WO2017169738A1 - 熱硬化性化合物 - Google Patents

熱硬化性化合物 Download PDF

Info

Publication number
WO2017169738A1
WO2017169738A1 PCT/JP2017/010175 JP2017010175W WO2017169738A1 WO 2017169738 A1 WO2017169738 A1 WO 2017169738A1 JP 2017010175 W JP2017010175 W JP 2017010175W WO 2017169738 A1 WO2017169738 A1 WO 2017169738A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermosetting
thermosetting compound
ring
formula
Prior art date
Application number
PCT/JP2017/010175
Other languages
English (en)
French (fr)
Inventor
中谷晃司
井上慶三
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201780021115.0A priority Critical patent/CN108884190A/zh
Priority to KR1020187030277A priority patent/KR20180130526A/ko
Priority to US16/089,159 priority patent/US20190119489A1/en
Priority to EP17774282.2A priority patent/EP3438140A4/en
Publication of WO2017169738A1 publication Critical patent/WO2017169738A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/456Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/124Unsaturated polyimide precursors the unsaturated precursors containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • C08G73/127Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present invention relates to a thermosetting compound and a cured product thereof.
  • This application claims the priority of Japanese Patent Application No. 2016-068665 for which it applied to Japan on March 30, 2016, and uses the content here.
  • thermosetting compound that can form a cured product.
  • Patent Documents 1 to 3 describe thermosetting compounds having a phenylethynyl group, a phenylmaleimido-N-yl group, or a nadiimido-N-yl group as a thermosetting group at the terminal of the liquid crystal oligomer. .
  • thermosetting compound in order to cure the thermosetting compound, it is necessary to heat at a high temperature of 350 ° C. or higher for a long time, and there is a problem that the semiconductor and the circuit board are deteriorated by the high temperature heating at the time of curing. Further, since the 5% weight loss temperature (T d5 ) of the cured product is lower than 450 ° C., there is a problem that the cured product may be decomposed by high-temperature heating during curing.
  • thermosetting polyester composition obtained in this way is thermoset at a temperature of 250 ° C. or lower to obtain a cured product having excellent heat resistance.
  • thermosetting polyester composition had poor solvent solubility. Further, the curability is poor, and even if a crosslinking agent or a curing accelerator is added, a long time (for example, about 6 hours) is required for heat curing, so that the workability is poor. Furthermore, when it is heated at a high temperature of 300 ° C. or more for the purpose of curing in a short time, it is problematic that it is easily decomposed.
  • an object of the present invention is to provide a thermosetting compound that has good solvent solubility and can be rapidly cured by heat treatment to form a cured product having super heat resistance. is there. Another object of the present invention is to provide a thermosetting composition that can be rapidly cured by heat treatment to form a cured product having super heat resistance. Another object of the present invention is to provide a method for producing a semiconductor device using the thermosetting composition. Another object of the present invention is to provide a semiconductor device obtained by the manufacturing method.
  • the present inventors have found that the compound represented by the following formula (1) has good solvent solubility, is rapidly cured by heating, and has a super heat resistance, Specifically, it has been found that a cured product having a 5% weight loss temperature (T d5 ) of 450 ° C. or more and a storage elastic modulus (E ′) at 250 ° C. of 1 GPa or more can be obtained.
  • T d5 5% weight loss temperature
  • E ′ storage elastic modulus
  • thermosetting compound represented by following formula (1) (In the formula, R 1 and R 2 represent thermosetting groups, D 1 and D 2 are the same or different and represent a single bond or a linking group. Ar 1 , Ar 2 and Ar 3 are the same or different. A divalent aromatic hydrocarbon group or two or more aromatic hydrocarbons bonded via a single bond, a divalent aliphatic hydrocarbon group, or a divalent alicyclic hydrocarbon group And E represents an ester bond [— (C ⁇ O) O— or —O (C ⁇ O) —])
  • R 1 and R 2 in formula (1) are the same or different, and phenyl ethynyl group, styryl group, maleimide group, nadiimide group, biphenylene group, ethynyl group, isocyanate group, cyanate group, nitrile
  • the thermosetting compound is a thermosetting group selected from the group consisting of a group, a phthalonitrile group, a cyclobenzobutene group, a benzoxazine group, an oxetane group, and a vinyl group.
  • the present invention also provides the thermosetting compound having a thermotropic liquid crystal property.
  • the present invention also provides a thermosetting composition containing the thermosetting compound.
  • the present invention also provides a cured product of the thermosetting composition.
  • the present invention also provides a method for manufacturing a semiconductor device, which includes a step of sealing a semiconductor element using the thermosetting composition.
  • the present invention also provides a semiconductor device having a structure in which a semiconductor element is coated with the cured product.
  • Formula (1) (wherein R 1 and R 2 represent a thermosetting group, and D 1 and D 2 are the same or different and represent a single bond or a linking group.
  • Ar 1 , Ar 2 , Ar 3 is the same or different and is a divalent aromatic hydrocarbon group, or two or more aromatic hydrocarbons are a single bond, a divalent aliphatic hydrocarbon group, or a divalent alicyclic hydrocarbon group.
  • R 1 and R 2 in Formula (1) are the same or different and are phenylethynyl group, styryl group, maleimide group, nadiimide group, biphenylene group, ethynyl group, isocyanate group, cyanate group, nitrile group, phthalo
  • the thermosetting compound according to [1] which is a thermosetting group selected from the group consisting of a nitrile group, a cyclobenzobutene group, a benzoxazine group, an oxetane group, and a vinyl group.
  • R 1 and R 2 in formula (1) are the same or different and are phenylethynyl group, styryl group, maleimide group, nadiimide group, biphenylene group, phthalonitrile group, cyclobenzobutene group, and benzoxazine group
  • D 1 and D 2 are a single bond or a divalent hydrocarbon group (preferably a divalent aromatic hydrocarbon group, particularly preferably a divalent hydrocarbon having 6 to 14 carbon atoms).
  • the thermosetting compound according to any one of [1] to [4], which is an aromatic hydrocarbon group, most preferably a group selected from the groups represented by formulas (a1) to (a4) .
  • the R 1 -D 1 group and the R 2 -D 2 group in the formula (1) are the same or different and are a nadiimide group, a biphenylene group, an ethynyl group, an isocyanate group, a cyanate group, a nitrile group, or a phthalonitrile.
  • thermosetting compound according to any one of [1] to [5], which is a group.
  • the R 1 -D 1 group and the R 2 -D 2 group in the formula (1) are the same or different and are selected from the groups represented by the formulas (r-1) to (r-12)
  • thermosetting compound Any one of [1] to [7] having a molecular weight of 748 or more (preferably 748 to 1300, more preferably 748 to 1200, particularly preferably 748 to 1000, most preferably 748 to 900).
  • the thermosetting compound described in 1. [9] The thermosetting compound according to any one of [1] to [8], which exhibits solubility in the following solvent.
  • Solvents acetone, methyl ethyl ketone, methyl isobutyl ketone, acetonyl acetone, cyclohexanone, isophorone, 2-heptanone, 3-heptanone, benzene, toluene, xylene, dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzotrifluoride , Acetonitrile, benzonitrile, ethyl acetate, tetrahydrofuran, N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, and mixtures thereof [10] having thermotropic liquid crystallinity [1] to [9] The thermosetting compound as described in any one of these.
  • the melting point is 300 ° C. or less (preferably 100 to 300 ° C., more preferably 120 to 290 ° C., particularly preferably 150 to 280 ° C.), according to any one of [1] to [10] Thermosetting compound.
  • the 5% weight loss temperature measured at a heating rate of 10 ° C./min is 300 ° C. or higher (preferably 330 ° C. or higher, particularly preferably 350 ° C. or higher).
  • the 5% weight loss temperature measured at a heating rate of 10 ° C./min is 300 to 400 ° C. (preferably 330 to 400 ° C., particularly preferably 350 to 400 ° C.).
  • thermosetting compound according to any one of [11] to [11].
  • thermosetting compound according to any one of [1] to [13] which has an exothermic peak temperature of 200 to 350 ° C. (preferably 250 to 330 ° C., particularly preferably 280 to 340 ° C.).
  • a thermosetting composition comprising the thermosetting compound according to any one of [1] to [14].
  • thermosetting compound when two or more are contained, the total amount
  • the content of the thermosetting compound is 30% by weight or more (preferably 50% by weight or more, particularly preferably 70% by weight or more) of the total amount of the thermosetting composition
  • the proportion of the thermosetting compound represented by the formula (1) in the total amount of the curable compound contained in the thermosetting composition is 70 wt% or more (preferably 80 wt% or more).
