WO2017170844A1 - 熱硬化性樹脂組成物、プリプレグ及びその硬化物 - Google Patents

熱硬化性樹脂組成物、プリプレグ及びその硬化物 Download PDF

Info

Publication number
WO2017170844A1
WO2017170844A1 PCT/JP2017/013196 JP2017013196W WO2017170844A1 WO 2017170844 A1 WO2017170844 A1 WO 2017170844A1 JP 2017013196 W JP2017013196 W JP 2017013196W WO 2017170844 A1 WO2017170844 A1 WO 2017170844A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
thermosetting resin
compound
weight
Prior art date
Application number
PCT/JP2017/013196
Other languages
English (en)
French (fr)
Inventor
一貴 松浦
政隆 中西
知樹 藤田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020187021307A priority Critical patent/KR102314333B1/ko
Priority to JP2018509424A priority patent/JP6971222B2/ja
Priority to CN201780020589.3A priority patent/CN108884302B/zh
Publication of WO2017170844A1 publication Critical patent/WO2017170844A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Definitions

  • the present invention can be used in various applications such as aerospace materials, machine tool member applications, electrical / electronic materials, etc., and particularly in fields such as fiber-reinforced composite materials and electrical / electronic component sealing materials that require heat resistance.
  • the present invention relates to a thermosetting resin composition, a prepreg and a cured product thereof useful in the above.
  • the fiber reinforced composite material is composed of a matrix resin and reinforcing fibers such as carbon fiber, glass fiber, alumina fiber, boron fiber, and aramid fiber, and generally has light weight and high strength characteristics.
  • Such fiber-reinforced composite materials include insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, build-up boards, etc.), aerospace materials such as passenger aircraft bodies and wings, and machine tool members represented by robot hand arms. In addition, it is widely used for construction and civil engineering repair materials, and for leisure goods such as golf shafts and tennis rackets.
  • CFRP carbon fiber reinforced composite materials
  • CFRP carbon fiber reinforced composite materials
  • Heat resistance, mechanical properties and long-term reliability, that is, a sufficiently high thermal decomposition temperature and a low water absorption rate are required.
  • epoxy resins have been widely used as matrix resins for fiber-reinforced composite materials, but epoxy resins have low heat resistance and are not suitable for aerospace materials and machine tool member applications.
  • maleimide resin is widely known as a matrix resin that has high heat resistance and can withstand a use environment of 200 ° C. or higher.
  • a bismaleimide compound is generally used as the main component of the maleimide resin.
  • this compound alone has poor curability and the molded product becomes brittle, various modifiers have been developed to improve this. As a solution, various modifications have been performed.
  • a modified butadiene resin in which a meth (acryloyl) group is introduced into a cyanate ester resin composition Patent Document 1
  • a butadiene-acrylonitrile copolymer Known those in which a coalescence is added (Patent Document 2), or those in which an epoxy resin is further added (Patent Document 3).
  • Patent Document 1 a modified butadiene resin in which a meth (acryloyl) group is introduced into a cyanate ester resin composition
  • Patent Document 2 a butadiene-acrylonitrile copolymer
  • Patent Document 3 examples include those in which a coalescence is added (Patent Document 2), or those in which an epoxy resin is further added (Patent Document 3).
  • Patent Document 1 a modified butadiene resin in which a meth (acryloyl) group is introduced into a cyanate ester resin composition
  • Patent Document 2 a butadiene-acrylonitrile copolymer
  • Patent Document 3 those in which an epoxy
  • Patent Document 4 is a resin obtained by heating and mixing o, o′-diallylbisphenol A, which is liquid at room temperature, with 4,4′-diphenylmethane bismaleimide, and mixing it with a solvent-free carbon fiber sheet. It is possible to impregnate.
  • Patent Document 4 discloses that the obtained 4-4 ′ bismaleimide diphenylmethane has a rigid skeleton, and thus does not have mechanical strength or toughness. Even if it is modified with o, o′-diallylbisphenol A, the obtained resin is sufficient. Strength is not obtained, and many cracks are observed in the molded CFRP.
  • the present invention provides a thermosetting resin composition that can be molded at a relatively low temperature and is excellent in heat resistance after curing, water absorption characteristics, mechanical strength, and thermal decomposition characteristics. The purpose is to provide.
  • thermosetting resin composition containing a compound having a specific maleimide group and a compound having an allyl group or a methallyl group at a relatively low temperature. It is possible to perform molding processing, and furthermore, it is found that a cured product excellent in properties such as heat resistance can be obtained even if it is excellent in curability, and even in a short time post-curing treatment by using this, The present invention has been completed.
  • thermosetting resin composition comprising a compound (A) having a maleimide group represented by the following formula (1) and a compound (B) having an allyl group or a methallyl group;
  • thermosetting resin composition according to item [1], wherein the compound (B) having an allyl group or a methallyl group has a weight average molecular weight (Mw) of 350 to 1200.
  • thermosetting resin composition according to item [1] or [2], further containing a catalyst [4] A prepreg in which the thermosetting resin composition according to any one of [1] to [3] above is held on a sheet-like fiber substrate; [5] The thermosetting resin composition according to any one of [1] to [3] above, or the cured product of the prepreg according to [4] above, About.
  • thermosetting resin composition of the present invention can be molded at a relatively low temperature, and further has excellent effects of heat resistance after curing, water absorption characteristics, mechanical strength, and thermal decomposition characteristics.
  • thermosetting resin composition of the present invention has a compound (A) having a maleimide group represented by the following formula (1) (also simply referred to as “maleimide compound (A)”) and an allyl group or a methallyl group.
  • a compound (B) A compound having a maleimide group represented by the following formula (1) (also simply referred to as “maleimide compound (A)”) and an allyl group or a methallyl group.
  • R 1 s a plurality of R 1 s exist independently and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aromatic group.
  • A represents 1 to 3.
  • n represents an integer.
  • the average value represents 1 ⁇ n ⁇ 5.
  • Examples of the alkyl group having 1 to 10 carbon atoms for R 1 in the formula (1) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, and a tert-butyl group.
  • a methyl group is preferred.
  • an aromatic hydrocarbon group such as phenyl group, biphenyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, pyrenyl group, furanyl group, thienyl group
  • aromatic hydrocarbon group such as phenyl group, biphenyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, pyrenyl group, furanyl group, thienyl group
  • Examples include thienothienyl group, pyrrolyl group, imidazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, quinolyl group, indolyl group, and carbazolyl group.
  • n in the formula (1) is an integer, and 1 ⁇ n average value ⁇ 5.
  • n is preferably from 1 to 10, more preferably from 2 to 8, and particularly preferably from 2 to 4.
  • the value of n can be calculated from the value of the weight average molecular weight obtained by the measurement of gel permeation chromatography (GPC) of the maleimide compound (A). It can be considered to be almost equivalent to the value of n calculated from the measurement result.
  • the method for producing the maleimide compound (A) is not particularly limited, and any known method known as a method for synthesizing a maleimide compound may be used.
  • Japanese Patent Application Laid-Open No. 3-100016 and Japanese Patent Publication No. 8-16151 describe reactions of anilines with dihalogenomethyl compounds and dialkoxymethyl compounds.
  • the compound of formula (2) is obtained by adopting and reacting anilines with bishalogenomethylbiphenyls or bisalkoxymethylbiphenyls.
  • R's are present independently and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aromatic group.
  • N is an integer, and 1 ⁇ n average value ⁇ 5)
  • Examples of the alkyl group having 1 to 10 carbon atoms in R in the formula (2) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, and a tert-butyl group. , Sec-butyl group, n-pentyl group, i-pentyl group, amyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, etc. It is done.
  • the aromatic group in R in the formula (2) includes an aromatic hydrocarbon group such as phenyl group, biphenyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, pyrenyl group, furanyl group, thienyl group, and thiethienyl.
  • aromatic hydrocarbon group such as phenyl group, biphenyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, pyrenyl group, furanyl group, thienyl group, and thiethienyl.
  • anilines used in the production of the maleimide compound include aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, 2,3- Dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-propylaniline, 3-propylaniline, 4- Propylaniline, 2-isopropylaniline, 3-isopropylaniline, 4-isopropylaniline, 2-ethyl-6-methylaniline, 2-sec-butylaniline, 2-tert-butylaniline, 4-butylaniline, 4-sec- Butylaniline, 4-tert-butylaniline, 2,6-di Alkyl-substituted anilines having one or more alkyl groups having 1 to 5 carbon atoms, such as tilaniline, 2-
  • Examples include aniline. These may be used alone or in combination of two or more.
  • Examples of the bishalogenomethyl biphenyls or bisalkoxymethyl biphenyls used include 4,4′-bis (chloromethyl) biphenyl, 4,4′-bis (bromomethyl) biphenyl, and 4,4′-bis (fluoromethyl).
  • Examples include methylbiphenyl, 4,4′-diisobutoxymethylbiphenyl, 4,4′-dibutoxymethylbiphenyl, 4,4′-di-tert-butoxymethylbiphenyl, and the like. These may be used alone or in combination of two or more.
  • the amount of bishalogenomethylbiphenyls or bisalkoxymethylbiphenyls to be used is usually 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, per 1 mol of anilines used. .
  • the maleimide compound (A) can be obtained, for example, by reacting a raw material compound such as the above formula (2) with maleic anhydride in the presence of a solvent and a catalyst.
  • a solvent and a catalyst for example, Japanese Patent Application Laid-Open No. 3-100016 or Japan
  • the method described in Japanese Patent Application Laid-Open No. 61-229863 may be employed.
  • As the solvent used in the reaction it is necessary to remove water generated during the reaction from the system, and therefore a water-insoluble solvent is used.
  • aromatic solvents such as toluene and xylene
  • aliphatic solvents such as cyclohexane and n-hexane
  • ethers such as diethyl ether and diisopropyl ether
  • ester solvents such as ethyl acetate and butyl acetate, methyl isobutyl ketone and cyclopentanone
  • water-insoluble solvent an aprotic polar solvent may be used in combination.
  • the catalyst is an acidic catalyst and is not particularly limited, and examples thereof include p-toluenesulfonic acid, hydroxy-p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, and phosphoric acid.
  • maleic acid is dissolved in toluene, an N-methylpyrrolidone solution of the compound of formula (2) is added with stirring, and then p-toluenesulfonic acid is added to remove water generated under reflux conditions from the system. While doing the reaction.
  • the maleimide compound (A) having a melting point and a softening point can be used.
  • a melting point it is preferably 200 ° C. or lower, and when it has a softening point, it is preferably 150 ° C. or lower. If the melting point or softening point is too high, the possibility of gelation may increase during mixing.
  • the content of the maleimide compound (A) in the thermosetting resin composition of the present invention is determined from the viewpoint of the fluidity of the thermosetting resin composition and the heat resistance of the cured product obtained by curing it.
  • the total amount is preferably 30 to 70% by mass, more preferably 35 to 60% by mass.
  • thermosetting resin composition of the present invention comprises a compound (A) having a maleimide group represented by the formula (1) and a compound (B) having an allyl group or a methallyl group (“(meth) allyl group-containing compound” (B) ").
  • the compound (B) having an allyl group or a methallyl group acts as a curing agent for the maleimide compound (A).
  • Examples of the compound (B) having an allyl group or a methallyl group include 4,4′-bisphenol A diallyl ether, 4,4′-bisphenol F diallyl ether, 4,4′-bisphenol F dimethallyl ether, tri ( (Meth) allyl isocyanurate, 2,2-di (4-acetyloxy-3- (meth) allylphenyl) propane, di (4-acetyloxy-3- (meth) allylphenyl) methane, di (4-acetyloxy) -3- (meth) allylphenyl) sulfone, 2,2-di (4-benzoyloxy-3- (meth) allylphenyl) propane, di (4-benzoyloxy-3- (meth) allylphenyl) methane, di (4-Benzoyloxy-3- (meth) allylphenyl) sulfone, 2,2-di (4-toluoyloxy-3- (Meth
  • R 1 and R 2 each independently exist, and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aromatic group.
  • A represents 1 to 3.
  • R 1 and R 2 are independently present and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aromatic group.
  • A represents 1 to 3.
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 in the formulas (3) and (4) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, iso-butyl group, tert-butyl group, sec-butyl group, n-pentyl group, i-pentyl group, amyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, octyl group, 2-ethylhexyl group , Nonyl group, decyl group and the like. Of these, a methyl group is preferred.
  • the aromatic groups in R 1 and R 2 in the formulas (3) and (4) are aromatic hydrocarbons such as phenyl group, biphenyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, and pyrenyl group.
  • aromatic hydrocarbons such as phenyl group, biphenyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, and pyrenyl group.
  • R 2 adjacently present on the same ring may be bonded to each other to form a condensed ring.
  • the condensed ring formed in this case include naphthalene, anthracene and phenanthrene.
  • some of the (meth) allyl groups may be substituted with hydrogen atoms.
  • all the phenolic hydroxyl groups in formula (3) need not be allyl etherified, and may have hydroxyl groups that are not allyl etherified.
  • n of Formula (3) and Formula (4) is an integer, and represents an average value ⁇ 5 of 1 ⁇ n.
  • n is preferably from 1 to 10, more preferably from 2 to 8, and particularly preferably from 2 to 4.
  • the value of n can be calculated from the value of the weight average molecular weight determined by gel permeation chromatography (GPC) measurement, but approximately n calculated from the GPC measurement result of the compound as the raw material. Can be considered to be almost equivalent to the value of.
  • the weight average molecular weight (Mw) of the compound (B) having an allyl group or a methallyl group is preferably 350 to 1200. More preferably, it is 400 to 1000, and particularly preferably 440 to 800. When the molecular weight is less than 350, it is difficult to mold a cured product due to volatility, and when the molecular weight exceeds 1200, it is difficult to form a cured product because high viscosity and compatibility with a solvent are very difficult. .
