's Polysynthren Blue RLS 0.012g as blue toner, Clarient's Solvaperm Red BB 0.004g as red toner.
  • the temperature of the reaction was reduced to 90 ° C. over 90 minutes at room temperature, and maintained at 220 ° C. for 2 hours and then over 2 hours to 255 ° C. Then, the mixture in the counterunggi was visually observed to maintain the temperature of the counterunggi at 255 ° C. until the mixture became transparent.
  • the nitrogen in the pressurized reaction vessel was purged to the outside to lower the pressure of the reaction vessel to atmospheric pressure, and then the mixture in the reactor was transferred to a 7 L volume reactor capable of vacuum reaction.
  • the pressure of the reactor is lowered in 30 minutes to 5 Torr (absolute pressure: 5 kHg) at atmospheric pressure, and at the same time, the temperature of the reactor is raised to 28 CTC for 1 hour, and the pressure of the reactor is 1 Torr (absolute). Pressure: ImmHg) to maintain the polycondensation reaction.
  • the stirring speed is set quickly. However, when the stirring power is weakened by the polycondensation reaction or the temperature of the black mixture rises above the set temperature, the stirring speed can be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction was 0.52 dl / g.
  • the mixture was discharged to the outside of the counterunggi and stranded.
  • the solids were granulated so as to have an average weight of 12 to Wmg after solidification with a liquid solution.
  • the particles were left to crystallize for 1 hour at 160 ° C, after which the volume of 20 L It was added to the solid state polymerization reactor. Thereafter, nitrogen was introduced to the reaction vessel at a rate of 50 L / min. At this time, raise the temperature of the counterunggi at a temperature of 40 ° C / hour to 140 ° C at room temperature, and hold for 3 hours at 140 ° C, and then increase the temperature at 40 ° C / hour to 200 ° C
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared.
  • the residue derived from isosorbide was 6 mol% based on the total residue derived from diol, and the residue derived from ethylene glycol was 91%. Mol%, The residue derived from diethylene glycol was 3 mol%.
  • Dicarboxylic acid black has a molar ratio of its derivative and diol: 1: 1.20).
  • the temperature of the reaction was raised over 90 minutes from room temperature to 220 ° C., maintained at 220 ° C for 2 hours, and then raised to 250 ° C over 2 hours. Then, the mixture in the reaction vessel was visually observed to maintain the reactor temperature at 250 ° C. until the mixture became transparent.
  • the nitrogen in the pressurized reaction vessel was purged to the outside and lowered to the atmospheric pressure of the reaction vessel, and then the mixture in the reaction vessel was transferred to a 7 L volume of the reaction vessel capable of vacuum reaction.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction was 0.45 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to be stranded (strand), it was granulated so that the average weight is about 12 to 14mg after solidification with a liquid solution.
  • the particles were left to crystallize at 160 ° C for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was flowed at the rate of 50 L / min in the reaction vessel. At this time, up to the temperature of the half unggi from room temperature to 140 ° C 40 ° C / hour rate, 140 ° and kept for 3 hours at C, 200 ° C to 40 ° C / the temperature was raised at a rate of time 200 ° C Maintained at. The solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reaction vessel became 0.75 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 10 mol% based on the total residue derived from di, and the residue derived from ethylene glycol
  • Ge0 2 l. Og Ge0 2 l. Og, phosphoric acid (1.52g) as stabilizer, Clarient's Polysynthren Blue RLS 0.020g as blue toner, Clarient's Solvaperm Red BB 0.004g, and lOOppm Iganox 1076 as antioxidant Used.
  • the temperature of the reaction was raised over 90 minutes from room temperature to 220 ° C., maintained at 220 ° C. for 2 hours, and then over 2 hours to 260 ° C. Then, the mixture in the reactor was visually observed to maintain the temperature of the reaction vessel at 260 ° C. until the mixture became transparent.
  • the nitrogen in the pressurized reaction vessel was purged to the outside to lower the pressure of the reaction vessel to atmospheric pressure, and then the mixture in the reaction vessel was transferred to a 7 L volume of the reaction vessel capable of vacuum reaction.
  • the polycondensation reaction was carried out while maintaining the pressure of the reactor below 1 Torr (absolute pressure: lmmHg).
  • the stirring speed is quickly set, but when the stirring power is weakened by the polycondensation reaction or the temperature of the mixture rises above the set temperature, the stirring speed can be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction was 0.55 dl / g.
  • the mixture was discharged to the outside of the semi-ungunggi stranded (strand), and after the solidification with a cooling solution was granulated so that the average weight is about 12 to l1 ⁇ 2g.
  • the particles were left to crystallize at 160 ° C for 1 hour, and then charged into a 20 L volume of ' solid state polymerization reactor. Thereafter, nitrogen was introduced at the rate of 50 L / min. At this time, the temperature of the reactor was raised at a rate of 40 ° C / hour to 140 ° C at room temperature, and maintained at 140 ° C for 3 hours, and then heated up at a rate of 40 ° C / hour to 20 CTC and maintained at 200 ° C. . The solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reaction vessel became 1.1 dl / g.
  • IV intrinsic viscosity
  • the residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared.
  • the residue derived from isosorbide was 13 mol%, and the residue derived from ethylene glycol was 84.5. Mol%, the residue derived from diethylene glycol was 2.5 mol%.
  • the peak area ratio of the polyester resin solution to isosorbide standard solution analyzed by gas chromatography (GC) was 1.20. Comparative Example 4: Preparation of Polyester Resin
  • Dimethyl terephthalate 3824.lg (19.7mol), ethylene glycol 2444.3 ⁇ 4 (39.4mol), isosorbide 748.3g (5.1mol) in 10L volume reactor with column and condenser which can be angled by water ) was added (molar ratio of dicarboxylic acid or a derivative thereof and diol: 1: 2.26).
  • the mixture When the intrinsic viscosity of the mixture in the counterunggi reached the desired level, the mixture was discharged to the outside of the counterunggi and stranded, and after the solidification with the shell liquid, the average weight was about 12 to 14mg.
  • the particles were left to crystallize at 115 ° C. for 6 hours and then charged to a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was flowed at the rate of 50 L / min in the reaction vessel. In this case, raising the temperature of the reactor at a rate of 40 ° C / hour from room temperature to 140 ° C, the mixture was kept for 3 hours at 140 ° C, the temperature was raised to 40 ° C / siganwa rate to 205 ° C and maintained at 205t. The solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reaction vessel became 0.7 dl / g.
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared.
  • the residue derived from isosorbide was 6 mol% based on the total residue derived from diol, and the residue derived from ethylene glycol was 91%. Mol%, The residue derived from diethylene glycol was 3 mol%.
  • the polycondensation reaction was performed by keeping below (absolute pressure: ImmHg).
  • ImmHg absolute pressure
  • the stirring speed is quickly set, but when the stirring power is weakened by the polycondensation reaction or the temperature of the mixture rises above the set temperature, the stirring speed can be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.60 dl / g.
  • the residue derived from terephthalic acid was 100 mol3 ⁇ 4> with respect to the total acid-derived residue contained in the polyester resin thus prepared, and the residue derived from isosorbide was 35 mol% relative to the residue derived from all diols, and the residue derived from ethylene glycol 6 4 mol%, The residue derived from diethylene glycol was 1 mol%.
  • Example 1 0.90 0. 13 81 245 -1.8 0.4
  • Example 2 0.80 0. 13 81 245 -1.
  • Example 3 0.90 0.20 85 236 -2.5 0.3
  • Example 4 0.90 0.20 85 236 -4.0 -0.4
  • Example 5 1.00 0.27 90 225 -4.0 0.1
  • Example 6 1.1 10 0.40 92 220 -3.5 0.3
  • Example 7 0.80 0.57 100--4.0 0.9
  • Example 9 0.90 0.27 85 236 -2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 폴리에스테르 수지에 관한 것이다. 상기 폴리에스테르 수지는 내열성과 투명성이 우수하여 병, 시트, 다층시트, 연신 필름 및 섬유 용도에 유용하며, 특히 가공 시 황변 현상등의 물성 저하가 적은 장점이 있다.

