JP2022504586A - 耐化学性および透明度に優れたポリエステル共重合体 - Google Patents

耐化学性および透明度に優れたポリエステル共重合体 Download PDF

Info

Publication number
JP2022504586A
JP2022504586A JP2021519667A JP2021519667A JP2022504586A JP 2022504586 A JP2022504586 A JP 2022504586A JP 2021519667 A JP2021519667 A JP 2021519667A JP 2021519667 A JP2021519667 A JP 2021519667A JP 2022504586 A JP2022504586 A JP 2022504586A
Authority
JP
Japan
Prior art keywords
reactor
polyester copolymer
pressure
temperature
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021519667A
Other languages
English (en)
Inventor
ヨジン イ
スンギ キム
ダヨン ウォン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Chemicals Co Ltd
Original Assignee
SK Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Chemicals Co Ltd filed Critical SK Chemicals Co Ltd
Publication of JP2022504586A publication Critical patent/JP2022504586A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/42Cyclic ethers; Cyclic carbonates; Cyclic sulfites; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/56Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds other than from esters thereof
    • C08G63/58Cyclic ethers; Cyclic carbonates; Cyclic sulfites ; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2390/00Containers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明によるポリエステル共重合体は、耐化学性および透明度に優れ、各種容器の製造に有用に適用することができる。