  • the thermosetting composition according to [15] which is not less than wt%, particularly preferably not less than 90 wt%.
  • the thermosetting according to [15] or [16] wherein the total content of the crosslinking agent and the curing accelerator is 3% by weight or less (preferably less than 1% by weight) of the total amount of the thermosetting composition.
  • thermosetting composition according to any one of [15] to [17], which is a sealant, a coating agent, an adhesive, an ink, a sealant, a resist, or a lens forming material.
  • the 5% weight loss temperature measured in nitrogen at a heating rate of 10 ° C./min is 400 to 500 ° C.
  • the cured product according to any one of [19] to [21], wherein the glass transition temperature (Tg) is higher than 350 ° C. (preferably 380 ° C. or higher, particularly preferably 400 ° C. or higher).
  • the storage elastic modulus (E ′) at 250 ° C. is 1 GPa or more (preferably 1.1 GPa or more, particularly preferably 1.15 GPa or more), according to any one of [19] to [22] Cured product.
  • a method for producing a semiconductor device comprising a step of sealing a semiconductor element using the thermosetting composition according to any one of [15] to [18].
  • a semiconductor device having a structure in which a semiconductor element is covered with the cured product according to any one of [19] to [24].
  • thermosetting compound of the present invention having the above configuration has good solvent solubility. Further, it is rapidly cured by heat treatment and has super heat resistance (that is, 5% weight loss temperature (T d5 ) is 450 ° C. or more, and storage elastic modulus (E ′) at 250 ° C. is 1 GPa or more. A cured product can be formed. Therefore, the thermosetting compound of this invention can be used conveniently as a sealing agent etc. of a semiconductor device.
  • thermosetting compound The thermosetting compound of the present invention is represented by the following formula (1).
  • R ⁇ 1 >, R ⁇ 2 > shows a thermosetting group
  • D ⁇ 1 >, D ⁇ 2 > is the same or different and shows a single bond or a coupling group.
  • Ar 1 , Ar 2 , Ar 3 may be the same or different and each is a divalent aromatic hydrocarbon group, or two or more aromatic hydrocarbons are a single bond, a divalent aliphatic hydrocarbon group, or a divalent A divalent group bonded through an alicyclic hydrocarbon group
  • E represents an ester bond [— (C ⁇ O) O— or —O (C ⁇ O) —].
  • the divalent aromatic hydrocarbon group in Ar 1 , Ar 2 , Ar 3 is an aromatic hydrocarbon (for example, an aromatic hydrocarbon having 6 to 14 carbon atoms such as benzene, naphthalene, anthracene, phenanthrene). From which two hydrogen atoms are removed.
  • aromatic hydrocarbon for example, an aromatic hydrocarbon having 6 to 14 carbon atoms such as benzene, naphthalene, anthracene, phenanthrene.
  • Examples of the divalent aliphatic hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a linear or branched alkenylene group having 2 to 18 carbon atoms. Can be mentioned.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • Examples of the linear or branched alkenylene group having 2 to 18 carbon atoms include vinylene group, 1-methylvinylene group, propenylene group, 1-butenylene group and 2-butenylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, Mention may be made of divalent alicyclic hydrocarbon groups having 3 to 18 carbon atoms, such as cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group. it can.
  • Ar 1 , Ar 2 and Ar 3 are preferably the same or different and selected from groups represented by the following formulas (a1) to (a4).
  • the attachment position in the following formula is not particularly limited.
  • thermosetting group in R 1 and R 2 examples include phenylethynyl group, styryl group, maleimide group, nadiimide group, biphenylene group, ethynyl group, isocyanate group, cyanate group, nitrile group, phthalonitrile group, and cyclobenzobutene.
  • R 1 and R 2 may each represent the same group or different groups.
  • thermosetting group in R 1 and R 2 a phenylethynyl group, a styryl group, a maleimide group, a nadiimide group are particularly preferable in that a cured product having thermotropic liquid crystal properties and particularly excellent heat resistance can be obtained.
  • Examples of the linking group in D 1 and D 2 include a divalent hydrocarbon group, a divalent heterocyclic group, a carbonyl group, an ether bond, an ester bond, a carbonate bond, an amide bond, an imide bond, and the like. Examples include a group in which a plurality of groups are connected.
  • divalent hydrocarbon group examples include a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group, and a divalent aromatic hydrocarbon group. Can be mentioned.
  • the heterocyclic ring constituting the divalent heterocyclic group includes an aromatic heterocyclic ring and a non-aromatic heterocyclic ring.
  • a heterocyclic ring a 3- to 10-membered ring (preferably a 4- to 6-membered ring) having a carbon atom and at least one hetero atom (for example, an oxygen atom, a sulfur atom, a nitrogen atom, etc.) as atoms constituting the ring. Ring) and condensed rings thereof.
  • a heterocycle containing an oxygen atom as a heteroatom eg, a 3-membered ring such as an oxirane ring; a 4-membered ring such as an oxetane ring; a furan ring, a tetrahydrofuran ring, an oxazole ring, an isoxazole ring, a ⁇ -butyrolactone ring 5-membered rings such as 4-oxo-4H-pyran ring, tetrahydropyran ring, morpholine ring, etc .; benzofuran ring, isobenzofuran ring, 4-oxo-4H-chromene ring, chroman ring, isochroman ring, etc.
  • a heterocycle containing an oxygen atom as a heteroatom eg, a 3-membered ring such as an oxirane ring; a 4-membered ring such as an oxetane ring;
  • Examples of D 1 and D 2 include a single bond or a divalent hydrocarbon group (preferably a divalent aromatic hydrocarbon group, particularly preferably a divalent aromatic hydrocarbon group having 6 to 14 carbon atoms). Most preferably, a group selected from the groups represented by the above formulas (a1) to (a4) is preferable in that a cured product having particularly excellent heat resistance can be obtained.
  • a divalent hydrocarbon group preferably a divalent aromatic hydrocarbon group, particularly preferably a divalent aromatic hydrocarbon group having 6 to 14 carbon atoms.
  • a group selected from the groups represented by the above formulas (a1) to (a4) is preferable in that a cured product having particularly excellent heat resistance can be obtained.
  • R 1 -D 1 group and R 2 -D 2 group in the formula (1) are the same or different and are nadiimide group, biphenylene group, ethynyl group, isocyanate group, cyanate group, nitrile group, phthalonitrile.
  • the group selected from the groups represented by the following formulas (r-1) to (r-12) is particularly preferable.
  • One or two or more substituents may be bonded to the aromatic hydrocarbon ring of the thermosetting compound represented by the formula (1).
  • an alkyl group having 6 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and a halogen atom may be bonded to the aromatic hydrocarbon ring of the thermosetting compound represented by the formula (1).
  • an alkyl group having 6 to 10 carbon atoms an aryl group having 6 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and a halogen atom.
  • alkyl group having 1 to 6 carbon atoms examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, and hexyl groups.
  • a linear or branched alkyl group can be mentioned.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
  • alkoxy group having 1 to 6 carbon atoms examples include linear or branched alkoxy groups such as a methoxy group, an ethoxy group, a butoxy group, and a t-butyloxy group.
  • Examples of the aryloxy group having 6 to 10 carbon atoms include a phenyloxy group and a 2-naphthyloxy group.
  • the molecular weight of the thermosetting compound represented by the above formula (1) is 748 or more. Therefore, the cured product obtained by thermal curing has super heat resistance (specifically, the 5% weight loss temperature (T d5 ) is 450 ° C. or higher, and the storage elastic modulus (E ′) at 250 ° C. is 1 GPa or higher. Is). On the other hand, when the molecular weight is below the above range, a cured product having super heat resistance tends to be difficult to obtain.
  • the molecular weight of a thermosetting compound can be calculated
  • the upper limit of the molecular weight of the thermosetting compound represented by the above formula (1) is, for example, 1300, preferably 1200, particularly preferably 1000, most preferably 900.
  • a molecular weight of 1300 or less is preferred in that it melts at a relatively low temperature, exhibits particularly excellent solubility in a solvent, and has fast curability.
  • the solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetonyl acetone, cyclohexanone, isophorone, 2-heptanone and 3-heptanone; aromatic hydrocarbons such as benzene, toluene and xylene; Halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and benzotrifluoride; Nitriles such as acetonitrile and benzonitrile; Esters such as ethyl acetate; Ethers such as tetrahydrofuran; N- Examples thereof include methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, and mixtures thereof.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone,
  • thermosetting compounds represented by the above formula (1) compounds in which the R 1 -D 1 group and the R 2 -D 2 group are groups represented by the above formula (r-2) are, for example, It can be manufactured through the following steps [1] and [2].
