WO2017175741A1 - ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤 - Google Patents

ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤 Download PDF

Info

Publication number
WO2017175741A1
WO2017175741A1 PCT/JP2017/014018 JP2017014018W WO2017175741A1 WO 2017175741 A1 WO2017175741 A1 WO 2017175741A1 JP 2017014018 W JP2017014018 W JP 2017014018W WO 2017175741 A1 WO2017175741 A1 WO 2017175741A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
polyamine
adduct
unsaturated aliphatic
Prior art date
Application number
PCT/JP2017/014018
Other languages
English (en)
French (fr)
Inventor
昭文 飯田
則夫 伏見
拓磨 花岡
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2018510605A priority Critical patent/JP7036005B2/ja
Publication of WO2017175741A1 publication Critical patent/WO2017175741A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/60Preparation of compounds containing amino groups bound to a carbon skeleton by condensation or addition reactions, e.g. Mannich reaction, addition of ammonia or amines to alkenes or to alkynes or addition of compounds containing an active hydrogen atom to Schiff's bases, quinone imines, or aziranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a novel polyamine compound, a polyamine composition containing the polyamine compound, and an epoxy resin curing agent.
  • Polyamines and compounds obtained by addition reaction of polyamines with alkenyl compounds and epoxy compounds are known to be useful as epoxy resin curing agents.
  • Epoxy resin compositions using these epoxy resin curing agents are used in coatings such as anticorrosion coatings for ships, bridges, land and sea iron structures, lining, reinforcement and repair materials for concrete structures, flooring for buildings, and water and sewage systems. Widely used in civil engineering and construction fields such as linings, paving materials and adhesives.
  • the polyamine compound obtained by the addition reaction between the polyamine and the alkenyl compound has a relatively low unreacted polyamine content and low viscosity, so that an epoxy resin composition using an epoxy resin curing agent containing the compound is good. Can give a cured product performance.
  • Patent Document 1 discloses an amino compound obtained by an addition reaction between a polyamine and an alkenyl compound and a method for producing the amino compound.
  • Patent Document 2 discloses a storage stabilization method for an amino compound obtained by an addition reaction between a polyamine and an alkenyl compound.
  • Patent Document 3 discloses a method for stably producing an amino compound with less odor, which is characterized in that an addition reaction between a polyamine and an alkenyl compound is carried out in the presence of a predetermined compound.
  • the epoxy resin curing agent used therefor also has various functions and physical properties, or the amount of active hydrogen per molecular weight that can react with the main epoxy resin ( It is required that the active hydrogen equivalent (hereinafter also referred to as “AHEW”) is easily adjusted.
  • An object of the present invention is to provide a novel polyamine compound suitably used as an epoxy resin curing agent, a polyamine composition containing the polyamine compound, and an epoxy resin curing agent.
  • the present inventors have found a polyamine compound having a specific structure, and have found that the above problem can be solved by the polyamine compound and an amine composition containing the polyamine compound. That is, the present invention relates to the following [1] to [17].
  • R 1 to R 4 are each independently a hydrogen atom, a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, or a cyclic unsaturated aliphatic carbon group having 5 to 10 ring carbon atoms. It is a hydrogen group. However, at least one of R 1 to R 4 is a hydrogen atom.
  • R 5 to R 8 are each independently a hydrogen atom, a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, or a cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 ring carbon atoms.
  • R 1 to R 8 do not become hydrogen atoms, and at least one of R 1 to R 8 is a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a ring member carbon number of 5 10 to 10 cyclic unsaturated aliphatic hydrocarbon groups.
  • R 1 to R 8 In the general formula (I), only two of R 1 to R 8 are a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a cyclic unsaturated group having 5 to 10 ring carbon atoms.
  • the polyamine compound according to the above [1] which is a saturated aliphatic hydrocarbon group.
  • R 1 to R 8 is a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a cyclic unsaturated group having 5 to 10 ring carbon atoms.
  • R x is a chain unsaturated aliphatic hydrocarbon group having 4 or 5 carbon atoms.
  • a polyamine composition comprising the polyamine compound according to any one of [1] to [7] above.
  • the method for producing a polyamine composition according to the above [8] comprising a step of subjecting xylylenediamine and a conjugated diene to an addition reaction in the presence of a basic catalyst.
  • the basic catalyst is at least one selected from the group consisting of alkali metals and alkali metal-containing compounds.
  • the alkali metal-containing compound is one or more selected from the group consisting of alkali metal hydroxides, alkali metal amides, alkali metal hydrides, alkylated alkali metals, and alkali metal alkoxides.
  • the manufacturing method as described.
  • the alkali metal in the alkali metal and the alkali metal-containing compound is at least one selected from the group consisting of lithium, sodium, and potassium.
  • the basic catalyst includes one or more selected from the group consisting of potassium metal, potassium hydroxide, potassium amide, potassium hydride, and potassium alkoxide.
  • the manufacturing method as described in.
  • the polyamine compound of the present invention and a polyamine composition containing the compound are suitable as an epoxy resin curing agent.
  • the epoxy resin composition containing the epoxy resin curing agent is suitably used for packaging materials, paints, adhesives, flooring materials, sealants and the like.
  • Example 12 is a measurement chart of total ion chromatograph (TIC) in GC-MS analysis (measurement mode; CI +) of the polyamine composition obtained in Example 12.
  • TIC total ion chromatograph
  • CI + total ion chromatograph
  • FIG. 4 is an enlarged view of a TIC measurement chart corresponding to a 1: 1 adduct of MXDA and 1,3-butadiene in GC-MS analysis (measurement mode; CI +). It is a mass spectrum of a peak at RT 28.3 min corresponding to a 1: 1 adduct of MXDA and 1,3-butadiene in GC-MS analysis (measurement mode; EI +). It is a mass spectrum of a peak at RT 28.4 minutes corresponding to the above 1: 1 adduct. It is a mass spectrum of the peak of RT28.5 minutes corresponding to the said 1: 1 adduct. It is a mass spectrum of the peak of RT28.6 minutes corresponding to the said 1: 1 adduct.
  • polyamine compound The polyamine compound of the present invention is represented by the following general formula (I).
  • R 1 to R 4 are each independently a hydrogen atom, a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, or a cyclic unsaturated aliphatic carbon group having 5 to 10 ring carbon atoms. It is a hydrogen group. However, at least one of R 1 to R 4 is a hydrogen atom.
  • R 5 to R 8 are each independently a hydrogen atom, a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, or a cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 ring carbon atoms.
  • R 1 to R 8 do not become hydrogen atoms, and at least one of R 1 to R 8 is a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a ring member carbon number of 5 10 to 10 cyclic unsaturated aliphatic hydrocarbon groups.
  • the polyamine compound of the present invention exhibits good curing performance when used as an epoxy resin curing agent.
  • the polyamine compound represented by the general formula (I) is only one of R 1 to R 8 in the general formula (I).
  • the compound is a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 ring carbon atoms, or in the general formula (I), R 1 to R A compound in which only two of 8 are a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 ring carbon atoms is preferable.
  • R 1 to R 8 is a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a cyclic group having 5 to 10 ring carbon atoms. It is a compound that is an unsaturated aliphatic hydrocarbon group.
  • chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or the cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 carbon atoms is also simply referred to as “the unsaturated aliphatic hydrocarbon group”. .
  • the polyamine compound of the present invention is a compound in which only one of R 1 to R 8 in the general formula (I) is the unsaturated aliphatic hydrocarbon group, the unsaturated aliphatic hydrocarbon group As compared with a polyamine compound having two or more, the active hydrogen equivalent of the polyamine compound itself is lowered. Therefore, when used as an epoxy resin curing agent, good curing performance is exhibited even if the blending amount of the main component epoxy resin is small.
  • any one of R 5 to R 8 is the unsaturated aliphatic hydrocarbon group, and R 1 to More preferably, R 4 is a hydrogen atom.
  • R 1 to R 4 are hydrogen atoms, these are active amine hydrogens.
  • the more active amine hydrogens remain in the polyamine compound is the epoxy that is the main agent when used as an epoxy resin curing agent. This is because even if the blending amount with respect to the resin is small, good curing performance is exhibited.
  • the number of carbon atoms of the chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms does not excessively increase the active hydrogen equivalent of the polyamine compound.
  • it is 8 or less, More preferably, it is 6 or less, More preferably, it is 5 or less.
  • the carbon number is preferably 3 or more, more preferably 4 or more, from the viewpoint of ease of production.
  • the chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms is preferably a linear or branched alkenyl group having 2 to 10 carbon atoms.
  • examples include a xylene group, an ethylhexadienyl group, a nonenyl group, an isononenyl group, a decenyl group, and an isodecenyl group.
  • allyl group butenyl group, isobutenyl group, methylbutenyl group, dimethylbutenyl group, pentenyl group, isopentenyl group, hexenyl group, isohexenyl group, heptenyl group, isoheptenyl group, octenyl group, isooctenyl group, and ethylhexyl group.
  • One or more selected from the group consisting of xylene groups are preferred, selected from the group consisting of allyl groups, butenyl groups, isobutenyl groups, methylbutenyl groups, dimethylbutenyl groups, pentenyl groups, isopentenyl groups, hexenyl groups, and isohexenyl groups.
  • 1 or more selected from the group consisting of a butenyl group, an isobutenyl group, a methylbutenyl group, and a dimethylbutenyl group more preferably, one or more selected from the group consisting of a butenyl group and a methylbutenyl group. Even more preferred , Butenyl group is more preferred more.
  • the number of carbon atoms of the cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 ring member carbon atoms Preferably it is 8 or less, More preferably, it is 6 or less, More preferably, it is 5.
  • Examples of the cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 ring carbon atoms include a cyclopentenyl group, a methylcyclopentenyl group, a cyclohexenyl group, a methylcyclohexenyl group, a cycloheptenyl group, a cyclooctenyl group, a cyclooctenyl group, and a cyclodecenyl group.
  • dicyclopentenyl group 1 or more types chosen from the group which consists of a cyclopentenyl group and a cyclohexenyl group are preferable, and a cyclopentenyl group is more preferable.
  • the polyamine compound of the present invention represented by the general formula (I) may have one or more of the unsaturated aliphatic hydrocarbon groups.
  • the unsaturated aliphatic hydrocarbon groups at least one selected from the group consisting of a butenyl group, a methylbutenyl group, a dimethylbutenyl group, a pentenyl group, a hexenyl group, a cyclopentenyl group, and a cyclohexenyl group is preferable.
  • at least one selected from the group consisting of a methylbutenyl group is preferable, and a butenyl group is more preferable.
  • the polyamine compound represented by the general formula (I) includes xylylenediamine (hereinafter also referred to as “raw diamine”) and an olefin having two or more unsaturated bonds (hereinafter referred to as “raw olefin”). It is preferably an addition reaction product.
  • the polyamine compound represented by the general formula (I) is more preferably an addition reaction product of xylylenediamine and a conjugated diene.
  • the xylylenediamine is one or more selected from the group consisting of o-xylylenediamine, m-xylylenediamine (metaxylylenediamine; MXDA), and p-xylylenediamine (paraxylylenediamine; PXDA). Can be mentioned. Among these, at least one selected from the group consisting of metaxylylenediamine and paraxylylenediamine is preferable, and metaxylylenediamine is more preferable.
  • the conjugated diene is not particularly limited as long as it is a compound that can introduce the unsaturated aliphatic hydrocarbon group into xylylenediamine, and includes a non-cyclic conjugated diene having 2 to 10 carbon atoms and a cyclic conjugated diene having 5 to 10 carbon atoms.
  • the number of carbon atoms of the acyclic conjugated diene is preferably 8 or less, more preferably 6 or less, from the viewpoint of expressing good curing performance as an epoxy resin curing agent without excessively increasing the active hydrogen equivalent of the resulting polyamine compound. More preferably, it is 5 or less, preferably 3 or more, more preferably 4 or more.
  • the number of carbon atoms of the cyclic conjugated diene is preferably 8 or less, more preferably 6 or less, and still more preferably 5.
  • the conjugated diene that can be used in the present invention include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3- Examples include heptadiene, 1,3-octadiene, 1,3-nonadiene, 1,3-decadiene, cyclopentadiene, 1,3-cyclohexadiene and the like.
  • At least one selected from the group consisting of 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and cyclopentadiene is preferable.
  • One or more selected from the group consisting of 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is more preferred.
  • the polyamine compound of the present invention represented by the general formula (I) is more preferably selected from the group consisting of a compound represented by the following general formula (IA) and a compound represented by the following general formula (IB). Is.
  • R x is a chain unsaturated aliphatic hydrocarbon group having 4 or 5 carbon atoms.
  • the compound represented by the general formula (IA) and the compound represented by the general formula (IB) are both a 1: 1 addition reaction product of xylylenediamine and a raw material olefin (hereinafter, xylylenediamine) And a 1: 1 addition reaction product of a raw material olefin is also simply referred to as “1: 1 adduct” or “1 adduct”).
  • R x is preferably one or more selected from the group consisting of a butenyl group and a methylbutenyl group, and more preferably a butenyl group.
  • examples of the compound represented by the general formula (IA) include the following (IA-1), (IA-2) and (IA-3) .
  • the compounds represented by the general formula (IB) include the following (IB-1), (IB-2) and (IB-3): Can be mentioned.
  • the compound represented by the above general formula (IB) when used as an epoxy resin curing agent, is used from the viewpoint of expressing good curing performance even if the blending amount with respect to the epoxy resin as the main agent is small. More preferred. This is because the compound represented by (IB) has a lower active hydrogen equivalent than the compound represented by (IA).
  • a 1: 1 adduct in which the hydrogen of the amino group of xylylenediamine is substituted as the compound represented by the general formula (IA) may be referred to as “adduct A”.
  • a 1: 1 adduct having xylylenediamine substituted with hydrogen at the benzyl position may be referred to as “adduct B”.
  • the method for producing a polyamine compound of the present invention (hereinafter, also referred to as “the production method of the present invention”) is a step of adding xylylenediamine and a raw material olefin, preferably xylylenediamine and a conjugated diene, in the presence of a basic catalyst. It is preferable to have.
  • the polyamine compound of the present invention represented by the general formula (I) can be efficiently produced.
  • the xylylenediamine and raw material olefin used in the production method of the present invention, and preferred embodiments thereof are the same as described above.
  • alkali metal examples include metallic lithium, metallic sodium, metallic potassium, metallic rubidium, and metallic cesium.
  • alkali metal-containing compound include one or more selected from the group consisting of alkali metal hydroxides, alkali metal amides, alkali metal hydrides, alkylated alkali metals, and alkali metal alkoxides.
  • Examples of the alkali metal hydroxide include one or more selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • Examples of the alkali metal amide include one or more selected from the group consisting of lithium amide, sodium amide, potassium amide, rubidium amide, and cesium amide.
  • the alkali metal amides one or more selected from the group consisting of lithium amide, sodium amide, and potassium amide are preferable.
  • Examples of the alkali metal hydride include one or more selected from the group consisting of lithium hydride, sodium hydride, potassium hydride, rubidium hydride, and cesium hydride.
  • Examples of the alkylated alkali metal include methyl lithium and butyl lithium.
  • alkali metal alkoxide examples include one or more selected from the group consisting of lithium alkoxide, sodium alkoxide, potassium alkoxide, rubidium alkoxide, and cesium alkoxide.
  • the number of carbon atoms in the alkali metal alkoxide is preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and further preferably 2 to 4 carbon atoms from the viewpoint of reactivity.
  • alkali metal alkoxide examples include, for example, one or more alkali metals selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, methoxide, ethoxide, n-propoxide, isopropoxide, n-butoxide, i -Butoxide, sec-butoxide, t-butoxide and the like.
  • one or more selected from the group consisting of lithium alkoxide, sodium alkoxide and potassium alkoxide is preferable, one or more selected from the group consisting of sodium alkoxide and potassium alkoxide is more preferable, potassium alkoxide.
  • the said basic catalyst can also be used individually by 1 type or in combination of 2 or more types.
  • the alkali metal in the alkali metal and the alkali metal-containing compound is preferably at least one selected from the group consisting of lithium, sodium, and potassium from the viewpoint of availability, and is easily available. And from a reactive viewpoint, 1 or more types chosen from the group which consists of sodium and potassium are more preferable.
  • the basic catalyst used in the production method of the present invention is alkali metal, alkali metal amide, and alkali from the viewpoint of reactivity and obtaining a 1: 1 adduct of raw material diamine and raw material olefin with high selectivity.
  • the basic catalyst is a combination of at least one selected from the group consisting of alkali metals and alkali metal amides and alkali metal alkoxides, the total amount (X) of alkali metals and alkali metal amides, and the amount of alkali metal alkoxides
  • the ratio [(X) :( Y)] with (Y) is not particularly limited, but from the viewpoint of the balance between reaction efficiency and selectivity, the molar ratio is 1: 0.05 to 1:20. Preferably, it is 1: 0.1 to 1:10, more preferably 1: 0.2 to 1: 5, and even more preferably 1: 0.5 to 1: 2. .
  • the basic catalyst preferably contains one or more catalysts whose alkali metal is potassium, rubidium, or cesium.
  • the alkali metal is preferably potassium.
  • a catalyst in which the alkali metal is potassium, rubidium, or cesium is included as a basic catalyst, among adduct A and adduct B, which is a 1: 1 adduct of raw diamine and raw olefin, adduct B is increased. Can be obtained with selectivity.
  • a larger ionic radius of alkali metal ions present in the reaction system is advantageous in that the adduct B can be obtained with high selectivity.
  • the adduct B has a lower active hydrogen equivalent than the adduct A. Therefore, if it is possible to obtain the adduct B with high selectivity, an epoxy resin curing agent capable of exhibiting better curing performance can be prepared even if the blending amount with respect to the epoxy resin as the main agent is small.
  • the basic catalyst is from metal potassium, potassium hydroxide, potassium amide, potassium hydride, and potassium alkoxide. It is more preferable that at least one selected from the group consisting of:
  • the content of the catalyst in which the alkali metal in the basic catalyst is potassium, rubidium, or cesium is 100 mol% of the total alkali metal in the basic catalyst from the viewpoint of obtaining the adduct B with high selectivity.
  • the total mol% of potassium, rubidium, and cesium is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol% or more, and still more preferably 40 mol% or more.
  • an upper limit is 100 mol%.
  • the amount of the basic catalyst used is preferably 0.2 to 30 mol%, more preferably 0.5 to 25 mol, when the raw material diamine used is 100 mol%. %, More preferably 1.0 to 20 mol%, still more preferably 1.5 to 15 mol%, and still more preferably 2.0 to 12 mol%. If the amount of the basic catalyst used is 0.2 mol% or more based on the raw material diamine, the addition reaction rate is good, and if it is 30 mol% or less, it is economically advantageous.
  • an alkali metal salt other than the basic catalyst is further added, and the addition reaction is performed in the presence of the basic catalyst and the alkali metal salt.
  • the alkali metal in the alkali metal salt is potassium, rubidium, Alternatively, cesium is preferable, and potassium is more preferable from the viewpoint of availability.
  • alkali metal salts other than the basic catalyst include alkali metal halides and alkali metal nitrates.
  • the alkali metal halide is 1 selected from the group consisting of fluoride, chloride, bromide, and iodide of one or more alkali metals selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium.
  • chloride is preferred.
  • the alkali metal halide is more preferably one or more selected from the group consisting of sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, and potassium iodide.
  • One or more selected from the group consisting of potassium fluoride, potassium chloride, potassium bromide, and potassium iodide is more preferable, and potassium chloride is more preferable.
  • alkali metal nitrate examples include one or more selected from the group consisting of lithium nitrate, sodium nitrate, potassium nitrate, rubidium nitrate, and cesium nitrate.
  • at least one selected from the group consisting of potassium nitrate, rubidium nitrate, and cesium nitrate is preferable, and potassium nitrate is more preferable from the viewpoint of availability.
  • the above alkali metal salts can be used singly or in combination of two or more.
  • the amount used is not particularly limited, but adduct B is a high selectivity among adduct A and adduct B which are 1: 1 adducts of raw diamine and raw olefin.
  • the total mol% of potassium, rubidium, and cesium is preferably 10 mol% or more, more preferably, when the total alkali metal in the basic catalyst and the alkali metal salt is 100 mol%. Is 20 mol% or more, more preferably 30 mol% or more, and still more preferably 40 mol% or more.
  • the amount of the alkali metal salt used is preferably in the range of 1 to 300 mol%, more preferably 5 to 200 mol%, still more preferably 10 to 100 mol%, based on the basic catalyst.
  • the amount of the raw material olefin used relative to the raw material diamine is such that the molar ratio of the raw material olefin to 1 mol of the raw material amine is preferably 0.10 mol or more from the viewpoint of improving the conversion rate of the raw material diamine.
  • it is 0.20 mol or more, More preferably, it is 0.50 mol or more, More preferably, it is 1.0 mol or more.
  • the molar ratio of the raw material olefin to 1 mol of the raw material amine is preferably 5.0 mol or less, more preferably 3.0.
  • the amount is not more than mol, more preferably not more than 2.0 mol, and still more preferably not more than 1.8 mol.
  • the addition reaction between the raw material diamine and the raw material olefin may be carried out by reacting the raw material diamine, the raw material olefin, and the basic catalyst all together, and the raw material diamine and the basic catalyst are contacted in advance. After performing the preliminary reaction, the raw material olefin may be added and reacted.
  • the addition method of the basic catalyst is not limited to batch addition, but may be divided addition. When the basic catalyst is added in portions, the addition reaction rate is likely to be improved, and the catalytically active species are likely to remain in the reaction system for a long time, so that the addition reaction can be expected to proceed with a smaller amount of catalyst.
  • the number of divisions is not particularly limited, but is usually in the range of 2 to 10 times, and preferably in the range of 2 to 5 times from the viewpoint of workability.
  • alkali metal salts other than the said basic catalyst in the manufacturing method of this invention there is no restriction
  • the preliminary reaction is performed as necessary in order to increase the activity of the raw material diamine and efficiently advance the addition reaction with the raw material olefin.
  • the preliminary reaction of the raw material diamine and the basic catalyst can be carried out, for example, by charging the raw material diamine and the basic catalyst in a reactor and heating them with stirring in an inert gas atmosphere such as nitrogen or argon. .
  • the temperature during the preliminary reaction between the raw material diamine and the basic catalyst is preferably 50 to 140 ° C., more preferably 70 to 100 ° C. When the preliminary reaction temperature is 50 ° C. or higher, the raw material diamine is sufficiently activated, and the subsequent addition reaction proceeds efficiently. Moreover, if the preliminary reaction temperature is 140 ° C.