Description

本発明は耐化学性および透明度に優れ、各種容器の製造に有用に適用可能なポリエステル共重合体に関する。
ポリエステル樹脂に代表されるPET(polyethylene terephthalate)は安い価格および優れた物理/化学的性質によって商業的に広く使用されている。しかし、結晶性が高いため加工時高い温度が求められ、成形製品の透明性が劣る問題がある。また、PETは耐熱性が良くないため飲料の高温充填の過程でPETで成形された瓶の形態が変形される問題をもたらす。これを防ぐために瓶の成形前/後のボトルネック結晶化工程およびHeat setting工程を経て瓶の耐熱性を高めたりもするが、これによって瓶の透明度は減少する。
透明度が高い樹脂として非結晶樹脂であるPETG(glycol-modified polyethylene terephthalate)が知られているが、透明度は優れるものの化学物質の内部浸透が容易であるため耐化学性が良くない短所がある。特に、紫外線遮断剤成分が含まれた日焼け止め製品や、アルコール成分が多量含まれた香水製品のような化粧品容器、または各種化学薬品の容器は高い透明度とともに耐化学性も求められる。
したがって、従来に知られているPETG樹脂に比べて透明度が等しいかまたは改善されるだけでなく、耐化学性が向上した新規の樹脂の開発が必要である。
本発明は耐化学性および透明度に優れるポリエステル共重合体を提供する。
また、本発明は前記ポリエステル共重合体を含む物品を提供する。
前記課題を解決するために、本発明は下記化学式1で表される第1繰り返し単位;および下記化学式2で表される第2繰り返し単位および下記化学式3で表される第3繰り返し単位のうちのいずれか一つ以上を含む、ポリエステル共重合体であって、前記ポリエステル共重合体は下記数式1を満足する、ポリエステル共重合体を提供する:
[数式1]
H≦6
前記数式1において、
Hは前記ポリエステル共重合体の試験片(厚さ:6mm)をエタノールに浸漬した後60度で24時間保管した後ASTM D1003-97に基づいて測定したhaze値を意味し、
Figure 2022504586000001
前記化学式1~3において、
x、yおよびzはそれぞれ共重合体内のモル分率として、yおよびzの合計が5モル%以上20モル%未満である。
以下、本発明を詳細に説明する。
(繰り返し単位)
本発明による繰り返し単位は、テレフタル酸またはその誘導体と後述するジオール化合物が反応して製造される。前記テレフタル酸の誘導体とは、前記繰り返し単位を形成できる化合物として、イソフタル酸、ジメチルイソフタレート、フタル酸、ジメチルフタレート、フタル酸無水物などが挙げられる。また、各繰り返し単位の製造時テレフタル酸またはその誘導体を1種または2種以上使用して製造することができる。
本発明による第1繰り返し単位は、テレフタル酸またはその誘導体とエチレングリコールが反応して製造されるものであり、本発明によるポリエステル共重合体の主な繰り返し単位である。前記化学式1において、xは前記第1繰り返し単位のポリエステル共重合体内のモル分率として、好ましくは80モル%以上95モル%以下である。
本発明による第2繰り返し単位はテレフタル酸またはその誘導体とイソソルビドが反応して製造され、本発明による第3繰り返し単位はテレフタル酸またはその誘導体とシクロヘキサンジメタノールが反応して製造される。前記第2繰り返し単位および第3繰り返し単位のうちの少なくとも一つ以上が本発明によるポリエステル共重合体に含まれ、好ましくは前記第2繰り返し単位および第3繰り返し単位をすべて含む。前記化学式2において、yは前記第2繰り返し単位のポリエステル共重合体内のモル分率であり、前記化学式3において、zは前記第3繰り返し単位のポリエステル共重合体内のモル分率である。
好ましくは、yおよびzの合計が5モル%以上20モル%未満である。この時、前記ポリエステル共重合体内に前記第2繰り返し単位のみ含まれる場合、zは0であり、前記ポリエステル共重合体内に前記第3繰り返し単位のみ含まれる場合、yは0である。
特に、本発明によるポリエステル共重合体は耐化学性に優れるものであり、前記第2繰り返し単位および第3繰り返し単位のモル分率がこのような耐化学性に重要な影響を及ぼす。後述する実施例のように、上述した第2繰り返し単位および第3繰り返し単位のモル分率を有する場合、そうではない場合に比べて耐化学性が顕著に優れることを確認することができる。
(ポリエステル共重合体の製造方法)
前記繰り返し単位はテレフタル酸またはその誘導体とエチレングリコール、イソソルビドおよび/またはシクロヘキサンジメタノールの(a)エステル化反応またはエステル交換反応、および(b)重縮合反応で製造することができる。
具体的には、(a)テレフタル酸またはその誘導体、エチレングリコール、およびイソソルビドおよび/またはシクロヘキサンジメタノールのエステル化反応またはエステル交換反応段階;および(b)前記エステル化またはエステル交換反応生成物を重縮合反応する段階により前記ポリエステル共重合体を製造することができる。
ここで、前記製造方法はバッチ(batch)式、半-連続式または連続式で行われ得、前記エステル化反応またはエステル交換反応と重縮合反応は不活性気体の雰囲気下で行われることが好ましく、前記ポリエステル共重合体とその他添加剤の混合は単純混合であるか、押出による混合であり得る。
追加的に必要に応じて、固相重合反応を引き続き行うことができる。具体的には、本発明の一実施形態によるポリエステル共重合体の製造方法は(b)段階後に(c)重縮合反応(溶融重合)で製造されたポリマーを結晶化する段階;および(d)結晶化されたポリマーを固相重合する段階をさらに含み得る。
前記(a)エステル化反応またはエステル交換反応では触媒が使用される。このような触媒としてはナトリウム、マグネシウムのメチラート(methylate);Zn、Cd、Mn、Co、Ca、Ba、Ti、Snなどの酢酸塩、ホウ酸塩、脂肪酸塩、炭酸塩、アルコキシ塩;金属Mg;Pb、Zn、Sb、Ge、Snなどの酸化物などを例示することができる。
前記(a)エステル化反応またはエステル交換反応はバッチ(batch)式、半-連続式または連続式で行われ得、それぞれの原料は別に投入され得るが、ジオールにジカルボン酸またはその誘導体を混合したスラリー形態で投入することが好ましい。
前記(a)エステル化反応またはエステル交換反応開始前のスラリーにまたは反応完了後の生成物に重縮合触媒、安定剤、呈色剤、結晶化剤、酸化防止剤、分岐剤(branching agent)などを添加することができる。
しかし、上述した添加剤の投入時期はこれに限定されるものではなく、ポリエステル共重合体の製造段階中の任意の時点に投入されることもできる。前記重縮合触媒としては、通常のチタン、ゲルマニウム、アンチモン、アルミニウム、スズ系化合物などを一つ以上適宜選択して使用することができる。有用なチタン系触媒としては、テトラエチルチタネート、アセチルトリプロピルチタネート、テトラプロピルチタネート、テトラブチルチタネート、ポリブチルチタネート、2-エチルヘキシルチタネート、オクチレングリコールチタネート、ラクテートチタネート、トリエタノールアミンチタネート、アセチルアセトネートチタネート、エチルアセトアセチックエステルチタネート、イソステアリルチタネート、チタニウムジオキシド、チタニウムジオキシド/シリコンジオキシド共重合体、チタニウムジオキシド/ジルコニウムジオキシド共重合体などを例示することができる。また、有用なゲルマニウム系触媒としてはゲルマニウムジオキシドおよびそれを用いた共重合体などがある。前記安定剤としては、一般にリン酸、トリメチルホスフェート、トリエチルホスフェートなどのリン系化合物を使用し得、その添加量はリン元素量を基準として最終ポリマー(ポリエステル共重合体)の重量に対して10~200ppmである。前記安定剤の添加量が10ppm未満であれば、安定化効果が不十分であるため、ポリマーの色相が黄色く変わる恐れがあり、200ppmを超えると所望する高重合度のポリマーが得られない恐れがある。また、ポリマーの色相を向上させるために添加される呈色剤としては、酢酸コバルト、コバルトプロピオネートなどの通常の呈色剤を例示することができ、その添加量はコバルト元素量を基準として最終ポリマー(ポリエステル共重合体)の重量に対して10~200ppmである。必要に応じて、有機化合物呈色剤としてアントラキノン(Anthraquinone)系化合物、ペリノン(Perinone)系化合物、アゾ(Azo)系化合物、メチン(Methine)系化合物などを使用することができ、市販の製品としてはClarient社のPolysynthren Blue RLSまたはClarient社のSolvaperm Red BBなどのトナーを使用することができる。前記有機化合物呈色剤の添加量は最終ポリマー重量に対して0~50ppmに調節される。仮に、呈色剤を前記範囲の外の含有量で使用する場合はポリエステル共重合体の黄色を十分に分けることができないか物性を低下させ得る。
前記結晶化剤としては結晶核剤、紫外線吸収剤、ポリオレフィン系樹脂、ポリアミド樹脂などを例示することができる。前記酸化防止剤としてはヒンダードフェノール系酸化防止剤、ホスファート系酸化防止剤、チオエーテル系酸化防止剤またはこれらの混合物などを例示することができる。前記分岐剤としては3以上の官能基を有する通常の分岐剤として、例えば、無水トリメリット酸(trimellitic anhydride)、トリメチロールプロパン(trimethylol propane)、トリメリト酸(trimellitic acid)またはこれらの混合物などを例示することができる。
