WO2017171052A1 - キャリアおよび当該キャリアを用いた基板の製造方法 - Google Patents

キャリアおよび当該キャリアを用いた基板の製造方法 Download PDF

Info

Publication number
WO2017171052A1
WO2017171052A1 PCT/JP2017/013739 JP2017013739W WO2017171052A1 WO 2017171052 A1 WO2017171052 A1 WO 2017171052A1 JP 2017013739 W JP2017013739 W JP 2017013739W WO 2017171052 A1 WO2017171052 A1 WO 2017171052A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
substrate
protrusion
polishing
glass
Prior art date
Application number
PCT/JP2017/013739
Other languages
English (en)
French (fr)
Inventor
ジャクナリン プロムチャイ
Original Assignee
Hoya株式会社
ホーヤ ガラスディスク タイランド リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, ホーヤ ガラスディスク タイランド リミテッド filed Critical Hoya株式会社
Priority to SG11201802381PA priority Critical patent/SG11201802381PA/en
Priority to JP2017541416A priority patent/JP6236191B1/ja
Priority to CN202011023491.3A priority patent/CN112091811B/zh
Priority to CN201780003634.4A priority patent/CN108349063B/zh
Publication of WO2017171052A1 publication Critical patent/WO2017171052A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/16Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
    • B24B7/17Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for simultaneously grinding opposite and parallel end faces, e.g. double disc grinders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a carrier used for polishing a main surface of a plate-like substrate such as a magnetic recording medium substrate, glass for liquid crystal display, or silicon wafer, and a method for producing a substrate using the carrier.
  • a magnetic recording medium such as an HDD (Hard Disk Drive) which is one of the magnetic recording media
  • a glass substrate or an aluminum alloy substrate is used as a substrate.
  • the main surface of the substrate is polished simultaneously, for example, using a double-side polishing apparatus.
  • a double-side polishing apparatus for example, a substrate is held by a carrier having a holding hole, and the carrier is sandwiched between an upper surface plate and a lower surface plate to which a polishing pad is attached.
  • the entire surface of the substrate is uniformly polished by relatively moving the substrate and the polishing pad held by the carrier using a planetary gear mechanism or the like. is doing.
  • Such a polishing method is excellent in terms of production efficiency because a plurality of substrates can be simultaneously polished.
  • the upper surface plate is raised and the polished substrate is taken out from the carrier.
  • the carrier sticks to the upper surface plate and lifts, and then falls from the upper surface plate and rides on the substrate, thereby damaging the substrate surface of the substrate.
  • Patent Document 1 and Patent Document 2 describe that the surface roughness of the front and back surfaces of the carrier and the contact angle of the front and back surfaces are made different to prevent the carrier from sticking to the upper surface plate.
  • the carrier described in the above document cannot sufficiently suppress the carrier sticking to the upper surface plate. Further, the carrier described in the above document has a problem that the manufacturing cost is high.
  • the present invention has an object to provide a carrier capable of obtaining a high-quality substrate at a higher yield than the conventional one and a substrate manufacturing method using the carrier.
  • the inventors diligently investigated the cause of the above-mentioned problems and inferred as follows. That is, the main surface of the carrier and the surface of the polishing pad are both of the same kind of material as “resin”, and originally have high affinity. Further, since a relatively soft resin is used as the resin material on the surface of the polishing pad, it is easy to follow the shape of the carrier surface and easily adhere to it. Therefore, when the carrier main surface roughness and undulation are slightly different between the front and back surfaces, there is no significant difference in the adsorption force that the carrier main surface adsorbs to the surface of the polishing pad. It was considered that the adsorption of carriers on the surface could not be sufficiently suppressed.
  • the roughness is formed by, for example, pressing the upper surface of the carrier.
  • the carrier surface is maintained in a state of being covered with a resin. Therefore, the present inventors think that it is possible to change the adsorption force on the front and back of the carrier more greatly than before by devising the material and shape of the carrier surface, and to complete the present invention by further research. It came.
  • a typical configuration of the carrier according to the present invention is a polishing or grinding carrier having a holding hole for holding a substrate, and at least a part of the surface of at least one surface of the carrier has glass. There are a plurality of protrusions whose main component is.
  • the main component of the protrusion is glass, whereas the polishing pad and the grinding pad attached to the surface of the surface plate are mainly composed of a resin component, so the materials of the two are different. For this reason, the effect of preventing sticking (adsorption) of the carrier to the upper surface plate is high.
  • the protrusion is made of a glass material, the wear resistance (durability) of the protrusion is increased, so that the same carrier can be prevented from sticking to the upper surface plate for a greater number of polishing processes. That is, the polishing process can be performed many times using the same carrier, and the carrier lasts longer.
  • the above configuration is a polishing or grinding carrier having a holding hole for holding the substrate, and a plurality of protrusions mainly composed of glass exist on at least one surface of the carrier. A protrusion formation region exists.
  • the height of the above protrusion is preferably 2 ⁇ m or more. If the height of the protrusion is less than 2 ⁇ m, the effect of suppressing sticking to the upper surface plate of the carrier may not be exhibited. Moreover, it is more preferable that the height of the protrusion is 3 ⁇ m or more because the suppression effect is further enhanced.
  • the upper limit of the height of the protrusion is not particularly limited from the viewpoint of the suppression effect. However, when the height of the protrusion exceeds 50 ⁇ m, the front and back surfaces of the processed substrate surface shape are processed when both surfaces of the substrate are processed. The difference may be slightly larger.
  • the height of the protrusion is preferably 50 ⁇ m or less. From the above, the height of the protrusion is more preferably 2 to 50 ⁇ m.
  • the width of the protrusion is preferably 50 ⁇ m or more. By setting the width of the protrusion within this range, the wear resistance of the protrusion can be increased, and the effect of suppressing sticking of the carrier to the upper surface plate can be maintained for a long period of time.
  • the width of the protrusion is the longest length in the direction parallel to the main surface of the carrier.
  • there is no upper limit on the width of the above-mentioned protrusion from the viewpoint of sticking suppression effect but if it is larger than 600 ⁇ m, especially when forming the protrusion on only one side, the friction on the front and back of the carrier changes and abnormal noise occurs during processing. There is a case.
  • the width of the protrusion is more preferably 600 ⁇ m or less. From the above, it is more preferable that the width of the protrusion is 50 to 600 ⁇ m.
  • the above-mentioned protrusion has an arc shape that is convex upward as a whole.
  • the upwardly convex arc shape includes, in other words, a shape in which a cross-sectional area by a surface parallel to the carrier main surface becomes smaller as it becomes an upper portion, or a mountain shape as a whole.
  • the protrusion has a rounded shape with no corners around 90 degrees at the top. For this reason, it is difficult to damage the polishing pad, and as a result, both surfaces of the glass substrate can be polished so as to have the same quality even in carriers having different front and back specifications.
  • the above carrier may be made of a material in which glass fiber is knitted and impregnated with resin.
  • the plurality of protrusions present on the carrier may include fibrous glass.
  • the plurality of protrusions present on the carrier may be formed substantially regularly in the glass fiber mesh.
  • the plurality of protrusions present on the carrier may be formed by glass fibers raised in the glass fiber mesh, or may be formed by standing up part of the glass fibers.
  • One glass fiber may be a bundle of thin glass fibers.
  • the glass fibers are usually knitted in a bundle state and pressed and thin in a resin-impregnated state. It is molded into a sheet. That is, the bundle of glass fibers is fixed by the resin in a state of being crushed in the thickness direction of the sheet. For this reason, when the resin around the glass fiber is removed, the stress may be released and the glass fiber may be raised to form a protrusion. In addition, if a part of the glass fiber is cut at this time, a protrusion may be formed in a state where a part of the glass fiber stands. In this way, a projection mainly composed of glass can be formed.
  • the predetermined width is preferably 1 mm or more, and more preferably 2 mm or more, from the viewpoint of work efficiency.
  • the above protrusions may be formed in a plurality of regions separated from each other.
  • the region where the protrusion exists on the carrier surface may exist as a plurality of regions separated from each other. In this way, when a large number of holding holes are provided to increase manufacturing efficiency and the space between the two holding holes becomes extremely narrow, it is possible to provide a region where protrusions exist while avoiding the space between the two holding holes. Therefore, the work efficiency of forming the protrusion can be improved.
  • a plurality of regions that are concave portions having a predetermined depth may be formed on the carrier surface, and protrusions may be formed in the concave portions.
  • the depth of the recess may be 0.3 to 30 ⁇ m, for example.
  • the total area of all the regions forming the recesses on one surface of the carrier is preferably 5 to 80% of the entire area.
  • a typical configuration of a substrate manufacturing method using the carrier according to the present invention includes a polishing pad or a grinding pad, which holds the substrate in the holding hole of the above-described polishing carrier. It comprises a polishing process in which the substrate is sandwiched between upper and lower surface plates and both surfaces of the substrate are polished simultaneously.
  • the above-described polishing carrier is installed in the polishing apparatus with the surface having the protrusions facing upward.
  • the surface of the carrier having the protrusions faces, for example, a polishing pad or a grinding pad on the upper surface plate side.
  • the carrier is slightly thinner than the substrate, the plate thickness difference with the substrate is small, and contact and separation are repeated during processing.
  • the main component of the protrusion is glass, and the polishing pad or the grinding pad is mainly composed of a resin component, both materials are greatly different. For this reason, the effect of preventing sticking (adsorption) of the carrier to the upper surface plate is high. Therefore, when the upper surface plate rises after the polishing process, the carrier sticks to the upper surface plate and lifts, and then falls from the upper surface plate and rides on the substrate, so that the substrate surface of the substrate is not damaged.
  • the grinding pad is, for example, a fixed abrasive tool including diamond abrasive grains.
  • the fixed abrasive tool is formed, for example, so as to fix diamond abrasive grains with resin or metal. Moreover, it is good also as a substitute for one diamond abrasive grain for the aggregated abrasive grain which couple
  • the substrate is processed by exposing the diamond abrasive grains and the concentrated abrasive grains on the surface of the fixed abrasive tool.
  • the diamond abrasive grains contained in the fixed abrasive tool preferably have an average particle diameter (hereinafter abbreviated as average particle diameter) of 0.1 to 10 ⁇ m.
  • Another typical configuration of the carrier according to the present invention is a polishing or grinding carrier having a holding hole for holding a substrate, and at least one surface of the carrier has a portion other than the periphery of the holding hole. A plurality of recesses are provided in this area.
  • the polishing liquid supplied from above to the carrier when polishing the substrate surface can be stored in the recesses.
  • the adhesion area of the resin on the surface of each other is reduced, so that the adsorption force to the polishing pad on the front and back surfaces of the carrier is reduced, and the effect of preventing sticking (adsorption) Is expensive.
  • At least one of the plurality of recesses is formed so that the contour forming the recess does not contact the gear portion of the carrier.
  • the depth of the recess is preferably 0.3 to 30 ⁇ m.
  • the polishing liquid can be sufficiently stored in the recess, and sticking of the carrier can be prevented.
  • the depth of the concave portion exceeds 30 ⁇ m, the carrier may be warped during the polishing process, and the substrate to be polished may be detached from the carrier, which decreases productivity. For this reason, it is more preferable that the depth of the recess is 0.3 ⁇ m or more and 30 ⁇ m or less.
  • the contour that forms the recess is preferably a free curve.
  • a curve can be used as the free curve. By making it a free curve, the surface tension can be increased. Thereby, since the effect which accumulate
  • the area occupied by all of the plurality of recesses is preferably 5% or more of the entire area of at least one surface of the carrier.
  • the ratio of the total area of the recesses is less than 5%, the sticking prevention effect may not be sufficiently obtained due to adhesion of an abrasive or the like to the carrier surface.
  • the upper limit of the ratio of the total area of the recesses is preferably 80% or less.
  • the individual areas of the plurality of recesses are preferably 1 cm 2 or more. When the area is less than 1 cm 2 , the sticking prevention effect may not be sufficiently obtained.
  • the area of the recess is more preferably 2 cm 2 or more.
  • the upper limit of the area is not particularly defined from the viewpoint of the sticking prevention effect. However, if the area is too large, the carrier may be warped and the substrate to be polished may be detached from the carrier. Therefore, the area is more preferably 400 cm 2 or less.
  • it is preferably 1 cm 2 or more for 1 ⁇ 2 or more of the whole.
  • the number of recesses of 1 cm 2 or more is more preferably 2/3 or more of the whole, and even more preferably all. When the number of recesses of 1 cm 2 or more is less than 1 ⁇ 2 of the total number of regions, the number of small recesses increases, making it difficult to form recesses by masking or the like, and carrier productivity may deteriorate. is there.
  • the plurality of recesses be formed around the holding hole by a predetermined width. If the concave portion is formed up to the outline of the holding hole, the inner wall surface of the holding hole may be scratched or the shape of the holding hole may be changed. In such a case, the free movement of the substrate during the polishing process may be hindered to hinder uniform polishing of the main surface of the substrate, or the end surface of the substrate may be scratched.
  • the predetermined width is preferably 1 mm or more, and more preferably 2 mm or more, from the viewpoint of work efficiency.
  • the plurality of recesses so as to include a region surrounded by at least three or more holding holes. If a recess is provided between the two holding holes, the strength of the entire carrier may be reduced, and the number of times the carrier can be used may be reduced.
  • the above carrier may be made of a material in which glass fiber is knitted and impregnated with resin.
  • a plurality of recesses can be provided on the surface of the carrier by applying a chemical method or a mechanical method to the carrier made of such a material.
  • another typical configuration of the substrate manufacturing method using the carrier according to the present invention is to hold the substrate in the holding hole of the above-described polishing carrier, and to polish the polishing pad or the grinding pad. And a polishing process for simultaneously polishing both surfaces of the substrate by sandwiching the substrate between upper and lower surface plates.
  • the above-described polishing carrier is installed in the polishing apparatus with the surface having the concave portion facing upward.
  • the surface of the carrier having the concave portion is in contact with the polishing pad or the grinding pad of the upper surface plate. Therefore, even when the polishing pad and the carrier are about to come into close contact with each other, the contact area of the resin on the surface of each other is reduced. For this reason, the adsorption
  • the present invention it is possible to provide a carrier capable of obtaining a high-quality substrate with a higher yield than before and a substrate manufacturing method using the carrier.
  • FIG. 7 It is a figure which shows the principal part cross section of the double-side polish apparatus used when grind
  • FIG. 1 is a diagram showing a cross-section of the main part of a double-side polishing apparatus used when polishing the substrate surface in the present embodiment.
  • the present invention is not limited to this, and the double-side polishing apparatus having the same function and the like by changing the polishing pad set on the surface plate to, for example, a grinding pad. It can also be.
  • an annular or square plate-shaped substrate can be used as the substrate (workpiece).
  • these substrates include glass and aluminum alloys, magnetic disk substrates such as aluminum alloy substrates with NiP alloy plating films formed on the surfaces, rectangular glass substrates for liquid crystal panels, screens, etc.
  • Protective cover glasses, mask blanks, silicon wafers and the like can be mentioned, but the material, shape, size, etc. of the substrate are not limited to these.
  • both sides of the substrate need to have low roughness and defects, and the present invention is particularly suitable for processing a magnetic disk substrate from the viewpoint that a large number of substrates can be processed at a high quality at a time. can do.
  • a glass substrate for a magnetic disk is used as a workpiece will be described.