  • the preliminary reaction time between the raw material diamine and the basic catalyst is preferably 20 to 360 minutes, more preferably 30 to 120 minutes.
  • the preliminary reaction time is 20 minutes or more, the raw material diamine is sufficiently activated, and the subsequent addition reaction proceeds efficiently. Moreover, if it is 360 minutes or less, it is advantageous at the point of productivity.
  • the preliminary reaction is performed and the basic catalyst is added in portions, for example, the following method can be employed.
  • the raw material diamine and a part of the basic catalyst are brought into contact with each other by the above-described method, and then the preliminary reaction is performed. Then, the raw material olefin is added to the preliminary reaction product, and the remaining base is added in the middle of the addition of the raw material olefin.
  • the catalytic catalyst is added all at once or divided into two or more times.
  • the gaseous raw material olefin may be introduced into the reaction system, or may be added in the form of a solution or suspension. From the viewpoint of easy handling of the raw olefin in the small scale production, it is preferably added in the state of a solution or a suspension. On the other hand, it is preferable industrially to use a gaseous raw material olefin.
  • the temperature during addition of the raw material olefin and during the addition reaction is preferably 5 to 120 ° C, more preferably 5 to 100 ° C, and still more preferably 10 to 85 ° C.
  • reaction temperature is 5 degreeC or more, the addition reaction of raw material diamine and raw material olefin will advance efficiently. Moreover, if it is 120 degrees C or less, the production
  • the adduct B is highly selected from the adduct A and the adduct B, which are 1: 1 adducts of the raw material diamine and the raw material olefin, when the addition reaction is performed at a low temperature. Can be obtained at a rate.
  • the reaction temperature is more preferably 10 to 70 ° C, and still more preferably 10 to 50 ° C.
  • the addition reaction time is not particularly limited and can be appropriately selected according to the type of catalyst used, reaction conditions, and the like. Usually, however, preferably 10 to 360 minutes, more preferably after the addition of the raw material olefin is completed. Is 20 to 240 minutes. If the addition reaction time is 10 minutes or longer, there is little remaining unreacted raw material. Moreover, if it is 360 minutes or less, it is advantageous from a viewpoint of obtaining productivity and the 1: 1 adduct of raw material diamine and raw material olefin with high selectivity.
  • the addition reaction time is usually from 20 minutes to 10 hours, more preferably from 30 minutes to 8 hours, from the start of addition of the raw material olefin.
  • the addition reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon.
  • the obtained reaction solution contains a polyamine compound produced by the reaction and a basic catalyst. Moreover, an unreacted raw material diamine and an unreacted raw material olefin may further be contained.
  • the basic catalyst can be removed by filtration, washing with water, adsorption or the like depending on the type. For example, if the basic catalyst is an alkali metal amide, add an acid such as hydrochloric acid, hydrogen chloride gas, acetic acid, an alcohol such as methanol or ethanol, or water to change the alkali metal amide into a salt that can be easily removed. It is possible to filter. For example, when water is used, the alkali metal amide becomes a hydroxide, which facilitates filtration.
  • the unreacted raw material diamine and the unreacted raw material olefin are removed by distillation to obtain a mixture containing the polyamine compound represented by the general formula (I). can get.
  • the mixture in addition to the above 1: 1 adduct added with 1 mol of raw material diamine and 1 mol of raw material olefin, 1: 2 adduct added with 1 mol of raw material diamine and 2 mol of raw material olefin, raw material diamine 1 1: 3 adduct added with 3 mol of raw material olefin, 1: 4 adduct added with 1 mol of raw material diamine and 4 mol of raw material olefin, 1 mol of raw material diamine and 5 mol of raw material olefin added 1: Adducts such as 5-adducts may be included. These adducts can be separated by, for example, distillation purification.
  • the polyamine composition of the present invention contains the polyamine compound of the present invention represented by the general formula (I).
  • the polyamine composition can be suitably used as an epoxy resin curing agent.
  • the content of the polyamine compound represented by the general formula (I) in the polyamine composition of the present invention is preferably 10% by mass or more, more preferably 20 from the viewpoint of curability when used as an epoxy resin curing agent. It is at least mass%, more preferably at least 30 mass%, even more preferably at least 50 mass%, even more preferably at least 70 mass%, and the upper limit is 100 mass%.
  • the preferred polyamine compound contained in the polyamine composition of the present invention is the same as that described in the polyamine compound of the present invention.
  • the polyamine composition of the present invention may contain two or more of the polyamine compounds.
  • the polyamine compound is an addition reaction product of xylylenediamine, which is a raw material diamine, and the raw material olefin
  • the polyamine composition of the present invention has 1 mol of raw material diamine and 1 mol of raw material olefin as the polyamine compound.
  • the polyamine composition of the present invention when used as an epoxy resin curing agent, has 1 mol of raw material diamine and a raw material from the viewpoint of exhibiting good curing performance even if the blending amount with respect to the epoxy resin as the main component is small. It is preferable that at least one selected from the group consisting of a 1: 1 adduct added with 1 mol of olefin and a 1: 2 adduct added with 1 mol of raw material diamine and 2 mol of raw material olefin is a main component. It is more preferable that a 1: 1 adduct obtained by adding 1 mol of diamine and 1 mol of raw material olefin is a main component.
  • the “main component” in the polyamine composition means a component having the largest content among the components constituting the polyamine composition, and the content is preferably 30% by mass or more, more preferably It is 50 to 100% by mass, more preferably 60 to 100% by mass, still more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • a particularly preferred polyamine compound as a main component of the polyamine composition of the present invention is selected from the group consisting of a compound represented by the following general formula (IA) and a compound represented by the following general formula (IB). More preferably, it is a compound represented by the following general formula (IB).
  • R x is the same as described above, preferably one or more selected from the group consisting of a butenyl group and a methylbutenyl group, and more preferably a butenyl group.
  • examples of the compound represented by the general formula (IA) include the following (IA-1), (IA-2) and (IA-3) .
  • the compounds represented by the general formula (IB) include the following (IB-1), (IB-2) and (IB-3): Can be mentioned.
  • Adduct A and Adduct in the polyamine composition of the present invention are used.
  • the content [(Adduct B) / ⁇ (Adduct A) + (Adduct B) ⁇ ] of the adduct B when the total content of B is 100% by mass is preferably 15% by mass or more, More preferably 30% by mass or more, still more preferably 50% by mass or more, still more preferably 60% by mass or more, still more preferably 75% by mass or more, still more preferably 80% by mass or more, and the upper limit is 100% by mass. It is.
  • the content ratio [(Adduct B) / ⁇ (Adduct A) + (Adduct B) ⁇ ] of the adduct B is higher, the AHEW value of the polyamine composition tends to decrease, and it was used as an epoxy resin curing agent. The curability at the time becomes better.
  • the content of the polyamine compound represented by the general formula (I) in the polyamine composition can be determined by gas chromatography (GC) analysis, and specifically, the method described in Examples.
  • GC gas chromatography
  • the polyamine compound represented by the general formula (I) can be prepared by mixing with an optional component such as another amine compound.
  • the basic catalyst and the unreacted raw material are removed from the obtained reaction liquid. The mixture thus obtained can be used as it is as the polyamine composition of the present invention.
  • the polyamine composition of the present invention preferably has a step of adding xylylenediamine (raw diamine) and raw olefin, preferably xylylenediamine and conjugated diene, in the presence of a basic catalyst.
  • xylylenediamine raw diamine
  • raw olefin preferably xylylenediamine and conjugated diene
  • the polyamine composition of the present invention containing a large amount of the polyamine compound represented by the general formula (I) can be produced collectively.
  • the preferable aspect in the manufacturing method of a polyamine composition is the same as what was described in the manufacturing method of the polyamine compound of the said this invention.
  • the active hydrogen equivalent (AHEW) of the polyamine composition of the present invention is preferably 120 or less, more preferably 100 or less, still more preferably 90 or less, and still more preferably 80 or less.
  • AHEW of the polyamine composition is in the above range, when the composition is used as an epoxy resin curing agent, high curability is exhibited even if the blending amount in the epoxy resin is small.
  • the AHEW of the polyamine composition can be measured by a titration method.
  • the epoxy resin curing agent of the present invention contains the polyamine compound of the present invention described above or the polyamine composition of the present invention.
  • the polyamine compound or the polyamine composition may be used alone as an epoxy resin curing agent, or active hydrogen. You may mix and use with other polyamine etc. which have this.
  • the polyamine compound of the present invention is used as an epoxy resin curing agent, the polyamine compound can be further modified and used.
  • the epoxy resin curing agent of the present invention may further contain a known curing accelerator, non-reactive diluent, etc. within a range not impairing the effects of the present invention.
  • the polyamine compound or polyamine composition of the present invention may be a main component of the epoxy resin curing agent, and for the purpose of improving the performance of the epoxy resin curing agent. A small amount may be used.
  • the term “main component” as used herein refers to a component having a content of 50% by mass or more when all the constituent components in the epoxy resin curing agent are 100% by mass. Accordingly, the content of the polyamine compound or polyamine composition of the present invention in the epoxy resin curing agent is not particularly limited, and is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably.
  • the epoxy resin curing agent can be 20% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more.
  • the epoxy resin curing agent The content of the polyamine compound or polyamine composition is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, and still more preferably. It is 90 mass% or more, More preferably, it is 95 mass% or more, More preferably, it can be 99 mass% or more. The upper limit is 100% by mass.
  • the epoxy resin composition of the present invention contains the above-described epoxy resin curing agent of the present invention and an epoxy resin. Any epoxy resin having a glycidyl group that reacts with the active hydrogen of the epoxy resin curing agent of the present invention can be used as the epoxy resin. An epoxy resin containing a ring or alicyclic structure is preferred. Specific examples of the epoxy resin used in the present invention include an epoxy resin having a glycidylamino group derived from metaxylylenediamine, and an epoxy resin having a glycidylamino group derived from 1,3-bis (aminomethyl) cyclohexane.
  • two or more kinds of the above-mentioned various epoxy resins can be mixed and used.
  • the epoxy resin used in the present invention is an epoxy resin having a glycidylamino group derived from metaxylylenediamine, an epoxy resin having a glycidyloxy group derived from bisphenol A, and More preferably, the main component is one or more selected from the group consisting of epoxy resins having a glycidyloxy group derived from bisphenol F, derived from bisphenol F and an epoxy resin having a glycidyloxy group derived from bisphenol A. More preferably, the main component is one or more selected from the group consisting of epoxy resins having a glycidyloxy group.
  • main component means that other components can be included without departing from the gist of the present invention, preferably 50 to 100% by mass, more preferably 70 to 100% by mass. More preferably, it means 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the content of the epoxy resin curing agent in the epoxy resin composition of the present invention is preferably such that the ratio of the active hydrogen equivalent in the epoxy resin curing agent to the epoxy equivalent of the epoxy resin is 1 / 0.8 to 1 /
  • the amount is 1.2, more preferably 1 / 0.9 to 1 / 1.1, and still more preferably 1/1.
  • the epoxy resin composition of the present invention further includes other components such as fillers, modifying components such as plasticizers, flow control components such as thixotropic agents, pigments, leveling agents, and tackifiers depending on the application. You may make it contain.
  • fillers modifying components such as plasticizers
  • flow control components such as thixotropic agents, pigments, leveling agents, and tackifiers depending on the application. You may make it contain.
  • the present invention also provides a cured epoxy resin obtained by curing the epoxy resin composition of the present invention. Since the cured epoxy resin of the present invention has good cured product performance, the epoxy resin composition is suitably used for packaging materials, paints, adhesives, flooring materials, sealants and the like.
  • GC analysis Gas chromatography (GC) analysis
  • the raw material diamine conversion rate and the content ratio of each component in the polyamine composition were measured by GC analysis.
  • An internal standard method was used to measure the raw material diamine conversion rate.
  • the content ratio of each component in the polyamine composition was expressed as a GC peak area ratio.
  • the GC analysis conditions are as follows.
  • GC device GC 6850 manufactured by Agilent Column: HP-1MS 30m ⁇ 250 ⁇ mID, film thickness 0.25 ⁇ m
  • Carrier gas He Carrier gas flow rate: 1.5ml (initial flow rate)
  • Control mode constant pressure 113 kPa
  • Detector FID Inlet temperature: 300 ° C Detector temperature: 300 ° C
  • GC-MS analysis The structure of the addition reaction product was identified by GC-MS analysis.
  • the GC-MS analysis conditions are as follows.
  • Glass transition temperature measurement The glass transition temperature of the cured epoxy resin was measured by thermomechanical analysis (TMA) from 50 to 250 ° C. at a heating rate of 10 ° C./min using a rheometer “Discovery HR-2” manufactured by TA Instruments. ).
  • Example 1 A 100 mL four-necked flask was equipped with a stirrer equipped with a stirring blade, a thermocouple, a cooler, and an argon introduction tube, and after replacing the inside of the flask with argon, metaxylylenediamine (Tokyo Chemical Industry Co., Ltd.), a raw material diamine. 30.33 g (0.22 mol) and 0.30 g (0.0131 mol) of lithium amide (manufactured by Aldrich) as a basic catalyst were charged. The mixture was heated to 81 ° C.
  • Example 2 a polyamine compound and a polyamine composition were produced in the same manner as in Example 1 except that the type and amount of the basic catalyst used were changed as shown in Table 1. The analysis results are shown in Table 1.
  • Example 4-18 In Example 1, the reaction vessel was changed to a pressure vessel, the stirring blade was changed to a stirrer, and the raw material, basic catalyst, and reaction conditions to be used were changed as shown in Table 1, and the raw material diamine, raw material olefin, And the polyamine compound and the polyamine composition were manufactured by the method of charging the basic catalyst all together. The analysis results are shown in Table 1. In Examples 4 to 18, no preliminary reaction was performed. The retention times (minutes) in the GC measurement of each component (1: 1 adduct to 1: 5 adduct) in the polyamine composition obtained in Examples 17 and 18 are the same as in Examples 1 to 16.
  • the raw materials and basic catalysts described in Table 1 are as follows. Moreover, all the usage-amounts shown in Table 1 are the quantity of an active ingredient.
  • Examples 4 to 7 are examples in which the reaction was carried out by containment by changing the charged molar ratio of the raw material diamine and raw material olefin (1,3-butadiene) in Examples 2 to 3. From the comparison between Examples 2 and 6 and the comparison between Examples 3 and 4, increasing the feed molar ratio of the raw material olefin 1,3-butadiene to the raw material diamine improves the conversion rate of the raw material diamine. I understood. Further, according to Examples 4 to 7, sodium amide and metal sodium have different catalyst species, but the alkali metal species are the same. In this case, the effect on the production ratio of adduct B in the 1: 1 adduct is equivalent. Met.
  • Examples 8 to 11 are examples in which the same basic catalyst as in Example 5 was used, and the reaction was carried out by increasing the charged molar ratio of 1,3-butadiene, which is a raw material olefin, and further changing the reaction time. From a comparison between Examples 5 and 9, it can be seen that increasing the charged molar ratio of 1,3-butadiene, which is a raw material olefin, improves the conversion rate of the raw material diamine. However, the selectivity for the 1: 1 adduct tended to decrease. Further, from the comparison of Examples 8 to 11, when the reaction time was extended, the conversion rate of the raw material diamine was improved, but the selectivity of the 1: 1 adduct tended to decrease.
  • Example 12 is an example in which the basic catalyst of Example 9 (combination of metallic sodium and potassium t-butoxide) was changed to metallic sodium alone.
  • Examples 13 to 16 are examples in which metal sodium and potassium t-butoxide were used in combination as basic catalysts and the reaction was carried out at different reaction temperatures. As a result, it was confirmed that even when the reaction temperature was lowered to 15.0 ° C. (internal temperature), the conversion rate of the raw material diamine did not decrease and the reaction proceeded. Furthermore, it was found that when the reaction temperature was lowered, the production ratio of adduct B in the 1: 1 adduct was improved.
  • Examples 17 to 18 are examples in which the raw material diamine was changed to paraxylylenediamine (PXDA), and the reaction proceeded in the same manner as when MXDA was used as the raw material diamine.
  • PXDA paraxylylenediamine
  • each peak is estimated in a mass chromatograph in a mass range corresponding to [M + H] + (where M is a molecular weight and H is a hydrogen atom) of each adduct of MXDA and 1,3-butadiene.
  • M is a molecular weight and H is a hydrogen atom
  • the structure was identified from the composition formula.
  • the m / z range identified as each adduct, the retention time (RT) in TIC or its range, and the number of peaks are as follows.
  • Figures 2 to 5 show the mass spectra of four peaks measured at CI + mode, corresponding to 1: 1 adduct, RT 28.3 min, 28.5 min, 28.6 min, and 28.7 min. It is a mass and an estimated composition formula. 6 to 7 are mass spectra, accurate masses, and estimated composition formulas of two peaks at RT 31.2 minutes and 32.8 minutes among nine peaks corresponding to 1: 2 adduct.
  • FIG. 8 shows the mass spectrum, accurate mass, and estimated composition formula of the peak at RT 35.4 min out of 11 peaks corresponding to the 1: 3 adduct.
  • FIG. 9 shows the mass spectrum, accurate mass, and estimated composition formula of the peak at RT 37.4 minutes corresponding to the 1: 4 adduct.
  • FIG. 10 shows the mass spectrum, accurate mass, and estimated composition formula of the peak at RT 39.0 min among the four peaks corresponding to the 1: 5 adduct.
  • FIG. 11 shows an enlarged view of the TIC measurement chart of 1 adduct.
  • compounds corresponding to four peaks at RT measured in CI + mode of 28.3 min, 28.5 min, 28.6 min, and 28.7 min (RT measured in EI + mode was 28.3 min, The mass spectra measured in the EI + mode for 28.4 minutes, 28.5 minutes, and 28.6 minutes) are shown in FIGS.
  • the mass spectra measured in the CI + mode are shown in FIGS.
  • RT28.3 min and 28.5 min peaks measured in the CI + mode were identified as adduct B, and RT28.6 min and 28.7 min peaks were identified as adduct A.
  • the addition reaction product (adduct) of PXDA and 1,3-butadiene was also identified by the same method as described above.
  • Fractionated fractions 6, 8, and 9 were used as epoxy resin curing agents A, B, and C described later, respectively.
  • 49.96 g of the polyamine composition (crude composition) for 5 batches produced under the conditions of Example 12 was charged into a 100 ml four-necked flask and subjected to simple distillation at an initial pressure of 0.1 kPa and an initial heater temperature of 240 ° C. Went. On the way, the pressure was lowered to 0.03 kPa, the heater temperature was increased in order from 240 to 250 ° C., 250 ° C., 250 to 270 ° C. and 300 ° C., and fractions 1 to 7 were collected. The last fraction 7 was used as an epoxy resin curing agent D described later.
  • compositions of the resulting epoxy resin curing agents A to D are shown in Table 2.
  • the ratio of the adduct B in the 1: 1 adduct of the raw material diamine (MXDA) and the raw material olefin (1,3-butadiene) is in the range of 85.7 to 87.4%.
  • Curing agent A is a 1: 1 adduct
  • curing agent B is a mixture of a 1: 1 adduct and a 1: 2 adduct
  • curing agent C is a 1: 2 adduct.
  • Curing agent D has a low ratio of adduct B in the 1: 1 adduct of 60.9%, and is mainly composed of a mixture of 1: 1 adduct and 1: 2 adduct. It is about the same.
  • Example 19 An epoxy resin having a glycidyloxy group derived from bisphenol A (“jER828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / equivalent, solid content concentration: 100% by mass, liquid) was used as the main epoxy resin. 1.26 g of the epoxy resin curing agent A with respect to 5 g of the main agent (amount such that the ratio of the active hydrogen equivalent (calculated value) in the epoxy resin curing agent to the epoxy equivalent of the epoxy resin as the main agent is 0.94) It mix
  • Examples 20-22 An epoxy resin composition was prepared in the same manner as in Example 19 except that the type and blending amount of the epoxy resin curing agent were changed as shown in Table 3. The said evaluation was performed using the obtained epoxy resin composition. The evaluation results are shown in Table 3. The compounding amount of the epoxy resin curing agent was based on Example 19 and was proportional to the Mw of each curing agent.
  • Mw is a value calculated from the content of the 1: 1 adduct and the content of the 1: 2 adduct in the curing agent.
  • all of the curing agent A is a 1: 1 adduct
  • the curing agent B and the curing agent D are a 1: 1 adduct and a 1: 2 adduct in a molar ratio of 60:40.
  • all the curing agents C were calculated as 1: 2 adducts.
  • the polyamine compound of the present invention and the polyamine composition containing the same are epoxy resins.
  • the glass transition temperature of the cured epoxy resin becomes higher when the content of the 1: 1 adduct of MXDA and 1,3-butadiene in the epoxy resin curing agent is larger, and the curing is performed. Excellent in properties. Further, from comparison between Examples 20 and 22, the glass transition of the cured epoxy resin was higher when the ratio of adduct B in the 1: 1 adduct of MXDA and 1,3-butadiene in the epoxy resin curing agent was higher. High temperature and excellent curability.
  • Example 23 A 300 mL four-necked flask was equipped with a stirrer equipped with a stirring blade, a thermocouple, a cooler, an argon introduction tube, and a butadiene gas introduction tube.
  • Example 24 A 300 mL four-necked flask was equipped with a stirrer equipped with a stirring blade, a thermocouple, a cooler, an argon introduction tube, and a butadiene gas introduction tube. After replacing the inside of the flask with argon, metaxylylenediamine (Tokyo) 122 g (0.90 mol) of Kasei Kogyo Co., Ltd., 0.67 g (0.009 mol) of sodium metal (30 to 35% by mass paraffin wax suspension, manufactured by Aldrich) as a basic catalyst, potassium 0.99 g (0.009 mol) of t-butoxide (manufactured by Wako Pure Chemical Industries, Ltd.) was charged.
  • Tokyo metaxylylenediamine
  • Tokyo 122 g (0.90 mol) of Kasei Kogyo Co., Ltd.
  • 0.67 g (0.009 mol) of sodium metal (30 to 35% by mass paraffin wax suspension, manufactured by Ald
  • Example 25 An epoxy resin having a glycidyloxy group derived from bisphenol A (“jER828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / equivalent, solid content concentration: 100% by mass, liquid) was used as the main epoxy resin. 30 g of the epoxy resin curing agent E was added to 100 g of the main agent and stirred to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated for curing speed, coating film appearance, dry touch and chemical resistance.
  • jER828 manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / equivalent, solid content concentration: 100% by mass, liquid
  • the polyamine compound of the present invention and a polyamine composition containing the compound are suitable as an epoxy resin curing agent.
  • the epoxy resin composition containing the epoxy resin curing agent is suitably used for packaging materials, paints, adhesives, flooring materials, sealants and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