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the total chlorine content of the compound (B) having an allyl group or a methallyl group is preferably 500 ppm or less, more preferably 300 ppm or less, and particularly preferably 100 ppm or less.
  • the softening point of the compound (B) having an allyl group or a methallyl group is preferably 120 ° C. or lower.
  • the softening point exceeds 120 ° C, compatibility with the solvent is very difficult, so it is difficult to remove the salt by washing or the like, and corrosion may be a concern in fields that require electrical reliability. .
  • the compound (B) having an allyl group or a methallyl group is superior in flame retardancy compared to a resin such as a general cresol novolac, and is a composition that can exhibit flame retardancy without adding halogen as a flame retardant. It can be manufactured, is useful for environmental impacts, and can keep the movement of ions such as chlorine contained somewhat due to the high hydrophobicity of the system, and not only has high electrical reliability but also low halogen.
  • the combination of these structures is important as an electrical / electronic component material.
  • the production method of the compound (B) having an allyl group or a methallyl group is not particularly limited, and may be produced by any known method known as a synthesis method of an allyl ether compound.
  • Japanese Patent Application Laid-Open No. 2003-104923 discloses an allyl ether obtained by reacting a polyphenol compound with an allyl halide such as allyl chloride, allyl bromide or methylallyl chloride using a base such as an alkali metal hydroxide. A method of obtaining is disclosed.
  • the (meth) allyl ether resin represented by the formula (3) can be subjected to a Claisen rearrangement reaction to obtain a (meth) allyl group-containing phenol resin represented by the formula (4).
  • the phenol resin used as a raw material includes phenols (phenol, alkyl-substituted phenol having 1 to 4 carbon atoms), 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxy A reaction product with methyl) -1,1′-biphenyl is preferred. Particularly preferred is a reaction product of phenol, cresol or naphthol with 4,4'-bis (chloromethyl) -1,1'-biphenyl or 4,4'-bis (methoxymethyl) -1,1'-biphenyl.
  • the allyl (methallyl) halide (for example, allyl chloride) is preferably one having a small amount of the polymer.
  • allyl chloride tends to polymerize to polyallyl chloride.
  • This residual polyallyl chloride not only increases the total chlorine content, but also contributes to an increase in the molecular weight of the allyl ether resin, and may leave a trace amount of gel during commercialization.
  • polyallyl chloride compounds can be easily confirmed by gas chromatography or the like, and the specific amount is preferably a polymer of 1 area% or less with respect to the allyl chloride monomer in the area ratio, Preferably it is 0.5 area%, More preferably, it is 0.2 area% or less, Most preferably, it is 0.05 area% or less. Further, the purity of allyl (methallyl) chloride is preferably 90 area% or more, more preferably 97 area% or more, and particularly preferably 99 area% or more.
  • the amount of allyl (methallyl) chloride used is usually 1.0 to 1.15 mol, preferably 1.0 to 1 mol, based on 1 mol of a hydroxyl group of a phenol resin as a raw material (hereinafter also simply referred to as a raw material phenol resin). 1.10 mol, more preferably 1.0 to 1.05 mol.
  • the base that can be used when etherifying allyl (methallyl) chloride is preferably an alkali metal hydroxide, and specific examples thereof include sodium hydroxide and potassium hydroxide.
  • the aqueous solution may be used, but in the present invention, it is particularly preferable to use a solid material formed into a flake shape from the viewpoint of solubility and handling.
  • the amount of the alkali metal hydroxide used is usually 1.0 to 1.15 mol, preferably 1.0 to 1.10 mol, more preferably 1.0 to 1 mol, based on 1 mol of the hydroxyl group of the starting phenol resin. 0.05 mole.
  • quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride may be added as a catalyst.
  • the amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of hydroxyl group of the starting phenol resin.
  • an aprotic polar solvent such as dimethyl sulfoxide (DMSO), dimethylformamide, dimethylacetamide, dimethylimidazolidinone, N-methylpyrrolidone can be used as required, and dimethyl sulfoxide is particularly used as a solvent.
  • DMSO dimethyl sulfoxide
  • the amount of the aprotic polar solvent used is preferably 20 to 300% by weight, more preferably 25 to 250% by weight, particularly preferably 25 to 200% by weight, based on the total weight of the phenol resin.
  • the aprotic polar solvent is not useful for purification such as washing with water, and it is not preferable to use it in a large amount. Moreover, since the boiling point is high and removal of the solvent is difficult, a large amount of energy is consumed, so that it is not preferable that the amount is too large.
  • other solvents can be used.
  • an alcohol having 1 to 5 carbon atoms in combination.
  • examples of the alcohol having 1 to 5 carbon atoms include alcohols such as methanol, ethanol and isopropyl alcohol.
  • non-aqueous solvents such as methyl ethyl ketone, methyl isobutyl ketone, and toluene can be used in combination. In this case, it is preferable to use 100% by weight or less, particularly preferably 0.5 to 50% by weight, based on dimethyl sulfoxide. If too much non-aqueous solvent such as methyl ethyl ketone, methyl isobutyl ketone, toluene, etc.
  • the Claisen transition begins to occur during the reaction, and the residual phenolic hydroxyl group increases, resulting in insufficient amount of allyl chloride in the system. Otherwise, a structure other than the target structure may be formed, or all the phenolic hydroxyl groups may not be allyl etherified.
  • the reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. In particular, in the present invention, it is preferable to raise the reaction temperature in two or more steps in order to make the allyl ether with higher purity.
  • the first stage is particularly preferably 35 to 50 ° C.
  • the second stage is particularly preferably 45 to 70 ° C.
  • the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours, particularly preferably 1 to 5 hours. If the reaction time is short, the reaction does not proceed, and if the reaction time is long, a by-product is formed, which is not preferable.
  • the solvents are distilled off under heating and reduced pressure.
  • the salt precipitated during the reaction may be used as it is.
  • the recovered allyl ether resin is dissolved in a ketone compound having 4 to 7 carbon atoms (for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.) as a solvent, and is 40 ° C. to 90 ° C., more preferably 50 ° C. Washing with water until the pH of the aqueous layer becomes 5 to 8 in a state heated to -80 ° C.
  • a ketone compound having 4 to 7 carbon atoms for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.
  • an inert gas such as nitrogen is preferably blown (in the air or in the liquid). If no inert gas is blown, the resulting resin may be colored.
  • the amount of inert gas blown in varies depending on the volume of the reaction vessel, but it is preferable to blow in an amount of inert gas that can replace the volume of the reaction vessel in 0.5 to 20 hours.
  • the allyl ether resin obtained by the above steps is heated to cause a Claisen rearrangement reaction, whereby the allyl ether group is rearranged to a phenol nucleus, and an allyl group-containing phenol resin can be obtained.
  • the temperature of this rearrangement reaction is preferably 150 to 250 ° C, more preferably 180 to 230 ° C, and particularly preferably 180 to 200 ° C. By setting the reaction temperature to 150 ° C. or higher, the progress of the Claisen rearrangement reaction can be accelerated.
  • the content of the compound (B) having an allyl group or a methallyl group in the thermosetting resin composition of the present invention can be appropriately set according to the type of the compound to be used, and is not particularly limited. From the viewpoint of the fluidity of the thermosetting resin composition and the heat resistance of the cured product obtained by curing it, the content ratio of the compound (B) having an allyl group or a methallyl group is 5 with respect to the total amount of the composition. It is preferably -30% by mass, more preferably 7-25% by mass.
  • thermosetting resin composition having a viscosity capable of relatively low temperature moldability. Tends to be obtained, and a cured product having high heat resistance tends to be obtained.
  • a catalyst (or also referred to as “curing accelerator”) can be used as necessary.
  • the catalyst include a basic (anionic) polymerization catalyst and a radical polymerization catalyst.
  • the basic polymerization catalyst include pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, 1-methylimidazole, 2-methylimidazole, 2-ethylimidazole.
  • 2-butylimidazole 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2,4,5-triphenylimidazole, tetrazole 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2 -Heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole ( 1 ′)) ethyl-s-triazine,
  • phosphonium salts, ammonium salts, and metal compounds are particularly preferable in terms of coloring at the time of curing and changes thereof. Further, when a quaternary salt is used, a salt with a halogen leaves the cured product with a halogen, which is not preferable from the viewpoint of electrical reliability and environmental problems.
  • radical polymerization catalyst examples include benzoin compounds such as benzoin and benzoin methyl, acetophenone compounds such as acetophenone and 2,2′-dimethoxy-2-phenylacetophenone, thioxanthone compounds such as thioxanthone and 2,4-diethylthioxanthone, 4 , 4′-diazidochalcone, 2,6-bis (4′-azidobenzal) cyclohexanone, bisazido compounds such as 4,4′-diazidobenzophenone, azobisisobutyronitrile, 2,2′-azobispropane, Azo compounds such as hydrazone, 2,5-dimethyl-2,6-di (t-butylperoxy) hexane, 2,5′-dimethyl-2,5′-di (t-butylperoxy) hexyne-3, There are organic peroxides such as dicumyl peroxide.
  • Catalysts can be used singly or in combination of two or more. From the viewpoint of curability of the resulting thermosetting resin, an anion and a radical polymerization initiator are preferred.
  • the content of the catalyst in the thermosetting resin composition can be appropriately set according to the type of catalyst used, and is not particularly limited. From the viewpoint of achieving both the effect of promoting curing and the heat resistance of the cured product, the catalyst content is preferably 0.01 to 5 parts by mass, more preferably 0 to 100 parts by mass of the thermosetting resin composition. .05 to 4 parts by mass, more preferably 0.1 to 3 parts by mass. If the amount of the catalyst is too small, it may cause curing failure. If the amount is too large, the cured material properties of the resin composition may be adversely affected.
  • the thermosetting resin composition of the present invention can contain a cyanate ester compound.
  • the cyanate ester compound is a compound represented by the general formula R—O—CN (wherein R is an organic group).
  • Examples of types of cyanate ester compounds include those in which a plurality of cyanates are introduced into bisphenols, and those in which a plurality of cyanates are introduced into phenol novolacs. Specific examples thereof include, for example, phenol novolac poly Examples include cyanate ester, bisphenol A dicyanate ester, bisphenol E dicyanate ester, tetramethylbisphenol F dicyanate ester, bisphenol F dicyanate ester, and dicyclopentadiene bisphenol A dicyanate ester.
  • a cyanate ester compound can be used individually by 1 type or in combination of 2 or more types. From the viewpoint of fluidity of the resulting thermosetting resin composition, the cyanate ester compound has a viscosity at 100 ° C. of 100 mPa ⁇ s or less, such as phenol novolac polycyanate ester, bisphenol A dicyanate ester, bisphenol. E dicyanate ester is preferred.
  • the content of the cyanate ester compound can be appropriately set according to the type of the compound to be used, and is not particularly limited. From the viewpoint of the fluidity and curability of the thermosetting resin composition and the heat resistance of the cured product obtained by curing the thermosetting resin composition, the content of the cyanate ester compound is 20 to 50% by mass relative to the total amount of the composition. Preferably, the content is 22 to 45% by mass.
  • the content ratio of the cyanate ester compound is 20 to 50% by mass with respect to the total amount of the composition, a thermosetting resin composition having a viscosity and a curing rate capable of relatively low-temperature molding can be easily obtained, Moreover, it exists in the tendency for the hardened
  • additives can be blended as necessary.
  • additives that can be used include epoxy resins, curing agents for epoxy resins, polybutadiene and modified products thereof, modified products of acrylonitrile copolymers, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, and cyanates.
  • Ester compounds, silicone gel, silicone oil, and inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, etc.
  • colorants such as surface treatment agents for fillers such as silane coupling agents, mold release agents, carbon black, phthalocyanine blue, and phthalocyanine green.
  • the amount of these additives is preferably 1,000 parts by weight or less, more preferably 700 parts by weight or less with respect to 100 parts by weight of the thermosetting resin composition.
  • the method for adjusting the thermosetting resin composition of the present invention can be appropriately applied with known methods, and is not particularly limited, but it is also possible to mix each component uniformly or prepolymerize.
  • a preferable preparation method the following method is mentioned, for example.
  • the maleimide compound (A) and the compound (B) having an allyl group or a methallyl group are melt-mixed at 120 to 160 ° C. for 30 minutes to 6 hours, and then the temperature of the obtained melt mixture is set.
  • a thermosetting resin composition is prepared by adding a catalyst to the mixture as necessary and uniformly melting and mixing it.
  • the maleimide compound (A) and the compound (B) having an allyl group or a methallyl group are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • the maleimide compound (A), the compound (B) having an allyl group or a methallyl group, and if necessary, a curing agent such as an amine compound, a cyanate ester compound, a phenol resin, an acid anhydride compound, and other additives are added. Then, it may be prepolymerized.
  • an extruder for example, an extruder, a kneader, a roll or the like is used in the absence of a solvent, and a reaction vessel with a stirrer is used in the presence of a solvent.
  • thermosetting resin composition of the present invention An organic solvent can be added to the thermosetting resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish). If necessary, the thermosetting resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain an epoxy resin composition varnish, A prepreg obtained by impregnating a fiber base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-drying is subjected to hot press molding, whereby the epoxy resin composition of the present invention can be obtained.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyr
  • the solvent used here is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, the hardened
  • thermosetting resin composition of the present invention can also be used as a modifier for a film-type composition. Specifically, it can be used to improve flexibility in the B-stage.
  • a film-type resin composition is obtained by applying the thermosetting resin composition of the present invention on the release film as the resin composition varnish, removing the solvent under heating, and then performing B-staging. It is obtained as a sheet-like adhesive. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
  • thermosetting resin composition of the present invention is heated and melted to lower the viscosity, and impregnated and held in a sheet-like fiber substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber.
  • a sheet-like fiber substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber.
  • the prepreg of the present invention in a semi-cured state can be obtained.
  • the prepreg of this invention can also be obtained by hold
  • the above prepreg is cut into the desired shape, laminated with copper foil, etc. if necessary, and the epoxy resin composition for laminates is heat-cured while applying pressure to the laminate by the press molding method, autoclave molding method, sheet winding molding method, etc. By doing so, a laminated board can be obtained.
  • a circuit can be formed on a laminated board made by superimposing copper foil on the surface, and a multilayer circuit board can be obtained by superimposing
  • thermosetting resin molding is obtained by heat-curing the above-described thermosetting resin composition of the present invention.
  • the method for curing the thermosetting resin composition is not particularly limited.
  • the thermosetting resin composition is heated to 80 ° C. and cast between two glass plates that have been subjected to release treatment using a spacer having a thickness of 1.5 mm, and primary curing is performed at 170 to 200 ° C. for 2 hours. Then, after removing the primary cured product from the glass plate and post-curing at 230 to 260 ° C. for 2 hours, a cured product (thermosetting resin molding) can be obtained.
  • thermosetting resin composition of the present invention can be applied to various uses, and the use is not particularly limited.
  • the thermosetting resin composition of the present invention is excellent in heat resistance and strength, handleability and production efficiency, it is necessary to use such performances, for example, matrix resins for fiber reinforced composite materials, electric and electronic It is particularly useful in the field of component sealants and the like, and is particularly suitable as a matrix resin for fiber-reinforced composite materials.
  • GC -Gas chromatography
  • -Curing exotherm Measurement start temperature, curing exothermic peak top temperature, and exothermic end temperature by MDSC measurement
  • Analysis condition analysis mode MDSC measurement Measuring instrument: Q2000 manufactured by TA-instruments, Temperature increase rate: 3 ° C / min
  • the mixture was cooled to 38 to 40 ° C., and 130.0 parts by mass of flaky caustic soda (purity: 99%, manufactured by Tosoh Corp.) (1.3 molar equivalents relative to 1 molar equivalent of the hydroxyl group of the phenol resin) was added over 60 minutes. Thereafter, 294.3 parts by mass of methallyl chloride (purity 99%, manufactured by Tokyo Chemical Industry Co., Ltd.) (1.3 molar equivalents relative to 1 molar equivalent of the hydroxyl group of the phenol resin) was added dropwise over 60 minutes, and the temperature was 38 to 40 ° C. For 5 hours and at 60 to 65 ° C. for 1 hour.
  • flaky caustic soda purity: 99%, manufactured by Tosoh Corp.
  • methallyl chloride purity 99%, manufactured by Tokyo Chemical Industry Co., Ltd.
  • aromatic amine resin (a1) was obtained by distilling off excess aniline and toluene from the oil layer with a rotary evaporator under heating and reduced pressure (200 ° C., 0.6 KPa). Diphenylamine in the aromatic amine resin (a1) was 2.0%. The obtained resin was again dripped in small amounts in place of steam blowing in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa). As a result, 166 parts of aromatic amine resin (A1) was obtained. The aromatic amine resin (A1) obtained had a softening point of 56 ° C., a melt viscosity of 0.035 Pa ⁇ s, and diphenylamine of 0.1% or less.
  • the reaction is carried out at the same temperature for 2 hours, 3 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 20 hours while dehydrating.
  • 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy.
  • the reaction solution was concentrated to obtain a resin solution containing 70% of maleimide resin (MT1).
  • Example 1 44 parts by weight of the compound (AEP1) having an allyl group obtained in Synthesis Example 1 and 56 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 were mixed and stirred uniformly at 150 ° C. An inventive thermosetting resin composition was obtained. Table 1 shows the results of curing heat generation of the obtained thermosetting resin composition.
  • thermosetting resin composition 44 parts by weight of the allyl group-containing compound (AEP1) obtained in Synthesis Example 1 and 56 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 were mixed and stirred uniformly at 150 ° C. 1 part by weight of triphenylphosphine (TPP Pure Chemical Reagent) as a curing accelerator was blended and stirred uniformly at 100 ° C. to obtain the thermosetting resin composition of the present invention.
  • Table 1 shows the results of curing heat generation of the obtained thermosetting resin composition.
  • thermosetting resin composition of the present invention After blending 44 parts by weight of the allyl group-containing compound (AEP1) obtained in Synthesis Example 1 and 56 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 and stirring uniformly at 150 ° C., a radical system 1 part by weight of dicumyl peroxide (manufactured by DCP Kayaku Akzo) as a curing accelerator was blended and stirred uniformly at 100 ° C. to obtain the thermosetting resin composition of the present invention. Table 1 shows the results of curing heat generation of the obtained thermosetting resin composition.
  • thermosetting resin composition of the present invention can be molded and processed at a relatively low temperature. Further, when it contains an anionic polymerization catalyst and a radical polymerization catalyst, the thermosetting resin composition can further promote curing. It can be confirmed that the molding process is possible at a relatively low temperature.
  • Example 4 44 parts by weight of the compound having an allyl group (AEP1) obtained in Synthesis Example 1 and 56 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 were mixed and stirred uniformly at 150 ° C. A thermosetting resin composition was obtained. This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a cured product of the present invention. Tables 2 to 4 show the measurement results of the physical properties of the cured products.
  • thermosetting resin composition of the present invention.
  • This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a cured product of the present invention.
  • Table 2 shows the measurement results of the physical properties of the cured product.
  • thermosetting resin composition 45 parts by weight of the compound having a methallyl group (MEP1) obtained in Synthesis Example 2 and 55 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 were mixed and stirred uniformly at 150 ° C.
  • a thermosetting resin composition was obtained.
  • This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a cured product of the present invention.
  • Table 2 shows the measurement results of the physical properties of the cured product.
  • thermosetting resin composition of the present invention After blending 45 parts by weight of the compound having a methallyl group (MEP1) obtained in Synthesis Example 2 and 55 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 and stirring uniformly at 150 ° C., triphenyl was added. 1 part by weight of phosphine (TPP Pure Chemical Reagent) was blended and stirred uniformly at 100 ° C. to obtain a thermosetting resin composition of the present invention. This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a cured product of the present invention. Table 2 shows the measurement results of the physical properties of the cured product.
  • MEP1 methallyl group
  • MT1 maleimide resin
  • thermosetting resin composition of the present invention After 45 parts by weight of the allyl group-containing compound (AEP1) obtained in Synthesis Example 1 and 55 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 were mixed and stirred uniformly at 150 ° C., dicumyl One part by weight of peroxide (DCP Kayaku Akzo Co., Ltd.) was blended and stirred uniformly at 100 ° C. to obtain the thermosetting resin composition of the present invention. This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a cured product of the present invention. Table 2 shows the measurement results of the physical properties of the cured product.
  • Example 9 After blending 45 parts by weight of the compound having a methallyl group (MEP1) obtained in Synthesis Example 2 and 55 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 and stirring uniformly at 150 ° C., dicumyl One part by weight of peroxide (DCP Kayaku Akzo Co., Ltd.) was blended and stirred uniformly at 100 ° C. to obtain the thermosetting resin composition of the present invention. This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a cured product of the present invention. Table 2 shows the measurement results of the physical properties of the cured product.
  • MEP1 methallyl group
  • MT1 maleimide resin
  • Example 10 45 parts by weight of the compound having an allyl group obtained in Synthesis Example 1 (AEP1), 54 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4, dicumyl peroxide (manufactured by DCP Kayaku Akzo Co., Ltd.) 1 part by weight was mixed using methyl ethyl ketone as a solvent to obtain a uniform varnish having a resin content of 50% by mass. Next, the above-mentioned varnish was impregnated and applied to E glass cloth having a thickness of 0.2 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 62% by mass.
  • this prepreg was 0.5% or less.
  • Four pieces of this prepreg are cut into a size of 150 mm x 250 mm, 32 ⁇ m electrolytic copper foil is placed up and down, and a capron film is placed, and pressure is applied at 2.5 MPa, 200 ° C. ⁇ 2 hours, 250 ° C. ⁇ 2 hours.
  • a copper clad laminate was obtained.
  • the weight reduction rate during the curing process of the obtained copper clad laminate was measured. Table 5 shows the measurement results.
  • Example 11 After blending 45 parts by weight of the compound having a methallyl group (MEP1) obtained in Synthesis Example 2 and 55 parts by weight of the maleimide resin (MT1) obtained in Synthesis Example 4 and stirring uniformly at 150 ° C., dicumyl After blending 1 part by weight of peroxide (DCP Kayaku Akzo Co., Ltd.) and stirring uniformly at 100 ° C., it was precured at 180 ° C. for 30 minutes. The pre-cured resin was sandwiched between PET films and formed into a 300 ⁇ m thick sheet with a 180 ° C. laminator.
  • MEP1 methallyl group
  • MT1 maleimide resin obtained in Synthesis Example 4
  • the PET sheet of the finished sheet was peeled off on one side, the resin part was placed up and down on a twill carbon fiber sheet, and pressure bonded at a pressure of 0.1 MPa to prepare a prepreg of carbon fiber.
  • Four prepregs were stacked, capron films were placed one above the other, and pressed at a pressure of 2.5 MPa, 200 ° C. ⁇ 2 hours, 250 ° C. ⁇ 2 hours to obtain a carbon fiber reinforced plastic laminate.
  • the weight reduction rate in the curing process of the obtained carbon fiber reinforced plastic laminate was measured. Table 5 shows the measurement results.
  • thermosetting resin composition 35 parts by weight of the allyl group-containing compound (AEP1) obtained in Synthesis Example 1 and 65 parts by weight of 4,4′-bismaleimide diphenylmethane (MT2 manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed and stirred uniformly at 150 ° C. Then, 1 part by weight of dicumyl peroxide (DCP Kayaku Akzo Co., Ltd.) was mixed and stirred uniformly at 100 ° C. to obtain a comparative thermosetting resin composition. This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a comparative cured product. Table 2 shows the measurement results of the physical properties of the cured product.
  • thermosetting resin composition After mixing 35 parts by weight of the compound having a methallyl group (MEP1) obtained in Synthesis Example 2 and 65 parts by weight of 4,4′-bismaleimide diphenylmethane (MT2) and stirring uniformly at 150 ° C., dicumyl par 1 part by weight of oxide (DCP Kayaku Akzo Co., Ltd.) was added and stirred uniformly at 100 ° C. to obtain a comparative thermosetting resin composition.
  • This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a comparative cured product.
  • Table 2 shows the measurement results of the physical properties of the cured product.
  • thermosetting resin composition After blending 32 parts by weight of diallyl bisphenol A (reagent) and 68 parts by weight of 4,4′-bismaleimide diphenylmethane (MT2) and stirring uniformly at 150 ° C., 1 part by weight of triphenylphosphine (TPP Pure Chemical Reagent) Were mixed uniformly at 100 ° C. to obtain a comparative thermosetting resin composition.
  • This thermosetting resin composition was cured under curing conditions of 200 ° C. ⁇ 2 hours and 250 ° C. ⁇ 2 hours to obtain a comparative cured product.
  • Table 4 shows the measurement results of the physical properties of the cured product.
  • ⁇ Dielectric constant test and dielectric loss tangent test> -Using a 1 GHz cavity resonator manufactured by Kanto Electronics Co., Ltd., a test was performed by the cavity resonator perturbation method. However, the sample size was 1.7 mm wide ⁇ 100 mm long, and the thickness was 1.7 mm. Water absorption: 100 ° C. ⁇ 24 h Weight increase% of the cured product immersed ⁇ Weight reduction rate during curing process> ⁇ Measured by the following formula.
  • the cured product of the thermosetting resin composition of the present invention exhibits higher heat resistance, lower water absorption, and lower dielectric properties than the cured product of the thermosetting resin composition that is usually used. Furthermore, from Table 3, it can be confirmed that the cured product of the thermosetting resin composition of the present invention is excellent not only in heat resistance after curing but also in mechanical strength and thermal decomposition characteristics. Also, from Table 4, the comparative thermosetting resin composition has bubbles in the cured product, whereas the cured product of the thermosetting resin composition of the present invention has no bubbles. Can be confirmed. The presence of bubbles in the cured product means that the resin composition has high volatility, and in order to prepare a cured product with excellent mechanical strength, a rapid temperature rise is avoided and a long molding method is required. Can be assumed.
  • thermosetting resin composition of the present invention is a material suitable for a fiber-reinforced composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