  • the double-side polishing apparatus 100 is an apparatus for polishing the upper and lower surfaces of the glass substrate 102, and includes a carrier mounting portion 106 for mounting the carrier 104, an upper surface plate 108, and a lower surface plate 110.
  • the carrier mounting unit 106 includes an internal gear 112 and a sun gear 114 that are driven to rotate at a predetermined rotation ratio, and mounts the carrier 104.
  • the carrier 104 has a gear portion 115 formed on the outer periphery, and is mounted on the carrier mounting portion 106 so that the gear portion 115 meshes with the internal gear 112 and the sun gear 114.
  • the carrier 104 revolves while rotating around the sun gear 114 by performing planetary gear motion while being mounted on the carrier mounting portion 106.
  • the upper surface plate 108 and the lower surface plate 110 are driven to rotate reverse to each other with the carrier mounting portion 106 interposed therebetween. Further, polishing pads 116 and 118 are attached to the surfaces of the upper surface plate 108 and the lower surface plate 110 facing the glass substrate 102, respectively.
  • the upper surface plate 108 is movable in the vertical direction, and presses the polishing pads 116 and 118 on the upper and lower surfaces of the glass substrate 102.
  • a synthetic resin foam such as polyurethane or polyester is used as the polishing pads 116 and 118.
  • a slurry (polishing liquid) containing abrasive grains is supplied from above the carrier 104 through a supply pipe 120 provided on the upper surface plate 108.
  • the carrier 104 while supplying the polishing liquid, the carrier 104 performs planetary gear motion, and the upper surface plate 108 and the lower surface plate 110 rotate in the opposite directions. Therefore, in the double-side polishing apparatus 100, the glass substrate 102 and the polishing pads 116 and 118 move relatively, and the main surfaces of the upper and lower surfaces of the glass substrate 102 are polished.
  • the carrier 104 has one or more holding holes 122.
  • the carrier 104 holds one or more glass substrates 102 sandwiched between the polishing pad 116 of the upper surface plate 108 and the polishing pad 118 of the lower surface plate 110 by the holding holes 122. Further, in the double-side polishing apparatus 100, after polishing the main surfaces of the upper and lower surfaces of the glass substrate 102, the upper surface plate 108 is raised and the polished glass substrate 102 is taken out from the carrier 104.
  • the carrier 104 is used for the polishing process here, but is not limited to this, and is also widely used for main surface grinding processes other than polishing, such as lapping using loose abrasive grains and grinding processes using fixed abrasive grinding pads. Is possible. Further, as the carrier 104, the carrier main body portion having the holding hole 122 and the gear portion 115 are separate members, and the carrier 104 may be of a type in which both are used in combination.
  • FIG. 2 is a schematic view showing a part of the upper surface of the carrier 104 in FIG. 1 in an enlarged manner.
  • FIG. 2A is an enlarged top view showing a part of the upper surface 124 of the carrier 104.
  • FIG. 2B is a cross-sectional view taken along the line AA in FIG.
  • a plurality of protrusions 136 exist on the upper surface 124 of the carrier 104 as shown in FIG.
  • the main component of the plurality of protrusions 136 is glass.
  • the surface other than the protrusion is, for example, a resin.
  • the resin for example, epoxy, polyvinyl chloride, polycarbonate, phenol, polyacetal copolymer, polyethylene terephthalate, or the like can be used.
  • epoxy resins are particularly suitable when impregnated into glass fibers because they can increase bending strength and elastic modulus and have high water resistance and chemical resistance.
  • the carrier 104 when the carrier 104 is made of a material in which a glass fiber is knitted and impregnated with a resin, the details will be described later. However, the carrier 104 may include a fibrous glass, and is generally regularly arranged such as a lattice shape. Also good.
  • the protrusion 136 is formed only on the upper surface 124 of the carrier 104 and is not provided on the lower surface 135. However, as long as the effect of suppressing adsorption to the upper surface plate 108 is not hindered, the protrusion 136 is It may be provided on both sides. In the case where the protrusions 136 are provided on both the upper and lower surfaces, the height and number of the protrusions 136 on each surface, the region where the protrusion 136 is formed (projection formation region), and the like may be adjusted as appropriate.
  • the protrusion 136 shown in FIG. 2B preferably has a height dimension La of 2 to 50 ⁇ m and a width dimension Lb of 50 to 600 ⁇ m.
  • the width dimension Lb is the longest length in the direction of the main surface 134 of the carrier 104.
  • the protrusion 136 has an upwardly convex arc shape, and has a mountain shape in FIG.
  • the shape is not limited to this as long as it is an upwardly convex arc shape, but the shape is such that the area decreases toward the top, in other words, the cross-sectional area by a plane parallel to the main surface 134 of the carrier 104 as it becomes the top.
  • the shape may be smaller.
  • an elliptical shape or a convex hemispherical shape may be used. With such a shape, the projection 136 has no corners around 90 degrees on the top 136A and is rounded.
  • the carrier 104 is made of a material in which a glass fiber is knitted and impregnated with a resin
  • the protrusion 136 is raised by the glass fiber mesh.
  • the glass fiber can be formed in a standing state by cutting a part of the glass fiber. That is, a plurality of glass material projections 136 can be formed on the upper surface 124 of the carrier 104 substantially regularly.
  • the glass material projections 136 have higher wear resistance than the resin material projections and do not wear easily even after repeated polishing.
  • the glass material protrusion 136 may be formed by exposing or exposing a part of the glass fiber contained in the carrier on the outermost surface. Further, the exposed or exposed glass fiber may include a cut one.
  • the protrusion 136 is not necessarily formed on the entire surface of the carrier main surface. Since the protrusion 136 mainly composed of the glass of the present invention has a very high sticking prevention effect, a sufficient effect can be exhibited if it is formed on at least a part of the main surface. In this specification, a region where the protrusion 136 is formed is also referred to as a “projection formation region”. In the case where the above-described protrusion formation region is provided on a part of the carrier main surface, it may be divided into a plurality of regions.
  • the area occupied by the protrusion formation region (the total when there are a plurality of protrusion formation regions) is 10% or more of the area of the entire surface of at least one of the carriers in which the protrusion formation region exists. Preferably there is.
  • the proportion of the area occupied by the protrusion formation region is less than 10%, the sticking prevention effect may be reduced at the end of the long-term continuous processing due to adhesion of an abrasive or the like to the carrier surface.
  • the ratio of the area is more preferably 20% or more.
  • the ratio of the said area is small, the sticking prevention effect can be heightened even with a small area by forming the protrusion around the outer periphery of the carrier.
  • region is 1 cm ⁇ 2 > or more.
  • the area is less than 1 cm 2 , the sticking prevention effect may not be sufficiently obtained.
  • each area of the protrusion formation region is 2 cm 2 or more.
  • the upper limit of the area is not particularly defined from the viewpoint of the sticking prevention effect.
  • the area is more preferably 400 cm 2 or less.
  • less than 1 ⁇ 2 of the whole may be less than 1 cm 2 .
  • the number of projection forming regions less than 1 cm 2 is more preferably less than 1/3 of the total, and even more preferably not one.
  • the number of protrusion formation regions of less than 1 cm 2 is 1 ⁇ 2 or more of the total number of regions, the formation of protrusions by masking or the like becomes difficult, and carrier productivity may deteriorate.
  • the projections are preferably formed at a density of 0.5 or more per 1 mm 2 .
  • the number is 1 or more per 1 mm 2 .
  • the density is not particularly limited from the viewpoint of the sticking suppression effect, but to a polishing pad or a grinding pad installed on the surface of the surface plate (in the present specification, these are collectively referred to as a “processing pad”). From the viewpoint of damage, it is more preferable that the number is 10 or less per 1 mm 2 .
  • the density of the protrusions may be obtained as an average value by observing a plurality of protrusion forming regions using, for example, a scanning electron microscope (hereinafter abbreviated as SEM).
  • the carrier 104 of the present invention can be manufactured by the following method, for example.
  • the resin or glass which is a constituent material of the carrier, is removed by a chemical or mechanical method (see FIG. 3) so that it is close to the carrier surface. What is necessary is just to expose a part of glass fiber in a position.
  • the protrusion 136 can be formed in an arbitrary region on the surface of the carrier 104 by appropriately combining with the masking process.
  • a method such as dissolution or etching can be used.
  • a resin or glass may be contacted by appropriately selecting a substance that can be dissolved or etched.
  • a substance that can dissolve or etch both resin and glass may be used.
  • FIG. 3A is a diagram showing an example of manufacturing the carrier 104 in the present embodiment using a chemical method.
  • an etching agent 138 for dissolving the resin is applied to a region 126 (projection formation region) indicated by oblique lines in the drawing on the upper surface 124 of the carrier 104.
  • the etchant 138 may be appropriately selected from liquid or cream.
  • the region 126 may be the whole or a part of the upper surface 124 of the carrier 104 as long as the protrusion 136 can be formed.
  • the region 126 is located on the upper surface 124 of the carrier 104 other than the periphery 130 of the three holding holes 122 a, 122 b, 122 c and surrounded by these holding holes 122 a, 122 b, 122 c. Illustrated. Note that when the carrier 104 is manufactured, the above-described chemical method and mechanical method can be applied to only a part of the surface of the carrier 104 by appropriately performing masking.
  • the protrusion 136 When forming the protrusion 136 on a part of the surface of the carrier 104, it is preferable to form it in the region 126 surrounded by at least three holding holes 122a, 122b, 122c as described above. If a region for forming the protrusion 136 is provided between the two holding holes, the manufacturing cost and labor of the carrier 104 may increase.
  • the protrusion 136 is preferably formed at a position other than the peripheral edge 130, for example, avoiding the periphery of the holding hole 122 by a predetermined width. If the protrusion 136 is formed up to the contour of the holding hole 122, the inner wall surface of the holding hole 122 may be scratched or the shape of the holding hole 122 may be changed. In such a case, the free movement of the substrate during the polishing process may be hindered to hinder uniform polishing of the main surface of the substrate, or the end surface of the substrate may be scratched.
  • the predetermined width is preferably 1 mm or more, and more preferably 2 mm or more, from the viewpoint of work efficiency.
  • the region 126 where the protrusion 136 is provided may be provided as a plurality of regions separated from each other. In this way, when a large number of holding holes 122 are provided to increase manufacturing efficiency and the space between the two holding holes 122 becomes extremely narrow, an area where the protrusion 136 exists is avoided by avoiding the space between the two holding holes 122. Since it can be provided, the manufacturing efficiency of the carrier 104 can be improved.
  • a plurality of regions serving as recesses having a predetermined depth may be formed on the surface of the carrier 104, and the protrusions 136 may be formed in the recesses.
  • the depth of the recess may be 0.3 to 30 ⁇ m, for example.
  • the total area of all the regions where the recesses are formed on one surface of the carrier 104 is preferably 5 to 80% of the entire area of the carrier 104 surface.
  • a mechanical method of rubbing or scraping the surface of the carrier 104 using a polishing tool such as sandpaper, a file, or a grinder may be used.
  • a polishing tool such as sandpaper, a file, or a grinder
  • the surface of the region 126 is polished by attaching a polishing tool 146 to the tip 144 of the grinder 142 and bringing it into contact as appropriate.
  • the object to be removed can be selected by appropriately selecting the etching agent 138 and the polishing tool.
  • the above chemical method and mechanical method may be combined. For example, it is possible to finish the surface with few burrs by removing the resin roughly by a mechanical method and then removing the resin by a chemical method. If a large amount of burrs remain on the carrier surface, the polishing pad of the double-side polishing apparatus 100 may be scratched, or the burrs may be detached during processing to become foreign matters and contaminate the substrate surface.
  • the recess 128 may be formed by laminating a resin or metal film while masking the region 126 where the recess 128 on the carrier surface is to be formed, and then removing the mask.
  • FIG. 4 is a schematic diagram of the upper surface 124 of the carrier 104 before the protrusion 136 is formed.
  • FIG. 5 is a schematic view of the upper surface 124 of the carrier 104 after the protrusion 136 is formed. 4 and 5 schematically illustrate a part of the enlarged view of the region 126.
  • FIG. 4 illustrates an enlarged view of the surface of a sheet material in which glass fibers 150 are knitted and impregnated with resin.
  • This sheet material is a laminate of woven fabrics (one piece of each impregnated with resin is called a prepreg) in which a bundle of fibers consisting of several tens to several hundreds of glass fibers 150 is formed, and these are knitted alternately. It is a body.
  • the vertical bundle and the horizontal bundle of glass fibers 150 are so-called plain weaves that are alternately exposed on the surface side for each mesh 152. Since the thickness of the prepreg is very thin, for example, from 0.1 to 0.2 mm, the sheet material is usually formed by laminating a plurality of prepregs and pressing them. Although not specifically shown in the figure, the surface is covered with a resin layer.
  • the glass fiber 150 has a mountain shape that is convex toward the surface layer side at the position where the mesh 152 overlaps.
  • a vertical bundle or a horizontal bundle of glass fibers 150 swells on the surface side almost regularly so as to wave every other mesh 152.
  • the glass fiber 150 is usually buried in the resin, it is almost flat in appearance.
  • a bundle of glass fibers (or glass fibers) is raised in a mountain shape. Come. This is because the prepreg was crushed with a strong force when being pressed and solidified with resin in that state. That is, a stress is generated in the glass fiber bundle to return to the original thickness.
  • this structure to release the stress applied to the glass fiber, the protrusions can be easily formed almost regularly.
  • FIG. 5A is a diagram schematically showing a state in which the protrusions 136 are formed substantially regularly.
  • a raised portion 154 in which a bundle of glass fibers (or glass fibers) protrudes and rises in a mountain shape along the mesh 152 that protrudes on the surface side of the vertical bundle and one mesh that protrudes on the surface side of the horizontal bundle.
  • a projection 136 is formed. Since the vertical glass fibers and the horizontal glass fibers are not necessarily woven microscopically, the thickness of the resin that covers the surface due to individual differences in the sheet material and also depending on the position within one sheet. May be different. FIG. 5A shows an example of such a case.
  • the protrusion 136 may be formed in all nine meshes 152 that can be confirmed in FIG. 5A, or the protrusion 136 may be formed in only five of the vertical glass fiber meshes 152. .
  • the protrusion 136 since the protrusion 136 is formed at the substantially central portion of the mesh 152, the protrusion 136 can be formed substantially regularly. In other words, the protrusions 136 can be formed almost regularly following the mesh 152. Note that if the protrusions are formed so as to cross the boundary of the mesh 152, the area of the resin covering the surface is reduced, and the strength of the carrier 104 may be reduced. Therefore, the protrusion 136 is formed so as not to cross the boundary of the mesh 152. It is preferable to form. In other words, it is preferable that a resin exists between the protrusions on the carrier surface.
  • the carrier 104 made of a material in which a glass fiber 150 is knitted and impregnated with a resin
  • the glass fiber 150 (or a bundle of glass fibers) is fixed by the resin in a state of being crushed in the thickness direction in the manufacturing process. Therefore, by removing a part of the resin to such an extent that the stress applied to the glass fiber 150 is released, it is possible to form the protrusion 136 mainly composed of glass.
  • the glass embedded in the resin is not glass such as glass particles. That is, it is not always necessary to remove the resin until the glass buried in the resin is completely exposed.
  • the resin may remain on a part of the surface of the protrusion, but it is sufficient that the glass component is exposed on at least a part of the surface. Whether or not the glass component is exposed on the surface of the protrusion can be confirmed by using, for example, SEM and energy dispersive X-ray analysis (hereinafter abbreviated as EDX).
  • the resin covering the glass fiber 150 is relatively thin on the surface of the carrier 104
  • a substance capable of melting and etching glass may be used.
  • the glass-dissolved substance penetrates into the resin layer and reaches the inner glass fiber 150, and a part of the dissolved glass fiber 150 overcomes the resin film and deposits on the surface. As a result, the resin film is broken, and a ridge including the glass fiber 150 is formed.
  • a part of the glass fiber 150 constituting the protrusion 136 may be cut.
  • the fragments of the glass fiber 150 are likely to protrude to the surface.
  • the cut glass fiber 150 tends to stand up with respect to the surface of the carrier 104.
  • the above-mentioned sticking effect can be enhanced.
