WO2019230692A1 - 化合物の製造方法、化合物、エポキシ硬化剤およびアミン組成物の製造方法 - Google Patents
化合物の製造方法、化合物、エポキシ硬化剤およびアミン組成物の製造方法 Download PDFInfo
- Publication number
- WO2019230692A1 WO2019230692A1 PCT/JP2019/021020 JP2019021020W WO2019230692A1 WO 2019230692 A1 WO2019230692 A1 WO 2019230692A1 JP 2019021020 W JP2019021020 W JP 2019021020W WO 2019230692 A1 WO2019230692 A1 WO 2019230692A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- group
- compound
- compound represented
- ethylene
- Prior art date
Links
- 0 *C(*)(c1cccc(C(*)(*)N)c1)N Chemical compound *C(*)(c1cccc(C(*)(*)N)c1)N 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/68—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/26—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
- C07C211/27—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
Definitions
- the present invention relates to a method for producing a compound, a compound, an epoxy curing agent, and a method for producing an amine composition.
- amine compounds are useful as raw materials and intermediates for compounds used as pharmaceuticals and agricultural chemicals, a wide variety of amine compounds are known.
- an aromatic diamine compound that is a compound having two or more aminomethyl groups in an aromatic ring such as benzene is known.
- the aromatic diamine compound include metaxylylenediamine.
- the amine compound can be used as an epoxy curing agent.
- Patent Documents 1 and 2 disclose that a polyamine compound having a specific structure can be used as an epoxy resin curing agent.
- Patent Document 1 discloses a method for producing the following polyamine compound having a step of subjecting xylylenediamine and a conjugated diene to an addition reaction in the presence of a basic catalyst.
- R 1 to R 4 are each independently a hydrogen atom, a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, or a cyclic unsaturated aliphatic carbon group having 5 to 10 ring carbon atoms. It is a hydrogen group. However, at least one of R 1 to R 4 is a hydrogen atom.
- R 5 to R 8 are each independently a hydrogen atom, a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms, or a cyclic unsaturated aliphatic hydrocarbon group having 5 to 10 ring carbon atoms. However, all of R 1 to R 8 do not become hydrogen atoms, and at least one of R 1 to R 8 is a chain unsaturated aliphatic hydrocarbon group having 2 to 10 carbon atoms or a ring member carbon number of 5 10 to 10 cyclic unsaturated aliphatic hydrocarbon groups.
- amine compounds can be used as raw materials and intermediates for pharmaceuticals, agricultural chemicals, etc., and in order to create new pharmaceuticals and agricultural chemicals, the structure of compounds used in these applications can be diversified. In order to achieve this, amine compounds having various structures are required.
- amine compounds such as metaxylylenediamine are highly reactive and react with carbon dioxide in the air during storage to form carbonates.
- care must be taken in handling because it leads to a change in the raw material charge ratio due to a decrease in purity and a decrease in physical properties of the cured product when used as an epoxy resin curing agent (storage stability) sex).
- metaxylylenediamine has a melting point of 14 ° C., there is a problem that it is easy to crystallize when handling xylylenediamine at a low temperature and handling is difficult (handling property).
- the storage stability can be improved by setting the storage environment to an inert gas atmosphere or preparing and storing a mixture of carbon dioxide and a compound that does not exhibit reactivity.
- the storage environment is an inert gas atmosphere, the operation becomes complicated.
- the compound that does not react with carbon dioxide when the amine compound is used as a substrate for an organic reaction, the compound that does not react with carbon dioxide inhibits the reaction or causes a side reaction. It may increase things. Therefore, it is required to be able to store the amine compound in a pure substance state in the air.
- reaction may be hindered or side reactions may increase when amine compounds are used as organic reaction substrates.
- side reactions may increase when amine compounds are used as organic reaction substrates.
- improvement in storage stability and handling properties is also beneficial when an amine compound is used as an epoxy curing agent.
- This invention is made
- the present inventors have found that a predetermined compound is excellent in storage stability and handling properties, and have completed the present invention. That is, the present invention is as follows.
- a method for producing a compound represented by formula (1-1), comprising a step of subjecting a compound represented by formula (5-1) to addition reaction of ethylene and / or propylene in the presence of a base.
- R X to R Z independently represent hydrogen, an ethyl group, an n-propyl group, or an isopropyl group, and n is an integer of 1 to 3.
- R A to R D independently represent hydrogen, an ethyl group, an n-propyl group, or an isopropyl group, and n is an integer of 1 to 3.
- R A to R D are independently an ethyl group, an n-propyl group, or an isopropyl group.
- N is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the para position and the meta position, and R A or R B and R C or R D are when n is a n-propyl group and the remaining two of R A to R D are hydrogen, and n is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the ortho position.
- R A or R B and R C or R D are each an ethyl group, and the other two of R A to R D are hydrogen.
- a method for producing a compound represented by the formula (1-2), comprising filling the compound represented by the formula (5-2) with ethylene and alkylating the compound represented by the formula (5-2) in the presence of a base.
- R X2 to R Z2 independently represent hydrogen or an ethyl group, and n is an integer of 1 to 3.
- R A2 to R D2 independently represent hydrogen or an ethyl group, and n is an integer of 1 to 3, provided that at least two of R A2 to R D2 are And ethyl group.
- A alkali metal-containing compounds selected from the group consisting of rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide as the base, and sodium metal (B).
- A alkali metal-containing compounds selected from the group consisting of rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide as the base, and sodium metal (B).
- ⁇ 4> The method for producing a compound according to any one of ⁇ 1> to ⁇ 3>, which comprises introducing the base into the reaction system in two or more steps.
- ⁇ 5> The method for producing a compound according to any one of ⁇ 1> to ⁇ 4>, wherein n in the formula (5-1) and / or the formula (5-2) is 1.
- the compound represented by the formula (5-1) and / or the compound represented by the formula (5-2) is benzylamine, ⁇ -methylbenzenemethanamine, ⁇ -ethylbenzenemethanamine, o-xylyl From range amine, m-xylylenediamine, p-xylylenediamine, 1,2,3-benzenetrimethanamine, 1,2,4-benzenetrimethanamine and 1,2,4,5-benzenetetramethanamine
- the compound represented by formula (1-1) is represented by formula (2-1), and the compound represented by formula (1-2) is represented by formula (2-2).
- ⁇ 1> to ⁇ 7> The method for producing a compound according to any one of ⁇ 7>.
- at least two of R A ⁇ R D is ethyl group, n- propyl group and the same group selected from the group consisting of isopropyl group, other than those R A ⁇ RD is a hydrogen atom.
- R A to R D are n-propyl groups, the case where R A or R B and R C or R D are each an n-propyl group is excluded.
- R A2 ⁇ R D2 is an ethyl group, R A2 ⁇ R D2 except they are a hydrogen atom.
- R A2-R D2 is an ethyl group, R A2-R D2 other than them are a hydrogen atom, one either ⁇ 1> to ⁇ 7> A method for producing the described compound.
- the compound represented by formula (1-1) and the compound represented by formula (1-2) are represented by formula (3) or formula (4), wherein ⁇ 1> to ⁇ 7> The manufacturing method as described in any one.
- ⁇ 11> A compound represented by the formula (1-1).
- R A to R D independently represent hydrogen, an ethyl group, an n-propyl group, or an isopropyl group, and n is an integer of 1 to 3.
- at least two of R A to R D are independently an ethyl group, an n-propyl group, or an isopropyl group.
- N is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the para position and the meta position, and R A or R B and R C or R D are when n is a n-propyl group and the remaining two of R A to R D are hydrogen, and n is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the ortho position.
- R A or R B and R C or R D are each an ethyl group, and the other two of R A to R D are hydrogen.
- R A ⁇ R D is ethyl group, n- propyl group and the same group selected from the group consisting of isopropyl group, other than those R A ⁇ RD is a hydrogen atom.
- R A to R D are n-propyl groups, the case where R A or R B and R C or R D are each an n-propyl group is excluded.
- R A to R D independently represent hydrogen, an ethyl group, an n-propyl group, or an isopropyl group, and n is an integer of 1 to 3, provided that R A to At least two of R D are independently an ethyl group, an n-propyl group, or an isopropyl group.
- An amine composition comprising a compound represented by the formula (1-2), which comprises filling a compound represented by the formula (5-2) with ethylene and alkylating the compound represented by the formula (5-2) in the presence of a base.
- the method for producing an amine composition wherein the temperature of the reaction solution at the time of ethylene filling is from 0 to 10 ° C., and the filling pressure of ethylene is from 1.5 to 2.3 MPa.
- R X2 to R Z2 independently represent hydrogen or an ethyl group, and n is an integer of 1 to 3.
- R A2 to R D2 independently represent hydrogen or an ethyl group, and n is an integer of 1 to 3, provided that at least two of R A2 to R D2 are And ethyl group.
- the compound of the present invention is excellent in storage stability and handling properties, and is useful as a raw material and intermediate for organic compounds used as pharmaceuticals and agricultural chemicals, and as an epoxy curing agent.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
- “to” is used in the sense of including the numerical values described before and after it as lower and upper limits.
- the compound of this embodiment is a compound represented by Formula (1-1).
- the compound of the present embodiment is not particularly limited as long as it is a compound included in the formula (1-1), and may be one kind or a mixture of two or more kinds.
- the compound represented by the formula (1-1) is useful as an intermediate for compounds used in pharmaceuticals, agricultural chemicals, and the like, and as an epoxy curing agent.
- R A to R D independently represent hydrogen, an ethyl group, an n-propyl group, or an isopropyl group, and n is an integer of 1 to 3. However, at least two of R A to R D are independently an ethyl group, an n-propyl group, or an isopropyl group.
- N is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the para position and the meta position, and R A or R B and R C or R D are when n is a n-propyl group and the remaining two of R A to R D are hydrogen, and n is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the ortho position.
- R A or R B and R C or R D are each an ethyl group, and the other two of R A to R D are hydrogen.
- N in the formula (1-1) is an integer of 1 to 3, preferably 1 or 2, and more preferably 1.
- the —C (R C ) (R D ) (NH 2 ) group may be in the ortho, meta, or para position, but is preferably in the meta position.
- At least two of R A to R D are an ethyl group, an n-propyl group, or an isopropyl group, and are the same group selected from the group consisting of an ethyl group, an n-propyl group, and an isopropyl group Is preferred.
- at least two of R A to R D are preferably ethyl groups.
- the compound represented by the formula (1-1) is preferably represented by the formula (2-1).
- R A ⁇ R D is ethyl group, n- propyl group and the same group selected from the group consisting of isopropyl group, other than those R A ⁇ RD is a hydrogen atom.
- R A to R D are n-propyl groups, the case where R A or R B and R C or R D are each an n-propyl group is excluded.
- n is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the para position, and at this time, R A or R B , and R C or R
- R A or R B and R C or R
- each D is an n-propyl group and the other two of R A to R D are hydrogen is specifically the following compound.
- n is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the meta position, and at this time, R A or R B , and R C or R When D is an n-propyl group and the remaining two of R A to R D are hydrogen, and “in the formulas (2-1), two of R A to R D are n— When R A or R B and R C or R D are each an n-propyl group when it is a propyl group, specifically, it is the following compound.
- n is 1, and the —C (R C ) (R D ) (NH 2 ) group is in the ortho position, and at this time, R A or R B , and R C or R
- R A or R B and R C or R
- each D is an ethyl group and the remaining two of R A to R D are hydrogen is specifically the following compound.
- An example of the compound of the present embodiment is a compound represented by the formula (1-1), wherein three or more of R A to R D are each independently an ethyl group, an n-propyl group, or an isopropyl group. The aspect which is group is mentioned. Further, the compound represented by formula (1-1), wherein n is 1, and 3 or 4 of R A to R D are each independently an ethyl group, an n-propyl group, or The aspect which is an isopropyl group is mentioned.
- Such a compound can be easily obtained in the presence of a base composition and by dividing the base composition into two or more portions and introducing it into the reaction system.
- the molecular weight of the compound represented by the formula (1-1) is preferably 160 or more, more preferably 180 or more, and further preferably 190 or more. Further, the molecular weight of the compound represented by the formula (1-1) is preferably 500 or less, more preferably 350 or less, and further preferably 250 or less.
- the compound of the present embodiment may be purified and used as a single compound, or may be a composition containing one or more of the compounds represented by formula (1-1).
- the composition containing the compound represented by Formula (3) and the compound represented by Formula (4) is illustrated.
- the compound represented by the formula (1-1) includes the compound represented by the formula (3) and the compound represented by the formula (4), and is selected from R A to R D , An ethyl group, an n-propyl group, or an isopropyl group is one or two, and the total proportion of the compounds in which R A to R D are hydrogen atoms is represented by the formula (3)
- the composition which is 20 mass% or less of the total amount of a compound and the compound represented by (4) is illustrated.
- the method for producing a compound of the first embodiment is a method for producing a compound represented by the formula (1-1), and in the presence of a base, the compound represented by the formula (5-1) is ethylene. And / or a step of subjecting propylene to an addition reaction.
- R X to R Z independently represent hydrogen, an ethyl group, an n-propyl group, or an isopropyl group, and n is an integer of 1 to 3.
- n is an integer of 1 to 3, preferably 1.
- the —C (R Y ) (R Z ) (NH 2 ) group may be in the ortho, meta, or para position, but is preferably the meta position.
- R X to R Z are preferably all hydrogen.
- the compound represented by the formula (5-1) is preferably metaxylylenediamine. In the present specification, metaxylylenediamine is also abbreviated as MXDA.
- the compound represented by the formula (5-1) may be prepared by a known organic reaction or may be obtained as a commercial product.
- the compound represented by the formula (5-1) includes benzylamine, ⁇ -methylbenzenemethanamine, ⁇ -ethylbenzenemethanamine, o-xylylenediamine, m-xylylenediamine, p-xylylenediamine. Including one or more compounds selected from the group consisting of amine, 1,2,3-benzenetrimethanamine, 1,2,4-benzenetrimethanamine and 1,2,4,5-benzenetetramethanamine It is preferable that m-xylylenediamine is included.
- the compound represented by the formula (5-1) may be used alone or in combination of two or more. When two or more kinds are used, the resulting compound represented by the formula (1-1) is also a mixture.
- the ratio of ethylene and / or propylene to the compound represented by formula (5-1) may be appropriately adjusted according to the amount of ethylene and / or propylene to be added.
- the ratio of ethylene and / or propylene to the compound represented by formula (5-1) is usually 0.01 to 20, preferably 1 to 20 moles per mole of the compound represented by formula (5-1). It is in the range of 0.1-10.
- ethylene and / or propylene may be added additionally during the reaction, or may be constantly added during the reaction.
- the addition amount of the base is generally 0.01 to 400% by mass, preferably 0, relative to the mass of the compound represented by the formula (5-1) as the raw material. .1 to 300% by mass, more preferably 1.0 to 150% by mass.
- the reaction temperature may be appropriately adjusted according to the type of substrate to be reacted, and is generally in the range of 0 to 150 ° C., preferably 10 to 120 ° C. By setting the temperature to 10 ° C. or higher, a more sufficient reaction rate can be obtained, and the selectivity tends to be further improved. By setting the temperature to 120 ° C. or lower, byproducts such as tar can be reduced, which is more preferable.
- the reaction pressure is sufficient for the compound represented by the formula (5-1) and the product to exist substantially as a liquid under the reaction conditions, and preferably 0.05 to 50 in absolute pressure. Atmospheric pressure, preferably in the range of 0.1 to 40 atmospheric pressure.
- reaction method for example, a method in which raw materials are supplied to a reactor charged with a base in a batch method or a semi-batch method, a completely mixed flow method in which a base and raw materials are continuously supplied to the reactor, or a base in a reactor
- a fixed bed distribution system in which the raw material is distributed by filling the container.
- the reaction method can be appropriately selected depending on the type of the desired reaction product, but the batch method is preferable. By using the batch method, the operation for carrying out the reaction is not complicated, the deactivation of the base due to water mixing can be suppressed, and the base activity can be more effectively maintained.
- the reaction time of the addition reaction is usually 0.1 to 10 hours as a reaction time in a batch method, a semi-batch method, or a residence time in a complete mixing flow method.
- 0.1 to 10 h ⁇ 1 is usually employed as the LSV of the compound represented by the formula (5-1).
- the base used in the production method of the present embodiment is not particularly limited as long as it serves as a catalyst for the reaction of adding ethylene and / or propylene to the compound represented by formula (5-1).