Description

【발명의 설명】
【발명의 명칭】
폴리에스테르 수지
【기술분야】
본 발명은 폴리에스테르 수지에 관한 것이다.
【배경기술】
폴리에스테르 수지로 대표되는 PET (polyethylene terephthalate)는 저렴한 가격 및 우수한 물리 /화학적 성질로 인해 상업적으로 널리 사용되고 있다. 하지만, 결정성이 높아 가공 시 높은 온도를 요구하며 성형 제품의 투명성이 떨어지는 문제가 있다. 또한, PET는 내열성이 좋지 않아 음료의 고온 충진 과정에서 PET로 성형된 병의 형태가 변형되는 문제를 초래하게 된다. 이를 막기 위해 병 성형 전 /후 병목 결정화 공정 및 Heat sett ing 공정을 거쳐 병의 내열도를 높이기도 하나, 이로 인해 병의 투명도는 감소하게 된다.
높은 내열성과 낮은 결정성을 얻기 위해 아이소소바이드를 공중합한 폴리에스테르 수지가 제안되고 있다. 아이소소바이드의 경우, 분자 구조가 리지드하기 때문에 에틸렌 글리콜을 대체하여 아이소소바이드를 사용할 경우, 유리전이온도의 향상을 도모할 수 있다. 추가적으로 아이소소바이드의 함량을 증가시키면 그에 따라유리전이온도도 향상시킬 수 있다.
아이소소바이드는 내열도를 향상시킬 뿐만 아니라 결정화 속도도 또한 감소시킨다. 테레프탈산과 에틸렌 글리콜로 중합된 PET의 경우, 분자의 규칙성이 높아 결정화 속도가 빠르다. 하지만 고분자 주쇄에 아이소소바이드를 도입함으로써 분자의 규칙성을 낮추게 되고 그에 따라 결정화 속도도 낮아지게 된다. 추가적으로 아이소소바이드 함량을 증가시키면 결정상 고분자에서 비결정성 고분자로 변화하게 된다.
그러나, 고분자 주쇄에 아이소소바이드가 도입된 폴리에스테르 수지는 성형 시에 황변 (yel lowing) 현상 등 물성 저하가 발생될 수 있어 가급적 낮은 온도에서의 작업이 추천된다. 이에 아이소소바이드가 도입된 폴리에스테르 수지에 산화 방지제 등을 첨가하여 성형성을 개선하는 방안이 제안되었으나, 아이소소바이드가 도입된 폴리에스테르 수지의 성형성을 근본적으로 개선할 수 있는 기술의 개발이 필요하다. 【발명의 내용】
【해결하려는 과제】
본 발명은 성형 후 황변 현상 등의 물성 저하가 적은 폴리에스테르 수지를 제공하기 위한 것이다.
【과제의 해결 수단】
상기 목적을 달성하기 위해, 발명의 일 구현예에 따르면 테레프탈산 혹은 이의 유도체를 포함하는 디카르복실산 혹은 이의 유도체와 아이소소바이드를 포함하는 디올이 중합되어, 디카르복실산 혹은 이의 유도체로부터 유도된 산 부분 (acid moi ety) 및 디올로부터 유도된 디올 부분 (diol moiety)이 반복되는 구조를 가지는 폴리에스테르 수지로서, 디을로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 0.5 내지 20몰%이며, 클로로포름 내에 아이소소바이드가 150 /g/mL 농도로 용해된 표준 용액과, 사이클로핵산 및 아이소프로필 알코올이 2.5 : 97.5의 부피 비을로 흔합된 용매를 이용하여 상기 폴리에스테르 수지 0.5g으로부터 추출한 성분을 클로로포름 5mL에 용해시켜 얻은 수지 용액을 각각 가스크로마토그래피로 분석하였을 때, 표준 용액의 분석에서 확인되는 피크와 동일한 Retent ion t ime에서 확인되는 피크는 (수지 용액의 피크 면적) /(표준 용액의 피크 면적)의 값이 1.0 이하의 면적비를 충족하는 폴리에스테르 수지가 제공된다.
【발명의 효과】
발명의 일 구현예에 따른 폴리에스테르 수지는 내열성과 투명성이 우수하여 병, 시트, 다층시트, 연신 필름 및 섬유 용도에 유용하며, 특히 가공 시 황변 현상 등의 물성 저하가 적은 장점이 있다.
【발명을 실시하기 위한구체적인 내용】
이하 발명의 구체적인 구현예에 따른 폴리에스테르 수지 및 이의 제조 방법 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 테레프탈산 혹은 이의 유도체를 포함하는 디카르복실산 혹은 이의 유도체와 아이소소바이드를 포함하는 디올이 중합되어, 디카르복실산 혹은 이의 유도체로부터 유도된 산 부분 (acid moi ety) 및 디올로부터 유도된 디올 부분 (diol moiety)이 반복되는 구조를 가지는 폴리에스테르 수지로서, 디올로부터 유도된 전체 、디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 0.5 내지 20몰¾이며, 클로로포름 내에 아이소소바이드가 150/zg/mL 농도로 용해된 표준 용액과 사이클로핵산 및 아이소프로필 알코올이 2.5 : 97.5의 부피 비율로 흔합된 용매를 이용하여 상기 폴리에스테르 수지 . 0.5g으로부터 추출한 성분을 클로로포름 5mL에 용해시켜 얻은 수지 용액을 각각 가스크로마토그래피로 분석하였을 때, 표준 용액의 분석에서 확인되는 피크와 동일한 Retent ion t ime에서 확인되는 피크는 (수지 용액의 피크 면적) /(표준 용액의 피크 면적)의 값이 1.0 이하의 면적비를 충족하는 폴리에스테르 수지가 제공된다.
기존 고분자 주쇄에 아이소소바이드를 도입시킨 폴리에스테르 수지가 성형 공정에서 변색되는 문제를 해결하기 위해 성형 공정 조건을 온화하게 하거나 혹은 폴리에스테르 수지에 산화 방지제 등을 첨가하는 방법이 시도되었다. 그러나, 이러한 방법들로는 목적하는 수준의 제반 성능을 구현하는 고분자 제품을 얻을 수 없었다.
이에, 본 발명자들은 상술한 가스크로마토그래피 분석 결과상의 특정 피크 면적비를 층족하는 폴리에스테르 수지를 제공하는 경우 (폴리에스테르 수지 내에 잔류하는 아이소소바이드의 함량을 감소시킬 경우) , 성형 시 변색 등의 물성 저하 현상을 현저하게 개선할 수 있음을 발견하고 본 발명을 완성하였다.
이하, 이러한 폴리에스테르 수지의 제조 방법에 대해 상세히 설명한다.
(a) 테레프탈산 흑은 이의 유도체를 포함하는 ( i ) 디카르복실산 혹은 이의 유도체와, 전체 디올에 대하여 0.5 내지 25몰%의 아이소소바이드를 포함하는 ( ii ) 디올의 에스테르화 반웅 또는 에스테르 교환 반웅 단계; 및 (b) 상기 에스테르화 또는 에스테르 교환 반응 생성물의 중축합 반웅 단계를 통해 상기 폴리에스테르 수지를 제조할 수 있다.
보다 구체적으로, (a) 상기 ( i ) 디카르복실산 혹은 이의 유도체와 상기 ( ii ) 디올을 0 내지 10.0kgf/cm2의 압력 (0 내지 7355.6隱 Hg의 절대 압력) 및 150 내지 300°C의 온도에서 평균 체류시간 1 내지 24시간 동안 에스테르화 반웅 또는 에스테르 교환 반웅시킨 다음, (b) 상기 에스테르화 또는 에스테르 교환 반웅 생성물을 400 내지 O . OlmmHg의 감압 조건 및 150 내지 3C TC의 온도에서 평균 체류시간 1 내지 24시간 동안 중축합 반웅시켜 폴리에스테르 수지를 얻는다.
여기서, 폴리에스테르 수지의 제조 방법은 배치 (batch)식, 반-연속식 또는 연속식으로 수행될 수 있고, 상기 에스테르화 반웅 흑은 에스테르 교환 반웅과 중축합 반웅은 블활성 기체 분위기 하에서 수행되는 것이 바람직하며, 상기 폴리에스테르 수지와 기타 첨가제의 흔합은 단순 흔합이거나, 압출을 통한 흔합일 수 있다. 추가적으로 필요에 따라, 고상 반응을 이어서 진행한다. 고상 반웅은 (c) 중축합 반웅 (용융 중합)으로 제조된 펠렛을 110°C 내지 210°C에서 결정화 하는 단계를 거친 후, (d) 질소, 이산화탄소, 아르곤 등 불활성 가스 분위기 하 또는 400 내지 O . OlmmHg의 감압 조건 및 180 내지 220°C의 온도에서 평균 체류시간 1 내지 150 시간 동안 진행될 수 있다.
본 명세서에서 용어 1디카르복실산 혹은 이의 유도체 '는 디카르복실산과 디카르복실산의 유도체 중 선택되는 1종 이상의 화합물을 의미한다. 그리고, '디카르복실산의 유도체1는 디카르복실산의 알킬 에스테르 (모노메틸, 모노에틸, 디메틸, 디에틸 또는 디부틸 에스테르 등 탄소수 1 내지 4의 저급 알킬 에스테르) 흑은 디카르복실산의 무수물을 의미한다. 이에 따라, 예를 들어, 테레프탈산 흑은 이의 유도체는 테레프탈산; 모노알킬 혹은 디알킬 테레프탈레이트; 및 테레프탈산 무수물과 같이 디올과 반웅하여 테레프탈로일 부분 (terephthaloyl moiety)을 형성하는 화합물을 통칭하게 된다.
상기 ( i ) 디카르복실산 흑은 이의 유도체로는 주로 테레프탈산 혹은 이의 유도체를 사용한다. 구체적으로, ( i ) 디카르복실산 혹은 이의 유도체로는 테레프탈산 흑은 이의 유도체를 단독으로 사용할 수 있다. 또한, ( i ) 디카르복실산 혹은 이의 유도체로는 ' 테레프탈산 혹은 이의 유도체와, 테레프탈산 흑은 이의 유도체 외의 디카르복실산 흑은 이의 유도체로서 탄소수 8 내지 14의 방향족 디카르복실산 흑은 이의 유도체 및 탄소수 4 내지 12의 지방족 디카르복실산 혹은 이의 유도체로 이루어진 군에서 선택된 1 종 이상을 흔합하여 사용할 수 있다. 상기 탄소수 8 내지 14의 방향족 디카르복실산 혹은 이의 유도체에는 이소프탈산, 디메틸 이소프탈레이트, 프탈산, 디메틸 프탈레이트, 프탈산 무수물, 2 , 6-나프탈렌 디카르복실산 등의 나프탈렌 디카르복실산, 디메틸 2,6-나프탈렌 디카르복실레아트 등의 디알킬 나프탈렌 디카르복실레이트, 디페닐 디카르복실산 등 폴리에스테르 수지의 제조에 통상적으로 사용되는 방향족 디카르복실산 혹은 이의 유도체가 포함될 수 있다. 상기 탄소수 4 내지 12의 지방족 디카르복실산 혹은 이의 유도체에는 1,4- 사이클로핵산 디카르복실산, 1, 3-사이클로핵산 디카르복실산 등의 사이클로핵산 디카르복실산, 디메틸 1,4-사이클로핵산 디카르복실레이트, 디메틸 1,3—사이클로핵산 디카르복실레이트 등의 사이클로핵산 디카르복실레이트, 세바식산, 숙신산, 이소데실숙신산, 말레산, 말레산무수물, 푸마르산, 아디픽산, 글루타릭산, 아젤라이산 등 폴리에스테르 수지의 제조에 통상적으로 사용되는 선형, 가지형 또는 고리형 지방족 디카르복실산 혹은 이의 유도체가포함될 수 있다.
상기 (i) 디카르복실산 혹은 이의 유도체는 테레프탈산 혹은 이의 유도체를 전체 (i) 디카르복실산 혹은 이의 유도체에 대하여 50몰% 이상, 60몰% 이상, 70몰% 이상, 80몰% 이상 혹은 90몰% 이상으로 포함할 수 있다. 그리고, 상기 (0 디카르복실산 흑은 이의 유도체는 테레프탈산 혹은 이의 유도체 외의 디카르복실산 혹은 이의 유도체를 전체 (i) 디카르복실산 혹은 이의 유도체에 대하여 0 내지 50몰¾, 0몰% 초과 50몰% 이하 혹은 0.1 내지 40몰%로 포함할 수 있다. 이러한 함량 범위 내에서 적절한 제반 물성을 구현하는 폴리에스테르 수지를 제조할 수 있다.
한편, 상기 아이소소바이드 (isosorbide, l,4:3,6_dianhydroglucitol)는 제조된 폴리에스테르 수지의 디을로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 0.5 내지 20몰%가 되도록 사용된다. 보다 구체적으로, 상기 아이소소바이드는 제조된 폴리에스테르 수지의 디올로부터 유래하는 전체 디올 부분에 대하여 아이소소바이드로부터 유래하는 디올 부분이 1 내지 20몰% 혹은 2 내지 20몰 %가 되도록 사용될 수 있다. 이러한 범위 내에서 적절한 결정성 및 내열성을 나타내는 폴리에스테르 수지를 제공할 수 있다.
상기 (ii) 디올은 아이소소바이드 외에 다른 디올로 폴리에스테르 수지의 제조에 통상적으로 사용되는 화합물을 포함할 수 있으며, 예를 들면, 탄소수 8 내지 40 흑은 8 내지 33의 방향족 디올, 탄소수 2 내지 20 흑은 2 내지 12의 지방족 디올 흑은 이들의 흔합물 등을 포함할 수 있다. 상기 방향족 디올의 구체적인 예로는, 폴리옥시에틸렌 -(2.0〕 -2,2- 비스 (4-하이드록시페닐)프로판, 폴리옥시프로필렌 -(2.0)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(2.2)-폴리옥시에틸렌— (2.0〕 -2,2- 비스 (4-하이드록시페닐)프로판, 폴리옥시에틸렌 -(2.3)-2,2-비스 (4- 하이드록시페닐)프로판 , 폴리옥시프로필렌 -(6)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(2.3)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(2.4)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(3.3)-2,2-비스 (4- 하이드록시페닐)프로판, 폴리옥시에틸렌 -(3.0)— 2, 2-비스 (4- 하이드록시페닐)프로판, 폴리옥시에틸렌 _(6)-2,2-비스 (4- 하이드록시페닐)프로판 등의 에틸렌 옥사이드 및 /또는 프로필렌 옥사이드가 부가된 비스페놀 A 유도체 (폴리옥시에틸렌 -(n)-2, 2-비스 (4- 하이드록시페닐)프로판, 폴리옥시프로필렌 -(n)-2,2-비스 (4- 하이드록시페닐)프로판 또는 폴리옥시프로필렌 -(n)-폴리옥시에틸렌 -(n) -2,2- 비스 (4-하이드록시페닐)프로판, 여기서 n은 폴리옥시에틸렌 또는 폴리옥시프로필렌 유닛 (unit)의 개수 (number)를 나타냄)를 예시할 수 있고, 상기 지방족 디올의 구체적인 예로는, 에틸렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 프로판디을 (1,2-프로판디올, 1,3-프로판디올 등), 1,4- 부탄디올, 펜탄디올, 핵산디올 (1,6—핵산디올 등), 네오펜틸 글리콜 (2,2- 디메틸 -1, 3-프로판디올), 1,2-사이클로핵산디올, 1, 4-사이클로핵산디올, 1,2- 사이클로핵산디메탄올, 1,3-사이클로핵산디메탄올, 1,4-사이클로핵산디메탄을, 테트라메틸사이클로부탄디을 등의 선형, 가지형 또는 고리형 지방족 디올을 예시할 수 있다. 상기 (ii) 디을에는 상기 아이소소바이드 외에 상기 나열된 디을이 단독 또는 둘 이상이 배합된 형태로 포함될 수 있으며, 예를 들면, 상기 아이소소바이드에 상기 에틸렌 글리콜, 1,4—사이클로핵산디메탄올, 훑리옥시에틸렌 -(2.0)-2,2-비스 (4-하이드록시페닐)프로판 등이 단독 또는 둘 이상 배합된 형태로 포함될 수 있다. 상기 (ii) 디올에 있어서, 아이소소바이드 외에 나머지 디올의 주성분은 에틸렌 글리콜인 것이 바람직하고, 에틸렌 글리콜 외에, 물성 개선을 위한 상기 사용되는 다른 디올의 함량은 예를 들면, 전체 (ii) 디올에 대하여, 0 내지 50몰% 흑은 0.1 내지 30몰%로 조절될 수 있다.
상기 일 구현예에 따른 폴리에스테르 수지를 제조하기 위해, 반웅 시작 전 (i) 디카르복실산 혹은 이의 유도체에 대하여 (ii) 디올의 몰비가 조절될 필요가 있다. 이와 같이 (i) 디카르복실산 혹은 이의 유도체와 (ii) 디올의 최초 투입량, 즉 반응이 시작되기 전까지 투입된 함량을 조절하여 상술한 특정 피크 면적비를 충족하는 폴리에스테르 수지를 제공할 수 있다.
구체적으로, 상기 (i) 디카르복실산 흑은 이의 유도체로 디카르복실산을 사용하는 경우에는 (i) 디카르복실산 흑은 이의 유도체와 (ii) 디을의 초기 흔합 몰 비율을 1:1.01 내지 1.04로 조절하고, 상기 (i) 디카르복실산 흑은 이의 유도체로 디카르복실산 알킬 에스테르 혹은 디카르복실산 무수물을 사용하는 경우에는 (i) 디카르복실산 혹은 이의 유도체와 (ii) 디올의 초기 흔합 몰 비율을 1:2.0 내지 1:2.1로 조절할 수 있다.
(i) 디카르복실산 흑은 이의 유도체와 (ii) 디올의 함량을 상기와 같이 조절함으로써 상술한 특정 피크 면적비를 층족하고, 수지 내에 잔류하는 디카르복실산 혹은 이의 유도체 및 아이소소바이드의 함량이 현저하게 줄어들어 투명성이 우수하며 성형 시 황변 현상 등의 물성 저하가 적은 폴리에스테르 수지를 제공할 수 있다. 여기서, (i) 디카르복실산 흑은 이의 유도체와 (ii) 디올의 특정 몰 비율은 반웅 초기에 층족되면 되고, 반응 도중에 필요에 따라 (i) 디카르복실산 혹은 이의 유도체 및 /또는 (ii) 디올이 추가될 수도 있다. 반웅 도중에 첨가된 (i) 디카르복실산 혹은 이의 유도체 및 /또는 (ii) 디올로 인해 전체 사용 함량이 상기 특정 몰 비율 범위를 벗어나더라도 반응 초기에 (i) 디카르복실산 혹은 이의 유도체와 (ii) 디올의 몰 비율이 상술한 범위를 층족하였다면 목적하는 폴리에스테르 수지, 즉 특정 피크 면적 비율을 층족하는 폴리에스테르 수지를 제공할수 있다.
상기 (a) 에스테르화 반웅 또는 에스테르 교환 반응에서는 촉매가 사용될 수 있다. 이러한 촉매로는 나트륨, 마그네슘의 메틸레이트 (methylate); Zn, Cd, Mn, Co, Caᅳ Ba등의 초산염, 붕산염, 지방산염, 탄산염 ; 금속 Mg; Pb Zn, Sb, Ge 등의 산화물 등을 예시할 수 있다.