  • only a part of the glass fiber is cut under the etching conditions with a general glass etchant, so the rigidity of the glass fiber is low and the opposing polishing pad or grinding pad is not easily damaged. . This is presumably because several hundreds of glass fibers are bundled, but resin exists between the individual glass fibers.
  • fine particles mainly composed of glass having a predetermined particle diameter are dispersed on the surface of the carrier and pressed while heating, whereby glass particles are formed on the surface of the carrier.
  • the protrusions may be formed using a method of embedding a part of the film or a method of spraying glass fine particles after applying an adhesive to the carrier surface.
  • a cleaning process or a burr removal process may be performed as appropriate. Further, a process of adjusting the height of the protrusions or removing burrs may be further performed using a dresser such as a diamond dresser.
  • the shape such as the height and length of the protrusion 136 of the completed carrier 104 can be confirmed using a surface shape measuring device such as a stylus type or an optical type as appropriate. Further, for example, by performing elemental analysis by SEM observation and EDX on the protrusion 136, it is confirmed whether the protrusion 136 contains a glass component, glass fiber, or the presence or absence of a cut glass fiber. be able to. In addition, the resin removal depth and the change in the thickness of the carrier 104 can be confirmed using a micrometer or a length measuring device.
  • the carrier 104 of the present embodiment when the upper surface plate 108 is raised due to the presence of the plurality of protrusions 136 on the upper surface 124 of the carrier 104, air is interposed between the upper surface 124 of the carrier 104 and the upper polishing pad 116. Is easier to enter. Therefore, the carrier 104 can be prevented from sticking to the upper surface plate 108. Further, since the protrusion 136 is made of a glass material, the wear resistance is high, and sticking to the upper surface plate 108 can be prevented more frequently.
  • the air easily enters between the upper surface 124 of the carrier 104 and the upper polishing pad 116, and sticking can be prevented more effectively.
  • the protrusion 136 can be a smooth convex shape as a whole. Further, the apex 136A can have no corners around 90 degrees. And since it becomes a rounded shape as a whole, it is hard to damage the polishing pad 116 in contact with the protrusion 136. As a result, both surfaces of the glass substrate 102 can be equally polished even in carriers having different front and back specifications.
  • the protrusion 136 has a height dimension La shown in FIG. 2B of 2 ⁇ m or more (see Table 1), so that it has high wear resistance and is more effective in sticking. Can be prevented.
  • the height and width of the protrusion 136 are, for example, made of a sheet material in which glass fiber is knitted and impregnated with resin, in addition to changing the etching amount, the thickness of the glass fiber 150, the number of bundles, the weaving method and the mesh size ( It can also be adjusted by appropriately setting the (interval).
  • the height and width of the protrusion 136 are, for example, made of a sheet material knitted with glass fiber and impregnated with resin, in addition to changing the etching amount, the thickness of the glass fiber 150, the number of bundles, the size of the weave and the mesh size. It can also be adjusted by appropriately setting (interval). For example, the height and width of the protrusion can be increased by increasing the etching amount of the resin.
  • the height and width dimension values of the protrusion 136 can be obtained as an average value of the top 50 values having the larger values when 100 protrusions are randomly sampled and measured. By calculating in this way, it is possible to obtain the dimension of the protrusion that surely contributes to prevention of sticking to the upper surface plate.
  • the substrate to be processed was a glass substrate for a magnetic disk having a nominal size of 2.5 (diameter: about 65 mm), and a substrate that had been subjected to the first polishing process using a polishing liquid containing cerium oxide abrasive grains by a known method was prepared.
  • the carrier was shaped and manufactured using a sheet material in which glass fibers were knitted and impregnated with an epoxy resin. Then, using the above method as appropriate, additional processing was performed so that a plurality of protrusions having the specifications shown in Table 1 were formed on one surface of the carrier. For other specifications, the width dimension of the protrusions was 300 ⁇ m, the density of protrusions was 3 (pieces / mm 2 ), and the proportion of the area occupied by the protrusion formation region on the carrier main surface was 50%. Further, as a result of confirmation by SEM, no glass fiber cutting was found. Here, the values of the height and width dimensions of the protrusions are measured by sampling 100 protrusions at random, and are average values of the top 50 values having the larger values.
  • the above-described or known method was used to perform the second polishing on the substrate to be processed.
  • both surfaces of the substrate to be processed were simultaneously used by using the above-described double-side polishing apparatus in which a polishing pad was attached to each of the upper and lower surface plates.
  • the polishing pad was made of a polyurethane resin, and was a suede type having a nap layer formed on the surface layer with a number of elongated fine holes (nap) formed in the thickness direction using a foaming agent.
  • the abrasive was a polishing liquid containing colloidal silica particles having an average particle diameter (D50) of 30 nm as abrasive grains.
  • D50 average particle diameter
  • both main surfaces of 50 substrates were polished at a time by setting five carriers capable of holding 10 substrates per carrier. While changing the substrate to be processed, 20 batches were continuously processed without changing the carrier. That is, in each experimental example, a total of 100 times on the carrier surface plate was checked.
  • the difference between the minute undulations on the front and back of the main surface was determined using the substrate processed in the 20th batch. Specifically, two samples from one carrier are sampled in total, and the average value of fine undulation on the upper surface plate side (for 10 surfaces) and the average value of minute undulation on the lower surface plate side (for 10 surfaces) And the difference between the average values was calculated.
  • Table 1 the case where no protrusions mainly composed of glass are present on the surface of the carrier is taken as a comparative example, and the case where protrusions are present and the heights of the protrusions are different is shown as Examples 1-8.
  • the ratio of the number of sticking occurrences in Table 1 is a relative value when the comparative example is “1.0”.
  • the height of the protrusion is particularly preferably 2 to 50 ⁇ m.
  • the minute undulations in Table 1 were measured using an optical surface shape measuring device using a laser.
  • laser light having a predetermined wavelength is incident on the surface of the measurement object at a predetermined angle, and reflected light from the measurement object is detected to obtain height information of the main surface.
  • the wavelength band of fine undulation is 10 to 500 ⁇ m.
  • the range of a radius of 15 mm to 30 mm of the main surface was measured as a measurement region, and the “difference” between the front and back undulation was calculated.
  • Example 8 the difference in minute undulation was also confirmed for the first batch and the tenth batch, and it was 0.001 or less, which was a good result. From this, it was confirmed that the difference in microscopic undulation occurs when long-term continuous machining is performed.
  • the carrier 104 of this embodiment and the method for manufacturing the glass substrate 102 using the carrier 104 the carrier 104 is prevented from sticking to the upper surface plate 108 by the plurality of protrusions 136 existing on the upper surface 124 of the carrier 104. Furthermore, by preventing the difference in minute undulation between the upper surface and the lower surface of the glass substrate 102 from increasing, a high-quality glass substrate 102 can be obtained.
  • the carrier 104 was produced by changing the width of the protrusion 136 by appropriately changing the etching amount of the epoxy resin in the sheet material that is the original material of the carrier 104. Thereafter, the surface was treated with a grinder, and the height of the protrusion 136 was adjusted to 20 ⁇ m. Using these carriers 104, 100 batches were continuously processed in the same manner as described above. The results are summarized in Table 2. As can be seen from Examples 10 to 14, it was confirmed that the sticking suppression effect lasts long by setting the width of the protrusion 136 to 50 ⁇ m or more. On the other hand, in Example 14 where the width of the protrusion was 900 ⁇ m, abnormal noise was sometimes detected during processing. Therefore, it was confirmed that the thickness is preferably 600 ⁇ m or less from the viewpoint of noise suppression.
  • the resin in the protrusion formation region was further etched to prepare three types of carriers having recesses with depths of 0.3, 10, and 30 ⁇ m. Using these carriers, the substrate was subjected to 20 batch continuous polishing treatment. In the same manner as described above, the difference in minute undulations on the front and back of the main surface of the substrate processed in the 20th batch was evaluated, and the results were 0.0017, 0.0012, and 0.001 or less, respectively. In addition, sticking did not occur. From this result, it was confirmed that the difference in minute undulation between the front and back surfaces can be reduced by forming protrusions in the recesses.
  • FIG. 6 is a top view showing the carrier 104 of FIG.
  • a plurality of regions 126 projection formation regions
  • recesses 128 see FIG. 7B.
  • the plurality of regions 126 are located outside the peripheral edge 130 of the holding hole 122 and are separated from each other. In particular, it may be a region surrounded by at least three holding holes 122 and not continuous to the holding holes 122.
  • the outline which forms the some recessed part 128 consists of a free curve, for example, is formed so that the gear part 115 formed in the outer periphery of the carrier 104 may not be contacted.
  • the area occupied by all of the plurality of recesses 128 is 5% or more of the entire area of the upper surface 124 of the carrier 104, and the upper limit is set to 80% or less.
  • the area of the plurality of recesses 128 is set in a range of 1 cm 2 or more and 400 cm 2 or less.
  • the number of recesses 128 that satisfy the area in this range is preferably 1/3 or more of all the recesses 128. If it is 1/2 or more, it is more preferable, and it is much more preferable if it is all. In addition, when it is less than 1/3, the sticking suppression effect may not be obtained stably.
  • FIG. 7 is a schematic diagram showing the recess 128 provided on the upper surface 124 of the carrier 104 in FIG. 6 and its periphery.
  • FIG. 7A is a schematic diagram representatively showing a region 126 located on the upper surface 124 of the carrier 104.
  • FIG. 7B is a cross-sectional view taken along the line AA in FIG.
  • the region 126 is provided with a recess 128.
  • the entire circumference 132 of the recess 128 is a main surface 134 of the carrier 104. That is, the concave portion 128 has a pond shape or a pocket shape, and can store the polishing liquid.
  • the recess 128 is provided only on the upper surface 124 of the carrier 104 and is not provided on the lower surface 135.
  • the upper and lower surfaces may be provided.
  • the area and number of the recesses 128, the depth dimension Lc (see FIG. 8B), the region where the recesses 128 are formed, and the like may be adjusted as appropriate.
  • FIG. 8 is a schematic diagram showing the B region of FIG.
  • FIG. 8A is an enlarged top view showing the B region.
  • FIG. 8B is a CC cross-sectional view of FIG.
  • the recess 128 is provided in a region 126 located outside the peripheral edge 130 of the holding hole 122.
  • the depth Lc of the recess 128 shown in FIG. 8B is set to 0.3 to 30 ⁇ m.
  • the polishing liquid can be stored in the recess 128. Therefore, even when the polishing pad 116 of the upper surface plate 108 and the carrier 104 are in close contact with each other, the contact area of the resin on the surface of each other is reduced. Therefore, the adsorption force to the polishing pad 116 on the surface of the carrier 104 is reduced, and the effect of preventing sticking (adsorption) is high.
  • the contour forming the recess 128 formed in the region 126 is a free curve and is formed so as not to contact the gear portion 115 of the carrier 105. Therefore, when the surface of the glass substrate 102 is polished, the polishing liquid can be reliably accumulated in the recess 128, so that the effect of preventing sticking is high.
  • the area occupied by all of the plurality of recesses 128 is preferably 5% or more and 80% or less of the area of the entire surface of the carrier 104. If the ratio of the total area of the recesses 128 is less than 5%, the sticking prevention effect may not be stably obtained over a long period of time due to adhesion of an abrasive or the like to the surface of the carrier 104. On the other hand, if the ratio of the total area of the recesses 128 is too large, the carrier 104 may be warped and the glass substrate 102 as the substrate to be polished may be detached from the carrier 104. For this reason, the upper limit of the area ratio is preferably 80% or less. In addition, when the ratio of the said area is small, a sticking prevention effect can be heightened even with a small area by distributing a recessed part centering on the outer periphery vicinity of a carrier.
  • the area of at least 1/3 or more of all the recesses 128 is preferably 1 cm 2 or more and 400 cm 2 or less. If the area of the recess 128 is less than 1 cm 2 , the sticking prevention effect may not be sufficiently obtained. Further, the area of the recess 128 is more preferably 2 cm 2 or more. On the other hand, if the area of the recess 128 is too large, the carrier 104 may be warped and the glass substrate 102 may be detached from the carrier 104. For this reason, as an upper limit of the area of the recessed part 128, it is preferable that it is 400 cm ⁇ 2 > or less.
  • the polishing liquid can be sufficiently stored in the recess 128. For this reason, sticking of the carrier 104 can be prevented, and the glass substrate 102 can be prevented from being detached from the carrier 104 due to warping of the carrier 104 during the polishing process.
  • the substrate to be processed was a glass substrate for a magnetic disk having a nominal size of 2.5 (diameter: about 65 mm), and a substrate that had been subjected to the first polishing process using a polishing liquid containing cerium oxide abrasive grains by a known method was prepared.
  • the carrier was shaped and manufactured using a sheet material in which glass fibers were knitted and impregnated with an epoxy resin. Then, using the above method as appropriate, additional processing was performed so that a plurality of concave portions having the specifications shown in Table 1 were formed on one surface of the carrier.
  • the above-described or known method was used to perform the second polishing on the substrate to be processed.
  • both surfaces of the substrate to be processed were simultaneously used by using the above-described double-side polishing apparatus in which a polishing pad was attached to each of the upper and lower surface plates.
  • the polishing pad was made of a polyurethane resin, and was a suede type having a nap layer formed on the surface layer with a number of elongated fine holes (nap) formed in the thickness direction using a foaming agent.
  • the abrasive was a polishing liquid containing colloidal silica particles having an average particle diameter (D50) of 30 nm as abrasive grains.
  • D50 average particle diameter
  • both main surfaces of 50 substrates were polished at a time by setting five carriers capable of holding 10 substrates per carrier. While changing the substrate to be processed, 20 batches were continuously processed without changing the carrier. That is, in each experimental example, a total of 100 times on the carrier surface plate was checked.
  • Comparative Example 2 is one in which no recess is present on the surface of the carrier, and Examples 15 to 21 are those in which a recess is present and the depth of the recess is different.
  • the ratio of the number of sticking occurrences in Table 3 is a relative value when Comparative Example 2 is set to “1.0”.
  • the recessed part of each Example is formed so that it may not contact the gear part of a carrier.
  • the ratio of the area occupied on the entire surface excluding the holding holes on one surface of the carrier was 30%, and the area of all the recesses was 1 cm 2 or more.
  • the carrier deformation or the like in Table 3 is a result of observing warpage, deformation, or surface state after removing the carrier from the double-side polishing apparatus after 100 batches. In the case where there is a deformation such as a warp of the carrier, it is not preferable to continue using it because the substrate may be detached from the holding hole during the polishing process.
  • the depth of the recess is 0.3 ⁇ m or more (Examples 23 to 29) because the ratio of the number of sticking occurrences can be reduced.
  • the depth of the recess exceeds 30 ⁇ m (Example 29) because carrier warpage was confirmed.
  • the depth of a recessed part is 30 micrometers or less.
  • the depth of the recess is preferably 0.3 to 30 ⁇ m.
  • the carrier 104 of this embodiment and the method for manufacturing the glass substrate 102 using the carrier 104 sticking (adsorption) can be prevented by the plurality of recesses 128 provided in the region 126 of the upper surface 124 of the carrier 104. Furthermore, the carrier 104 can be prevented from warping during the polishing process and the glass substrate 102 can be prevented from being detached from the carrier 104, so that a high-quality glass substrate 102 can be obtained at a higher yield than before without reducing productivity.
  • the present invention can be used as a carrier used when polishing the main surface of a plate-like substrate such as a magnetic recording medium substrate, glass for liquid crystal display, or silicon wafer, and a method for producing a substrate using the carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】高品質の基板を従来より高い歩留りで得ることができるキャリアおよび当該キャリアを用いた基板の製造方法を提供する。 【解決手段】本発明にかかるキャリア104は、基板(例えばガラス基板102)を保持するための保持孔122を有する研磨用又は研削用のキャリアであって、キャリアの少なくとも一方の表面の少なくとも一部の領域には、ガラスを主成分とする突起136が複数存在していることを特徴とする。