- a base containing at least one alkali metal is preferable, and a base containing at least one alkali metal selected from the group consisting of sodium, rubidium, and cesium is more preferable.
- the alkali metal-containing compound (A) is preferably M a OH or M a 2 CO 3 (M a is an alkali metal).
- the base include one or more alkali metal-containing compounds (A) selected from the group consisting of rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide, and metal sodium (B). And the base composition A derived from the composition containing these can be used suitably.
- the base composition A is specifically obtained by heat-treating a composition containing an alkali metal-containing compound (A) and metal sodium (B) in an inert gas atmosphere.
- the base composition A is a heat-treated product of a mixture of the alkali metal-containing compound (A) and the metal sodium (B).
- at least one alkali metal-containing compound (A) selected from the group consisting of rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide and metal sodium are present in the same system. Is preferred.
- the alkali metal-containing compound (A) in the base composition A is rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide.
- these alkali metal-containing compounds (A) from the viewpoint of further enhancing the activity as a catalyst for proceeding the reaction of adding ethylene and / or propylene to the compound represented by the formula (5-1), Rubidium carbonate and cesium carbonate are preferable, and cesium carbonate is more preferable.
- these alkali metal containing compounds (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
- Ratio of the amount of rubidium and / or cesium contained in the alkali metal-containing compound (A) in the base composition A to the amount of the metal sodium (B) (the amount of rubidium and / or cesium: the amount of sodium
- the substance amount (molar ratio) is 0.50: 1 to 8.0: 1, preferably 1.0: 1 to 4.0: 1, and more preferably from the viewpoint of allowing the reaction to proceed efficiently. Is 1.0: 1 to 3.0: 1, more preferably 1.5: 1 to 2.5: 1.
- the composition containing the alkali metal-containing compound (A) and the metal sodium (B) in the base composition A further contains an alkaline earth metal compound (a compound containing a Group 2 element of the periodic table). It is preferable to do.
- the alkaline earth metal compound (C) is more preferably M c (OH) 2 , M c CO 3 , M c O (M c is an alkaline earth metal), and is composed of magnesium oxide, magnesium hydroxide, and magnesium carbonate. More preferably, it contains at least one alkaline earth metal compound selected from the group.
- the content of the alkaline earth metal compound (C) (preferably a magnesium compound) is preferably 30 parts by mass or more when the total amount of the alkali metal-containing compound (A) and the metal sodium (B) is 100 parts by mass. More preferably, it is 40 mass parts or more, More preferably, it is 50 mass parts or more, and may be 60 mass parts or more. As an upper limit, Preferably it is 150 mass parts or less, More preferably, it is 130 mass parts or less, More preferably, it is 100 mass parts or less.
- the content of the alkaline earth metal compound (C) is 30 parts by mass or more, the stickiness of the base composition A tends to be suppressed. Further, when the content of the alkaline earth metal compound (C) is 150 parts by mass or less, the activity of the base composition A as a catalyst tends not to be affected and the reaction tends to proceed.
- the base composition A contains at least one alkali metal-containing compound (A) selected from the group consisting of rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide, and metal sodium (B).
- the mixture can be produced by heat treatment at a temperature of 100 ° C. to 500 ° C. in an inert gas atmosphere.
- the order in which the alkali metal-containing compound (A) and metal sodium (B) are mixed is not particularly limited.
- As an inert gas helium, nitrogen, argon etc. can be mentioned, for example.
- the temperature in the preparation of the base composition A is preferably 98 ° C to 500 ° C, more preferably 110 ° C to 300 ° C, and further preferably 120 ° C to 280 ° C.
- the heating time in the preparation of the base composition A is preferably 10 minutes to 5 hours, more preferably 30 minutes to 3 hours, and further preferably 30 minutes to 2 hours. When the heating time is 10 minutes to 5 hours, the catalyst is sufficiently calcined and tends to be a highly active catalyst.
- the alkaline earth metal compound (C) may be added to the mixture of the alkali metal-containing compound (A) and the metal sodium (B), but the alkali metal-containing compound (A), the metal sodium (B), and the alkaline earth metal
- the order of mixing the compound (C) is not particularly limited.
- heat treatment may be performed before the preparation of the base composition A.
- the heat treatment before the preparation is preferably performed under an inert gas or under vacuum.
- the temperature of the heat treatment before the preparation is not particularly limited as long as unnecessary moisture can be removed, but is usually 200 ° C. to 500 ° C., preferably 250 ° C. to 400 ° C. By setting the temperature of the heat treatment to 200 ° C. to 500 ° C., moisture in the compound can be sufficiently removed, and the catalyst tends to be highly active.
- the heat treatment time before preparation is preferably 10 minutes to 5 hours, more preferably 30 minutes to 3 hours, and further preferably 30 minutes to 2 hours. When the heating time is 10 minutes to 5 hours, moisture can be sufficiently removed and the catalyst tends to be highly active.
- the reaction solution and the base composition can be separated by a general method such as fractional sedimentation, centrifugation, and filtration.
- the base composition acts as a catalyst in the synthesis reaction of the compound of the present embodiment, it also functions as an irreversible reaction initiator. Therefore, as the synthesis reaction of the amine compound proceeds, the amount of the base composition in the system decreases. Therefore, in the synthesis reaction of the compound of the present embodiment, the base composition is preferably added in two or more portions. There is no particular upper limit on the number of times the base composition is added, but it is practical that it is 10 times or less.
- ethylene and / or propylene is added to three or more, more preferably three or four, particularly four, of R x to R z to the compound represented by the formula (5-1). It becomes easy.
- the base composition may be continuously or intermittently charged into the reaction solution at a constant rate. Further, the feeding speed may be constant or may be changed with time.
- the addition reaction in the production method of the present embodiment may be performed in the presence or absence of a solvent.
- the solvent is appropriately selected depending on the reaction temperature, reactants and the like. Examples of the solvent include tetrahydrofuran, diethyl ether, dibutyl ether, 1,4-dioxane, 1,3,5-trioxane, 1,2-dimethoxyethane, and diethylene glycol dimethyl ether.
- the obtained reaction solution is concentrated as necessary, and the residue may be used as it is as the compound represented by the formula (1-1). Later, it may be used as a compound represented by the formula (1-1).
- Specific methods for the post-treatment include known purification such as distillation and chromatography. In the examples described later, only an example of ethylene addition is shown, but it is known that the reaction proceeds in substantially the same manner by the same mechanism of ethylene addition and propylene addition.
- the method for producing a compound of the second embodiment includes filling the compound represented by formula (5-2) with ethylene and alkylating the compound represented by formula (5-2) in the presence of a base.
- R X2 to R Z2 independently represent hydrogen or an ethyl group, and n is an integer of 1 to 3.
- R A2 to R D2 independently represent hydrogen or an ethyl group, and n is an integer of 1 to 3, provided that at least two of R A2 to R D2 are And ethyl group.
- n is 1, and the —C (R C2 ) (R D2 ) (NH 2 ) group is in the ortho position, and at this time, R A2 or R B2 , and R C2 or It is preferable to exclude when R D2 is an ethyl group and the remaining two of R A2 to R D2 are hydrogen.
- the temperature of the reaction liquid at the time of filling ethylene is 0 to 10 ° C.
- the filling pressure of ethylene is 1.5 to 2.3 MPa.
- ethylene addition reaction can be effectively accelerated
- ethylene gas is normally filled.
- a lower limit is 1 degreeC or more, and it is more preferable that it is 2 degreeC or more.
- the upper limit of the temperature of the reaction solution is preferably 8 ° C. or less, more preferably 6 ° C. or less, further preferably 5 ° C. or less, and further preferably 4 ° C. or less. .
- the temperature of the reaction liquid in the present invention means the liquid temperature of the reaction liquid when filling with ethylene gas.
- the lower limit of the pressure during ethylene filling is preferably 1.7 MPa or more, more preferably 1.8 MPa or more, and even more preferably 1.9 MPa or more.
- the upper limit of the pressure during ethylene filling is preferably 2.2 MPa or less, and more preferably 2.1 MPa or less.
- alkylation proceeds with ethylene.
- the lower limit of the temperature of the reaction system after filling with ethylene is preferably more than 10 ° C, more preferably 12 ° C or more, further preferably 14 ° C or more, and more preferably 16 ° C or more. More preferably, it is more preferably 18 ° C. or higher.
- the upper limit of the temperature of the reaction system after filling with ethylene is preferably 35 ° C. or less, more preferably 30 ° C. or less, and even more preferably 25 ° C. or less.
- the temperature difference between the reaction system at the time of filling ethylene and the subsequent reaction system is preferably 10 ° C.
- the time for the ethylene addition reaction is preferably 1 to 100 hours, more preferably 10 to 60 hours.
- the total is preferably within the above range.
- the ratio of ethylene to the compound represented by formula (5-2) may be appropriately adjusted according to the amount of ethylene to be added, but ethylene is added to 1 mol of the compound represented by formula (5-2).
- the packing is preferably performed in a molar ratio of 1 to 30, more preferably 3 to 20, and still more preferably 4 to 15.
- R A2 to R D2 independently represent hydrogen or an ethyl group, and n is an integer of 1 to 3, provided that at least two of R A2 to R D2 are And ethyl group.
- n has the same meaning as n in formula (1-1), and the preferred range is also the same. More preferably, in the formula (1-2), at least 3 of R A2 ⁇ R D2 is an ethyl group, R A2 ⁇ R D2 except they are a hydrogen atom.
- the compound represented by the formula (1-2) is preferably represented by the formula (2-2).
- R A2 ⁇ R D2 is an ethyl group, R A2 ⁇ R D2 except they are a hydrogen atom.
- R A2 ⁇ R D2 is an ethyl group, the R A2 ⁇ R D2 other than those, a hydrogen atom It is.
- the molecular weight of the compound represented by the formula (1-2) is preferably 160 or more, more preferably 180 or more, and further preferably 190 or more. It is preferably 400 or less, more preferably 300 or less, and even more preferably 250 or less.
- the alkylation of the compound represented by formula (5-2) is performed in the presence of a base.
- the base functions as a catalyst while also functioning as an irreversible reaction initiator. Therefore, the amount of base in the system decreases as the ethylene addition reaction proceeds. Therefore, in the production method of this embodiment, it is preferable to divide the base into two or more times and introduce it into the reaction system. There is no particular upper limit on the number of times the base is added, but it is practical that it is 10 times or less.
- the compound represented by the formula (5-2) is added to three or more of R A2 to R D2 , further to three or four, particularly 4 In addition, it becomes easy to add ethylene.
- the base is divided into two or more times and introduced into the reaction system, it is preferable to perform filling with ethylene gas and alkylation each time. That is, it is preferable to repeat the alkylation with ethylene in the presence of a base two or more times.
- the base may be continuously or intermittently charged into the reaction solution at a constant rate. Further, the feeding speed may be constant or may be changed with time.
- the mass of the base in the production method of the present embodiment is generally 0.001 to 10 parts by mass, preferably 0.005 to 5 parts per 1 part by mass of the compound represented by the formula (5-2). Parts by weight, more preferably 0.01-4 parts by weight, still more preferably 0.05-3 parts by weight. When adding in multiple times, the total amount is preferably within the above range.
- one or more alkali metal-containing compounds (A) selected from the group consisting of rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide, and metal sodium ( A base composition A containing B) can be preferably used.
- the details of the base composition A are the same as those described in the production method of the first embodiment.
- reaction solution and the base composition A can be separated by general methods such as fractional sedimentation, centrifugation, and filtration.
- the obtained compound may be purified and used as a single compound, It may be an amine composition containing one or more of the compound represented by formula (1-1) and the compound represented by formula (1-2).
- an example of a method for producing an amine composition according to the present embodiment includes filling a compound represented by formula (5-2) with ethylene and alkylating the compound represented by formula (5-2) in the presence of a base.
- a process for producing an amine composition comprising the compound represented by 1-2), wherein the temperature of the reaction solution at the time of ethylene filling is 0 to 10 ° C., and the pressure of ethylene filling is 1.5 to 2.3 MPa.
- This is a method for producing an amine composition.
- the compound represented by the formula (5-2), the compound represented by the formula (1-2), and various conditions such as ethylation are represented by the above formula (1-1). And the preferred range is also the same.
- an amine composition containing two or more compounds represented by formula (1-2) is obtained.
- the total proportion of the compounds represented by formula (2-2), wherein 3 or 4 of R A2 to R D2 are ethyl groups is represented by formula (2-2).
- An amine composition that is 80% by mass or more (preferably 90% by mass or more) of the total amount of the compounds represented by) is exemplified.
- the total proportion of the compounds represented by formula (2-2), wherein four of R A2 to R D2 are ethyl groups is represented by formula (2-2).
- the amine composition which is 80 mass% or more (preferably 90 mass% or more) of the total amount of the compound represented is illustrated.
- Epoxy curing agent The epoxy hardener of this embodiment contains the compound represented by Formula (1 ').
- the epoxy curing agent of this embodiment is excellent in storage stability and handling properties.
- R A ⁇ R D in the formula (1 '), and n have the same meanings as R A ⁇ R D, and n in formula (1-1). That is, in the formula (1 ′), R A to R D independently represent hydrogen, an ethyl group, an n-propyl group, or an isopropyl group, and n is an integer of 1 to 3. However, at least two of R A to R D are independently an ethyl group, an n-propyl group, or an isopropyl group.
- R A to R D and n in the formula (1 ′) and a preferred embodiment of the substitution position of the —C (R C ) (R D ) (NH 2 ) group are the same as those in the formula (1-1). They are the same.
- the compound represented by the formula (1 ′) is preferably represented by the formula (2 ′).
- R A ⁇ R D in the formula (2 ') has the same meaning as R A ⁇ R D in the formula (2-1). That is, in the formula (2 ′), at least two of R A to R D are the same group selected from the group consisting of an ethyl group, an n-propyl group, and an isopropyl group, and other R A ⁇ RD is a hydrogen atom.
- Specific examples of the compound contained in the epoxy curing agent of the present embodiment include the following compounds.
- a compound represented by the formula (3) and a compound represented by the formula (4) are preferable.
- the epoxy curing agent may be used in combination with an amine compound other than the compound represented by the formula (1 ′) as long as it does not affect the reaction with the epoxy resin.
- An additive such as a diluent may be included.
- the amine curing agent described in Paragraph 0029 of Japanese Patent No. 6177331 and the amine curing agent described in Paragraphs 0011 to 0016 of JP 2011-213983 A can be referred to. Incorporated in the description.
- the compound represented by the formula (1 ′) in the epoxy curing agent is preferably the main component of the component constituting the epoxy curing agent.
- the main component is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably based on the total amount of the constituent components of the epoxy curing agent. It is 95 mass% or more, More preferably, it is 98 mass% or more.
- the upper limit of the content of the compound represented by the formula (1 ′) contained in the epoxy curing agent is 100% by mass.
- the epoxy resin composition of this embodiment contains the said epoxy resin hardening
- the epoxy resin in which the epoxy curing agent of this embodiment is used is not particularly limited as long as it is a compound having an epoxy group.
- the epoxy resin usually has 2 to 10 epoxy groups in one molecule, preferably 2 to 6 epoxy groups, more preferably 2 to 4 epoxy groups, and more preferably 2 epoxy groups. It is further preferable to have The epoxy group is preferably a glycidyl ether group.
- the epoxy resin may be a low molecular compound (for example, a number average molecular weight of less than 2000) or a high molecular compound (polymer, for example, a number average molecular weight of 2000 or more).
- the polymer epoxy resin may be an aliphatic compound, an alicyclic compound, or a compound having an aromatic ring.
- the epoxy resin preferably has two aromatic rings and / or two aliphatic 6-membered rings in one molecule, and more preferably has two aromatic rings.
- the epoxy resin obtained by reaction of epichlorohydrin and the compound (for example, polyol) which has two or more reactive hydrogen atoms is preferable.
- epoxy resin As a raw material of the epoxy resin, bisphenol A (2,2-bis (4-hydroxyphenyl) propane) or a hydride thereof, bisphenol F (4,4′-dihydroxydiphenylmethane) or a hydride thereof, tetrabromobisphenol A (2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane) or a hydride thereof, novolak resin obtained by reacting cresol with formaldehyde, hexahydrophthalic acid, and the like.