상기 (a) 에스테르화 반응 또는 에스테르 교환 반웅은 배치 (batch)식, 반-연속식 또는 연속식으로 수행될 수 있고, 각각의 원료는 별도로 투입될 수 있으나, 디올에 디카르복실산 혹은 이의 유도체를 흔합한 슬러리 형태로 투입하는 것이 바람직하다 .
상기 (a) 에스테르화 반웅 또는 에스테르 교환 반웅 시작 전 슬러리에 혹은 반웅 완료 후 생성물에 중축합 촉매, 안정제, 정색제, 결정화제, 산화방지제, 가지화제 (branching agent ) 등을 첨가할 수 있다.
그러나, 상술한 첨가제들의 투입 시기가 이에 한정되는 것은 아니며 폴리에스테르 수지의 제조 단계 중 임의의 시점에 투입될 수도 있다. 상기 중축합 촉매로는, 통상의 티타늄, 게르마늄, 안티몬, 알루미늄, 주석계 화합물 등을 하나 이상 적절히 선택하여 사용할 수 있다. 유용한 티타늄계 촉매로는, 테트라에틸티타네이트, 아세틸트리프로필티타네이트, 테트라프로필티타네이트, 테트라부틸티타네이트, 폴리부틸티타네이트, 2-에틸핵실 티타네이트, 옥틸렌글리콜티타네이트, 락테이트티타네이트, 트리에탄을아민 티타네이트, 아세틸 . 아세토네이트티타네이트, 에틸아세토아세틱에스테르티타네이트, 이소스테아릴티타네이트, 티타늄디옥사이드, 티타늄디옥사이드 /실리콘디옥사이드공중합체,
티타늄디옥사이드 /지르코늄디옥사이드 공중합체 등을 예시할 수 있다. 또한, 유용한 게르마늄계 촉매로는 게르마늄 디옥사이드 및 이를 이용한 공중합체 등이 있다. 상기 안정제로는, 일반적으로 인산, 트리메틸포스페이트, 트리에틸포스페이트 등의 인계 화합물을 사용할 수 있으며, 그 첨가량은 인 원소량을 기준으로 최종 폴리머 (폴리에스테르 수지 )의 중량 대비 10 내지 200ppm이다. 상기 안정제의 첨가량이 lOppm 미만이면, 안정화 효과가 미흡하여, 폴리머의 색상이 노랗게 변할 우려가 있으며, 200ppm을 초과하면 원하는 고중합도의 폴리머를 얻지 못할 우려가 있다. 또한, 폴리머의 색상을 향상시키기 위해 첨가되는 정색제로는 , 코발트 아세테이트 , 코발트 프로피오네이트 등의 통상의 정색제를 예시할 수 있고, 그 첨가량은 코발트 원소량을 기준으로 최종 폴리머 (폴리에스테르 수지 )의 중량 대비 10 내지 . 200ppm이다. 필요에 따라, 유기화합물 정색제로서 안트라퀴논 (Anthraquionone)계 화합물, 페린온 (Per inone)계 화합물, 아조 (Azo)계 화합물, 메틴 (Methine)계 화합물 등을 사용할 수 있으며, 시판되는 제품으로는 Clar ient사의 Polysynthren Blue RLS 흑은 Cl ar ient사의 Solvaperm Red BB 등의 토너를 사용할 수 있다. 상기 유기화합물 정색제의 첨가량은 최종 폴리머 중량 대비 0 내지 50ppm으로 조절될 수 있다. 만일 정색제를 상기 범위 밖의 함량으로 사용하면 폴리에스테르 수지의 황색을 층분히 가리지 못하거나물성을 저하시킬 수 있다.
상기 결정화제로는 결정핵제, 자외선 흡수제, 폴리올레핀계 수지, 폴리아마이드 수지 등을 예시할 수 있다. 상기 산화방지제로는 힌더드 페놀계 산화방지제, 포스파이트계 산화방지제, 티오에테르계 산화방지제 혹은 이들의 흔합물 등을 예시할 수 있다. 상기 가지화제로는 3 이상의 관능기를 가지는 통상의 가지화제로서, 예를 들면, 무수트리멜리틱산 (tr imel l it ic anhydr ide) , 트리메틸올 프로판 (tr imethylol propane) , 트리멜리틱산 (tr imel 1 i t i c acid) 흑은 이들의 흔합물 등을 예시할 수 있다.
상기 (a) 에스테르화 반웅은 200 내지 300°C 흑은 230 내지 280°C의 온도 및 0 내지 10.0kgf/cm2 (0 내지 7355.6讓 Hg) , 0 내지 5.0kgf/cm2 (0 내지 3677.8mmHg) 혹은 0. 1 내지 3.0kgf/cm2 (73.6 내지 2206.7mmHg)의 압력 조건에서 실시될 수 있다. 그리고, 상기 (a) 에스테르 교환 반응은 150 내지 270 °C 혹은 180 내지 260°C의 온도 및 0 내지 5.0kgf/cm2 (0 내지 3677.8mmHg) 흑은 0. 1 내지 3.0kgf/cm2 (73.6 내지 2206.7mmHg)의 압력 조건에서 실시될 수 있다. 여기서 괄호 밖에 기재된 압력은 게이지 압력을 의미하며 (kgf/cm2 단위로 기재됨) , 괄호'안에 기재된 압력은 절대 압력을 의미한다 (mmHg 단위로 기재됨) .
상기 반응 온도 및 압력이 상기 범위를 벗어날 경우, 폴리에스테르 수지의 물성이 저하될 우려가 있다. 상기 반웅 시간 (평균 체류시간)은 통상 1 내지 24시간 혹은 2 내지 8시간이며, 반웅 온도, 압력, 사용하는 디카르복실산 혹은 이의 유도체 대비 디올의 몰비에 따라 달라질 수 있다.
상기 에스테르화 또는 에스테르 교환 반웅을 통해 얻은 생성물은 중축합 반웅을 통해 보다 높은 중합도의 폴리에스테르 수지로 제조될 수 있다. 일반적으로, 상기 중축합 반웅은 150 내지 300 °C , 200 내지 290°C 흑은 260 내지 290°C의 온도 및 400 내지 O . OlmmHg, 100 내지 0.05mmHg 혹은 10 내지 0. 1 mmHg의 감압 조건에서 수행된다. 여기서 압력은 절대 압력의 범위를 의미한다. 상기 400 내지 0.01隱 Hg의 감압 조건은 중축합 반웅의 부산물인 글리콜 등과 미반웅물인 아이소소바이드 등을 제거하기 위한 것이다. 따라서, 상기 감압 조건이 상기 범위를 벗어날 경우, 부산물 및 미반웅물의 제거가 불층분할 우려가 있다. 또한, 상기 증축합 반웅 온도가 상기 범위를 벗어날 경우, 폴리에스테르 수지의 물성이 저하될 우려가 있다. 상기 중축합 반웅은, 원하는 고유점도에 도달할 때까지 필요한 시간 동안, 예를 들면ᅳ 평균 체류시간 1 내지 24시간 동안실시된다.
폴리에스테르 수지 내에 잔류하는 아이소소바이드 등의 미반웅물의 함량을 감소시킬 목적으로 에스테르화 반웅 혹은 에스테르 교환 반응 말기 흑은 중축합 반웅 초기, 즉 수지의 점도가 층분히 높지 않은 상태에서 진공 반웅을 의도적으로 길게 유지하여 미반웅된 원료를 계외로 유출 시킬 수 있다. 수지의 점도가 높아지면, 반웅기 내 잔류하고 있는 원료가 계외로 빠져나오기 어렵게 된다. 일 예로, 중축합 반웅 전 에스테르화 반응 혹은 에스테르 교환 반응을 통해 얻은 반응 생성물을 약 400 내지 ImmHg 혹은 약 200 내지 3mmHg 감압 조건에서 0.2 내지 3시간 동안 방치하여 폴리에스테르 수지 내에 잔류하는 아이소소바이드 등의 미반웅물을 효과적으로 제거할 수 있다. 이때, 상기 생성물의 온도는 에스테르화 반웅 혹은 에스테르 교환 반응 온도와 중축합 반응 온도와 같거나 흑은 그사이의 온도로 조절될 수 있다.
중축합 반응 후 폴리머의 고유 점도는 0.30 내지 1.0 dl/g인 것이 적당하다. 고유 점도가 0.30 dl /g 미만일 경우, 고상 반웅에서의 반웅 속도가 현저히 낮아지게 되며, 고유 점도가 1.0 dl/g를 초과할 경우, 용융 중합 중 용융물의 점도가 상승됨에 따라 교반기와 반웅기 사이에서의 전단 웅력 (Shear Stress)에 의해 폴리머가 변색될 가능성이 증가하며, 아세트알데히드와 같은 부반웅 물질도 증가하게 된다.
이와 같이 (a) 및 (b) 단계를 통해 일 구현예에 따른 폴리에스테르 수지를 제조할 수 있다. 그리고, 필요에 따라 중축합 반웅 후에 고상 반웅을 추가로 진행하여 보다 높은 중합도를 갖는 폴리에스테르 수지를 제공할 수 있다.
구체적으로, (b) 중축합 반웅을 통해 얻은 폴리머를 반웅기 밖으로 토출하여 입자화한다. 입자화하는 방법은 St rand형으로 압출 후 넁각액에서 고화 후 커터로 절단하는 St rand cut t ing법이나, 다이 홀을 넁각액에 침지시켜, 넁각액 중으로 직접 압출하여 커터로 절단하는 underwater cutt ing법을 사용할 수 있다. 일반적으로 Strand cutt ing법에서는 넁각액의 온도를 낮게 유지하여, Strand가 잘 고화되어야 커팅에 문제가 없다. underwater cutt ing법에서는 넁각액의 온도를 폴리머에 맞게 유지하여, 폴리머의 형상이 균일하게 하는 것이 좋다. 하지만 결정성 폴리머의 경우, 토출 중 결정화를 유도하기 위해서 일부러 넁각액의 온도를 높게 유지할 수도 있다.
한편, 입자화된 폴리머를 추가적으로 수세정하여 (a) 에스테르화 반웅 또는 에스테르 교환 반웅 단계 전 ( i ) 디카르복실산 혹은 이의 유도체와 ( ii ) 디올의 최초 투입량을 조절하지 않더라도 상술한 특정 피크 면적비를 충족하는 폴리에스테르 수지를 제공할 수 있다. 수세정 시 물의 온도는 폴리머의 유리전이온도와 같거나 흑은 약 5 내지 20°C 정도 낮은 것이 바람직하며, 그 이상의 온도에서는융착이 발생될 수 있어 바람직하지 않다. 토출 시 결정화를 유도한 플리머의 입자라면 유리전이온도 보다 높은 온도에서도 융착이 발생되지 않으므로 결정화 정도에 따라 물의 온도를 설정할 수 있다. 입자화된 폴리머의 수세정을 통해 아이소소바이드 등의 미반웅된 원료 중 물에 용해되는 원료의 제거가 가능하다. 입자가 작을수록 입자의 무게 대비 표면적이 넓어지기 때문에 입자의 크기는' 작을수록 유리하다. 이러한 목적을 달성하기 위해 입자는 약 15 mg 이하의 평균 무게를 갖도록 제조될 수 있다. 일 예로, 상기 입자화된 폴리머는 폴리머의 유리전이온도와 같거나 혹은 약 5 내지 20 °C 정도 낮은 온도의 물에 5 분 내지 10 시간 방치하여 수세정될 수 있다.
입자화된 폴리머는 고상 반응 중 융착되는 것을 방지하기 위해 결정화 단계를 거친다. 대기, 불활성 가스, 수증기, 수증기 함유 불활성 가스 분위기 또는 용액 속에서 진행이 가능하며, 110°C 내지 210 °C 흑은 120 °C 내지 210 °C에서 결정화 처리를 한다. 온도가 낮으면 입자의 결정이 생성되는 속도가 너무 느려지며, 온도가 높으면 결정이 만들어지는 속도보다 입자의 표면이 용융되는 속도가 빨라 입자끼리 붙어 융착을 발생시킨다. 입자가 결정화됨에 따라 입자의 내열도가 상승되게 되므로 결정화를 여러 단계로 나누어 단계별로 온도를 상승시켜 결정화 하는 것도 가능하다.
고상반웅은 질소, 이산화탄소, 아르곤 등 불활성 가스 분위기 하 또는 400 내지 0.01誦 Hg의 감압 조건 및 180 내지 220°C의 온도에서 평균 체류시간 1 내지 150 시간 동안 진행될 수 있다. 이러한 고상 반웅을 통해 분자량이 추가적으로 상승되며, 용융 반웅에서 반응되지 않고 잔존해 있는 원료 물질과 반웅 중 생성된 환상 올리고머, 아세트알데하이드 등이 제거될 수 있다.
이때, 상기 결정화된 플리머를 일정 수준 이상의 고유점도 값을 가지도록 고상 중합할 경우, ( i ) 디카르복실산 흑은 이의 유도체와 ( ii ) 디올의 최초 투입량을 조절하거나 수세정 공정을 생략하더라도 상술한 특정 피크 면적비를 층족하는 폴리에스테르 수지를 제공할 수 있다. 구체적으로, 오르토클로로페놀에 1.2g/dl의 농도로 150°C에서 15 분간 용해시켜 35°C에서 측정한 고유.점도가 0.80 dl /g 이상, 바람직하게는 0.85 dl /g 이상, 더욱 바람직하게는 0.90 dl /g 이상의 값에 도달하도록 결정화된 폴리머를 고상 중합하여 상술한 특정 피크 면적비를 층족하는 폴리에스테르 수지를 제공할 수 있다.
부가하여, 만일 (b) 중축합 반웅 단계 이후에 (c) 결정화 단계 및 (d) 고상 반웅을 거치지 않는다면 (a) 에스테르화 반웅 혹은 에스테르 교환 반웅 생성물을 오르토클로로페놀에 1.2g/dl의 농도로 150°C에서 15 분간 용해시켜 35°C에서 측정한 고유점도가 0.80 dl /g 이상의 값에 도달하도록 중축합 반응시켜 상술한 특정 피크 면적비를 층족하는 폴리에스테르 수지를 제공할 수 있다.
상술한 방법에 따라 제조된 폴리에스테르 수지는 디카르복실산 혹은 이의 유도체로부터 유도된 산 부분 (acid moiety) 및 디올로부터 유도된 디올 부분 (diol moiety)이 반복되는 구조를 가진다. 본 명세서에서, 산 부분 (acid moiety) 및 디올 부분 (diol moiety)은, 디카르복실산 혹은 이의 유도체 및 디올이 중합되어 이들로부터 수소, 히드록시기 또는 알콕시기가 제거되고 남은 잔기 (residue)를 말한다.
특히, 상기 폴리에스테르 수지는 상술한 방법에 따라 제조되어 디을로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 0.5 내지 20몰%, 1 내지 20몰% 혹은 2 내지 20몰%이며, 상술한 피크 면적의 비율 범위를 층족할 수 있다.
상기 폴리에스테르 수지는 대부분 디카르복실산 흑은 이의 유도체로부터 유도된 산 부분과 디올로부터 유도된 디올 부분이 반복되는 구조를 가지나, 부반웅으로 인해 디올이 다른 디올과 반웅하여 디올로부터 유도된 디을 부분끼리 연결된 구조가 포함되어 있을 수 있다. 그러나, 상술한 방법에 따르면, 이러한 부반웅을 현저하게 감소시킬 수 있다. 일 예로, 상기 폴리에스테르 수지 내의 전체 디올 유래의 잔기에 대하여 디에틸렌 글리콜 유래의 잔기는 약 6몰% 이하 혹은 약 4몰%이하로 포함될 수 있다. 상기 플리에스테르 수지는 이러한 범위의 디에틸렌 글리콜 유래의 잔기를 포함함에 따라 층분한 유리전이온도를 나타낼 수 있다. 상기 폴리에스테르 수지는 디에틸렌 글리콜 유래의 잔기를 포함하지 않을 수 있으므로, 상기 디에틸렌 글리콜 유래의 잔기의 함량의 하한은 0몰¾이다.
상기 폴리에스테르 수지는 수평균분자량이 약 15 ,000 내지 50 , 000 g/mol 흑은 20 , 000 내지 40 , 000 g/mol 정도일 수 있다. 만일 분자량이 상기 범위 미만이면 기계적 물성이 저하되고 병, 시트, 다층시트, 연신 필름 혹은 섬유 용도로의 전개 시 충분히 연신되지 않아 원하는 기계적 물성을 확보하기 어려우며, 분자량이 상기 범위를 초과하면 성형 가공성이 저하되는 문제가 있을 수 있다.
상기 폴리에스테르 수지는 높은 중합도로 인해 오르토클로로페놀에 1.2g/dl의 농도로 용해시켜 35°C에서 측정한 고유점도가 0.7 내지 1.4 dl /g 혹은 0.8 내지 1.2 dl /g 정도일 수 있다. 고유 점도가 낮을 경우 병, 시트, 다층시트, 연신 필름 혹은 섬유 용도로의 전개 시 연신 비율이 층분치 못해 원하는 기계적 물성을 얻기가 어려우며, 고유 점도가 높을 경우 성형 시 생산성이 저하되며 겔을 형성할 가능성이 높은데, 상기 폴리에스테르 수지는 적절한 고유 점도를 가져 성형이 용이하며 다양한 용도로의 전개가 가능하다. 상기 폴리에스테르 수지는 유리전이온도 (Tg)가 약 80 내지 105 °C 혹은 81 내지 100°C 정도일 수 있다. 이러한 범위 내에서 황변 현상 없이 폴리에스테르 수지의 제반 물성을 양호하게 나타낼 수 있다.
상기 폴리에스테르 수지는 유리전이온도 (Tg) 및 DSC 측정 조건에 따라서 결정화 온도 (Tc)와 융점 (Tm)이 존재하거나 존재하지 않을 수 있다. 유리전이은도 (Tg)가 80°C 내지 85°C 범위의 폴리에스테르 수지는 결정화 온도 (Tc)가 120 내지 190°C 혹은 130 내지 190°C일 수 있다. 유리전이온도 (Tg)가 85°C 내지 105°C 범위의 폴리에스테르 수지는 결정화 온도 (Tc)가 측정되지 않거나, 130 내지 190°C 흑은 140 내지 180°C일 수 있다. 이러한 범위 내에서 폴리에스테르 수지는 적절한 결정화 속도를 가져 고상 중합이 가능하고, 성형 후 고투명도를 나타낼 수 있다.
상기 유리전이온도 c )가 8(rc 내지 85 r 범위의 폴리에스테르 수지는 융점 ( )이 약 210 내지 26CTC 혹은 220°C 내지 250°C 정도일 수 있다. 유리전이온도 (Tg)가 85°C 내지 105°C 범위의 폴리에스테르 수지는 융점 (Tm)이 측정되지 않거나, 200 내지 250°C 혹은 190 내지 24C C일 수 있다. 이러한 범위 내에서 폴리에스테르 수지는 적절한 결정성을 가져 양호한 내열성 및 기계적 물성을 나타내고 적절한 온도에서 가공될 수 있어 황변될 우려가 없다. 또한, 상기 폴리에스테르 수지 내에는 잔류하는 아이소소바이드가 매우 적을 수 있다. 이러한 아이소소바이드는 가스크로마토그래피를 통해 특정 Retent ion t ime (머무름 시간) 범위에서 함량에 비례하는 면적을 갖는 피크로 관찰된다. 따라서, 상기 폴리에스테르 수지를 가스크로마토그래피로 분석하면 특정 Retent ion t ime (머무름 시간)에서 매우 좁은 면적의 피크가 관찰될 수 있다. 구체적으로, 클로로포름 내에 아이소소바이드가 150«g/mL 농도로 용해된 표준 용액과, 사이클로핵산 및 아이소프로필 알코올이 2.5 : 97.5의 부피 비율로 흔합된 용매를 이용하여 상기 폴리에스테르 수지 0.5g으로부터 추출한 성분을 클로로포름 5mL에 용해시켜 얻은 수지 용액을 각각 가스크로마토그래피로 분석하였을 때, 표준 용액의 분석에서 확인되는 피크와 동일한 Retent ion t ime에서 확인되는 피크의 면적비를 통해 폴리에스테르 수지 내에 잔류하는 아이소소바이드의 함량을 가늠할 수 있다. 일 예로, 상기 폴리에스테르 수지는 표준 용액의 피크 면적에 대한 수지 용액의 피크 면적비가 1.0 이하, 0.80 이하, 0.60 이하, 0.40 이하 흑은 0.35 이하로 나타날 수 있다. 이러한 범위 내에서 상기 폴리에스테르 수지에 잔류하는 아이소소바이드의 낮은 함량을 보증할 수 있다.