比較的に低温で成形加工することが可能であり、さらには硬化後の耐熱性及び機械強度、強靭性、熱分解特性に優れる熱硬化性樹脂組成物を提供する。下記式(1)で表されるマレイミド基を有する化合物(A)と、アリル基またはメタリル基を有する化合物(B)を含有する。 (式(1)中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくは芳香族基を表す。aは1~3を表す。nは整数でありその平均値は1<n≦5を表す。)

Description

熱硬化性樹脂組成物、プリプレグ及びその硬化物
 本発明は航空宇宙材料、工作機械部材用途、電気・電子材料等の種々の用途で利用可能であり、特に耐熱性が要求される繊維強化複合材料用途や電気電子部品の封止材等の分野において有用な熱硬化性樹脂組成物、プリプレグおよびその硬化物に関する。
 繊維強化複合材料は、マトリックス樹脂と、炭素繊維、ガラス繊維、アルミナ繊維、ボロン繊維やアラミド繊維などの強化繊維とから成り、一般に軽量かつ高強度の特徴を有する。このような繊維強化複合材料は、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)、旅客機の機体や翼などの航空宇宙材料、ロボットハンドアームに代表される工作機械部材や、建築・土木補修材としての用途、さらにはゴルフシャフトやテニスラケットなどのレジャー用品用途などに幅広く用いられている。特に旅客機の機体や翼などの航空宇宙材料、ロボットハンドアームに代表される工作機械部材において炭素繊維強化複合材料(以下CFRPと称す)には、室温から約200℃までの温度範囲で剛性を保つ耐熱性、機械特性、長期信頼性、即ち熱分解温度が十分高く吸水率が低いことが要求されている。繊維強化複合材料のマトリックス樹脂としては、従来、エポキシ系樹脂が広く使用されているが、エポキシ系樹脂は、耐熱性が低く航空宇宙材料や工作機械部材用途には不適である。
 一方、耐熱性が高く、200℃以上の使用環境にも耐えうるマトリックス樹脂として、マレイミド樹脂が広く知られている。マレイミド樹脂の主剤としては、ビスマレイミド化合物が一般に使用されているが、このものだけでは硬化性が悪く、かつ成型品が脆くなるため、これを改善するために各種変性剤が開発されている。その解決策として、種々の変性が行われており、例えばシアン酸エステル系樹脂組成物にメタ(アクリロイル)基を導入した変性ブタジエン系樹脂を配合するもの(特許文献1)、ブタジエン-アクリロニトリル共重合体を添加するもの(特許文献2)、あるいはこれらにさらにエポキシ樹脂を加えたもの(特許文献3)などが知られている。しかしながら、これらの方法では脆さは軽減するものの、耐熱性、耐水性の低下が避けられない問題があった。
 さらに、マレイミド樹脂をマレイミド樹脂の反応性希釈剤、架橋剤、難燃剤などの添加剤として知られるアリル化合物で変性する方法も公知である。例えば、特許文献4は、4,4’-ジフェニルメタンビスマレイミドに常温で液状であるo,o’-ジアリルビスフェノールAを加熱溶融し、混合して得られる樹脂であり、無溶剤で炭素繊維シートに含浸させることが可能である。
日本国特開昭57-153045号公報 日本国特開昭57-153046号公報 日本国特開昭56-157424号公報 日本国特開平9-87460号公報
 しかしながら、特許文献4は得られる4-4’ビスマレイミドジフェニルメタンは剛直な骨格のため、機械強度や強靭性がなく、o,o’-ジアリルビスフェノールAで変性しても、得られた樹脂は十分な強度が得られず、成型したCFRPにはクラックが多く観察される。
 上記事情に鑑み、本発明は、比較的に低温で成形加工することが可能であり、さらには硬化後の耐熱性、吸水特性及び機械強度、熱分解特性に優れる、熱硬化性樹脂組成物を提供することを目的とする。
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、特定のマレイミド基を有する化合物とアリル基またはメタリル基を有する化合物を含有する熱硬化性樹脂組成物が、比較的に低温で成形加工することが可能であり、しかも、硬化性に優れ、さらに、これを用いることにより短時間の後硬化処理であっても耐熱性等の特性が優れた硬化物を得られることを見出し、本発明を完成させるに至った。
 すなわち本発明は、
[1]
 下記式(1)で表されるマレイミド基を有する化合物(A)と、アリル基またはメタリル基を有する化合物(B)を含有する熱硬化性樹脂組成物、
Figure JPOXMLDOC01-appb-C000002
(式(1)中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくは芳香族基を表す。aは1~3を表す。nは整数でありその平均値は1<n≦5を表す。)
[2]
 前記アリル基またはメタリル基を有する化合物(B)の重量平均分子量(Mw)が350~1200である前項[1]に記載の熱硬化性樹脂組成物、
[3]
 さらに触媒を含有する前項[1]又は[2]に記載の熱硬化性樹脂組成物、
[4]
 前項[1]~[3]のいずれか一項に記載の熱硬化性樹脂組成物をシート状の繊維基材に保持したプリプレグ、
[5]
 前項[1]~[3]のいずれか一項に記載の熱硬化性樹脂組成物、又は前項[4]に記載のプリプレグの硬化物、
に関する。
 本発明の熱硬化性樹脂組成物は、比較的に低温で成形加工することが可能であり、さらには硬化後の耐熱性、吸水特性及び機械強度、熱分解特性に優れる効果を有する。
 本発明の熱硬化性樹脂組成物について、以下に説明する。
 本発明の熱硬化性樹脂組成物は、下記式(1)で表されるマレイミド基を有する化合物(A)(単に「マレイミド化合物(A)」ともいう。)と、アリル基またはメタリル基を有する化合物(B)とを含有する。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくは芳香族基を表す。aは1~3を表す。nは整数でありその平均値は1<n≦5を表す。)
 前記式(1)中のRにおける炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、i-ペンチル基、アミル基、n-ヘキシル基、シクロペンチル基、シクロへキシル基、オクチル基、2-エチルへキシル基、ノニル基、デシル基等が挙げられる。その中でもメチル基が好ましい。
 前記式(1)中のRにおける芳香族基としては、フェニル基、ビフェニル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基等の芳香族炭化水素基、フラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基及びカルバゾリル基等が挙げられる。
 また、式(1)のnの値は整数であり、1<nの平均値≦5を表す。nは1~10であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。なお、nの値はマレイミド化合物(A)のゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量の値から算出することが出来るが、近似的には原料である化合物のGPCの測定結果から算出したnの値とほぼ同等と考えることができる。
 上記マレイミド化合物(A)の製造方法は特に限定されず、マレイミド化合物の合成方法として知られる公知の如何なる方法で製造してもよい。例えば日本国特開平3-100016号公報及び日本国特公平8-16151号公報にはアニリン類とジハロゲノメチル化合物やジアルコキシメチル化合物との反応が記載されているが、これらと同様の方法を採用してアニリン類とビスハロゲノメチルビフェニル類又はビスアルコキシメチルビフェニル類とを反応させることにより式(2)の化合物が得られる。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくは芳香族基を表す。nは整数であり、1<nの平均値≦5を表す。)
 前記式(2)中のRにおける炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、i-ペンチル基、アミル基、n-ヘキシル基、シクロペンチル基、シクロへキシル基、オクチル基、2-エチルへキシル基、ノニル基、デシル基等が挙げられる。
 前記式(2)中のRにおける芳香族基としては、フェニル基、ビフェニル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基等の芳香族炭化水素基、フラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基及びカルバゾリル基等が挙げられる。
 上記マレイミド化合物の製造に使用されるアニリン類としては、アニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、2-エチルアニリン、3-エチルアニリン、4-エチルアニリン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-プロピルアニリン、3-プロピルアニリン、4-プロピルアニリン、2-イソプロピルアニリン、3-イソプロピルアニリン、4-イソプロピルアニリン、2-エチル-6-メチルアニリン、2-sec-ブチルアニリン、2-tert-ブチルアニリン、4-ブチルアニリン、4-sec-ブチルアニリン、4-tert-ブチルアニリン、2,6-ジエチルアニリン、2-イソプロピル-6-メチルアニリン、4-ペンチルアニリン等の炭素数1~5のアルキル基を単数又は複数有するアルキル置換アニリン、2-アミノビフェニル、4-アミノビフェニル等のフェニル基を有するフェニルアニリンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 使用されるビスハロゲノメチルビフェニル類またはビスアルコキシメチルビフェニル類としては、4,4’-ビス(クロロメチル)ビフェニル、4,4’-ビス(ブロモメチル)ビフェニル、4,4’-ビス(フルオロメチル)ビフェニル、4,4’-ビス(ヨードメチル)ビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ジエトキシメチルビフェニル、4,4’-ジプロポキシメチルビフェニル、4,4’-ジイソプロポキシメチルビフェニル、4,4’-ジイソブトキシメチルビフェニル、4,4’-ジブトキシメチルビフェニル、4,4’-ジ-tert-ブトキシメチルビフェニルなどが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。ビスハロゲノメチルビフェニル類またはビスアルコキシメチルビフェニル類の使用量は、使用されるアニリン類1モルに対して通常0.05~0.8モルであり、好ましくは0.1~0.6モルである。
 上記マレイミド化合物(A)は例えば前記式(2)のような原料化合物に無水マレイン酸を溶剤、触媒の存在下に反応させて得られるが、例えば日本国特開平3-100016号公報や日本国特開昭61-229863号公報に記載の方法等を採用すればよい。
 反応で使用する溶剤は反応中に生成する水を系内から除去する必要があるため、非水溶性の溶剤を使用する。例えばトルエン、キシレンなどの芳香族溶剤、シクロヘキサン、n-ヘキサンなどの脂肪族溶剤、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル系溶剤、メチルイソブチルケトン、シクロペンタノンなどのケトン系溶剤などが挙げられるがこれらに限定されるものではなく、2種以上を併用しても良い。
 また、前記非水溶性溶剤に加えて非プロトン性極性溶剤を併用することもできる。例えば、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどが挙げられ、2種以上を併用しても良い。非プロトン性極性溶剤を使用する場合は、併用する非水溶性溶剤よりも沸点の高いものを使用することが好ましい。
 触媒は酸性触媒で特に限定されないが、p-トルエンスルホン酸、ヒドロキシ-p-トルエンスルホン酸、メタンスルホン酸、硫酸、リン酸等が挙げられる。例えばマレイン酸をトルエンに溶解し、撹拌下で式(2)の化合物のN-メチルピロリドン溶液を添加し、その後p-トルエンスルホン酸を加えて、還流条件下で生成する水を系内から除去しながら反応を行う。
 上記マレイミド化合物(A)は融点、軟化点を有するものを用いることができる。特に融点を有する場合は200℃以下が好ましく、また軟化点を有する場合は150℃以下であることが好ましい。融点や軟化点が高温すぎる場合、混合の際にゲル化の可能性が高くなることがある。
 本発明の熱硬化性樹脂組成物中におけるマレイミド化合物(A)の含有量は、熱硬化性樹脂組成物の流動性及びこれを硬化して得られる硬化物の耐熱性の観点から、組成物の総量に対して、30~70質量%であることが好ましく、35~60質量%であることがより好ましい。マレイミド化合物(A)の含有割合を組成物の総量に対して30~70質量%とすることで、比較的に低温成形性可能な粘度を有する熱硬化性樹脂組成物が得られ易く、また、高い耐熱性を有する硬化物が得られ易い傾向にある。
 本発明の熱硬化性樹脂組成物は、前記式(1)で表されるマレイミド基を有する化合物(A)と、アリル基またはメタリル基を有する化合物(B)(「(メタ)アリル基含有化合物(B)」とも表す。)を含有する。アリル基またはメタリル基を有する化合物(B)は、マレイミド化合物(A)の硬化剤として作用する。
 前記アリル基またはメタリル基を有する化合物(B)としては、例えば、4,4’-ビスフェノールAジアリルエーテル、4,4’-ビスフェノールFジアリルエーテル、4,4’-ビスフェノールFジメタリルエーテル、トリ(メタ)アリルイソシアヌレート、2,2-ジ(4-アセチルオキシ-3-(メタ)アリルフェニル)プロパン、ジ(4-アセチルオキシ-3-(メタ)アリルフェニル)メタン、ジ(4-アセチルオキシ-3-(メタ)アリルフェニル)スルホン、2,2-ジ(4-ベンゾイルオキシ-3-(メタ)アリルフェニル)プロパン、ジ(4-ベンゾイルオキシ-3-(メタ)アリルフェニル)メタン、ジ(4-ベンゾイルオキシ-3-(メタ)アリルフェニル)スルホン、2,2-ジ(4-トルオイルオキシ-3-(メタ)アリルフェニル)プロパン、ジ(4-トルオイルオキシ-3-(メタ)アリルフェニル)メタン、ジ(4-トルオイルオキシ-3-(メタ)アリルフェニル)スルホン、2,2-ジ(4-プロピオニルオキシ-3-(メタ)アリルフェニル)プロパン、ジ(4-プロピオニルオキシ-3-(メタ)アリルフェニル)メタン、ジ(4-プロピオニルオキシ-3-(メタ)アリルフェニル)スルホン、2,2-ジ(4-ブチリルオキシ-3-(メタ)アリルフェニル)プロパン、2,2-ジ(4-イソブチリルオキシ-3-(メタ)アリルフェニル)プロパン・アリルクロリド、アリルアルコール、アリルエチルエーテル、アリル-2-ヒドロキシエチルエーテル、アリルグリシジルエーテル、メタリルグリシジルエーテル、ジアリルフタレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、トリアリルイソシアヌレートが挙げられる。好ましく以下の一般式(3)で表される(メタ)アリルエーテル樹脂又は下記式(4)で表される(メタ)アリルフェノール樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式(3)中、複数存在するR、Rはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくは芳香族基を表す。aは1~3を表す。nは整数でありその平均値は1<n≦5を表す。)
Figure JPOXMLDOC01-appb-C000006
(式(4)中、複数存在するR、Rはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくは芳香族基を表す。aは1~3を表す。nは整数でありその平均値は1<n≦5を表す。)
 前記式(3)及び式(4)中のR、Rにおける炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、i-ペンチル基、アミル基、n-ヘキシル基、シクロペンチル基、シクロへキシル基、オクチル基、2-エチルへキシル基、ノニル基、デシル基等が挙げられる。その中でもメチル基が好ましい。
 前記式(3)及び式(4)中のR、Rにおける芳香族基としては、フェニル基、ビフェニル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基等の芳香族炭化水素基、フラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基及びカルバゾリル基等が挙げられる。
 前記式(3)及び式(4)において、同一環上で隣接して存在するR同士は、互いに結合して縮合環を形成してもよい。この場合形成される縮合環としては、ナフタレン、アントラセン、フェナントレン等が挙げられる。
 上記式(3)及び式(4)中の複数の(メタ)アリル基の一部は水素原子に置換されていてもよい。例えば、式(3)中の全てのフェノール性水酸基がアリルエーテル化している必要はなく、アリルエーテル化していない水酸基を有していてもよい。
 また、式(3)及び式(4)のnの値は整数であり、1<nの平均値≦5を表す。nは1~10であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。
 なお、nの値はゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量の値から算出することが出来るが、近似的には原料である化合物のGPCの測定結果から算出したnの値とほぼ同等と考えることができる。
 上記アリル基またはメタリル基を有する化合物(B)の重量平均分子量(Mw)が350~1200が好ましい。より好ましくは400~1000であり、特に好ましくは440~800である。分子量が350未満であると揮発性により硬化物の成形が困難になり分子量1200を超えると高粘度や溶媒への相溶性が非常に困難であるため、硬化物の成形が困難になることがある。