- the content of the epoxy resin in the epoxy resin composition is preferably 79% by mass or more, more preferably 81% by mass or more, and 82% by mass or more in the solid content not including the diluent. More preferably. As an upper limit, it is preferable that it is 89 mass% or less, It is more preferable that it is 87 mass% or less, It is further more preferable that it is 86 mass% or less. In the total amount of the epoxy resin composition containing the diluent, it is preferably 76% by mass or more, more preferably 79% by mass or more, and further preferably 81% by mass or more.
- Epoxy resin may be used alone or in combination. When using a plurality of items, the total amount is within the above range.
- the epoxy resin composition may contain components other than the epoxy resin and the curing agent. Specifically, reactive diluents, non-reactive diluents, curing accelerators, plasticizers, pigments, dyes, fillers, mold release agents, toughening agents, antioxidants, ultraviolet absorbers, light stabilizers, A fluidizing agent, leveling agent, antifoaming agent, flame retardant or thickener may be included.
- the cured product according to this embodiment is formed from an epoxy resin composition.
- the cured product can be used in a wide range of fields such as architectural paints, adhesives, automotive parts, aircraft parts, composite materials, printed circuit board materials, heavy electrical equipment insulation impregnation materials, and electronic device sealing materials.
- Polyurethane urea resin composition The amine compound represented by the formula (1-1) can be used as a curing agent for curing the urethane prepolymer. Moreover, it is preferable that the polyurethane urea resin composition of this embodiment contains the said urethane prepolymer hardening
- TOFMS analysis Time-of-flight mass spectrometry (hereinafter referred to as TOFMS analysis) Device: AccuTOF GCX manufactured by JEOL Ltd. Ionization method; FI +
- Example 1 In a 30 mL autoclave under a nitrogen atmosphere, a magnetic stirrer bar, 1.16 g of the base composition prepared in the above [Preparation of base composition], and MXDA 0.80 g, tetrahydrofuran (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., ultra-dehydration) After adding 5.57 g of stabilizer), the autoclave was connected to an ethylene gas cylinder, and ethylene gas (manufactured by Japan Fine Products Co., Ltd., ethylene purity of more than 99.9 vol.%) was blown in at a pressure of 0.99 MPa, 20 to 20 Stirring was performed at 22.5 ° C.
- ethylene gas manufactured by Japan Fine Products Co., Ltd., ethylene purity of more than 99.9 vol.
- Dichloromethane was distilled off from the organic phase under reduced pressure to obtain a mixture containing an amino group-containing alkyl-substituted aromatic compound. From the mixture, the following ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetraethylmetaxylylenediamine represented by the formula (3) and ⁇ , ⁇ , ⁇ '-Triethylmetaxylylenediamine was collected.
- Example 2 Into a 30 mL autoclave under a nitrogen atmosphere, a magnetic stirrer bar, 1.16 g of the base composition prepared in the above [Preparation of base composition] and MXDA 0.80 g were added, and then the autoclave was connected to an ethylene gas cylinder and ethylene gas was added. The mixture was stirred at 20-22 ° C. and 700 rpm for 24 hours while blowing (Japan Fine Products, Inc., ethylene purity exceeding 99.9 vol.%) At a pressure of 0.99 MPa. The reaction was stopped by adding 4 mL of isopropyl alcohol to the reaction solution.
- ⁇ Storage stability> Weighed 6 mg of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethylmetaxylylenediamine collected by liquid chromatography in an aluminum pan with a diameter of 6 mm and a depth of 4 mm, and allowed to stand in air at 25 ° C. and visually. A change to a white solid derived from carbonate was observed. ⁇ , ⁇ , ⁇ ′, ⁇ ′-Tetraethylmetaxylylenediamine was a transparent liquid even after standing for 168 hours, and no white solidification due to the formation of carbonate was observed.
- an amino compound reacts with carbon dioxide to form a carbonate, it leads to a change in raw material charge ratio due to a decrease in purity and a decrease in physical properties of the cured product when used as an epoxy resin curing agent. If it is difficult to form a carbonate, the compound can be used without any special treatment such as setting up an inert gas atmosphere, providing a carbon dioxide desorption step by heat treatment, and mixing the resin in advance. Can be stored in the air.
- the glass transition temperature was 50 ° C.
- the glass transition temperature of the cured epoxy resin was determined by differential scanning calorimetry from 30 to 250 ° C. at a rate of 5 ° C./min using a differential scanning calorimeter “DSC 6220” (manufactured by Seiko Instruments Inc.). Determined by doing.
- Example 4 ⁇ , ⁇ , ⁇ ′-triethylmeta fractionated by liquid chromatography with respect to 63.1 mg of “jER828” (epoxy equivalent: 186 g / equivalent, solid content concentration: 100 mass%, liquid) manufactured by Mitsubishi Chemical Corporation Xylylenediamine 18.7 mg was blended and stirred to obtain an epoxy resin composition.
- DSC differential scanning calorimetry
- Example 6 A 30 mL autoclave was charged with a magnetic stirrer bar, 1.16 g of the base composition prepared in the above [Preparation of base composition], MXDA 0.80 g, and tetrahydrofuran 5.57 g under an argon atmosphere. The autoclave was placed in a 1 ° C. water bath and stirred at 700 rpm for 15 minutes to adjust the reaction solution temperature to 3 ° C. While continuing the stirring in the water bath, it was connected to an ethylene gas cylinder and filled with ethylene gas at a pressure of 2.0 MPa. The temperature of the water bath was changed to 20 ° C., and stirring was performed at 700 rpm for 24 hours.
- Example 7 In a 30 mL autoclave under an argon atmosphere, a magnetic stirrer bar, 1.16 g of the base composition prepared in the above [Preparation of base composition], 0.80 g of MXDA (manufactured by Tokyo Chemical Industry Co., Ltd.), tetrahydrofuran (FUJIFILM Corporation) 5.57 g (manufactured by Kojunyaku Co., Ltd., ultra-dehydrated, stabilizer-free grade) was put and covered. The autoclave is placed in a 20 ° C.
- Example 8 In a 30 mL autoclave under an argon atmosphere, a magnetic stirrer bar, 1.16 g of the base composition prepared in the above [Preparation of base composition], 0.80 g of MXDA (manufactured by Tokyo Chemical Industry Co., Ltd.), tetrahydrofuran (FUJIFILM Corporation) 5.57 g (manufactured by Kojunyaku Co., Ltd., ultra-dehydrated, stabilizer-free grade) was put and covered. The autoclave was placed in a 1 ° C. water bath and stirred at 700 rpm for 15 minutes to adjust the reaction solution temperature to 3 ° C.
- the structure of the ethylene trimolecular adduct obtained in Examples 5 to 8 was a compound represented by the formula (4) ( ⁇ , ⁇ , ⁇ '-triethylmetaxylylenediamine).
- the structure of the ethylene tetramolecular adduct obtained in Examples 5 to 8 was a compound represented by the formula (3) ( ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetraethylmetaxylylenediamine).
- an amino group-containing alkyl-substituted aromatic compound useful as an intermediate raw material of a compound can be provided, and has industrial applicability in the fields of industrial products such as resins, pharmaceuticals, and fragrances. .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
保存安定性、およびハンドリング性に優れる化合物の製造方法、化合物、および化合物を含むエポキシ硬化剤を提供すること。 塩基存在下、式(5-1)で表される化合物に対して、エチレンおよび/またはプロピレンを付加反応させる工程を含む、式(1-1)で表される化合物の製造方法。式(5-1)中、RX~RZは、独立して、水素、エチル基、n-プロピル基、またはイソプロピル基を表し、nは1~3の整数である。式(1-1)中、RA~RDは、独立して、水素、エチル基、n-プロピル基、またはイソプロピル基を表し、nは1~3の整数である。
Description
本発明は、化合物の製造方法、化合物、エポキシ硬化剤およびアミン組成物の製造方法に関する。
アミン化合物は、医薬品や農薬等として使用される化合物の原料および中間体等として有用であるため、多種多様なアミン化合物が知られている。
アミン化合物の1種として、ベンゼン等の芳香環にアミノメチル基を2つ以上有する化合物である芳香族ジアミン化合物が知られている。芳香族ジアミン化合物としては、例えば、メタキシリレンジアミン等が挙げられる。
アミン化合物の1種として、ベンゼン等の芳香環にアミノメチル基を2つ以上有する化合物である芳香族ジアミン化合物が知られている。芳香族ジアミン化合物としては、例えば、メタキシリレンジアミン等が挙げられる。
また、アミン化合物は、エポキシ硬化剤として用いることができる。例えば、特許文献1および2には、特定の構造を有するポリアミン化合物がエポキシ樹脂硬化剤として使用できることが開示されている。
さらに、特許文献1には、キシリレンジアミンと共役ジエンとを塩基性触媒の存在下で付加反応させる工程を有する下記ポリアミン化合物の製造方法が開示されている。
式(I)中、R1~R4はそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。但し、R1~R4のうち少なくとも1つは水素原子である。R5~R8はそれぞれ独立に、水素原子、炭素数2~10の鎖状不飽和脂肪族炭化水素基、又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。但し、R1~R8のすべてが水素原子になることはなく、R1~R8のうち少なくとも1つは炭素数2~10の鎖状不飽和脂肪族炭化水素基又は環員炭素数5~10の環状不飽和脂肪族炭化水素基である。
上述したように、アミン化合物は、医薬品や農薬等の原料および中間体として使用することができ、新規な医薬品や農薬を創出するためにも、これらの用途に用いられる化合物の構造の多様化を実現できるように、様々な構造のアミン化合物が求められている。
また、メタキシリレンジアミン等のアミン化合物は、反応性が高く、保存している間に空気中の二酸化炭素等と反応し炭酸塩を形成する。炭酸塩を形成する場合、純度の低下による原料仕込み比の変化や、エポキシ樹脂硬化剤として使用した際に硬化物の物性低下を生じさせることに繋がることから、取扱いに注意が求められる(保存安定性)。
さらに、メタキシリレンジアミンは、融点が14℃であるため、メタキシリレンジアミンを低温で取扱う際に結晶化しやすく、ハンドリングが難しいという問題がある(ハンドリング性)。
さらに、メタキシリレンジアミンは、融点が14℃であるため、メタキシリレンジアミンを低温で取扱う際に結晶化しやすく、ハンドリングが難しいという問題がある(ハンドリング性)。
保存安定性については、保存環境を不活性ガス雰囲気下とすることや二酸化炭素と反応性を示さない化合物との混合物を調製し保存することにより改善することもできる。しかしながら、保存環境を不活性ガス雰囲気下とする場合、操作が煩雑になる。また、二酸化炭素と反応性を示さない化合物と混合物とし保存する場合、アミン化合物を有機反応の基質として用いる際に、前記二酸化炭素と反応性を示さない化合物が、反応を阻害したり、副反応物を増加させたりすることがある。したがって、アミン化合物を純物質の状態で、空気下で保存できるようにすることが求められる。
ハンドリング性については、アミン化合物に対し融点調節剤等の添加剤を添加することによって、向上させることもできる。しかしながら、これらの添加剤を添加することによって、アミン化合物を有機反応の基質として用いた場合等に、反応を阻害したり、副反応物が増えたりすることがあるため、添加剤を添加することなくハンドリング性を向上させることが求められている。
また、保存安定性、およびハンドリング性を向上することは、アミン化合物をエポキシ硬化剤として使用する際にも有益である。