  • the R 1 -D 1 group and the R 2 -D 2 group are groups other than the group represented by the above formula (r-2).
  • the compound can be produced by a method according to the following production method.
  • Carboxylic acid ester having hydroxyl group and / or carboxyl group at both ends by reacting (esterification reaction) with another type (2 molecules) selected from the above to one type (1 molecule) selected from Step [2] for obtaining (trimer): N—having a functional group that reacts with a hydroxyl group and / or a carboxyl group on a carboxylic acid ester (trimer) having a hydroxyl group and / or a carboxyl group at both ends.
  • phenylmaleimide esterification reaction
  • a thermosetting compound represented by the formula (1) is obtained.
  • thermosetting compounds represented by the above formula (1) the R 1 —D 1 group and the R 2 —D 2 group are groups represented by the above formula (r-2).
  • R 1 —D 1 group and the R 2 —D 2 group are groups represented by the above formula (r-2).
  • r-2 An example is shown below.
  • Ar 1 and Ar 2 are the same as above. These may be the same or different.
  • aromatic diol examples include hydroquinone, 4,4′-dihydroxybiphenyl, resorcinol, 2,6-naphthalenediol, 1,5-naphthalenediol, (1,1′-biphenyl) -4,4′-diol. 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, bisphenol A, bisphenol F, bisphenol S, (1,1′-biphenyl) -2,5-diol, and derivatives thereof.
  • the derivative include a compound in which a substituent is bonded to the aromatic hydrocarbon group of the aromatic diol.
  • substituent examples of the substituent include the same examples as the substituent that the aromatic hydrocarbon ring may have.
  • aromatic dicarboxylic acid examples include phthalic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 4,4′-dibenzoic acid, and 4,4′-oxybis.
  • aromatic dicarboxylic acid examples include benzoic acid, 4,4′-thiodibenzoic acid, 4- [2- (4-carboxyphenoxy) ethoxy] benzoic acid, and derivatives thereof.
  • the derivative include a compound in which a substituent is bonded to the aromatic hydrocarbon group of the aromatic dicarboxylic acid.
  • substituent examples include the same examples as the substituent that the aromatic hydrocarbon ring may have.
  • Examples of the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, Examples thereof include 5-hydroxy-1-naphthoic acid, 4′-hydroxy (1,1′-biphenyl) -4-carboxylic acid, and derivatives thereof.
  • Examples of the derivative include a compound in which a substituent is bonded to the aromatic hydrocarbon group of the aromatic hydroxycarboxylic acid.
  • Examples of the substituent include the same examples as the substituent that the aromatic hydrocarbon ring may have.
  • the functional group that reacts with the hydroxyl group is preferably a carboxyl group
  • the functional group that reacts with the carboxyl group is preferably a hydroxyl group. Therefore, N- (4-carboxyphenyl) maleimide is preferred as the N-phenylmaleimide having a functional group that reacts with a hydroxyl group, and N- (maleimide) having a functional group that reacts with a carboxyl group is preferred. 4-Hydroxyphenyl) maleimide is preferred.
  • the esterification reaction in the above steps [1] and [2] is performed by, for example, (i) a method performed in the presence of a catalyst, (ii) a method performed in the presence of a condensing agent, or (iii) halogenation of a carboxyl group. It can carry out by the method of attaching
  • either a protonic acid or a Lewis acid can be used.
  • protic acids super strong acids (SbF 5 , SbF 5 —HF, SbF 5 —FSO 3 H, SbF 5 —CF 3 SO 3 H, etc.), sulfuric acid, hydrochloric acid, phosphoric acid, boroboric acid, p-toluenesulfonic acid And organic acids and inorganic acids such as chloroacetic acid, picric acid, and heteropolyacid.
  • the Lewis acid include B (OH) 3 , BF 3 , BF 3 O (C 2 H 5 ) 2 , AlCl 3 , FeCl 3 and the like. These can be used alone or in combination of two or more.
  • the amount of catalyst used (the total amount when two or more are used) is, for example, 1.0 to 50.0 mol% with respect to the total amount (mol) of the reaction substrate.
  • Examples of the condensing agent in (ii) include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide, N, N′-dicyclohexyl.
  • Carbodiimide condensing agents such as carbodiimide, N, N′-diisopropylcarbodiimide, N-cyclohexyl-N ′-(2-morpholinoethyl) carbodiimide-p-toluenesulfonate; Imidazoles such as N, N′-carbonyldiimidazole Condensing agent; 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n-hydrate, trifluoromethanesulfonic acid (4,6-dimethoxy- 1,3,5-triazin-2-yl). (2-octoxy-2-oxoethyl) dimethyl It can be exemplified Le ammonium and the like. These can be used alone or in combination of two or more.
  • the amount of the condensing agent used (the total amount when two or more are used) is, for example, 100 to 300 mol% with respect to the total amount (mol) of the reaction substrate.
  • examples of the halogenating agent used when halogenating the carboxyl group include thionyl chloride, oxalyl chloride, phosphorus pentachloride, phosphorus trichloride, thionyl bromide, phosphorus tribromide and the like. These can be used alone or in combination of two or more.
  • the amount of the halogenating agent used is, for example, 1.0 to 3.0 mol with respect to 1 mol of the carboxyl group.
  • hydrogen halide is produced as the esterification reaction proceeds, so that the reaction in the presence of a base that traps the produced hydrogen halide has the effect of promoting the progress of the esterification reaction. It is preferable at the point obtained.
  • the base include inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, and sodium hydrogen carbonate; and organic bases such as pyridine and triethylamine. These can be used alone or in combination of two or more.
  • the amount of the base used is, for example, about 1.0 to 3.0 mol with respect to 1 mol of the acyl halide group in the carboxylic acid halide.
  • the esterification reaction in the above steps [1] and [2] can be performed in the presence of a solvent.
  • the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetonyl acetone, cyclohexanone, isophorone, 2-heptanone, and 3-heptanone; aromatic hydrocarbons such as benzene, toluene, and xylene; dichloromethane, Halogenated hydrocarbons such as chloroform, 1,2-dichloroethane, dichlorobenzene and benzotrifluoride; and nitriles such as acetonitrile and benzonitrile. These can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the solvent used is, for example, about 5 to 20 times by weight with respect to the total (weight) of the reaction substrate.
  • the usage-amount of a solvent exceeds the said range, the density
  • the reaction atmosphere of the esterification reaction is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the reaction temperature of the esterification reaction in the above steps [1] and [2] is, for example, about 0.0 to 200.0 ° C.
  • the reaction time is, for example, about 0.5 to 3 hours.
  • the esterification reaction can be performed by any method such as a batch method, a semibatch method, and a continuous method.
  • the obtained reaction product may be separated by means of separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, etc. , And can be separated and purified by separation means combining these.
  • separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, etc.
  • thermosetting compound of the present invention exhibits thermotropic liquid crystallinity.
  • the thermosetting compound of the present invention can be thermoset in a highly oriented state to form a cured product having anisotropy. Therefore, the obtained cured product has super heat resistance.
  • it can confirm by polarizing microscope observation that the thermosetting compound of this invention shows thermotropic liquid crystallinity, and a cured
  • the melting point (Tm) of the thermosetting compound represented by the formula (1) is, for example, 300 ° C. or less (for example, 100 to 300 ° C., preferably 120 to 290 ° C., particularly preferably 150 to 280 ° C.). Therefore, it can be melted at a relatively low temperature and is excellent in workability.
  • fusing point can be measured by thermal analysis and dynamic viscoelasticity measurements, such as DSC and TGA, for example.
  • the 5% weight loss temperature (T d5 ) of the thermosetting compound represented by the formula (1) measured at a temperature rising rate of 10 ° C./min (in nitrogen) is, for example, 300 ° C. or more (for example, 300 to 400). ° C), more preferably 330 ° C or higher, particularly preferably 350 ° C or higher.
  • the 5% weight loss temperature in this specification can be measured by, for example, TG / DTA (simultaneous measurement of differential heat and thermogravimetry).
  • the exothermic peak temperature of the thermosetting compound represented by the formula (1) is, for example, 200 to 350 ° C. (preferably 250 to 330 ° C., particularly preferably 280 to 340 ° C.).
  • the exothermic peak temperature can be measured by DSC thermal analysis, for example.