前記(a)エステル化反応またはエステル交換反応は150~300℃または200~270℃の温度および0~10.0kgf/cm(0~7355.6mmHg)、0~5.0kgf/cm(0~3677.8mmHg)または0.1~3.0kgf/cm(73.6~2206.7mmHg)の圧力条件で実施される。ここで括弧の外に記載された圧力はゲージ圧力を意味し(kgf/cm単位で記載される)、括弧の中に記載された圧力は絶対圧力を意味する(mmHg単位で記載される)。
前記反応温度および圧力が前記範囲を外れる場合、ポリエステル共重合体の物性が低下する恐れがある。前記反応時間(平均滞留時間)は通常1時間~24時間または2時間~8時間であり、反応温度、圧力、使用するジカルボン酸またはその誘導体に対してジオールのモル比によって変わる。
前記エステル化またはエステル交換反応により得た生成物は重縮合反応によってより高い重合度のポリエステル共重合体で製造される。一般に、前記重縮合反応は150~300℃、200~290℃または250~290℃の温度および0.01~400mmHg、0.05~100mmHgまたは0.1~10mmHgの減圧条件で行われる。ここで圧力は絶対圧力の範囲を意味する。前記0.01~400mmHgの減圧条件は重縮合反応の副産物であるグリコールなどと未反応物であるイソソルビドなどを除去するためである。したがって、前記減圧条件が前記範囲を外れる場合、副産物および未反応物の除去が不充分な恐れがある。また、前記重縮合反応温度が前記範囲を外れる場合、ポリエステル共重合体の物性が低下する恐れがある。前記重縮合反応は、所望する固有粘度に到達するまで必要な時間の間、例えば、平均滞留時間1時間~24時間の間実施される。
ポリエステル共重合体内に残留するイソソルビドなどの未反応物の含有量を減少させる目的でエステル化反応またはエステル交換反応末期または重縮合反応初期、すなわち樹脂の粘度が十分に高くない状態で真空反応を意図的に長く維持して未反応の原料を系外に流出させ得る。樹脂の粘度が高くなると、反応器内に残留している原料が系外に抜け出にくくなる。一例として、重縮合反応前のエステル化反応またはエステル交換反応により得た反応生成物を約400~1mmHgまたは約200~3mmHg減圧条件で0.2時間~3時間の間放置してポリエステル共重合体内に残留するイソソルビドなどの未反応物を効果的に除去することができる。この時、前記生成水の温度はエステル化反応またはエステル交換反応温度と重縮合反応温度と同じであるかまたはその間の温度に調節され得る。
上記の真空反応の制御により未反応原料を系外に流出させる工程内容を追加することにより、ポリエステル共重合体内に残留するイソソルビドなどの未反応物の含有量を減少させることができ、その結果一実施形態の物性を充足するポリエステル共重合体をより効果的に得ることができる。
一方、重縮合反応後ポリマーの固有粘度は0.45~0.75dl/gであることが適当である。
特に、前述した(c)結晶化段階および(d)固相重合段階を採用すると、重縮合反応後ポリマーの固有粘度を0.45~0.75dl/g、0.45~0.70dl/gまたは0.50~0.65dl/gに調節し得る。仮に、重縮合反応後ポリマーの固有粘度が0.45dl/g未満の場合、固相重合反応での反応速度が顕著に低くなり、分子量分布が非常に広いポリエステル共重合体が得られ、固有粘度が0.75dl/gを超えると、溶融重合中の溶融物の粘度が上昇されることにより攪拌機と反応器の間での剪断応力(Shear Stress)によりポリマーが変色する可能性が増加し、アセトアルデヒドのような副反応物質も増加する。また、結晶化速度が顕著に遅くなって結晶化過程中に融着が発生し、ペレットの形も変形されやすい。
一方、前述した(c)結晶化段階および(d)固相重合段階を採用しない場合、重縮合反応後ポリマーの固有粘度を0.65~0.75dl/gに調節し得る。仮に、固有粘度が0.65dl/g未満の場合、低分子量の高分子によって結晶化速度が上昇して優れた耐熱性と透明性を有するポリエステル共重合体を提供することが難しく、固有粘度が0.75dl/gを超えると溶融重合中の融物の粘度が上昇されることにより攪拌機と反応器の間での剪断応力(Shear Stress)によりポリマーが変色する可能性が増加し、アセトアルデヒドのような副反応物質も増加する。
前記(a)および(b)段階により一実施形態によるポリエステル共重合体を製造することができる。そして、必要に応じて(b)重縮合反応段階後に(c)結晶化段階および(d)固相重合段階をさらに行いより高い重合度を有するポリエステル共重合体を提供することができる。
具体的には、前記(c)結晶化段階では(b)重縮合反応により得たポリマーを反応器の外に吐出して粒子化する。粒子化する方法はストランド状に押出した後冷却液で固化した後カッターで切断するストランドカッティング法であるが、ダイ孔を冷却液に浸漬させて冷却液中に直接押出してカッターで切断するアンダーウォーターカッティング法を用いることができる。一般にストランドカッティング法では冷却液の温度を低く維持し、ストランドがよく固化される場合のみカッティングに問題がない。アンダーウォーターカッティング法では冷却液の温度をポリマーに合わせて維持し、ポリマーの形状を均一にした方が良い。しかし、結晶性ポリマーの場合、吐出中の結晶化を誘導するためにわざと冷却液の温度を高く維持することもできる。
一方、粒子化されたポリマーを追加的に水洗浄することも可能である。水洗浄時水の温度はポリマーのガラス転移温度と同じであるかまたは約5~20℃程度低いのが好ましく、それ以上の温度では融着が発生し得るため好ましくない。吐出時結晶化を誘導したポリマーの粒子であればガラス転移温度より高い温度でも融着が発生しないので、結晶化程度に応じて水の温度を設定することができる。粒子化されたポリマーの水洗浄により未反応の原料のうち水に溶解する原料の除去が可能である。粒子が小さいほど粒子の重量に対して表面積が広くなるので粒子の大きさは小さいほど有利である。このような目的を達成するために粒子は約14mg以下の平均重量を有するように製造され得る。
粒子化されたポリマーは固相重合反応中に融着されることを防止するために結晶化段階を経る。大気、不活性ガス、水蒸気、水蒸気含有不活性ガスの雰囲気または溶液の中で行うことが可能であり、110℃~180℃または120℃~180℃で結晶化処理を行う。温度が低いと粒子の結晶が生成される速度が過度に遅くなり、温度が高いと結晶が作られる速度より粒子の表面が溶融する速度が速いため粒子どうしがくっついて融着を発生させる。粒子が結晶化されることにより粒子の耐熱性が上昇されるので、結晶化をいくつかの段階に分けて段階別に温度を上昇させて結晶化することも可能である。
固相重合反応は窒素、二酸化炭素、アルゴンなど不活性ガスの雰囲気下または400~0.01mmHgの減圧条件および180~220℃の温度で平均滞留時間1時間以上、好ましくは10時間以上の間行われる。このような固相重合反応により分子量が追加的に上昇され、溶融反応で反応せず残存している原料物質と反応中に生成された環状オリゴマー、アセトアルデヒドなどが除去される。
前記一実施形態によるポリエステル共重合体を提供するためには固有粘度が(b)重縮合反応段階で得た樹脂の固有粘度より0.10~0.40dl/g高い値に到達するまで固相重合を行い得る。仮に、固相重合反応後樹脂の固有粘度と固相重合反応前樹脂の固有粘度間の差が0.10dl/g未満の場合、十分な重合度向上効果を得ることができず、固相重合反応後樹脂の固有粘度と固相重合反応前樹脂の固有粘度間の差が0.40dl/gを超えると分子量分布が広くなり十分な耐熱性を示すことができず、低分子量高分子の含有量が相対的に増加して結晶化速度が増加することによりヘイズが発生する可能性が高くなる。
前記固相重合反応は樹脂の固有粘度が固相重合反応前の樹脂の固有粘度より0.10~0.40dl/g高く、0.70dl/g以上、0.70~1.0dl/g、または0.70~0.95dl/gの値に到達するまで行い得る。このような範囲の固有粘度に到達するまで固相重合すると高分子の分子量分布が狭くなって成形時の結晶化速度を下げることができる。そのため、透明度を低下させず、かつ耐熱性および結晶化度を向上させることができる。仮に、固相重合反応後樹脂の固有粘度が前記範囲未満であれば低分子量の高分子による結晶化速度の増加によって優れた耐熱性と透明性を有するポリエステル共重合体を提供することが難しくなる。
(ポリエステル共重合体の特性)
本発明によるポリエステル共重合体は耐化学性と透明性に優れ、そのため前記数式1を満足する。
前記数式1はhazeを測定しようとする試験片をエタノールに一定時間の間浸漬させた後測定することを意味し、耐化学性が良くない場合にはエタノール浸漬した後haze値が急激に増加する傾向がある。しかし、本発明によるポリエステル共重合体は耐化学性に優れ、前記数式1を満足する。
後述する実施例および比較例のように、本発明によるポリエステル共重合体は試験片をエタノールに浸漬した後60℃で24時間の間保管した後haze値を測定した時5以下の値を示したが、比較例はすべて6を超える値を示した。好ましくは、前記数式1のHが5以下である。また、haze値の理論的な下限は0であり、一例として前記H値は0.01以上、0.1以上、0.5以上、または1以上であり得る。
また、本発明によるポリエステル共重合体は試験片(厚さ:6mm)をASTM D1003-97に基づいて測定したhaze値が4以下であり、より好ましくは3.5以下、または3以下である。また、haze値の理論的な下限は0であり、一例として前記haze値は0.01以上、0.1以上、0.5以上、または1以上であり得る。