 なお、重量平均分子量はゲルパーミエーションクロマトグラフィー法(GPC)により測定することができる。
 上記アリル基またはメタリル基を有する化合物(B)の全塩素量としては500ppm以下が好ましく、より好ましくは300ppm以下、特に100ppm以下であることが好ましい。
 上記アリル基またはメタリル基を有する化合物(B)の軟化点は120℃以下であることが好ましい。軟化点が120℃を超えると溶剤への相溶性が非常に困難であるため、洗浄等により塩を除くことが困難であり、電気信頼性の必要な分野においては腐食が懸念されることがある。
 アリル基またはメタリル基を有する化合物(B)は、一般のクレゾールノボラック等の樹脂に比べ、難燃性に優れており、難燃剤としてハロゲンを添加させることなく難燃性を発現できうる組成物を製造でき、環境負荷に対して有用であり、かつ系の疎水性の高さから多少含まれる塩素等のイオン分の移動をとどめることができ、高い電気信頼性を有するだけでなく、低ハロゲンとこれらの構造の組み合わせは電気電子部品材料として重要である。
 本発明の熱硬化性樹脂組成物において、アリル基またはメタリル基を有する化合物(B)の製造方法は特に限定されず、アリルエーテル化合物の合成方法として知られる公知の如何なる方法で製造してもよい。例えば、日本国特開2003-104923号公報には多価フェノール化合物にアルカリ金属水酸化物等の塩基を用いて塩化アリルや臭化アリル、メチルアリルクロライド等のハロゲン化アリルを反応させてアリルエーテルを得る方法が開示されてある。または、前記式(3)で表される(メタ)アリルエーテル樹脂をクライゼン転位反応させて、式(4)で表される(メタ)アリル基含有フェノール樹脂を得ることもできる。
 例えば、フェノール樹脂とアリル(メタリル)ハライドとの反応によって得られる。原料となるフェノール樹脂としては、フェノール類(フェノール、炭素数1~4のアルキル置換フェノール)と、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニルとの反応物が好ましい。特に好ましくはフェノール、クレゾールまたはナフトールと4,4’-ビス(クロルメチル)-1,1’-ビフェニルまたは4,4’-ビス(メトキシメチル)-1,1’-ビフェニルとの反応物である。
 上記アリル(メタリル)ハライド(例えば、アリルクロライド)はその重合物が少ないものを用いることが好ましい。例えば、アリルクロライドはそれ同士が重合し、ポリアリルクロライドになる傾向がある。
 このポリアリルクロライドの残留は全塩素量を押し上げる要因になるばかりか、アリルエーテル樹脂の分子量の増加に寄与し、製品化の際に微量なゲル物を残すことがある。またこの塩素量を低下させるためには相当量の塩基性物質の追加が必要となり、産業上好ましくないばかりか、系内に毒性の高いアリルアルコールを生成してしまう。
 これらポリアリルクロライド化合物はガスクロマトグラフィー等で容易に確認が可能であり、具体的な量としてはその面積比でそのアリルクロライドモノマーに対し、1面積%以下の重合物であることが好ましく、より好ましくは0.5面積%、さらに好ましくは0.2面積%以下、特に好ましくは0.05面積%以下である。
 また、アリル(メタリル)クロライドの純度としては、90面積%以上が好ましく、97面積%以上がより好ましく、99面積%以上が特に好ましい。
 上記アリル(メタリル)クロライドの使用量は原料であるフェノール樹脂(以下、単に原料フェノール樹脂とも称する)の水酸基1モルに対して通常1.0~1.15モルであり、好ましくは1.0~1.10モル、より好ましくは1.0~1.05モルである。
 アリル(メタリル)クロライドをエーテル化する際に使用しうる塩基としてはアルカリ金属水酸化物が好ましく、その具体的な例としては水酸化ナトリウム、水酸化カリウム等が挙げられ、固形物を利用してもよく、その水溶液を使用してもよいが、本発明においては特に、溶解性、ハンドリングの面からフレーク状に成型された固形物の使用が好ましい。
 アルカリ金属水酸化物の使用量は原料フェノール樹脂の水酸基1モルに対して通常1.0~1.15モルであり、好ましくは1.0~1.10モル、より好ましくは1.0~1.05モルである。
 反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加してもかまわない。4級アンモニウム塩の使用量としては原料フェノール樹脂の水酸基1モルに対し通常0.1~15gであり、好ましくは0.2~10gである。
 本反応においては、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルイミダゾリジノン、N-メチルピロリドン等の非プロトン極性溶媒を必要に応じて用いることができ、特にジメチルスルホキシドを溶剤として用いることが好ましい。
 非プロトン極性溶媒の使用量としてはフェノール樹脂の総重量に対し、20~300重量%が好ましく、より好ましくは25~250重量%、特に好ましくは25~200重量%である。非プロトン極性溶媒は水洗等の精製に有用ではなく、大量に使用するのは好ましくない。また沸点が高く、溶剤の除去が困難であるため、多大なエネルギーを消費してしまうため多すぎることは好ましくない。
 なお、本反応においては他の溶剤を使用することも可能である。使用する場合には、炭素数1~5のアルコールを併用することが好ましい。炭素数1~5のアルコールとしてはメタノール、エタノール、イソプロピルアルコールなどのアルコール類である。
 また、メチルエチルケトン、メチルイソブチルケトン、トルエン等の非水系の溶剤を併用することもできる。この場合はジメチルスルホキシドに対し、100重量%以下の使用が好ましく、特に好ましくは0.5~50重量%である。あまり過剰にメチルエチルケトン、メチルイソブチルケトン、トルエン等の非水系の溶剤を用いると反応時にクライゼン転移が起こり始め、残留するフェノール性水酸基が増加してしまい、系内のアリルクロライド量が足りなくなるだけでなく、目的とする構造以外のものができてしまうか、またフェノール性水酸基がすべてアリルエーテル化されないことがある。
 反応温度は通常30~90℃であり、好ましくは35~80℃である。特に本発明においては、より高純度なアリルエーテル化するために2段階以上に分けて反応温度を上昇させることが好ましい。1段階目は35~50℃、2段階目は45℃~70℃が特に好ましい。反応時間は通常0.5~10時間であり、好ましくは1~8時間、特に好ましくは1~5時間である。反応時間が短いと反応が進みきらず、反応時間が長くなると副生成物ができることから好ましくない。
 反応終了後、溶剤類を加熱減圧下で留去する。反応時に析出する塩はそのままで構わない。回収したアリルエーテル樹脂を炭素数4~7のケトン化合物(たとえば、メチルイソブチルケトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等が挙げられる。)を溶剤として溶解し、40℃~90℃、より好ましくは50~80℃に加温した状態で水層がpH5~8になるまで水洗を行う。この際、水洗をpHが8以上で止めた場合、後にエポキシ化等の反応を行うと触媒の系を崩してしまうことから反応が適切に進まなくなることがある。
 なお、アリルエーテル化反応においては窒素等不活性ガスを吹き込む(気中、もしくは液中)ことが好ましい。不活性ガスの吹き込みが無い場合、得られる樹脂に着色が生じる場合がある。不活性ガスの吹き込み量はその反応容器の容積によっても異なるが、0.5~20時間でその反応容器の容積が置換できる量の不活性ガスの吹き込みが好ましい。
 さらに、以上の工程により、得られたアリルエーテル樹脂を加熱してクライゼン転位反応させることにより、アリルエーテル基がフェノール核に転位し、アリル基含有フェノール樹脂を得ることができる。この転位反応の温度は、150~250℃が好ましく、180~230℃がより好ましく、180~200℃が特に好ましい。反応温度を150℃以上とすることにより、クライゼン転位反応の進行を早めることができ、反応温度を250℃以下とすることで原料や目的物等の分解を防止できる。
 本発明の熱硬化性樹脂組成物中におけるアリル基またはメタリル基を有する化合物(B)の含有量は、使用する化合物の種類に応じて適宜設定することができ、特に限定されない。熱硬化性樹脂組成物の流動性及びこれを硬化して得られる硬化物の耐熱性の観点から、組成物の総量に対して、アリル基またはメタリル基を有する化合物(B)の含有割合は5~30質量%であることが好ましく、7~25質量%であることがより好ましい。アリル基またはメタリル基を有する化合物(B)の含有割合を組成物の総量に対して5~30質量%とすることで、比較的に低温成形性可能で、粘度を有する熱硬化性樹脂組成物が得られ易く、また、高い耐熱性を有する硬化物が得られ易い傾向にある。
 本発明の熱硬化性樹脂組成物は、必要に応じて触媒(または「硬化促進剤」とも称す。)を使用することができる。用いることができる触媒の具体例としては、塩基性(アニオン)重合触媒とラジカル重合触媒が挙げられる。塩基性重合触媒としては、例えばピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2,4,5-トリフェニルイミダゾール、テトラゾール2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-ウンデシルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-エチル,4-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種等の複素環式化合物類、及び、それら複素環式化合物類とジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等のアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、カルボン酸金属塩(2-エチルヘキサン酸、ステアリン酸、ベヘン酸、ミリスチン酸などの亜鉛塩、スズ塩、ジルコニウム塩)やリン酸エステル金属(オクチルリン酸、ステアリルリン酸等の亜鉛塩)、アルコキシ金属塩(トリブチルアルミニウム、テトラプロピルジルコニウム等)、アセチルアセトン塩(アセチルアセトンジルコニウムキレート、アセチルアセトンチタンキレート等)等の金属化合物等、が挙げられる。本発明においては特にホスホニウム塩やアンモニウム塩、金属化合物類が硬化時の着色やその変化の面において好ましい。また4級塩を使用する場合、ハロゲンとの塩はその硬化物にハロゲンを残すことになり、電気信頼性および環境問題の視点から好ましくない。
 ラジカル重合触媒としては、ベンゾイン、ベンゾインメチル等のベンゾイン系化合物、アセトフェノン、2,2’-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン系化合物、チオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物、4,4’-ジアジドカルコン、2,6-ビス(4’-アジドベンザル)シクロヘキサノン、4,4’-ジアジドベンゾフェノン等のビスアジド化合物、アゾビスイソブチロニトリル、2,2’-アゾビスプロパン、ヒドラゾン等のアゾ化合物、2,5-ジメチル-2,6-ジ(t-ブチルパーオキシ)ヘキサン、2,5’-ジメチル-2,5’-ジ(t-ブチルパーオキシ)ヘキシン-3、ジクミルパーオキサイド等のなど有機過酸化物がある。
 触媒は、1種を単独で或いは2種以上を組み合わせて使用することができる。得られる熱硬化性樹脂の硬化性の観点から、アニオン及びラジカル重合開始剤であることが好ましい。
 熱硬化性樹脂組成物中における触媒の含有量は、使用する触媒の種類に応じて適宜設定することができ、特に限定されない。硬化促進効果と硬化物の耐熱性とを両立させる観点から、触媒の含有割合は熱硬化性樹脂組成物100質量部に対して0.01~5質量部であることが好ましく、より好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。触媒は少なすぎると硬化不良の原因になり、多すぎると樹脂組成物の硬化物性に悪影響を及ぼすことがある。
 本発明の熱硬化性樹脂組成物はシアン酸エステル化合物を含有することができる。シアン酸エステル化合物は一般式R-O-CNで表される化合物(式中、Rは有機基である。)である。シアン酸エステル化合物の類型としては、例えば、ビスフェノール類に複数のシアネートが導入されたもの、フェノールノボラック類に複数のシアネートが導入されたもの等があり、その具体例としては、例えば、フェノールノボラックポリシアネートエステル、ビスフェノールAジシアネートエステル、ビスフェノールEジシアネートエステル、テトラメチルビスフェノールFジシアネートエステル、ビスフェノールFジシアネートエステル、ジシクロペンタジエンビスフェノールAジシアネートエステル等が挙げられるが、これらに特に限定されない。シアン酸エステル化合物は、1種を単独で或いは2種以上を組み合わせて使用することができる。得られる熱硬化性樹脂組成物の流動性の観点から、シアン酸エステル化合物は、100℃での粘度が100mPa・s以下であるもの、例えば、フェノールノボラックポリシアネートエステル、ビスフェノールAジシアネートエステル、ビスフェノールEジシアネートエステルであることが好ましい。
 シアン酸エステル化合物の含有量は、使用する化合物の種類に応じて適宜設定することができ、特に限定されない。熱硬化性樹脂組成物の流動性及び硬化性並びにこれを硬化して得られる硬化物の耐熱性の観点から、シアン酸エステル化合物の含有割合は組成物の総量に対して、20~50質量%であることが好ましく、22~45質量%であることがより好ましい。シアン酸エステル化合物の含有割合を組成物の総量に対して20~50質量%とすることで、比較的に低温成形が可能な粘度と硬化速度を有する熱硬化性樹脂組成物が得られ易く、また、高い耐熱性を有する硬化物が得られ易い傾向にある。
 更に本発明には、必要に応じて公知の添加剤を配合することができる。用いうる添加剤の具体例としては、エポキシ樹脂、エポキシ樹脂用硬化剤、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、熱硬化性樹脂組成物100重量部に対して好ましくは1,000重量部以下、より好ましくは700重量部以下の範囲である。
 本発明の熱硬化性樹脂組成物の調整方法は、公知の手法を適宜適用することができ、特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。
 好ましい調製方法の一例としては、例えば以下の方法が挙げられる。この調製方法では、先ず、上記マレイミド化合物(A)とアリル基またはメタリル基を有する化合物(B)とを120~160℃で30分から6時間溶融混合し、次いで、得られた溶融混合物の温度を100℃以下に下げた後、その混合物に必要に応じて触媒を加え、これを均一に溶融混合することにより、熱硬化性樹脂組成物を調製する。
 他には上記マレイミド化合物(A)とアリル基またはメタリル基を有する化合物(B)とを触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。同様に、前記マレイミド化合物(A)と、アリル基またはメタリル基を有する化合物(B)、必要により、アミン化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物などの硬化剤及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の不存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応容器などを使用する。
 本発明の熱硬化性樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。本発明の熱硬化性樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、エポキシ樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの繊維基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10~70重量%であり、好ましくは15~70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有する硬化物を得ることもできる。
 また、本発明の熱硬化性樹脂組成物をフィルム型組成物の改質剤としても使用できる。
 具体的にはB-ステージにおけるフレキシブル性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明の熱硬化性樹脂組成物を前記樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。
 本発明の熱硬化性樹脂組成物を加熱溶融し、低粘度化して、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などのシート状の繊維基材に含浸させ・保持させることにより半硬化状態にある本発明のプリプレグを得ることができる。
 また、前記ワニスを、繊維基材に保持させて加熱乾燥させることにより本発明のプリプレグを得ることもできる。
 上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら積層板用エポキシ樹脂組成物を加熱硬化させることにより積層板を得ることができる。
 更に、表面に銅箔を重ねてできた積層板に回路を形成し、その上にプリプレグや銅箔等を重ねて上記の操作を繰り返して多層の回路基板を得ることができる。