下記一般式(I)で示されるアミン化合物、該化合物を含有するアミン組成物、及びエポキシ樹脂硬化剤である。式(I)中、R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。但し、R~Rのうち少なくとも1つは水素原子である。R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。但し、R~Rのすべてが水素原子になることはなく、R~Rのうち少なくとも1つは炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。

Description

ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤
 本発明は新規のポリアミン化合物、該ポリアミン化合物を含有するポリアミン組成物及びエポキシ樹脂硬化剤に関する。
 ポリアミン、並びに、ポリアミンとアルケニル化合物やエポキシ化合物等との付加反応により得られる化合物は、エポキシ樹脂硬化剤として有用であることが知られている。これらのエポキシ樹脂硬化剤を利用したエポキシ樹脂組成物は、船舶・橋梁・陸海上鉄構築物用防食塗料等の塗料分野、コンクリート構造物のライニング・補強・補修材、建築物の床材、上下水道のライニング、舗装材、接着剤等の土木・建築分野に広く利用されている。
 中でも、ポリアミンとアルケニル化合物との付加反応により得られるポリアミン化合物は、未反応ポリアミン含有量が比較的低く低粘度であることから、該化合物を含むエポキシ樹脂硬化剤を用いたエポキシ樹脂組成物は良好な硬化物性能を与えることができる。
 例えば特許文献1には、ポリアミンとアルケニル化合物との付加反応により得られたアミノ化合物及びその製造方法が開示されている。特許文献2には、ポリアミンとアルケニル化合物との付加反応により得られるアミノ化合物の貯蔵安定化方法が開示されている。また、特許文献3には、所定の化合物の存在下でポリアミンとアルケニル化合物との付加反応を行うことを特徴とした、臭気の少ないアミノ化合物を安定して製造する方法が開示されている。
特開2002-161076号公報 特開2005-112790号公報 国際公開第2012/105303号
 エポキシ樹脂組成物の用途や要求性能に応じ、これに用いるエポキシ樹脂硬化剤にも、種々の機能及び物性を有すること、あるいは、主剤であるエポキシ樹脂と反応し得る活性水素の分子量あたりの量(活性水素当量、以下「AHEW」ともいう)の調整が容易であることなどが求められる。
 本発明は、エポキシ樹脂硬化剤として好適に用いられる新規のポリアミン化合物、該ポリアミン化合物を含有するポリアミン組成物、及びエポキシ樹脂硬化剤を提供することにある。
 本発明者らは特定構造のポリアミン化合物を見出し、さらに、該ポリアミン化合物及びこれを含有するアミン組成物により上記課題を解決できることを見出した。
 すなわち本発明は、下記[1]~[17]に関する。
[1]下記一般式(I)で示されるポリアミン化合物。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。但し、R~Rのうち少なくとも1つは水素原子である。R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。
 但し、R~Rのすべてが水素原子になることはなく、R~Rのうち少なくとも1つは炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。
[2]前記一般式(I)において、R~Rのうちいずれか2つのみが炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である、上記[1]に記載のポリアミン化合物。
[3]前記一般式(I)において、R~Rのうちいずれか1つのみが炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である、上記[1]に記載のポリアミン化合物。
[4]前記一般式(I)で示されるポリアミン化合物がキシリレンジアミンと共役ジエンとの付加反応物である、上記[1]~[3]のいずれか1項に記載のポリアミン化合物。
[5]前記キシリレンジアミンがメタキシリレンジアミン及びパラキシリレンジアミンからなる群から選ばれる1種以上である、上記[4]に記載のポリアミン化合物。
[6]前記共役ジエンが1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、及びシクロペンタジエンからなる群から選ばれる1種以上である、上記[4]又は[5]に記載のポリアミン化合物。
[7]下記一般式(I-A)で示される化合物及び下記一般式(I-B)で示される化合物からなる群から選ばれる、上記[3]~[6]のいずれか1項に記載のポリアミン化合物。
Figure JPOXMLDOC01-appb-C000004
 式(I-A)及び(I-B)中、Rは炭素数4又は5の鎖状不飽和脂肪族炭化水素基である。
[8]上記[1]~[7]のいずれか1項に記載のポリアミン化合物を含むポリアミン組成物。
[9]キシリレンジアミンと共役ジエンとを塩基性触媒の存在下で付加反応させる工程を有する、上記[1]~[7]のいずれか1項に記載のポリアミン化合物の製造方法。
[10]キシリレンジアミンと共役ジエンとを塩基性触媒の存在下で付加反応させる工程を有する、上記[8]に記載のポリアミン組成物の製造方法。
[11]前記塩基性触媒がアルカリ金属及びアルカリ金属含有化合物からなる群から選ばれる1種以上である、上記[9]又は[10]に記載の製造方法。
[12]前記アルカリ金属含有化合物がアルカリ金属水酸化物、アルカリ金属アミド、アルカリ金属水素化物、アルキル化アルカリ金属、及びアルカリ金属アルコキシドからなる群から選ばれる1種以上である、上記[11]に記載の製造方法。
[13]前記アルカリ金属及び前記アルカリ金属含有化合物におけるアルカリ金属がリチウム、ナトリウム、及びカリウムからなる群から選ばれる1種以上である、上記[11]又は[12]に記載の製造方法。
[14]前記塩基性触媒が金属カリウム、水酸化カリウム、カリウムアミド、水素化カリウム、及びカリウムアルコキシドからなる群から選ばれる1種以上を含む、上記[9]~[13]のいずれか1項に記載の製造方法。
[15]上記[1]~[7]のいずれか1項に記載のポリアミン化合物、又は、上記[8]に記載のポリアミン組成物を含有するエポキシ樹脂硬化剤。
[16]上記[15]に記載のエポキシ樹脂硬化剤と、エポキシ樹脂とを含有するエポキシ樹脂組成物。
[17]上記[16]に記載のエポキシ樹脂組成物を硬化させたエポキシ樹脂硬化物。
 本発明のポリアミン化合物及びこれを含有するポリアミン組成物は、エポキシ樹脂硬化剤として好適である。該エポキシ樹脂硬化剤を含有するエポキシ樹脂組成物は、包装材料、塗料、接着剤、床材、封止剤等に好適に用いられる。
実施例12で得られたポリアミン組成物のGC-MS分析(測定モード;CI+)におけるトータルイオンクロマトグラフ(TIC)の測定チャートである。 GC-MS分析(測定モード;CI+)における、メタキシリレンジアミン(MXDA)と1,3-ブタジエンとの1:1付加体に相当するリテンションタイム(RT)28.3分のピークのマススペクトルである。 上記1:1付加体に相当するRT28.5分のピークのマススペクトルである。 上記1:1付加体に相当するRT28.6分のピークのマススペクトルである。 上記1:1付加体に相当するRT28.7分のピークのマススペクトルである。 上記1:2付加体に相当するRT31.2分のピークのマススペクトルである。 上記1:2付加体に相当するRT32.8分のピークのマススペクトルである。 上記1:3付加体に相当するRT35.4分のピークのマススペクトルである。 上記1:4付加体に相当するRT37.4分のピークのマススペクトルである。 上記1:5付加体に相当するRT39.0分のピークのマススペクトルである。 GC-MS分析(測定モード;CI+)における、MXDAと1,3-ブタジエンとの1:1付加体に相当するTIC測定チャートの拡大図である。 GC-MS分析(測定モード;EI+)における、MXDAと1,3-ブタジエンとの1:1付加体に相当するRT28.3分のピークのマススペクトルである。 上記1:1付加体に相当するRT28.4分のピークのマススペクトルである。 上記1:1付加体に相当するRT28.5分のピークのマススペクトルである。 上記1:1付加体に相当するRT28.6分のピークのマススペクトルである。
[ポリアミン化合物]
 本発明のポリアミン化合物は下記一般式(I)で示される。
Figure JPOXMLDOC01-appb-C000005
 式(I)中、R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。但し、R~Rのうち少なくとも1つは水素原子である。R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。
 但し、R~Rのすべてが水素原子になることはなく、R~Rのうち少なくとも1つは炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。
 本発明のポリアミン化合物は、エポキシ樹脂硬化剤として使用した際には良好な硬化性能を発現する。また、炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基を有することで、エポキシ樹脂硬化剤として使用した際に、エポキシ樹脂組成物の硬化物である硬化塗膜の白化の低減効果などが期待される。
 エポキシ樹脂硬化剤としての良好な硬化性能を発現する観点からは、前記一般式(I)で示されるポリアミン化合物は、前記一般式(I)において、R~Rのうちいずれか1つのみが炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である化合物か、前記一般式(I)において、R~Rのうちいずれか2つのみが炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である化合物が好ましい。より好ましくは、前記一般式(I)において、R~Rのうちいずれか1つのみが炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である化合物である。以下、「炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基」を単に「前記不飽和脂肪族炭化水素基」ともいう。
 本発明のポリアミン化合物は、前記一般式(I)においてR~Rのうちいずれか1つのみが前記不飽和脂肪族炭化水素基である化合物であると、前記不飽和脂肪族炭化水素基を2つ以上有するポリアミン化合物と比較してポリアミン化合物自体の活性水素当量が低くなる。したがって、エポキシ樹脂硬化剤として使用した際に、主剤であるエポキシ樹脂に対する配合量が少なくても良好な硬化性能を発現する。
 また、エポキシ樹脂硬化剤としての良好な硬化性能を発現する観点からは、前記一般式(I)において、R~Rのいずれかが前記不飽和脂肪族炭化水素基であり、R~Rが水素原子であることがより好ましい。R~Rが水素原子である場合、これらは活性アミン水素であるが、活性アミン水素がポリアミン化合物中に多く残存していた方が、エポキシ樹脂硬化剤として使用した際に主剤であるエポキシ樹脂に対する配合量が少なくても良好な硬化性能を発現するためである。
 前記炭素数2~10の鎖状不飽和脂肪族炭化水素基の炭素数は、ポリアミン化合物の活性水素当量を過度に上げることなく、エポキシ樹脂硬化剤としての良好な硬化性能を発現する観点から、好ましくは8以下、より好ましくは6以下、さらに好ましくは5以下である。また当該炭素数は、製造容易性の観点から、好ましくは3以上、より好ましくは4以上である。
 炭素数2~10の鎖状不飽和脂肪族炭化水素基としては、炭素数2~10の直鎖状又は分岐鎖状のアルケニル基が好ましい。例えば、ビニル基、アリル基、ブテニル基、イソブテニル基、メチルブテニル基、ジメチルブテニル基、ペンテニル基、イソペンテニル基、ヘキセニル基、イソヘキセニル基、ヘプテニル基、イソヘプテニル基、オクテニル基、イソオクテニル基、エチルヘキシレン基、エチルヘキサジエニル基、ノネニル基、イソノネニル基、デセニル基、イソデセニル基等が挙げられる。これらの中でも、アリル基、ブテニル基、イソブテニル基、メチルブテニル基、ジメチルブテニル基、ペンテニル基、イソペンテニル基、ヘキセニル基、イソヘキセニル基、ヘプテニル基、イソヘプテニル基、オクテニル基、イソオクテニル基、及びエチルヘキシレン基からなる群から選ばれる1種以上が好ましく、アリル基、ブテニル基、イソブテニル基、メチルブテニル基、ジメチルブテニル基、ペンテニル基、イソペンテニル基、ヘキセニル基、及びイソヘキセニル基からなる群から選ばれる1種以上がより好ましく、ブテニル基、イソブテニル基、メチルブテニル基、及びジメチルブテニル基からなる群から選ばれる1種以上がさらに好ましく、ブテニル基及びメチルブテニル基からなる群から選ばれる1種以上がよりさらに好ましく、ブテニル基がよりさらに好ましい。
 環員炭素数5~10の環状不飽和脂肪族炭化水素基の炭素数は、ポリアミン化合物の活性水素当量を過度に上げることなく、エポキシ樹脂硬化剤としての良好な硬化性能を発現する観点から、好ましくは8以下、より好ましくは6以下、さらに好ましくは5である。
 環員炭素数5~10の環状不飽和脂肪族炭化水素基としては、例えば、シクロペンテニル基、メチルシクロペンテニル基、シクロヘキセニル基、メチルシクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロオクテニル基、シクロデセニル基、ジシクロペンテニル基等が挙げられる。これらの中でも、シクロペンテニル基及びシクロヘキセニル基からなる群から選ばれる1種以上が好ましく、シクロペンテニル基がより好ましい。
 前記一般式(I)で示される本発明のポリアミン化合物は、前記不飽和脂肪族炭化水素基を1種又は2種以上有していてもよい。
 前記不飽和脂肪族炭化水素基の中でも、ブテニル基、メチルブテニル基、ジメチルブテニル基、ペンテニル基、ヘキセニル基、シクロペンテニル基、及びシクロヘキセニル基からなる群から選ばれる1種以上が好ましく、ブテニル基及びメチルブテニル基からなる群から選ばれる1種以上が好ましく、ブテニル基がさらに好ましい。
 前記一般式(I)で示されるポリアミン化合物は、製造容易性の観点から、キシリレンジアミン(以下「原料ジアミン」ともいう)と、2以上の不飽和結合を有するオレフィン(以下「原料オレフィン」ともいう)との付加反応物であることが好ましい。中でも、前記一般式(I)で示されるポリアミン化合物は、キシリレンジアミンと共役ジエンとの付加反応物であることがより好ましい。当該ポリアミン化合物がキシリレンジアミンと共役ジエンとの付加反応物であると、製造が容易であり、また、ポリアミン化合物の製造において前記不飽和脂肪族炭化水素基を位置選択的に導入しやすいためである。
 前記キシリレンジアミンは、o-キシリレンジアミン、m-キシリレンジアミン(メタキシリレンジアミン;MXDA)、及びp-キシリレンジアミン(パラキシリレンジアミン;PXDA)からなる群から選ばれる1種以上が挙げられる。中でも、メタキシリレンジアミン及びパラキシリレンジアミンからなる群から選ばれる1種以上が好ましく、メタキシリレンジアミンがより好ましい。
 前記共役ジエンとしては、キシリレンジアミンに前記不飽和脂肪族炭化水素基を導入できる化合物であれば特に制限なく、炭素数2~10の非環状共役ジエン及び炭素数5~10の環状共役ジエンからなる群から選ばれる1種以上を用いることができる。当該非環状共役ジエンの炭素数は、得られるポリアミン化合物の活性水素当量を過度に上げることなく、エポキシ樹脂硬化剤としての良好な硬化性能を発現する観点から好ましくは8以下、より好ましくは6以下、さらに好ましくは5以下であり、好ましくは3以上、より好ましくは4以上である。また同様の観点から、当該環状共役ジエンの炭素数は、好ましくは8以下、より好ましくは6以下、さらに好ましくは5である。
 本発明に用いることができる共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、1,3-オクタジエン、1,3-ノナジエン、1,3-デカジエン、シクロペンタジエン、1,3-シクロヘキサジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、及びシクロペンタジエンからなる群から選ばれる1種以上が好ましく、1,3-ブタジエン及びイソプレンからなる群から選ばれる1種以上がより好ましく、1,3-ブタジエンがさらに好ましい。
 前記一般式(I)で示される本発明のポリアミン化合物は、より好ましくは下記一般式(I-A)で示される化合物及び下記一般式(I-B)で示される化合物からなる群から選ばれるものである。
Figure JPOXMLDOC01-appb-C000006
 式(I-A)及び(I-B)中、Rは炭素数4又は5の鎖状不飽和脂肪族炭化水素基である。