一方、本発明によるポリエステル共重合体は、数平均分子量(Mn)が10,000~40,000であり、より好ましくは15,000~35,000である。
また、本発明は前記ポリエステル共重合体から形成された物品を提供する。前記物品は物を入れる容器、例えば化粧品用容器、食品用容器などであり得、瓶(Bottle)、高温瓶(hot fill jar)、高圧容器、医療用物品およびSheetおよび板状に製作された物品などであり得る。また、前記物品は蓋、カバー、歯ブラシの柄などの射出物品などに製作することができ、異種の物質と多層に製作することもできる。
本発明によるポリエステル共重合体は、耐化学性および透明度に優れ、各種容器の製造に有用に適用することができる。
以下、本発明の理解を深めるために好ましい実施例を提示する。しかし、下記の実施例は本発明をより容易に理解するために提供されるだけであり、本発明の内容はこれによって限定されない。
下記実施例および比較例の製造過程で言及される物性あるいは分析は次のような方法により評価あるいは実行が行われた。
(1)固有粘度(IV):試料0.36±0.0002gを150℃のオルト-クロロフェノール30mLに15分間溶解させた後、35℃の恒温槽でUbbelodhe粘度計を用いて試料の固有粘度を測定した。
(2)ポリエステル共重合体内の酸およびジオール由来の残基組成は試料をCDCl溶媒に3mg/mLの濃度で溶解した後核磁気共鳴装置(JEOL、600MHz FT-NMR)を用いて25℃で得た1H-NMRスペクトルにより確認した。
[実施例1:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3257.4g)、エチレングリコール(1423.4g)、イソソルビド(229.2g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、0.7g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1.0kgf/cmだけ高い加圧状態にした(絶対圧力:1495.6mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を280℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.55dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
前記粒子を150℃で1時間の間放置して結晶化した後、20L容積の固相重合反応器に投入した。その後、前記反応器に窒素を50L/min速度で流した。この時、反応器の温度を常温から140℃まで40℃/時間の速度で上げ、140℃で3時間維持した後、200℃まで40℃/時間の速度で昇温して200℃で維持した。前記固相重合反応は反応器内の粒子の固有粘度(IV)が0.75dl/gになるまで行った。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は5モル%であった。
[実施例2:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3189.1g)、エチレングリコール(1334.1g)、イソソルビド(504.9g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、0.7g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1.0kgf/cmだけ高い加圧状態にした(絶対圧力:1495.6mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を280℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.50dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。引き続き前記粒子を70℃の水で5時間の間保管した後取り出して乾燥させた。
前記粒子を150℃で1時間の間放置して結晶化した後、20L容積の固相重合反応器に投入した。その後、前記反応器に窒素を50L/min速度で流した。この時、反応器の温度を常温から140℃まで40℃/時間の速度で上げ、140℃で3時間維持した後、200℃まで40℃/時間の速度で昇温して200℃で維持した。前記固相重合反応は反応器内の粒子の固有粘度(IV)が0.95dl/gになるまで行った。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は10モル%であった。
[実施例3:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3356.5g)、エチレングリコール(1341.4g)、イソソルビド(826.6g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、ブルートナーとしてPolysynthren Blue RLS(Clarient社、0.016g)、レッドトナーとしてSolvaperm Red BB(Clarient社、0.004g)、結晶化剤としてポリエチレン(LUTENE-H ME1000,株式会社LG化学、0.004g)、および酸化安定剤としてIganox 1076(4g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より0.5kgf/cmだけ高い加圧状態にした(絶対圧力:1127.8mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を275℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.60dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は5モル%であった。
[実施例4:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(4297.3g)、エチレングリコール(1845.8g)、シクロヘキサン-1,4-ジイルジメタノール(186.4g)、イソソルビド(189.0g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、1.1g)、および分岐剤としてTMA(Trimellitic anhydrate、22g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1kgf/cmだけ高い加圧状態にした(絶対圧力:1495.6mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、250℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を250℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を265℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.60dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は2モル%、シクロヘキサンジメタノール由来の残基は5モル%であった。
[実施例5:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3316.0g)、エチレングリコール(1164.2g)、シクロヘキサン-1,4-ジイルジメタノール(230.1g)、イソソルビド(87.5g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、0.8g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より2kgf/cmだけ高い加圧状態にした(絶対圧力:2231.1mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、255℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を255℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を285℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.55dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は2モル%、シクロヘキサンジメタノール由来の残基は8モル%であった。
[実施例6:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3124.0g)、エチレングリコール(1330.2g)、シクロヘキサン-1,4-ジイルジメタノール(216.8g)、イソソルビド(219.8g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、1.0g)、および酸化安定剤としてIganox 1076(15.4g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1.5kgf/cmだけ高い加圧状態にした(絶対圧力:1715.5mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、250℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を250℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を270℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.60dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
