WO2014034675A1 - シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物 - Google Patents

シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物 Download PDF

Info

Publication number
WO2014034675A1
WO2014034675A1 PCT/JP2013/072894 JP2013072894W WO2014034675A1 WO 2014034675 A1 WO2014034675 A1 WO 2014034675A1 JP 2013072894 W JP2013072894 W JP 2013072894W WO 2014034675 A1 WO2014034675 A1 WO 2014034675A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
cyanuric acid
phosphorus
resin composition
containing epoxy
Prior art date
Application number
PCT/JP2013/072894
Other languages
English (en)
French (fr)
Inventor
力 三宅
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN201380044287.1A priority Critical patent/CN104583263B/zh
Priority to KR1020157004269A priority patent/KR101954484B1/ko
Priority to JP2014533024A priority patent/JP6246126B2/ja
Publication of WO2014034675A1 publication Critical patent/WO2014034675A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1488Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus

Definitions

  • the present invention relates to a method for producing a halogen-free flame-retardant epoxy resin containing a phosphorus atom and a nitrogen atom in the molecular skeleton, an epoxy resin composition containing an epoxy resin obtained from the production method and another epoxy resin, and the epoxy resin composition
  • the present invention relates to a curable epoxy resin composition containing a product and a curing agent, and an epoxy resin cured product obtained by curing the curable epoxy resin composition.
  • Cyanuric acid remaining in the reaction system reacts with the epoxy resin only at a very slow rate, and unreacted cyanuric acid has poor solubility in the solvent, and unreacted cyanuric acid has an adverse effect on the cured material properties. There was a further need for reduction.
  • the present inventor made the residual of cyanuric acid by reacting with a certain proportion of a specific phosphorus compound with respect to cyanuric acid in the reaction of epoxy resin and cyanuric acid.
  • the present invention was completed by finding that the reaction with the epoxy resin easily proceeds without requiring a very long reaction.
  • the present invention (1) A method for producing a cyanuric acid-modified phosphorus-containing epoxy resin obtained by reacting a phosphorus compound, cyanuric acid and an epoxy resin as essential components, wherein the phosphorus compound is The following general formula (1): [Wherein n represents 0 or 1, and R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms, which may be the same or different, or cyclic with a phosphorus atom It may be. ]
  • R 3 and R 4 each independently represents a hydrocarbon group having 1 to 6 carbon atoms, which may be the same or different, or cyclic with a phosphorus atom. It may be.
  • a phosphorus compound containing both of them wherein 2.5 to 50 moles of the phosphorus compound is blended with 1 mole of cyanuric acid, and the epoxy resin is prepared in advance in the presence of the phosphorus compound and cyanuric acid.
  • the reaction After mixing, the reaction is performed, the phosphorus content is 1.0 to 5.0 mass%, the nitrogen content is 0.1 to 2.0 mass%, and the total of the phosphorus content and nitrogen content is 2.5 to 5.5 mass%
  • a method for producing a cyanuric acid-modified phosphorus-containing epoxy resin
  • the cyanuric acid-modified phosphorus-containing epoxy resin obtained by the production method described in (1) above has a functional group ratio of 0.4 to 2.0 equivalents relative to 1 equivalent of the epoxy group of the cyanuric acid-modified phosphorus-containing epoxy resin.
  • a curable epoxy resin composition containing a curing agent (4) A curable epoxy resin composition comprising the epoxy resin composition according to (2) above containing a curing agent having a functional group ratio of 0.4 to 2.0 equivalents with respect to 1 equivalent of epoxy groups of the epoxy resin composition.
  • the present invention is a cyanuric acid-modified phosphorus-containing epoxy resin obtained by reacting with a specific phosphorus compound in a molar ratio of 2.5 to 50 moles per mole of cyanuric acid and then reacting with the epoxy resin. It is possible to produce an epoxy resin cured product having excellent physical properties, which can be produced by the above-mentioned method, and cyanuric acid remains very little.
  • the phosphorus compound represented by the general formula (1) or (2) of the present invention specifically includes dimethylphosphine, diethylphosphine, diphenylphosphine, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide (DOPO), dimethylphosphine oxide, diethylphosphine oxide, dibutylphosphine oxide, diphenylphosphine oxide, 1,4-cyclooctylenephosphine oxide, 1,5-cyclooctylenephosphine oxide (CPHO, manufactured by Nippon Chemical Industry Co., Ltd.) Etc.
  • DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide
  • dimethylphosphine oxide diethylphosphine oxide, dibutylphosphine oxide, diphenylphosphine oxide, 1,4-cyclooctylenephosphine oxide, 1,5-cyclooctylene
  • cyanuric acid indicates s-triazine-2,4,6-triol and s-triazine-2,4,6-trione which are tautomers, and the ratio thereof is particularly specified. No.
  • cyanuric acid is added as a nitrogen-based flame retardant
  • it is difficult to obtain a uniform resin composition because of poor solubility in cyanuric acid solvent and poor compatibility with epoxy resin and curing agent, There were variations in flame retardancy.
  • the cyanuric acid-modified phosphorus-containing epoxy resin obtained from the production method of the present invention becomes uniform in the resin composition by reacting cyanuric acid with the epoxy resin, stable flame retardancy is obtained.
  • the resin composition of the present invention is used to include both an epoxy resin composition and a curable epoxy resin composition, unless otherwise specified. Show one.
  • the epoxy resins used for producing the cyanuric acid-modified phosphorus-containing epoxy resin of the present invention are Epototo® YD-128, Epototo® YD-8125 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol A type epoxy resin), Epototo® YDF-170, Epototo® YDF-8170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol F type epoxy resin), YSLV-80XY (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., tetramethylbisphenol F type epoxy resin), Epototo® YDC-1312 (hydroquinone type epoxy resin), jER YX-4000H (Mitsubishi Chemical Corporation, biphenyl type epoxy resin), Epototo YDPN-638, Epototo N YDPN-63X (Shin Nippon Steel Co., Ltd.,
  • epoxy resins may be used alone or in combination of two or more, and bisphenol type epoxy resins, phenol novolac type epoxy resins, and cresol novolac type epoxy resins can be suitably used.
  • the reaction of the phosphorus compound represented by formula (1) or (2) with cyanuric acid and the epoxy resin is caused to react with the epoxy resin in the presence of the phosphorus compound and cyanuric acid.
  • 50 mol of the phosphorus compound is required, and the preferred molar ratio of the phosphorus compound is 2.7 to 25 mol, preferably 3 to 10 mol, per mol of cyanuric acid. If the phosphorus compound is less than 2.5 moles per mole of cyanuric acid, the reaction between cyanuric acid and the epoxy resin will not proceed sufficiently, and the residual amount of cyanuric acid will increase.
  • the reaction temperature for obtaining the cyanuric acid-modified phosphorus-containing epoxy resin of the present invention may be a temperature usually set for the synthesis of the epoxy resin, and is 100 to 250 ° C., preferably 120 to 200 ° C.
  • a catalyst may be used for shortening the time and reducing the reaction temperature.
  • the catalyst that can be used is not particularly limited, and those usually used for the synthesis of epoxy resins can be used.
  • tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, ethyltriphenylphosphonium bromide, etc.
  • catalysts such as phosphonium salts, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole can be used, and these may be used alone or in combination of two or more. is not. Further, it may be divided and used in several times.
  • the amount of catalyst used in the reaction is not particularly limited, but is preferably 5% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less based on the epoxy resin used.
  • the amount of the catalyst exceeds 5% by mass, the self-polymerization reaction of the epoxy group tends to proceed and the resin viscosity tends to increase, which is not preferable.
  • an inert solvent may be used for the reaction.
  • various hydrocarbons such as hexane, heptane, octane, decane, dimethylbutane, pentene, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, ethyl ether, isopropyl ether, butyl ether, diisoamyl ether, methylphenyl Ethers, ethyl phenyl ether, amyl phenyl ether, ethyl benzyl ether, dioxane, methyl furan, tetrahydrofuran, and other ethers, methyl cellosolve, methyl cellosolve acetate, ethyl cellosolve, cellosolve acetate, ethylene glycol isopropyl ether, diethylene glycol dimethyl ether,
  • the epoxy equivalent of the cyanuric acid-modified phosphorus-containing epoxy resin obtained in the present invention is preferably 100 to 700 g / eq, more preferably 200 to 600 g / eq. If the epoxy equivalent is less than 100 g / eq, the adhesiveness of the cured product tends to be inferior, and if it is more than 700 g / eq, the glass transition temperature (Tg) of the cured product is lowered, and the resin composition has a high viscosity and improves workability. It tends to be inferior.
  • the phosphorus content of the cyanuric acid-modified phosphorus-containing epoxy resin obtained in the present invention is 1.0 to 5.0% by mass, preferably 1.5 to 4.0% by mass, and more preferably 2.0 to 3.5% by mass.
  • the nitrogen content is 0.1 to 2.0% by mass, preferably 0.5 to 1.0% by mass.