  • thermosetting compound represented by the formula (1) is, for example, at a temperature of 200 to 350 ° C. (preferably 250 to 330 ° C., particularly preferably 280 to 340 ° C.), for example 10 to 120 minutes (preferably 10 By heating for up to 60 minutes, particularly preferably from 10 to 30 minutes, it is possible to rapidly cure and form a cured product having super heat resistance.
  • the heating may be performed while keeping the temperature constant within the above temperature range, or may be performed in stages.
  • the heating temperature is preferably adjusted as appropriate within the above range according to the heating time. For example, when it is desired to shorten the heating time, it is preferable to set the heating temperature higher.
  • thermosetting compound of the present invention has the structure represented by the above formula (1), it forms a cured product (specifically, a cured product having super heat resistance) without being decomposed even when heated at a high temperature.
  • the cured product can be efficiently formed with excellent workability by heating at a high temperature for a short time.
  • the heating means is not particularly limited, and a known or conventional means can be used.
  • thermosetting compound represented by Formula (1) can be performed under normal pressure, or can be performed under reduced pressure or under pressure.
  • the 5% weight loss temperature (T d5 ) measured at a rate of temperature increase of 10 ° C./min (in nitrogen) of the cured product of the thermosetting compound represented by the formula (1) is, for example, 400 ° C. or more (for example, 400 to 500 ° C.), more preferably 430 ° C. or more, particularly preferably 450 ° C. or more.
  • the cured product of the thermosetting compound represented by the formula (1) may or may not have a glass transition point, but even if it has a glass transition point.
  • a glass transition point is not detected in a temperature range up to 350 ° C. (preferably 380 ° C., particularly preferably 400 ° C.). Therefore, when the cured product of the thermosetting compound represented by the formula (1) has a glass transition point, the glass transition temperature (Tg) is, for example, more than 350 ° C. (preferably 380 ° C. or more, particularly preferably 400 ° C. or more). It is.
  • the cured product of the thermosetting compound represented by the formula (1) has high hardness even under a high temperature environment, and the storage elastic modulus (E ′) at 250 ° C. is, for example, 1 GPa or more (for example, 1 to 2 GPa), Preferably it is 1.1 GPa or more, Most preferably, it is 1.15 GPa or more.
  • thermosetting compound of the present invention has good solvent solubility. Moreover, it hardens
  • a semiconductor device such as a power semiconductor
  • thermosetting composition The thermosetting composition of the present invention is characterized by containing one or more of the above thermosetting compounds.
  • the content of the thermosetting compound in the total amount of the thermosetting composition of the present invention is, for example, 30% by weight or more, preferably 50% by weight or more, and particularly preferably 70% by weight. % Or more, most preferably 90% by weight or more.
  • the upper limit is 100% by weight. That is, what consists only of a thermosetting compound is also contained in the thermosetting composition of this invention.
  • thermosetting composition of the present invention may contain other components as required in addition to the thermosetting compound.
  • known or commonly used additives can be used.
  • thermosetting composition of this invention may contain curable compounds other than the thermosetting compound represented by the said Formula (1) as a sclerosing
  • the proportion of the thermosetting compound represented by the above formula (1) in the curable compound is, for example, 70% by weight or more, preferably 80% by weight or more, and particularly preferably 90% by weight or more.
  • the upper limit is 100% by weight.
  • thermosetting composition of the present invention does not contain a crosslinking agent or a curing accelerator (for example, the total content of the crosslinking agent and the curing accelerator in the total amount of the thermosetting composition of the present invention is, for example, 3%. % Or less, preferably less than 1% by weight), a cured product can be formed quickly. Therefore, the obtained cured product has a high 5% weight loss temperature (T d5 ) and has super heat resistance. Moreover, since content of an unreacted hardening accelerator and the decomposition product of a hardening accelerator can be suppressed very low in hardened
  • thermosetting composition of the present invention contains the above thermosetting compound, it can be quickly cured by heat treatment to form a cured product having super heat resistance.
  • heat processing conditions can be suitably set in the same range as the thermosetting conditions of the above-mentioned thermosetting compound.
  • thermosetting composition of the present invention includes, for example, a sealant, a coating agent, an adhesive, an ink, a sealant, a resist, a forming material [for example, a base material, an electrical insulating material (insulating film, etc.), a laminated plate, and a composite material (Fiber-reinforced plastics, etc.), optical elements (lenses, etc.), stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memory, etc. It can be preferably used as a sealant for coating a semiconductor element in a semiconductor device (such as a power semiconductor) having high heat resistance and high withstand voltage, which has been difficult to cope with with a resin material.
  • a sealant for coating a semiconductor element in a semiconductor device (such as a power semiconductor) having high heat resistance and high withstand voltage, which has been difficult to cope with with a resin material.
  • the manufacturing method of the semiconductor device of this invention has the process of sealing a semiconductor element using the said thermosetting composition (for example, using the said thermosetting composition as a semiconductor sealing agent).
  • the sealing of the semiconductor element can be performed by a known or conventional method, and is not particularly limited.
  • the semiconductor element can be sealed by injecting the thermosetting composition of the present invention into a predetermined mold and performing a heat treatment.
  • heat processing conditions can be suitably set in the same range as the thermosetting conditions of the above-mentioned thermosetting compound.
  • the semiconductor device obtained by the semiconductor device manufacturing method of the present invention includes at least a semiconductor element and a sealing material that covers the semiconductor element, and the sealing material is a cured product of the thermosetting composition of the present invention. It is a certain semiconductor device.
  • the semiconductor element is encapsulated using the thermosetting composition of the present invention, the semiconductor element and its surrounding structure are prevented from being deteriorated by heat during curing.
  • the element can be sealed.
  • NMR measurement was performed under the following conditions.
  • An NMR (nuclear magnetic resonance) measuring apparatus (trade name “JNM-ECA500”, manufactured by JEOL RESONANCE Co., Ltd.) was used.
  • the measurement solvent was a heavy solvent (described in each example), and the chemical shift was based on TMS.
  • Example 1 [Production of carboxylic acid ester having hydroxyl groups at both ends]
  • xylene 380.0 mL (3.1 mol)
  • hydroquinone 20.0 g (181.6 mmol
  • hydroxybenzoic acid 52.7 g (381) 0.4 mmol 0.74 g
  • boric acid 0.74 g
  • 1.9 g (19.0 mmol) of sulfuric acid were added, and the mixture was stirred for 1 hour under reflux in a nitrogen atmosphere to complete the esterification reaction.
  • thermosetting compound [Production of thermosetting compound] To a 100 mL three-necked flask equipped with a stir bar and a condenser tube, 23.0 mL (2216.4 mmol) of toluene, 5.0 g (22.8 mmol) of 4-maleimidobenzoic acid, 2.2 mL (30.4 mmol) of thionyl chloride, N , N-dimethylformamide (0.36 mL, 4.6 mmol) was added, and the mixture was stirred at 80 ° C. for 1 hour under a nitrogen atmosphere to complete the chlorination reaction. Thereafter, volatile components were distilled off under reduced pressure to obtain 4-maleimidobenzoic acid chloride as yellowish white crystals.
  • the obtained compound (2) was sandwiched between metal plates and compressed and heated at 340 ° C. for 15 minutes using a hot press to obtain a uniform cured product (1). It was confirmed that the obtained hardened
  • Example 2 [Production of carboxylic acid ester having hydroxyl groups at both ends]
  • 22.0 mL (178.2 mol) of xylene, 4.0 g (21.7 mmol) of 4,4′-biphenol, 3.0 g of hydroxybenzoic acid (21.7 mmol), 0.044 g (0.72 mmol) of boric acid and 0.95 g (9.7 mmol) of sulfuric acid were added, and the mixture was stirred for 1 hour under reflux in a nitrogen atmosphere to complete the esterification reaction.
  • thermosetting compound In a 500 mL three-necked flask equipped with a stirrer and a condenser tube, 31.0 mL (291.7 mmol) of toluene, 6.7 g (31.0 mmol) of 4-maleimidobenzoic acid, 3.0 mL (41.2 mmol) of thionyl chloride, N , N-dimethylformamide (0.48 mL, 6.2 mmol) was added, and the mixture was stirred at 80 ° C. for 1 hour under a nitrogen atmosphere to complete the chlorination reaction. Thereafter, volatile components were distilled off under reduced pressure to obtain 4-maleimidobenzoic acid chloride as yellowish white crystals.
  • the obtained compound (4) was sandwiched between metal plates and compressed and heated at 340 ° C. for 15 minutes using a hot press to obtain a uniform cured product (2). It was confirmed that the obtained hardened
  • acetic acid and unreacted acetic anhydride were distilled off while heating up to 340 ° C. at a rate of 0.8 ° C./min.