 一般式(I-A)で示される化合物及び一般式(I-B)で示される化合物は、いずれもキシリレンジアミンと原料オレフィンとの1:1の付加反応物である(以下、キシリレンジアミンと原料オレフィンとの1:1の付加反応物を、単に「1:1付加体」又は「1付加体」ともいう)。Rはブテニル基及びメチルブテニル基からなる群から選ばれる1種以上が好ましく、ブテニル基であることがより好ましい。
 Rがブテニル基である場合、前記一般式(I-A)で示される化合物としては下記(I-A-1)、(I-A-2)及び(I-A-3)が挙げられる。また、Rがブテニル基である場合、前記一般式(I-B)で示される化合物としては下記(I-B-1)、(I-B-2)及び(I-B-3)が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記の中でも、エポキシ樹脂硬化剤として使用した際に、主剤であるエポキシ樹脂に対する配合量が少なくても良好な硬化性能を発現する観点からは、前記一般式(I-B)で示される化合物がより好ましい。(I-B)で示される化合物は、(I-A)で示される化合物と比較して活性水素当量が低いためである。
 以下の記載において、前記一般式(I-A)で示される化合物のように、キシリレンジアミンのアミノ基の水素が置換された1:1付加体を「付加体A」ということがある。また、前記一般式(I-B)で示される化合物のように、キシリレンジアミンのベンジル位の水素が置換された1:1付加体を「付加体B」ということがある。
[ポリアミン化合物の製造方法]
 本発明のポリアミン化合物の製造方法(以下「本発明の製造方法」ともいう)は、キシリレンジアミンと原料オレフィン、好ましくはキシリレンジアミンと共役ジエンとを塩基性触媒の存在下で付加反応させる工程を有することが好ましい。この方法を用いることにより、前記一般式(I)で示される本発明のポリアミン化合物を効率よく製造することができる。
 本発明の製造方法に用いるキシリレンジアミン及び原料オレフィン、並びにこれらの好ましい態様は、前記と同じである。
 本発明の製造方法に用いる塩基性触媒としては、原料ジアミンの反応転化率を向上させる観点から、アルカリ金属及びアルカリ金属含有化合物からなる群から選ばれる1種以上が好ましい。
 アルカリ金属としては、金属リチウム、金属ナトリウム、金属カリウム、金属ルビジウム、及び金属セシウムが挙げられる。
 またアルカリ金属含有化合物としては、アルカリ金属水酸化物、アルカリ金属アミド、アルカリ金属水素化物、アルキル化アルカリ金属、及びアルカリ金属アルコキシドからなる群から選ばれる1種以上が挙げられる。
 アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、及び水酸化セシウムからなる群から選ばれる1種以上が挙げられる。アルカリ金属アミドとしては、リチウムアミド、ナトリウムアミド、カリウムアミド、ルビジウムアミド、及びセシウムアミドからなる群から選ばれる1種以上が挙げられる。アルカリ金属アミドの中では、リチウムアミド、ナトリウムアミド、及びカリウムアミドからなる群から選ばれる1種以上が好ましい。
 アルカリ金属水素化物としては、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化ルビジウム、及び水素化セシウムからなる群から選ばれる1種以上が挙げられる。
 アルキル化アルカリ金属としては、メチルリチウム、ブチルリチウム等が挙げられる。
 また、アルカリ金属アルコキシドとしては、リチウムアルコキシド、ナトリウムアルコキシド、カリウムアルコキシド、ルビジウムアルコキシド、及びセシウムアルコキシドからなる群から選ばれる1種以上が挙げられる。アルカリ金属アルコキシドの炭素数は、反応性の観点から炭素数1~6が好ましく、1~4がより好ましく、2~4がさらに好ましい。
 アルカリ金属アルコキシドとしては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群から選ばれる1種以上のアルカリ金属の、メトキシド、エトキシド、n-プロポキシド、イソプロポキシド、n-ブトキシド、i-ブトキシド、sec-ブトキシド、及びt-ブトキシド等が挙げられる。
 上記の中でも、入手容易性の観点からリチウムアルコキシド、ナトリウムアルコキシド及びカリウムアルコキシドからなる群から選ばれる1種以上が好ましく、ナトリウムアルコキシド及びカリウムアルコキシドからなる群から選ばれる1種以上がより好ましく、カリウムアルコキシドがさらに好ましく、カリウムメトキシド、カリウムエトキシド、カリウムn-プロポキシド、カリウムイソプロポキシド、カリウムn-ブトキシド、カリウムi-ブトキシド、カリウムsec-ブトキシド、及びカリウムt-ブトキシドからなる群から選ばれる1種以上がよりさらに好ましく、カリウムt-ブトキシドがよりさらに好ましい。
 上記塩基性触媒は、1種を単独で、又は2種以上を組み合わせて用いることもできる。
 上記塩基性触媒の中でも、アルカリ金属及びアルカリ金属含有化合物におけるアルカリ金属は、入手容易性の観点からはリチウム、ナトリウム、及びカリウムからなる群から選ばれる1種以上であることが好ましく、入手容易性及び反応性の観点からは、ナトリウム及びカリウムからなる群から選ばれる1種以上がより好ましい。
 また、本発明の製造方法に用いる塩基性触媒は、反応性、及び、原料ジアミンと原料オレフィンとの1:1付加体を高選択率で得る観点からは、アルカリ金属、アルカリ金属アミド、及びアルカリ金属アルコキシドからなる群から選ばれる1種以上を含むことが好ましく、アルカリ金属及びアルカリ金属アミドからなる群から選ばれる1種以上と、アルカリ金属アルコキシドとの組み合わせであることがより好ましい。さらに好ましくは、金属ナトリウム、金属カリウム、ナトリウムアミド、及びカリウムアミドからなる群から選ばれる1種以上と、カリウムt-ブトキシドとの組み合わせである。
 塩基性触媒がアルカリ金属及びアルカリ金属アミドからなる群から選ばれる1種以上と、アルカリ金属アルコキシドとの組み合わせである場合、アルカリ金属及びアルカリ金属アミドの合計量(X)と、アルカリ金属アルコキシドの量(Y)との比率[(X):(Y)]には特に制限はないが、反応効率及び選択性のバランスの観点から、モル比で1:0.05~1:20であることが好ましく、1:0.1~1:10であることがより好ましく、1:0.2~1:5であることがさらに好ましく、1:0.5~1:2であることがよりさらに好ましい。
 さらには、前記塩基性触媒は、アルカリ金属がカリウム、ルビジウム、又はセシウムである触媒を1種以上含むことが好ましい。入手容易性の観点からは、好ましくは、上記アルカリ金属はカリウムである。塩基性触媒として、アルカリ金属がカリウム、ルビジウム、又はセシウムである触媒を含むと、原料ジアミンと原料オレフィンとの1:1付加体である付加体Aと付加体Bのうち、付加体Bを高選択率で得ることができる。この理由については定かではないが、反応系内に存在するアルカリ金属イオンのイオン半径が大きい方が、付加体Bを高選択率で得る点で有利であると考えられる。
 前述したように、上記付加体Bは付加体Aと比較して活性水素当量が低い。したがって付加体Bを高選択率で得ることが可能であると、主剤であるエポキシ樹脂に対する配合量が少なくてもより良好な硬化性能を発現しうるエポキシ樹脂硬化剤を調製できる。
 中でも、上記付加体Bを高選択率で得る観点、及び塩基性触媒の入手容易性の観点から、前記塩基性触媒が、金属カリウム、水酸化カリウム、カリウムアミド、水素化カリウム、及びカリウムアルコキシドからなる群から選ばれる1種以上を含むことがより好ましい。
 前記塩基性触媒中の、アルカリ金属がカリウム、ルビジウム、又はセシウムである触媒の含有量は、上記付加体Bを高選択率で得る観点から、塩基性触媒中の全アルカリ金属を100モル%とした場合のカリウム、ルビジウム、及びセシウムの合計のモル%として、好ましくは10モル%以上、より好ましくは20モル%以上、さらに好ましくは30モル%以上、よりさらに好ましくは40モル%以上である。また、上限は100モル%である。
 原料ジアミンと原料オレフィンとの付加反応において、塩基性触媒の使用量は、使用する原料ジアミンを100モル%とした場合、好ましくは0.2~30モル%、より好ましくは0.5~25モル%、さらに好ましくは1.0~20モル%、よりさらに好ましくは1.5~15モル%、よりさらに好ましくは2.0~12モル%である。塩基性触媒の使用量が原料ジアミンに対し0.2モル%以上であれば付加反応速度が良好であり、30モル%以下であれば経済的に有利である。
 また本発明の製造方法においては、原料ジアミンと原料オレフィンとの付加反応において、前記塩基性触媒以外のアルカリ金属塩をさらに添加して、塩基性触媒及び該アルカリ金属塩の存在下で該付加反応を行うこともできる。原料ジアミンと原料オレフィンとの1:1付加体である付加体Aと付加体Bのうち、付加体Bを高選択率で得る観点からは、当該アルカリ金属塩におけるアルカリ金属は、カリウム、ルビジウム、又はセシウムであることが好ましく、入手容易性の観点からはカリウムであることがより好ましい。
 前記塩基性触媒以外のアルカリ金属塩としては、アルカリ金属ハロゲン化物、アルカリ金属硝酸塩等が挙げられる。
 当該アルカリ金属ハロゲン化物としては、リチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群から選ばれる1種以上のアルカリ金属の、フッ化物、塩化物、臭化物、及びヨウ化物からなる群から選ばれる1種以上が挙げられ、ハロゲン化物の中では塩化物が好ましい。
 当該アルカリ金属ハロゲン化物としては、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、及びヨウ化カリウムからなる群から選ばれる1種以上がより好ましく、フッ化カリウム、塩化カリウム、臭化カリウム、及びヨウ化カリウムからなる群から選ばれる1種以上がより好ましく、塩化カリウムがさらに好ましい。
 当該アルカリ金属硝酸塩としては、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸ルビジウム、及び硝酸セシウムからなる群から選ばれる1種以上が挙げられる。これらの中でも、硝酸カリウム、硝酸ルビジウム、及び硝酸セシウムからなる群から選ばれる1種以上が好ましく、入手容易性の観点から硝酸カリウムがより好ましい。
 上記アルカリ金属塩は、1種を単独で、又は2種以上を組み合わせて用いることもできる。上記アルカリ金属塩を用いる場合、その使用量には特に制限はないが、原料ジアミンと原料オレフィンとの1:1付加体である付加体Aと付加体Bのうち、付加体Bを高選択率で得る観点からは、前記塩基性触媒及び当該アルカリ金属塩中の全アルカリ金属を100モル%とした場合のカリウム、ルビジウム、及びセシウムの合計のモル%が、好ましくは10モル%以上、より好ましくは20モル%以上、さらに好ましくは30モル%以上、よりさらに好ましくは40モル%以上となる量である。またアルカリ金属塩の使用量は、塩基性触媒に対する量として、好ましくは1~300モル%、より好ましくは5~200モル%、さらに好ましくは10~100モル%の範囲である。
 本発明の製造方法において、原料ジアミンに対する原料オレフィンの使用量は、原料ジアミンの転化率を向上させる観点からは、原料アミン1モルに対する原料オレフィンのモル比が、好ましくは0.10モル以上、より好ましくは0.20モル以上、さらに好ましくは0.50モル以上、よりさらに好ましくは1.0モル以上である。また、原料ジアミンと原料オレフィンとの1:1付加体を高選択率で得る観点からは、原料アミン1モルに対する原料オレフィンのモル比は、好ましくは5.0モル以下、より好ましくは3.0モル以下、さらに好ましくは2.0モル以下、よりさらに好ましくは1.8モル以下である。
 本発明の製造方法において、原料ジアミンと原料オレフィンとの付加反応は原料ジアミン、原料オレフィン、及び塩基性触媒を一括で仕込んで反応させてもよく、あらかじめ原料ジアミンと塩基性触媒とを接触させて予備反応を行ってから、原料オレフィンを添加して反応させてもよい。塩基性触媒の添加方法は一括添加に限られず、分割添加でもよい。塩基性触媒を分割添加すると付加反応率が向上しやすく、触媒活性種が反応系内に長時間残存しやすいためより少ない触媒量で付加反応が進行することも期待できる。塩基性触媒を分割添加する場合、分割回数には特に制限はないが、通常2~10回の範囲であり、作業性の観点から好ましくは2~5回の範囲である。
 また、本発明の製造方法において前記塩基性触媒以外のアルカリ金属塩を用いる場合には、その添加順序には特に制限はない。
 予備反応は、原料ジアミンの活性を高め、原料オレフィンとの付加反応を効率よく進行させるために必要に応じて行われる。原料ジアミンと塩基性触媒との予備反応は、例えば反応器内に原料ジアミンと塩基性触媒とを仕込み、窒素、アルゴン等の不活性ガス雰囲気下で、攪拌しながら加熱することにより行うことができる。
 原料ジアミンと塩基性触媒との予備反応時の温度は、好ましくは50~140℃であり、より好ましくは70~100℃である。予備反応温度が50℃以上であれば、原料ジアミンが十分に活性化され、その後の付加反応が効率よく進行する。また予備反応温度が140℃以下であれば、原料ジアミンの熱劣化等を回避できる。
 原料ジアミンと塩基性触媒との予備反応時間は、好ましくは20~360分、より好ましくは30~120分である。予備反応時間が20分以上であれば、原料ジアミンが十分に活性化され、その後の付加反応が効率よく進行する。また360分以下であれば、生産性の点で有利である。
 予備反応を行う場合は、上記のようにして原料ジアミンと塩基性触媒との予備反応を行った後、ここに原料オレフィンを添加して原料ジアミンとの付加反応を行うことが好ましい。予備反応を行い、かつ塩基性触媒を分割添加する場合には、例えば以下の方法を採用することができる。まず、前述の方法で原料ジアミンと一部の塩基性触媒とを接触させて予備反応を行った後、その予備反応物に対し原料オレフィンを添加し、原料オレフィンの添加の途中で、残りの塩基性触媒を一括で、又は2回以上に分割して添加する。
 原料オレフィンの添加時の形態には特に制限はない。常温で気体である原料オレフィンの場合は、反応系内に気体の原料オレフィンを導入してもよく、溶液又は懸濁液の状態で添加してもよい。小スケール製造における原料オレフィンの取り扱い容易性の点からは、溶液又は懸濁液の状態で添加することが好ましい。一方、工業的には、気体の原料オレフィンを用いることが好ましい。
 原料オレフィンの添加時、及び付加反応時の温度は、好ましくは5~120℃、より好ましくは5~100℃、さらに好ましくは10~85℃である。反応温度が5℃以上であれば、原料ジアミンと原料オレフィンとの付加反応が効率よく進行する。また120℃以下であれば、副生成物である原料オレフィンの重合物の生成や原料ジアミンの二量化反応を抑制することができる。
 また本発明の製造方法においては、当該付加反応を低温で行った方が、原料ジアミンと原料オレフィンとの1:1付加体である付加体Aと付加体Bのうち、付加体Bを高選択率で得ることができる。この観点からは、反応温度はよりさらに好ましくは10~70℃、よりさらに好ましくは10~50℃である。
 また、付加反応時間には特に制限はなく、使用する触媒の種類や反応条件等に応じて適宜選択できるが、通常、原料オレフィンの添加が終了してから、好ましくは10~360分、より好ましくは20~240分である。上記付加反応時間が10分以上であれば未反応原料の残存が少ない。また360分以下であれば生産性、及び、原料ジアミンと原料オレフィンとの1:1付加体を高選択率で得る観点で有利である。
 また上記付加反応時間は、原料オレフィンの添加開始からの時間としては、通常20分~10時間、より好ましくは30分~8時間の範囲である。
 上記付加反応は、窒素、アルゴン等の不活性ガス雰囲気下で行うことが好ましい。
 得られた反応液中には、反応により生成したポリアミン化合物と塩基性触媒が含まれる。また、未反応の原料ジアミン、未反応の原料オレフィンがさらに含まれることがある。
 塩基性触媒は、その種類に応じて、濾過、水洗、吸着等により除去することができる。例えば塩基性触媒がアルカリ金属アミドである場合は、塩酸、塩化水素ガス、酢酸などの酸、メタノール、エタノール等のアルコール、あるいは水等を加えてアルカリ金属アミドを除去容易な塩等に変えてから濾過することが可能である。例えば水を用いた場合には、アルカリ金属アミドが水酸化物となり、濾過が容易になる。
 上記のようにして反応液から塩基性触媒を除去した後、未反応の原料ジアミン及び未反応の原料オレフィンを蒸留により除去して、前記一般式(I)で示されるポリアミン化合物を含有する混合物が得られる。
 該混合物中には、原料ジアミン1モルと原料オレフィン1モルとが付加した前記1:1付加体のほか、原料ジアミン1モルと原料オレフィン2モルとが付加した1:2付加体、原料ジアミン1モルと原料オレフィン3モルとが付加した1:3付加体、原料ジアミン1モルと原料オレフィン4モルとが付加した1:4付加体、原料ジアミン1モルと原料オレフィン5モルとが付加した1:5付加体、等の付加体が含まれることがある。これらの付加体は、例えば、蒸留精製により分離することができる。
[ポリアミン組成物及びその製造方法]
 本発明のポリアミン組成物は、前記一般式(I)で示される本発明のポリアミン化合物を含有することを特徴とする。該ポリアミン組成物は、エポキシ樹脂硬化剤として好適に使用することができる。