  • the total of the phosphorus content and the nitrogen content is 2.5 to 5.5% by mass, preferably 3.0 to 4.5% by mass, more preferably 3.0 to 4.0% by mass. Since the flame retardancy of the cyanuric acid-modified phosphorus-containing epoxy resin obtained in the present invention is exhibited by the synergistic effect of phosphorus and nitrogen, it is meaningless to define either range, phosphorus content and nitrogen content It is necessary to specify the range of the sum of rates.
  • the flame retardancy may not be sufficiently exhibited depending on the resin composition. Further, if the total of the phosphorus content and the nitrogen content exceeds 5.5% by mass, the flame retardancy can be sufficiently exerted, but the resin composition has a high viscosity and may adversely affect the solvent solubility. Therefore, the total range of the phosphorus content and the nitrogen content is preferably 2.5 to 5.5% by mass.
  • the same epoxy resin as the above epoxy resin can be used in combination with the cyanuric acid-modified phosphorus-containing epoxy resin as long as the characteristics of the present invention are not impaired.
  • the cyanuric acid-modified phosphorus-containing epoxy resin or epoxy resin composition of the present invention can be made into a curable epoxy resin composition by blending a curing agent.
  • a curing agent commonly used curing agents for epoxy resins such as various phenol compounds, acid anhydrides, amines, hydrazides, and acidic polyesters can be used, and only one of these curing agents is used. Or you may use together 2 or more types. Of these, dicyandiamide or a phenol compound is preferable as the curing agent contained in the curable epoxy resin composition of the present invention.
  • the amount of the curing agent used is preferably 0.4 to 2.0 equivalents, more preferably 0.5 to 1.5 equivalents of the functional group of the curing agent with respect to 1 equivalent of the epoxy group that is a functional group of the epoxy resin. 0.5 to 1.0 equivalent is particularly preferred.
  • the curing agent is less than 0.4 equivalent or 1 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • phenols examples include phenol, cresol, xylenol, butylphenol, amylphenol, nonylphenol, butylmethylphenol, trimethylphenol, and phenylphenol.
  • naphthols examples include 1-naphthol and 2-naphthol. Can be mentioned.
  • the aldehydes include formaldehyde, acetaldehyde, propyl aldehyde, butyraldehyde, valeraldehyde, capronaldehyde, benzaldehyde, chloraldehyde, bromaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipine aldehyde, pimelin aldehyde. , Sebacinaldehyde, acrolein, crotonaldehyde, salicylaldehyde, phthalaldehyde, hydroxybenzaldehyde and the like.
  • biphenyl condensing agent examples include bis (methylol) biphenyl, bis (methoxymethyl) biphenyl, bis (ethoxymethyl) biphenyl, bis ( Chloromethyl) biphenyl and the like, but are not limited thereto.
  • an organic solvent can also be used for viscosity adjustment.
  • Organic solvents that can be used include amides such as N, N-dimethylformamide, ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, benzene, toluene and the like.
  • Aromatic hydrocarbons etc. are mentioned.
  • One of these solvents or a mixture of a plurality of them can be blended in the range of 25 to 250 parts by mass with respect to 100 parts by mass of the epoxy resin component in the resin composition.
  • a curing accelerator can be used as necessary.
  • curing accelerators include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo ( 5,4,0) tertiary amines such as undecene-7, triphenylphosphine, tricyclohexylphosphine, triphenylphosphine triphenylborane phosphines, and metal compounds such as tin octylate.
  • the amount of the curing accelerator used is preferably 0.02 to 5.0 parts by mass with respect to 100 parts by mass of the epoxy resin component in the resin composition of the present invention.
  • a filler can be used in the curable epoxy resin composition of the present invention as necessary.
  • specific examples include inorganic fillers such as aluminum hydroxide, magnesium hydroxide, talc, calcined talc, clay, kaolin, titanium oxide, glass powder, boehmite, and silica balloon, but pigments and the like may be blended.
  • the reason for using a general inorganic filler is an improvement in impact resistance.
  • metal hydroxides, such as aluminum hydroxide and magnesium hydroxide are used, it acts as a flame retardant aid, and flame retardancy can be ensured even if the phosphorus content in the resin composition is small.
  • the blending amount is not more than 10 parts by mass with respect to 100 parts by mass of the epoxy resin component, the effect of impact resistance is small. However, if the blending amount exceeds 150 parts by mass, the adhesiveness, which is a necessary item for the use of laminates, is lowered.
  • fiber fillers such as glass fibers, pulp fibers, synthetic fibers, and ceramic fibers, and organic fillers such as fine particle rubbers and thermoplastic elastomers can also be contained in the resin composition.
  • a cured product of phosphorus and nitrogen-containing epoxy resin can be obtained by curing the curable epoxy resin composition of the present invention.
  • a resin sheet, a copper foil with resin, a prepreg, and the like are laminated, and cured by heating and pressing to obtain a cured phosphorus-containing epoxy resin as a laminate.
  • the epoxy equivalent of the epoxy resin measured in Examples and Comparative Examples was measured according to JIS K 7236.
  • the nitrogen content was calculated as a percentage of the cyanuric acid-modified phosphorus-containing epoxy resin from the nitrogen content and the blending amount of cyanuric acid.
  • the phosphorus content of the epoxy resins synthesized in the examples and comparative examples was measured by the following method. That is, 3 mL of sulfuric acid is added to 150 mg of sample and heated for 30 minutes. Return to room temperature, add 3.5 mL of nitric acid and 0.5 mL of perchloric acid and heat decompose until the contents are clear or yellow. Dilute this solution with pure water in a 100 mL volumetric flask.
  • the obtained cyanuric acid-modified phosphorus-containing epoxy resin was checked for the presence or absence of residual cyanuric acid based on the appearance of turbidity. No turbidity was defined as no residual cyanuric acid (O), and turbidity was defined as residual cyanuric acid present (X).
  • the glass transition temperature of the cured product was Exster 6000 manufactured by Seiko Instruments Inc., DSC used the first inflection point as the glass transition temperature, and TMA used the inflection point as the glass transition temperature.
  • Copper foil peel strength was measured according to JIS C 6481 5.7
  • interlayer adhesion was measured by peeling between one prepreg and the remaining three sheets according to JIS C 6481 5.7.
  • Flame retardancy was measured according to UL (Underwriter Laboratorics) standards. Further, the afterflame time is the sum of the flammable combustion durations of five test pieces.
  • the reaction rate of cyanuric acid was determined by the following equation using values of initial epoxy equivalent, theoretical epoxy equivalent and epoxy equivalent (final epoxy equivalent) of cyanuric acid-modified phosphorus-containing epoxy resin. [(Final epoxy equivalent ⁇ initial epoxy equivalent) / (theoretical epoxy equivalent ⁇ initial epoxy equivalent)] ⁇ 100 However, when the final epoxy equivalent was larger than the theoretical epoxy equivalent, the reaction rate was 100%.
  • Example 1 Epototo YDPN-638 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., phenol novolac type epoxy resin: epoxy equivalent of 177 g / eq) with a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet ), 850 parts, HCA (manufactured by Sanko Co., Ltd., 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus content 14.2%), 127 parts, cyanuric acid (Tokyo Chemical Industry Co., Ltd.) 23 parts) was added, stirred while introducing nitrogen gas, heated and heated to 130 ° C.
  • HCA manufactured by Sanko Co., Ltd., 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus content 14.2%
  • cyanuric acid Tokyo Chemical Industry Co
  • the initial epoxy equivalent in the mixed state was 207 g / eq.
  • 0.14 part of triphenylphosphine was added as a catalyst, and the reaction was performed at 160 ° C. for 4 hours.
  • the resulting cyanuric acid-modified phosphorus-containing epoxy resin (A-1) had a phosphorus content of 1.8%, a theoretical epoxy equivalent of 270 g / eq, a final epoxy equivalent of 272 g / eq, and a reaction rate of cyanuric acid of 100%. .
  • the results are shown in Table 1.
  • Example 2 The same operation as in Example 1 was performed, except that Epototo YDPN-638 was changed to 758 parts, cyanuric acid was changed to 3 parts, and HCA was changed to 239 parts.
  • the resulting cyanuric acid-modified phosphorus-containing epoxy resin (A-2) has a phosphorus content of 3.4%, an initial epoxy equivalent of 232 g / eq, a theoretical epoxy equivalent of 320 g / eq, a final epoxy equivalent of 332 g / eq, The reaction rate was 100%.
  • Table 1 The results are shown in Table 1.
  • Example 3 Epototo YDPN-63X (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., narrowly dispersed phenol novolac type epoxy resin: epoxy equivalent 176 g), equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device / eq) was charged with 692 parts, HCA with 250 parts, and cyanuric acid with 58 parts. The mixture was stirred while introducing nitrogen gas and heated to 130 ° C. The initial epoxy equivalent in the mixed state was 254 g / eq. After measuring the initial epoxy equivalent, 0.33 part of triphenylphosphine was added as a catalyst, and the reaction was performed at 160 ° C. for 4 hours.
  • the obtained cyanuric acid-modified phosphorus-containing epoxy resin (A-3) had a phosphorus content of 3.6%, a theoretical epoxy equivalent of 701 g / eq, a final epoxy equivalent of 669 g / eq, and a reaction rate of cyanuric acid of 93%. .
  • the results are shown in Table 1.