  • a liquid crystal polyester a having hydroxyl groups at both ends of a molecular chain consisting only of an aromatic unit (a structural unit derived from an aromatic compound) is obtained. Obtained.
  • the obtained liquid crystal polyester a is a monomer 10-mer. Estimated.
  • the resulting liquid crystal polyester a (3.27 g) and methylene bismaleimide (1.42 g) were melt mixed at 170 ° C. for 6 hours to obtain a reaction product.
  • the reaction product was a composition containing a thermosetting liquid crystal polyester.
  • the obtained reaction product was sandwiched between glass plates and heated to 240 ° C. with a hot plate, and the curing reaction was allowed to proceed for 6 hours to obtain a uniform cured product (3).
  • thermosetting compound of the present invention has good solvent solubility. Moreover, it can cure rapidly by performing heat processing and can form the hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

良溶剤溶解性を有し、加熱処理を施すことにより速やかに硬化して、超耐熱性を有する硬化物を形成することができる熱硬化性化合物を提供する。 本発明の熱硬化性化合物は、下記式(1)で表される。式(1)中、R1、R2は熱硬化性基を示し、D1、D2は、同一又は異なって、単結合又は連結基を示す。Ar1、Ar2、Ar3は、同一又は異なって、2価の芳香族炭化水素基、又は2個以上の芳香族炭化水素が単結合、2価の脂肪族炭化水素基、若しくは2価の脂環式炭化水素基を介して結合した2価の基を示し、Eはエステル結合を示す。

Description

熱硬化性化合物
 本発明は、熱硬化性化合物、及びその硬化物に関する。本願は、2016年3月30日に日本に出願した、特願2016-068665号の優先権を主張し、その内容をここに援用する。
 近年、半導体や回路基板分野の技術発展に伴い、良溶剤溶解性を有し、且つ超耐熱性を有する硬化物、すなわち、熱分解温度が高く、250℃以上の高温環境下でも高硬度を保持する硬化物を形成することができる熱硬化性化合物が求められている。
 特許文献1~3には、液晶オリゴマーの末端に、熱硬化性基としてのフェニルエチニル基、フェニルマレイミド-N-イル基、又はナジイミド-N-イル基を有する熱硬化性化合物が記載されている。
 しかし、前記熱硬化性化合物を硬化させるためには350℃以上の高温で長時間加熱する必要があり、硬化時の高温加熱により、半導体や回路基板が劣化してしまうことが問題であった。また、硬化物の5%重量減少温度(Td5)は450℃を下回るため、硬化時の高温加熱により硬化物が分解する恐れがあることも問題であった。
 一方、特許文献4には、分子鎖末端にヒドロキシル基及び/又はアシルオキシ基を有する液晶ポリエステルと、ヒドロキシル基及び/又はアシルオキシ基と反応する官能基並びに熱硬化性基を有する化合物とを溶融混合して得られる熱硬化性ポリエステル組成物は、250℃以下の温度で熱硬化して、耐熱性に優れた硬化物が得られることが記載されている。
特表2004-509190号公報 米国特許第6939940号明細書 米国特許第7507784号明細書 国際公開第2014/050850号
 しかし、前記熱硬化性ポリエステル組成物は溶剤溶解性が不良であった。また、硬化性が悪く、架橋剤又は硬化促進剤を添加しても、熱硬化に長時間(例えば、6時間程度)を要するため、作業性が悪いことが問題であった。更に、短時間で硬化させる目的で300℃以上の高温で加熱すると、分解しやすいことも問題であった。
 従って、本発明の目的は、良溶剤溶解性を有し、加熱処理を施すことにより速やかに硬化して、超耐熱性を有する硬化物を形成することができる熱硬化性化合物を提供することにある。
 本発明の他の目的は、加熱処理を施すことにより速やかに硬化して、超耐熱性を有する硬化物を形成することができる熱硬化性組成物を提供することにある。
 本発明の他の目的は、前記熱硬化性組成物を使用する半導体デバイスの製造方法を提供することにある。
 本発明の他の目的は、前記製造方法で得られる半導体デバイスを提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、下記式(1)で表される化合物は良溶剤溶解性を有すること、加熱により速硬化して、超耐熱性を有する硬化物、詳細には、5%重量減少温度(Td5)が450℃以上であり、250℃における貯蔵弾性率(E’)が1GPa以上である硬化物が得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、下記式(1)で表される熱硬化性化合物を提供する。
Figure JPOXMLDOC01-appb-C000002
(式中、R1、R2は熱硬化性基を示し、D1、D2は、同一又は異なって、単結合又は連結基を示す。Ar1、Ar2、Ar3は、同一又は異なって、2価の芳香族炭化水素基、又は2個以上の芳香族炭化水素が単結合、2価の脂肪族炭化水素基、若しくは2価の脂環式炭化水素基を介して結合した2価の基を示し、Eはエステル結合[-(C=O)O-又は-O(C=O)-]を示す)
 本発明は、また、式(1)中のR1、R2が、同一又は異なって、フェニルエチニル基、スチリル基、マレイミド基、ナジイミド基、ビフェニレン基、エチニル基、イソシアネート基、シアネート基、ニトリル基、フタロニトリル基、シクロベンゾブテン基、ベンゾオキサジン基、オキセタン基、及びビニル基からなる群より選択される熱硬化性基である前記の熱硬化性化合物を提供する。
 本発明は、また、サーモトロピック液晶性を有する前記の熱硬化性化合物を提供する。
 本発明は、また、前記の熱硬化性化合物を含む熱硬化性組成物を提供する。
 本発明は、また、前記の熱硬化性組成物の硬化物を提供する。
 本発明は、また、前記の熱硬化性組成物を用いて半導体素子を封止する工程を有する半導体デバイスの製造方法を提供する。
 本発明は、また、前記の硬化物により半導体素子が被覆された構造を有する半導体デバイスを提供する。
 すなわち、本発明は、以下に関する。
[1] 式(1)(式中、R1、R2は熱硬化性基を示し、D1、D2は、同一又は異なって、単結合又は連結基を示す。Ar1、Ar2、Ar3は、同一又は異なって、2価の芳香族炭化水素基、又は2個以上の芳香族炭化水素が単結合、2価の脂肪族炭化水素基、若しくは2価の脂環式炭化水素基を介して結合した2価の基を示し、Eはエステル結合[-(C=O)O-又は-O(C=O)-]を示す)で表される熱硬化性化合物。
[2] 式(1)中のR1、R2が、同一又は異なって、フェニルエチニル基、スチリル基、マレイミド基、ナジイミド基、ビフェニレン基、エチニル基、イソシアネート基、シアネート基、ニトリル基、フタロニトリル基、シクロベンゾブテン基、ベンゾオキサジン基、オキセタン基、及びビニル基からなる群より選択される熱硬化性基である、[1]に記載の熱硬化性化合物。
[3] 式(1)中のR1、R2が、同一又は異なって、フェニルエチニル基、スチリル基、マレイミド基、ナジイミド基、ビフェニレン基、フタロニトリル基、シクロベンゾブテン基、及びベンゾオキサジン基からなる群より選択される熱硬化性基である、[1]に記載の熱硬化性化合物。
[4] 式(1)中のAr1、Ar2、Ar3が、同一又は異なって、式(a1)~(a4)で表される基から選択される基である、[1]~[3]の何れか1つに記載の熱硬化性化合物。
[5] 式(1)中のD1、D2が、単結合又は、2価の炭化水素基(好ましくは2価の芳香族炭化水素基、特に好ましくは炭素数6~14の2価の芳香族炭化水素基、最も好ましくは式(a1)~(a4)で表される基から選択される基)である、[1]~[4]の何れか1つに記載の熱硬化性化合物。
[6] 式(1)中のR1-D1基、及びR2-D2基が、同一又は異なって、ナジイミド基、ビフェニレン基、エチニル基、イソシアネート基、シアネート基、ニトリル基、フタロニトリル基、シクロベンゾブテン基、ベンゾオキサジン基、オキセタン基、ビニル基、メチルマレイミド基、シンナモイル基、プロパルギルエーテル基、及び式(r-1)~(r-12)で表される基から選択される基である、[1]~[5]の何れか1つに記載の熱硬化性化合物。
[7] 式(1)中のR1-D1基、及びR2-D2基が、同一又は異なって、式(r-1)~(r-12)で表される基から選択される基である、[1]~[5]の何れか1つに記載の熱硬化性化合物。
[8] 分子量が748以上(好ましくは748~1300、より好ましくは748~1200、特に好ましくは748~1000、最も好ましくは748~900)である、[1]~[7]の何れか1つに記載の熱硬化性化合物。