 上述した本発明の熱硬化性樹脂組成物を加熱硬化させることにより、硬化物(熱硬化性樹脂成形体)が得られる。熱硬化性樹脂組成物の硬化方法は、特に限定されない。例えば、前記熱硬化性樹脂組成物を80℃に加熱して1.5mm厚みのスペーサーを用いて離型処理された2枚のガラス板間にキャスティングし、170~200℃2時間の一次硬化を行い、その後、ガラス板から一次硬化物を取り外し、230~260℃で2時間後硬化を行うことで、硬化物(熱硬化性樹脂成形体)を得ることができる。
 本発明の熱硬化性樹脂組成物は、種々の用途に適用可能であり、その用途は特に限定されない。とりわけ、本発明の熱硬化性樹脂組成物は、耐熱性及び強度並びに取扱性及び製造効率に優れるので、そのような性能が要求される用途、例えば、繊維強化複合材料用マトリックス樹脂や、電気電子部品の封止剤等の分野において、殊に有用であり、特に、繊維強化複合材料用マトリックス樹脂として適している。
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り「質量部」である。尚、本発明はこれら実施例に限定されるものではない。
 以下に実施例で用いた各種分析方法について記載する。
 吸収液:0.1%過酸化水素水20mL
 得られた吸水液をイオンクロマトにて測定した。
・水酸基当量: JIS K0070に準拠。
・エポキシ当量: JIS K 7236 (ISO 3001) に準拠
・アミン当量:JIS K-7236 付属書Aに記載された方法に準拠
・ジフェニルアミン含量:ガスクロマトグラフィーで測定
・ICI溶融粘度: JIS K 7117-2 (ISO 3219) に準拠
・軟化点: JIS K 7234 に準拠
・全塩素: JIS K 7243-3 (ISO 21672-3) に準拠
・ゲルパーミエーションクロマトグラフィー(GPC):
解析条件
カラム(Shodex KF-603、KF-602.5、KF-602、KF-601x2)
連結溶離液はテトラヒドロフラン、流速は0.5ml/min.
カラム温度は40℃、検出:RI(示差屈折検出器)
・高速液体クロマトグラフィー(HPLC):
解析条件
カラム ODS2 溶離液はアセトニトリル-水のグラジエント、
カラム温度40℃ 検出UV 274nm、流速 1.0ml/min.
・ガスクロマトグラフィー(GC):
解析条件
カラム HP-5 30m×0.32mm×0.25μm
キャリアガス ヘリウム 1.0mL/min Split1/50
インジェクター温度 300℃
ディテクター温度 300℃
オーブン温度プログラム 50℃で5分保持後、50℃~300℃まで10℃/minで昇温 300℃でそのまま5分間保持。
・硬化発熱:MDSC測定による硬化開始温度、硬化発熱ピークトップ温度及び発熱終了温度の測定
解析条件
解析モード:MDSC測定 
測定器:Q2000 TA-instruments社製、
昇温速度:3℃/min
(合成例1)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水40部、ジメチルスルホキシド400部、フェノールビフェニレン樹脂(水酸基当量210g/eq.軟化点74℃)210部を加え、45℃に昇温し溶解後、38-40℃に冷却、そのままフレーク状の水酸化ナトリウム(純度 99% 東ソー製)44.4部(フェノールビフェニレン樹脂の水酸基1モル当量に対して1.1モル当量)を60分かけて添加し、その後、さらにアリルクロライド(純度 98.7面積% 市販のアリルクロライドを蒸留生成により分離。アリルクロライドポリマー量 <0.2面積% ガスクロマトグラフィー(GC)により確認)101.5部(フェノールビフェニレン樹脂の水酸基1モル当量に対して1.3モル当量、水酸化ナトリウム1モルに対して1.18倍モル)を60分かけて滴下、そのまま38-40℃で5時間、60~65℃で1時間反応を行った。
 反応終了後、ロータリーエバポレータにて135℃以下で加熱減圧下、水やジメチルスルホキシド等を留去した後、メチルイソブチルケトン740部を加え、水洗を繰り返し、水層が中性になったことを確認した後、油層からロータリーエバポレータを用いて減圧下、窒素バブリングしながら溶剤類を留去することでアリル基を有する化合物(B)(AEP1)240部を得た。得られた樹脂の全塩素は15ppmであった。また得られた樹脂は半固形状であった。そして、GPC測定で得られた数平均分子量(Mn)は579、重量平均分子量(Mw)は805であった。
(合成例2)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水25質量部、ジメチルスルホキシド500質量部、フェノール樹脂(フェノール-ビフェニレン型 水酸基当量200g/eq.軟化点65℃)500質量部を加え、45℃に昇温し溶解させた。次いで38~40℃に冷却、そのままフレーク状の苛性ソーダ(純度 99% 東ソー製)130.0質量部(フェノール樹脂の水酸基1モル当量に対し、1.3モル当量)を60分かけて添加した。その後、さらにメタリルクロライド(純度99% 東京化成工業製)294.3質量部(フェノール樹脂の水酸基1モル当量に対し、1.3モル当量)を60分かけて滴下し、そのまま38~40℃で5時間、60~65℃で1時間反応を行った。
 反応終了後、ロータリーエバポレータにて125℃以下で加熱減圧下、水やジメチルスルホキシド等を留去した。そして、メチルイソブチルケトン740質量部を加え、水洗を繰り返し、水層が中性になったことを確認した。その後油層からロータリーエバポレータを用いて、減圧下、窒素バブリングしながら溶剤類を留去することで、メタリル基を有する化合物(B)(MEP1)600質量部を得た。そして、GPC測定で得られた数平均分子量(Mn)は591、重量平均分子量(Mw)は826であった。
(合成例3)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン372部とトルエン200部を仕込み、室温で35%塩酸146部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル125部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を195~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液330部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で昇温時に留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下(200℃、0.6KPa)において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂(a1)173部を得た。芳香族アミン樹脂(a1)中のジフェニルアミンは2.0%であった。
 得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量づつ滴下した。その結果、芳香族アミン樹脂(A1)166部を得た。得られた芳香族アミン樹脂(A1)の軟化点は56℃、溶融粘度は0.035Pa・s、ジフェニルアミンは0.1%以下であった。
(合成例4)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、合成例3で得られた芳香族アミン樹脂(A1)195部をN-メチル-2-ピロリドン195部に溶解した樹脂溶液を、系内を80~85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸3部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら20時間反応を行った。反応終了後、トルエンを120部追加し、水洗を繰り返してp-トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を濃縮して、マレイミド樹脂(MT1)を70%含有する樹脂溶液を得た。
(実施例1)
 合成例1で得られたアリル基を有する化合物(AEP1)44重量部、合成例4で得られたマレイミド樹脂(MT1)を56重量部、を配合し150℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。得られた熱硬化性樹脂組成物の硬化発熱結果を表1に示す。
(実施例2)
 合成例1で得られたアリル基を有する化合物(AEP1)44重量部、 合成例4で得られたマレイミド樹脂(MT1)を56重量部配合し150℃の条件で均一に攪拌した後、アニオン系硬化促進剤であるトリフェニルホスフィン(TPP 純正化学 試薬)1重量部を配合し100℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。得られた熱硬化性樹脂組成物の硬化発熱結果を表1に示す。
(実施例3)
 合成例1で得られたアリル基を有する化合物(AEP1)44重量部、合成例4で得られたマレイミド樹脂(MT1)を56重量部配合し150℃の条件で均一に攪拌した後、ラジカル系硬化促進剤であるジクミルパーオキサイド(DCP 化薬アクゾ製)1重量部を配合し100℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。得られた熱硬化性樹脂組成物の硬化発熱結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1より、本発明の熱硬化性樹脂組成物は比較的に低温で成形加工することが可能であることが確認でき、また、アニオン重合触媒及びラジカル重合触媒を含有するとよりさらに硬化促進作用により、比較的に低温で成形加工可能であることが確認できる。
(実施例4)
 合成例1で得られたアリル基を有する化合物(AEP1)44重量部、合成例4で得られたマレイミド樹脂(MT1)を56重量部配合し150℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2~表4に示す。
(実施例5)
 合成例1で得られたアリル基を有する化合物(AEP1)44重量部、合成例4で得られたマレイミド樹脂(MT1)を56重量部配合し150℃の条件で均一に攪拌した後、トリフェニルホスフィン(TPP 純正化学 試薬)1重量部を配合し100℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(実施例6)
 合成例2で得られたメタリル基を有する化合物(MEP1)45重量部、合成例4で得られたマレイミド樹脂(MT1)を55重量部配合し150℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間、250℃×2時間で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(実施例7)
 合成例2で得られたメタリル基を有する化合物(MEP1)45重量部、合成例4で得られたマレイミド樹脂(MT1)を55重量部配合し150℃の条件で均一に攪拌した後、トリフェニルホスフィン(TPP 純正化学 試薬)1重量部を配合し100℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(実施例8)
合成例1で得られたアリル基を有する化合物(AEP1)45重量部、合成例4で得られたマレイミド樹脂(MT1)を55重量部配合し150℃の条件で均一に攪拌した後、ジクミルパーオキサイド(DCP 化薬アクゾ(株)製)1重量部を配合し100℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(実施例9)
 合成例2で得られたメタリル基を有する化合物(MEP1)45重量部、合成例4で得られたマレイミド樹脂(MT1)を55重量部配合し150℃の条件で均一に攪拌した後、ジクミルパーオキサイド(DCP 化薬アクゾ(株)製)1重量部を配合し100℃の条件で均一に攪拌し、本発明の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(実施例10)
 合成例1で得られたアリル基を有する化合物(AEP1)45重量部、合成例4で得られたマレイミド樹脂(MT1)を54重量部、ジクミルパーオキサイド(DCP 化薬アクゾ(株)製)1重量部を溶剤としてメチルエチルケトンを使用して混合して樹脂分50質量%の均一なワニスを得た。次に、上記ワニスを厚さ0.2mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量62質量%のプリプレグを得た。このプリプレグの残留溶剤率が0.5%以下であること確認した。このプリプレグを150mm×250mmのサイズにカット4枚重ね、32μmの電解銅箔を上下に配置し、更にカプロンフィルムを配置し圧力2.5MPa、200℃×2時間 250℃×2時間でプレスを行って、銅張積層板を得た。得られた銅張積層体の硬化過程の重量減少率を測定した。測定結果を表5に示す。
(実施例11)
 合成例2で得られたメタリル基を有する化合物(MEP1)45重量部、合成例4で得られたマレイミド樹脂(MT1)を55重量部配合し150℃の条件で均一に攪拌した後、ジクミルパーオキサイド(DCP 化薬アクゾ(株)製)1重量部を配合し100℃の条件で均一に攪拌した後、180℃×30分でプレ硬化した。プレ硬化した樹脂をPETフィルムに挟み、180℃のラミネータにて300μm厚みのシートにした。出来上がったシートのPETフィルムを片面はがし、樹脂部を綾織カーボン繊維シートに上下に配置し、圧力0.1MPaで圧着し、カーボン繊維のプリプレグを作成した。このプリプレグを4枚重ね、カプロンフィルムを上下に配置し、圧力2.5MPa、200℃×2時間 250℃×2時間でプレスを行ってカーボン繊維強化プラスティック積層体を得た。得られたカーボン繊維強化プラスティック積層体の硬化過程の重量減少率を測定した。測定結果を表5に示す。
(比較例1)
 EPPN-502Hを61重量部、(日本化薬製 エポキシ当量179g/eq.)、フェノールノボラック(明和化成製、水酸基当量106g/eq.)38重量部、TPP(純正化学 試薬)1重量部を配合し100℃で混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃×2時間 180℃×6時間で硬化させ、比較用の硬化物を得た。硬化物の物性の測定結果を表2及び3に示す。
(比較例2)
 合成例1で得られたアリル基を有する化合物(AEP1)35重量部、4,4’-ビスマレイミドジフェニルメタン(MT2 東京化成工業株式会社製)を65重量部配合し150℃の条件で均一に攪拌した後、ジクミルパーオキサイド(DCP 化薬アクゾ(株)製)1重量部を配合し100℃の条件で均一に攪拌し、比較用の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、比較用の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(比較例3)
 合成例2で得られたメタリル基を有する化合物(MEP1)35重量部、4,4’-ビスマレイミドジフェニルメタン(MT2)を65重量部配合し150℃の条件で均一に攪拌した後、ジクミルパーオキサイド(DCP 化薬アクゾ(株)製)1重量部を配合し100℃の条件で均一に攪拌し、比較用の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、比較用の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(比較例4)
 ジアリルビスフェノールA(試薬)32重量部 と4,4’-ビスマレイミドジフェニルメタン(MT2)を68重量部配合し150℃の条件で均一に攪拌した後、トリフェニルホスフィン(TPP 純正化学 試薬)1重量部を配合し100℃の条件で均一に攪拌し、比較用の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物を硬化条件200℃×2時間 250℃×2時間で硬化させ、比較用の硬化物を得た。硬化物の物性の測定結果を表4に示す。
(比較例5)
 ジアリルビスフェノールA(試薬)37重量部 と4,4’-ビスマレイミドジフェニルメタン(MT2)を63重量部配合しジクミルパーオキサイド(DCP 化薬アクゾ(株)製)1重量部を配合し100℃の条件で均一に攪拌した後、180℃×30分でプレ硬化した。プレ硬化した樹脂をPETフィルムに挟み、180℃のラミネータにて300μm厚みのシートにした。出来上がったシートのPETフィルムを片面はがし、樹脂部を綾織カーボン繊維シートに上下に配置し、圧力0.1MPaで圧着し、カーボン繊維のプリプレグを作成した。このプリプレグを4枚重ね、カプロンフィルムを上下に配置し、圧力0.5MPa、200℃×2時間 250℃×2時間でプレスを行ってカーボン繊維強化プラスティック積層体を得た。得られたカーボン繊維強化プラスティック積層体の硬化過程の重量減少率を測定した。測定結果を表5に示す。
 なお、硬化物の物性は以下の要領で測定した。
<耐熱性>
・Tg:DMA測定に於けるTanδのピーク点(tanδMAX)をTgとした。
解析条件
動的粘弾性測定器:TA-instruments製、Q-800
測定温度範囲:30℃~280℃
温速度:2℃/min
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
<曲げ試験>
・JIS K 6911に準拠 室温と120℃でテストを行った。
・曲げ強度:JIS-6481(曲げ強さ)に準拠し30℃で測定。
<誘電率試験・誘電正接試験>
・(株)関東電子応用開発製の1GHz空洞共振器を用いて、空洞共振器摂動法にてテストを行った。ただし、サンプルサイズは幅1.7mm×長さ100mmとし、厚さは1.7mmで試験を行った
<吸水率>
・吸水率:100℃×24h 浸漬させた硬化物の重量増加%
<硬化過程の重量減少率> 
・以下の式により測定した。
(成型されたプリプレグ×4枚を上下にカプロンテープを挟んだ物:(1)の重量)―(200℃×2h+250℃×2h,プレス圧:0,1MPaのプレス成形で作成した(1)の重量)/(1)×100 
 