ハンドリング性については、アミン化合物に対し融点調節剤等の添加剤を添加することによって、向上させることもできる。しかしながら、これらの添加剤を添加することによって、アミン化合物を有機反応の基質として用いた場合等に、反応を阻害したり、副反応物が増えたりすることがあるため、添加剤を添加することなくハンドリング性を向上させることが求められている。
また、保存安定性、およびハンドリング性を向上することは、アミン化合物をエポキシ硬化剤として使用する際にも有益である。
本発明は、上記事情に鑑みなされたものであり、保存安定性、およびハンドリング性に優れる化合物、前記化合物の製造方法、および前記化合物を含むエポキシ硬化剤を提供することを課題とする。
本発明者らが鋭意検討した結果、所定の化合物が、保存安定性、およびハンドリング性に優れることを見出し、本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
すなわち、本発明は以下のとおりである。
<1>塩基存在下、式(5-1)で表される化合物に対して、エチレンおよび/またはプロピレンを付加反応させる工程を含む、式(1-1)で表される化合物の製造方法。
(式(5-1)中、RX~RZは、独立して、水素、エチル基、n-プロピル基、またはイソプロピル基を表し、nは1~3の整数である。)
(式(1-1)中、RA~RDは、独立して、水素、エチル基、n-プロピル基、またはイソプロピル基を表し、nは1~3の整数である。
ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。また、nが1であり、-C(RC)(RD)(NH2)基がパラ位およびメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合、並びに、nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合は除く。)
<2>塩基存在下、式(5-2)で表される化合物に対して、エチレンを充填し、アルキル化することを含む、式(1-2)で表される化合物の製造方法であって、前記エチレン充填時の反応液の温度が0~10℃、エチレンの充填圧力が1.5~2.3MPaである、式(1-2)で表される化合物の製造方法。
(式(5-2)中、RX2~RZ2は、独立して、水素またはエチル基を表し、nは1~3の整数である。)
(式(1-2)中、RA2~RD2は、独立して、水素またはエチル基を表し、nは1~3の整数である。ただし、RA2~RD2のうち少なくとも2つは、エチル基である。)
<3>前記塩基が、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および、水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウム(B)と、を含有する塩基組成物である、<1>または<2>に記載の化合物の製造方法。
<4>前記塩基を、2回以上に分割して反応系中に導入することを含む、<1>~<3>のいずれか1つに記載の化合物の製造方法。
<5>前記式(5-1)および/または式(5-2)中のnが1である、<1>~<4>のいずれか1つに記載の化合物の製造方法。
<6>前記式(5-1)で表される化合物および/または式(5-2)で表される化合物が、ベンジルアミン、α-メチルベンゼンメタンアミン、α-エチルベンゼンメタンアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,2,3-ベンゼントリメタンアミン、1,2,4-ベンゼントリメタンアミンおよび1,2,4,5-ベンゼンテトラメタンアミンからなる群より選択される1種以上の化合物を含む、<1>~<4>のいずれか1つに記載の化合物の製造方法。
<7>前記式(5-1)で表される化合物および/または式(5-2)で表される化合物が、m-キシリレンジアミンを含む、<1>~<4>のいずれか1つに記載の化合物の製造方法。
<8>式(1-1)で表される化合物が、式(2-1)で表され、式(1-2)で表される化合物が、式(2-2)で表される、<1>~<7>のいずれか1つに記載の化合物の製造方法。
(式(2-1)中、RA~RDのうち少なくとも2つは、エチル基、n-プロピル基、およびイソプロピル基からなる群より選択される同一の基であり、それら以外のRA~RDは、水素原子である。
ただし、RA~RDのうち2つがn-プロピル基であるとき、RAまたはRB、および、RCまたはRDが、それぞれn-プロピル基である場合を除く。)
(式(2-2)中、RA2~RD2のうち少なくとも2つは、エチル基であり、それら以外のRA2~RD2は、水素原子である。)
<9>式(1-1)中、RA~RDのうち少なくとも3つは、エチル基であり、それら以外のRA~RDは、水素原子である、および/または、式(1-2)中、RA2~RD2のうち少なくとも3つは、エチル基であり、それら以外のRA2~RD2は、水素原子である、<1>~<7>のいずれか1つに記載の化合物の製造方法。
<10>式(1-1)で表される化合物および式(1-2)で表される化合物が、式(3)または式(4)で表される、<1>~<7>のいずれか1つに記載の製造方法。
<11>式(1-1)で表される、化合物。
(式(1-1)中、RA~RDは、独立して、水素、エチル基、n-プロピル基、またはイソプロピル基を表し、nは1~3の整数である。
ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。また、nが1であり、-C(RC)(RD)(NH2)基がパラ位およびメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合、並びに、nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合は除く。)
<12>式(1-1)中のnが1である、<11>に記載の化合物。
<13>式(2-1)で表される、<11>に記載の化合物。
(式(2-1)中、RA~RDのうち少なくとも2つは、エチル基、n-プロピル基、およびイソプロピル基からなる群より選択される同一の基であり、それら以外のRA~RDは、水素原子である。
ただし、RA~RDのうち2つがn-プロピル基であるとき、RAまたはRB、および、RCまたはRDが、それぞれn-プロピル基である場合を除く。)
<14>式(3)で表される、<11>に記載の化合物。
<15>式(4)で表される、<11>に記載の化合物。
<16>式(1’)で表される化合物を含む、エポキシ硬化剤。
(式(1’)中、RA~RDは、独立して、水素、エチル基、n-プロピル基、またはイソプロピル基を表し、nは1~3の整数である。ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。)
<17>塩基存在下、式(5-2)で表される化合物に対して、エチレンを充填し、アルキル化することを含む、式(1-2)で表される化合物を含むアミン組成物の製造方法であって、前記エチレン充填時の反応液の温度が0~10℃、エチレンの充填圧力が1.5~2.3MPaである、アミン組成物の製造方法。
(式(5-2)中、RX2~RZ2は、独立して、水素またはエチル基を表し、nは1~3の整数である。)
(式(1-2)中、RA2~RD2は、独立して、水素またはエチル基を表し、nは1~3の整数である。ただし、RA2~RD2のうち少なくとも2つは、エチル基である。)
ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。また、nが1であり、-C(RC)(RD)(NH2)基がパラ位およびメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合、並びに、nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合は除く。)
<2>塩基存在下、式(5-2)で表される化合物に対して、エチレンを充填し、アルキル化することを含む、式(1-2)で表される化合物の製造方法であって、前記エチレン充填時の反応液の温度が0~10℃、エチレンの充填圧力が1.5~2.3MPaである、式(1-2)で表される化合物の製造方法。
<3>前記塩基が、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および、水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウム(B)と、を含有する塩基組成物である、<1>または<2>に記載の化合物の製造方法。
<4>前記塩基を、2回以上に分割して反応系中に導入することを含む、<1>~<3>のいずれか1つに記載の化合物の製造方法。
<5>前記式(5-1)および/または式(5-2)中のnが1である、<1>~<4>のいずれか1つに記載の化合物の製造方法。
<6>前記式(5-1)で表される化合物および/または式(5-2)で表される化合物が、ベンジルアミン、α-メチルベンゼンメタンアミン、α-エチルベンゼンメタンアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,2,3-ベンゼントリメタンアミン、1,2,4-ベンゼントリメタンアミンおよび1,2,4,5-ベンゼンテトラメタンアミンからなる群より選択される1種以上の化合物を含む、<1>~<4>のいずれか1つに記載の化合物の製造方法。
<7>前記式(5-1)で表される化合物および/または式(5-2)で表される化合物が、m-キシリレンジアミンを含む、<1>~<4>のいずれか1つに記載の化合物の製造方法。
<8>式(1-1)で表される化合物が、式(2-1)で表され、式(1-2)で表される化合物が、式(2-2)で表される、<1>~<7>のいずれか1つに記載の化合物の製造方法。
ただし、RA~RDのうち2つがn-プロピル基であるとき、RAまたはRB、および、RCまたはRDが、それぞれn-プロピル基である場合を除く。)
<9>式(1-1)中、RA~RDのうち少なくとも3つは、エチル基であり、それら以外のRA~RDは、水素原子である、および/または、式(1-2)中、RA2~RD2のうち少なくとも3つは、エチル基であり、それら以外のRA2~RD2は、水素原子である、<1>~<7>のいずれか1つに記載の化合物の製造方法。
<10>式(1-1)で表される化合物および式(1-2)で表される化合物が、式(3)または式(4)で表される、<1>~<7>のいずれか1つに記載の製造方法。
ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。また、nが1であり、-C(RC)(RD)(NH2)基がパラ位およびメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合、並びに、nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合は除く。)
<12>式(1-1)中のnが1である、<11>に記載の化合物。
<13>式(2-1)で表される、<11>に記載の化合物。
ただし、RA~RDのうち2つがn-プロピル基であるとき、RAまたはRB、および、RCまたはRDが、それぞれn-プロピル基である場合を除く。)
<14>式(3)で表される、<11>に記載の化合物。
<17>塩基存在下、式(5-2)で表される化合物に対して、エチレンを充填し、アルキル化することを含む、式(1-2)で表される化合物を含むアミン組成物の製造方法であって、前記エチレン充填時の反応液の温度が0~10℃、エチレンの充填圧力が1.5~2.3MPaである、アミン組成物の製造方法。
本発明の化合物は、保存安定性、およびハンドリング性に優れ、また、医薬品や農薬等として使用される有機化合物の原料および中間体、並びにエポキシ硬化剤として有用である。
以下に本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
[化合物]
本実施形態の化合物は、式(1-1)で表される化合物である。本実施形態の化合物は、式(1-1)に包含される化合物であれば特に制限されず、1種または二種以上の混合物であってもよい。
式(1-1)で表される化合物は、医薬品、農薬等に使用される化合物の中間体、およびエポキシ硬化剤として有用である。
本実施形態の化合物は、式(1-1)で表される化合物である。本実施形態の化合物は、式(1-1)に包含される化合物であれば特に制限されず、1種または二種以上の混合物であってもよい。
式(1-1)で表される化合物は、医薬品、農薬等に使用される化合物の中間体、およびエポキシ硬化剤として有用である。
ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。また、nが1であり、-C(RC)(RD)(NH2)基がパラ位およびメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合、並びに、nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合は除く。)
式(1-1)中のnは、1~3の整数であり、1または2が好ましく、より好ましくは1である。nが1のとき、-C(RC)(RD)(NH2)基は、オルト位、メタ位、パラ位のいずれであってもよいが、好ましくはメタ位である。
RA~RDのうち少なくとも2つは、エチル基、n-プロピル基、またはイソプロピル基であり、エチル基、n-プロピル基、およびイソプロピル基からなる群より選択される同一の基であることが好ましい。また、RA~RDのうち少なくとも2つは、エチル基であることが好ましい。
RA~RDのうち少なくとも2つは、エチル基、n-プロピル基、またはイソプロピル基であり、エチル基、n-プロピル基、およびイソプロピル基からなる群より選択される同一の基であることが好ましい。また、RA~RDのうち少なくとも2つは、エチル基であることが好ましい。
式(1-1)で表される化合物は、好ましくは式(2-1)で表される。
ただし、RA~RDのうち2つがn-プロピル基であるとき、RAまたはRB、および、RCまたはRDが、それぞれn-プロピル基である場合を除く。)
式(1-1)における、「nが1であり、-C(RC)(RD)(NH2)基がパラ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合」とは、具体的には以下の化合物である。
式(1-1)における、「nが1であり、-C(RC)(RD)(NH2)基がメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合」、および、式(2-1)における「RA~RDのうち2つがn-プロピル基であるとき、RAまたはRB、および、RCまたはRDが、それぞれn-プロピル基である場合」とは、具体的には以下の化合物である。
式(1-1)における、「nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合」とは、具体的には以下の化合物である。
本実施形態の化合物の一例として、式(1-1)で表される化合物であって、RA~RDのうち3つ以上が、それぞれ独立に、エチル基、n-プロピル基、またはイソプロピル基である態様が挙げられる。さらには、式(1-1)で表される化合物であって、nが1であり、RA~RDのうち3つまたは4つが、それぞれ独立に、エチル基、n-プロピル基、またはイソプロピル基である態様が挙げられる。このような化合物は、塩基組成物の存在下で、かつ、前記塩基組成物を2回以上に分割して反応系中に導入することによって、容易に得られる。
式(1-1)で表される化合物としては、具体的には以下の化合物が挙げられる。
上記の具体的な化合物の中でも、好ましくは、式(3)および式(4)で表される化合物である。
式(1-1)で表される化合物の分子量は、160以上であることが好ましく、180以上であることがより好ましく、190以上であることがさらに好ましい。また、式(1-1)で表される化合物の分子量は、500以下であることが好ましく、350以下であることがより好ましく、250以下であることがさらに好ましい。
本実施形態の化合物は、精製して単独化合物として用いてもよいし、式(1-1)で表される化合物の1種または二種以上を含む組成物であってもよい。例えば、式(3)で表される化合物および式(4)で表される化合物を含む組成物が例示される。また、本実施形態では、式(3)で表される化合物および(4)で表される化合物を含み、式(1-1)で表される化合物であって、RA~RDのうち、エチル基、n-プロピル基、またはイソプロピル基である基が1つまたは2つであり、RA~RDの残りが水素原子である化合物の合計割合が、式(3)で表される化合物と(4)で表される化合物の合計量の20質量%以下である組成物が例示される。
[化合物の製造方法]
第一の実施形態の化合物の製造方法は、式(1-1)で表される化合物の製造方法であって、塩基存在下、式(5-1)で表される化合物に対して、エチレンおよび/またはプロピレンを付加反応させる工程を含む。
第一の実施形態の化合物の製造方法は、式(1-1)で表される化合物の製造方法であって、塩基存在下、式(5-1)で表される化合物に対して、エチレンおよび/またはプロピレンを付加反応させる工程を含む。
式(5-1)中のRX~RZにおける、nは、1~3の整数であり、好ましくは1である。nが1のとき、-C(RY)(RZ)(NH2)基は、オルト位、メタ位、パラ位のいずれであってもよいが、好ましくはメタ位である。
RX~RZは、すべて水素であることが好ましい。
式(5-1)で表される化合物は、好ましくはメタキシリレンジアミンである。本明細書において、メタキシリレンジアミンは、MXDAとも略記する。
式(5-1)で表される化合物は、公知の有機反応により調製してもよく、市販品として入手してもよい。
RX~RZは、すべて水素であることが好ましい。
式(5-1)で表される化合物は、好ましくはメタキシリレンジアミンである。本明細書において、メタキシリレンジアミンは、MXDAとも略記する。
式(5-1)で表される化合物は、公知の有機反応により調製してもよく、市販品として入手してもよい。
式(5-1)で表される化合物は、具体的には、ベンジルアミン、α-メチルベンゼンメタンアミン、α-エチルベンゼンメタンアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,2,3-ベンゼントリメタンアミン、1,2,4-ベンゼントリメタンアミンおよび1,2,4,5-ベンゼンテトラメタンアミンからなる群より選択される1種以上の化合物を含むことが好ましく、m-キシリレンジアミンを含むことがより好ましい。
式(5-1)で表される化合物は1種のみ用いても、2種以上用いてもよい。2種以上用いた場合、得られる式(1-1)で表される化合物も混合物となる。
式(5-1)で表される化合物に対するエチレンおよび/またはプロピレンの比は、エチレンおよび/またはプロピレンを付加させる量に応じて適宜調整すればよい。式(5-1)で表される化合物に対するエチレンおよび/またはプロピレンの比は、通常、式(5-1)で表される化合物1モルに対し、モル比で0.01~20、好ましくは0.1~10の範囲である。
また、エチレンおよび/またはプロピレンは、反応中に追加で添加してもよく、反応中、常時添加してもよい。
また、エチレンおよび/またはプロピレンは、反応中に追加で添加してもよく、反応中、常時添加してもよい。
本実施形態の製造方法における、塩基の添加量は、一般的には、原料である式(5-1)で表される化合物の質量に対して、0.01~400質量%、好ましくは0.1~300質量%、より好ましくは1.0~150質量%である。
反応温度は、反応させる基質の種類等に応じて適宜調整すればよく、一般的には0~150℃、好ましくは10~120℃の範囲である。温度を10℃以上とすることにより、より充分な反応速度が得られ、また、選択率がより向上する傾向にある。温度を120℃以下とすることにより、タール分等の副生物を少なくでき、より好ましい。
反応圧力は、式(5-1)で表される化合物および生成物が反応条件下で実質的に液体として存在するに必要な圧力で充分であり、好ましくは、絶対圧で0.05~50気圧、好ましくは0.1~40気圧の範囲である。
反応温度は、反応させる基質の種類等に応じて適宜調整すればよく、一般的には0~150℃、好ましくは10~120℃の範囲である。温度を10℃以上とすることにより、より充分な反応速度が得られ、また、選択率がより向上する傾向にある。温度を120℃以下とすることにより、タール分等の副生物を少なくでき、より好ましい。
反応圧力は、式(5-1)で表される化合物および生成物が反応条件下で実質的に液体として存在するに必要な圧力で充分であり、好ましくは、絶対圧で0.05~50気圧、好ましくは0.1~40気圧の範囲である。
反応方式としては、例えば、塩基を仕込んだ反応器に原料をバッチ方式やセミバッチ方式にて供給する方法、反応器に塩基および原料を連続的に供給する完全混合流通方式、または、塩基を反応器に充填し原料を流通させる固定床流通方式等が挙げられる。反応方式は、目的とする反応生成物の種類によって適宜選択することができるが、バッチ方式が好ましい。バッチ方式を用いることによって、反応を行うための操作が煩雑とならず、水分混入による塩基の失活を抑制し、塩基の活性をより効果的に維持することができる。
付加反応の反応時間は、バッチ方式、セミバッチ方式の反応時間、または、完全混合流通方式での滞留時間として、通常0.1~10時間である。固定床流通方式の場合には、式(5-1)で表される化合物のLSVとして、通常0.1~10h-1が採用される。