[9] 下記溶剤に溶解性を示す、[1]~[8]の何れか1つに記載の熱硬化性化合物。
 溶剤:アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトニルアセトン、シクロヘキサノン、イソホロン、2-ヘプタノン、3-ヘプタノン、ベンゼン、トルエン、キシレン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、ベンゾトリフルオライド、アセトニトリル、ベンゾニトリル、酢酸エチル、テトラヒドロフラン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、及びこれらの混合物
[10] サーモトロピック液晶性を有する、[1]~[9]の何れか1つに記載の熱硬化性化合物。
[11] 融点が300℃以下(好ましくは100~300℃、より好ましくは120~290℃、特に好ましくは150~280℃)である、[1]~[10]の何れか1つに記載の熱硬化性化合物。
[12] 窒素中において、昇温速度10℃/分で測定される5%重量減少温度が300℃以上(好ましくは330℃以上、特に好ましくは350℃以上)である、[1]~[11]の何れか1つに記載の熱硬化性化合物。
[13] 窒素中において、昇温速度10℃/分で測定される5%重量減少温度が300~400℃(好ましくは330~400℃、特に好ましくは350~400℃)である、[1]~[11]の何れか1つに記載の熱硬化性化合物。
[14] 発熱ピーク温度が200~350℃(好ましくは250~330℃、特に好ましくは280~340℃)である、[1]~[13]の何れか1つに記載の熱硬化性化合物。
[15] [1]~[14]の何れか1つに記載の熱硬化性化合物を含む熱硬化性組成物。
[16] 熱硬化性化合物の含有量(2種以上含有する場合は、その総量)が熱硬化性組成物全量の30重量%以上(好ましくは50重量%以上、特に好ましくは70重量%以上、最も好ましくは90重量%以上)であり、且つ、熱硬化性組成物に含まれる硬化性化合物全量における式(1)で表される熱硬化性化合物の占める割合が70重量%以上(好ましくは80重量%以上、特に好ましくは90重量%以上)である、[15]に記載の熱硬化性組成物。
[17] 架橋剤及び硬化促進剤の合計含有量が、熱硬化性組成物全量の3重量%以下(好ましくは1重量%未満)である、[15]又は[16]に記載の熱硬化性組成物。
[18] 封止剤、コーティング剤、接着剤、インク、シーラント、レジスト、又はレンズ形成材である、[15]~[17]の何れか1つに記載の熱硬化性組成物。
[19] [15]~[18]の何れか1つに記載の熱硬化性組成物の硬化物。
[20] 窒素中において昇温速度10℃/分で測定される5%重量減少温度が400℃以上(好ましくは430℃以上、特に好ましくは450℃以上)である、[19]に記載の硬化物。
[21] 窒素中において昇温速度10℃/分で測定される5%重量減少温度が400~500℃(好ましくは430~500℃、特に好ましくは450~500℃)である、[19]に記載の硬化物。
[22] ガラス転移温度(Tg)が350℃超(好ましくは380℃以上、特に好ましくは400℃以上)である、[19]~[21]の何れか1つに記載の硬化物。
[23] 250℃における貯蔵弾性率(E’)が1GPa以上(好ましくは1.1GPa以上、特に好ましくは1.15GPa以上)である、[19]~[22]の何れか1つに記載の硬化物。
[24] 250℃における貯蔵弾性率(E’)が1~2GPa(好ましくは1.1~2GPa、特に好ましくは1.15~2GPa)である、[19]~[22]の何れか1つに記載の硬化物。
[25] [15]~[18]の何れか1つに記載の熱硬化性組成物を用いて半導体素子を封止する工程を有する半導体デバイスの製造方法。
[26] [19]~[24]の何れか1つに記載の硬化物により半導体素子が被覆された構造を有する半導体デバイス。
 上記構成を有する本発明の熱硬化性化合物は良溶剤溶解性を有する。また、加熱処理を施すことにより速硬化して、超耐熱性を有する(すなわち、5%重量減少温度(Td5)が450℃以上であり、250℃における貯蔵弾性率(E’)が1GPa以上である)硬化物を形成することができる。そのため、本発明の熱硬化性化合物は半導体デバイスの封止剤等として好適に使用することができる。
 [熱硬化性化合物]
 本発明の熱硬化性化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R1、R2は熱硬化性基を示し、D1、D2は、同一又は異なって、単結合又は連結基を示す。Ar1、Ar2、Ar3は、同一又は異なって、2価の芳香族炭化水素基、又は2個以上の芳香族炭化水素が単結合、2価の脂肪族炭化水素基、若しくは2価の脂環式炭化水素基を介して結合した2価の基を示し、Eはエステル結合[-(C=O)O-又は-O(C=O)-]を示す。
 前記Ar1、Ar2、Ar3における2価の芳香族炭化水素基は、芳香族炭化水素(例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン等の炭素数6~14の芳香族炭化水素)の構造式から2個の水素原子を除いた基である。
 前記2価の脂肪族炭化水素基としては、例えば、炭素数1~18の直鎖状又は分岐鎖状のアルキレン基、及び炭素数2~18の直鎖状又は分岐鎖状のアルケニレン基等を挙げることができる。炭素数1~18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等を挙げることができる。炭素数2~18の直鎖状又は分岐鎖状のアルケニレン基としては、例えば、ビニレン基、1-メチルビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基等を挙げることができる。
 前記2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等のシクロアルキレン基(シクロアルキリデン基を含む)などの、炭素数3~18の2価の脂環式炭化水素基を挙げることができる。
 前記Ar1、Ar2、Ar3としては、同一又は異なって、下記式(a1)~(a4)で表される基から選択される基であることが好ましい。尚、下記式中の結合手の付き位置は、特に制限されない。
Figure JPOXMLDOC01-appb-C000004
 前記R1、R2における熱硬化性基としては、例えばフェニルエチニル基、スチリル基、マレイミド基、ナジイミド基、ビフェニレン基、エチニル基、イソシアネート基、シアネート基、ニトリル基、フタロニトリル基、シクロベンゾブテン基、ベンゾオキサジン基、オキセタン基、及びビニル基等を挙げることができる。また、前記R1、R2は、それぞれ同じ基を示していてもよく、異なる基を示していてもよい。
 前記R1、R2における熱硬化性基としては、なかでもサーモトロピック液晶性を有し、耐熱性に特に優れた硬化物が得られる点で、フェニルエチニル基、スチリル基、マレイミド基、ナジイミド基、ビフェニレン基、フタロニトリル基、シクロベンゾブテン基、及びベンゾオキサジン基からなる群より選択される熱硬化性基が好ましい。
 前記D1、D2における連結基としては、例えば、2価の炭化水素基、2価の複素環式基、カルボニル基、エーテル結合、エステル結合、カーボネート結合、アミド結合、イミド結合、及びこれらが複数個連結した基等を挙げることができる。
 前記2価の炭化水素基には、2価の脂肪族炭化水素基、2価の脂環式炭化水素基、及び2価の芳香族炭化水素基が含まれ、それぞれ上述の例と同様の例を挙げることができる。
 前記2価の複素環式基を構成する複素環には、芳香族性複素環及び非芳香族性複素環が含まれる。このような複素環としては、環を構成する原子に炭素原子と少なくとも1種のヘテロ原子(例えば、酸素原子、イオウ原子、窒素原子等)を有する3~10員環(好ましくは4~6員環)、及びこれらの縮合環を挙げることができる。具体的には、ヘテロ原子として酸素原子を含む複素環(例えば、オキシラン環等の3員環;オキセタン環等の4員環;フラン環、テトラヒドロフラン環、オキサゾール環、イソオキサゾール環、γ-ブチロラクトン環等の5員環;4-オキソ-4H-ピラン環、テトラヒドロピラン環、モルホリン環等の6員環;ベンゾフラン環、イソベンゾフラン環、4-オキソ-4H-クロメン環、クロマン環、イソクロマン環等の縮合環;3-オキサトリシクロ[4.3.1.14,8]ウンデカン-2-オン環、3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン環等の橋かけ環)、ヘテロ原子としてイオウ原子を含む複素環(例えば、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環等の5員環;4-オキソ-4H-チオピラン環等の6員環;ベンゾチオフェン環等の縮合環等)、ヘテロ原子として窒素原子を含む複素環(例えば、ピロール環、ピロリジン環、ピラゾール環、イミダゾール環、トリアゾール環等の5員環;イソシアヌル環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環等の6員環;インドール環、インドリン環、キノリン環、アクリジン環、ナフチリジン環、キナゾリン環、プリン環等の縮合環等)等を挙げることができる。2価の複素環式基は上記複素環の構造式から2個の水素原子を除いた基である。
 前記D1、D2としては、なかでも単結合又は、2価の炭化水素基(好ましくは2価の芳香族炭化水素基、特に好ましくは炭素数6~14の2価の芳香族炭化水素基、最も好ましくは上記式(a1)~(a4)で表される基から選択される基)が、特に優れた耐熱性を有する硬化物が得られる点で好ましい。