前記粒子を150℃で1時間の間放置して結晶化した後、20L容積の固相重合反応器に投入した。その後、前記反応器に窒素を50L/min速度で流した。この時、反応器の温度を常温から140℃まで40℃/時間の速度で上げ、140℃で3時間維持した後、200℃まで40℃/時間の速度で昇温して200℃で維持した。前記固相重合反応は反応器内の粒子の固有粘度(IV)が0.75dl/gになるまで行った。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は4モル%、シクロヘキサンジメタノール由来の残基は8モル%であった。
[実施例7:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3371.0g)、エチレングリコール(1435.3g)、シクロヘキサン-1,4-ジイルジメタノール(438.6g)、イソソルビド(177.9g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、ブルートナーとしてPolysynthren Blue RLS(Clarient社、0.013g)、およびレッドトナーとしてSolvaperm Red BB(Clarient社、0.004g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1kgf/cmだけ高い加圧状態にした(絶対圧力:1495.6mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、265℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を265℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を275℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.70dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は3モル%、シクロヘキサンジメタノール由来の残基は15モル%であった。
[実施例8:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3158.8g)、エチレングリコール(1427.5g)、シクロヘキサン-1,4-ジイルジメタノール(520.6g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、ブルートナーとしてPolysynthren Blue RLS(Clarient社、0.020g)、およびレッドトナーとしてSolvaperm Red BB(Clarient社、0.008g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より0.5kgf/cmだけ高い加圧状態にした(絶対圧力:1127.8mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を275℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.80dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してシクロヘキサンジメタノール由来の残基は18モル%であった。
[実施例9:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にジメチルフタレート(3727.0g)、エチレングリコール(2620.5g)、イソソルビド(841.5g)を投入し、触媒としてMn(II) acetate tetrahydrate(1.5g)、およびSb(1.8g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、0.7g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力を常圧にし、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、240℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を240℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を265℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.50dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
前記粒子を150℃で1時間の間放置して結晶化した後、20L容積の固相重合反応器に投入した。その後、前記反応器に窒素を50L/min速度で流した。この時、反応器の温度を常温から140℃まで40℃/時間の速度で上げ、140℃で3時間維持した後、200℃まで40℃/時間の速度で昇温して200℃で維持した。前記固相重合反応は反応器内の粒子の固有粘度(IV)が0.95dl/gになるまで行った。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してジメチルフタレート由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は10モル%であった。
[実施例10:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3029.7g)、イソフタル酸(159.5g)、エチレングリコール(1334.1g)、イソソルビド(504.9g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、0.7g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1.0kgf/cmだけ高い加圧状態にした(絶対圧力:1495.6mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を280℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.50dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
前記粒子を150℃で1時間の間放置して結晶化した後、20L容積の固相重合反応器に投入した。その後、前記反応器に窒素を50L/min速度で流した。この時、反応器の温度を常温から140℃まで40℃/時間の速度で上げ、140℃で3時間維持した後、200℃まで40℃/時間の速度で昇温して200℃で維持した。前記固相重合反応は反応器内の粒子の固有粘度(IV)が0.95dl/gになるまで行った。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸およびイソフタル酸由来の残基は合計100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は10モル%であった。
[比較例1:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3000.5g)、エチレングリコール(1064.6g)、イソソルビド(1187.5g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、ブルートナーとしてPolysynthren Blue RLS(Clarient社、0.017g)、およびレッドトナーとしてSolvaperm Red BB(Clarient社、0.006g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より0.5kgf/cmだけ高い加圧状態にした(絶対圧力:1127.8mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で100Torr(絶対圧力:100mmHg)まで10分にわたって下げ、1時間の間圧力を維持した後、5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を280℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.60dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は25モル%であった。