 本発明のポリアミン組成物中の前記一般式(I)で示されるポリアミン化合物の含有量は、エポキシ樹脂硬化剤として使用した際の硬化性の観点から、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上、よりさらに好ましくは50質量%以上、よりさらに好ましくは70質量%以上であり、上限は100質量%である。
 本発明のポリアミン組成物中に含まれる好ましいポリアミン化合物としては、前記本発明のポリアミン化合物において記載したものと同じである。本発明のポリアミン組成物は、前記ポリアミン化合物を2種以上含有していてもよい。
 例えば、当該ポリアミン化合物が原料ジアミンであるキシリレンジアミンと前記原料オレフィンとの付加反応物である場合には、本発明のポリアミン組成物は、当該ポリアミン化合物として、原料ジアミン1モルと原料オレフィン1モルとが付加した1:1付加体のほか、原料ジアミン1モルと原料オレフィン2モルとが付加した1:2付加体、原料ジアミン1モルと原料オレフィン3モルとが付加した1:3付加体、原料ジアミン1モルと原料オレフィン4モルとが付加した1:4付加体、原料ジアミン1モルと原料オレフィン5モルとが付加した1:5付加体等を含有していてもよい。
 これらの中でも、本発明のポリアミン組成物は、エポキシ樹脂硬化剤として使用した際に、主剤であるエポキシ樹脂に対する配合量が少なくても良好な硬化性能を発現する観点から、原料ジアミン1モルと原料オレフィン1モルとが付加した1:1付加体及び原料ジアミン1モルと原料オレフィン2モルとが付加した1:2付加体からなる群から選ばれる1種以上が主成分であることが好ましく、原料ジアミン1モルと原料オレフィン1モルとが付加した1:1付加体が主成分であることがより好ましい。
 なお、ポリアミン組成物中の「主成分」とは、ポリアミン組成物を構成する成分のうち最も含有量の多い成分を意味し、その含有量は、好ましくは全体の30質量%以上、より好ましくは50~100質量%、さらに好ましくは60~100質量%、よりさらに好ましくは70~100質量%、よりさらに好ましくは80~100質量%、よりさらに好ましくは90~100質量%である。
 本発明のポリアミン組成物の主成分として特に好ましいポリアミン化合物は、下記一般式(I-A)で示される化合物及び下記一般式(I-B)で示される化合物からなる群から選ばれるものであり、さらに好ましくは下記一般式(I-B)で示される化合物である。
Figure JPOXMLDOC01-appb-C000008
 式(I-A)及び(I-B)中、Rは前記と同じであり、ブテニル基及びメチルブテニル基からなる群から選ばれる1種以上が好ましく、ブテニル基であることがより好ましい。
 Rがブテニル基である場合、前記一般式(I-A)で示される化合物としては下記(I-A-1)、(I-A-2)及び(I-A-3)が挙げられる。また、Rがブテニル基である場合、前記一般式(I-B)で示される化合物としては下記(I-B-1)、(I-B-2)及び(I-B-3)が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 前記と同様、前記一般式(I-A)で示される化合物のように、キシリレンジアミンのアミノ基の水素が置換された1:1付加体を「付加体A」、前記一般式(I-B)で示される化合物のように、キシリレンジアミンのベンジル位の水素が置換された1:1付加体を「付加体B」とすると、本発明のポリアミン組成物中の付加体Aと付加体Bの合計含有量を100質量%とした場合の、付加体Bの含有量[(付加体B)/{(付加体A)+(付加体B)}]は、好ましくは15質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上、よりさらに好ましくは60質量%以上、よりさらに好ましくは75質量%以上、よりさらに好ましくは80質量%以上であり、上限は100質量%である。付加体Bの含有量比[(付加体B)/{(付加体A)+(付加体B)}]が高い方がポリアミン組成物のAHEWの値が下がりやすく、エポキシ樹脂硬化剤として使用した際の硬化性がより良好になる。
 ポリアミン組成物中の前記一般式(I)で示されるポリアミン化合物の含有量は、ガスクロマトグラフィー(GC)分析により求めることができ、具体的には実施例に記載の方法で求められる。
 本発明のポリアミン組成物の製造方法には特に制限はない。例えば、前記一般式(I)で示されるポリアミン化合物を、他のアミン化合物等の任意成分と混合して調製することができる。また、前記一般式(I)で示されるポリアミン化合物の製造方法と同様の方法で原料ジアミンと原料オレフィンとの付加反応を行った後、得られた反応液から塩基性触媒や未反応原料を除去して得られた混合物を、そのまま本発明のポリアミン組成物とすることもできる。すなわち本発明のポリアミン組成物は、キシリレンジアミン(原料ジアミン)と原料オレフィン、好ましくはキシリレンジアミンと共役ジエンとを、塩基性触媒の存在下で付加反応させる工程を有することが好ましい。この方法を用いることにより、前記一般式(I)で示されるポリアミン化合物を多く含有する本発明のポリアミン組成物を一括で製造することができる。
 ポリアミン組成物の製造方法における好ましい態様は、前記本発明のポリアミン化合物の製造方法において記載したものと同じである。
 本発明のポリアミン組成物の活性水素当量(AHEW)は、好ましくは120以下であり、より好ましくは100以下、さらに好ましくは90以下、よりさらに好ましくは80以下である。ポリアミン組成物のAHEWが上記範囲であると、該組成物をエポキシ樹脂硬化剤として使用した際に、エポキシ樹脂への配合量が少なくても高い硬化性を発現する。
 ポリアミン組成物のAHEWは滴定法により測定することができる。
[エポキシ樹脂硬化剤]
 本発明のエポキシ樹脂硬化剤は、前述した本発明のポリアミン化合物、又は本発明のポリアミン組成物を含有することを特徴とする。本発明のポリアミン化合物、又は本発明のポリアミン組成物をエポキシ樹脂硬化剤に使用する場合には、該ポリアミン化合物又は該ポリアミン組成物をエポキシ樹脂硬化剤として単独で使用してもよいし、活性水素を有する他のポリアミン等と混合して使用してもよい。
 本発明のポリアミン化合物をエポキシ樹脂硬化剤に使用する場合には、該ポリアミン化合物をさらに変性して使用することもできる。
 本発明のエポキシ樹脂硬化剤には、本発明の効果を損なわない範囲で、さらに公知の硬化促進剤や非反応性希釈剤等を配合してもよい。
 本発明のポリアミン化合物又はポリアミン組成物をエポキシ樹脂硬化剤に使用する場合、該ポリアミン化合物又はポリアミン組成物は当該エポキシ樹脂硬化剤の主成分としてもよく、エポキシ樹脂硬化剤の性能を改良する目的で少量使用してもよい。ここでいう「主成分」とは、エポキシ樹脂硬化剤中の全構成成分を100質量%とした場合、その含有量が50質量%以上である成分をいう。したがってエポキシ樹脂硬化剤中の本発明のポリアミン化合物又はポリアミン組成物の含有量は特に制限されず、例えば、1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは20質量%以上、よりさらに好ましくは30質量%以上、よりさらに好ましくは40質量%以上とすることができる。硬化剤としての硬化性、及び良好な硬化物性能を与え得るエポキシ樹脂組成物を得る観点で本発明のポリアミン化合物又はポリアミン組成物をエポキシ樹脂硬化剤の主成分とする場合は、エポキシ樹脂硬化剤中の該ポリアミン化合物又はポリアミン組成物の含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、よりさらに好ましくは90質量%以上、よりさらに好ましくは95質量%以上、よりさらに好ましくは99質量%以上とすることができる。また、上限は100質量%である。
[エポキシ樹脂組成物]
 本発明のエポキシ樹脂組成物は、前述した本発明のエポキシ樹脂硬化剤と、エポキシ樹脂とを含有するものである。該エポキシ樹脂としては、本発明のエポキシ樹脂硬化剤の活性水素と反応するグリシジル基を持つエポキシ樹脂であればいずれも使用することができるが、硬化物性能に優れる観点からは、分子内に芳香環又は脂環式構造を含むエポキシ樹脂であることが好ましい。
 本発明に用いられるエポキシ樹脂の具体例としては、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルオキシ基を有するエポキシ樹脂、及びレゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂からなる群から選ばれる1種以上の樹脂が挙げられる。柔軟性や耐衝撃性、耐湿熱性などの諸性能を向上させるために、上記の種々のエポキシ樹脂を2種以上混合して使用することもできる。
 この中でも、硬化物性能の観点から、本発明に用いられるエポキシ樹脂は、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、及びビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂からなる群から選ばれる1種以上を主成分とするものがより好ましく、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂及びビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂からなる群から選ばれる1種以上を主成分とするものがさらに好ましい。なお、ここでいう「主成分」とは、本発明の趣旨を逸脱しない範囲で他の成分を含みうることを意味し、好ましくは全体の50~100質量%、より好ましくは70~100質量%、さらに好ましくは80~100質量%、よりさらに好ましくは90~100質量%を意味する。
 本発明のエポキシ樹脂組成物中の前記エポキシ樹脂硬化剤の含有量は、エポキシ樹脂硬化剤中の活性水素当量と、エポキシ樹脂のエポキシ当量との比率が、好ましくは1/0.8~1/1.2、より好ましくは1/0.9~1/1.1、さらに好ましくは1/1となる量である。
 本発明のエポキシ樹脂組成物には、さらに、充填材、可塑剤などの改質成分、揺変剤などの流動調整成分、顔料、レベリング剤、粘着付与剤などのその他の成分を用途に応じて含有させてもよい。
 本発明のエポキシ樹脂組成物の製造方法には特に制限はなく、エポキシ樹脂硬化剤、エポキシ樹脂、及び必要に応じ他の成分を公知の方法及び装置を用いて混合し、製造することができる。
[エポキシ樹脂硬化物]
 本発明はまた、前記本発明のエポキシ樹脂組成物を硬化させたエポキシ樹脂硬化物を提供する。本発明のエポキシ樹脂硬化物は良好な硬化物性能を有していることから、エポキシ樹脂組成物は包装材料、塗料、接着剤、床材、封止剤等に好適に用いられる。
 以下に実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、ポリアミン化合物及びポリアミン組成物の分析及び評価は以下の方法により行った。
(ガスクロマトグラフィー(GC)分析)
 原料ジアミン転化率、及びポリアミン組成物中の各成分の含有量比(選択率、及び1:1付加体中の付加体Aと付加体Bとの比率)の測定は、GC分析により行った。原料ジアミン転化率の測定には内部標準法を用いた。またポリアミン組成物中の各成分の含有量比はいずれもGCのピーク面積比で表記した。GC分析条件は下記の通りである。
GC装置:Agilent製 GC 6850
カラム:HP-1MS 30m×250μmID、膜厚0.25μm
カラムオーブン温度:開始温度50℃で5分保持、5℃/分で150℃まで昇温、10℃/分で320℃まで昇温し、20分保持
キャリアーガス:He
キャリアーガス流速:1.5ml(初期流量)
制御モード:constant pressure 113kPa
検出器:FID
注入口温度:300℃
検出器温度:300℃
(GC-MS分析)
 付加反応物の構造同定は、GC-MS分析により行った。GC-MS分析条件は下記の通りである。
(1)GC条件
装置:Agilent製 7890A
カラム:HP-1MS 30m×250μmID、膜厚0.25μm
キャリアーガス:He 1.0ml constant flow
カラムオーブン温度:開始温度50℃で5分保持、5℃/分で150℃まで昇温、10℃/分で320℃まで昇温し、20分保持
注入口:Split(Split比 90:1)
注入口温度:300℃
(2)MS条件
<EI+モード>
装置:JEOL製「AccuTOF GCV JMS-T100GCV」
インターフェース温度:320℃
イオン化法:EI+
イオン化電圧/電流:70eV/300μA
イオン化室温度:250℃
検出器電圧:2200V
マスレンジ:m/z 30-800
質量校正物質:パーフルオロケロセン(高沸点分)
サンプル濃度/サンプル量:濃度5%/2μL(メタノール希釈)
<CI+モード>
装置:JEOL製「AccuTOF GCV JMS-T100GCV」
インターフェース温度:320℃
イオン化法:CI+
反応ガス:i-ブタン
イオン化電圧/電流:70eV/300μA
イオン化室温度:250℃
検出器電圧:2200V
マスレンジ:m/z 60-600
質量校正物質:パーフルオロケロセン(高沸点分)
質量ドリフト補正物質:2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン
サンプル濃度/サンプル量:濃度20%/2μL(メタノール希釈)
(ガラス転移温度測定)
 エポキシ樹脂硬化物のガラス転移温度は、ティー・エイ・インスツルメント製のレオメータ「Discovery HR-2」を用いて、昇温速度10℃/minの条件で50~250℃まで熱機械分析(TMA)を行うことにより求めた。
[ポリアミン化合物及びポリアミン組成物の製造]
実施例1
 100mLの4口フラスコに、攪拌羽根を備えた攪拌機、熱電対、冷却器、及びアルゴン導入管を取り付け、フラスコ内部をアルゴン置換した後に、原料ジアミンであるメタキシリレンジアミン(東京化成工業(株)製)30.33g(0.22モル)と、塩基性触媒であるリチウムアミド(Aldrich社製)0.30g(0.0131モル)を仕込んだ。これをアルゴン気流下で、攪拌速度300rpmで攪拌しながら81℃(内温)まで昇温し、紫~赤紫色の発色が確認されるまで攪拌を継続した(予備加熱)。発色が確認された後、滴下ろうとを取り付け、加熱及び攪拌を継続しながら、原料オレフィンである1,3-ブタジエンの15質量%ヘキサン溶液(東京化成工業(株)製)を33.87g(1,3-ブタジエン量として5.08g、0.09モル)を19分かけて滴下し、滴下終了後60分加熱してメタキシリレンジアミンと1,3-ブタジエンとを反応させた。
 反応液を水冷した後、この溶液にメタノールを10mL添加して反応を停止させた。エバポレーターで反応液中のヘキサン及びメタノールを留去し、析出した塩を濾過により除去し、メタキシリレンジアミンと1,3-ブタジエンとの付加反応物(付加体)を含むポリアミン組成物を得た。
 上記反応における原料ジアミンの転化率、及び得られたポリアミン組成物の分析結果を表1に示す。ポリアミン組成物中の各成分のGC測定におけるリテンションタイム(分)は次の通りである。1:1付加体(28.0~28.7分)、1:2付加体(31.5~33.5分)、1:3付加体(33.5~36.0分)、1:4付加体(36.0~38.0分)、1:5付加体(38.5~39.5分)。
実施例2~3
 実施例1において、使用する塩基性触媒の種類及び量を表1に示すとおりに変更したこと以外は、実施例1と同様の方法でポリアミン化合物及びポリアミン組成物を製造した。分析結果を表1に示す。
実施例4~18
 実施例1において、反応容器を耐圧容器、攪拌羽根を攪拌子に変更し、並びに、使用する原料、塩基性触媒、及び反応条件を表1に示すとおりに変更して、原料ジアミン、原料オレフィン、及び塩基性触媒を一括に仕込む方法でポリアミン化合物及びポリアミン組成物を製造した。分析結果を表1に示す。なお実施例4~18においては、予備反応は行っていない。
 実施例17,18で得られたポリアミン組成物中の各成分(1:1付加体~1:5付加体)のGC測定におけるリテンションタイム(分)は実施例1~16と同じである。
Figure JPOXMLDOC01-appb-T000010
 表1に記載した原料及び塩基性触媒は下記である。また表1に記載の使用量は、いずれも有効成分の量である。
 メタキシリレンジアミン(MXDA):東京化成工業(株)製
 パラキシリレンジアミン(PXDA):東京化成工業(株)製
 1,3-ブタジエン:東京化成工業(株)製、15質量%ヘキサン溶液
 リチウムアミド(LiNH):Aldrich社製
 ナトリウムアミド(NaNH):和光純薬工業(株)製
 金属ナトリウム(Na):Aldrich社製、30~35質量%パラフィンワックス懸濁液
 カリウムt-ブトキシド(tBuOK):和光純薬工業(株)製
 表1の実施例1~3の比較から、使用した触媒の種類によって、1:1付加体の選択率、並びに1:1付加体中の付加体Aと付加体Bの比率が変わることがわかった。実施例1と2を比較すると、リチウムアミドよりもナトリウムアミドを用いた方が1:1付加体中の付加体Bの生成比率が高かった。また、実施例1~3の中では、塩基性触媒としてナトリウムアミド及びカリウムt-ブトキシドを併用した実施例3が1:1付加体中の付加体Bの生成比率が最も高かった。