이러한 폴리에스테르 수지는 아이소소바이드의 잔류 함량이 미미하여 ' 열 성형 시 물성 저하가 거의 발생되지 않아 고품질의 고분자 제품을 제공할 수 있다.
일 예로, 상기 폴리에스테르 수지는 290°C에서 사출 성형하여 얻은 30mm X 30mm X 3mm (가로 X 세로 X 두께) 크기의 시편에 대하여 색차계를 이용하여 측정한 color b값이 -2.0 내지 3.0, -1.5 내지 2.0, -1.2 내지 1.5 혹은 -1.0 내지 0.5일 수 있다.
상술한 바와 같이 일 구현예에 따른 폴리에스테르 수지는 잔류하는 아이소소바이드의 함량이 매우 적어 가공 시 황변 현상 등의 물성 저하가 적은 장점이 있다. 이에 따라, 상기 폴리에스테르 수지는 다양한 분야에 활용될 수 있고, 특히 내열성과 투명성이 우수하여 사출 성형품, 병, 시트, 다층시트, 연신 필름 및 섬유 용도에 유용할 것으로 기대된다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 하기의 물성 흑은 분석은 다음과 같은 방법에 따라 평가 혹은 수행되었다.
( 1) 고유점도 (IV) : 시료 0.36 士 0.0002g을 150°C의 오르토 -클로로페놀 30mL에 15분간 용해시킨 후, 35°C의 항온조에서 Ubbelodhe 점도계를 사용하여 시료의 고유점도를 측정하였다. (2) 폴리에스테르 수지 내의 산 및 디올 유래의 잔기 조성은 시료를
CDCls 용매에 3mg/mL의 농도로 용해한 후 핵자기 공명 장치 (JEOL , 600MHz FT- NMR)를 이용하여 25°C에서 얻은 스펙트럼을 통해 확인하였다.
(3) 내열성: 시차주사열량계 (METTLER TOLEDO, DSC 1)를 이용하여, 폴리에스테르 수지 약 6~10mg을 알루미늄 팬에 채우고, 폴리에스테르 수지를 상온에서 2801:까지、 101:/1^ 11의 속도로 가열하고 ( 1차 스캔), 280°C에서 3분간 어닐링 (anneal ing)하였다. 이후, 폴리에스테르 수지를 상온까지 급속 넁각시킨 후, 다시 상온에서 280°C까지 10°C /min의 속도로 가열하여 (2차 스캔) DSC 곡선을 얻었다.
고분자가 유리 전이를 일으킬 때 무정형 물질의 비열이 증가하게 되어 DSC 곡선은 흡열 방향으로 특징적인 이동을 보인다. 따라서, 상기 DSC 곡선이 승온 과정 중 처음 계단상으로 변화하는 곳에서 곡선의 최대 경사가 나타나는 온도를 폴리에스테르 수지의 유리전이온도 (Glass transi t ion temperature : Tg)로 규정하고, 승온 과정에서 얻어지는 흡열 곡선의 정점의 온도를 폴리에스테르 수지의 융점 (Melt ing temperature : Tm)으로 규정하였다.
(4) Chip의 색상: 실시예 및 비교예에서 중축합 반웅 결과 혹은 고상 중합 반웅 결과 생성된 입자의 색상을 1948년도 R.S. Hunter에 의해 고안된 Hunter Lab Color space값으로 표현하였다. 시료 26g를 셀 (KONICA MINOLTA, CM-A99)에 채운 후. 색차계 (KONICA MINOLTA, CM-3600A)를 이용하여 색 좌표값을 측정하였다. 이러한 작업은 3회 반복되었으며, 3회 반복 값을 평균하여 색 좌표값을 결정하였다. 색 좌표값 중, Color L값은 밝기를 의미한다. L의 수치가 클수록 흰색에 가까움을 의미한다. 구체적으로, L이 0이면 검은색이고 L이 100이면 흰색이다. Color a는 초록과 빨강을 나타내고, 음수면 초록에 가까우며 양수면 빨강에 가까워짐을 의미한다. 유사하게 Color b는 파랑과 노랑을 나타내고, 음수면 파랑에 가까우며, 양수면 노랑에 가까워짐을 의미한다.
(5) 사출 성형 시편의 색상: 풀리에스테르 수지를 제습건조기 (MORETTO, Mini Dryer X DRY AIR T)에 넣고 80°C에서 24 시간 동안 보관하여 폴리에스테르 수지 내의 수분이 300ppm 이하가 되도록 건조시켰다. 이때, 폴리에스테르 수지 내의 수분은 Kar l Ficsher Moisture Meter (Mitsubishi , VA-100)를 통해 230°C에서 측정되었고, 정량한계 (L0Q)는 0.01%이었다. 그 이하의 함량에 대하여는 데이터 상대표준편차 (RSD)가 10% 이상으로 정량신뢰도가 낮았다.
이어서, 건조된 폴리에스테르 수지를 Screw 은도 2901:, 몰드 온도 20°C로 설정된 성형기 (BOY, 12M)에 투입하여 30隱 X 30瞧 X 3mm (가로 X 세로 X두께) 크기의 시편을 성형하였다.
상기와 같이 사출 성형된 시편의 색상을 1948년도 R.S. Hunter에 의해 고안된 Hunter Lab Color space값으로 표현하였다. 구체적으로, 색차계 (KONICA MINOLTA, CM-3600A)를 이용하여 준비한 시편의 색 좌표값을 측정하였다. 이러한 작업은 3회 반복되었으며, 3회 반복 값을 평균하여 색 좌표값을 결정하였다. (6) 잔류 아이소소바이드 ( ISB)의 면적비 (잔류하는 아이소소바이드 (ISB) 함량) 측정
<표준용액의 조제 >
아이소소바이드 1.5g을 클로로포름 lOOmL에 넣고 1 시간 동안 교반하여 용해시킨 후, 이 용액을 회석하여 150/ig/mL의 농도로 표준용액을 조제하였다.
<시료 전처리 >
분석하고자 하는 폴리에스테르 수지 30 내지 40g을 동결 분쇄하였다. 동결 분쇄된 시료 0.5g을 칭량하여 ASE cel l에 투입하였다. 하기에 기재되어 있는 ASE 공정 조건에서 시료로부터 시료에 잔류하는 아이소소바이드를 포함하는 성분을 추출하였다. ASE 공정을 통해 추출된 용액을 상온에서 감압 증류하여 용매를 제거하였다. 그리고, 얻어지는 용질을 클로로포름 5mL에 용해시킨 다음 0.45 si ze의 f i lter로 여과하여 불용분을 제거함으로써 전처리된 시료를 얻었다.
<ASE 공정 조건〉
가속용매추출 (ASE, Accelerated Solvent Extract ion) 공정에는 Dionex (ASE 200) 모델이 이용되었다. Cyclohexane : Isopropyl alcoh 이 2.5:97.5의 부피 비율로 흔합된 용매를 사용하여 동결 분쇄된 시료 0.5g으로부터 시료에 잔류하는 아이소소바이드를 포함하는 성분올 추출하였다. 상기 공정에서 오븐의 온도는 150°C , 압력은 1500 psi로 조절하고, 가스로는 질소를 사용하며 예비 가열 시간, 가열 시간 및 추출 시간은 각각 1 분, 7 분 및 10 분으로 설정하였다.
〈측정 >
가스크로마토그래피는 Agi lent 7890B (GC-FID) , 컬럼은 DB-5MS (60m * 0.32/ * l . Oum) 모델을 사용하였다. 오븐은 40°C에서 5 분간 안정화한 후, 100°C까지 10°C/min 속도로 승온, 100°C에서 5 분간 유지한 후, 210°C까지 30°C/min 속도로 승온, 260°C까지 5°C/min 속도로 승온, 320°C까지 60°C/min 속도로 승온 후 320°C에서 10 분간 유지하였다. Injector의 온도는 280°C, Detector의 온도는 320 °C, Flow는 lmL/min, split는 1/10, Injection volume은 ΙμΑ, carrier gas는 질소였다. 이러한 과정을 동일 시료에 대해 3회 반복하였다.
<분석〉
상기 아이소소바이드 표준 용액의 분석 결과, 아이소소바이드는 Retention time (RT) 20.1 분에서 peak로 관찰되었다. 이후, 폴리에스테르 수지 시료의 분석 결과와 비교하기 위해, 상기 표준 용액의 분석 결과 얻어진 peak의 면적을 구하였다. 그리고, 전처리된 폴리에스테르 수지 시료를 상술한 방법으로 분석하여 표준 용액의 분석 시 아이소소바이드가 확인되는 RT에서의 peak 면적을 구하였다. 폴리에스테르 수지에 잔류하는 아이소소바이드의 함량은 동일 시료에 대해 3회 반복 측정된 평균 peak 면적을 표준 용액의 peak 면적으로 나누어, 즉 (폴리에스테르 수지 시료의 평균 peak 면적) /(표준 용액의 peak 면적)에 대입하여 표 1에 나타내었다.
(7) 수평균분자량: 시료 0.3g을 150°C의 오르토 -클로로페놀 15mL에 15분간 용해시킨 후, 상온에서 클로로포름 9mL를 추가하였다. GPC는 Tosoh제품이며, RI detector를 사용하여 시료의 분자량을 측정하였다. 실시예 1: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3277.4g (19.7mol), 에틸렌 글리콜 1246. lg (20.1mol), 아이소소바이드 63.4g (O.½ol)을 투입하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1:1.04).
촉매로는 Ge02 l.Og, 안정제로는 인산 (phosphoric acid) 1.46g, 정색제로는 코발트 아세테이트 (cobalt acetate) 0.7g을사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1495.6隱 Hg).
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 을리고, 220°C에서 2시간 유지한 후, 260°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를
26CTC로 유지하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650g의 부산물이 유출되었다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반응기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5匪 ¾)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력 : ImmHg) 이하로 유지하여 중축합 반웅을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅이 진행됨에 따라 반응물의 점도 상승에 의해 교반력이 약해지거나 혹은 반웅물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.60 dl /g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반응기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 l½g 정도가 되도록 입자화 하였다.
상기 입자를 140°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반응기에 질소를 50L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 200°C까지 40°C /시간의 속도로 승온하여 200T:에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도 ( IV)가 0.90 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 2몰%, 에틸렌 글리콜 유래의 잔기는 95몰 ¾>, 디에틸렌 글리콜 유래의 잔기는 3몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0. 13 이었다. 실시예 2 : 폴리에스테르 수지의 제조 컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3277.4g ( 19.7mol ) , 에틸렌 글리콜 1218. Og ( 19.6mol ) , 아이소소바이드 72. 1g (0.5mol )을 투입하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1 : 1.02) .
촉매로는 Ge02 l . Og, 안정제로는 인산 (phosphor ic acid) 1.46g, 정색제로는 코발트 아세테이트 (cobal t acetate) 0.7g을사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력 : 1495.6mmHg) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 을리고, 220°C에서 2시간 유지한 후, 26CTC까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기의 온도를 260 °C로 유지하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 500g의 부산물이 유출된 것을 확인한 이후에 반웅기에 에틸렌 글리콜 12.3g (0.20mol )을 추가로 첨가하였다. 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 260°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5隱 Hg)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1시간에 걸쳐서 을리고, 반웅기의 압력을 1 Torr (절대 압력: 1隱 Hg) 이하로 유지하여 중축합 반웅을 실시하였다. 이러한 중축합 반웅을 반웅기 내의 흔합물의 고유점도 ( IV)가 0.48 dl/g이 될 때까지 진행하고, 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 0.80 dl /g이 될 때까지 진행한 것을 제외하면 실시예 1과 동일한 방법으로 폴리에스테르 수지를 제조하였다.
이렇게 제조된 '폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 2몰 ¾>, 에틸렌 글리콜 유래의 잔기는 95몰¾, 디에틸렌 글리콜 유래의 잔기는 3몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0. 13 이었다. 실시예 3: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3455.5g (20.8mol), 에틸렌 글리콜 1251.9g (20.2mol), 아이소소바이드 212.7g (1.5mol)을 투입하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1:1.04).
촉매로는 Ge02 l.Og, 안정제로는 인산 (phosphoric acid) 1.56g, 블루토너로는 Clarient사의 Polysynthren Blue RLS 0.012g, 레드토너로는 Clarient사의 Solvaperm Red BB 0.004g, 가지화제로는 Trimellitic anhydrate, lOOppm을 사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력 : 1495.6mmHg).
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 255°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 255°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반응이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5隱 Hg)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: ImmHg) 이하로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 흑은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.52 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14mg 정도가 되도록 입자화 하였다. 상기 입자를 160°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반응기에 질소를 50L/min 속도로 흘려주었다. 이때, 반웅기의 온도를 상은에서 MCTC까지 40tV시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 200°C까지 40°C /시간의 속도로 승온하여 20CTC에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 0.9 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6몰%, 에틸렌 글리콜 유래의 잔기는 92몰%, 디에틸렌 글리콜 유래의 잔기는 2몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.20 이었다. 실시예 4 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3455. ¾ (20.8mol ) , 에틸렌 글리콜 1677.8g (27. 1mol ) , 아이소소바이드 303.9g (2. 1mol )을 투입하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1 : 1.40) .