  • Example 4 The same operation as in Example 3 was performed, except that Epototo YDPN-63X was changed to 640 parts, cyanuric acid was changed to 15 parts, and HCA was changed to 345 parts.
  • the resulting cyanuric acid-modified phosphorus-containing epoxy resin (A-4) has a phosphorus content of 4.9%, an initial epoxy equivalent of 275 g / eq, a theoretical epoxy equivalent of 592 g / eq, a final epoxy equivalent of 594 g / eq, The reaction rate was 100%.
  • Table 1 The results are shown in Table 1.
  • FIG. A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device, 507 parts of Epototo YDPN-638, Epotot YD-128 (Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol A type) Liquid epoxy resin: 300 parts of epoxy equivalent (186 g / eq), 162 parts of HCA and 31 parts of cyanuric acid were added, stirred while introducing nitrogen gas, heated and heated to 130 ° C. The initial epoxy equivalent in the mixed state was 223 g / eq.
  • Example 6 A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet, 433 parts of Epotot YDPN-638, Epotot YDCN-704 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., cresol novolak type) Epoxy resin: Epoxy equivalent: 209 g / eq) 300 parts, HCA 250 parts, cyanuric acid 17 parts were charged, stirred while introducing nitrogen gas, heated and heated to 130 ° C. The initial epoxy equivalent in the mixed state was 258 g / eq.
  • cyanuric acid-modified phosphorus-containing epoxy resin (A-6) had a phosphorus content of 3.6%, a theoretical epoxy equivalent of 429 g / eq, a final epoxy equivalent of 428 g / eq, and a reaction rate of cyanuric acid of 99%. .
  • Table 1 The results are shown in Table 1.
  • Example 7 A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet, 442 parts of Epototo YDPN-638, YSLV-80XY (Nippon Steel & Sumikin Chemical Co., Ltd., Tetramethylbisphenol F)
  • Type epoxy resin Epoxy equivalent 190g / eq 300 parts, HCA 250 parts, cyanuric acid 6 parts were charged, stirred while introducing nitrogen gas, heated and heated to 130 ° C. The initial epoxy equivalent in the mixed state was 245 g / eq. After measuring the initial epoxy equivalent, 0.25 part of triphenylphosphine was added as a catalyst, and the reaction was performed at 160 ° C.
  • the obtained cyanuric acid-modified phosphorus-containing epoxy resin (A-7) had a phosphorus content of 3.6%, a theoretical epoxy equivalent of 360 g / eq, a final epoxy equivalent of 360 / eq, and a reaction rate of cyanuric acid of 100%. .
  • the results are shown in Table 1.
  • Example 8 A four-necked glass separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction device, 860 parts of Epototo YDPN-638, CPHO (Nippon Chemical Industry Co., Ltd., 1,5-cyclooctyl) Lenphosphine oxide (phosphorus content 19.6%) (110 parts) and cyanuric acid (30 parts) were charged, stirred while introducing nitrogen gas, heated and heated to 130 ° C. The initial epoxy equivalent in the mixed state was 206 g / eq. After measuring the initial epoxy equivalent, 0.14 part of triphenylphosphine was added as a catalyst, and the reaction was performed at 160 ° C. for 4 hours.
  • Epototo YDPN-638 860 parts of Epototo YDPN-638, CPHO (Nippon Chemical Industry Co., Ltd., 1,5-cyclooctyl) Lenphosphine oxide (phosphorus content 19.6%) (110 parts) and
  • the resulting cyanuric acid-modified phosphorus-containing epoxy resin (A-8) had a phosphorus content of 2.2%, a theoretical epoxy equivalent of 289 g / eq, a final epoxy equivalent of 290 / eq, and a cyanuric acid reaction rate of 100%. .
  • the results are shown in Table 1.
  • Comparative Example 1 A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device was charged with 954 parts of Epototo YDPN-638 and 46 parts of cyanuric acid, and stirred while introducing nitrogen gas. And heated to raise the temperature. The temperature was raised to 130 ° C. The initial epoxy equivalent in the mixed state was 185 g / eq. After measuring the initial epoxy equivalent, 0.05 part of triphenylphosphine was added as a catalyst, and the reaction was performed at 160 ° C. for 4 hours.
  • the final epoxy equivalent of the obtained cyanuric acid-modified epoxy resin (A-9) was 194 g / eq, and the phosphorus content was 0%.
  • the theoretical epoxy equivalent was 230 g / eq, and the reaction rate of cyanuric acid was 20%.
  • the results are shown in Table 1.
  • Comparative Example 2 The same operation as in Example 1 was performed, except that Epototo YDPN-638 was changed to 843 parts and cyanuric acid was changed to 31 parts.
  • the resulting cyanuric acid-modified phosphorus-containing epoxy resin (A-10) has a phosphorus content of 1.8%, an initial epoxy equivalent of 209 g / eq, a theoretical epoxy equivalent of 287 g / eq, and a final epoxy equivalent of 263 g / eq.
  • the reaction rate was 69%.
  • Table 1 The results are shown in Table 1.
  • Comparative Example 3 The same operation as in Example 1 was conducted except that Epototo YDPN-638 was changed to 882 parts, cyanuric acid was changed to 23 parts, and HCA was changed to 95 parts.
  • the resulting cyanuric acid-modified phosphorus-containing epoxy resin (A-11) has a phosphorus content of 1.35%, initial epoxy equivalent of 200 g / eq, theoretical epoxy equivalent of 248 g / eq, final epoxy equivalent of 231 g / eq, cyanuric acid The reaction rate was 65%.
  • Table 1 The results are shown in Table 1.
  • Comparative Example 4 In a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet, 788 parts of Epototo YDPN-638, 23 parts of cyanuric acid, HCA-HQ (manufactured by Sanko Co., Ltd., Charge 189 parts of 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus content 9.6%), stir while introducing nitrogen gas, and heat Went and warmed up. The temperature was raised to 130 ° C. The initial epoxy equivalent in the mixed state was 223 g / eq. After measuring the initial epoxy equivalent, 0.2 parts of triphenylphosphine was added as a catalyst and reacted at 160 ° C. for 4 hours. Resin was not obtained. Moreover, cyanuric acid remained solid in the gelled product.
  • Comparative Example 5 The same operation as in Comparative Example 4 was performed except that epototo YDPN-638 was changed to 855 parts, cyanuric acid was changed to 15 parts, and HCA-HQ was changed to 130 parts.
  • the resulting cyanuric acid-modified phosphorus-containing epoxy resin (A-12) has a phosphorus content of 1.2%, an initial epoxy equivalent of 206 g / eq, a theoretical epoxy equivalent of 271 g / eq, and a final epoxy equivalent of 224 g / eq. The reaction rate was 28%.
  • Table 1 The results are shown in Table 1.
  • Comparative Example 6 A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet, 683 parts of Epototo YDPN-638, Epotot YDF-2001 (Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol F type) Solid epoxy resin: 190 parts of epoxy equivalent (469 g / eq) and 127 parts of HCA were charged, stirred while introducing nitrogen gas, heated and heated. The temperature was raised to 130 ° C. The initial epoxy equivalent in the mixed state was 235 g / eq.
  • Examples 9-12 and 14-16, and Comparative Examples 7-11 The cyanuric acid-modified phosphorus-containing epoxy resins of Examples 1 to 5, Comparative Examples 1 to 3, and Comparative Example 5, and the phosphorus-containing epoxy resin of Comparative Example 6 and DICY as a curing agent (Dicyandiamide, manufactured by Nippon Carbide Corporation) was used to prepare a curable epoxy resin composition.
  • Table 2 shows the formulation of the solid content.
  • the epoxy resin was dissolved in methyl ethyl ketone and used.
  • DICY was used by dissolving in methoxypropanol and N, N-dimethylformamide.
  • 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd., 2-ethyl-4-methylimidazole
  • methoxypropanol was dissolved in methoxypropanol and used. After blending, the solution was adjusted with methyl ethyl ketone and methoxypropanol so that the non-volatile content was 50% to obtain a uniform resin varnish.
  • the obtained resin varnish was impregnated into glass cloth WEA 7628 XS13 (manufactured by Nitto Boseki Co., Ltd., thickness 0.18 mm).
  • the impregnated glass cloth was dried in a hot air circulating furnace at 150 ° C. for 8 minutes to obtain a prepreg. 4 sheets of prepreg obtained are stacked, and copper foil (Mitsui Metal Mining Co., Ltd., 3EC) is stacked on top and bottom, and heated and pressed at 130 ° C x 15 min and 170 ° C x 20 kg / cm 2 x 70 min. Got.
  • Table 2 shows the physical properties of the obtained laminate.
  • TX-1210-90 in the table represents Epototo TX-1210-90 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., substituted phenol type epoxy resin: epoxy equivalent 293 g / eq).
  • An epoxy resin composition was prepared using the cyanuric acid-modified phosphorus-containing epoxy resin obtained in Examples 2 and 8 and BRG-557 (manufactured by Showa Denko KK, phenol novolac resin) as a curing agent. Table 2 shows the formulation of the solid content. At the time of blending, the epoxy resin and BRG-557 were dissolved in methyl ethyl ketone and used. 2E4MZ was used by dissolving in methoxypropanol. After blending, the solution was adjusted with methyl ethyl ketone and methoxypropanol so that the non-volatile content was 50% to obtain a uniform resin varnish.
  • the obtained resin varnish was impregnated into glass cloth WEA 7628 XS13 (manufactured by Nitto Boseki Co., Ltd., thickness 0.18 mm).
  • the impregnated glass cloth was dried in a hot air circulating furnace at 150 ° C. for 8 minutes to obtain a prepreg.
  • Table 2 shows the physical properties of the obtained laminate.
  • the present invention is a manufacturing method in which a specific phosphorus compound and cyanuric acid coexist in a specific molar ratio and react with an epoxy resin, and the cyanuric acid-modified phosphorus-containing epoxy resin obtained from the manufacturing method is flame retardant. It can be used as an epoxy resin for electronic circuit boards having excellent heat resistance and adhesiveness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Emergency Medicine (AREA)