付加反応の反応時間は、バッチ方式、セミバッチ方式の反応時間、または、完全混合流通方式での滞留時間として、通常0.1~10時間である。固定床流通方式の場合には、式(5-1)で表される化合物のLSVとして、通常0.1~10h-1が採用される。
(塩基)
本実施形態の製造方法において用いられる塩基としては、式(5-1)で表される化合物に対してエチレンおよび/またはプロピレンを付加させる反応の触媒としてはたらくものであれば、特に限定されない。上記塩基としては、少なくとも1種のアルカリ金属を含む塩基が好ましく、ナトリウム、ルビジウム、およびセシウムからなる群より選択される少なくとも1種のアルカリ金属を含む塩基がより好ましい。アルカリ金属含有化合物(A)は、MaOH、Ma 2CO3(Maはアルカリ金属)が好ましい。
上記塩基としては、具体的には、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および、水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウム(B)と、を含有する組成物に由来する塩基組成物Aを好適に用いることができる。
本実施形態の製造方法において用いられる塩基としては、式(5-1)で表される化合物に対してエチレンおよび/またはプロピレンを付加させる反応の触媒としてはたらくものであれば、特に限定されない。上記塩基としては、少なくとも1種のアルカリ金属を含む塩基が好ましく、ナトリウム、ルビジウム、およびセシウムからなる群より選択される少なくとも1種のアルカリ金属を含む塩基がより好ましい。アルカリ金属含有化合物(A)は、MaOH、Ma 2CO3(Maはアルカリ金属)が好ましい。
上記塩基としては、具体的には、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および、水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウム(B)と、を含有する組成物に由来する塩基組成物Aを好適に用いることができる。
上記塩基組成物Aは、具体的には、アルカリ金属含有化合物(A)、金属ナトリウム(B)を含有する組成物を、不活性ガス雰囲気下で熱処理することによって得られる。また、上記塩基組成物Aは、上記アルカリ金属含有化合物(A)および上記金属ナトリウム(B)の混合物の加熱処理物である。上記混合物において、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウムとは、同一系内に存在することが好ましい。
上記塩基組成物Aにおけるアルカリ金属含有化合物(A)は、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および水酸化セシウムである。これらのアルカリ金属含有化合物(A)の中でも、式(5-1)で表される化合物に対してエチレンおよび/またはプロピレンを付加させる反応を進行させる触媒としての活性をより高める観点から、好ましくは炭酸ルビジウムおよび炭酸セシウムであり、より好ましくは炭酸セシウムである。また、これらのアルカリ金属含有化合物(A)は、1種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上記塩基組成物Aにおけるアルカリ金属含有化合物(A)に含まれるルビジウムおよび/またはセシウムの物質量と、前記金属ナトリウム(B)の物質量との比(ルビジウムおよび/またはセシウムの物質量:ナトリウムの物質量(モル比))は、反応を効率良く進行させる観点から、0.50:1~8.0:1であり、好ましくは1.0:1~4.0:1であり、より好ましくは1.0:1~3.0:1であり、さらに好ましくは1.5:1~2.5:1である。
上記塩基組成物Aにおける、アルカリ金属含有化合物(A)と、金属ナトリウム(B)とを含有する組成物が、さらに、アルカリ土類金属化合物(周期表第2族元素を含有する化合物)を含有することが好ましい。アルカリ土類金属化合物(C)は、Mc(OH)2、McCO3、McO(Mcはアルカリ土類金属)がより好ましく、酸化マグネシウム、水酸化マグネシウム、および炭酸マグネシウムからなる群より選択される1種以上のアルカリ土類金属化合物を含有することがさらに好ましい。アルカリ土類金属化合物(C)を含有することにより、塩基組成物Aのべたつきを抑え、ハンドリング性を向上することができる。
アルカリ土類金属化合物(C)(好ましくはマグネシウム化合物)の含有量は、アルカリ金属含有化合物(A)および金属ナトリウム(B)の総量を100質量部としたとき、好ましくは30質量部以上であり、より好ましくは40質量部以上であり、さらに好ましくは50質量部以上であり、60質量部以上であってもよい。上限値としては、好ましくは150質量部以下であり、より好ましくは130質量部以下であり、さらに好ましくは100質量部以下である。アルカリ土類金属化合物(C)の含有量が30質量部以上であることにより、塩基組成物Aのべたつきを抑えられる傾向にある。また、アルカリ土類金属化合物(C)の含有量が150質量部以下であることにより、塩基組成物Aの触媒としての活性に影響せず、反応を進行させる傾向にある。
アルカリ土類金属化合物(C)(好ましくはマグネシウム化合物)の含有量は、アルカリ金属含有化合物(A)および金属ナトリウム(B)の総量を100質量部としたとき、好ましくは30質量部以上であり、より好ましくは40質量部以上であり、さらに好ましくは50質量部以上であり、60質量部以上であってもよい。上限値としては、好ましくは150質量部以下であり、より好ましくは130質量部以下であり、さらに好ましくは100質量部以下である。アルカリ土類金属化合物(C)の含有量が30質量部以上であることにより、塩基組成物Aのべたつきを抑えられる傾向にある。また、アルカリ土類金属化合物(C)の含有量が150質量部以下であることにより、塩基組成物Aの触媒としての活性に影響せず、反応を進行させる傾向にある。
上記塩基組成物Aは、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウム(B)とを含有する混合物を、不活性ガス雰囲気下で100℃~500℃の温度で熱処理することにより製造することができる。アルカリ金属含有化合物(A)および金属ナトリウム(B)を混合する順番は特に限定されない。
不活性ガスとしては、例えば、ヘリウム、窒素、アルゴン等を挙げることができる。
塩基組成物Aの調製における温度は、好ましくは98℃~500℃であり、より好ましくは110℃~300℃であり、さらに好ましくは120℃~280℃である。温度が、98℃~500℃であることにより、金属ナトリウムが融解するために、分散混合しやすく、かつ、十分に焼成され、活性の高い触媒となる傾向にある。
塩基組成物Aの調製における加熱時間は、好ましくは10分~5時間であり、より好ましくは30分~3時間であり、さらに好ましくは30分~2時間である。加熱時間が、10分~5時間であることにより、十分に焼成され、活性の高い触媒となる傾向にある。
不活性ガスとしては、例えば、ヘリウム、窒素、アルゴン等を挙げることができる。
塩基組成物Aの調製における温度は、好ましくは98℃~500℃であり、より好ましくは110℃~300℃であり、さらに好ましくは120℃~280℃である。温度が、98℃~500℃であることにより、金属ナトリウムが融解するために、分散混合しやすく、かつ、十分に焼成され、活性の高い触媒となる傾向にある。
塩基組成物Aの調製における加熱時間は、好ましくは10分~5時間であり、より好ましくは30分~3時間であり、さらに好ましくは30分~2時間である。加熱時間が、10分~5時間であることにより、十分に焼成され、活性の高い触媒となる傾向にある。
アルカリ土類金属化合物(C)は、アルカリ金属含有化合物(A)および金属ナトリウム(B)の混合物に添加すればよいが、アルカリ金属含有化合物(A)、金属ナトリウム(B)およびアルカリ土類金属化合物(C)を混合する順番は特に限定されない。
アルカリ金属含有化合物(A)およびアルカリ土類金属化合物(C)は吸湿性が高いことから、塩基組成物Aの調製前に熱処理を加えてもよい。調製前の熱処理は、不活性ガス下または真空下で行うことが好ましい。調製前の熱処理の温度は、不要な水分を取り除くことができる温度であれば特に限定されないが、通常200℃~500℃であり、好ましくは250℃~400℃である。
熱処理の温度を200℃~500℃とすることにより、化合物中の水分を十分に取り除くことができ、活性の高い触媒となる傾向にある。調製前の熱処理の時間は、好ましくは10分~5時間であり、より好ましくは30分~3時間であり、さらに好ましくは30分~2時間である。加熱時間が、10分~5時間であることにより、十分に水分を取り除くことができ、活性の高い触媒となる傾向にある。
熱処理の温度を200℃~500℃とすることにより、化合物中の水分を十分に取り除くことができ、活性の高い触媒となる傾向にある。調製前の熱処理の時間は、好ましくは10分~5時間であり、より好ましくは30分~3時間であり、さらに好ましくは30分~2時間である。加熱時間が、10分~5時間であることにより、十分に水分を取り除くことができ、活性の高い触媒となる傾向にある。
反応終了後における反応液と塩基組成物とは、分沈降、遠心分離、濾過等の一般的な方法により分離できる。
塩基組成物は、本実施形態の化合物の合成反応において、触媒として作用する一方で不可逆的な反応開始剤としても機能する。したがって、アミン化合物の合成反応の進行に伴って、塩基組成物の系内での量は減少していく。そこで、本実施形態の化合物の合成反応に際して、塩基組成物を2回以上に分割して添加することが好ましい。塩基組成物の添加の回数の上限は特にないが、10回以下であることが実際的である。また、式(5-1)で表される化合物に対し、Rx~Rzの3つ以上、さらには3つまたは4つに、特には、4つに、エチレンおよび/またはプロピレンを付加させることが容易になる。
また、塩基組成物を一定速度で連続的あるいは断続的に反応液中に投入してもよい。また、投入する速度は一定であってもよいし、経時で変化させてもよい。
塩基組成物は、本実施形態の化合物の合成反応において、触媒として作用する一方で不可逆的な反応開始剤としても機能する。したがって、アミン化合物の合成反応の進行に伴って、塩基組成物の系内での量は減少していく。そこで、本実施形態の化合物の合成反応に際して、塩基組成物を2回以上に分割して添加することが好ましい。塩基組成物の添加の回数の上限は特にないが、10回以下であることが実際的である。また、式(5-1)で表される化合物に対し、Rx~Rzの3つ以上、さらには3つまたは4つに、特には、4つに、エチレンおよび/またはプロピレンを付加させることが容易になる。
また、塩基組成物を一定速度で連続的あるいは断続的に反応液中に投入してもよい。また、投入する速度は一定であってもよいし、経時で変化させてもよい。
本実施形態の製造方法における付加反応は、溶媒の存在下で行っても、非存在下で行ってもよい。溶媒は反応温度や反応物等によって適宜選択される。溶媒としては、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、1、4-ジオキサン、1、3、5-トリオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテルが例示される。
上記有機反応で溶媒を用いる場合、得られた反応溶液を必要に応じて濃縮した後、残渣をそのまま式(1-1)で表される化合物として用いてもよく、適宜、後処理を行った後に、式(1-1)で表される化合物として用いてもよい。後処理の具体的な方法としては、蒸留、クロマトグラフィー等の公知の精製を挙げることができる。
尚、後述する実施例では、エチレン付加の例のみを示しているが、エチレン付加とプロピレン付加が同様のメカニズムで、ほぼ同様に反応が進行することは公知である。
上記有機反応で溶媒を用いる場合、得られた反応溶液を必要に応じて濃縮した後、残渣をそのまま式(1-1)で表される化合物として用いてもよく、適宜、後処理を行った後に、式(1-1)で表される化合物として用いてもよい。後処理の具体的な方法としては、蒸留、クロマトグラフィー等の公知の精製を挙げることができる。
尚、後述する実施例では、エチレン付加の例のみを示しているが、エチレン付加とプロピレン付加が同様のメカニズムで、ほぼ同様に反応が進行することは公知である。
第二の実施形態の化合物の製造方法は、塩基存在下、式(5-2)で表される化合物に対して、エチレンを充填し、アルキル化することを含む、式(1-2)で表される化合物の製造方法であって、前記エチレン充填時の反応液の温度が0~10℃、エチレンの充填圧力が1.5~2.3MPaである、式(1-2)で表される化合物の製造方法である。
(式(5-2)中、RX2~RZ2は、独立して、水素またはエチル基を表し、nは1~3の整数である。)
(式(1-2)中、RA2~RD2は、独立して、水素またはエチル基を表し、nは1~3の整数である。ただし、RA2~RD2のうち少なくとも2つは、エチル基である。)
また、式(1-2)は、nが1であり、-C(RC2)(RD2)(NH2)基がオルト位にあり、このときRA2またはRB2、および、RC2またはRD2が、それぞれエチル基であり、かつ、RA2~RD2の残りの2つが水素である場合は除かれることが好ましい。
また、式(1-2)は、nが1であり、-C(RC2)(RD2)(NH2)基がオルト位にあり、このときRA2またはRB2、および、RC2またはRD2が、それぞれエチル基であり、かつ、RA2~RD2の残りの2つが水素である場合は除かれることが好ましい。
本実施形態の製造方法では、エチレン充填時の反応液の温度が0~10℃であり、エチレンの充填圧力が1.5~2.3MPaである。エチレン充填時の反応液の温度を10℃以下とすることにより、反応初期に発生する活性種を安定に取り扱うことが可能になる。そして、エチレンの充填圧力を2.3MPa以下とすることにより、エチレンの付加反応が進行しやすくなる。また、エチレン充填時の反応液の温度を0℃以上とすることにより、反応温度までの昇温にかかる時間を短くでき、反応成績を向上させることができる。また、エチレンの充填圧力を1.5MPa以上とすることにより、エチレン付加反応を効果的に促進させることができる。
本実施形態の製造方法では、通常、エチレンガスを充填する。
エチレン充填時の反応液の温度は、下限値が、1℃以上であることが好ましく、2℃以上であることがより好ましい。また、前記反応液の温度は、上限値が8℃以下であることが好ましく、6℃以下であることがより好ましく、5℃以下であることがさらに好ましく、4℃以下であることが一層好ましい。
本発明における反応液の温度とは、エチレンガスを充填する際の反応液の液温を意味する。
エチレン充填時の圧力(エチレンの充填圧力)は、下限値が、1.7MPa以上であることが好ましく、1.8MPa以上であることがより好ましく、1.9MPa以上であることがさらに好ましい。エチレン充填時の圧力の上限は、2.2MPa以下であることが好ましく、2.1MPa以下であることがさらに好ましい。
本実施形態の製造方法では、通常、エチレンガスを充填する。
エチレン充填時の反応液の温度は、下限値が、1℃以上であることが好ましく、2℃以上であることがより好ましい。また、前記反応液の温度は、上限値が8℃以下であることが好ましく、6℃以下であることがより好ましく、5℃以下であることがさらに好ましく、4℃以下であることが一層好ましい。
本発明における反応液の温度とは、エチレンガスを充填する際の反応液の液温を意味する。
エチレン充填時の圧力(エチレンの充填圧力)は、下限値が、1.7MPa以上であることが好ましく、1.8MPa以上であることがより好ましく、1.9MPa以上であることがさらに好ましい。エチレン充填時の圧力の上限は、2.2MPa以下であることが好ましく、2.1MPa以下であることがさらに好ましい。
本実施形態の製造方法では、エチレンによって、アルキル化(エチレン付加)が進行する。
エチレン充填後の反応系の温度は、下限値が、10℃超であることが好ましく、12℃以上であることがより好ましく、14℃以上であることがさらに好ましく、16℃以上であることが一層好ましく、18℃以上であることがより一層好ましい。また、エチレン充填後の反応系の温度は、上限値が、35℃以下であることが好ましく、30℃以下であることがより好ましく、25℃以下であることが一層好ましい。
本実施形態の製造方法では、エチレン充填時とその後の反応系の温度の差が10℃以上であることが好ましく、10~20℃であることがより好ましい。このような構成とすることにより、エチレン付加反応がより効果的に進行する。
エチレン付加反応の時間は、1時間~100時間であることが好ましく、10~60時間であることがより好ましい。詳細を後述するとおり、塩基を2回以上に分割して反応系に導入する場合は、合計が上記範囲となることが好ましい。
エチレン充填後の反応系の温度は、下限値が、10℃超であることが好ましく、12℃以上であることがより好ましく、14℃以上であることがさらに好ましく、16℃以上であることが一層好ましく、18℃以上であることがより一層好ましい。また、エチレン充填後の反応系の温度は、上限値が、35℃以下であることが好ましく、30℃以下であることがより好ましく、25℃以下であることが一層好ましい。
本実施形態の製造方法では、エチレン充填時とその後の反応系の温度の差が10℃以上であることが好ましく、10~20℃であることがより好ましい。このような構成とすることにより、エチレン付加反応がより効果的に進行する。
エチレン付加反応の時間は、1時間~100時間であることが好ましく、10~60時間であることがより好ましい。詳細を後述するとおり、塩基を2回以上に分割して反応系に導入する場合は、合計が上記範囲となることが好ましい。
式(5-2)で表される化合物に対するエチレンの比は、エチレンを付加させる量に応じて適宜調整すればよいが、式(5-2)で表される化合物1モルに対し、エチレンをモル比で好ましくは1~30、より好ましくは3~20、さらに好ましくは4~15の範囲で充填する。
反応方式、溶媒等の諸条件は、特に述べない限り、第一の実施形態で述べたものと同様に行うことができ、好ましい範囲も同様である。
式(1-2)中、nは、式(1-1)中のnと同義であり、好ましい範囲も同様である。
より好ましくは、式(1-2)中、RA2~RD2のうち少なくとも3つは、エチル基であり、それら以外のRA2~RD2は、水素原子である。
より好ましくは、式(1-2)中、RA2~RD2のうち少なくとも3つは、エチル基であり、それら以外のRA2~RD2は、水素原子である。
式(1-2)で表される化合物は、好ましくは式(2-2)で表される。
より好ましくは、式(2-2)中、RA2~RD2のうち3つまたは4つ(さらに好ましくは4つ)は、エチル基であり、それら以外のRA2~RD2は、水素原子である。
式(1-2)で表される化合物の分子量は、160以上であることが好ましく、180以上であることがより好ましく、190以上であることがさらに好ましい。400以下であることが好ましく、300以下であることがより好ましく、250以下であることがさらに好ましい。
式(5-2)で表される化合物は1種のみ用いても、2種以上用いてもよい。2種以上用いた場合、得られる式(1-2)で表される化合物も混合物となる。
<塩基>
本実施形態の製造方法では、式(5-2)で表される化合物のアルキル化は、塩基の存在下で行う。
塩基は、エチレン付加反応において、触媒として作用する一方で不可逆的な反応開始剤としても機能する。したがって、エチレン付加反応の進行に伴って、塩基の系内での量は減少していく。そこで、本実施形態の製造方法では、塩基を2回以上に分割して反応系中に導入することが好ましい。塩基の添加の回数の上限は特にないが、10回以下であることが実際的である。このように塩基を分割して添加することにより、式(5-2)で表される化合物に対し、RA2~RD2の3つ以上、さらには3つまたは4つに、特には、4つに、エチレンを付加させることが容易になる。
塩基を2回以上に分割して反応系中に導入する場合、エチレンガスの充填およびアルキル化も、都度行うことが好ましい。すなわち、塩基の存在下で、エチレンを充填し、アルキル化することを2回以上繰り返すことが好ましい。
また、塩基を一定速度で連続的あるいは断続的に反応液中に投入してもよい。また、投入する速度は一定であってもよいし、経時で変化させてもよい。
本実施形態の製造方法では、式(5-2)で表される化合物のアルキル化は、塩基の存在下で行う。
塩基は、エチレン付加反応において、触媒として作用する一方で不可逆的な反応開始剤としても機能する。したがって、エチレン付加反応の進行に伴って、塩基の系内での量は減少していく。そこで、本実施形態の製造方法では、塩基を2回以上に分割して反応系中に導入することが好ましい。塩基の添加の回数の上限は特にないが、10回以下であることが実際的である。このように塩基を分割して添加することにより、式(5-2)で表される化合物に対し、RA2~RD2の3つ以上、さらには3つまたは4つに、特には、4つに、エチレンを付加させることが容易になる。
塩基を2回以上に分割して反応系中に導入する場合、エチレンガスの充填およびアルキル化も、都度行うことが好ましい。すなわち、塩基の存在下で、エチレンを充填し、アルキル化することを2回以上繰り返すことが好ましい。
また、塩基を一定速度で連続的あるいは断続的に反応液中に投入してもよい。また、投入する速度は一定であってもよいし、経時で変化させてもよい。
本実施形態の製造方法における塩基の質量は、式(5-2)で表される化合物1質量部に対して、一般的には、0.001~10質量部、好ましくは0.005~5質量部、より好ましくは0.01~4質量部、さらに好ましくは0.05~3質量部である。複数回に分けて添加する場合、合計量が上記範囲となることが好ましい。