 実施例4~7は、実施例2~3における原料ジアミンと原料オレフィン(1,3-ブタジエン)との仕込みモル比を変更し、封じ込めにて反応を行った例である。実施例2と6との比較、及び実施例3と4との比較から、原料ジアミンに対する、原料オレフィンである1,3-ブタジエンの仕込みモル比を上げると、原料ジアミンの転化率が向上することがわかった。また実施例4~7によれば、ナトリウムアミドと金属ナトリウムとでは触媒種が異なるがアルカリ金属種は同じであり、この場合、1:1付加体中の付加体Bの生成比率に対する効果は同等であった。
 実施例8~11は、実施例5と同じ塩基性触媒を使用して、原料オレフィンである1,3-ブタジエンの仕込みモル比を上げ、さらに反応時間を変えて反応を行った例である。実施例5と9との比較からも、原料オレフィンである1,3-ブタジエンの仕込みモル比を上げると、原料ジアミンの転化率が向上したことがわかる。ただし、1:1付加体の選択率が低下する傾向があった。また実施例8~11の比較から、反応時間を延ばすと原料ジアミンの転化率も向上するが、1:1付加体の選択率が低下する傾向があった。
 実施例12は、実施例9の塩基性触媒(金属ナトリウム及びカリウムt-ブトキシドの併用)を金属ナトリウム単独に変えた例である。
 実施例13~16は、塩基性触媒として金属ナトリウム及びカリウムt-ブトキシドを併用し、反応温度を変えて反応を行った例である。その結果、反応温度を15.0℃(内温)まで低くしても原料ジアミンの転化率は低下せず、反応が進行することを確認した。さらに、反応温度を下げると、1:1付加体中の付加体Bの生成比率が向上することがわかった。
 実施例17~18は原料ジアミンをパラキシリレンジアミン(PXDA)に変えて反応を行った例であり、原料ジアミンとしてMXDAを使用した場合と同様に反応が進行することがわかった。
[付加反応物の構造同定]
(1)MXDAと1,3-ブタジエンとの付加反応物(付加体)の同定
 MXDAと1,3-ブタジエンとの付加体の組成式及び分子量は以下の通りである。
  1:1付加体(分子量:190、組成式:C1218
  1:2付加体(分子量:244、組成式:C1624
  1:3付加体(分子量:298、組成式:C2030
  1:4付加体(分子量:352、組成式:C2436
  1:5付加体(分子量:406、組成式:C3248
 実施例12で得られたポリアミン組成物を用い、前述したGC-MS分析においてCI+モードで測定を行った。トータルイオンクロマトグラフ(TIC)の測定チャートを図1に示す。
 次に、MXDAと1,3-ブタジエンとの各付加体の[M+H](但し、Mは分子量であり、Hは水素原子である)に相当する質量範囲のマスクロマトグラフにおいて、各ピークの推定組成式から構造を同定した。
 なお、各付加体として同定したm/z範囲、TICにおけるリテンションタイム(RT)又はその範囲、及びピーク数は以下の通りである。
  1:1付加体(m/z=191~192、RT:28.3分、28.5分、28.6分及び28.7分、ピーク数:4)
  1:2付加体(m/z=245~246、RT:31.2~33.1分、ピーク数:9)
  1:3付加体(m/z=299~300、RT:33.2~35.4分、ピーク数:11)
  1:4付加体(m/z=353~354、RT:36.3分及び37.4分、ピーク数:2)
  1:5付加体(m/z=407~408、RT:39.0~39.3分、ピーク数:4)
 図2~図5は、CI+モードで測定した、1:1付加体に相当するRT28.3分、28.5分、28.6分、及び28.7分の4つのピークのマススペクトル、精密質量、推定組成式である。
 図6~図7は、1:2付加体に相当する9つのピークのうち、RT31.2分、及び32.8分の2つのピークのマススペクトル、精密質量、推定組成式である。
 図8は、1:3付加体に相当する11のピークのうち、RT35.4分のピークのマススペクトル、精密質量、推定組成式である。
 図9は、1:4付加体に相当するRT37.4分のピークのマススペクトル、精密質量、推定組成式である。
 また図10は、1:5付加体に相当する4つのピークのうちRT39.0分のピークのマススペクトル、精密質量、推定組成式である。
(2)MXDAと1,3-ブタジエンとの1:1付加体中の付加体A及び付加体Bの同定
 GC-MS分析において、CI+モードで測定した、MXDAと1,3-ブタジエンとの1:1付加体のTIC測定チャートの拡大図を図11に示す。また、CI+モードで測定したRTが28.3分、28.5分、28.6分、及び28.7分の4つのピークに対応する化合物(EI+モードで測定したRTは28.3分、28.4分、28.5分、及び28.6分)についてEI+モードで測定したマススペクトルを図12~図15に示す。CI+モードで測定したマススペクトルは図2~図5である。
 ここで、EI+モードで測定したRT28.3分と28.4分のピークのマススペクトル、RT28.5分と28.6分のピークのマススペクトルはそれぞれ非常に似ており、一方、前者と後者のスペクトルは異なる。一方、CI+モードで測定したRT28.3分と28.5分のピークのマススペクトル、RT28.6分と28.7分のピークのマススペクトルにも同様のことがいえる。EI+モードで測定したRT28.5分と28.6分のピークのマススペクトルにおいて、m/z=70、m/z=120は、キシリレンジアミンのアミノ基の水素がブタジエン由来の基に置換した化合物(付加体A)における、該アミノ基部分の開裂によるものと推定された(下記)。
Figure JPOXMLDOC01-appb-C000011
 また、CI+モードで測定したRT28.3分、28.5分のピークのマススペクトルではm/z=157のピークが特徴的である。これは、付加体Bのアミノ基が2つ外れた構造のイオンと推定した(下記)。
Figure JPOXMLDOC01-appb-C000012
 よって、CI+モードで測定したRT28.3分、28.5分のピークは付加体Bであり、RT28.6分、28.7分のピークは付加体Aであると同定した。
 なお、PXDAと1,3-ブタジエンとの付加反応物(付加体)についても上記と同様の方法で同定を行った。
[エポキシ樹脂硬化剤の調製及び評価]
(1)ポリアミン組成物の精製及びエポキシ樹脂硬化剤の調製
 実施例9と同様の条件で製造した4バッチ分のポリアミン組成物(粗組成物)のうち44.78gを100mlの4口フラスコに仕込み、初期圧力0.08~0.10kPa、初期ヒーター温度190℃で単蒸留を行った。途中、圧力を0.02~0.04kPaまで下げ、ヒーター温度を210℃、220℃、220~240℃、240~250℃まで順に上昇させ、留分1~9を分取した。分取した留分6,8,9を、それぞれ後述するエポキシ樹脂硬化剤A,B,Cとして用いた。
 また、実施例12の条件で製造した5バッチ分のポリアミン組成物(粗組成物)のうち49.96gを100mlの4口フラスコに仕込み、初期圧力0.1kPa、初期ヒーター温度240℃で単蒸留を行った。途中、圧力を0.03kPaまで下げ、ヒーター温度を240~250℃、250℃、250~270℃、300℃まで順に上昇させ、留分1~7を分取した。最後に分取した留分7を、後述するエポキシ樹脂硬化剤Dとして用いた。
 得られたエポキシ樹脂硬化剤A~Dの組成を表2に示す。硬化剤A~Cは原料ジアミン(MXDA)と原料オレフィン(1,3-ブタジエン)との1:1付加体中の付加体Bの割合が85.7~87.4%の範囲にある。また、硬化剤Aは1:1付加体、硬化剤Bは1:1付加体と1:2付加体の混合物、硬化剤Cは1:2付加体がそれぞれ主成分である。硬化剤Dは1:1付加体中の付加体Bの割合が60.9%と低く、1:1付加体と1:2付加体の混合物が主成分であり、その比率は硬化剤Bと同程度である。
Figure JPOXMLDOC01-appb-T000013
(2)エポキシ樹脂組成物の調製及び評価
実施例19
 ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂(三菱化学(株)製「jER828」、エポキシ当量:186g/当量、固形分濃度:100質量%、液状)を主剤のエポキシ樹脂として用いた。この主剤5gに対し、前記エポキシ樹脂硬化剤Aを1.26g(主剤であるエポキシ樹脂のエポキシ当量に対する、エポキシ樹脂硬化剤中の活性水素当量(計算値)の比率が0.94となる量)配合し、攪拌して、エポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物を厚み1.5mmとなるようアルミ容器に塗布し、150℃で1時間硬化させて、エポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物を20mm×5mmのサイズにカットして、前記方法でガラス転移温度を測定した。評価結果を表3に示す。
実施例20~22
 エポキシ樹脂硬化剤の種類及び配合量を表3に示すとおりに変更したこと以外は、実施例19と同様の方法でエポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物を用いて、前記評価を行った。評価結果を表3に示す。なおエポキシ樹脂硬化剤の配合量は、実施例19を基準とし、各硬化剤のMwに比例する量とした。
Figure JPOXMLDOC01-appb-T000014
 表3中、Mwは、硬化剤中の1:1付加体の含有量及び1:2付加体の含有量から計算した値である。具体的には、硬化剤Aは全てが1:1付加体として、硬化剤B及び硬化剤Dは1:1付加体と1:2付加体がモル比で60:40の割合で含有されるものとして、硬化剤Cは全てが1:2付加体として計算した。
 表3に示すように、実施例19~22のエポキシ樹脂組成物の硬化物はいずれもガラス転移温度を有していることから、本発明のポリアミン化合物及びこれを含むポリアミン組成物は、エポキシ樹脂硬化剤としての機能を有するものである。
 実施例19~21の比較から、エポキシ樹脂硬化剤中のMXDAと1,3-ブタジエンとの1:1付加体の含有量が多い方が、エポキシ樹脂硬化物のガラス転移温度が高くなり、硬化性に優れる。また実施例20と22との比較から、エポキシ樹脂硬化剤中のMXDAと1,3-ブタジエンとの1:1付加体中の付加体Bの比率が高い方が、エポキシ樹脂硬化物のガラス転移温度が高くなり、硬化性に優れる。
[ブタジエンガスを用いたポリアミン化合物及びポリアミン組成物の製造]
実施例23
 300mLの4口フラスコに、攪拌羽根を備えた攪拌機、熱電対、冷却器、及びアルゴン導入管、ブタジエンガス導入管を取り付け、フラスコ内部をアルゴン置換した後に、原料ジアミンであるメタキシリレンジアミン(東京化成工業(株)製)105g(0.77モル)と、塩基性触媒である金属ナトリウム(Aldrich社製、30~35質量%パラフィンワックス懸濁液)1.18g(0.015モル)、カリウムt-ブトキシド(和光純薬工業(株)製)1.73g(0.015モル)を仕込んだ。これをアルゴン気流下で、攪拌速度300rpmで攪拌しながら15℃(内温)まで冷却し、紫~赤紫色の発色が確認されるまで攪拌を継続した。発色が確認された後、ガス状の1,3-ブタジエン(東京化成工業(株)製)50g(0.85モル)を200分かけてフラスコに導入し、導入終了後30分間攪拌を継続した。
 反応液を冷却した状態で、水1.5mL添加して反応を停止させた。エバポレーターで反応液中の水を留去し、析出した塩を濾過により除去し、メタキシリレンジアミンと1,3-ブタジエンとの付加反応物(付加体)を含むポリアミン組成物を得た。
 上記反応における原料ジアミンの転化率、及び得られたポリアミン組成物の分析結果を表4に示す。
実施例24
 300mLの4口フラスコに、攪拌羽根を備えた攪拌機、熱電対、冷却器、及びアルゴン導入管、ブタジエンガス導入管を取り付け、フラスコ内部をアルゴン置換した後に、原料ジアミンであるメタキシリレンジアミン(東京化成工業(株)製)122g(0.90モル)と、塩基性触媒である金属ナトリウム(Aldrich社製、30~35質量%パラフィンワックス懸濁液)0.67g(0.009モル)、カリウムt-ブトキシド(和光純薬工業(株)製)0.99g(0.009モル)を仕込んだ。これをアルゴン気流下で、攪拌速度300rpmで攪拌しながら15℃(内温)まで冷却し、紫~赤紫色の発色が確認されるまで攪拌を継続した。発色が確認された後、ガス状の1,3-ブタジエン(東京化成工業(株)製)46g(0.85モル)を360分かけてフラスコに導入し、導入終了後30分間攪拌を継続した。
 反応液を冷却した状態で、水1.5mL添加して反応を停止させた。エバポレーターで反応液中の水を留去し、析出した塩を濾過により除去し、メタキシリレンジアミンと1,3-ブタジエンとの付加反応物(付加体)を含むポリアミン組成物を得た。
 上記反応における原料ジアミンの転化率、及び得られたポリアミン組成物の分析結果を表4に示す。
Figure JPOXMLDOC01-appb-T000015
[エポキシ樹脂硬化剤の調製及び評価]
(1)ポリアミン組成物の精製及びエポキシ樹脂硬化剤の調製
 実施例23と24で製造したポリアミン組成物(粗組成物)のうち299.42gを500mlの4口フラスコに仕込み、初期圧力0.08~0.10kPa、初期ヒーター温度160℃で単蒸留を行った。途中、ヒーター温度を170℃、180℃、190、200℃まで順に上昇させ、留分を分取した。分取した留分を混合し、後述するエポキシ樹脂硬化剤Eとして用いた。得られたエポキシ樹脂硬化剤Eの組成を表5に示す。
Figure JPOXMLDOC01-appb-T000016
(2)エポキシ樹脂組成物の調製及び評価
実施例25
 ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂(三菱化学(株)製「jER828」、エポキシ当量:186g/当量、固形分濃度:100質量%、液状)を主剤のエポキシ樹脂として用いた。この主剤100gに対し、前記エポキシ樹脂硬化剤Eを30g配合し、攪拌して、エポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物について、硬化速度、塗膜外観、指触乾燥及び耐薬品性の評価を行った。
(硬化速度)
 ガラス板(太佑機材(株)製 25×348×2.0mm)上に、23℃、50%R.H.条件下、前記エポキシ樹脂組成物を76μmのアプリケーターを用いて塗布し、塗膜を形成した。塗膜を形成したガラス板を塗料乾燥時間測定器(太佑機材(株)製)にセットし、測定器の針が塗膜表面を引っかいた際の条痕を観察して、各乾燥段階(指触乾燥、半乾燥、完全乾燥)への到達時間を以下の基準で測定した。結果を表6に示す。時間が短い方が、硬化速度が速いことを示す。
<硬化速度>
 指触乾燥:ガラス板上に針の跡が残り始める時間
 半乾燥:針が塗膜の中から塗膜表面上に浮き出てくる時間
 完全乾燥:塗膜上に針の跡が残らなくなる時間
(塗膜の外観)
 基材であるリン酸亜鉛処理鉄板(パルテック(株)製;SPCC-SD PB-N144 0.8×70×150mm)上に、23℃、50%R.H.条件下、前記エポキシ樹脂組成物をアプリケーターを用いて塗布し、塗膜を形成した(塗布直後の厚み:200μm)。得られた塗膜の1日経過後の外観を目視観察して、光沢性、透明性、及び平滑性を以下の基準で評価した。結果を表6に示す。
<光沢性>
 Ex:優秀(光沢あり)
 G:良好(やや光沢が劣るが、使用上問題なし)
 F:可(光沢が少ない)
 P:不良(光沢なし)
<透明性>
 Ex:優秀(濁りなし)
 G:良好(わずかに濁りがあるが、使用上問題なし)
 F:可(やや白濁あり)
 P:不良(白濁)
<平滑性>
 Ex:優秀(凹凸がない)
 G:良好(わずかに凹凸があるが、使用上問題なし)
 F:可(一部に凹凸がある)
 P:不良(ハジキがある、又は全面に凹凸がある)
(指触乾燥)
 前記と同様の方法で基材(リン酸亜鉛処理鉄板)上にエポキシ樹脂組成物を塗布して塗膜を形成した(塗布直後の厚み:200μm)。この塗膜を23℃、50%R.H.条件下で保存し、1、2、7日経過後に塗膜の乾燥状態を以下の基準で評価した。結果を表6に示す。
 Ex:優秀(べたつきが一切ない)
 G:良好(わずかにべたつきがある)
 F:可(べたつきがある)
 P:不良(非常にべたつきが多い)
(耐薬品性試験)
 前記と同様の方法で基材(リン酸亜鉛処理鉄板)上にエポキシ樹脂組成物を塗布して塗膜を形成し(塗布直後の厚み:200μm)、非塗装部に錆止め塗料(関西ペイント(株)製ミリオンプライマー、ミリオンクリヤー)でシールしたものを試験片として用いた。
 この試験片を23℃、50%R.H.条件下で保存し、14日経過後の試験片について耐薬品性を評価した。具体的には、90質量%メタノール水溶液を1Lのポリ容器に注ぎ入れ、上記試験片を約80mm浸漬させ、23℃条件下で1、2、3、4週間保存後に外観を目視観察して、以下の基準で評価した。結果を表6に示す。
 Ex:優秀(変化なし)
 G:良好(わずかに変化はあるが、良好)
 F:可(やや変化あり)
 P:不良(変化あり)
Figure JPOXMLDOC01-appb-T000017
 本発明のポリアミン化合物及びこれを含有するポリアミン組成物は、エポキシ樹脂硬化剤として好適である。該エポキシ樹脂硬化剤を含有するエポキシ樹脂組成物は、包装材料、塗料、接着剤、床材、封止剤等に好適に用いられる。