Abstract

 シアヌル酸とリン化合物とを用いてエポキシ樹脂を変性した難燃性のシアヌル酸変性リン含有エポキシ樹脂の製造において、短時間での製造を可能とし、かつシアヌル酸の残存が極めて少なく、優れた物性を有するエポキシ樹脂硬化物を得ることができるシアヌル酸変性リン含有エポキシ樹脂の製造方法を提供する。 リン化合物、シアヌル酸、及びエポキシ樹脂とを必須成分として反応して得られるシアヌル酸変性リン含有エポキシ樹脂の製造方法であって、特定のリン化合物を、シアヌル酸1モルに対して、該リン化合物を2.5~50モルにした、シアヌル酸変性リン含有エポキシ樹脂の製造方法とそれから得られるリン含有率が1.0~5.0質量%、窒素含有率が0.1~2.0質量%、かつ、リン含有率と窒素含有率の総和が2.5~5.5質量%であるシアヌル酸変性リン含有エポキシ樹脂と硬化剤を含む樹脂組成物とその硬化物である。

Description

シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物
 本発明は分子骨格にリン原子と窒素原子を含有するハロゲンフリー難燃性エポキシ樹脂の製造方法、該製造方法から得られたエポキシ樹脂とその他のエポキシ樹脂を含むエポキシ樹脂組成物、該エポキシ樹脂組成物と硬化剤を含む硬化性エポキシ樹脂組成物、及び該硬化性エポキシ樹脂組成物を硬化したエポキシ樹脂硬化物に関する。
 エポキシ樹脂の難燃化は従来テトラブロモビスフェノールAを原料とした臭素化エポキシ樹脂に代表されるようにハロゲン化により行われていた。しかし、ハロゲン化エポキシ樹脂を用いた場合、硬化物の燃焼時に熱分解反応により毒性の強いハロゲン化物の生成がみられるといった問題があった。これに対して近年リン化合物を利用したハロゲンフリー難燃技術が検討され、特許文献1~特許文献4で開示されたリン化合物を応用するという提案がされている。しかし、これらのリン化合物はエポキシ樹脂や溶剤との溶解性が低く、エポキシ樹脂に配合したり溶剤に溶解したりして用いることが困難であったため、特許文献5~特許文献10で開示されているようにあらかじめエポキシ樹脂類と反応することによってリン含有エポキシ樹脂、リン含有フェノール樹脂として溶剤溶解性を付与して使用されている。
特開昭47-016436号公報 特開昭60-126293号公報 特開昭61-236787号公報 特開平05-331179号公報 特開平04-11662号公報 特開2000-309623号公報 特開平11-166035号公報 特開平11-279258号公報 特開2001-123049号公報 特開2003-040969号公報 特開2012-229364号公報
西沢仁著「ポリマーの難燃化」P60 右欄22行~27行、P166 6-8-3項1992年 大成社
 リン化合物による難燃化は、難燃性を更に向上しようとするとリン含有率を高めるしかなく、分子量が大きくなり架橋密度が低下してしまうことや、高価なリン含有化合物を使用しなければならなかった。これに対して、本発明者らは非特許文献1に記載されているリンと窒素の難燃性に対する相乗効果に着目し、窒素化合物としてシアヌル酸を使用することにより難燃性の向上を提案した(特許文献11)。しかしながら、製造方法によっては、工ポキシ樹脂とシアヌル酸が十分に反応せず、未反応のシアヌル酸が残存しやすいことが分かった。反応系中に残存したシアヌル酸は非常にゆっくりとした速度でしかエポキシ樹脂と反応せず、また未反応のシアヌル酸は溶剤への溶解性が悪く、硬化物性に悪影響を及ぼす未反応シアヌル酸の低減が更に求められていた。
 上記の課題を解決するために、本発明者はエポキシ樹脂とシアヌル酸との反応の際、シアヌル酸に対して一定割合の特定のリン化合物を共存させて反応させることで、シアヌル酸の残存が極めて少なく長時間の反応を要することなくエポキシ樹脂との反応が容易に進行することを見出し、本発明を完成した。
 すなわち、本発明は、
 (1)リン化合物、シアヌル酸及びエポキシ樹脂を必須成分として反応して得られるシアヌル酸変性リン含有エポキシ樹脂の製造方法であって、前記リン化合物が、
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
 [式中、nは0または1を表し、そしてR1及びR2はそれぞれ単独に、炭素数1~6の炭化水素基を表し同一であっても異なっていてもよく、またはリン原子と共に環状になっていてもよい。]
 または、下記一般式(2):
Figure JPOXMLDOC01-appb-C000004
 [式中、mは0または1を表し、そしてR3及びR4はそれぞれ単独に、炭素数1~6の炭化水素基を表し同一であっても異なっていてもよく、またはリン原子と共に環状になっていてもよい。]
 で示されるリン化合物、または、その両者を含むリン化合物であり、シアヌル酸1モルに対して該リン化合物を2.5~50モル配合した、リン化合物及びシアヌル酸の共存下に、前記エポキシ樹脂を予め混合し、その後に反応を行い、リン含有率が1.0~5.0質量%、窒素含有率が0.1~2.0質量%、かつ、リン含有率と窒素含有率の総和が2.5~5.5質量%であることを特徴とするシアヌル酸変性リン含有エポキシ樹脂の製造方法、
 (2)上記(1)に記載の製造方法により得られるシアヌル酸変性リン含有エポキシ樹脂に、他のエポキシ樹脂を配合したエポキシ樹脂組成物、
 (3)上記(1)に記載の製造方法により得られるシアヌル酸変性リン含有エポキシ樹脂に、該シアヌル酸変性リン含有エポキシ樹脂のエポキシ基1当量に対して、官能基比で0.4~2.0当量の硬化剤を含有した硬化性エポキシ樹脂組成物、
 (4)上記(2)に記載のエポキシ樹脂組成物に、該エポキシ樹脂組成物のエポキシ基1当量に対して、官能基比で0.4~2.0当量の硬化剤を含有した硬化性エポキシ樹脂組成物、
 (5)上記(3)または(4)に記載の硬化性エポキシ樹脂組成物を硬化させたエポキシ樹脂硬化物、
 に関する。
 本発明は、シアヌル酸1モルに対して特定のリン化合物を2.5~50モルのモル比で共存させた後、エポキシ樹脂と反応することによって得られるシアヌル酸変性リン含有エポキシ樹脂であり、短時間での製造を可能とし、かつシアヌル酸の残存が極めて少なく、優れた物性を有するエポキシ樹脂硬化物を得ることができる。
 以下、本発明の実施の形態について、詳細に説明する。本発明の一般式(1)または(2)で示されるリン化合物は、具体的にはジメチルホスフィン、ジエチルホスフィン、ジフェニルホスフィン、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO)、ジメチルホスフィンオキサイド、ジエチルホスフィンオキサイド、ジブチルホスフィンオキサイド、ジフェニルホスフィンオキサイド、1,4-シクロオクチレンホスフィンオキサイド、1,5-シクロオクチレンホスフィンオキサイド(CPHO、日本化学工業株式会社製)等が挙げられる。これらのリン化合物は単独でも2種類以上混合して使用しても良く、これらに限定されるものではない。
 本発明において、シアヌル酸とは互変異性であるs-トリアジン-2,4,6-トリオール、及びs-トリアジン-2,4,6-トリオンを示すものであり、その比率については特に規定は無い。
 シアヌル酸は窒素系難燃剤として添加される技術が開示されているが、シアヌル酸の溶剤に対する溶解性不良やエポキシ樹脂や硬化剤に対する相溶性不良のため均一な樹脂組成物を得られがたく、難燃性にバラツキが生じていた。本発明の製造方法から得られるシアヌル酸変性リン含有エポキシ樹脂は、シアヌル酸をエポキシ樹脂と反応することで、樹脂組成物中で均一となるため、安定した難燃性が得られる。なお、本発明の樹脂組成物というときは、特に断りがない限り、エポキシ樹脂組成物と硬化性エポキシ樹脂組成物との両者を含む意味で使用されるが、文脈上明らかな場合は、いずれか一方を示す。
 本発明のシアヌル酸変性リン含有エポキシ樹脂を製造するために使用するエポキシ樹脂は、エポトート YD-128、エポトート YD-8125(新日鉄住金化学株式会社製、ビスフェノールA型エポキシ樹脂)、エポトート YDF-170、エポトート YDF-8170(新日鉄住金化学株式会社製、ビスフェノールF型エポキシ樹脂)、YSLV-80XY(新日鉄住金化学株式会社製、テトラメチルビスフェノールF型エポキシ樹脂)、エポトート YDC-1312(ヒドロキノン型エポキシ樹脂)、jER YX-4000H(三菱化学株式会社製、ビフェニル型エポキシ樹脂)、エポトート YDPN-638、エポトート YDPN-63X(新日鐵株式会社製、フェノールノボラック型エポキシ樹脂)、エポトート YDCN-701(新日鉄住金化学株式会社製、クレゾールノボラック型エポキシ樹脂)、エポトート GK-5855、エポトートTX-1210(新日鉄住金化学株式会社製、置換フェノール型エポキシ樹脂)エポトート ZX-1201(新日鉄住金化学株式会社製、ビスフェノールフルオレン型エポキシ樹脂)、TX-0710(新日鉄住金化学株式会社製、ビスフェノールS型エポキシ樹脂)、NC-3000(日本化薬株式会社製、ビフェニルアラルキルフェノール型エポキシ樹脂)、エポトート ZX-1355、エポトート ZX-1711(新日鉄住金化学株式会社製、ナフタレンジオール型エポキシ樹脂)、エポトート ESN-155(新日鉄住金化学株式会社製、β-ナフトールアラルキル型エポキシ樹脂)、エポトート ESN-355、エポトート ESN-375(新日鉄住金化学株式会社製、ジナフトールアラルキル型エポキシ樹脂)、エポトート ESN-475V、エポトート ESN-485(新日鉄住金化学株式会社製、α-ナフトールアラルキル型エポキシ樹脂)、EPPN-501H(日本化薬株式会社製、トリスフェニルメタン型エポキシ樹脂)、YSLV-120TE(新日鉄住金化学株式会社製、ビスチオエーテル型エポキシ樹脂)、エポトート ZX-1684(新日鉄住金化学株式会社製、レゾルシノール型エポキシ樹脂)、エピクロン HP-7200H(DIC株式会社製、ジシクロペンタジエン型エポキシ樹脂)、エポトート YDG-414(新日鉄住金化学株式会社製、四官能エポキシ樹脂)等の多価フェノール樹脂のフェノール化合物とエピハロヒドリンとから製造されるエポキシ樹脂、TX-0929、TX-0934、ZX-1542、TX-1032(新日鉄住金化学株式会社製、アルキレングリコール型エポキシ樹脂)等のアルコール化合物とエピハロヒドリンとから製造されるエポキシ樹脂、セロキサイド2021(ダイセル化学工業株式会社製、脂肪族環状エポキシ樹脂)、エポトート YH-434、(新日鉄住金化学株式会社製、ジアミノジフェニルメタンテトラグリシジルアミン)、jER 630(三菱化学株式会社製、アミノフェノール型エポキシ樹脂)等のアミン化合物とエピハロヒドリンとから製造されるエポキシ樹脂、エポトート FX-289B、エポトート FX-305、TX-0940(新日鉄住金化学株式会社製、リン含有エポキシ樹脂)、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂等が挙げられるが、これらに限定されるものではない。