上記塩基としては、特に、具体的には、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および、水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウム(B)と、を含有する塩基組成物Aを好適に用いることができる。塩基組成物Aの詳細は、第一の実施形態の製造方法の記載と同じである。
反応終了後における反応液と塩基組成物Aとは、分沈降、遠心分離、濾過等の一般的な方法により分離できる。
[アミン組成物およびその製造方法]
式(1-1)で表される化合物の製造方法、および、式(1-2)で表される化合物の製造方法では、得られる化合物は、精製して単独化合物として用いてもよいし、式(1-1)で表される化合物、および、式(1-2)で表される化合物の1種または2種以上を含むアミン組成物であってもよい。
式(1-1)で表される化合物の製造方法、および、式(1-2)で表される化合物の製造方法では、得られる化合物は、精製して単独化合物として用いてもよいし、式(1-1)で表される化合物、および、式(1-2)で表される化合物の1種または2種以上を含むアミン組成物であってもよい。
すなわち、本実施形態に係るアミン組成物の製造方法の一例は、塩基存在下、式(5-2)で表される化合物に対して、エチレンを充填し、アルキル化することを含む、式(1-2)で表される化合物を含むアミン組成物の製造方法であって、前記エチレン充填時の反応液の温度が0~10℃、エチレンの充填圧力が1.5~2.3MPaである、アミン組成物の製造方法である。前記アミン組成物の製造方法において、式(5-2)で表される化合物、式(1-2)で表される化合物およびエチレン化等の諸条件は上述の式(1-1)で表される化合物の製造方法と同義であり、好ましい範囲も同様である。
本実施形態のアミン組成物の製造方法では、例えば、2種以上の式(1-2)で表される化合物を含むアミン組成物が得られる。
また、本実施形態では、式(2-2)で表される化合物であって、RA2~RD2のうち、3つまたは4つがエチル基である化合物の合計割合が、式(2-2)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)であるアミン組成物が例示される。
さらには、本実施形態では、式(2-2)で表される化合物であって、RA2~RD2のうち、4つがエチル基である化合物の合計割合が、式(2-2)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)であるアミン組成物が例示される。
また、本実施形態では、式(2-2)で表される化合物であって、RA2~RD2のうち、3つまたは4つがエチル基である化合物の合計割合が、式(2-2)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)であるアミン組成物が例示される。
さらには、本実施形態では、式(2-2)で表される化合物であって、RA2~RD2のうち、4つがエチル基である化合物の合計割合が、式(2-2)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)であるアミン組成物が例示される。
[エポキシ硬化剤]
本実施形態のエポキシ硬化剤は、式(1’)で表される化合物を含む。本実施形態のエポキシ硬化剤は、保存安定性、およびハンドリング性に優れる。
本実施形態のエポキシ硬化剤は、式(1’)で表される化合物を含む。本実施形態のエポキシ硬化剤は、保存安定性、およびハンドリング性に優れる。
式(1’)におけるRA~RD、およびnは、式(1-1)におけるRA~RD、およびnと同義である。すなわち、式(1’)中、RA~RDは、独立して、水素、エチル基、n-プロピル基、またはイソプロピル基を表し、nは1~3の整数である。ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。
式(1’)におけるRA~RD、およびnの好ましい態様、また、-C(RC)(RD)(NH2)基の置換位置の好ましい態様は、式(1-1)におけるそれらと同様である。
式(1’)で表される化合物は、好ましくは式(2’)で表される。
式(1’)で表される化合物は、好ましくは式(2’)で表される。
式(2’)におけるRA~RDは、式(2-1)におけるRA~RDと同義である。すなわち、式(2’)中、RA~RDのうち少なくとも2つは、エチル基、n-プロピル基、およびイソプロピル基からなる群より選択される同一の基であり、それら以外のRA~RDは、水素原子である。
本実施形態のエポキシ硬化剤に含まれる化合物としては、具体的には以下の化合物が挙げられる。
本実施形態のエポキシ硬化剤に含まれる化合物としては、式(3)で表される化合物、および式(4)で表される化合物が好ましい。
上記エポキシ硬化剤は、エポキシ樹脂との反応に影響を与えない範囲で、さらに、式(1’)で表される化合物以外のアミン化合物と併用してもよく、また、公知の硬化促進剤、希釈剤等の添加剤を含んでいてもよい。公知の硬化剤としては、特許第6177331号公報の段落0029に記載のアミン系硬化剤、特開2011-213983号公報の段落0011~0016に記載のアミン系硬化剤を参酌でき、この内容は本明細書に組み込まれる。
上記エポキシ硬化剤における式(1’)で表される化合物は、前記エポキシ硬化剤を構成する成分の主成分であることが好ましい。主成分であるとは、エポキシ硬化剤の構成成分全量に対し、通常50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、よりさらに好ましくは95質量%以上、さらにより好ましくは98質量%以上である。前記エポキシ硬化剤に含まれる式(1’)で表される化合物の含有量の上限は、100質量%である。
上記エポキシ硬化剤における式(1’)で表される化合物は、前記エポキシ硬化剤を構成する成分の主成分であることが好ましい。主成分であるとは、エポキシ硬化剤の構成成分全量に対し、通常50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、よりさらに好ましくは95質量%以上、さらにより好ましくは98質量%以上である。前記エポキシ硬化剤に含まれる式(1’)で表される化合物の含有量の上限は、100質量%である。
[エポキシ樹脂組成物]
本実施形態のエポキシ樹脂組成物は、上記エポキシ樹脂硬化剤およびエポキシ樹脂を含有することが好ましい。
本実施形態のエポキシ硬化剤が使用されるエポキシ樹脂としては、エポキシ基を有する化合物であれば特に制限されない。
エポキシ樹脂は、通常、一分子中に、2~10のエポキシ基を有し、2~6のエポキシ基を有することが好ましく、2~4のエポキシ基を有することがより好ましく、2つのエポキシ基を有することがさらに好ましい。エポキシ基はグリシジルエーテル基であることが好ましい。エポキシ樹脂は、低分子化合物(例えば、数平均分子量2000未満)であっても、高分子の化合物(ポリマー、例えば、数平均分子量2000以上)であってもよい。ポリマーのエポキシ樹脂は、脂肪族化合物であっても、脂環式化合物であっても、または芳香環を有する化合物であってもよい。特に、エポキシ樹脂は、一分子中に、2つの芳香環および/または2つの脂肪族6員環を有することが好ましく、2つの芳香環を有することがより好ましい。なかでも、エピクロロヒドリンと、2つ以上の反応性水素原子を有する化合物(例えばポリオール)との反応によって得られるエポキシ樹脂が好ましい。エポキシ樹脂の原料として具体的には、ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)またはその水素化物、ビスフェノールF(4,4’-ジヒドロキシジフェニルメタン)またはその水素化物、テトラブロモビスフェノールA(2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン)またはその水素化物、クレゾールをホルムアルデヒドと反応させたノボラック型樹脂、ヘキサヒドロフタル酸等が挙げられる。エポキシ樹脂組成物に用いうるエポキシ樹脂としては、上記の他、特開2018-83905号公報の段落0036~0039の記載、特開2018-135433号公報の段落0032~0035を参酌でき、これらの内容は本明細書に組み込まれる。
本実施形態のエポキシ樹脂組成物は、上記エポキシ樹脂硬化剤およびエポキシ樹脂を含有することが好ましい。
本実施形態のエポキシ硬化剤が使用されるエポキシ樹脂としては、エポキシ基を有する化合物であれば特に制限されない。
エポキシ樹脂は、通常、一分子中に、2~10のエポキシ基を有し、2~6のエポキシ基を有することが好ましく、2~4のエポキシ基を有することがより好ましく、2つのエポキシ基を有することがさらに好ましい。エポキシ基はグリシジルエーテル基であることが好ましい。エポキシ樹脂は、低分子化合物(例えば、数平均分子量2000未満)であっても、高分子の化合物(ポリマー、例えば、数平均分子量2000以上)であってもよい。ポリマーのエポキシ樹脂は、脂肪族化合物であっても、脂環式化合物であっても、または芳香環を有する化合物であってもよい。特に、エポキシ樹脂は、一分子中に、2つの芳香環および/または2つの脂肪族6員環を有することが好ましく、2つの芳香環を有することがより好ましい。なかでも、エピクロロヒドリンと、2つ以上の反応性水素原子を有する化合物(例えばポリオール)との反応によって得られるエポキシ樹脂が好ましい。エポキシ樹脂の原料として具体的には、ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)またはその水素化物、ビスフェノールF(4,4’-ジヒドロキシジフェニルメタン)またはその水素化物、テトラブロモビスフェノールA(2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン)またはその水素化物、クレゾールをホルムアルデヒドと反応させたノボラック型樹脂、ヘキサヒドロフタル酸等が挙げられる。エポキシ樹脂組成物に用いうるエポキシ樹脂としては、上記の他、特開2018-83905号公報の段落0036~0039の記載、特開2018-135433号公報の段落0032~0035を参酌でき、これらの内容は本明細書に組み込まれる。
エポキシ樹脂組成物中のエポキシ樹脂の含有量は、希釈剤を含まない固形分中で、79質量%以上であることが好ましく、81質量%以上であることがより好ましく、82質量%以上であることがさらに好ましい。上限としては、89質量%以下であることが好ましく、87質量%以下であることがより好ましく、86質量%以下であることがさらに好ましい。
希釈剤を含むエポキシ樹脂組成物の全量中では、76質量%以上であることが好ましく、79質量%以上であることがより好ましく、81質量%以上であることがさらに好ましい。上限としては、90質量%以下であることが好ましく、87質量%以下であることがより好ましく、85質量%以下であることがさらに好ましい。
エポキシ樹脂は1種を用いても複数のものを用いてもよい。複数のものを用いる場合はその合計量が上記の範囲となる。
希釈剤を含むエポキシ樹脂組成物の全量中では、76質量%以上であることが好ましく、79質量%以上であることがより好ましく、81質量%以上であることがさらに好ましい。上限としては、90質量%以下であることが好ましく、87質量%以下であることがより好ましく、85質量%以下であることがさらに好ましい。
エポキシ樹脂は1種を用いても複数のものを用いてもよい。複数のものを用いる場合はその合計量が上記の範囲となる。
エポキシ樹脂組成物は、エポキシ樹脂および硬化剤以外の成分を含んでいてもよい。具体的には、反応性希釈剤、非反応性希釈剤、硬化促進剤、可塑剤、顔料、染料、充填剤、離型剤、強靱化剤、酸化防止剤、紫外線吸収剤、光安定剤、流動化剤、レベリング剤、消泡剤、難燃剤または増粘剤等を含んでいてもよい。
本実施形態に係る硬化物は、エポキシ樹脂組成物から形成される。硬化物は、建築用塗料、接着剤、自動車部品、航空機用部品、複合材料、プリント基板用材料、重電機器の絶縁含浸材料、エレクトロニクス素子の封止材など、広い分野に用いることができる。また、特開2018-83905号公報の段落0045に記載の用途、特開2018-135433号公報の段落0053に記載の用途、特表2016-527384号公報の段落0039~0043に記載の用途、特開2011-213983号公報の段落0048に記載の用途にも好ましく用いられ、これらの内容は本明細書に組み込まれる。
[ポリウレタンウレア樹脂組成物]
式(1-1)で表されるアミン化合物は、ウレタンプレポリマーを硬化させる硬化剤として用いることができる。また、本実施形態のポリウレタンウレア樹脂組成物は、上記ウレタンプレポリマー硬化剤とウレタンプレポリマーとを含有することが好ましい。
本実施形態に係る硬化物は、ポリウレタンウレア樹脂組成物から形成される。
式(1-1)で表されるアミン化合物は、ウレタンプレポリマーを硬化させる硬化剤として用いることができる。また、本実施形態のポリウレタンウレア樹脂組成物は、上記ウレタンプレポリマー硬化剤とウレタンプレポリマーとを含有することが好ましい。
本実施形態に係る硬化物は、ポリウレタンウレア樹脂組成物から形成される。
以下、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。尚、アミノ基含有アルキル置換芳香族化合物の分析は以下の方法にて行った。
[アミノ基含有アルキル置換芳香族化合物の分析]
(1)ガスクロマトグラフィー(以下GC分析)
装置;株式会社島津製作所製GC-2025
カラム;アジレント・テクノロジー株式会社製CP-Sil 8 CB for Amines (0.25μm×0.25mm×30m)
カラム温度;80℃で2分間保持し、8℃/分の速度で昇温し、150℃で5分間保持し、15℃/分の速度で昇温し、300℃で5分間保持した。
(1)ガスクロマトグラフィー(以下GC分析)
装置;株式会社島津製作所製GC-2025
カラム;アジレント・テクノロジー株式会社製CP-Sil 8 CB for Amines (0.25μm×0.25mm×30m)
カラム温度;80℃で2分間保持し、8℃/分の速度で昇温し、150℃で5分間保持し、15℃/分の速度で昇温し、300℃で5分間保持した。
(2)飛行時間型質量分析(以下TOFMS分析)
装置;日本電子株式会社製AccuTOF GCX
イオン化手法;FI+
装置;日本電子株式会社製AccuTOF GCX
イオン化手法;FI+
(3)核磁気共鳴吸収法(1H NMR、13C NMR)
BRUKER製核磁気共鳴装置AVANCEII600MHzを用いて、重水素置換クロロホルム溶媒中で測定を行った。尚、後述のδ(ppm)は次式で表される化学シフトを示す。
δ(ppm)=106×(νS-νR)/νR
νS:試料の共鳴周波数(Hz)
νR:標準物質のトリメチルシラン(TMS)の共鳴周波数(Hz)
BRUKER製核磁気共鳴装置AVANCEII600MHzを用いて、重水素置換クロロホルム溶媒中で測定を行った。尚、後述のδ(ppm)は次式で表される化学シフトを示す。
δ(ppm)=106×(νS-νR)/νR
νS:試料の共鳴周波数(Hz)
νR:標準物質のトリメチルシラン(TMS)の共鳴周波数(Hz)
[塩基組成物調製]
磁気撹拌子を備えた200mLのナスフラスコに窒素雰囲気下で、炭酸セシウム(Cs2CO3,富士フイルム和光純薬社製)4.25g、金属ナトリウム(富士フイルム和光純薬社製)0.3g、酸化マグネシウム(MgO,富士フイルム和光純薬社製)3.2gを仕込んだ。このナスフラスコをアルミブロックヒータースターラーに設置して、250℃で、1時間加熱撹拌した後に、アルミブロックヒータースターラーから取り外した。上記ナスフラスコを空冷で室温まで冷却して、塩基組成物を得た。
磁気撹拌子を備えた200mLのナスフラスコに窒素雰囲気下で、炭酸セシウム(Cs2CO3,富士フイルム和光純薬社製)4.25g、金属ナトリウム(富士フイルム和光純薬社製)0.3g、酸化マグネシウム(MgO,富士フイルム和光純薬社製)3.2gを仕込んだ。このナスフラスコをアルミブロックヒータースターラーに設置して、250℃で、1時間加熱撹拌した後に、アルミブロックヒータースターラーから取り外した。上記ナスフラスコを空冷で室温まで冷却して、塩基組成物を得た。
[アミノ基含有アルキル置換芳香族化合物の合成]
(実施例1)
30mLオートクレーブに窒素雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れた後に、オートクレーブをエチレンガスボンベに接続しエチレンガス(ジャパンファインプロダクツ社製、エチレン純度99.9vol.%超)を0.99MPaの圧力で吹き込みながら20~22.5℃、700rpmで24時間撹拌を行った。24時間経過後にエチレンボンベからのガス供給、および撹拌を一時停止して塩基組成物1.16gを追加した。塩基組成物の追加後、再度エチレンの供給と撹拌を開始し更に24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止させ、塩基組成物を含む残渣を吸引ろ過により取り除いた。
ろ液に対して1MのHCl水溶液およびジクロロメタンを加えて分液操作を行い、水相を回収した。次いで1M水酸化ナトリウム水溶液およびジクロロメタンを加えて、再度分液操作を行った後、有機相を回収した。上記有機相を減圧下でジクロロメタンの留去を行うことにより、アミノ基含有アルキル置換芳香族化合物を含む混合物を得た。
混合物より、液体クロマトグラフィーを用いて、以下の、式(3)で表されるα,α,α’,α’-テトラエチルメタキシリレンジアミンと、式(4)で表されるα,α,α’-トリエチルメタキシリレンジアミンを分取した。
(実施例1)
30mLオートクレーブに窒素雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れた後に、オートクレーブをエチレンガスボンベに接続しエチレンガス(ジャパンファインプロダクツ社製、エチレン純度99.9vol.%超)を0.99MPaの圧力で吹き込みながら20~22.5℃、700rpmで24時間撹拌を行った。24時間経過後にエチレンボンベからのガス供給、および撹拌を一時停止して塩基組成物1.16gを追加した。塩基組成物の追加後、再度エチレンの供給と撹拌を開始し更に24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止させ、塩基組成物を含む残渣を吸引ろ過により取り除いた。
ろ液に対して1MのHCl水溶液およびジクロロメタンを加えて分液操作を行い、水相を回収した。次いで1M水酸化ナトリウム水溶液およびジクロロメタンを加えて、再度分液操作を行った後、有機相を回収した。上記有機相を減圧下でジクロロメタンの留去を行うことにより、アミノ基含有アルキル置換芳香族化合物を含む混合物を得た。
混合物より、液体クロマトグラフィーを用いて、以下の、式(3)で表されるα,α,α’,α’-テトラエチルメタキシリレンジアミンと、式(4)で表されるα,α,α’-トリエチルメタキシリレンジアミンを分取した。
α,α,α’,α’-テトラエチルメタキシリレンジアミン(3)の各種スペクトルデータは以下のとおりであった。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.689、0.704、0.719(12H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、1.639~1.711(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.817~1.890(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、7.214~7.235(2H、Ar)、7.267~7.298(1H、Ar)、7.396~7.403(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、36.2(×2)、58.2、123.4、123.5、127.6、146.1。
TOFMS分析:m/eの理論値(C16H28N2+H)+として249.2285、実測値249.231。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.689、0.704、0.719(12H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、1.639~1.711(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.817~1.890(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、7.214~7.235(2H、Ar)、7.267~7.298(1H、Ar)、7.396~7.403(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、36.2(×2)、58.2、123.4、123.5、127.6、146.1。
TOFMS分析:m/eの理論値(C16H28N2+H)+として249.2285、実測値249.231。