촉매로는 Ge02 l . Og, 안정제로는 인산 (phosphor ic acid) 1.56g, 블루토너로는 Cl ar i ent사의 Polysynthren Blue RLS 0.016g, 레드토너로는 Clar ient사의 Solvaperm Red BB 0.004g을 사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다
1.0kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1495.6mmHg) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 22C C에서 2시간 유지한후, 255°C까지 2시간에 걸쳐 을렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를 255°C로 유지하였다. 에스테르화 반옹이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반응기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5隱 Hg)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1腿 Hg) 이하로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.60 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14mg 정도가 되도록 입자화 하였다. 이렇게 얻어진 입자를 70°C의 물에서 5 시간 동안 보관하여 입자에 함유된 미반웅 원료를 제거하였다.
이후, 상기 입자를 이용해 실시예 3과 동일한 방법으로 폴리에스테르 수지를 제조하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰¾>이었으며, 전체 디을 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6몰 ¾>, 에틸렌 글리콜 유래의 잔기는 92몰%, 디에틸렌 글리콜 유래의 잔기는 2몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.20 이었다. 실시예 5 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3302.5g (19.9mol ) , 에틸렌 글리콜 1319.8g (21.3mol ) , 아이소소바이드 377.6g (2.6mol )을 투입하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1 : 1.20) .
촉매로는 Ge02 l . Og, 안정제로는 인산 (phosphor ic acid) 1.52g, 블루토너로는 Clar ient사의 Polysynthren Blue RLS 0.02g, 레드토너로는 Clar ient사의 Solvaperm Red BB 0.004g을사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.5kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력 : 1127.8mmHg) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 250°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를
250°C로 유지하였다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력:
5mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: ImmHg) 이하로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.45 dl/g이 될 때까지 진행하였다. 반응기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반응기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14mg 정도가 되도록 입자화 하였다. 상기 입자를 160°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3사간 유지한 후, 200°C까지 40°C/시간의 속도로 승온하여 20C C에서 유지하였다. 상기 고상 중합 반응은 반웅기 내의 입자의 고유점도 ( IV)가 1.00 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 10몰%, 에틸렌 글리콜 유래의 잔기는
88.5몰¾, 디에틸렌 글리콜 유래의 잔기는 1.5몰¾>이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.27 이었다. 실시예 6 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3234.2g (19.5mol ) , 에틸렌 글리콜 1377. lg (22.2mol ) , 아이소소바이드 455. lg (3. 1mol )을 투입하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1 : 1.30) .
촉매로는 Ge02 l . Og, 안정제로는 인산 (phosphor ic acid) 1.5g, 블루토너로는 Clar ient사의 Polysynthren Blue RLS 0.020g, 레드토너로는 Clar ient사의 Solvaperm Red BB 0.004g, 산화방지제로 lOOppm의 Iganox 1076을 사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.5kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력 : 1127.8mmHg) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 22C C에서 2시간 유지한 후, 260°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를 260°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 100 Torr (절대 압력: lOOmmHg)까지 10분에 걸쳐 낮추고, 1 시간 동안 이 압력 상태를 유지하였다. 이후,반웅기의 온도를 270°C까지 1시간에 걸쳐서 을리고, 반웅기의 압력을 1 Torr (절대 압력: lmmHg) 이하로 유지하여 중축합 반웅을 실시하였다.
중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 흑은 흔합물의 온도가 설정한 온도 이상으로 을라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.55 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 l½g 정도가 되도록 입자화 하였다.
상기 입자를 160°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 14CTC까지 40°C /시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 200°C까지 40°C /시간의 속도로 승은하여 200°C에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 1. 10 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 12몰%, 에틸렌 글리콜 유래의 잔기는 86.5몰%, 디에틸렌 글리콜 유래의 잔기는 1.5몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.40 이었다. 실시예 7 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반응기에 테레프탈산 3332. lg (20. 1mol ) , 에틸렌 글리콜 1057.8g (17. 1mol ) , 아이소소바이드 732.7g (5.0mol )을 투입하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1 : 1. 1) .
촉매로는 Ge02 1.5g, 안정제로는 인산 (phosphor ic acid) 1.6g, 정색제로는 코발트 아세테이트 (cobalt acetate) 0.5g, 블루토너로는 Clar ient사의 Polysynthren Blue RLS 0.029g, 레드토너로는 Clar ient사의 Solvaperm Red BB 0.004g, 결정화제로 polyethylene 1 ppm을사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.3kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력: 980.7mmHg) .
그리고, 반응기의 온도를 상온에서 220°C까지 90분에 걸쳐 을리고,
220°C에서 2시간 유지한 후, 255°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 255°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반응이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 은도를 275°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 2 Torr (절대 압력: 2隱 Hg)로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.80 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 20몰%, 에틸렌 글리콜 유래의 잔기는 79몰%, 디에틸렌 글리콜 유래의 잔기는 1몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.57 이었다. 실시예 8 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 디메틸 테레프탈레이트 3824. lg (19.7mol ) , 에틸렌 글리콜 2236.5g (36.1mol ) , 아이소소바이드 633. lg (4.3mol )을 투입하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1 : 2.05) .
촉매로는 Mn( I I ) acetate tetrahydrate 1.5g 및 Sb203 1.8 g, 정색제로는 코발트 아세테이트 (cobal t acetate) l . lg, 안정제로는 인산 (phosphor i c acid) lg을 사용하였다.
이어서, 반웅기에 질소를 주입하였으나, 반응기의 압력을 높이지는 않았다 (절대 압력: 760隱 ¾) . 그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 24CTC까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 240°C로 유지하였다. 에스테르 교환 반응이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반응기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5mmHg)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 285°C까지 1시간에 걸쳐서 올리고 반웅기의 압력을 1 Torr (절대 압력: 1隱 Hg) 미만으로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.60 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14mg 정도가 되도록 입자화 하였다.
상기 입자를 115°C에서 6시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C/시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 205°C까지 40°C/시간의 속도로 승온하여 205°C에서 유지하였다. 상기 고상 중합 반응은 반웅기 내의 입자의 고유점도 (IV)가 0.95 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디을 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6몰%, 에틸렌 글리콜 유래의 잔기는 91몰%, 디에틸렌 글리콜 유래의 잔기는 3몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.33 이었다. 실시예 9: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3351.8g (20.18mol), 이소프탈산 103.7g (0.62mol), 에틸렌 글리콜 1264.8g (20.4mol), 아이소소바이드 243. lg (1.7mol)을 투입하였다 (디카르복실산혹은 이의 유도체와 디올의 몰 비율: 1:1.06).
촉매로는 Ge02 l.Og, 안정제로는 인산 (phosphoric acid) 1.56g, 블루토너로는 Clarient사의 Polysynthren Blue RLS 0.012g, 레드토너로는 Clarient사의 Solvaperm Red BB 0.004g을사용하였다.
이어서, 반응기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.3kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력: 980.7mmHg). 그리고, 반웅기의 온도를 상온에서 220 °C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 255°C까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를 255 °C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반응이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5隱 ¾)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: ImmHg) 미만으로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.54 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부호 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14mg 정도가 되도록 입자화 하였다.
상기 입자를 140°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 을리고, 140°C에서 3시간 유지한 후, 200°C까지 40°C /시간의 속도로 승온하여 20CTC에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 0.9 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 97몰 이소프탈산 유래의 잔기는 3몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6몰%, 에틸렌 글리콜 유래의 잔기는 92몰%, 디에틸렌 글리콜 유래의 잔기는 2몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.27 이었다. 실시예 10 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3302.5g ( 19.9mol ) , 에틸렌 글리콜 1370.6g (22. 1mol ) , 아이소소바이드 407. lg (2.8mol )을 투입하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1 : 1.25) .
촉매로는 Ge02 l .Og, 안정제로는 인산 (phosphor ic acid) 1.52g, 블루토너로는 Cl ar i ent사의 Polysynthren Blue RLS 0.028g, 레드토너로는 Clar i ent사의 Solvaperm Red BB 0.004g을사용하였다.
이어서, 반응기에 질소를 주입하여 반웅기의 압력이 상압 보다