 また、これらのエポキシ樹脂は単独で使用しても2種類以上を併用してもよく、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂を好適に用いることができる。
 一般式(1)または(2)で示されるリン化合物とシアヌル酸とエポキシ樹脂との反応は、リン化合物とシアヌル酸の共存下でエポキシ樹脂と反応させるが、シアヌル酸1モルに対して2.5~50モルのリン化合物が必要であり、好ましいリン化合物のモル比はシアヌル酸1モルに対して2.7~25モルであり、望ましくは3~10モルである。シアヌル酸1モルに対してリン化合物が2.5モル未満ではシアヌル酸とエポキシ樹脂との反応の進行が不十分となり、シアヌル酸の残存量が増える。シアヌル酸1モルに対してリン化合物が50モルを越えるとシアヌル酸とエポキシ樹脂との反応の十分進行するが、シアヌル酸による窒素原子の導入効果、即ち、難燃性に対するリンと窒素の相乗効果がほとんどなくなる。また、リン化合物とシアヌル酸の共存条件を満たせば、エポキシ樹脂とシアヌル酸との反応の前後のいずれにおいてもエポキシ樹脂とリン化合物とを反応させることができる。
 本発明のシアヌル酸変性リン含有エポキシ樹脂を得るための反応温度は、エポキシ樹脂の合成に通常設定されている温度でよく、100~250℃、好ましくは120~200℃である。
 反応には時間短縮や反応温度低減の為、触媒を使用しても良い。使用できる触媒は特に制限は無く、エポキシ樹脂の合成に通常使用されているものが使用できる。例えば、ベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド等のホスホニウム塩類、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類等各種触媒が使用可能であり、単独で用いても2種類以上併用してもよく、これらに限定されるものではない。また、分割して数回に分けて使用しても良い。
 反応に使用する触媒量は特に限定されないが、用いるエポキシ樹脂に対して5質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。触媒量が5質量%を超える場合にはエポキシ基の自己重合反応が進行しやすくなり、樹脂粘度が高くなる傾向にあるため好ましくない。
 また、反応には不活性溶媒を使用しても良い。具体的にはヘキサン、へプタン、オクタン、デカン、ジメチルブタン、ペンテン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン等の各種炭化水素、エチルエーテル、イソプロピルエーテル、ブチルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、アミルフェニルエーテル、エチルベンジルエーテル、ジオキサン、メチルフラン、テトラヒドロフラン等のエーテル類、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブ、セロソルブアセテート、エチレングリコールイソプロピルエーテル、ジエチレングリコールジメチルエーテル、メチルエチルカルビトール、プロピレングリコールモノメチルエーテル、ジメチルホルムアミド、ジメチルスルホキシド等が使用できるが、これらに限定されるものではなく、単独で用いても2種類以上混合して使用しても良い。
 本発明で得られるシアヌル酸変性リン含有エポキシ樹脂のエポキシ当量は、100~700g/eqが好ましく、200~600g/eqがより好ましい。エポキシ当量が100g/eq未満では、硬化物の接着性が劣るものとなりやすく、700g/eqより大きい場合は硬化物のガラス転移温度(Tg)が低下し、樹脂組成物が高粘度となり作業性に劣るものとなりやすい。
 本発明で得られるシアヌル酸変性リン含有エポキシ樹脂のリン含有率は、1.0~5.0質量%であり、1.5~4.0質量%が好ましく、2.0~3.5質量%がより好ましい。窒素含有率は、0.1~2.0質量%であり、0.5~1.0質量%が好ましい。また、リン含有率と窒素含有率の総和は、2.5~5.5質量%であり、3.0~4.5質量%が好ましく、3.0~4.0質量%がより好ましい。本発明で得られるシアヌル酸変性リン含有エポキシ樹脂の難燃性は、リンと窒素の相乗効果で発揮されるため、どちらか一方の範囲を規定しても意味がなく、リン含有率と窒素含有率の総和の範囲を規定する必要がある。リン含有率と窒素含有率の総和が2.5質量%未満だと樹脂組成物によっては難燃性が十分発揮できない恐れがある。また、リン含有率と窒素含有率の総和が5.5質量%を越えると難燃性は十分発揮できるが、樹脂組成物が高粘度になり、溶剤溶解性に悪影響がでる恐れがある。そのため、リン含有率と窒素含有率の総和の範囲を2.5~5.5質量%にすることが好ましい。
 本発明のエポキシ樹脂組成物に用いるその他のエポキシ樹脂としては、本発明の特性を損なわない範囲で、前記エポキシ樹脂と同一のエポキシ樹脂をシアヌル酸変性リン含有エポキシ樹脂と併用することができる。
 本発明のシアヌル酸変性リン含有エポキシ樹脂またはエポキシ樹脂組成物は硬化剤を配合することにより、硬化性エポキシ樹脂組成物とすることができる。硬化剤としては各種フェノール化合物、酸無水物類、アミン類、ヒドラジッド類、酸性ポリエステル類等の通常使用されるエポキシ樹脂用硬化剤を使用することができ、これらの硬化剤は1種類だけ使用しても2種類以上併用しても良い。これらのうち、本発明の硬化性エポキシ樹脂組成物が含有する硬化剤としてはジシアンジアミドまたはフェノール化合物が好ましい。
 本発明の硬化性エポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂の官能基であるエポキシ基1当量に対して硬化剤の官能基0.4~2.0当量が好ましく、0.5~1.5当量がより好ましく、0.5~1.0当量が特に好ましくい。エポキシ基1当量に対して硬化剤が0.4当量に満たない場合、または2.0当量を超える場合は硬化が不完全になり良好な硬化物性が得られない恐れがある。
 本発明の硬化性エポキシ樹脂組成物に用いることができるフェノール化合物の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールC、ビスフェノールK、ビスフェノールZ、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、テトラメチルビスフェノールZ、ジヒドロキシジフェニルスルフィド、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)等のビスフェノール類、カテコール、レゾルシン、メチルレゾルシン、ハイドロキノン、モノメチルハイドロキノン、ジメチルハイドロキノン、トリメチルハイドロキノン、モノ-tert-ブチルハイドロキノン、ジ-tert-ブチルハイドロキノン等ジヒドロキシベンゼン類、4,4'-ビフェノール、テトラメチルビフェノール等のビフェノール類等の2価フェノール類、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、ジヒドロキシメチルナフタレン、トリヒドロキシナフタレン等のポリヒドロキシナフタレン類、フェノールノボラック樹脂、DC-5(新日鉄住金化学株式会社製、クレゾールノボラック樹脂)、ナフトールノボラック樹脂等のフェノール類またはナフトール類とアルデヒド類との縮合物、SN-160、SN-395、SN-485(新日鉄住金化学株式会社製)等のフェノール類またはナフトール類とキシリレングリコールとの縮合物、GK-5855P (新日鉄住金化学株式会社製、置換フェノール樹脂)、フェノール類またはナフトール類とイソプロペニルアセトフェノンとの縮合物、フェノール類またはナフトール類とジシクロペンタジエンとの反応物、フェノール類またはナフトール類とビフェニル系縮合剤との縮合物等の一分子中に2個以上のフェノール性水酸基と有するフェノール化合物等が例示される。
 なお、前記フェノール類としては、フェノール、クレゾール、キシレノール、ブチルフェノール、アミルフェノール、ノニルフェノール、ブチルメチルフェノール、トリメチルフェノール、フェニルフェノール等が挙げられ、前記ナフトール類としては、1-ナフトール、2-ナフトール等が挙げられる。また、前記アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、ベンズアルデヒド、クロルアルデヒド、ブロムアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド、ピメリンアルデヒド、セバシンアルデヒド、アクロレイン、クロトンアルデヒド、サリチルアルデヒド、フタルアルデヒド、ヒドロキシベンズアルデヒド等が挙げられ、前記ビフェニル系縮合剤としてビス(メチロール)ビフェニル、ビス(メトキシメチル)ビフェニル、ビス(エトキシメチル)ビフェニル、ビス(クロロメチル)ビフェニル等が挙げられるが、これらに限定されるわけではない。