Description

キャリアおよび当該キャリアを用いた基板の製造方法
 本発明は、磁気記録媒体用基板や液晶画面用ガラス、シリコンウエハなどの板状基板の主表面を研磨する際に用いられるキャリアおよび当該キャリアを用いた基板の製造方法に関する。
 近年、情報化技術の高度化に伴い、情報記録技術、特に磁気記録技術は著しく進歩している。磁気記録媒体のひとつであるHDD(ハードディスクドライブ)等の磁気記録媒体には、基板として、ガラス製基板やアルミニウム合金製基板が用いられる。
 基板の主表面は、例えば両面研磨装置を用いて表裏同時に研磨される。両面研磨装置では、例えば、保持孔を有するキャリアに基板を保持させ、研磨パッドを貼り付けた上定盤と下定盤とでキャリアを挟み込む。次いで、基板と研磨パッドの間に研磨液を供給しながら、遊星歯車機構等を用いてキャリアに保持された基板と研磨パッドとを相対的に移動させることで、基板の主表面全体をまんべんなく研磨している。このような研磨方法は、複数の基板を同時に研磨することもできるため、生産効率の面で優れた方法である。
 この研磨方法では、基板表面の研磨後、上定盤を上昇させて、研磨した基板をキャリアから取り出している。しかし、上定盤の上昇時に、キャリアが上定盤に張り付いて持ち上がり、その後上定盤から落下して基板の上に乗ってしまい、基板の基板表面を傷つけるという問題があった。
 上記問題に対して、特許文献1および特許文献2では、キャリアの表裏面の表面粗さや、表裏面の接触角を異ならせることで、キャリアの上定盤への張り付きを防止する、としている。
特開2013-132744号公報 特開2013-132745号公報
 しかし、上記文献に記載のキャリアでは、上定盤へのキャリア張り付きを十分に抑制することが不可能であった。さらに、上記文献に記載のキャリアは製造コストが高いという問題もあった。
 本発明では、このような課題に鑑み、高品質の基板を従来より高い歩留りで得ることができるキャリアおよび当該キャリアを用いた基板の製造方法を提供することを目的としている。
 上記課題の原因について発明者らが鋭意検討したところ、以下のように推察された。すなわち、キャリアの主表面と研磨パッドの表面は、共に「樹脂」という同種の材料であり、元々親和性が高い。また、研磨パッド表面の樹脂材料には、比較的軟らかい樹脂が使用されるため、キャリア表面の形状に倣い易く、密着しやすい。そのため、キャリアの主表面の粗さやうねりについて表裏面で多少差をつけたところで、キャリアの主表面が研磨パッドの表面に吸着する吸着力には大きな差が生まれず、その結果、上定盤側へのキャリアの吸着が十分には抑制できなかったものと考えた。
 なお、上記特許文献では、例えばキャリアの上面に対してプレス加工を行うことによって粗さを形成しているが、その場合、キャリア表面は樹脂で被覆された状態に維持される。そこで、本発明者らは、キャリア表面の材料と形状を工夫することにより、キャリアの表裏の吸着力を従来より大きく変化させることが可能と考え、さらに研究を重ねることにより本発明を完成するに至った。
 すなわち本発明にかかるキャリアの代表的な構成は、基板を保持するための保持孔を有する研磨用又は研削用のキャリアであって、キャリアの少なくとも一方の表面の少なくとも一部の領域には、ガラスを主成分とする突起が複数存在していることを特徴とする。
 上記構成によれば、キャリアの表面にガラスを主成分とする突起を複数存在させたことにより、上定盤を上昇させると、キャリアの上面と上定盤側の研磨パッドとの間に空気が入り易くなるため、張り付きを防止することができる。また本件発明では、突起の主成分がガラスであるのに対し、定盤表面に取り付けられた研磨パッドや研削パッドは主に樹脂系成分からなるため、両者の材料が異なる。このため、キャリアの上定盤への張り付き(吸着)を防止する効果が高い。さらに、この突起がガラス素材であることにより突起の耐磨耗性(耐久性)が高くなるので、同一のキャリアでより多くの研磨処理回数にわたって上定盤への張り付きを防止することができる。すなわち、同一キャリアを用いて何度も研磨処理を行うことができ、キャリアが長持ちする。
 また、上記構成は換言すれば、基板を保持するための保持孔を有する研磨用又は研削用のキャリアであって、前記キャリアの少なくとも一方の表面に、ガラスを主成分とする突起が複数存在する突起形成領域が存在していることを特徴とする。
 上記の突起の高さは、2μm以上であるとよい。突起の高さが2μm未満であると、キャリアの上定盤への張り付き抑制の効果が発揮されない場合がある。また、突起の高さが3μm以上であると、前記抑制効果がさらに高まるためより好ましい。一方、前記抑制効果の観点では突起の高さの上限については特に制限はないが、突起の高さが50μmを超えると、基板の両面を加工する場合に、加工後の基板表面形状において表裏面の差がやや大きくなる場合がある。この現象は、突起の高さが高くなりすぎると、対向する定盤側の研磨パッドの表面を傷つけて荒らしてしまうためと推察される。このため、突起の高さは、50μm以下であることが好ましい。上記より、突起の高さは2~50μmであるとより好ましい。
 上記の突起の幅は、50μm以上であるとよい。突起の幅をこの範囲に設定することで、突起の耐摩耗性を高めることができ、キャリアの上定盤への張り付き抑制効果を長期間に渡って維持できる。なお突起の幅は、キャリアの主表面に平行な方向での最長の長さとする。他方、張り付き抑制効果の観点では上記の突起の幅に上限はないが、600μmより大きいと、特に片面のみに突起を形成する場合にキャリアの表裏の摩擦が変化して加工中に異音が発生する場合がある。異音が発生すると加工装置を止めるなどの確認作業が必要となると製造効率が低下するため好ましくない。したがって、突起の幅は600μm以下であるとより好ましい。上記より、突起の幅は、50~600μmであるとさらに好ましい。
 上記の突起は、全体として上に凸の円弧状であるとよい。なお上に凸の円弧状とは、換言すれば、上部となるにつれてキャリア主表面に平行な面による断面積が小さくなる形状、あるいは、全体として山型の形状、などが含まれる。このような形状であれば、突起は、その頂部に90度前後の角がなく、丸みを帯びた形状となる。このため、研磨パッドを傷つけ難く、その結果、表裏面の仕様が異なるキャリアにおいても、ガラス基板の両面を同等な品質となるように研磨することができる。
 上記のキャリアは、ガラス繊維を編んで樹脂を含浸させた材料からなるとよい。このとき、キャリアに複数存在する突起は、繊維状のガラスを含んでいてもよい。また、キャリアに複数存在する突起は、ガラス繊維の網目において略規則的に形成されているとよい。また、キャリアに複数存在する突起は、ガラス繊維の網目において隆起したガラス繊維によって形成されていてもよいし、あるいは、ガラス繊維の一部が起立して形成されていてもよい。なお、1つのガラス繊維は、細いガラス繊維を束ねたものであってもよい。
 このように、キャリアの元板材として、ガラス繊維を編んで樹脂を含浸させた板材を用いる場合、通常、ガラス繊維は束の状態で編まれるとともに、樹脂を含浸させた状態でプレスされて薄いシート状に成形されている。すなわち、ガラス繊維の束はシートの厚み方向に押しつぶされた状態で樹脂により固定されている。このため、ガラス繊維の周辺の樹脂が除去されると、応力が解放されてガラス繊維が隆起することで突起が形成される場合がある。また、このときガラス繊維の一部が切断されると、ガラス繊維の一部が起立した状態で突起が形成される場合もある。このようにしてガラスを主成分とする突起を形成することもできる。
 上記の突起は、保持孔の周囲を所定幅だけ避けて形成することが好ましい。仮に、保持孔の輪郭の際まで突起を形成すると、保持孔の内壁面にキズをつけたり、保持孔の形状を変えてしまったりする場合がある。このような場合、研磨処理中の基板の自由な動きを阻害して、基板の主表面の均一な研磨を阻害したり、基板の端面にキズを生じさせたりする場合がある。なお所定幅は、作業効率の観点から、例えば1mm以上、より好ましくは2mm以上とすることが好ましい。
 上記の突起は、互いに離間した複数の領域に形成してもよい。換言すれば、キャリア表面上において突起が存在する領域は、互いに離間した複数の領域として存在してもよい。こうすることにより、製造効率アップのために保持孔を多数設けて2つの保持孔の間が極めて狭くなった場合に、2つの保持孔の間を避けて突起の存在する領域を設けることができるので、突起形成の作業効率を向上させることができる。
 また、キャリア表面に所定の深さの凹部となる複数の領域を形成し、上記凹部に突起が形成されるようにしてもよい。こうすることで、突起と研磨パッドとの接触可能性を低くして、突起の耐久性をさらに高められるとともに、研磨パッドとの擦れによる発塵を抑制して加工後の基板表面の品質をさらに高めることができる。凹部の深さは、例えば0.3~30μmとすればよい。また、キャリアの一方の表面において、凹部を形成する領域を全て合計した面積は、全体の面積の5~80%であることが好ましい。
 上記課題を解決するために、本発明にかかる当該キャリアを用いた基板の製造方法の代表的な構成は、上述の研磨用のキャリアの保持穴に基板を保持し、研磨パッド又は研削パッドを備える上下の定盤により基板を挟持して前記基板の両面を同時に研磨する研磨処理を備える含むことを特徴とする。このとき、上述の研磨用のキャリアは、突起を有する面を上側にして研磨装置に設置される。
 本件発明の研磨処理では、キャリアのうち突起を有する面は、上定盤側の例えば研磨パッド又は研削パッドと対向している。そして、基本的には基板よりキャリアの方が若干薄いものの、基板との板厚差が小さく、加工中に接触と離間とを繰り返す。突起の主成分はガラスであり、研磨パッド又は研削パッドは主に樹脂系成分からなるため、両者の材料は大きく異なっている。このため、キャリアの上定盤への張り付き(吸着)を防止する効果が高い。よって、研磨処理後の上定盤の上昇時に、キャリアが上定盤に張り付いて持ち上がり、その後上定盤から落下して基板の上に乗ってしまい、基板の基板表面を傷つけることがない。
 なお研削パッドとは、例えば、ダイヤモンド砥粒を含む固定砥粒工具のことである。固定砥粒工具は、例えば、ダイヤモンド砥粒を樹脂や金属で固定するように成形されている。また、複数のダイヤモンド砥粒をガラス質(ビトリファイド)や金属や樹脂などで1つに結合した集結砥粒を、1つのダイヤモンド砥粒の代わりとしてもよい。当該ダイヤモンド砥粒や集結砥粒を固定砥粒工具の表面に表出させることで基板を加工する。本発明において固定砥粒工具に含まれるダイヤモンド砥粒は、平均粒子直径(以下、平均粒径と略す)が0.1~10μmであることが好ましい。
 また本発明にかかるキャリアの他の代表的な構成は、基板を保持するための保持孔を有する研磨用又は研削用のキャリアであって、キャリアの少なくとも一方の表面には、保持孔の周縁以外の領域に複数の凹部が設けられていることを特徴とする。
 上記構成によれば、キャリアの表面に複数の凹部を設けたので、基板表面を研磨する際にキャリアに上方から供給される研磨液を凹部に溜めることができる。これにより、研磨パッドとキャリアが密着しようとしたときでもお互いの表面の樹脂の密着面積が低減するため、キャリアの表裏面の研磨パッドへの吸着力が低下し、張り付き(吸着)を防止する効果が高い。
 上記の複数の凹部の少なくとも一つは、凹部を形成する輪郭がキャリアのギア部に接触しないように形成されているとよい。これにより、基板表面を研磨する際、凹部に研磨液を確実に溜めることができるため、張り付きを防止する効果が高い。
 上記の凹部の深さは、0.3~30μmであるとよい。凹部の深さを0.3μm以上とすることで、凹部に研磨液を十分溜めることができ、キャリアの張り付きを防止できる。一方、凹部の深さが30μmを超えると、研磨処理中にキャリアが反って被研磨基板がキャリアから外れる場合があり、生産性が低下する。このため、凹部の深さは、0.3μm以上かつ30μm以下であることがさらに好ましい。
 上記の凹部を形成する輪郭は、自由曲線からなるとよい。自由曲線は、例えば曲線を用いることができる。自由曲線とすることで、表面張力を高めることができる。これにより、研磨液を溜める効果が高まるため、張り付きを防止する効果が高い。
 上記の複数の凹部の全てが占める面積は、キャリアの少なくとも一方の表面全体の面積の5%以上であるとよい。ここで、凹部の合計の面積の割合が5%未満の場合、キャリア表面への研磨剤等の付着により、張り付き防止効果が十分に得られない場合がある。一方、凹部の合計の面積の割合の上限については特に規定はない。ただし、割合が大きすぎるとキャリアが反って被研磨基板がキャリアから外れる可能性があるため、割合の上限としては、80%以下であることが好ましい。
 また、上記複数の凹部の個々の面積は、1cm以上であると好ましい。当該面積が1cm未満の場合、張り付き防止効果が十分に得られない場合がある。なお凹部の面積は、2cm以上であるとより好ましい。他方、張り付き防止効果の観点では上記面積の上限については特に規定はない。しかし、上記面積が大きすぎるとキャリアが反って被研磨基板がキャリアから外れる可能性があるため、400cm以下であるとより好ましい。なお、凹部が複数ある場合、全体の1/2以上について1cm以上であることが好ましい。1cm以上の凹部の数は、全体の2/3以上であればより好ましく、全部であればより一層好ましい。1cm以上の凹部の数が全体の領域の数の1/2未満の場合、小さい凹部の数が多くなるため、マスキング等による凹部の形成作業が困難となり、キャリアの生産性が悪化する場合がある。
 上記の複数の凹部は、前記保持孔の周囲を所定幅だけ避けて形成することが好ましい。仮に、保持孔の輪郭の際まで凹部を形成すると、保持孔の内壁面にキズをつけたり、保持孔の形状を変えてしまったりする場合がある。このような場合、研磨処理中の基板の自由な動きを阻害して、基板の主表面の均一な研磨を阻害したり、基板の端面にキズを生じさせたりする場合がある。なお所定幅は、作業効率の観点から、例えば1mm以上、より好ましくは2mm以上とすることが好ましい。