0.3kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 980.7隱¾) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 250°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를 250°C로 유지하였다. 에스테르화 반응이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 100 Torr (절대 압력: lOOmmHg)까지 10분에 걸쳐 낮추고, 1 시간 동안 이 압력 상태를 유지하였다. 이후, 반응기의 은도를 280°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: _lmmHg) 이하로 유지하여 중축합 반웅을 실시하였다.
중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 증축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.80 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰¾이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 10몰%, 에틸렌 글리콜 유래의 잔기는 89몰%, 디에틸렌 글리콜 유래의 잔기는 1몰 %이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 0.40 이었다. 비교예 1 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3447.9g (20.8mol ) , 에틸렌 글리콜 1918.8g (30.9mol ) , 아이소소바이드 333.6g (2.3mol )을 투입하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1 : 1.60) .
촉매로는 Ge02 l . Og, 안정제로는 인산 (phosphor ic acid) 1.56g, 블루토너로는 Clar ient사의 Polysynthren Blue RLS 0.012g, 레드토너로는 Clar ient사의 Solvaperm Red BB 0.004g을 사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력 : 1495.6mmHg) .
그리고, 반웅기의 온도를 상온에서 22CTC까지 90분에 걸쳐 을리고, 220°C에서 2시간 유지한 후, 255°C까지 2시간에 걸쳐 을렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 255°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5隱 Hg)까지 30분에 걸차 낮추고, 동시에 반웅기의 온도를 28CTC까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: ImmHg) 미만으로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 흑은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.52 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 Wmg 정도가 되도록 입자화 하였다.
상기 입자를 160°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 200°C까지 40°C /시간의 속도로 승온하여
2oo°c에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 0.9 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6몰%, 에틸렌 글리콜 유래의 잔기는 91몰%, 디에틸렌 글리콜 유래의 잔기는 3몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 1.07 이었다. 비교예 2 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3302.5g ( 19.9mol ) , 에틸렌 글리콜 1319.8g (21.3mol ) , 아이소소바이드 377.6g (2.6mol )을 투입하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1 : 1.20) .
촉매로는 Ge02 l . Og, 안정제로는 인산 (phosphor ic acid) 1.52g, 블루토너로는 Clar ient사의 Polysynthren Blue RLS 0.02g, 레드토너로는 Clar i ent사의 Solvaperm Red BB 0.004g을 사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.5kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1127.8mmHg) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한후, 250°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를 250°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력올 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5mmHg)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1隱 Hg) 미만으로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.45 dl /g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반응기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14mg 정도가 되도록 입자화 하였다.
상기 입자를 160°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 흘려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 200°C까지 40°C /시간의 속도로 승온하여 200°C에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 0.75 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디을 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 10몰%, 에틸렌 글리콜 유래의 잔기는
88.5몰%, 디에틸렌 글리콜 유래의 잔기는 1.5몰¾이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 1.07 이었다. 비교예 3 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3254.6g ( 19.6mol ) , 에틸렌 글리콜 1385.7g (22.4mol ) , 아이소소바이드 458.0g (3. 1mol )을 투입하였다 (디카르복실산 흑은 이의 유도체와 디을의 몰 비율: 1 :30) .
촉매로는 Ge02 l . Og, 안정제로는 인산 (phosphor ic acid) 1.52g, 블루토너로는 Clar ient사의 Polysynthren Blue RLS 0.020g, 레드토너로는 Clar ient사의 Solvaperm Red BB 0.004g, 산화방지제로 lOOppm의 Iganox 1076을 사용하였다.
이어서, 반응기에 질소를 주입하여 반웅기의 압력이 상압 보다
0.5kgf/cm2 만큼 높은 가압상태로 만들었다 (절대 압력 : 1127.8mmHg) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 260°C까지 2시간에 걸쳐 을렸다. 그 다음, 반응기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 260°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력:
5mraHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr (절대 압력: lmmHg) 미만으로 유지하여 중축합 반웅을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.55 dl/g이 될 때까지 진행하였다. 반응기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 l½g 정도가 되도록 입자화 하였다.
상기 입자를 160°C에서 1시간 동안 방치하여 결정화 한 후, 20L 용적의' 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 홀려주었다. 이때, 반응기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 20CTC까지 40°C /시간의 속도로 승온하여 200°C에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 1. 1 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 13몰%, 에틸렌 글리콜 유래의 잔기는 84.5몰%, 디에틸렌 글리콜 유래의 잔기는 2.5몰%이었다. 가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 1.20 이었다. 비교예 4 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 디메틸 테레프탈레이트 3824. lg ( 19.7mol ) , 에틸렌 글리콜 2444. ¾ (39.4mol ) , 아이소소바이드 748.3g (5. 1mol )을 투입하였다 (디카르복실산 혹은 이의 유도체와 디을의 몰 비율: 1 : 2.26) .
촉매로는 Mn( I I ) acetate tetrahydrate 1.5g 및 203 1.8 g, 정색제로는 코발트 아세테이트 (cobalt acetate) l . lg, 안정제로는 인산 (phosphor i c acid) lg을사용하였다.
이어서, 반웅기에 질소를 주입하였으나, 반웅기의 압력을 높이지는 않았다 (절대 압력: 760mmHg) . 그리고, 반웅기의 은도를 상온에서 22CTC까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 24CTC까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 240°C로 유지하였다. 에스테르 교환 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력:
5mmHg)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 285°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1隱 Hg) 미만으로 유지하여 중축합 반웅을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 은도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.40 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균무게가 12 내지 14mg 정도가 되도록 입자화 하였다. 상기 입자를 115°C에서 6시간 동안 방치하여 결정화 한 후, 20L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50L/min 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3시간 유지한 후, 205°C까지 40°C /시간와 속도로 승온하여 205t에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 0.7 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6몰%, 에틸렌 글리콜 유래의 잔기는 91몰%, 디에틸렌 글리콜 유래의 잔기는 3몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 .수지 용액의 피크 면적비는 1.20 이었다. 비교예 5 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10L 용적의 반웅기에 테레프탈산 3142.8g ( 18.9mol ) , 에틸렌 글리콜 845. lg ( 13.6mol ) , 아이소소바이드 1050.4g (7.2mol )을 투입하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1 : 1. 10) .
촉매로는 Ge02 1.5g, 안정제로는 인산 (phosphor ic acid) 1.6g, 블루토너로는 Clar ient사의 Polysynthren Blue RLS 0.021g, 레드토너로는 Clar ient사의 Solvaperm Red BB 0.004g, 결정화제로 polyethylene 1 ppm을 사용하였다.
이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.2kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 907. 1mmHg) .
그리고, 반웅기의 온도를 상온에서 220°C까지 90분에 걸쳐 올리고,
220°C에서 2시간유지한 후, 260°C까지 2시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 은도를 260°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 퍼지하여 반웅기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반웅이 가능한 7L 용적의 반웅기로 이송시켰다. 그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5隱 ¾)까지 30분에 걸쳐 낮추고, 동시에 반웅기의 온도를 270°C까지 1시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: ImmHg) 미만으로 유지하여 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅에 의해 교반력이 약해지거나 혹은 흔합물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.60 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰¾>이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 35몰%, 에틸렌 글리콜 유래의 잔기는 64몰%, 디에틸렌 글리콜 유래의 잔기는 1몰%이었다.
가스크로마토그래피 (GC)로 분석한 아이소소바이드 표준 용액에 대한 폴리에스테르 수지 용액의 피크 면적비는 1.67 이었다. 시험예: 폴리에스테르 수지의 평가
실시예 1 내지 10 및 비교예 1 내지 5에서 제조한 폴리에스테르 수지의 물성을 상술한 방법에 따라 평가하고 그 결과를 표 1에 기재하였다.
【표 1]
최종 잔류 아이소소바이드의 Tg[ °C ] Tm[ °C ] chip 사출 반응에서의 면적비 color b 성형된 고유점도 [dl /g] 시편의 color b 실시예 1 0.90 0. 13 81 245 -1.8 0.4 실시예 2 0.80 0. 13 81 245 -1. & 0.5 실시예 3 0.90 0.20 85 236 -2.5 0.3 실시예 4 0.90 0.20 85 236 -4.0 -0.4 실시예 5 1.00 0.27 90 225 -4.0 0. 1 실시예 6 1. 10 0.40 92 220 -3.5 0.3 실시예 7 0.80 0.57 100 - -4.0 0.9 실시예 8 0.95 0.33 85 236 一 2.0 1.0 실시예 9 0.90 0.27 85 236 -2. 1 1. 1 실시예 10 0.80 0.40 90 220 -3.3 0.8 비교예 1 0.90 1.07 85 236 -2.5 1.5 비교예 2 0.75 1.07 89 225 -4.0 1.2 비교예 3 1. 10 1.20 92 210 -3.0 1.8 비교예 4 0.70 1.20 85 236 -1.8 2. 1 비교예 5 0.60 1.67 118 - 4.5 10 상기 표 1을 참조하면, 실시예에 따라 제조된 폴리에스테르 수지는 사출 성형 후 1.2 미만의 color b 값을 나타내 우수한 투명성을 보이나, 비교예에 따라 제조된 폴리에스테르 수지는 사출 성형 후 1.2 이상의 color b 값을 나타내 황변 현상이 나타남을 확인할 수 있었다. 이에 따라, 본 발명의 일 구현예에 따른 폴리에스테르 수지를 성형하여 변색 흑은 착색의 문제 없이 고품질의 고분자 제품을 제공할 수 있을 것으로 기대된다.