 本発明の硬化性エポキシ樹脂組成物に用いることができるその他の公知の硬化剤としては、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸、無水フタル酸、無水トリメリット酸、無水メチルナジック酸等の酸無水物類、ジシアンジアミド、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタキシレンジアミン、イソホロンジアミン等の脂肪族アミン類、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジフェニルエーテル、ジアミノエチルベンゼン等の芳香族アミン類、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミン類、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾール等のイミダゾール類、及びそれらとトリメリット酸、イソシアヌル酸、硼素等との塩であるイミダゾール塩類、ダイマー酸等の酸類とポリアミン類との縮合物であるポリアミドアミン等のアミン系化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジド類、アミノ安息香酸エステル類、トリフェニルホスフィン等のホスフィン化合物、テトラフェニルホスフォニウムブロマイド等のホスホニウム塩、トリメチルアンモニウムクロライド等の4級アンモニウム塩類、ジアザビシクロ化合物及びそれらとフェノール類、フェノールノボラック樹脂等との塩類、3フッ化硼素とアミン類、エーテル化合物等との錯化合物、芳香族ホスホニウムまたはヨードニウム塩等が挙げられるが、これらに限定されるわけではない。また、これらを2種類以上併用してもよい。
 本発明の硬化性エポキシ樹脂組成物には、粘度調整用として有機溶剤も用いることができる。用いることができる有機溶剤としては、N,N-ジメチルホルムアミド等のアミド類、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等のアルコール類、ベンゼン、トルエン等の芳香族炭化水素類等が挙げられる。これらの溶剤のうちの単独または複数種を混合したものを、樹脂組成物中のエポキシ樹脂成分100質量部に対し25~250質量部の範囲で配合することができる。
 本発明の硬化性エポキシ樹脂組成物には必要に応じて硬化促進剤を使用することができる。使用できる硬化促進剤の例としては、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィントリフェニルボラン当のホスフィン類、オクチル酸スズ等の金属化合物が挙げられる。硬化促進剤を用いる場合の使用量は、本発明の樹脂組成物中のエポキシ樹脂成分100質量部に対して0.02~5.0質量部が好ましい。硬化促進剤を用いることにより、硬化温度を下げ、硬化時間を短縮することができる。
 本発明の硬化性エポキシ樹脂組成物には必要に応じてフィラーを用いることができる。具体的には水酸化アルミニウム、水酸化マグネシウム、タルク、焼成タルク、クレー、カオリン、酸化チタン、ガラス粉末、ベーマイト、シリカバルーン等の無機フィラーが挙げられるが、顔料等を配合しても良い。一般的無機充填材を用いる理由として、耐衝撃性の向上が挙げられる。また、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物を用いた場合、難燃助剤として作用し、樹脂組成物中のリン含有率が少なくても難燃性を確保することができる。特にエポキシ樹脂成分100質量部に対し配合量が10質量部以上でないと、耐衝撃性の効果は少ない。しかしながら、配合量が150質量部を越えると積層板用途として必要な項目である接着性が低下する。また、ガラス繊維、パルプ繊維、合成繊維、セラミック繊維等の繊維質充填材や微粒子ゴム、熱可塑性エラストマー等の有機充填材を上記樹脂組成物に含有することもできる。
 本発明の硬化性エポキシ樹脂組成物を硬化することによってリン及び窒素含有エポキシ樹脂硬化物を得ることができる。硬化の際には例えば樹脂シート、樹脂付き銅箔、プリプレグ等の形態とし、積層して加熱加圧硬化することで積層板としてのリン含有エポキシ樹脂硬化物を得ることができる。
 本発明のシアヌル酸変性リン含有エポキシ樹脂を用いた硬化性エポキシ樹脂組成物を作成し、リン及び窒素含有エポキシ樹脂硬化物の特性を加熱硬化により得られた積層板として評価した結果、本発明のモル比の範囲外のリン化合物とシアヌル酸を用いてエポキシ樹脂を反応したシアヌル酸変性リン含有エポキシ樹脂、及び、リン化合物とエポキシ樹脂から得られる従来公知のリン含有エポキシ樹脂と比較して、高い接着力、難燃性を示した。
 実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。実施例及び比較例において、特に断りがない限り「部」は質量部を表し、「%」は質量%を表す。
 実施例及び比較例で測定するエポキシ樹脂のエポキシ当量はJIS K 7236にて測定を行った。
 窒素含有率はシアヌル酸の窒素含有率と配合量から、シアヌル酸変性リン含有エポキシ樹脂に対する百分率を算出した。
 実施例及び比較例で合成されたエポキシ樹脂のリン含有率は以下の方法で測定を行った。すなわち、試料150mgに硫酸3mLを加え30分加熱する。室温に戻し、硝酸3.5 mL及び過塩素酸0.5 mLを加えて内容物が透明又は黄色になるまで加熱分解する。この液を100mLメスフラスコに純水で希釈する。この試料液10mLを50mLメスフラスコに入れ、フェノールフタレイン指示薬を1滴加え、2mol/Lアンモニア水を微赤色になるまで加える。50%硫酸液2mLを加え、純水を加える。2.5g/Lのメタバナジン酸アンモニウム水溶液を5mL及び50g/Lモリブデン酸アンモニウム水溶液5mLを加えた後、純水で定容とする。室温で40分放置した後、分光光度計を用いて波長440nmの条件で純水を対照として測定し、吸光度からリン含有率を求めた。
 得られたシアヌル酸変性リン含有エポキシ樹脂について、外観の目視による濁りの有無で残存シアヌル酸の有無の確認を行った。濁り無しを残存シアヌル酸無し(○)とし、濁り有りを残存シアヌル酸有り(×)とした。
 硬化物のガラス転移温度はセイコーインスツルメンツ株式会社製、Exster 6000を使用し、DSCでは最初の変曲点の値をガラス転移温度とし、TMAでは変曲点をガラス転移温度とした。
 銅箔剥離強さはJIS C 6481 5.7に準じて、層間接着力はJIS C 6481 5.7に準じてプリプレグ1枚と残りの3枚の間で剥離を行い測定した。
 難燃性はUL(Underwriter Laboratorics)規格に準じて測定を行った。また、残炎時間は試験片5本の有炎燃焼持続時間を合計して示した。
 シアヌル酸の反応率は、初期エポキシ当量、理論エポキシ当量及びシアヌル酸変性リン含有エポキシ樹脂のエポキシ当量(最終エポキシ当量)の値を用いて、以下の式により求めた。
 [(最終エポキシ当量-初期エポキシ当量)/(理論エポキシ当量-初期エポキシ当量)]×100
 ただし、最終エポキシ当量が理論エポキシ当量より大きい場合は、反応率は100%とした。
 実施例1.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638(新日鉄住金化学株式会社製、フェノールノボラック型エポキシ樹脂:エポキシ当量177g/eq)を850部、HCA(三光株式会社製、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、リン含有率14.2%)を127部、シアヌル酸(東京化成工業株式会社製)を23部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って130℃まで昇温した。混合状態での初期エポキシ当量は207g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.14部添加して160℃で4時間反応を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-1)のリン含有率は1.8%、理論エポキシ当量は270g/eq、最終エポキシ当量は272g/eq、シアヌル酸の反応率は100%であった。結果を表1に示した。
 実施例2.
 エポトートYDPN-638を758部に、シアヌル酸を3部にHCAを239部に変更した以外は実施例1と同様の操作を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-2)のリン含有率は3.4%、初期エポキシ当量は232g/eq、理論エポキシ当量は320g/eq、最終エポキシ当量は332g/eq、シアヌル酸の反応率は100%であった。結果を表1に示した。
 実施例3.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-63X(新日鉄住金化学株式会社製、狭分散フェノールノボラック型エポキシ樹脂:エポキシ当量176g/eq)を692部、HCAを250部、シアヌル酸を58部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って130℃まで昇温した。混合状態での初期エポキシ当量は254g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.33部添加して160℃で4時間反応を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-3)のリン含有率は3.6%、理論エポキシ当量は701g/eq、最終エポキシ当量は669g/eq、シアヌル酸の反応率は93%であった。結果を表1に示した。
 実施例4.
 エポトートYDPN-63Xを640部に、シアヌル酸を15部にHCAを345部に変更した以外は実施例3と同様の操作を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-4)のリン含有率は4.9%、初期エポキシ当量は275g/eq、理論エポキシ当量は592g/eq、最終エポキシ当量は594g/eq、シアヌル酸の反応率は100%であった。結果を表1に示した。
 実施例5.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638を507部、エポトート YD-128(新日鉄住金化学株式会社製、ビスフェノールA型液状エポキシ樹脂:エポキシ当量186g/eq)を300部、HCAを162部、シアヌル酸を31部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って130℃まで昇温した。混合状態での初期エポキシ当量は223g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.25部添加して160℃で4時間反応を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-5)のリン含有率は2.3%、理論エポキシ当量は333g/eq、最終エポキシ当量は330g/eq、シアヌル酸の反応率は97%であった。結果を表1に示した。