[比較例2:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3275.3g)、エチレングリコール(1217.2g)、シクロヘキサン-1,4-ジイルジメタノール(582.5g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、0.7g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1kgf/cmだけ高い加圧状態にした(絶対圧力:1495.6mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を280℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.60dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してシクロヘキサンジメタノール由来の残基は20.5モル%であった。
[比較例3:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(2953.7g)、エチレングリコール(717.1g)、シクロヘキサン-1,4-ジイルジメタノール(1024.9g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、ブルートナーとしてPolysynthren Blue RLS(Clarient社、0.012g)、レッドトナーとしてSolvaperm Red BB(Clarient社、0.004g)、および酸化安定剤としてIrganox 1076(4g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より0.5kgf/cmだけ高い加圧状態にした(絶対圧力:1127.8mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、255℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を255℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を280℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.80dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してシクロヘキサンジメタノール由来の残基は40モル%であった。
[比較例4:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(2518.5g)、エチレングリコール(1044.1g)、シクロヘキサン-1,4-ジイルジメタノール(240.3g)、イソソルビド(398.7g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、ブルートナーとしてPolysynthren Blue RLS(Clarient社、0.010g)、およびレッドトナーとしてSolvaperm Red BB(Clarient社、0.003g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1.5kgf/cmだけ高い加圧状態にした(絶対圧力:1715.5mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、260℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を260℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を270℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.65dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してイソソルビド由来の残基は11モル%、シクロヘキサンジメタノール由来の残基は11モル%であった。
[比較例5:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3631.3g)、エチレングリコール(1763.1g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.50g)、呈色剤として酢酸コバルト(cobalt acetate、0.7g)、および酸化安定剤としてIrganox 1076(17.5g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より2kgf/cmだけ高い加圧状態にした(絶対圧力:2231.1mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、265℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を265℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を270℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.60dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
前記粒子を150℃で1時間の間放置して結晶化した後、20L容積の固相重合反応器に投入した。その後、前記反応器に窒素を50L/min速度で流した。この時、反応器の温度を常温から140℃まで40℃/時間の速度で上げ、140℃で3時間維持した後、200℃まで40℃/時間の速度で昇温して200℃で維持した。前記固相重合反応は反応器内の粒子の固有粘度(IV)が0.75dl/gになるまで行った。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してエチレングリコールおよびジエチレングリコール由来の残基は100モル%であった。
[比較例6:ポリエステル共重合体の製造]
カラムと、水によって冷却が可能なコンデンサが連結されている10L容積の反応器にテレフタル酸(3329.2g)、エチレングリコール(1517.0g)、シクロヘキサン-1,4-ジイルジメタノール(86.6g)を投入し、触媒としてGeO(1.0g)、安定剤としてリン酸(phosphoric acid、1.46g)、呈色剤として酢酸コバルト(cobalt acetate、0.8g)、および結晶化剤としてポリエチレン(LUTENE-H ME1000,株式会社LG化学、0.016g)を使用した。
引き続き、反応器に窒素を注入して反応器の圧力が常圧より1.5kgf/cmだけ高い加圧状態にした(絶対圧力:1715.5mmHg)。そして、反応器の温度を220℃まで90分にわたって上げ、220℃で2時間維持した後、270℃まで2時間にわたって上げた。その次に、反応器内の混合物を肉眼で観察して混合物が透明になるまで反応器の温度を270℃に維持してエステル化反応を行った。この過程でカラムとコンデンサを経て副産物が流出した。エステル化反応が完了すると、加圧状態の反応器内の窒素を外部に排出して反応器の圧力を常圧に下げた後、反応器内の混合物を真空反応が可能な7L容積の反応器に移送させた。
そして、反応器の圧力を常圧状態で5Torr(絶対圧力:5mmHg)まで30分にわたって下げ、同時に反応器の温度を275℃まで1時間にわたって上げ、反応器の圧力を1Torr(絶対圧力:1mmHg)以下に維持して重縮合反応を実施した。重縮合反応の初期には攪拌速度を速く設定するが、重縮合反応が行われるに伴い反応物の粘度上昇により攪拌力が弱くなるかまたは反応物の温度が設定した温度以上に上がる場合、攪拌速度を適宜調節することができる。前記重縮合反応は反応器内の混合物(溶融物)の固有粘度(IV)が0.65dl/gになるまで行った。反応器内の混合物の固有粘度が所望する水準に到達すると、混合物を反応器の外部に吐出してストランド(strand)化し、これを冷却液で固化後平均重量が12~14mg程度になるように粒子化した。
このように製造されたポリエステル共重合体に含まれた全体酸由来の残基に対してテレフタル酸由来の残基は100モル%であり、全体ジオール由来の残基に対してシクロヘキサンジメタノール由来の残基は3モル%であった。
[実験例]
前記実施例および比較例で製造したポリエステル共重合体について、以下の物性を測定した。
1)数平均分子量:GPC(Gel Permeation Chromatography)により測定した。具体的には、3mLのo-chlorophenolに分子量を確認しようとするポリエステル共重合体0.03gを入れ、150℃で15分間溶解させた後常温に冷却した状態でクロロホルム9mLを追加して試料を準備した。そして、2個のカラム(Shodex LF804)を使用して40℃の温度で0.7mL/minの流速で前記試料に対するゲル透過クロマトグラフィーを行った。ポリスチレンを標準物質として数平均分子量(Mn)を算出した。
2)結晶化した後のTm:前記実施例および比較例で製造したポリエステル共重合体を180℃で100分間結晶化した後、時差注射熱分析法(DSC法)により溶融点を測定した。
3)Haze:厚さ6mmの試験片を準備し、これをエタノールに浸漬した後60℃で24時間の間保管した。その後試験片を水で洗浄した後ASTM D1003-97測定法でMinolta社のCM-3600A測定機を用いて試験片のHazeを測定した。
4)半結晶化時間:時差注射熱分析法(DSC法)で測定した。先に、前記実施例および比較例で製造したポリエステル共重合体を完全に溶融させた後結晶化になる温度でその温度を維持し、この時結晶化しながら発熱する全体発熱量の半分の発熱量が現れる時間(分)を測定した。
前記結果を下記表1に示した。
Figure 2022504586000002