 また、上記の複数の凹部は、少なくとも3つ以上の保持孔に囲まれた領域を含むように形成することが好ましい。仮に2つの保持孔の間に凹部を設けると、キャリア全体の強度が低下して、キャリアの使用可能回数が少なくなる場合がある。
 上記のキャリアは、ガラス繊維を編んで樹脂を含浸させた材料からなるとよい。このような材料からなるキャリアに対して化学的方法や機械的方法を施すことで、キャリアの表面に複数の凹部を設けることができる。
 上記課題を解決するために、本発明にかかる当該キャリアを用いた基板の製造方法の他の代表的な構成は、上述の研磨用のキャリアの保持穴に基板を保持し、研磨パッド又は研削パッドを備える上下の定盤により前記基板を挟持して前記基板の両面を同時に研磨する研磨処理を含むことを特徴とする。このとき、上述の研磨用のキャリアは、凹部を有する面を上側にして研磨装置に設置される。
 このように、本件発明の研磨処理では、キャリアのうち凹部を有する面は、上定盤の研磨パッド又は研削パッドと接触している。よって研磨パッドとキャリアが密着しようとしたときでもお互いの表面の樹脂の密着面積が低減する。このため、キャリアの表裏面の研磨パッドへの吸着力が低下し、張り付き(吸着)を防止する効果が高い。よって、研磨処理後の上定盤の上昇時に、キャリアが上定盤に張り付いて持ち上がり、その後上定盤から落下して基板の上に乗ってしまい、基板の基板表面を傷つけることがない。
 本発明によれば、高品質の基板を従来より高い歩留りで得ることができるキャリアおよび当該キャリアを用いた基板の製造方法を提供することができる。
本実施形態における基板表面を研磨する際に用いられる両面研磨装置の主要部断面を示す図である。 図1のキャリアの上面の一部を拡大して示す模式図である。 本実施形態におけるキャリアを製造する例を示す図である。 突起が形成される前のキャリアの上面の模式図である。 突起が形成された後のキャリアの上面の模式図である。 図1のキャリアを示す上面図である。 図6のキャリアの上面に設けられた凹部およびその周囲を示す模式図である。 図7(a)のB領域を拡大して示す模式図である。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
[第1実施形態]
 図1は、本実施形態における基板表面を研磨する際に用いられる両面研磨装置の主要部断面を示す図である。なお、本実施形態では、両面研磨装置についてのみ説明を行っているが、これに限られず、定盤にセットする研磨パッドを例えば研削パッドに変更することにより、同様の機能等を有する両面研削装置とすることもできる。
 基板(被加工物)としては、例えば円環状や角型の板状の基板を用いることができる。これらの基板の具体例としては、ガラス製やアルミニウム合金製、表面にNiP合金のメッキ膜を形成したアルミニウム合金製基板などの磁気ディスク用基板や、液晶パネル用などの矩形のガラス基板、画面の保護用のカバーガラス、マスクブランクス、シリコンウエハ等などを挙げることができるが、基板の材質、形状、サイズなど、これらに限られるわけではない。なお、基板の両面をともに低粗さ・低欠陥とする必要があり、一度に数多くの基板を高品質に処理できるという観点で、本件発明は特に磁気ディスク用基板を処理する際に好適に適用することができる。以下、一例として、被加工物として磁気ディスク用ガラス基板を用いる場合について述べる。
 両面研磨装置100は、ガラス基板102の上下面を研磨する装置であって、キャリア104を装着するキャリア装着部106と、上定盤108および下定盤110とを有する。キャリア装着部106は、それぞれ所定の回転比率で回転駆動されるインターナルギア112および太陽ギア114を有し、キャリア104を装着する。
 キャリア104は、外周にギア部115が形成されていて、インターナルギア112および太陽ギア114にギア部115が噛合するようにしてキャリア装着部106に装着される。キャリア104は、キャリア装着部106に装着された状態で遊星歯車運動をして、太陽ギア114の周囲を自転しながら公転する。
 上定盤108および下定盤110は、キャリア装着部106を挟んで互いに逆回転駆動される。また上定盤108および下定盤110のガラス基板102と対向する面には、それぞれ研磨パッド116、118が貼り付けられている。上定盤108は上下方向に移動可能であって、ガラス基板102の上下面に研磨パッド116、118を加圧する。なお研磨パッド116、118としては、ポリウレタンやポリエステルなど合成樹脂の発泡体が用いられる。
 そして上定盤108に設けられた供給管120を通って研磨砥粒を含有するスラリー(研磨液)がキャリア104の上方から供給される。このように両面研磨装置100では、研磨液を供給しつつ、キャリア104は遊星歯車運動をして、上定盤108および下定盤110は互いに逆回転する。よって両面研磨装置100では、ガラス基板102と研磨パッド116、118とが相対的に移動して、ガラス基板102の上下面の主表面が研磨される。
 キャリア104は、1つ以上の保持孔122を有する。キャリア104は、上定盤108の研磨パッド116と下定盤110の研磨パッド118とで挟まれて研磨される1つ以上のガラス基板102を、保持孔122によってそれぞれ保持する。さらに両面研磨装置100では、ガラス基板102の上下面の主表面の研磨後、上定盤108を上昇させて、研磨したガラス基板102をキャリア104から取り出している。
 なおキャリア104は、ここでは研磨処理に使用したが、これに限らず、遊離砥粒を用いるラッピングや、固定砥粒の研削パッドを用いる研削処理など、研磨以外の主表面研削処理にも広く使用可能である。さらにキャリア104としては、保持孔122を有するキャリア本体部とギア部115とが別部材となっており、使用する際に両者を組み合わせて用いるタイプのものであってもよい。
 図2は、図1のキャリア104の上面の一部を拡大して示す模式図である。図2(a)は、キャリア104の上面124の一部を拡大して示す上面図である。図2(b)は、図2(a)のA-A断面図である。
 キャリア104の上面124には、図2(a)に示すように突起136が複数存在している。複数の突起136の主成分はガラスである。突起以外の表面は例えば樹脂である。樹脂としては、例えば、エポキシ、ポリ塩化ビニール、ポリカーボネート、フェノール、ポリアセタールコポリマー、ポリエチレンテレフタレート等を用いることができる。このうち、特にエポキシ樹脂は、ガラス繊維に含浸させると曲げ強度及び弾性率を高くできるとともに、耐水性や耐薬品性が高いため特に好適である。
 また、キャリア104がガラス繊維を編んで樹脂を含浸させた材料からなる場合、詳細は後述するが、繊維状のガラスを含んでいてもよく、凡その格子状など略規則的に配列されていてもよい。また突起136は、図2(b)においてはキャリア104の上面124のみに形成されていて、下面135には設けられていないが、上定盤108側への吸着抑制効果を阻害しない限り、上下両面に設けてもよい。上下両面に突起136を設ける場合、それぞれの面において突起136の高さや数、突起136を形成する領域(突起形成領域)などを適宜調整すればよい。
 図2(b)に示す突起136は、例えば高さ寸法Laを2~50μm、幅寸法Lbを50~600μmにそれぞれ設定することが好ましい。なお幅寸法Lbは、キャリア104の主表面134の方向での最長の長さとする。
 突起136は、上に凸の円弧状を有し、図2(b)では山型の形状となっている。ただし、全体として上に凸の円弧状であれば、これに限られず、上部に向かって面積が小さくなる形状、換言すれば、上部となるにつれてキャリア104の主表面134に平行な面による断面積が小さくなる形状であってよい。さらに、例えば楕円型や上に凸の半球型形状などであってもよい。このような形状であれば、突起136は、その頂部136Aに90度前後の角がなく、丸みを帯びることになる。
 また、キャリア104がガラス繊維を編んで樹脂を含浸させた材料からなる場合、後述する本実施形態におけるキャリア104の製造方法を実施することで、突起136は、ガラス繊維の網目においてガラス繊維が隆起して形成させたり、ガラス繊維の一部が切断され起立した状態となって形成させたりすることもできる。すなわちキャリア104の上面124に、ガラス素材の突起136を略規則的に複数形成することができる。ガラス素材の突起136は、樹脂素材の突起に比べ耐摩耗性が高く、繰り返し研磨処理しても容易に摩耗することがない。
 上記を換言すると、ガラス素材の突起136は、キャリア内部に含まれるガラス繊維の一部を最表面上に露出又は表出させることによって形成したものであってもよい。さらに、当該露出又は表出したガラス繊維は、切断されたものを含んでもよい。
 上記突起136は、キャリア主表面の必ずしも全面に形成する必要はない。本発明のガラスを主成分とする突起136は非常に高い貼付き防止効果を有するため、主表面の少なくとも一部に形成すれば十分な効果を発揮することができる。本明細書では、上記突起136を形成する領域を「突起形成領域」とも呼ぶ。キャリア主表面の一部に上記の突起形成領域を設ける場合、複数の領域に分けて形成してもよい。
 また、上記突起形成領域が占める面積(突起形成領域が複数ある場合は、その合計)は、当該突起形成領域が存在するキャリアの一方の前記キャリアの少なくとも一方の表面全体の面積の10%以上であることが好ましい。当該突起形成領域が占める面積の割合が10%未満の場合、キャリア表面への研磨剤等の付着により、長期連続加工時の終盤において張り付き防止効果が低下する場合がある。上記面積の割合は、より好ましくは20%以上である。なお、上記面積の割合が小さい場合、キャリアの外周近傍を中心に突起を形成することで、少ない面積でも張り付き防止効果を高めることができる。
 また、上記突起形成領域の個々の面積は、1cm以上であると好ましい。当該面積が1cm未満の場合、張り付き防止効果が十分に得られない場合がある。なお突起形成領域の個々の面積は、2cm以上であるとより好ましい。他方、張り付き防止効果の観点では上記面積の上限については特に規定はない。しかし、上記面積が大きすぎると保持孔を避けるためのマスキングなどの作業が必要となりキャリアの生産性が悪化する場合があるため、400cm以下であるとより好ましい。なお、突起形成領域が複数ある場合、全体の1/2未満については1cm未満であってもよい。1cm未満の突起形成領域の数は、全体の1/3未満であればより好ましく、1つもないとより一層好ましい。1cm未満の突起形成領域の数が全体の領域の数の1/2以上の場合、マスキング等による突起の形成作業が困難となり、キャリアの生産性が悪化する場合がある。
 また、上記突起形成領域において、突起は1mmあたり0.5個以上の密度で形成することが好ましい。0.5個より大きくすることで定盤へのキャリア張り付き抑制効果を確実に得ることが可能となる。より好ましくは1mmあたり1個以上である。他方、当該密度については、前記張り付き抑制効果の観点では特に上限はないが、定盤表面に設置された研磨パッドや研削パッド(本明細書では、これらをまとめて「加工パッド」とも呼ぶ)へのダメージの観点で、1mmあたり10個以下であることがより好ましい。これら加工パッドへのダメージが発生すると、長期連続加工による基板の製造を行う場合に、製造の終盤で表裏面の差が大きくなる恐れがある。突起の密度は、例えば走査型電子顕微鏡(以下SEMと略す)を用いて突起形成領域を複数個所観察し、平均値として求めればよい。
 本願発明のキャリア104は、例えば以下のような方法で製造可能である。例えばガラス繊維を編んで樹脂を含浸させた材料からなるキャリアの場合、キャリアの構成物質である樹脂やガラスを化学的又は機械的方法(図3参照)によって除去することによって、キャリアの表面に近い位置にあるガラス繊維の一部を露出させればよい。なお、いずれの方法を用いる場合であっても、キャリア104を製造する際、適宜マスキング処理と組み合わせることによって、キャリア104の表面の任意の領域に突起136を形成することが可能となる。
 化学的方法としては、例えば、溶解やエッチングなどの方法を用いることができる。これらの方法では、樹脂又はガラスを、溶解又はエッチング可能な物質を適宜選択して接触させればよい。なお、樹脂とガラスの両方を溶解又はエッチング可能な物質を用いてもよい。
 図3(a)は、化学的方法を用いて本実施形態におけるキャリア104を製造する例を示す図である。ここでは、キャリア104の上面124の図中斜線で示す領域126(突起形成領域)に、樹脂を溶解させるエッチング剤138を塗布する。エッチング剤138としては、液状やクリーム状のものなど、適宜選択すればよい。
 領域126は、上記の突起136を形成可能であれば、キャリア104の上面124の全体でもよいし、一部でもよい。図3では、領域126として、キャリア104の上面124の、3つの保持孔122a、122b、122cの周縁130以外に位置していて、かつこれらの保持孔122a、122b、122cに囲まれた領域を例示している。なおキャリア104を製造する際、適宜マスキングを行うことによって、キャリア104の表面の一部のみに上記化学的方法や機械的方法を施すことができる。
 キャリア104の表面の一部に突起136を形成する場合、上記のように、少なくとも3つ以上の保持孔122a、122b、122cに囲まれた領域126に形成することが好ましい。仮に、2つの保持孔の間に突起136を形成する領域を設けると、キャリア104の製造コストや手間が増加する場合がある。
 また、突起136は、保持孔122の周囲を所定幅だけ避けて例えば周縁130以外の位置に形成することが好ましい。仮に、保持孔122の輪郭の際まで突起136を形成すると、保持孔122の内壁面にキズをつけたり、保持孔122の形状を変えてしまったりする場合がある。このような場合、研磨処理中の基板の自由な動きを阻害して、基板の主表面の均一な研磨を阻害したり、基板の端面にキズを生じさせたりする場合がある。なお所定幅は、作業効率の観点から、例えば1mm以上、より好ましくは2mm以上とすることが好ましい。