Claims

【청구범위】
【청구항 1】
테레프탈산 혹은 이의 유도체를 포함하는 디카르복실산 흑은 이의 유도체와 아이소소바이드를 포함하는 디을이 중합되어, 디카르복실산 혹은 이의 유도체로부터 유도된 산 부분 및 디을로부터 유도된 디올 부분이 반복되는 구조를 가지는 폴리에스테르 수지로서,
디올로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 0.5 내지 20몰%이며,
클로로포름 내에 아이소소바이드가 150 zg/mL 농도로 용해된 표준 용액과, 사이클로핵산 및 아이소프로필 알코올이 2.5 : 97.5의 부피 비율로 흔합된 용매를 이용하여 상기 폴리에스테르 수지 0.5g으로부터 추출한 성분을 클로로포름 5mL에 용해시켜 얻은 수지 용액을 각각 가스크로마토그래피로 분석하였을 때, 표준 용액의 분석에서 확인되는 피크와 동일한 Retent ion t ime에서 확인되는 피크는 (수지 용액의 피크 면적) /(표준 용액의 피크 면적)의 값이 1.0 이하의 면적비를 충족하는 폴리에스테르 수지.
【청구항 2]
제 1 항에 있어서, 상기 디카르복실산 흑은 이의 유도체는 테레프탈산 흑은 이의 유도체 외의 디카르복실산 혹은 이의 유도체로서, 탄소수 8 내지 14의 방향족 디카르복실산 흑은 이의 유도체 및 탄소수 4 내지 12의 지방족 디카르복실산 흑은 이의 유도체로 이루어진 군에서 선택된 1 종 이상을 전체 디카르복실산 혹은 이의 유도체에 대하여 0 내지 50몰%로 포함하는 폴리에스테르 수지 .
【청구항 3】
제 1 항에 있어서, 디올로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 1 내지 20몰 ¾>인 폴리에스테르 수지.
【청구항 4】
제 1 항에 있어서, 전체 디올 유래의 잔기에 대하여 디에틸렌 글리콜 유래의 잔기를 6몰% 이하로 포함하는 폴리에스테르 수지.
【청구항 5】
제 1 항에 있어서, 수평균분자량이 15 , 000 내지 50 , 000 g/iTOl인 5 폴리에스테르 수지 .
【청구항 6】
제 1 항에 있어서, 유리전이온도가 80 내지 105°C인 폴리에스테르 수지 10. [청구항 7】
제 1 항에 있어서, 오르토클로로페놀에 1.2g/dl의 농도로 용해시켜 35°C에서 측정한 고유점도가 0.
7 내지 1.4 dl/g인 폴리에스테르 수지.
【청구항 8】 '
15 제 1 항에 있어서, 상기 폴리에스테르 수지를 29CTC에서 사출 성형하여 얻은 30隱 X 30mm X 3隱 (가로 X 세로 X두께) 크기의 시편에 대하여 색차계를 이용하여 측정한 color b값이 -2.0 내지 3.0인 폴리에스테르 수지.
【청구항 9]
20 제 1 항에 있어서, 사출 성형품, 병, 시트, 다층시트, 연신 필름 또는 섬유로 사용되는 폴리에스테르 수지.
【청구항 10]
(a) 테레프탈산 혹은 이의 유도체를 포함하는 ( i ) 디카르복실산 혹은 25 이의 유도체와, 전체 디올에 대하여 0.5 내지 25몰%의 아이소소바이드를 포함하는 ( ii ) 디올의 에스테르화 반웅 또는 에스테르 교환 반웅 단계; 및
(b) 상기 에스테르화 또는 에스테르 교환 반웅 생성물의 중축합 반웅 단계를 포함하는 제 1 항의 폴리에스테르 수지의 제조 방법.
30
【청구항 11】 제 10 항에 있어서, 상기 (a) 에스테르화 반웅 또는 에스테르 교환 반웅 시작 전 슬러리에 혹은 반웅 완료 후 생성물에 중축합 촉매, 안정제, 정색제, 결정화제, 산화방지제 또는 가지화제를 첨가하는 폴리에스테르 수지의 제조 방법 .
【청구항 12]
제 10 항에 있어서, 디카르복실산 혹은 이의 유도체가 디카르복실산이고, 디카르복실산 혹은 이의 유도체와 디올의 초기 흔합 몰 비율은 1 : 1.01 내지 1.04인 폴리에스테르 수지의 제조 방법.
【청구항 13】
제 10 항에 있어서, 디카르복실산 혹은 이의 유도체가 디카르복실산 알킬 에스테르 혹은 디카복실산무수물이고, 디카르복실산 혹은 이의 유도체와 디올의 초기 흔합 몰 비율은 1 :2.0 내지 1 : 2. 1인 폴리에스테르 수지의 제조 방법 .
【청구항 14】
제 10 항에 있어서, (b) 중축합 반응 단계 전 에스테르화 반웅 혹은 에스테르 교환 반응을 통해 얻은 반웅 생성물을 400 내지 ImmHg의 감압 조건에서 0.2 내지 3시간 동안 방치하는 하는 것을 추가로 포함하는 폴리에스테르 수지의 제조 방법.
【청구항 15】
제 10 항에 있어서, (b) 중축합 반웅 단계는 400 내지 O . OlmmHg의 압력 하에서 진행되는 폴리에스테르 수지의 제조 방법.
【청구항 16】
제 10 항에 있어서, (b) 중축합 반웅 단계 후에 추가로 (c) 중축합 반웅으로 제조된 폴리머를 결정화하는 단계 및 (d) 결정화된 폴리머를 고상 중합하는 단계를 포함하는 폴리에스테르 수지의 제조 방법 .
【청구항 17]
거 1 16 항에 있어서, (c) 결정화 단계 이후에 얻어진 결정화된 폴리머를 물로 세척하여 미반웅 원료를 제거하는 폴리에스테르 수지의 제조 방법 .
【청구항 18】
제 16 항에 있어서, (d) 결정화된 폴리머를 고상 중합하는 단계는 오르토클로로페놀에 1.2g/dl의 농도로 150°C에서 15 분간 용해시켜 35°C에서 측정한 고유점도가 0.80 dl/g 이상의 값에 도달하도록 결정화된 폴리머를 고상 중합하는 폴리에스테르 수지의 제조 방법 .
PCT/KR2017/003438 2016-04-06 2017-03-29 폴리에스테르 수지 WO2017176005A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17779305.6A EP3441414A4 (en) 2016-04-06 2017-03-29 POLYESTER RESIN
CN201780018783.8A CN108884215B (zh) 2016-04-06 2017-03-29 聚酯树脂
JP2018546674A JP6933657B6 (ja) 2016-04-06 2017-03-29 ポリエステル樹脂の製造方法
US16/078,207 US20190055349A1 (en) 2016-04-06 2017-03-29 Polyester resin
US17/029,822 US11939425B2 (en) 2016-04-06 2020-09-23 Polyester resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0042407 2016-04-06
KR1020160042407A KR102553772B1 (ko) 2016-04-06 2016-04-06 폴리에스테르 수지