Claims (17)

  1.  下記一般式(I)で示されるポリアミン化合物。
    Figure JPOXMLDOC01-appb-C000001

     式(I)中、R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。但し、R~Rのうち少なくとも1つは水素原子である。R~Rはそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。
     但し、R~Rのすべてが水素原子になることはなく、R~Rのうち少なくとも1つは炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。
  2.  前記一般式(I)において、R~Rのうちいずれか2つのみが炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である、請求項1に記載のポリアミン化合物。
  3.  前記一般式(I)において、R~Rのうちいずれか1つのみが炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である、請求項1に記載のポリアミン化合物。
  4.  前記一般式(I)で示されるポリアミン化合物がキシリレンジアミンと共役ジエンとの付加反応物である、請求項1~3のいずれか1項に記載のポリアミン化合物。
  5.  前記キシリレンジアミンがメタキシリレンジアミン及びパラキシリレンジアミンからなる群から選ばれる1種以上である、請求項4に記載のポリアミン化合物。
  6.  前記共役ジエンが1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、及びシクロペンタジエンからなる群から選ばれる1種以上である、請求項4又は5に記載のポリアミン化合物。
  7.  下記一般式(I-A)で示される化合物及び下記一般式(I-B)で示される化合物からなる群から選ばれる、請求項3~6のいずれか1項に記載のポリアミン化合物。
    Figure JPOXMLDOC01-appb-C000002