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表2より本発明の熱硬化性樹脂組成物の硬化物は、通常用いられる熱硬化性樹脂組成物の硬化物に比べて高い耐熱性、低吸水率、低誘電特性を示すことが確認できる。さらに表3より本発明の熱硬化性樹脂組成物の硬化物は、硬化後の耐熱性だけでなく、機械強度、熱分解特性に優れることが確認できる。
 また、表4より比較用の熱硬化性樹脂組成物では硬化物中に気泡が存在しているのに対して、本発明の熱硬化性樹脂組成物の硬化物は気泡が存在していないことが確認できる。硬化物中に気泡が存在するということは、該樹脂組成物は揮発性が高く、力学強度に優れた硬化物を調製にするには、急激な温度上昇を避け、長時間の成形方法が必要であることが想定できる。
 更に表5からガラス繊維強化プラスチック(GFRP)やCFRP作成時の高温での硬化過程でも重量減少が少なく、揮発成分が少ないことが確認できる。これは揮発成分による硬化過程のボイドの発生を抑えるのに効果的な樹脂で成形した積層体は優れた密着性、力学特性を示し、尚且つ歩留まりの少ないことが期待できる。即ち、本発明の熱硬化性樹脂組成物は繊維強化複合材料に適した材料である。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2016年4月1日付で出願された日本国特許出願(特願2016-074500)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (5)