 また、突起136を設ける領域126は、互いに離間した複数の領域として設けてもよい。こうすることによって、製造効率アップのために保持孔122を多数設けて2つの保持孔122の間が極めて狭くなった場合に、2つの保持孔122の間を避けて突起136の存在する領域を設けることができるので、キャリア104の製造効率を向上させることができる。
 また、キャリア104表面に所定の深さの凹部となる複数の領域を形成し、凹部に突起136が形成されるようにしてもよい。こうすることで、突起136と研磨パッドとの接触可能性を低くして、突起136の耐久性をさらに高められるとともに、研磨パッドとの擦れによる発塵を抑制して加工後の基板表面の品質をさらに高めることができる。なお凹部の深さは、例えば0.3~30μmとすればよい。また、キャリア104の一方の表面において、凹部を形成する領域を全て合計した面積は、キャリア104表面全体の面積の5~80%であることが好ましい。
 また、図3(b)に示すように、サンドペーパー、ヤスリ、グラインダーなどの研磨工具(研削工具)を用いてキャリア104表面を擦ったり削ったりする機械的方法を用いてもよい。ここでは、グラインダー142の先端144に研磨工具146を取付けて、適宜接触させるなどして、領域126の表面を研磨している。
 なお、ガラス繊維を編んで樹脂を含浸させた材料からなるキャリア104の場合、ガラスと樹脂の硬度や物性が大きく異なることから、上記エッチング剤138や研磨工具等を適宜選択することによって、除去対象を樹脂とガラス繊維の一方又は両方とすることができる。
 また、上記の化学的方法と機械的方法とを組み合わせてもよい。例えば、機械的方法で樹脂をおおまかに除去した後、化学的方法で除去することにより、バリの少ない表面に仕上げることが可能となる。なおキャリア表面にバリが多く残存していると、両面研磨装置100の研磨パッドに傷をつけたり、加工中にバリが離脱して異物となり基板表面を汚染する原因となったりする恐れがある。
 上記方法の他、キャリア表面の凹部128を形成したい領域126をマスクした状態で樹脂や金属の膜を積層し、その後マスクを除去することによって凹部128を形成してもよい。
 以下、キャリア104がガラス繊維を編んで樹脂を含浸させた材料からなる場合について、キャリア104の上面124の領域126に、上記化学的方法や機械的方法を施すことで突起136が形成される過程を説明する。図4は、突起136が形成される前のキャリア104の上面124の模式図である。図5は、突起136が形成された後のキャリア104の上面124の模式図である。なお図4及び図5では、領域126の一部の拡大図を模式化して例示している。
 図4に示すキャリア104は、ガラス繊維150を編んで樹脂を含浸させたシート材料の表面の拡大図を例示したものである。このシート材料は、ガラス繊維150を数十~数百本あつめた繊維の束を形成し、それを交互に編んだ織物(これに樹脂を含浸させたもの1枚ずつはプリプレグと呼ばれる)の積層体となっている。ガラス繊維150の縦の束と横の束は、それぞれ網目152ごとに交互に表面側に露出した、いわゆる平織りである。なお、プリプレグの厚みは例えば0.1~0.2mmと非常に薄いため、上記シート材料は通常、複数枚のプリプレグを複数枚積層して圧着等することによって形成されている。また、図では特に示していないが、表面は樹脂の層で覆われている。
 このようなキャリア104では、ガラス繊維150は、網目152の重なりの位置において表層側に凸の状態の山なりの形状となっている。一例としてガラス繊維150の縦の束または横の束は、網目152の1つおきに波打つように略規則的に表面側に盛り上がっている。ガラス繊維150は通常は樹脂に埋もれているため、外見上はほぼ平坦となっているが、表面の樹脂が溶解等によりなくなると、ガラス繊維の束(又はガラス繊維)が山なり形状のまま浮き出てくる。これは、プリプレグの圧着を行う際に強い力で押しつぶされ、その状態のまま樹脂で固めらたからである。すなわち、ガラス繊維の束には、元の厚みに戻ろうとする応力が生じている。この構造を利用して、ガラス繊維にかかった応力を解放してやることで、容易に略規則的に突起を形成することができる。
 図5(a)は、突起136が略規則的に形成された状態を模式的に示した図である。縦の束の表面側に出た網目152ごと、さらに横の束の表面側に出た1つの網目に、ガラス繊維の束(又はガラス繊維)が山なり形状のまま浮き出て隆起した隆起部分154としての突起136が形成されている。縦のガラス繊維と、横のガラス繊維は、微視的には必ずしも均一に織られていないため、シート材の個体差によって、また、一つのシート内の位置によっても、表面を覆う樹脂の厚みが異なる場合がある。図5(a)はそのような場合の例である。
 したがって、例えば、図5(a)において確認できる9つの網目152全てにおいて突起136が形成される場合もあるし、縦のガラス繊維の網目152の5つのみに突起136が形成される場合もある。ただし、いずれの場合も、網目152のほぼ中央部において突起136が形成されるため、略規則的に突起136を形成することが可能となる。換言すれば、網目152にならって略規則的に突起136を形成できる。なお、網目152の境目をまたぐように突起を形成すると、表面を覆う樹脂の面積が少なくなり、キャリア104の強度が低下する場合があるため、網目152の境目をまたがないように突起136を形成することが好ましい。換言すると、キャリア表面において、突起と突起の間には樹脂が存在することが好ましい。
 なお、突起136を形成する際、必ずしも樹脂に埋もれたガラス繊維150が完全に露出するまで樹脂を除去する必要はない。ガラス繊維150を編んで樹脂を含浸させた材料のキャリア104の場合、その製造工程においてガラス繊維150(又はガラス繊維の束)は厚み方向に押しつぶされた状態で樹脂により固定されている。したがって、ガラス繊維150にかかった応力が解放される程度に樹脂の一部を除去することで、ガラスを主成分とする突起136を形成することも可能である。なお、上記は、樹脂に埋もれているものがガラス粒子などの繊維状ではないガラスの場合についても同様である。すなわち、必ずしも樹脂に埋もれたガラスが完全に露出するまで樹脂を除去する必要はない。
 このように突起が形成された場合、突起の表面の一部には樹脂が残存する場合もあるが、少なくとも一部の表面にガラス成分が露出していればよい。ガラス成分が突起の表面に露出しているかどうかは、例えばSEM及びエネルギー分散型X線分析(以下EDXと略す)を用いれば確認できる。
 また、キャリア104の表面において、ガラス繊維150を覆う樹脂が比較的薄い場合には、ガラスを溶解・エッチング可能な物質を用いてもよい。この場合、ガラス溶解物質は、樹脂層に浸透して内部のガラス繊維150に到達し、一部のガラス繊維150の溶解物が樹脂の被膜に打ち勝って表面に析出する。その結果、樹脂の被膜が破壊されるため、ガラス繊維150を含む隆起が形成される。
 さらに、図5(b)に例示するように、突起136を構成するガラス繊維150の一部を切断するようにしてもよい。ガラス繊維150の一部を切断すると、ガラス繊維150の断片は表面に突き出やすくなる。換言すれば、切断されたガラス繊維150がキャリア104の表面に対して起立傾向となる。このように突起部136の一部に切断されたガラス繊維を含ませることによって、上述の張り付き効果を高めることができる。なお、発明者の検討によると、一般的なガラスのエッチング液によるエッチング条件では、ガラス繊維の一部のみが切断されるため、ガラス繊維の剛性は低く、対向する研磨パッドや研削パッドを傷つけにくい。これは、ガラス繊維は数百本が束となっているが、それぞれ個々のガラス繊維の間にも樹脂が存在するためと推察される。
 上記方法の他、キャリア表面の成分として樹脂が用いられている場合、所定の粒径のガラスを主成分とする微粒子をキャリア表面に散布し、加熱しながらプレスすることによって、キャリア表面にガラス微粒子の一部を埋め込む方法や、キャリア表面に接着剤を塗布した後にガラス微粒子を散布する方法などを用いて突起を形成してもよい。
 上記方法によりガラスを主成分とする突起136を形成した後、適宜、洗浄処理やバリの除去処理を実施してもよい。また、ダイヤモンドドレッサなどのドレッサを用いて突起の高さを調節したりバリを除去する処理をさらに行ってもよい。
 また、完成したキャリア104の突起136の高さや長さなどの形状は、例えば触針式や光学式などの表面形状測定装置を適宜用いて確認することができる。また、突起136に対して例えばSEM観察及びEDXによる元素分析を実施することで、突起136にガラス成分が含まれることや、ガラス繊維が含まれること、さらに切断されたガラス繊維の有無を確認することができる。また、樹脂の除去深さやキャリア104の厚みの変化については、マイクロメータや測長機を用いて確認することができる。
 本実施形態のキャリア104によれば、キャリア104の上面124に突起136が複数存在することにより、上定盤108を上昇させると、キャリア104の上面124と上側の研磨パッド116との間に空気が入り易くなる。よって、キャリア104が上定盤108に張り付くことを防止できる。さらに、突起136がガラス素材であるため、耐磨耗性が高く、より多くの回数にわたって上定盤108への張り付きを防止できる。
 さらに、突起136を規則的にさせることによって、キャリア104の上面124と上側の研磨パッド116との間の空気の入り易さが均等となり、張り付きをより効果的に防止できる。
 また突起136は、全体として滑らかな凸形状とすることができる。また、その頂部136Aには90度前後の角がないようにできる。そして、全体として丸みを帯びた形状となるため、突起136に接する研磨パッド116を傷つけ難い。その結果、表裏面の仕様が異なるキャリアにおいても、ガラス基板102の両面を同等に研磨することができる。
 次に述べる実施例によって明らかなように、突起136は、図2(b)に示す高さ寸法Laを2μm以上としたので(表1参照)、耐摩耗性が高くなり、張り付きをより効果的に防止できる。なお突起136の高さや幅は、例えばガラス繊維を編んで樹脂を含浸させたシート材料からなる場合、エッチング量の変更の他、ガラス繊維150の太さや束ねる数、織り方や網目の大きさ(間隔)を適切に設定することによっても調整することができる。
 なお、突起136の高さや幅は、例えばガラス繊維を編んで樹脂を含浸させたシート材料からなる場合、エッチング量の変更の他、ガラス繊維150の太さや束ねる数、織り方や網目の大きさ(間隔)を適切に設定することによっても調整することができる。例えば、樹脂のエッチング量を増やすことで、突起の高さや幅を大きくすることができる。
 上記の突起136の高さや幅の寸法の値は、ランダムに100個の突起をサンプリングして測定したときに、値が大きい方の上位50個の値の平均値として求めることができる。このように算出することで、上定盤への貼付き防止に確実に寄与する突起の寸法を求めることができる。
[実施例]
 以下、本発明の実施例を挙げて説明するが、本発明は以下の実施例にのみ限定されるものではない。
(被加工基板の準備)
 被加工基板を公称2.5サイズ(直径約65mm)の磁気ディスク用ガラス基板とし、公知の方法により酸化セリウム砥粒を含む研磨液を使用した第一研磨処理まで終えた基板を準備した。
(実験用キャリアの準備)
 ガラス繊維を編んでエポキシ樹脂を含浸させたシート材を用いてキャリアを形状加工して製造した。そして、上記の方法を適宜使用して、キャリアの一方の面に、表1に示す仕様の突起が複数形成されるように追加工した。なお他の仕様については、突起の幅寸法は300μm、突起の密度は3(個/mm)、突起形成領域がキャリア主表面に占める面積の割合は50%とした。また、SEMによる確認の結果、ガラス繊維の切断は見つからなかった。ここで、突起の高さや幅の寸法の値は、ランダムに100個の突起をサンプリングして測定し、値が大きい方の上位50個の値の平均値である。
(実験条件)
 下記以外は上述または公知の方法を用いて、上記被加工基板に対する第二研磨を実施した。研磨機としては、上下の定盤のそれぞれに研磨パッドを張り付けた上述の両面研磨装置を用いて被加工基板の両面を同時した。研磨パッドは、ポリウレタン樹脂製であって、発泡剤を利用して厚さ方向に形成させた細長い微細な穴(ナップ)を多数形成したナップ層を表層に有するスウェードタイプのものとした。研磨剤は、平均粒径(D50)が30nmのコロイダルシリカ粒子を研磨砥粒として含む研磨液とした。なお、キャリアの向きについては、突起を有する面が上側を向くように研磨機にセットした。
 その他、1回の研磨処理(1バッチ)では、1キャリアあたり10枚の基板を保持できるキャリアを5つセットすることで、一度に50枚の基板の両主表面を研磨した。被加工基板を交換しつつ、キャリアは交換せずに20バッチ分を連続処理した。すなわち、それぞれの実験例において延べ100回分のキャリア上定盤貼付きをチェックした。
 また、それぞれの実験例において、20バッチ目で加工した基板を用いて、主表面の表裏の微小ウネリの差を求めた。具体的には、1キャリアから2枚ずつ、合計10枚をサンプリングし、上定盤側(10面分)の微小ウネリの平均値と、下定盤側(10面分)の微小ウネリの平均値とを算出し、それら平均値の差分を算出した。
 表1では、キャリアの表面にガラスを主成分とする突起が存在しないものを比較例とし、突起が存在していて突起の高さの異なるものを各実施例1~8とした。なお表1での、張り付き発生回数の比とは、比較例を「1.0」としたときの相対値である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、キャリアの表面に2μmの突起を形成するだけでも張り付きを防止する高い効果が得られた。さらに、突起の高さが3μm以上(実施例2~8)であると、キャリアの上定盤への張り付きを実質的になくすことが可能となった。その一方で、突起の高さが50μmを超えてしまうと(実施例8)、加工後の基板表面形状において表裏面の差が他の実施例に比べてやや大きくなっている。このため、突起の高さは、50μm以下であることが好ましい。実施例8では、突起の高さが高くなりすぎ、対向する上定盤側の研磨パッドの表面を傷つけて荒らしてしまったと推察される。このように表1の結果から、突起の高さは、2~50μmであることが特に好ましいことが確認された。