 従って、式(1)中のR1-D1基、及びR2-D2基としては、同一又は異なって、ナジイミド基、ビフェニレン基、エチニル基、イソシアネート基、シアネート基、ニトリル基、フタロニトリル基、シクロベンゾブテン基、ベンゾオキサジン基、オキセタン基、ビニル基、メチルマレイミド基、シンナモイル基、プロパルギルエーテル基、及び下記式(r-1)~(r-12)で表される基から選択される基が好ましく、特に下記式(r-1)~(r-12)で表される基から選択される基が好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 前記式(1)で表される熱硬化性化合物が有する芳香族炭化水素環には1種又は2種以上の置換基が結合していてもよく、置換基としては、例えば、炭素数1~6のアルキル基、炭素数6~10のアリール基、炭素数1~6のアルコキシ基、炭素数6~10のアリールオキシ基、及びハロゲン原子等を挙げることができる。
 前記炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の直鎖状又は分岐鎖状アルキル基を挙げることができる。
 前記炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基等を挙げることができる。
 前記炭素数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、ブトキシ基、t-ブチルオキシ基等の直鎖状又は分岐鎖状アルコキシ基を挙げることができる。
 前記炭素数6~10のアリールオキシ基としては、例えば、フェニルオキシ基、2-ナフチルオキシ基を挙げることができる。
 上記式(1)で表される熱硬化性化合物の分子量は748以上である。そのため、熱硬化により得られる硬化物は、超耐熱性を有する(詳細には、5%重量減少温度(Td5)が450℃以上であり、250℃における貯蔵弾性率(E’)が1GPa以上である)。一方、分子量が上記範囲を下回ると、超耐熱性を有する硬化物が得られにくくなる傾向がある。尚、熱硬化性化合物の分子量は、例えば、GPC測定、HPLC測定、NMR測定等により求めることができる。
 上記式(1)で表される熱硬化性化合物の分子量の上限は、例えば1300、好ましくは1200、特に好ましくは1000、最も好ましくは900である。分子量が1300以下であると、比較的低い温度で溶融する点、溶剤に対して特に優れた溶解性を示す点、及び速硬化性を有する点で好ましい。尚、前記溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトニルアセトン、シクロヘキサノン、イソホロン、2-ヘプタノン、3-ヘプタノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、ベンゾトリフルオライド等のハロゲン化炭化水素類;アセトニトリル、ベンゾニトリル等のニトリル類;酢酸エチル等のエステル類;テトラヒドロフラン等のエーテル類;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、及びこれらの混合物等が挙げられる。
 上記式(1)で表される熱硬化性化合物のうち、R1-D1基、及びR2-D2基が上記式(r-2)で表される基である化合物は、例えば、下記工程[1]、[2]を経て製造することができる。また、上記式(1)で表される熱硬化性化合物のうち、R1-D1基、及びR2-D2基が上記式(r-2)で表される基以外の基である化合物は、下記製造方法に準じた方法で製造することができる。
工程[1]:反応基質として、芳香族ジオールと芳香族ジカルボン酸と芳香族ヒドロキシカルボン酸を1分子ずつ反応(エステル化反応)、若しくは、芳香族ジオールと芳香族ジカルボン酸と芳香族ヒドロキシカルボン酸から選択される1種(1分子)に前記から選択される他の1種(2分子)を反応(エステル化反応)させることにより、両末端にヒドロキシル基及び/又はカルボキシル基を有するカルボン酸エステル(3量体)を得る
工程[2]:両末端にヒドロキシル基及び/又はカルボキシル基を有するカルボン酸エステル(3量体)に、ヒドロキシル基及び/又はカルボキシル基と反応する官能基を有するN-フェニルマレインイミドを反応(エステル化反応)させることにより、式(1)で表される熱硬化性化合物を得る
 上記式(1)で表される熱硬化性化合物のうち、R1-D1基、及びR2-D2基が上記式(r-2)で表される基である化合物の製造方法の1例を下記に示す。下記式中、Ar1、Ar2は上記に同じ。これらは同一であってもよく、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007
 前記芳香族ジオールとしては、例えば、ハイドロキノン、4,4’-ジヒドロキシビフェニル、レゾルシノール、2,6-ナフタレンジオール、1,5-ナフタレンジオール、(1,1’-ビフェニル)-4,4’-ジオール、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、(1,1’-ビフェニル)-2,5-ジオール、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジオールの芳香族炭化水素基に置換基が結合した化合物などが挙げられる。前記置換基としては、上記芳香族炭化水素環が有していてもよい置換基と同様の例を挙げることができる。
 前記芳香族ジカルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、4,4’-二安息香酸、4,4'-オキシビス安息香酸、4,4'-チオ二安息香酸、4-[2-(4-カルボキシフェノキシ)エトキシ]安息香酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジカルボン酸の芳香族炭化水素基に置換基が結合した化合物等が挙げられる。前記置換基としては、上記芳香族炭化水素環が有していてもよい置換基と同様の例を挙げることができる。
 前記芳香族ヒドロキシカルボン酸としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、4'-ヒドロキシ(1,1'-ビフェニル)-4-カルボン酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ヒドロキシカルボン酸の芳香族炭化水素基に置換基が結合した化合物等が挙げられる。前記置換基としては、上記芳香族炭化水素環が有していてもよい置換基と同様の例を挙げることができる。
 前記ヒドロキシル基及び/又はカルボキシル基と反応する官能基を有するN-フェニルマレインイミドにおける、ヒドロキシル基と反応する官能基としてはカルボキシル基が好ましく、カルボキシル基と反応する官能基としてはヒドロキシル基が好ましい。従って、ヒドロキシル基と反応する官能基を有するN-フェニルマレインイミドとしてはN-(4-カルボキシフェニル)マレインイミドが好ましく、カルボキシル基と反応する官能基を有するN-フェニルマレインイミドとしてはN-(4-ヒドロキシフェニル)マレインイミドが好ましい。
 上記工程[1][2]におけるエステル化反応は、例えば、(i)触媒の存在下で行う方法、(ii)縮合剤の存在下で行う方法、又は(iii)カルボキシル基をハロゲン化してからエステル化反応に付す方法により行うことができる。
 (i)における触媒としては、プロトン酸、ルイス酸の何れも使用できる。プロトン酸として、超強酸(SbF5、SbF5-HF、SbF5-FSO3H、SbF5-CF3SO3Hなど)、硫酸、塩酸、リン酸、フッ化ホウ素酸、p-トルエンスルホン酸、クロロ酢酸、ピクリン酸、ヘテロポリ酸等の有機酸及び無機酸が挙げられる。また、ルイス酸として、例えば、B(OH)3、BF3、BF3O(C252、AlCl3、FeCl3等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 触媒の使用量(2種以上使用する場合はその総量)は、反応基質の合計量(モル)に対して、例えば1.0~50.0モル%である。
 (ii)における縮合剤としては、例えば、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、N-シクロヘキシル-N’-(2-モルホリノエチル)カルボジイミド-p-トルエンスルホン酸塩等のカルボジイミド系縮合剤;N,N’-カルボニルジイミダゾール等のイミダゾール系縮合剤;4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム=クロリド・n水和物、トリフルオロメタンスルホン酸(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)・(2-オクトキシ-2-オキソエチル)ジメチルアンモニウム等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 縮合剤の使用量(2種以上使用する場合はその総量)は、反応基質の合計量(モル)に対して、例えば100~300モル%である。
 (iii)において、カルボキシル基をハロゲン化する際に使用するハロゲン化剤としては、例えば、塩化チオニル、塩化オキサリル、五塩化リン、三塩化リン、臭化チオニル、三臭化リン等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 ハロゲン化剤の使用量は、カルボキシル基1モルに対して、例えば1.0~3.0モルである。