  1.  下記式(1)で表されるマレイミド基を有する化合物(A)と、アリル基またはメタリル基を有する化合物(B)を含有する熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1~10のアルキル基もしくは芳香族基を表す。aは1~3を表す。nは整数でありその平均値は1<n≦5を表す。)
  2.  前記アリル基またはメタリル基を有する化合物(B)の重量平均分子量(Mw)が350~1200である請求項1に記載の熱硬化性樹脂組成物。
  3.  さらに触媒を含有する請求項1または2に記載の熱硬化性樹脂組成物。
  4.  請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物をシート状の繊維基材に保持したプリプレグ。
  5.  請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物、又は請求項4に記載のプリプレグの硬化物。
PCT/JP2017/013196 2016-04-01 2017-03-30 熱硬化性樹脂組成物、プリプレグ及びその硬化物 WO2017170844A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187021307A KR102314333B1 (ko) 2016-04-01 2017-03-30 열경화성 수지 조성물, 프리프레그, 및 그 경화물
JP2018509424A JP6971222B2 (ja) 2016-04-01 2017-03-30 熱硬化性樹脂組成物、プリプレグ及びその硬化物
CN201780020589.3A CN108884302B (zh) 2016-04-01 2017-03-30 热固化性树脂组成物、预浸料及它们的固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016074500 2016-04-01
JP2016-074500 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017170844A1 true WO2017170844A1 (ja) 2017-10-05

Family

ID=59965943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013196 WO2017170844A1 (ja) 2016-04-01 2017-03-30 熱硬化性樹脂組成物、プリプレグ及びその硬化物

Country Status (5)

Country Link
JP (1) JP6971222B2 (ja)
KR (1) KR102314333B1 (ja)
CN (1) CN108884302B (ja)
TW (1) TWI739817B (ja)
WO (1) WO2017170844A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319703B1 (ja) * 2017-07-11 2018-05-09 群栄化学工業株式会社 プロペニル基含有樹脂、樹脂組成物、樹脂ワニス、積層板の製造方法、熱硬化性成型材料および封止材
CN112694451A (zh) * 2020-12-24 2021-04-23 广东盈骅新材料科技有限公司 改性烯丙基化合物、双马来酰亚胺预聚物及其应用
US20210284800A1 (en) * 2018-09-12 2021-09-16 Nipponkayaku Kabushiki Kaisha Maleimide resin, curable resin composition, and cured product thereof
KR20220131515A (ko) 2020-01-22 2022-09-28 쇼와덴코머티리얼즈가부시끼가이샤 열경화성 수지 조성물, 프리프레그, 적층판, 프린트 배선판 및 반도체 패키지
KR20240051917A (ko) 2021-08-30 2024-04-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 알릴에테르 화합물, 수지 조성물 및 그 경화물

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6789936B2 (ja) * 2015-06-25 2020-11-25 日本化薬株式会社 エポキシ樹脂組成物およびその硬化物
JP7363821B2 (ja) * 2019-01-24 2023-10-18 株式会社レゾナック 熱硬化性樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192361A (ja) * 1992-10-30 1994-07-12 Mitsui Toatsu Chem Inc フェノール系樹脂およびこれを含有するエポキシ樹脂組成物ならびにマレイミド樹脂組成物
JPH07228546A (ja) * 1994-02-16 1995-08-29 Nippon Oil Co Ltd アリル化ポリフェノール類、その製造方法、エポキシ樹脂用硬化剤及びマレイミド樹脂用硬化剤
JP2000053750A (ja) * 1998-08-06 2000-02-22 Mitsui Chemicals Inc N−アリル化芳香族アミン樹脂、その製造方法および用途
JP2009001783A (ja) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd 積層板用樹脂組成物、プリプレグ及び積層板
WO2014123051A1 (ja) * 2013-02-05 2014-08-14 日本化薬株式会社 アリルエーテル樹脂及びエポキシ樹脂
WO2015152007A1 (ja) * 2014-04-02 2015-10-08 日本化薬株式会社 芳香族アミン樹脂、マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2016023195A (ja) * 2014-07-16 2016-02-08 日本化薬株式会社 硬化性マレイミド樹脂、硬化性樹脂組成物およびその硬化物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153045A (en) 1981-03-19 1982-09-21 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS57153046A (en) 1981-03-19 1982-09-21 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS56157424A (en) 1980-05-06 1981-12-04 Mitsubishi Gas Chem Co Inc Curable resin composition
JP5010534B2 (ja) * 2008-05-28 2012-08-29 積水化学工業株式会社 ポリイミドおよびその製造方法
JP2010225434A (ja) * 2009-03-24 2010-10-07 Teijin Dupont Films Japan Ltd フレキシブルエレクトロニクスデバイス基板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192361A (ja) * 1992-10-30 1994-07-12 Mitsui Toatsu Chem Inc フェノール系樹脂およびこれを含有するエポキシ樹脂組成物ならびにマレイミド樹脂組成物
JPH07228546A (ja) * 1994-02-16 1995-08-29 Nippon Oil Co Ltd アリル化ポリフェノール類、その製造方法、エポキシ樹脂用硬化剤及びマレイミド樹脂用硬化剤
JP2000053750A (ja) * 1998-08-06 2000-02-22 Mitsui Chemicals Inc N−アリル化芳香族アミン樹脂、その製造方法および用途
JP2009001783A (ja) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd 積層板用樹脂組成物、プリプレグ及び積層板
WO2014123051A1 (ja) * 2013-02-05 2014-08-14 日本化薬株式会社 アリルエーテル樹脂及びエポキシ樹脂
WO2015152007A1 (ja) * 2014-04-02 2015-10-08 日本化薬株式会社 芳香族アミン樹脂、マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2016023195A (ja) * 2014-07-16 2016-02-08 日本化薬株式会社 硬化性マレイミド樹脂、硬化性樹脂組成物およびその硬化物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319703B1 (ja) * 2017-07-11 2018-05-09 群栄化学工業株式会社 プロペニル基含有樹脂、樹脂組成物、樹脂ワニス、積層板の製造方法、熱硬化性成型材料および封止材
JP2019019149A (ja) * 2017-07-11 2019-02-07 群栄化学工業株式会社 プロペニル基含有樹脂、樹脂組成物、樹脂ワニス、積層板の製造方法、熱硬化性成型材料および封止材
US20210284800A1 (en) * 2018-09-12 2021-09-16 Nipponkayaku Kabushiki Kaisha Maleimide resin, curable resin composition, and cured product thereof
KR20220131515A (ko) 2020-01-22 2022-09-28 쇼와덴코머티리얼즈가부시끼가이샤 열경화성 수지 조성물, 프리프레그, 적층판, 프린트 배선판 및 반도체 패키지
CN112694451A (zh) * 2020-12-24 2021-04-23 广东盈骅新材料科技有限公司 改性烯丙基化合物、双马来酰亚胺预聚物及其应用
CN112694451B (zh) * 2020-12-24 2023-03-07 广东盈骅新材料科技有限公司 改性烯丙基化合物、双马来酰亚胺预聚物及其应用
KR20240051917A (ko) 2021-08-30 2024-04-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 알릴에테르 화합물, 수지 조성물 및 그 경화물

Also Published As

Publication number Publication date
TW201806985A (zh) 2018-03-01
CN108884302A (zh) 2018-11-23
TWI739817B (zh) 2021-09-21
JP6971222B2 (ja) 2021-11-24
CN108884302B (zh) 2023-03-28
JPWO2017170844A1 (ja) 2019-02-14
KR102314333B1 (ko) 2021-10-19
KR20180129764A (ko) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6971222B2 (ja) 熱硬化性樹脂組成物、プリプレグ及びその硬化物
JP5030297B2 (ja) 積層板用樹脂組成物、プリプレグ及び積層板
WO2020054601A1 (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
TWI814899B (zh) 馬來醯亞胺樹脂、硬化性樹脂組成物及其硬化物
JP6764470B2 (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP6515255B1 (ja) 硬化性樹脂組成物、ワニス、プリプレグ、硬化物、及び、積層板または銅張積層板
JP4591946B2 (ja) ポリ(ビニルベンジル)エーテル化合物およびその製造方法
WO2018123806A1 (ja) アルケニル基含有樹脂、硬化性樹脂組成物およびその硬化物
JPWO2018199157A1 (ja) マレイミド樹脂組成物、プリプレグ及びその硬化物
WO2023032534A1 (ja) アリルエーテル化合物、樹脂組成物及びその硬化物
KR101889442B1 (ko) 페놀노볼락 수지 및 그것을 이용한 에폭시 수지조성물
JP6783121B2 (ja) アリル基含有樹脂、その製造方法、樹脂ワニスおよび積層板の製造方法
JP6863679B2 (ja) 溶液、その製造方法、エポキシ樹脂組成物及び積層板
KR101598244B1 (ko) 비할로겐 난연성 중합체 및 이를 함유하는 난연성 중합체 조성물
JP6935402B2 (ja) マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置
WO2023276760A1 (ja) アリルエーテル化合物、その樹脂組成物、及びその硬化物、並びにアリルエーテル化合物の製造方法
WO2021230104A1 (ja) 熱硬化性樹脂組成物及びその硬化物
WO2014034675A1 (ja) シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509424

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187021307

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775378

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775378

Country of ref document: EP

Kind code of ref document: A1