α,α,α’-トリエチルメタキシリレンジアミン(4)の各種スペクトルデータは以下のとおりであった。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.702、0.717、0.732(6H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、0.837、0.851、0.866(3H、t、Ar-CH(NH2)-CH2-CH3におけるCH3の水素)、1.623~1.751(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.808~1.882(2H、m、Ar-CH(NH2)-CH2-CH3におけるCH2の水素)、3.792、3.806、3.820(1H、t、Ar-CH(NH2)-CH2-CH3におけるCHの水素)7.140、7.143、7.146、7.154、7.157、7.160(1H、Ar)7.244~7.301(2H、Ar)、7.313~7.320(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、11.0、32.6、36.1(×2)、58.0、58.2、123.7、124.1、124.5、128.0、146.0、146.8。
TOFMS分析:m/eの理論値(C14H25N2+H)+として221.20123、実測値221.199。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.702、0.717、0.732(6H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、0.837、0.851、0.866(3H、t、Ar-CH(NH2)-CH2-CH3におけるCH3の水素)、1.623~1.751(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.808~1.882(2H、m、Ar-CH(NH2)-CH2-CH3におけるCH2の水素)、3.792、3.806、3.820(1H、t、Ar-CH(NH2)-CH2-CH3におけるCHの水素)7.140、7.143、7.146、7.154、7.157、7.160(1H、Ar)7.244~7.301(2H、Ar)、7.313~7.320(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、11.0、32.6、36.1(×2)、58.0、58.2、123.7、124.1、124.5、128.0、146.0、146.8。
TOFMS分析:m/eの理論値(C14H25N2+H)+として221.20123、実測値221.199。
アミノ基含有アルキル置換芳香族化合物を含む混合物についてGC分析を行った。GC分析の結果、保持時間19.6分にα,α,α’,α’-テトラエチルメタキシリレンジアミン(3)に由来するピーク、保持時間18.3分にα,α,α’-トリエチルメタキシリレンジアミン(4)に由来するピークが観測され、それぞれ38%、37%の収率であった。
(実施例2)
30mLオートクレーブに窒素雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA0.80gを入れた後に、オートクレーブをエチレンガスボンベに接続しエチレンガス(ジャパンファインプロダクツ社製、エチレン純度99.9vol.%超)を0.99MPaの圧力で吹き込みながら20~22℃、700rpmで24時間撹拌を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止させた。反応停止後の溶液を1mL抜き取り、シリンジフィルター(孔径0.45μm、PTFE製)を用いて、塩基組成物を含む残渣を取り除き、GC分析を行った。GC分析の結果、α,α,α’,α’-テトラエチルメタキシリレンジアミン(3)が2%、α,α,α’-トリエチルメタキシリレンジアミン(4)が34%の収率であった。
30mLオートクレーブに窒素雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA0.80gを入れた後に、オートクレーブをエチレンガスボンベに接続しエチレンガス(ジャパンファインプロダクツ社製、エチレン純度99.9vol.%超)を0.99MPaの圧力で吹き込みながら20~22℃、700rpmで24時間撹拌を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止させた。反応停止後の溶液を1mL抜き取り、シリンジフィルター(孔径0.45μm、PTFE製)を用いて、塩基組成物を含む残渣を取り除き、GC分析を行った。GC分析の結果、α,α,α’,α’-テトラエチルメタキシリレンジアミン(3)が2%、α,α,α’-トリエチルメタキシリレンジアミン(4)が34%の収率であった。
[化合物の特性]
<ハンドリング性>
液体クロマトグラフィーにより分取したα,α,α’,α’-テトラエチルメタキシリレンジアミン10mgをφ6mm、深さ4mmのアルミパンに秤量し、窒素雰囲気下で25℃、10℃、0℃、-10℃、-25℃の各温度で20分間静置させた際に液体であるか否かを目視、および、触感により評価した。
α,α,α’,α’-テトラエチルメタキシリレンジアミンに代えて、液体クロマトグラフィーにより分取したα,α,α’-トリエチルメタキシリレンジアミン、およびメタキシリレンジアミン(東京化成品工業製)においてもそれぞれ同様に評価を行った。
結果を表1に示す。表中、○は液体であったことを指し、×は固体であったことを指す。10℃以下の幅広い温度領域で化合物が液体であることは、化合物を秤量、混合し使用する際に加温の必要が無く、作業性および省エネルギー化の観点から有用である。
<ハンドリング性>
液体クロマトグラフィーにより分取したα,α,α’,α’-テトラエチルメタキシリレンジアミン10mgをφ6mm、深さ4mmのアルミパンに秤量し、窒素雰囲気下で25℃、10℃、0℃、-10℃、-25℃の各温度で20分間静置させた際に液体であるか否かを目視、および、触感により評価した。
α,α,α’,α’-テトラエチルメタキシリレンジアミンに代えて、液体クロマトグラフィーにより分取したα,α,α’-トリエチルメタキシリレンジアミン、およびメタキシリレンジアミン(東京化成品工業製)においてもそれぞれ同様に評価を行った。
結果を表1に示す。表中、○は液体であったことを指し、×は固体であったことを指す。10℃以下の幅広い温度領域で化合物が液体であることは、化合物を秤量、混合し使用する際に加温の必要が無く、作業性および省エネルギー化の観点から有用である。
<保存安定性>
液体クロマトグラフィーにより分取したα,α,α’,α’-テトラエチルメタキシリレンジアミン6mgをφ6mm、深さ4mmのアルミパンに秤量、空気中25℃の条件下で静置させ、目視にて炭酸塩に由来する白色固体状への変化を観察した。α,α,α’,α’-テトラエチルメタキシリレンジアミンは168時間放置後も透明液状であり、炭酸塩の形成による白色固体化は観測されなかった。
α,α,α’,α’-テトラエチルメタキシリレンジアミンに代えて、液体クロマトグラフィーにより分取したα,α,α’-トリエチルメタキシリレンジアミン、およびメタキシリレンジアミンを使用したこと以外はそれぞれ同様に評価を行った。α,α,α’-トリエチルメタキシリレンジアミンは168時間放置後も透明液状であり、炭酸塩の形成による白色固体化は観測されなかった。メタキシリレンジアミンは30分経過時点で白色固体状体へと変化した。
結果を表1に示す。アミノ化合物が二酸化炭素と反応し炭酸塩を形成する場合、純度の低下による原料仕込み比の変化やエポキシ樹脂硬化剤として使用した際に硬化物の物性低下を生じさせることに繋がる。炭酸塩を形成しにくい場合、不活性ガス雰囲気とすること、加熱処理による炭酸ガスの脱離工程を設けること、および、事前に樹脂の混合を行うこと等の特別な処理を行わずに、化合物を空気中で保存することが可能となる。
液体クロマトグラフィーにより分取したα,α,α’,α’-テトラエチルメタキシリレンジアミン6mgをφ6mm、深さ4mmのアルミパンに秤量、空気中25℃の条件下で静置させ、目視にて炭酸塩に由来する白色固体状への変化を観察した。α,α,α’,α’-テトラエチルメタキシリレンジアミンは168時間放置後も透明液状であり、炭酸塩の形成による白色固体化は観測されなかった。
α,α,α’,α’-テトラエチルメタキシリレンジアミンに代えて、液体クロマトグラフィーにより分取したα,α,α’-トリエチルメタキシリレンジアミン、およびメタキシリレンジアミンを使用したこと以外はそれぞれ同様に評価を行った。α,α,α’-トリエチルメタキシリレンジアミンは168時間放置後も透明液状であり、炭酸塩の形成による白色固体化は観測されなかった。メタキシリレンジアミンは30分経過時点で白色固体状体へと変化した。
結果を表1に示す。アミノ化合物が二酸化炭素と反応し炭酸塩を形成する場合、純度の低下による原料仕込み比の変化やエポキシ樹脂硬化剤として使用した際に硬化物の物性低下を生じさせることに繋がる。炭酸塩を形成しにくい場合、不活性ガス雰囲気とすること、加熱処理による炭酸ガスの脱離工程を設けること、および、事前に樹脂の混合を行うこと等の特別な処理を行わずに、化合物を空気中で保存することが可能となる。
[エポキシ樹脂の硬化]
(実施例3)
三菱ケミカル(株)製「jER828」(エポキシ当量:186g/当量、固形分濃度:100質量%、液状)138.4mgに対して、液体クロマトグラフィーにより分取したα,α,α’,α’-テトラエチルメタキシリレンジアミン46.2mgを配合、撹拌してエポキシ樹脂組成物を得た。エポキシ当量:アミンの活性水素当量は、1:1になるように調整した。得られたエポキシ樹脂組成物を、5℃/分昇温、250℃、5分間保持の条件で加熱した結果、硬化反応が進行しエポキシ樹脂硬化物が得られた。示差走査熱量測定(DSC)の結果、ガラス転移温度は50℃であった。
なお、エポキシ樹脂硬化物のガラス転移温度は、示差走査熱量計「DSC6220」(セイコーインスツルメント社製)を用いて、5℃/分の昇温速度で30~250℃まで示差走査熱量分析を行うことにより求めた。
(実施例3)
三菱ケミカル(株)製「jER828」(エポキシ当量:186g/当量、固形分濃度:100質量%、液状)138.4mgに対して、液体クロマトグラフィーにより分取したα,α,α’,α’-テトラエチルメタキシリレンジアミン46.2mgを配合、撹拌してエポキシ樹脂組成物を得た。エポキシ当量:アミンの活性水素当量は、1:1になるように調整した。得られたエポキシ樹脂組成物を、5℃/分昇温、250℃、5分間保持の条件で加熱した結果、硬化反応が進行しエポキシ樹脂硬化物が得られた。示差走査熱量測定(DSC)の結果、ガラス転移温度は50℃であった。
なお、エポキシ樹脂硬化物のガラス転移温度は、示差走査熱量計「DSC6220」(セイコーインスツルメント社製)を用いて、5℃/分の昇温速度で30~250℃まで示差走査熱量分析を行うことにより求めた。
(実施例4)
三菱ケミカル(株)製「jER828」(エポキシ当量:186g/当量、固形分濃度:100質量%、液状)63.1mgに対して、液体クロマトグラフィーにより分取したα,α,α’-トリエチルメタキシリレンジアミン18.7mgを配合撹拌してエポキシ樹脂組成物を得た。エポキシ当量:アミンの活性水素当量は、1:1になるように調整した。得られたエポキシ樹脂組成物を5℃/分昇温、250℃、5分間保持の条件で加熱した結果、硬化反応が進行しエポキシ樹脂硬化物が得られた。示差走査熱量測定(DSC)の結果、ガラス転移温度は104℃であった。
三菱ケミカル(株)製「jER828」(エポキシ当量:186g/当量、固形分濃度:100質量%、液状)63.1mgに対して、液体クロマトグラフィーにより分取したα,α,α’-トリエチルメタキシリレンジアミン18.7mgを配合撹拌してエポキシ樹脂組成物を得た。エポキシ当量:アミンの活性水素当量は、1:1になるように調整した。得られたエポキシ樹脂組成物を5℃/分昇温、250℃、5分間保持の条件で加熱した結果、硬化反応が進行しエポキシ樹脂硬化物が得られた。示差走査熱量測定(DSC)の結果、ガラス転移温度は104℃であった。
[エチレン充填条件を変更したアミノ基含有アルキル置換芳香族化合物の合成]
(実施例5)
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA(東京化成工業社製)0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れフタをした。オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌して反応液温を3℃とした。水浴中での撹拌を継続しながら、エチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9vol.%超)を2.0MPaの圧力で充填した。水浴の温度を20℃に変更し、700rpmで24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
(実施例5)
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA(東京化成工業社製)0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れフタをした。オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌して反応液温を3℃とした。水浴中での撹拌を継続しながら、エチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9vol.%超)を2.0MPaの圧力で充填した。水浴の温度を20℃に変更し、700rpmで24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
(実施例6)
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA0.80g、テトラヒドロフラン5.57gを入れフタをした。オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌して反応液温を3℃とした。水浴中での撹拌を継続しながら、エチレンガスボンベに接続し、エチレンガスを2.0MPaの圧力で充填した。水浴の温度を20℃に変更し、700rpmで24時間撹拌をおこなった。24時間経過後に撹拌を一時停止して塩基組成物1.16gを追加した。塩基組成物の追加後、再度オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌、反応液温を3℃とし、水浴中での撹拌を継続しながらエチレンガスを2.0MPaの圧力で充填した。エチレンガス充填後24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA0.80g、テトラヒドロフラン5.57gを入れフタをした。オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌して反応液温を3℃とした。水浴中での撹拌を継続しながら、エチレンガスボンベに接続し、エチレンガスを2.0MPaの圧力で充填した。水浴の温度を20℃に変更し、700rpmで24時間撹拌をおこなった。24時間経過後に撹拌を一時停止して塩基組成物1.16gを追加した。塩基組成物の追加後、再度オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌、反応液温を3℃とし、水浴中での撹拌を継続しながらエチレンガスを2.0MPaの圧力で充填した。エチレンガス充填後24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
(実施例7)
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA(東京化成工業社製)0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れフタをした。オートクレーブを20℃の水浴に入れ、700rpmで撹拌して反応液温を20℃に調整し、エチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9vol.%超)を2.0MPaの圧力で充填した。エチレン充填後700rpmで24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA(東京化成工業社製)0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れフタをした。オートクレーブを20℃の水浴に入れ、700rpmで撹拌して反応液温を20℃に調整し、エチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9vol.%超)を2.0MPaの圧力で充填した。エチレン充填後700rpmで24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
(実施例8)
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA(東京化成工業社製)0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れフタをした。オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌して反応液温を3℃とした。水浴中での撹拌を継続しながら、エチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9vol.%超)を0.99MPaの圧力で充填した。水浴の温度を20℃に変更し、700rpmで24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
30mLオートクレーブにアルゴン雰囲気下で、マグネチックスターラーバー、上記[塩基組成物調製]にて調製した塩基組成物1.16g、および、MXDA(東京化成工業社製)0.80g、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)5.57gを入れフタをした。オートクレーブを1℃の水浴に入れ、700rpmで15分間撹拌して反応液温を3℃とした。水浴中での撹拌を継続しながら、エチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9vol.%超)を0.99MPaの圧力で充填した。水浴の温度を20℃に変更し、700rpmで24時間反応を行った。反応液に4mLのイソプロピルアルコールを加えて反応を停止し、シリンジフィルター(孔径0.45μm、PTFE社製)を用いて、塩基組成物を取り除き、ガスクロマトグラフィー分析を行った。結果を表2に示す。
なお、実施例5~8で得られたエチレン3分子付加体の構造は、式(4)で表される化合物(α,α,α’-トリエチルメタキシリレンジアミン)であった。
α,α,α’-トリエチルメタキシリレンジアミンの各種スペクトルデータは以下のとおりであった。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.702、0.717、0.732(6H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、0.837、0.851、0.866(3H、t、Ar-CH(NH2)-CH2-CH3におけるCH3の水素)、1.623~1.751(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.808~1.882(2H、m、Ar-CH(NH2)-CH2-CH3におけるCH2の水素)、3.792、3.806、3.820(1H、t、Ar-CH(NH2)-CH2-CH3におけるCHの水素)7.140、7.143、7.146、7.154、7.157、7.160(1H、Ar)7.244~7.301(2H、Ar)、7.313~7.320(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、11.0、32.6、36.1(×2)、58.0、58.2、123.7、124.1、124.5、128.0、146.0、146.8。
TOFMS分析:m/eの理論値(C14H25N2+H)+として221.20123、実測値221.199。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.702、0.717、0.732(6H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、0.837、0.851、0.866(3H、t、Ar-CH(NH2)-CH2-CH3におけるCH3の水素)、1.623~1.751(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.808~1.882(2H、m、Ar-CH(NH2)-CH2-CH3におけるCH2の水素)、3.792、3.806、3.820(1H、t、Ar-CH(NH2)-CH2-CH3におけるCHの水素)7.140、7.143、7.146、7.154、7.157、7.160(1H、Ar)7.244~7.301(2H、Ar)、7.313~7.320(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、11.0、32.6、36.1(×2)、58.0、58.2、123.7、124.1、124.5、128.0、146.0、146.8。
TOFMS分析:m/eの理論値(C14H25N2+H)+として221.20123、実測値221.199。