Claims (8)

  1. 下記化学式1で表される第1繰り返し単位;および下記化学式2で表される第2繰り返し単位および下記化学式3で表される第3繰り返し単位のうちのいずれか一つ以上を含む、ポリエステル共重合体であって、
    前記ポリエステル共重合体は下記数式1を満足する、
    ポリエステル共重合体:
    [数式1]
    H≦6
    前記数式1において、
    Hは前記ポリエステル共重合体の試験片(厚さ:6mm)をエタノールに浸漬した後60度で24時間保管した後ASTM D1003-97に基づいて測定したhaze値を意味し、
    Figure 2022504586000003
    前記化学式1~3において、
    x、yおよびzはそれぞれ共重合体内のモル分率として、yおよびzの合計が5モル%以上20モル%未満である。
  2. 前記Hが5以下である、請求項1に記載のポリエステル共重合体。
  3. 前記ポリエステル共重合体は前記第2繰り返し単位および第3繰り返し単位をすべて含む、請求項1に記載のポリエステル共重合体。
  4. yは1モル%以上5モル%以下であり、
    zは5モル%以上15モル%以下である、請求項3に記載のポリエステル共重合体。
  5. 前記ポリエステル共重合体の数平均分子量は10,000~40,000である、請求項1に記載のポリエステル共重合体。
  6. 前記ポリエステル共重合体は180℃で100分間結晶化した後の溶融点が240℃以下である、請求項1に記載のポリエステル共重合体。
  7. 前記ポリエステル共重合体は半結晶化時間が100分以下である、請求項1に記載のポリエステル共重合体。
  8. 請求項1ないし7のいずれか一項によるポリエステル共重合体を含む、物品。