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/078,207 A-371-Of-International US20190055349A1 (en) 2016-04-06 2017-03-29 Polyester resin
US17/029,822 Division US11939425B2 (en) 2016-04-06 2020-09-23 Polyester resin

Publications (1)

Publication Number Publication Date
WO2017176005A1 true WO2017176005A1 (ko) 2017-10-12

Family

ID=60000500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003438 WO2017176005A1 (ko) 2016-04-06 2017-03-29 폴리에스테르 수지

Country Status (7)

Country Link
US (2) US20190055349A1 (ko)
EP (1) EP3441414A4 (ko)
JP (1) JP6933657B6 (ko)
KR (1) KR102553772B1 (ko)
CN (1) CN108884215B (ko)
TW (1) TWI728088B (ko)
WO (1) WO2017176005A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514021A (ja) * 2018-02-19 2021-06-03 ロケット フレールRoquette Freres 亀裂現象に対する改善された耐性を有する熱可塑性ポリエステル
JP2021526172A (ja) * 2018-05-31 2021-09-30 ロケット フレールRoquette Freres 少なくとも1つの1,4:3,6−ジアンヒドロヘキシトール単位を含むポリエステルの結晶化方法
JP2022504586A (ja) * 2018-10-10 2022-01-13 エスケー ケミカルズ カンパニー リミテッド 耐化学性および透明度に優れたポリエステル共重合体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553772B1 (ko) * 2016-04-06 2023-07-07 에스케이케미칼 주식회사 폴리에스테르 수지
CN110382591A (zh) * 2017-05-31 2019-10-25 Sk化学株式会社 聚酯树脂、其制备方法以及由其形成的树脂模制产品
CN110573551B (zh) 2017-06-22 2022-02-15 Sk化学株式会社 聚酯容器及其制造方法
KR20190001551A (ko) 2017-06-26 2019-01-04 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조 방법
JP7096278B2 (ja) * 2020-03-18 2022-07-05 帝人フロンティア株式会社 送風ダクト
KR20220001371A (ko) * 2020-06-29 2022-01-05 에스케이케미칼 주식회사 재사용 단량체를 포함하는 폴리에스테르 공중합체
CN112778506B (zh) * 2020-12-24 2022-09-16 绍兴瑞康生物科技有限公司 一种透明高分子材料及其制备方法和应用
CN114478563B (zh) * 2021-12-30 2023-09-29 国科温州研究院(温州生物材料与工程研究所) 一种异山梨醇快速结晶的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007447A (ko) * 1998-04-23 2006-01-24 이 아이 듀폰 디 네모아 앤드 캄파니 공단량체로서 이소소르바이드를 포함하고 다른 열가소성중합체와 블렌드된 폴리에스테르
JP2012046686A (ja) * 2010-08-30 2012-03-08 Toyobo Co Ltd イソソルビド共重合ポリエステル樹脂及びその製造方法
KR20130055207A (ko) * 2011-11-18 2013-05-28 에스케이케미칼주식회사 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
JP2014019008A (ja) * 2012-07-15 2014-02-03 Mitsubishi Plastics Inc 積層ポリエステルフィルム
JP2015091912A (ja) * 2013-11-08 2015-05-14 東レ株式会社 ポリエステルの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959066A (en) * 1998-04-23 1999-09-28 Hna Holdings, Inc. Polyesters including isosorbide as a comonomer and methods for making same
US6656577B1 (en) * 2002-06-14 2003-12-02 E. I. Du Pont De Nemours & Company Process for making poly(ethylene-co-isosorbide) terephthalate polymer
US6914120B2 (en) * 2002-11-13 2005-07-05 Eastman Chemical Company Method for making isosorbide containing polyesters
US6737481B1 (en) * 2002-12-19 2004-05-18 E. I. Du Pont De Nemours And Company Ester-modified dicarboxylate polymers
DE602005027562D1 (en) * 2004-05-31 2011-06-01 Mitsui Chemicals Inc Aliphatisches polyestercopolymer
EP1838770A1 (en) * 2004-09-14 2007-10-03 E.I. Dupont De Nemours And Company Processes for making low color poly(ethylene-co-isosorbide) terephthalate polymers
JP2006089629A (ja) * 2004-09-24 2006-04-06 Mitsubishi Chemicals Corp ポリエステル樹脂
KR20110028696A (ko) * 2009-09-14 2011-03-22 에스케이케미칼주식회사 아이소소바이드와 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지 및 그 제조방법
JP2012012578A (ja) * 2010-06-04 2012-01-19 Fujifilm Corp ポリエステル樹脂組成物及びその製造方法、ポリエステルフィルム、並びに太陽電池発電モジュール
CN102807671A (zh) * 2011-05-31 2012-12-05 东丽纤维研究所(中国)有限公司 一种制备高分子量脂肪族聚酯的固相聚合方法
KR101801703B1 (ko) * 2011-11-18 2017-11-28 에스케이케미칼주식회사 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
KR101995457B1 (ko) * 2012-05-25 2019-07-02 에스케이케미칼 주식회사 폴리에스테르 수지의 제조 방법
KR102553772B1 (ko) * 2016-04-06 2023-07-07 에스케이케미칼 주식회사 폴리에스테르 수지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007447A (ko) * 1998-04-23 2006-01-24 이 아이 듀폰 디 네모아 앤드 캄파니 공단량체로서 이소소르바이드를 포함하고 다른 열가소성중합체와 블렌드된 폴리에스테르
JP2012046686A (ja) * 2010-08-30 2012-03-08 Toyobo Co Ltd イソソルビド共重合ポリエステル樹脂及びその製造方法
KR20130055207A (ko) * 2011-11-18 2013-05-28 에스케이케미칼주식회사 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
JP2014019008A (ja) * 2012-07-15 2014-02-03 Mitsubishi Plastics Inc 積層ポリエステルフィルム
JP2015091912A (ja) * 2013-11-08 2015-05-14 東レ株式会社 ポリエステルの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514021A (ja) * 2018-02-19 2021-06-03 ロケット フレールRoquette Freres 亀裂現象に対する改善された耐性を有する熱可塑性ポリエステル
JP7304356B2 (ja) 2018-02-19 2023-07-06 ロケット フレール 亀裂現象に対する改善された耐性を有する熱可塑性ポリエステル
JP2021526172A (ja) * 2018-05-31 2021-09-30 ロケット フレールRoquette Freres 少なくとも1つの1,4:3,6−ジアンヒドロヘキシトール単位を含むポリエステルの結晶化方法
JP7497301B2 (ja) 2018-05-31 2024-06-10 ロケット フレール 少なくとも1つの1,4:3,6-ジアンヒドロヘキシトール単位を含むポリエステルの結晶化方法
JP2022504586A (ja) * 2018-10-10 2022-01-13 エスケー ケミカルズ カンパニー リミテッド 耐化学性および透明度に優れたポリエステル共重合体

Also Published As

Publication number Publication date
JP2019513847A (ja) 2019-05-30
JP6933657B6 (ja) 2021-10-20
TWI728088B (zh) 2021-05-21
KR20170114829A (ko) 2017-10-16
EP3441414A4 (en) 2019-09-04
US11939425B2 (en) 2024-03-26
TW201738316A (zh) 2017-11-01
US20210017331A1 (en) 2021-01-21
JP6933657B2 (ja) 2021-09-08
CN108884215A (zh) 2018-11-23
EP3441414A1 (en) 2019-02-13
CN108884215B (zh) 2021-07-20
KR102553772B1 (ko) 2023-07-07
US20190055349A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017176005A1 (ko) 폴리에스테르 수지
JP6936802B6 (ja) ポリエステル樹脂、その製造方法およびこれから形成された樹脂成形品
US11787901B2 (en) Polyester container and manufacturing method therefor
TW200411000A (en) Ester-modified dicarboxylate polymers
US11713373B2 (en) Polyester resin, method for preparing same, and resin molded product formed therefrom
KR20200089585A (ko) 폴리에스테르 필름 및 이의 제조 방법
CN114096614A (zh) 聚酯树脂共混物
JP7474263B2 (ja) ポリエステルフィルムおよびその製造方法
KR20210025466A (ko) 폴리에스테르 수지 혼합물
JP7431862B2 (ja) ポリエステル樹脂混合物
TWI791114B (zh) 具有優異耐化學性與透明度的聚酯共聚物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017779305

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017779305

Country of ref document: EP

Effective date: 20181106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779305

Country of ref document: EP

Kind code of ref document: A1