 なお表1の微小ウネリは、レーザによる光学式表面形状測定装置を用いて測定したものである。測定方法は、所定波長のレーザ光を測定対象物の表面に所定の角度で入射し、測定対象物からの反射光を検出して、主表面の高さ情報を得る。微小ウネリの波長帯域は10~500μmである。本実施形態においては、直径約65mmのガラス基板の表裏それぞれについて、主表面の半径15mm~30mmの範囲を測定領域として測定し、表裏の微小ウネリの「差」を算出した。磁気ディスク用基板のように両面について同じ加工品質とすることが必要な場合、当該差が大きくなると微小ウネリが大きい方の主表面の影響で研磨不良となり、再研磨が必要となるなど生産性を悪化させるため好ましくない。
 なお、実施例8について、1バッチ目と10バッチ目についても同様に微小ウネリの差を確認したところ、0.001以下であり、良好な結果であった。このことより、微小ウネリの差は長期連続加工を実施した際に発生することが確認された。
 したがって本実施形態のキャリア104およびキャリア104を用いたガラス基板102の製造方法によれば、キャリア104の上面124に複数存在する突起136により、キャリア104が上定盤108に張り付くことを防止し、さらにガラス基板102の上面と下面との微小ウネリの差が大きくなることを防止することで、高品質のガラス基板102を得ることができる。
 次に、実施例5の条件を元にして、キャリア104の元材料であるシート材においてエポキシ樹脂のエッチング量を適宜変化させて、突起136の幅寸法を変えたキャリア104を作成した。その後、表面をグラインダーで処理して、突起136の高さを20μmに揃えた。これらのキャリア104を用いて、上記と同様に100バッチ分を連続処理した。結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
実施例10~実施例14からわかるように、突起136の幅を50μm以上とすることで、張り付き抑制の効果が長持ちすることが確認できた。他方、突起の幅を900μmとした実施例14については、加工中に異音を検出することがあった。よって、異音抑制の観点では、600μm以下とすることが好ましいことが確認できた。
(突起密度との関係)
 実施例5の条件を元にして、突起の密度(個/mm)を、0.5、1、5、10と変化させたキャリアを準備し、基板の20バッチ連続研磨処理を行った。実験結果を表3に示す。実施例15~18からわかるように、いずれもキャリアの上定盤への張り付きは発生しなかった。
Figure JPOXMLDOC01-appb-T000003
(突起形成領域の面積割合との関係)
 実施例5の条件を元にして、突起形成領域の面積の割合(%)を10、20、75、100と変化させたキャリアを準備し、基板の20バッチ連続研磨処理を行った。実験結果を表4に示す。実施例19~22からわかるように、いずれも、20バッチまでキャリアの上定盤への張り付きは発生しなかった。
Figure JPOXMLDOC01-appb-T000004
(切断ガラス繊維との関係)
 実施例1の条件で製造したキャリアを元にして、その表面をケイフッ酸を含む液で処理し、その後表面をグラインダーで処理した。このようにして、キャリア表面にガラス繊維を突出させるとともに、その一部が切断されており、突起平均高さが実施例1と同じキャリアを準備した。このキャリアを用いて、基板の20バッチ連続研磨処理を行った。その結果、張り付き発生回数の比は、0.1となり、半減した。また、上記と同様に、実施例9の条件で製造したキャリアを処理し、連続研磨処理実験を行ったところ、100バッチ以上貼付きが検出されなかった。これらの結果から、ガラス繊維の一部を切断することによって、さらに高い貼付き防止効果が得られることが確認できた。
(凹部との関係)
 実施例8のキャリアにおいて、さらに突起形成領域の樹脂をエッチングして、深さが0.3、10、30μmの凹部とした3種類のキャリアを準備した。これらのキャリアを用いて、基板の20バッチ連続研磨処理を行った。上記と同様に、20バッチ目で加工した基板について主表面の表裏の微小ウネリの差を評価したところ、それぞれ、0.0017、0.0012、0.001以下、であった。なお、張り付き発生しなかった。この結果より、凹部に突起を形成することによって、表裏の微小ウネリの差を小さくできることが確認できた。
[第2実施形態]
 本発明にかかるキャリアおよび当該キャリアを用いた基板の製造方法の第2実施形態について説明する。上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
 図6は、図1のキャリア104を示す上面図である。図中代表的に示すキャリア104の上面124には、複数の領域126(突起形成領域)に凹部128(図7(b)参照)が設けられている。複数の領域126は、図示のように、保持孔122の周縁130以外に位置していて、互いに離間している。特に、少なくとも3つの保持孔122に囲まれていて、かつ保持孔122に連続していない領域としてよい。
 また複数の凹部128を形成する輪郭は、自由曲線からなり、例えば、キャリア104の外周に形成されたギア部115に接触しないように形成されている。また複数の凹部128の全てが占める面積は、キャリア104の上面124全体の面積の5%以上であり、上限は80%以下に設定される。さらに複数の凹部128の面積は、1cm以上かつ400cm以下の範囲に設定される。この範囲の面積を満たす凹部128の個数は、全ての凹部128のうちの1/3以上であることが好ましい。1/2以上であればより好ましく、全部であるとより一層好ましい。なお1/3未満の場合、張り付き抑制効果が安定して得られない場合がある。
 図7は、図6のキャリア104の上面124に設けられた凹部128およびその周囲を示す模式図である。図7(a)は、キャリア104の上面124に位置する領域126を代表的に示す模式図である。図7(b)は、図7(a)のA-A断面図である。
 図7(a)に示す領域126は、3つの保持孔122a、122b、122cに囲まれた領域を含み、かつこれらの保持孔122a、122b、122cに連続していない。領域126には、図7(b)に示すように、凹部128が設けられている。凹部128の全周132は、キャリア104の主表面134となっている。すなわち凹部128が池状ないしポケット状になっていて、研磨液を貯留可能になっている。さらに凹部128は、図7(b)に示すようにキャリア104の上面124にのみ設けられていて、下面135には設けられていないが、上定盤108側への吸着抑制効果を阻害しない限り、上下両面に設けてもよい。上下両面に凹部128を設ける場合、それぞれの面において凹部128の面積や個数、深さ寸法Lc(図8(b)参照)、凹部128を形成する領域などを適宜調整すればよい。
 図8は、図7(a)のB領域を拡大して示す模式図である。図8(a)は、B領域を拡大して示す上面図である。図8(b)は、図8(a)のC-C断面図である。凹部128は、図8(a)に示すように、保持孔122の周縁130以外に位置する領域126に設けられている。また図8(b)に示す凹部128の深さ寸法Lcは、0.3~30μmに設定されている。
 本実施形態のキャリア104によれば、キャリア104の上面124において領域126に凹部128を形成したことにより、凹部128に研磨液を溜めることができる。これにより、上定盤108の研磨パッド116とキャリア104が密着しようとしたときでもお互いの表面の樹脂の密着面積が低減する。よって、キャリア104の表面の研磨パッド116への吸着力が低下し、張り付き(吸着)を防止する効果が高い。
 また領域126に形成された凹部128を形成する輪郭が、自由曲線からなり、キャリア105のギア部115に接触しないように形成されていることが好ましい。よって、ガラス基板102表面を研磨する際、凹部128に研磨液を確実に溜めることができるため、張り付きを防止する効果が高い。
 また複数の凹部128の全てが占める面積は、キャリア104の表面全体の面積の5%以上かつ80%以下とすることが好ましい。仮に凹部128の合計の面積の割合が5%未満であれば、キャリア104表面への研磨剤等の付着により、張り付き防止効果が長期間に渡って安定して得られない場合がある。一方、凹部128の合計の面積の割合が大きすぎると、キャリア104が反って被研磨基板であるガラス基板102がキャリア104から外れる可能性がある。このため、面積の割合の上限としては、80%以下であることが好ましい。なお、上記面積の割合が小さい場合、キャリアの外周近傍を中心に凹部を分布させることで、少ない面積でも張り付き防止効果を高めることができる。
 さらに全ての凹部128のうち少なくとも1/3以上の面積は、1cm以上かつ400cm以下とすることが好ましい。仮に凹部128の面積が1cm未満であれば、張り付き防止効果が十分に得られない場合がある。また、凹部128の面積は、2cm以上であるとより好ましい。一方、凹部128の面積が大きすぎると、キャリア104が反ってガラス基板102がキャリア104から外れる可能性がある。このため、凹部128の面積の上限としては、400cm以下であることが好ましい。
 さらに、図8(b)に示す凹部128の深さ寸法Lcを0.3~30μmとしたので(表1参照)、凹部128に研磨液を十分溜めることができる。このため、キャリア104の張り付きを防止でき、また研磨処理中にキャリア104が反ってガラス基板102がキャリア104から外れることを防止できる。
[実施例]
 以下、本発明の実施例を挙げて説明するが、本発明は以下の実施例にのみ限定されるものではない。
(被加工基板の準備)
 被加工基板を公称2.5サイズ(直径約65mm)の磁気ディスク用ガラス基板とし、公知の方法により酸化セリウム砥粒を含む研磨液を使用した第一研磨処理まで終えた基板を準備した。
(実験用キャリアの準備)
 ガラス繊維を編んでエポキシ樹脂を含浸させたシート材を用いてキャリアを形状加工して製造した。そして、上記の方法を適宜使用して、キャリアの一方の面に、表1に示す仕様の凹部が複数形成されるように追加工した。
(実験条件)
 下記以外は上述または公知の方法を用いて、上記被加工基板に対する第二研磨を実施した。研磨機としては、上下の定盤のそれぞれに研磨パッドを張り付けた上述の両面研磨装置を用いて被加工基板の両面を同時した。研磨パッドは、ポリウレタン樹脂製であって、発泡剤を利用して厚さ方向に形成させた細長い微細な穴(ナップ)を多数形成したナップ層を表層に有するスウェードタイプのものとした。研磨剤は、平均粒径(D50)が30nmのコロイダルシリカ粒子を研磨砥粒として含む研磨液とした。なお、キャリアの向きについては、凹部を有する面が上側を向くように研磨機にセットした。
 その他、1回の研磨処理(1バッチ)では、1キャリアあたり10枚の基板を保持できるキャリアを5つセットすることで、一度に50枚の基板の両主表面を研磨した。被加工基板を交換しつつ、キャリアは交換せずに20バッチ分を連続処理した。すなわち、それぞれの実験例において延べ100回分のキャリア上定盤貼付きをチェックした。
 表3では、キャリアの表面に凹部が存在しないものを比較例2とし、凹部が存在していて凹部の深さの異なるものを各実施例15~21とした。なお表3での、張り付き発生回数の比とは、比較例2を「1.0」としたときの相対値である。また各実施例の凹部は、キャリアのギア部に接触しないように形成されている。さらに各実施形態の凹部は、キャリアの一方の表面の保持孔を除いた全表面に占める面積の割合を30%とし、全ての凹部の面積は1cm以上とした。
 さらに、表3でのキャリアの変形等とは、100バッチ終了後、両面研磨装置からキャリアを取り外して反りや変形、表面状態を観察した結果である。なおキャリアの反りなどの変形がある場合、使用し続けると研磨処理中に基板が保持孔から外れる可能性があるため、好ましくない。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、まず、凹部の深さが0.3μm以上(実施例23~29)であると、張り付き発生回数の比を小さくできるため好ましい。その一方で、凹部の深さが30μmを超えてしまうと(実施例29)、キャリアの反りが確認された。このため、凹部の深さは、30μm以下であることが好ましい。このように表5の結果から、凹部の深さは、0.3~30μmであることが好ましいことが確認された。
 したがって本実施形態のキャリア104およびキャリア104を用いたガラス基板102の製造方法によれば、キャリア104の上面124の領域126に複数設けた凹部128により、張り付き(吸着)を防止できる。さらに研磨処理中にキャリア104が反ってガラス基板102がキャリア104から外れることを防止できるため、生産性が低下することもなく、高品質のガラス基板102を従来より高い歩留りで得ることができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 本発明は、磁気記録媒体用基板や液晶画面用ガラス、シリコンウエハなどの板状基板の主表面を研磨する際に用いられるキャリアおよび当該キャリアを用いた基板の製造方法として利用することができる。
100…両面研磨装置、102…ガラス基板、104…キャリア、106…キャリア装着部、108…上定盤、110…下定盤、112…インターナルギア、114…太陽ギア、115…ギア部、116、118、146…研磨パッド、120…供給管、122、122a、122b、122c…保持孔、124…キャリアの上面、126…領域、128…凹部、130…保持孔の周縁、132…凹部の全周、134…キャリアの主表面、135…キャリアの下面、136…突起、138…エッチング剤、142…グラインダー、144…グラインダーの先端、150…ガラス繊維、152…網目、154…隆起部分