 実施例6.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638を433部、エポトート YDCN-704(新日鉄住金化学株式会社製、クレゾールノボラック型エポキシ樹脂:エポキシ当量209g/eq)を300部、HCAを250部、シアヌル酸を17部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って130℃まで昇温した。混合状態での初期エポキシ当量は258g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.25部添加して160℃で4時間反応を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-6)のリン含有率は3.6%、理論エポキシ当量は429g/eq、最終エポキシ当量は428g/eq、シアヌル酸の反応率は99%であった。結果を表1に示した。
 実施例7.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638を442部、YSLV-80XY(新日鉄住金化学株式会社製、テトラメチルビスフェノールF型エポキシ樹脂:エポキシ当量190g/eq)を300部、HCAを250部、シアヌル酸を6部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って130℃まで昇温した。混合状態での初期エポキシ当量は245g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.25部添加して160℃で4時間反応を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-7)のリン含有率は3.6%、理論エポキシ当量は360g/eq、最終エポキシ当量は360/eq、シアヌル酸の反応率は100%であった。結果を表1に示した。
 実施例8.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638を860部、CPHO(日本化学工業株式会社製、1,5-シクロオクチレンホスフィンオキサイド、リン含有率19.6%)を110部、シアヌル酸を30部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って130℃まで昇温した。混合状態での初期エポキシ当量は206g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.14部添加して160℃で4時間反応を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-8)のリン含有率は2.2%、理論エポキシ当量は289g/eq、最終エポキシ当量は290/eq、シアヌル酸の反応率は100%であった。結果を表1に示した。
 比較例1.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638を954部、シアヌル酸を46部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って昇温した。130℃まで昇温した。混合状態での初期エポキシ当量は185g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.05部を添加して160℃で4時間反応を行った。得られたシアヌル酸変性エポキシ樹脂(A-9)の最終エポキシ当量は194g/eq、リン含有率は0%であった。理論エポキシ当量は230g/eq、シアヌル酸の反応率は20%であった。結果を表1に示した。
 比較例2.
 エポトートYDPN-638を843部に、シアヌル酸を31部に変更した以外は実施例1と同様の操作を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-10)のリン含有率は1.8%、初期エポキシ当量は209g/eq、理論エポキシ当量は287g/eq、最終エポキシ当量は263g/eq、シアヌル酸の反応率は69%であった。結果を表1に示した。
 比較例3.
 エポトートYDPN-638を882部に、シアヌル酸を23部に、HCAを95部に変更した以外は実施例1と同様の操作を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-11)のリン含有率は1.35%、初期エポキシ当量は200g/eq、理論エポキシ当量は248g/eq、最終エポキシ当量は231g/eq、シアヌル酸の反応率は65%であった。結果を表1に示した。
 比較例4.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638を788部、シアヌル酸を23部、HCA-HQ(三光株式会社製、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、リン含有率9.6%)を189部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って昇温した。130℃まで昇温した。混合状態での初期エポキシ当量を測定したら223g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.2部添加して160℃で4時間反応を行った所、ゲル化してしまいエポキシ樹脂は得られなかった。また、ゲル化物中にはシアヌル酸が固形で残存していた。
 比較例5.
 エポトートYDPN-638を855部に、シアヌル酸を15部に、HCA-HQを130部に変更した以外は比較例4と同様の操作を行った。得られたシアヌル酸変性リン含有エポキシ樹脂(A-12)のリン含有率は1.2%、初期エポキシ当量は206g/eq、理論エポキシ当量は271g/eq、最終エポキシ当量は224g/eq、シアヌル酸の反応率は28%であった。結果を表1に示した。
 比較例6.
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポトートYDPN-638を683部、エポトート YDF-2001(新日鉄住金化学株式会社製、ビスフェノールF型固形エポキシ樹脂:エポキシ当量469g/eq)を190部、HCAを127部仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って昇温した。130℃まで昇温した。混合状態での初期エポキシ当量は235g/eqであった、初期エポキシ当量測定後、触媒としてトリフェニルホスフィンを0.13部を添加して160℃で4時間反応を行った。得られたリン含有エポキシ樹脂(A-13)の最終エポキシ当量は272g/eq、リン含有率は1.8%であった。理論エポキシ当量は272g/eqであった。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000005
 実施例9~12及び14~16、並びに比較例7~11.
 実施例1~5、比較例1~3、及び比較例5のシアヌル酸変性リン含有エポキシ樹脂、並びに比較例6のリン含有エポキシ樹脂と、硬化剤としてDICY(日本カーバイト株式会社製、ジシアンジアミド)を使用して硬化性エポキシ樹脂組成物を作成した。固形分での配合処方を表2に示した。配合の際にエポキシ樹脂はメチルエチルケトンに溶解して用いた。DICYはメトキシプロパノール、N,N-ジメチルホルムアミドに溶解して使用した。2E4MZ(四国化成工業株式会社製、2-エチル-4-メチルイミダゾール)はメトキシプロパノールに溶解して使用した。配合後、メチルエチルケトン、メトキシプロパノールにて不揮発分50 %となるように調整して、均一溶液な樹脂ワニスを得た。
 得られた樹脂ワニスをガラスクロス WEA 7628 XS13(日東紡績株式会社製、0.18mm厚)に含浸した。含浸したガラスクロスを150℃の熱風循環炉で8分間乾燥を行い、プリプレグを得た。得られたプリプレグ4枚を重ね、上下に銅箔(三井金属鉱業株式会社製、3EC)を重ね、130℃×15分及び170℃×20kg/cm2×70分間加熱、加圧を行い積層板を得た。得られた積層板の物性を表2に示した。
 なお、表中のTX-1210-90は、エポトートTX-1210-90(新日鉄住金化学株式会社製、置換フェノール型エポキシ樹脂:エポキシ当量293g/eq)を示す。
 実施例13及び17.
 実施例2と8で得られたシアヌル酸変性リン含有エポキシ樹脂と、硬化剤としてBRG-557(昭和電工株式会社製、フェノールノボラック樹脂)を使用してエポキシ樹脂組成物を作成した。固形分での配合処方を表2に示した。配合の際にエポキシ樹脂及びBRG-557はメチルエチルケトンに溶解して用いた。2E4MZはメトキシプロパノールに溶解して使用した。配合後、メチルエチルケトン、メトキシプロパノールにて不揮発分50 %となるように調整して、均一溶液な樹脂ワニスを得た。
 得られた樹脂ワニスをガラスクロス WEA 7628 XS13(日東紡績株式会社製、0.18mm厚)に含浸した。含浸したガラスクロスを150℃の熱風循環炉で8分間乾燥を行い、プリプレグを得た。得られたプリプレグ4枚を重ね、上下に銅箔(三井金属鉱業株式会社製、3EC)を重ね、130℃×15分及び190℃×20kg/cm2×80分間加熱、加圧を行い積層板を得た。得られた積層板の物性を表2に示した。
Figure JPOXMLDOC01-appb-T000006
 実施例から判るようにシアヌル酸1モルに対して所定のモル比範囲のリン化合物とエポキシ樹脂を反応することで、短時間の反応でシアヌル酸が十分反応し、濁りの無いシアヌル酸変性リン含有エポキシ樹脂を得ることができる。また、シアヌル酸が十分反応した濁りの無いシアヌル酸変性リン含有エポキシ樹脂を使用して積層板評価を行ったところ、未反応で濁りがある比較例のシアヌル酸変性エポキシ樹脂を使用した場合よりも高い耐熱性、接着性、難燃性を示した。
 本発明は、特定のリン化合物とシアヌル酸とを特定のモル比で共存させてエポキシ樹脂と反応させる製造方法であって、その製造方法から得られるシアヌル酸変性リン含有エポキシ樹脂は、難燃性、耐熱性、接着性に優れた電子回路基板用のエポキシ樹脂として利用することができる。