JP2021519667A 2018-10-10 2019-05-09 耐化学性および透明度に優れたポリエステル共重合体 Pending JP2022504586A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180120750A KR20200040615A (ko) 2018-10-10 2018-10-10 내화학성 및 투명도가 우수한 폴리에스테르 공중합체
KR10-2018-0120750 2018-10-10
PCT/KR2019/005998 WO2020075947A1 (ko) 2018-10-10 2019-05-09 내화학성 및 투명도가 우수한 폴리에스테르 공중합체

Publications (1)

Publication Number Publication Date
JP2022504586A true JP2022504586A (ja) 2022-01-13

Family

ID=70164915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021519667A Pending JP2022504586A (ja) 2018-10-10 2019-05-09 耐化学性および透明度に優れたポリエステル共重合体

Country Status (7)

Country Link
US (1) US20210163734A1 (ja)
EP (1) EP3865528A4 (ja)
JP (1) JP2022504586A (ja)
KR (1) KR20200040615A (ja)
CN (1) CN112752785A (ja)
TW (1) TWI791114B (ja)
WO (1) WO2020075947A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503538A (ja) * 1993-10-07 1997-04-08 イーストマン ケミカル カンパニー ポリエステルフィルム
JP2013515634A (ja) * 2009-12-28 2013-05-09 エスケー ケミカルズ カンパニー リミテッド 装飾物質を含む熱可塑性成形製品
WO2017176005A1 (ko) * 2016-04-06 2017-10-12 에스케이케미칼주식회사 폴리에스테르 수지
WO2018101320A1 (ja) * 2016-11-30 2018-06-07 株式会社クラレ ポリエステル、その製造方法及びそれからなる成形品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063465A (en) * 1998-04-23 2000-05-16 Hna Holdings, Inc. Polyester container and method for making same
KR102041946B1 (ko) * 2013-01-15 2019-11-07 에스케이케미칼 주식회사 폴리에스테르계 열수축 필름
KR101826812B1 (ko) * 2016-09-23 2018-02-08 롯데케미칼 주식회사 열적 특성이 향상된 저결정성 폴리에스테르 수지 제조방법
KR102654778B1 (ko) * 2016-11-24 2024-04-03 에스케이케미칼 주식회사 내열성 mdo 열수축 필름
EP3632953A4 (en) * 2017-05-31 2021-01-13 SK Chemicals Co., Ltd. POLYESTER RESIN, METHOD FOR MANUFACTURING ITEM AND MOLDED RESIN PRODUCT THEREOF
KR20200044553A (ko) * 2018-10-19 2020-04-29 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503538A (ja) * 1993-10-07 1997-04-08 イーストマン ケミカル カンパニー ポリエステルフィルム
JP2013515634A (ja) * 2009-12-28 2013-05-09 エスケー ケミカルズ カンパニー リミテッド 装飾物質を含む熱可塑性成形製品
WO2017176005A1 (ko) * 2016-04-06 2017-10-12 에스케이케미칼주식회사 폴리에스테르 수지
JP2019513847A (ja) * 2016-04-06 2019-05-30 エスケー ケミカルズ カンパニー リミテッド ポリエステル樹脂
WO2018101320A1 (ja) * 2016-11-30 2018-06-07 株式会社クラレ ポリエステル、その製造方法及びそれからなる成形品

Also Published As

Publication number Publication date
WO2020075947A1 (ko) 2020-04-16
TWI791114B (zh) 2023-02-01
CN112752785A (zh) 2021-05-04
TW202028290A (zh) 2020-08-01
US20210163734A1 (en) 2021-06-03
EP3865528A1 (en) 2021-08-18
KR20200040615A (ko) 2020-04-20
EP3865528A4 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
JP7166517B2 (ja) ポリエステルフィルムおよびその製造方法
JP6933657B6 (ja) ポリエステル樹脂の製造方法
JP7240333B2 (ja) ポリエステル容器およびその製造方法
JP6936802B2 (ja) ポリエステル樹脂、その製造方法およびこれから形成された樹脂成形品
JP7194123B2 (ja) ポリエステル樹脂とその製造方法およびこれから形成された樹脂成形品
JP7431819B2 (ja) ポリエステルフィルムおよび物品
JP2022504586A (ja) 耐化学性および透明度に優れたポリエステル共重合体
JP2022550817A (ja) ポリエステル樹脂混合物およびこれから形成された成形品
JP2022517583A (ja) ポリエステルフィルムおよびその製造方法
JP7431862B2 (ja) ポリエステル樹脂混合物
KR20230138427A (ko) 열 수축 라벨용 폴리에스테르 공중합체, 이를 포함하는 조성물 및 이를 포함하는 제품
EP4378975A1 (en) Extrusion blow resin having excellent extrusion processability and being recyclable, and composition comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230718