Claims (19)

  1.  基板を保持するための保持孔を有する研磨用又は研削用のキャリアであって、
     前記キャリアの少なくとも一方の表面の少なくとも一部の領域には、ガラスを主成分とする突起が複数存在していることを特徴とするキャリア。
  2.  前記突起の高さは、2μm以上であることを特徴とする請求項1に記載のキャリア。
  3.  前記突起の幅は、50μm以上であることを特徴とする請求項1または2に記載のキャリア。
  4.  前記突起は、上に凸の円弧状であることを特徴とする請求項1から3のいずれか1項に記載のキャリア。
  5.  前記突起は、繊維状のガラスを含むことを特徴とする請求項1から4のいずれか1項に記載のキャリア。
  6.  前記キャリアは、ガラス繊維を編んで樹脂を含浸させた材料からなることを特徴とする請求項1から5のいずれか1項に記載のキャリア。
  7.  前記突起は、前記ガラス繊維の網目において略規則的に形成されていることを特徴とする請求項6に記載のキャリア。
  8.  前記突起は、前記保持孔の周囲を所定幅だけ避けて存在していることを特徴とする請求項1から7のいずれか1項に記載のキャリア。
  9.  前記突起は、互いに離間した複数の領域に設けられていることを特徴とする請求項1から8のいずれか1項に記載のキャリア。
  10.  請求項1~9のいずれか1項に記載の研磨用のキャリアの保持穴に基板を保持し、研磨パッド又は研削パッドを備える上下の定盤により前記基板を挟持して前記基板の両面を同時に研磨する研磨処理を含むことを特徴とする基板の製造方法。
  11.  基板を保持するための保持孔を有する研磨用又は研削用のキャリアであって、
     前記キャリアの少なくとも一方の表面には、前記保持孔の周縁以外の領域に複数の凹部が設けられていることを特徴とするキャリア。
  12.  前記複数の凹部の少なくとも一つは、当該凹部を形成する輪郭が前記キャリアのギア部に接触しないように形成されていることを特徴とする請求項11に記載のキャリア。
  13.  前記凹部の深さは、0.3μm以上であることを特徴とする請求項11又は112のいずれか1項に記載のキャリア。
  14.  前記凹部を形成する輪郭は、自由曲線からなることを特徴とする請求項11から13のいずれか1項に記載のキャリア。
  15.  前記複数の凹部の全てが占める面積は、前記キャリアの少なくとも一方の表面全体の面積の5%以上であることを特徴とする請求項11から14のいずれか1項に記載のキャリア。
  16.  前記複数の凹部のうち、少なくとも1/3以上の凹部の面積は、1cm以上であることを特徴とする請求項11から15のいずれか1項に記載のキャリア。
  17.  前記複数の凹部は、前記保持孔の周囲を所定幅だけ避けて存在していることを特徴とする請求項11から16のいずれか1項に記載のキャリア。
  18.  前記キャリアは、ガラス繊維を編んで樹脂を含浸させた材料からなることを特徴とする請求項11から17のいずれか1項に記載のキャリア。
  19.  請求項11~18のいずれか1項に記載の研磨用のキャリアの保持穴に基板を保持し、研磨パッド又は研削パッドを備える上下の定盤により前記基板を挟持して前記基板の両面を同時に研磨する研磨処理を含むことを特徴とする基板の製造方法。
PCT/JP2017/013739 2016-03-31 2017-03-31 キャリアおよび当該キャリアを用いた基板の製造方法 WO2017171052A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201802381PA SG11201802381PA (en) 2016-03-31 2017-03-31 Carrier and substrate manufacturing method using this carrier
JP2017541416A JP6236191B1 (ja) 2016-03-31 2017-03-31 キャリアおよび当該キャリアを用いた基板の製造方法
CN202011023491.3A CN112091811B (zh) 2016-03-31 2017-03-31 载体及使用该载体的基板的制造方法
CN201780003634.4A CN108349063B (zh) 2016-03-31 2017-03-31 载体及使用该载体的基板的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016073513 2016-03-31
JP2016-073512 2016-03-31
JP2016073512 2016-03-31
JP2016-073513 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171052A1 true WO2017171052A1 (ja) 2017-10-05

Family

ID=59966122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013739 WO2017171052A1 (ja) 2016-03-31 2017-03-31 キャリアおよび当該キャリアを用いた基板の製造方法

Country Status (5)

Country Link
JP (2) JP6236191B1 (ja)
CN (2) CN108349063B (ja)
MY (1) MY174348A (ja)
SG (2) SG11201802381PA (ja)
WO (1) WO2017171052A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108705421A (zh) * 2018-08-21 2018-10-26 德清明宇电子科技有限公司 一种e型磁芯打磨装置
CN115870868A (zh) * 2022-12-27 2023-03-31 西安奕斯伟材料科技有限公司 装卸装置、方法及硅片双面抛光设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179615A (ja) * 1999-12-27 2001-07-03 Seiko Epson Corp 研磨用キャリア、表面研磨装置及び表面研磨方法
JP2002321151A (ja) * 2001-02-26 2002-11-05 Shin Kobe Electric Mach Co Ltd 被研磨物保持材及びその製造方法
JP2003236742A (ja) * 2002-02-20 2003-08-26 Toshiba Ceramics Co Ltd ラッピング用キャリア
JP2008093746A (ja) * 2006-10-06 2008-04-24 Shin Kobe Electric Mach Co Ltd 被研磨物保持材用板状体の製造法
JP2009166228A (ja) * 2008-01-16 2009-07-30 Kazumasa Onishi ウェーハ研磨用キャリアプレート
JP2009178806A (ja) * 2008-01-31 2009-08-13 Seiko Epson Corp 研磨用キャリア、及び、研磨装置
JP2015125788A (ja) * 2013-12-26 2015-07-06 Hoya株式会社 磁気ディスク用ガラス基板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9008051A (pt) * 1990-12-20 1993-11-03 Monsanto Co Folha de plastico para uma vidraca laminada e metodo para controle da adesao e reducao de bloqueio da mesma
JPH1110530A (ja) * 1997-06-25 1999-01-19 Shin Etsu Handotai Co Ltd 両面研磨用キャリア
CN1132719C (zh) * 1998-12-14 2003-12-31 精工爱普生株式会社 研磨用托架、表面研磨装置及表面研磨方法
JP4034056B2 (ja) * 2000-09-13 2008-01-16 日本板硝子株式会社 非晶質材料の加工方法
WO2004042709A1 (ja) * 2002-10-23 2004-05-21 Hoya Corporation 情報記録媒体用ガラス基板及びその製造方法
DE102005034119B3 (de) * 2005-07-21 2006-12-07 Siltronic Ag Verfahren zum Bearbeiten einer Halbleiterscheibe, die in einer Aussparung einer Läuferscheibe geführt wird
JP2008000823A (ja) * 2006-06-20 2008-01-10 Konica Minolta Opto Inc 研磨キャリア
CN101579837A (zh) * 2008-05-13 2009-11-18 中芯国际集成电路制造(上海)有限公司 一种用于化学机械抛光的研磨垫调整装置
TWI550760B (zh) * 2008-06-04 2016-09-21 荏原製作所股份有限公司 基板處理裝置、基板處理方法、基板保持機構及基板保持方法
CN101637888B (zh) * 2008-08-01 2013-09-18 智胜科技股份有限公司 研磨垫及其制造方法
JP6000240B2 (ja) * 2011-04-27 2016-09-28 Hoya株式会社 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラスブランク
MY168267A (en) * 2013-02-08 2018-10-17 Hoya Corp Method for manufacturing magnetic-disk substrate, and polishing pad used in manufacture of magnetic-disk substrate
JP5422767B1 (ja) * 2013-05-09 2014-02-19 信越エンジニアリング株式会社 貼り合わせ分離方法及び分離装置
JP2015035245A (ja) * 2013-08-09 2015-02-19 旭硝子株式会社 ガラス基板用キャリア、磁気記録媒体用ガラス基板の研磨方法、及び、磁気記録媒体用ガラス基板の製造方法
JP6312554B2 (ja) * 2014-08-13 2018-04-18 株式会社ディスコ パッケージ基板の加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179615A (ja) * 1999-12-27 2001-07-03 Seiko Epson Corp 研磨用キャリア、表面研磨装置及び表面研磨方法
JP2002321151A (ja) * 2001-02-26 2002-11-05 Shin Kobe Electric Mach Co Ltd 被研磨物保持材及びその製造方法
JP2003236742A (ja) * 2002-02-20 2003-08-26 Toshiba Ceramics Co Ltd ラッピング用キャリア
JP2008093746A (ja) * 2006-10-06 2008-04-24 Shin Kobe Electric Mach Co Ltd 被研磨物保持材用板状体の製造法
JP2009166228A (ja) * 2008-01-16 2009-07-30 Kazumasa Onishi ウェーハ研磨用キャリアプレート
JP2009178806A (ja) * 2008-01-31 2009-08-13 Seiko Epson Corp 研磨用キャリア、及び、研磨装置
JP2015125788A (ja) * 2013-12-26 2015-07-06 Hoya株式会社 磁気ディスク用ガラス基板の製造方法

Also Published As

Publication number Publication date
CN108349063B (zh) 2020-10-27
JPWO2017171052A1 (ja) 2018-04-05
CN112091811A (zh) 2020-12-18
JP2018022549A (ja) 2018-02-08
SG11201802381PA (en) 2018-04-27
CN112091811B (zh) 2022-09-06
CN108349063A (zh) 2018-07-31
SG10202004819TA (en) 2020-06-29
JP6236191B1 (ja) 2017-11-22
MY174348A (en) 2020-04-09
JP7018292B2 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
JP4189384B2 (ja) 情報記録媒体用ガラス基板の製造方法と研磨装置
JP4234991B2 (ja) 情報記録媒体用ガラス基板の製造方法及びその製造方法によって製造される情報記録媒体用ガラス基板
JP5305698B2 (ja) 磁気ディスク用ガラス基板の製造方法、磁気ディスク製造方法および磁気ディスク用ガラス基板
JP2010257562A (ja) 磁気ディスク用基板及びその製造方法
JP4790973B2 (ja) 研磨パッドを使用した情報記録媒体用ガラス基板の製造方法及びその方法で得られた情報記録媒体用ガラス基板
JP2009214219A (ja) 磁気ディスク用ガラス基板の製造方法
JP6236191B1 (ja) キャリアおよび当該キャリアを用いた基板の製造方法
JP2007118172A (ja) 研磨装置、研磨方法、磁気ディスク用ガラス基板および磁気ディスクの製造方法
JP2015035245A (ja) ガラス基板用キャリア、磁気記録媒体用ガラス基板の研磨方法、及び、磁気記録媒体用ガラス基板の製造方法
JP5853408B2 (ja) 磁気記録媒体用ガラス基板の製造方法および磁気記録媒体用ガラス基板
JP2012089221A (ja) 磁気記録媒体用ガラス基板の製造方法
WO2009157306A1 (ja) 磁気ディスク用ガラス基板の両面研磨装置、研磨方法及び製造方法
JP5585269B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP5861451B2 (ja) 磁気記録媒体用ガラス基板の研磨方法、および、磁気記録媒体用ガラス基板の製造方法
US20050287933A1 (en) Glass substrate for information recording medium and process for manufacturing the same
KR101334012B1 (ko) 마스크 블랭크용 기판의 제조방법, 마스크 블랭크의제조방법 및 마스크의 제조방법
JP6063044B2 (ja) キャリア、磁気ディスク用基板の製造方法及び磁気ディスクの製造方法
JP2007118173A (ja) 研磨用ブラシ、ブラシ調整用治具、および研磨用ブラシの調整方法
JP2015069674A (ja) 磁気ディスク用ガラス基板の製造方法及び研磨処理用キャリア
JP5312911B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2021193970A1 (ja) キャリア及び基板の製造方法
JP2008000823A (ja) 研磨キャリア
JP2009277347A (ja) 情報記録媒体用ガラス基板の製造方法
JP5861452B2 (ja) 研磨キャリア、磁気記録媒体用ガラス基板の研磨方法、および、磁気記録媒体用ガラス基板の製造方法
JP2010231841A (ja) ガラス基板の製造方法、ガラス基板及び磁気記録媒体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017541416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201802381P

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775583

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775583

Country of ref document: EP

Kind code of ref document: A1