Claims (5)

  1.  リン化合物、シアヌル酸、及びエポキシ樹脂を必須成分として反応して得られるシアヌル酸変性リン含有エポキシ樹脂の製造方法であって、前記リン化合物が、
     下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
     [式中、nは0または1を表し、そしてR1及びR2はそれぞれ単独に、炭素数1~6の炭化水素基を表し同一であっても異なっていてもよく、またはリン原子と共に環状になっていてもよい。]
     または、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
     [式中、mは0または1を表し、そしてR3及びR4はそれぞれ単独に、炭素数1~6の炭化水素基を表し同一であっても異なっていてもよく、またはリン原子と共に環状になっていてもよい。]
     で示されるリン化合物、または、その両者を含むリン化合物であり、シアヌル酸1モルに対して、該リン化合物を2.5~50モルにした、リン化合物及びシアヌル酸の共存下に、前記エポキシ樹脂を予め混合し、その後に反応を行い、リン含有率が1.0~5.0質量%、窒素含有率が0.1~2.0質量%、かつ、リン含有率と窒素含有率の総和が2.5~5.5質量%であることを特徴とするシアヌル酸変性リン含有エポキシ樹脂の製造方法。
  2.  請求項1に記載の製造方法により得られるシアヌル酸変性リン含有エポキシ樹脂に、他のエポキシ樹脂を配合したエポキシ樹脂組成物。
  3.  請求項1に記載の製造方法により得られるシアヌル酸変性リン含有エポキシ樹脂に、該シアヌル酸変性リン含有エポキシ樹脂のエポキシ基1当量に対して、官能基比で0.4~2.0当量の硬化剤を含有した硬化性エポキシ樹脂組成物。
  4.  請求項2に記載のエポキシ樹脂組成物に、該エポキシ樹脂組成物のエポキシ基1当量に対して、官能基比で0.4~2.0当量の硬化剤を含有した硬化性エポキシ樹脂組成物。
  5.  請求項3または4に記載の硬化性エポキシ樹脂組成物を硬化させたエポキシ樹脂硬化物。
PCT/JP2013/072894 2012-08-28 2013-08-27 シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物 WO2014034675A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380044287.1A CN104583263B (zh) 2012-08-28 2013-08-27 氰尿酸改性含磷环氧树脂的制造方法、含氰尿酸改性含磷环氧树脂的树脂组合物及其固化物
KR1020157004269A KR101954484B1 (ko) 2012-08-28 2013-08-27 시아누르산 변성 인 함유 에폭시 수지의 제조 방법, 해당 시아누르산 변성 인 함유 에폭시 수지를 포함하는 수지 조성물, 및 그의 경화물
JP2014533024A JP6246126B2 (ja) 2012-08-28 2013-08-27 シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012187786 2012-08-28
JP2012-187786 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014034675A1 true WO2014034675A1 (ja) 2014-03-06

Family

ID=50183487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072894 WO2014034675A1 (ja) 2012-08-28 2013-08-27 シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物

Country Status (5)

Country Link
JP (1) JP6246126B2 (ja)
KR (1) KR101954484B1 (ja)
CN (1) CN104583263B (ja)
TW (1) TWI620762B (ja)
WO (1) WO2014034675A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621154B (zh) * 2020-12-14 2024-06-04 金发科技股份有限公司 一种加合物及其制备方法和一种阻燃组合物和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143309A1 (ja) * 2007-05-18 2008-11-27 Tohto Kasei Co., Ltd. 新規な難燃性エポキシ樹脂、該エポキシ樹脂を必須成分とするエポキシ樹脂組成物及びその硬化物
JP2010241872A (ja) * 2009-04-01 2010-10-28 Nippon Steel Chem Co Ltd エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JP2012229364A (ja) * 2011-04-27 2012-11-22 Nippon Steel Chem Co Ltd リン及び窒素含有エポキシ樹脂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825217A1 (en) * 1996-08-23 1998-02-25 Akzo Nobel N.V. Adduct of bisepoxy compound and P-guanamine
JP2002284850A (ja) * 2001-03-26 2002-10-03 Sanko Kk りん及び窒素変性難燃エポキシ樹脂組成物、プリプレグ及び積層板
JP4036011B2 (ja) * 2002-02-26 2008-01-23 日立化成工業株式会社 難燃性熱硬化樹脂組成物,それを用いたプリプレグ及び電気配線板用積層板
JP2006143850A (ja) * 2004-11-18 2006-06-08 Hitachi Chem Co Ltd 難燃性樹脂組成物、プリプレグ、金属張積層板
JP5544184B2 (ja) * 2010-02-08 2014-07-09 新日鉄住金化学株式会社 リン含有エポキシ樹脂の製造方法、エポキシ樹脂組成物及びその硬化物
CN102757547B (zh) * 2011-04-27 2016-07-06 新日铁住金化学株式会社 含磷和氮的环氧树脂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143309A1 (ja) * 2007-05-18 2008-11-27 Tohto Kasei Co., Ltd. 新規な難燃性エポキシ樹脂、該エポキシ樹脂を必須成分とするエポキシ樹脂組成物及びその硬化物
JP2010241872A (ja) * 2009-04-01 2010-10-28 Nippon Steel Chem Co Ltd エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JP2012229364A (ja) * 2011-04-27 2012-11-22 Nippon Steel Chem Co Ltd リン及び窒素含有エポキシ樹脂

Also Published As

Publication number Publication date
JPWO2014034675A1 (ja) 2016-08-08
TW201418309A (zh) 2014-05-16
KR101954484B1 (ko) 2019-03-05
JP6246126B2 (ja) 2017-12-13
KR20150052011A (ko) 2015-05-13
CN104583263B (zh) 2018-02-13
TWI620762B (zh) 2018-04-11
CN104583263A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
KR102424473B1 (ko) 옥사졸리돈 고리 함유 에폭시 수지, 그 제조 방법, 에폭시 수지 조성물 및 그 경화물
JP7493456B2 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
KR101903190B1 (ko) 난연성 에폭시 수지 및 그 에폭시 수지를 필수 성분으로 하는 조성물, 경화물
KR102038173B1 (ko) 인 함유 에폭시 수지 및 그 에폭시 수지를 필수성분으로 하는 조성물, 경화물
TWI631173B (zh) Epoxy resin composition and hardened material
TWI425019B (zh) Liquid epoxy resin, epoxy resin composition and hardened product
JP2014005345A (ja) 高分子量エポキシ樹脂、それを用いた樹脂組成物および硬化物
JP2020015823A (ja) エポキシ樹脂組成物、プリプレグ、積層板およびプリント配線板
JP5591176B2 (ja) リン及び窒素含有エポキシ樹脂
JP5896693B2 (ja) リン及び窒素含有エポキシ樹脂
JP5441477B2 (ja) 難燃性リン含有エポキシ樹脂組成物及びその硬化物
JP6246126B2 (ja) シアヌル酸変性リン含有エポキシ樹脂の製造方法、該シアヌル酸変性リン含有エポキシ樹脂を含む樹脂組成物、及びその硬化物
JP2011099019A (ja) リン含有エポキシ樹脂、樹脂組成物、およびその難燃性硬化物
JP5610808B2 (ja) リン含有フェノール樹脂組成物及び該組成物を必須成分とする硬化性組成物及び硬化物
JP5126923B2 (ja) エポキシ樹脂組成物
JP2014077075A (ja) エポキシ樹脂組成物及び硬化物
JP2015124251A (ja) リン含有エポキシ樹脂、その製造方法、それを含むエポキシ樹脂組成物、硬化物及び銅張り積層板
WO2008072668A1 (ja) フェノール樹脂、エポキシ樹脂、硬化性樹脂組成物、その硬化物、およびフェノール樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533024

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157004269

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832962

Country of ref document: EP

Kind code of ref document: A1