なお、実施例5~8で得られたエチレン4分子付加体の構造は、式(3)で表される化合物(α,α,α’,α’-テトラエチルメタキシリレンジアミン)であった。
α,α,α’,α’-テトラエチルメタキシリレンジアミンの各種スペクトルデータは以下のとおりであった。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.689、0.704、0.719(12H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、1.639~1.711(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.817~1.890(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、7.214~7.235(2H、Ar)、7.267~7.298(1H、Ar)、7.396~7.403(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、36.2(×2)、58.2、123.4、123.5、127.6、146.1。
TOFMS分析:m/eの理論値(C16H28N2+H)+として249.2285、実測値249.231。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.689、0.704、0.719(12H、t、Ar-C(NH2)-CH2-CH3におけるCH3の水素)、1.639~1.711(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、1.817~1.890(4H、m、Ar-C(NH2)-CH2-CH3におけるCH2の水素)、7.214~7.235(2H、Ar)、7.267~7.298(1H、Ar)、7.396~7.403(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.1(×2)、36.2(×2)、58.2、123.4、123.5、127.6、146.1。
TOFMS分析:m/eの理論値(C16H28N2+H)+として249.2285、実測値249.231。
上記結果から明らかなとおり、エチレン充填時の反応液の温度が0~10℃、エチレンの充填圧力が1.5~2.3MPaであるとき、エチレン3分子付加体やエチレン4分子付加体などの、エチレンがより高い比率で付加された化合物が得られた(実施例5、6)。特に、塩基組成物を2回以上に分けて添加した場合(実施例6)、エチレン4分子付加体がさらに高い比率で得られた。
本発明によれば、化合物の中間原料等として有用なアミノ基含有アルキル置換芳香族化合物を提供することができ、樹脂等の工業製品、医薬品、香料等の分野において産業上の利用可能性を有する。
Claims (17)
- 塩基存在下、式(5-1)で表される化合物に対して、エチレンおよび/またはプロピレンを付加反応させる工程を含む、式(1-1)で表される化合物の製造方法。
ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。また、nが1であり、-C(RC)(RD)(NH2)基がパラ位およびメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合、並びに、nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合は除く。) - 前記塩基が、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および、水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物(A)と、金属ナトリウム(B)と、を含有する塩基組成物である、請求項1または2に記載の化合物の製造方法。
- 前記塩基を、2回以上に分割して反応系中に導入することを含む、請求項1~3のいずれか1項に記載の化合物の製造方法。
- 前記式(5-1)および/または式(5-2)中のnが1である、請求項1~4のいずれか1項に記載の化合物の製造方法。
- 前記式(5-1)で表される化合物および/または式(5-2)で表される化合物が、ベンジルアミン、α-メチルベンゼンメタンアミン、α-エチルベンゼンメタンアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,2,3-ベンゼントリメタンアミン、1,2,4-ベンゼントリメタンアミンおよび1,2,4,5-ベンゼンテトラメタンアミンからなる群より選択される1種以上の化合物を含む、請求項1~4のいずれか1項に記載の化合物の製造方法。
- 前記式(5-1)で表される化合物および/または式(5-2)で表される化合物が、m-キシリレンジアミンを含む、請求項1~4のいずれか1項に記載の化合物の製造方法。
- 式(1-1)で表される化合物が、式(2-1)で表され、式(1-2)で表される化合物が、式(2-2)で表される、請求項1~7のいずれか1項に記載の化合物の製造方法。
ただし、RA~RDのうち2つがn-プロピル基であるとき、RAまたはRB、および、RCまたはRDが、それぞれn-プロピル基である場合を除く。)
- 式(1-1)中、RA~RDのうち少なくとも3つは、エチル基であり、それら以外のRA~RDは、水素原子である、および/または、式(1-2)中、RA2~RD2のうち少なくとも3つは、エチル基であり、それら以外のRA2~RD2は、水素原子である、請求項1~7のいずれか1項に記載の化合物の製造方法。
- 式(1-1)で表される、化合物。
ただし、RA~RDのうち少なくとも2つは、独立して、エチル基、n-プロピル基、またはイソプロピル基である。また、nが1であり、-C(RC)(RD)(NH2)基がパラ位およびメタ位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれn-プロピル基であり、かつ、RA~RDの残りの2つが水素である場合、並びに、nが1であり、-C(RC)(RD)(NH2)基がオルト位にあり、このときRAまたはRB、および、RCまたはRDが、それぞれエチル基であり、かつ、RA~RDの残りの2つが水素である場合は除く。) - 式(1-1)中のnが1である、請求項11に記載の化合物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19811565.1A EP3805197B1 (en) | 2018-05-31 | 2019-05-28 | Method for producing compound, compound, epoxy curing agent, and method for producing amine composition |
CN201980035771.5A CN112166100B (zh) | 2018-05-31 | 2019-05-28 | 化合物的制造方法、化合物、环氧固化剂和胺组合物的制造方法 |
US17/057,463 US11186537B2 (en) | 2018-05-31 | 2019-05-28 | Method for producing compound, compound, epoxy curing agent, and method for producing amine composition |
KR1020207034953A KR20210018268A (ko) | 2018-05-31 | 2019-05-28 | 화합물의 제조 방법, 화합물, 에폭시 경화제 및 아민 조성물의 제조 방법 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-104381 | 2018-05-31 | ||
JP2018104381 | 2018-05-31 | ||
JP2019-032384 | 2019-02-26 | ||
JP2019032381A JP7290039B2 (ja) | 2018-05-31 | 2019-02-26 | 化合物の製造方法、化合物、およびエポキシ硬化剤 |
JP2019032384A JP7290040B2 (ja) | 2019-02-26 | 2019-02-26 | アミン化合物の製造方法およびアミン組成物の製造方法 |
JP2019-032381 | 2019-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230692A1 true WO2019230692A1 (ja) | 2019-12-05 |
Family
ID=68697048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021020 WO2019230692A1 (ja) | 2018-05-31 | 2019-05-28 | 化合物の製造方法、化合物、エポキシ硬化剤およびアミン組成物の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019230692A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4119591A1 (de) | 2021-07-12 | 2023-01-18 | Sika Technology AG | Härter für epoxidharze |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089455A (ja) * | 2003-08-13 | 2005-04-07 | Mitsubishi Gas Chem Co Inc | アミノ組成物の製造方法 |
JP2005179204A (ja) * | 2003-12-17 | 2005-07-07 | Mitsubishi Gas Chem Co Inc | アミノ組成物の製造方法 |
JP2011088863A (ja) * | 2009-10-23 | 2011-05-06 | Mitsubishi Gas Chemical Co Inc | アミノ組成物の製造方法 |
JP2011213983A (ja) | 2010-03-17 | 2011-10-27 | Dic Corp | アミン系硬化剤、エポキシ樹脂組成物及びその硬化物 |
WO2012105303A1 (ja) * | 2011-02-01 | 2012-08-09 | 三菱瓦斯化学株式会社 | アミノ化合物の製造方法 |
JP5486537B2 (ja) | 2011-03-30 | 2014-05-07 | 富士フイルム株式会社 | ポリアミン化合物、該ポリアミン化合物の製造方法およびエポキシ硬化剤 |
JP2016527384A (ja) | 2013-08-12 | 2016-09-08 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | エポキシ樹脂用の硬化剤としての2,5−ビスアミノメチルフランの使用 |
JP6177331B2 (ja) | 2012-09-07 | 2017-08-09 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | ベンジルアルコールを有さないエポキシ樹脂に基づく硬化性組成物 |
WO2017175740A1 (ja) * | 2016-04-06 | 2017-10-12 | 三菱瓦斯化学株式会社 | アミン化合物、アミン組成物、及びエポキシ樹脂硬化剤 |
WO2017175741A1 (ja) | 2016-04-06 | 2017-10-12 | 三菱瓦斯化学株式会社 | ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤 |
JP2018083905A (ja) | 2016-11-24 | 2018-05-31 | 三菱瓦斯化学株式会社 | エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物 |
JP2018135433A (ja) | 2017-02-21 | 2018-08-30 | 三菱瓦斯化学株式会社 | エポキシ樹脂硬化剤、エポキシ樹脂組成物、繊維強化複合材 |
JP2019064978A (ja) * | 2017-10-03 | 2019-04-25 | 三菱瓦斯化学株式会社 | アミン組成物の製造方法 |
-
2019
- 2019-05-28 WO PCT/JP2019/021020 patent/WO2019230692A1/ja unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089455A (ja) * | 2003-08-13 | 2005-04-07 | Mitsubishi Gas Chem Co Inc | アミノ組成物の製造方法 |
JP2005179204A (ja) * | 2003-12-17 | 2005-07-07 | Mitsubishi Gas Chem Co Inc | アミノ組成物の製造方法 |
JP2011088863A (ja) * | 2009-10-23 | 2011-05-06 | Mitsubishi Gas Chemical Co Inc | アミノ組成物の製造方法 |
JP2011213983A (ja) | 2010-03-17 | 2011-10-27 | Dic Corp | アミン系硬化剤、エポキシ樹脂組成物及びその硬化物 |
WO2012105303A1 (ja) * | 2011-02-01 | 2012-08-09 | 三菱瓦斯化学株式会社 | アミノ化合物の製造方法 |
JP5486537B2 (ja) | 2011-03-30 | 2014-05-07 | 富士フイルム株式会社 | ポリアミン化合物、該ポリアミン化合物の製造方法およびエポキシ硬化剤 |
JP6177331B2 (ja) | 2012-09-07 | 2017-08-09 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | ベンジルアルコールを有さないエポキシ樹脂に基づく硬化性組成物 |
JP2016527384A (ja) | 2013-08-12 | 2016-09-08 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | エポキシ樹脂用の硬化剤としての2,5−ビスアミノメチルフランの使用 |
WO2017175740A1 (ja) * | 2016-04-06 | 2017-10-12 | 三菱瓦斯化学株式会社 | アミン化合物、アミン組成物、及びエポキシ樹脂硬化剤 |
WO2017175741A1 (ja) | 2016-04-06 | 2017-10-12 | 三菱瓦斯化学株式会社 | ポリアミン化合物、ポリアミン組成物、及びエポキシ樹脂硬化剤 |
JP2018083905A (ja) | 2016-11-24 | 2018-05-31 | 三菱瓦斯化学株式会社 | エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物 |
JP2018135433A (ja) | 2017-02-21 | 2018-08-30 | 三菱瓦斯化学株式会社 | エポキシ樹脂硬化剤、エポキシ樹脂組成物、繊維強化複合材 |
JP2019064978A (ja) * | 2017-10-03 | 2019-04-25 | 三菱瓦斯化学株式会社 | アミン組成物の製造方法 |
Non-Patent Citations (4)
Title |
---|
DALMOLEN, JAN ET AL.: "The Dutch Resolution Variant of the Classical Resolution of Racemates by Formation of Diastereomeric Salts: Family Behaviour in Nucleation Inhibition", CHEMISTRY A EUROPEAN JOURNAL, vol. 11, no. 19, 8 September 2005 (2005-09-08) - 19 September 2005 (2005-09-19), pages 5619 - 5624, XP055662569 * |
DATABASE REGISTRY 27 December 2017 (2017-12-27), retrieved from STN Database accession no. RN2165500-08 * |
DATABASE REGISTRY 7 December 2015 (2015-12-07), retrieved from STN Database accession no. RN1824379-38-5 * |
See also references of EP3805197A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4119591A1 (de) | 2021-07-12 | 2023-01-18 | Sika Technology AG | Härter für epoxidharze |
WO2023285189A1 (de) | 2021-07-12 | 2023-01-19 | Sika Technology Ag | Härter für epoxidharze |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102048969B1 (ko) | 음이온 경화성 화합물용 경화제, 경화성 조성물, 경화물 및 신규 이미다졸계 화합물과 그 사용 | |
US9371414B2 (en) | Epoxy resin adducts and thermosets thereof | |
KR20120000103A (ko) | 에폭시수지, 에폭시수지 조성물 및 경화물 | |
WO2019230692A1 (ja) | 化合物の製造方法、化合物、エポキシ硬化剤およびアミン組成物の製造方法 | |
JP7290039B2 (ja) | 化合物の製造方法、化合物、およびエポキシ硬化剤 | |
CN112166100B (zh) | 化合物的制造方法、化合物、环氧固化剂和胺组合物的制造方法 | |
JP6939365B2 (ja) | アミン組成物の製造方法 | |
EP1538147B1 (en) | Method of producing glycidyl 2-hydroxyisobutyrate | |
US10683250B2 (en) | Manufacturing process for dihydroxydiphenylmethane with high selectivity for 2,4′-dihydroxydiphenylmethane | |
JP7290040B2 (ja) | アミン化合物の製造方法およびアミン組成物の製造方法 | |
JP6892015B2 (ja) | アミン組成物、アミン化合物、製造方法およびその応用 | |
US11976161B2 (en) | Epoxy resin curing agent, epoxy resin composition, and use of amine composition | |
US11945906B2 (en) | Epoxy resin curing agent, epoxy resin composition, and use of amine composition | |
US8076495B2 (en) | Process for the preparation of aromatic N-gylcidyl amines | |
JP2020132609A (ja) | アミン組成物、アミン化合物、製造方法およびその応用 | |
US11015015B2 (en) | Co-preparation of polyetheramines and alklyene amines | |
JPS59175482A (ja) | ポリエポキシ化合物の製造方法 | |
JP2021095534A (ja) | 硬化樹脂用組成物及びその硬化物 | |
CN117480195A (zh) | 环氧树脂和环氧树脂的制造方法 | |
JP2004010878A (ja) | 液状エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 | |
JP2003252953A (ja) | エポキシ樹脂組成物及びその硬化物。 | |
JP2003073318A (ja) | 多価ヒドロキシ化合物、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 | |
JP2019026579A (ja) | エポキシ化合物、樹脂組成物、硬化物、及びエポキシ化合物の製造方法 | |
JP2014205732A (ja) | 樹脂組成物及び硬化物 | |
JPS58162584A (ja) | ポリグリシジルアミノ化合物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19811565 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019811565 Country of ref document: EP Effective date: 20210111 |