     式(I-A)及び(I-B)中、Rは炭素数4又は5の鎖状不飽和脂肪族炭化水素基である。
  8.  請求項1~7のいずれか1項に記載のポリアミン化合物を含むポリアミン組成物。
  9.  キシリレンジアミンと共役ジエンとを塩基性触媒の存在下で付加反応させる工程を有する、請求項1~7のいずれか1項に記載のポリアミン化合物の製造方法。
  10.  キシリレンジアミンと共役ジエンとを塩基性触媒の存在下で付加反応させる工程を有する、請求項8に記載のポリアミン組成物の製造方法。
  11.  前記塩基性触媒がアルカリ金属及びアルカリ金属含有化合物からなる群から選ばれる1種以上である、請求項9又は10に記載の製造方法。
  12.  前記アルカリ金属含有化合物がアルカリ金属水酸化物、アルカリ金属アミド、アルカリ金属水素化物、アルキル化アルカリ金属、及びアルカリ金属アルコキシドからなる群から選ばれる1種以上である、請求項11に記載の製造方法。
  13.  前記アルカリ金属及び前記アルカリ金属含有化合物におけるアルカリ金属がリチウム、ナトリウム、及びカリウムからなる群から選ばれる1種以上である、請求項11又は12に記載の製造方法。
  14.  前記塩基性触媒が金属カリウム、水酸化カリウム、カリウムアミド、水素化カリウム、及びカリウムアルコキシドからなる群から選ばれる1種以上を含む、請求項9~13のいずれか1項に記載の製造方法。
  15.  請求項1~7のいずれか1項に記載のポリアミン化合物、又は、請求項8に記載のポリアミン組成物を含有するエポキシ樹脂硬化剤。
  16.  請求項15に記載のエポキシ樹脂硬化剤と、エポキシ樹脂とを含有するエポキシ樹脂組成物。
  17.  請求項16に記載のエポキシ樹脂組成物を硬化させたエポキシ樹脂硬化物。
PCT/JP2017/014018 2016-04-06 2017-04-04 ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤 WO2017175741A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018510605A JP7036005B2 (ja) 2016-04-06 2017-04-04 ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-076897 2016-04-06
JP2016076897 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175741A1 true WO2017175741A1 (ja) 2017-10-12

Family

ID=60001222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014018 WO2017175741A1 (ja) 2016-04-06 2017-04-04 ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤

Country Status (3)

Country Link
JP (1) JP7036005B2 (ja)
TW (1) TW201806926A (ja)
WO (1) WO2017175741A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230692A1 (ja) 2018-05-31 2019-12-05 三菱瓦斯化学株式会社 化合物の製造方法、化合物、エポキシ硬化剤およびアミン組成物の製造方法
JP2019209221A (ja) * 2018-05-31 2019-12-12 三菱瓦斯化学株式会社 塩基組成物、塩基組成物の製造方法、及びアミノ基含有アルキル置換芳香族化合物の製造方法
JP2019210275A (ja) * 2018-05-31 2019-12-12 三菱瓦斯化学株式会社 化合物の製造方法、化合物、およびエポキシ硬化剤
JP2020132610A (ja) * 2019-02-26 2020-08-31 三菱瓦斯化学株式会社 アミン化合物の製造方法およびアミン組成物の製造方法
KR20210018268A (ko) 2018-05-31 2021-02-17 미츠비시 가스 가가쿠 가부시키가이샤 화합물의 제조 방법, 화합물, 에폭시 경화제 및 아민 조성물의 제조 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU231112A1 (ja) *
GB1347981A (en) * 1972-09-06 1974-02-27 Minnesota Mining & Mfg Curing of polyepoxides
US3795659A (en) * 1972-09-08 1974-03-05 Minnesota Mining & Mfg Curing of epoxide compositions containing enamines
US3888928A (en) * 1972-07-31 1975-06-10 Ici Australia Ltd 1,4-bis(diallylaminomethyl)-benzene
AU463371B2 (en) * 1971-08-09 1975-07-24 Ici Australia Limited Substituted benzylamines and polymers derived therefrom
JPH09249584A (ja) * 1996-03-19 1997-09-22 Sumikin Chem Co Ltd 1,1−ジ置換−1,2,3,4−テトラヒドロナフタレン化合物の製造方法
JP2002161076A (ja) * 2000-09-12 2002-06-04 Mitsubishi Gas Chem Co Inc アミノ化合物およびその製造方法
JP2007211060A (ja) * 2006-02-07 2007-08-23 Japan Advanced Institute Of Science & Technology Hokuriku 超分子ポリマー及びその合成方法
WO2011013557A1 (ja) * 2009-07-27 2011-02-03 昭和電工株式会社 アリルアミンの製造方法
WO2014057689A1 (ja) * 2012-10-11 2014-04-17 積水化学工業株式会社 熱膨張性樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU231112A1 (ja) *
AU463371B2 (en) * 1971-08-09 1975-07-24 Ici Australia Limited Substituted benzylamines and polymers derived therefrom
US3888928A (en) * 1972-07-31 1975-06-10 Ici Australia Ltd 1,4-bis(diallylaminomethyl)-benzene
GB1347981A (en) * 1972-09-06 1974-02-27 Minnesota Mining & Mfg Curing of polyepoxides
US3795659A (en) * 1972-09-08 1974-03-05 Minnesota Mining & Mfg Curing of epoxide compositions containing enamines
JPH09249584A (ja) * 1996-03-19 1997-09-22 Sumikin Chem Co Ltd 1,1−ジ置換−1,2,3,4−テトラヒドロナフタレン化合物の製造方法
JP2002161076A (ja) * 2000-09-12 2002-06-04 Mitsubishi Gas Chem Co Inc アミノ化合物およびその製造方法
JP2007211060A (ja) * 2006-02-07 2007-08-23 Japan Advanced Institute Of Science & Technology Hokuriku 超分子ポリマー及びその合成方法
WO2011013557A1 (ja) * 2009-07-27 2011-02-03 昭和電工株式会社 アリルアミンの製造方法
WO2014057689A1 (ja) * 2012-10-11 2014-04-17 積水化学工業株式会社 熱膨張性樹脂組成物

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
COURTOIS, G. ET AL.: "Synthese en une etape par voie organometallique de diamines primaires benzyliques a,a'-disubstituees", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 548, 1997, pages 269 - 278, XP004100158 *
DATABASE Database [O] 12 June 2017 (2017-06-12), XP055431572, retrieved from STN Database accession no. 1903663-50-2 *
DATABASE Database [O] 12 June 2017 (2017-06-12), XP055431604, retrieved from STN Database accession no. 1877934-36-5 *
DATABASE DATABASE [O] XP055431609, Database accession no. 1874791-77-1 *
DATABASE DATABASE [O] XP055431613, Database accession no. 1872486-58-2 *
DATABASE DATABASE [O] XP055431619, Database accession no. 1870776-88-7 *
DATABASE DATABASE [O] XP055431620, Database accession no. 1247230-71-2 *
DATABASE DATABASE [O] XP055431624, Database accession no. 1176063-42-5 *
DATABASE DATABASE [O] XP055431628, Database accession no. 1047627- 01-9 *
DATABASE DATABASE [O] XP055431631, Database accession no. 1020937-21-6 *
DATABASE DATABASE [O] XP055431638, Database accession no. 881192-77-4 *
DATABASE DATABASE [O] XP055431642, Database accession no. 304456-91-5 *
DATABASE DATABASE 12 June 2017 (2017-06-12), XP055431581, retrieved from STN Database accession no. 1903272-69-4 *
DATABASE DATABASE 12 June 2017 (2017-06-12), XP055431648, retrieved from STN Database accession no. 24520-24-9 *
GORMAN, I. E. ET AL.: "Development of a triazole- cure resin system for composites: Evaluation of alkyne curatives", POLYEMR, vol. 53, 2012, pages 2548 - 2558, XP028513637 *
OOYA, T. ET AL.: "pH-Responsive Movement of Cucurbit[7]uril in a Diblock Polypseudorotaxane Containing Dimethyl beta-Cyclodextrin and Cucurbit [7]uril", ORGANIC LETTERS, vol. 8, no. 15, 2006, pages 3159 - 3162, XP055431594 *
ORTIZ, R. A. ET AL.: "Development of a photocurable glass-fiber reinforced epoxy- amine/thiol-ene composite", JOURNAL OF POLYMER RESEARCH, vol. 23, 22 January 2016 (2016-01-22), pages l - 8, XP035920551 *
ORTIZ, R. A. ET AL.: "The development of an Epoxy-amine/Thiol-ene photocurable system", JOURNAL OF POLYMER RESEARCH, vol. 21, 2014, pages 1 - 8 *
RAMACHANDRAN, P. V. ET AL.: "Efficient synthesis of chiral C2-symmetric diamines via allylboration of bis-N,N'-metallodiimines", TETRAHEDRON LETTERS, vol. 51, 2010, pages 332 - 336, XP027259048 *
SANGERMANO, M. ET AL.: "Interpenetrated hybride thiol-ene/epoxy UV-cured network with enhanced impact resistanece", PROGRESS IN ORGANIC COATINGS, vol. 78, 2015, pages 244 - 248, XP055431596 *
ZURAVKA, I ET AL.: "Synthesis and DNA Cleavage Activity of Bis-3-chloropiperidines as Alkylating Agents", CHEMMEDCHEM, vol. 9, 2014, pages 2178 - 2185, XP055431592 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230692A1 (ja) 2018-05-31 2019-12-05 三菱瓦斯化学株式会社 化合物の製造方法、化合物、エポキシ硬化剤およびアミン組成物の製造方法
JP2019209221A (ja) * 2018-05-31 2019-12-12 三菱瓦斯化学株式会社 塩基組成物、塩基組成物の製造方法、及びアミノ基含有アルキル置換芳香族化合物の製造方法
JP2019210275A (ja) * 2018-05-31 2019-12-12 三菱瓦斯化学株式会社 化合物の製造方法、化合物、およびエポキシ硬化剤
KR20210018268A (ko) 2018-05-31 2021-02-17 미츠비시 가스 가가쿠 가부시키가이샤 화합물의 제조 방법, 화합물, 에폭시 경화제 및 아민 조성물의 제조 방법
EP3805197A4 (en) * 2018-05-31 2021-07-28 Mitsubishi Gas Chemical Company, Inc. METHOD FOR PREPARING A COMPOUND, COMPOUND, EPOXY CURING AGENT AND METHOD FOR PREPARING AMINE COMPOSITION
US11186537B2 (en) 2018-05-31 2021-11-30 Mitsubishi Gas Chemical Company, Inc. Method for producing compound, compound, epoxy curing agent, and method for producing amine composition
JP7133128B2 (ja) 2018-05-31 2022-09-08 三菱瓦斯化学株式会社 塩基組成物、塩基組成物の製造方法、及びアミノ基含有アルキル置換芳香族化合物の製造方法
JP7290039B2 (ja) 2018-05-31 2023-06-13 三菱瓦斯化学株式会社 化合物の製造方法、化合物、およびエポキシ硬化剤
JP2020132610A (ja) * 2019-02-26 2020-08-31 三菱瓦斯化学株式会社 アミン化合物の製造方法およびアミン組成物の製造方法
JP7290040B2 (ja) 2019-02-26 2023-06-13 三菱瓦斯化学株式会社 アミン化合物の製造方法およびアミン組成物の製造方法

Also Published As

Publication number Publication date
JP7036005B2 (ja) 2022-03-15
JPWO2017175741A1 (ja) 2019-03-22
TW201806926A (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2017175741A1 (ja) ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤
JP6881436B2 (ja) アミン化合物、アミン組成物、及びエポキシ樹脂硬化剤
JP5140900B2 (ja) アミノ化合物およびその製造方法
JP6164572B2 (ja) 芳香族アルデヒド、並びに該芳香族アルデヒドを含有するエポキシ樹脂硬化剤及びエポキシ樹脂組成物
JP7177580B2 (ja) エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物
JP7028188B2 (ja) 水系エポキシ樹脂用硬化剤、水系エポキシ樹脂組成物及びその硬化物
JP7040685B1 (ja) エポキシ樹脂硬化剤、エポキシ樹脂組成物、及びアミン組成物の使用
JP6939365B2 (ja) アミン組成物の製造方法
US20040106684A1 (en) Modified cyclic aliphatic polyamine
JP4596123B2 (ja) 低温硬化型エポキシ樹脂硬化剤およびエポキシ樹脂組成物
TW201641484A (zh) 新穎之多胺化合物及其製造方法與使用該多胺化合物的環氧樹脂用硬化劑、環氧樹脂組成物及環氧樹脂硬化物
JP2004067895A (ja) ポリアミノ系エポキシ樹脂硬化剤およびエポキシ樹脂組成物
WO2016143738A1 (ja) エポキシ樹脂用硬化剤、これに用いられるポリアミン化合物の製造方法、エポキシ樹脂組成物及びエポキシ樹脂用硬化剤
JP2022114932A (ja) エポキシ樹脂硬化剤、エポキシ樹脂組成物、及び塗料
WO2024063018A1 (ja) アミノ組成物及びその製造方法、エポキシ樹脂硬化剤、エポキシ樹脂組成物並びにその硬化物
WO2022215494A1 (ja) エポキシ樹脂硬化剤、エポキシ樹脂組成物及び塗料
TW202428570A (zh) 胺基化合物及其製造方法、環氧樹脂硬化劑、環氧樹脂組成物及其硬化物
JPH04293918A (ja) エポキシ樹脂用硬化剤
KR20230087471A (ko) 에폭시 수지 경화제, 에폭시 수지 조성물, 도료 및 접착제

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779119

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779119

Country of ref document: EP

Kind code of ref document: A1