 (iii)においては、エステル化反応の進行に伴いハロゲン化水素が生成するため、生成したハロゲン化水素をトラップする塩基の存在下で反応を行うことが、エステル化反応の進行を促進する効果が得られる点で好ましい。前記塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基;ピリジン、トリエチルアミン等の有機塩基を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記塩基の使用量は、カルボン酸のハロゲン化物におけるハロゲン化アシル基1モルに対して、例えば1.0~3.0モル程度である。
 また、上記工程[1]、[2]におけるエステル化反応は溶媒の存在下で行うことができる。前記溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトニルアセトン、シクロヘキサノン、イソホロン、2-ヘプタノン、3-ヘプタノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、ジクロロベンゼン、ベンゾトリフルオライド等のハロゲン化炭化水素類;アセトニトリル、ベンゾニトリル等のニトリル類等が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記溶媒の使用量としては、反応基質の合計(重量)に対して、例えば5~20重量倍程度である。溶媒の使用量が上記範囲を上回ると反応成分の濃度が低くなり、反応速度が低下する傾向がある。
 エステル化反応の反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。
 上記工程[1]、[2]におけるエステル化反応の反応温度は、例えば0.0~200.0℃程度である。反応時間は、例えば0.5~3時間程度である。また、エステル化反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。
 上記工程[1]、[2]におけるエステル化反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 本発明の熱硬化性化合物はサーモトロピック液晶性を示す。また、本発明の熱硬化性化合物は、高度に配向した状態で熱硬化して、異方性を有する硬化物を形成することができる。そのため、得られる硬化物は超耐熱性を有する。尚、本発明の熱硬化性化合物がサーモトロピック液晶性を示すこと、及び硬化物が異方性を示すことは、偏光顕微鏡観察により確認することができる。
 式(1)で表される熱硬化性化合物の融点(Tm)は、例えば300℃以下(例えば100~300℃、好ましくは120~290℃、特に好ましくは150~280℃)である。そのため、比較的低い温度で溶融することができ、作業性に優れる。尚、融点は、例えば、DSC、TGA等の熱分析や動的粘弾性測定により測定できる。
 式(1)で表される熱硬化性化合物の、昇温速度10℃/分(窒素中)で測定される5%重量減少温度(Td5)は、例えば300℃以上(例えば、300~400℃)、より好ましくは330℃以上、特に好ましくは350℃以上である。尚、本明細書における5%重量減少温度は、例えば、TG/DTA(示差熱・熱重量同時測定)により測定できる。
 また、式(1)で表される熱硬化性化合物の発熱ピーク温度は、例えば200~350℃(好ましくは250~330℃、特に好ましくは280~340℃)である。尚、発熱ピーク温度は、例えば、DSCの熱分析により測定できる。
 従って、式(1)で表される熱硬化性化合物は、例えば200~350℃(好ましくは250~330℃、特に好ましくは280~340℃)の温度で、例えば10~120分間(好ましくは10~60分間、特に好ましくは10~30分間)加熱することにより、速やかに熱硬化して、超耐熱性を有する硬化物を形成することができる。尚、加熱は、上記温度範囲内において、温度を一定に保持した状態で行ってもよく、段階的に変更して行ってもよい。加熱温度は、加熱時間に応じて、上記範囲の中で適宜調整することが好ましく、例えば、加熱時間の短縮を所望する場合は加熱温度を高めに設定することが好ましい。本発明の熱硬化性化合物は上記式(1)で表される構造を有するため、高温で加熱しても分解することなく硬化物(詳細には、超耐熱性を有する硬化物)を形成することができ、高温で短時間加熱することにより優れた作業性で効率よく硬化物を形成することができる。尚、加熱手段は特に制限されることがなく、公知乃至慣用の手段を利用することができる。
 式(1)で表される熱硬化性化合物の硬化は、常圧下で行うこともできるし、減圧下又は加圧下で行うこともできる。
 式(1)で表される熱硬化性化合物の硬化物の、昇温速度10℃/分(窒素中)で測定される5%重量減少温度(Td5)は、例えば400℃以上(例えば、400~500℃)、より好ましくは430℃以上、特に好ましくは450℃以上である。
 また、式(1)で表される熱硬化性化合物の硬化物はガラス転移点を有していても、また、有していなくてもよいが、ガラス転移点を有する場合であっても、DSC測定において、例えば350℃(好ましくは380℃、特に好ましくは400℃)までの温度範囲にガラス転移点は検出されない。従って、式(1)で表される熱硬化性化合物の硬化物がガラス転移点を有する場合、ガラス転移温度(Tg)は例えば350℃超(好ましくは380℃以上、特に好ましくは400℃以上)である。
 更に、式(1)で表される熱硬化性化合物の硬化物は高温環境下においても高硬度を有し、250℃における貯蔵弾性率(E’)は例えば1GPa以上(例えば1~2GPa)、好ましくは1.1GPa以上、特に好ましくは1.15GPa以上である。
 本発明の熱硬化性化合物は良溶剤溶解性を有する。また、加熱処理を施すことにより速やかに硬化して、上記の通り超耐熱性を有する硬化物を形成することができる。そのため、例えば、封止剤、コーティング剤、接着剤、インク、シーラント、レジスト、形成材[例えば、基材、電気絶縁材(絶縁膜等)、積層板、複合材料(繊維強化プラスチック等)、光学素子(レンズ等)、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の形成材]等に好ましく使用でき、特に、従来の樹脂材料では対応することが困難であった、高耐熱・高耐電圧の半導体装置(パワー半導体等)において半導体素子を被覆する封止剤の用途に好ましく使用できる。
 [熱硬化性組成物]
 本発明の熱硬化性組成物は、上記熱硬化性化合物を1種又は2種以上含むことを特徴とする。本発明の熱硬化性組成物全量における上記熱硬化性化合物の含有量(2種以上含有する場合は、その総量)は、例えば30重量%以上、好ましくは50重量%以上、特に好ましくは70重量%以上、最も好ましくは90重量%以上である。尚、上限は100重量%である。すなわち、本発明の熱硬化性組成物には、熱硬化性化合物のみからなるものも含まれる。
 本発明の熱硬化性組成物は上記熱硬化性化合物以外にも、必要に応じて他の成分を含有していても良い。他の成分としては公知乃至慣用の添加剤を使用することができ、例えば、上記式(1)で表される化合物以外の硬化性化合物、触媒、フィラー、有機樹脂(シリコーン樹脂、エポキシ樹脂、フッ素樹脂など)、溶剤、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、補強材、核剤、カップリング剤、滑剤、ワックス、可塑剤、離型剤、耐衝撃性改良剤、色相改良剤、流動性改良剤、着色剤(染料、顔料など)、分散剤、消泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤等を挙げることができる。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。
 本発明の熱硬化性組成物は硬化性化合物として、上記式(1)で表される熱硬化性化合物以外の硬化性化合物を含有していても良いが、熱硬化性組成物に含まれる全硬化性化合物における上記式(1)で表される熱硬化性化合物の占める割合は、例えば、70重量%以上、好ましくは80重量%以上、特に好ましくは90重量%以上である。尚、上限は100重量%である。
 また、本発明の熱硬化性組成物は架橋剤や硬化促進剤を含有せずとも(例えば、本発明の熱硬化性組成物全量における架橋剤及び硬化促進剤の合計含有量が、例えば3重量%以下、好ましくは1重量%未満であっても)速やかに硬化物を形成することができる。そのため、得られる硬化物は5%重量減少温度(Td5)が高く、超耐熱性を有する。また、硬化物中において、未反応の硬化促進剤や、硬化促進剤の分解物の含有量を極めて低く抑制することができるため、これらに由来するアウトガスの発生を抑制することができる。
 本発明の熱硬化性組成物は上記熱硬化性化合物を含有するため、加熱処理を施すことにより速やかに硬化して、超耐熱性を有する硬化物を形成することができる。尚、加熱処理条件は上述の熱硬化性化合物の熱硬化条件と同様の範囲で適宜設定することができる。
 本発明の熱硬化性組成物は、例えば、封止剤、コーティング剤、接着剤、インク、シーラント、レジスト、形成材[例えば、基材、電気絶縁材(絶縁膜等)、積層板、複合材料(繊維強化プラスチック等)、光学素子(レンズ等)、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の形成材]等として好ましく使用でき、特に、従来の樹脂材料では対応することが困難であった、高耐熱・高耐電圧の半導体装置(パワー半導体等)において半導体素子を被覆する封止剤として好ましく使用することができる。
 [半導体デバイスの製造方法、及び前記方法により得られる半導体デバイス]
 本発明の半導体デバイスの製造方法は、上記熱硬化性組成物を用いて(例えば、上記熱硬化性組成物を半導体用封止剤として使用して)半導体素子を封止する工程を有する。
 半導体素子の封止は公知乃至慣用の方法により実施でき、特に限定されないが、例えば、本発明の熱硬化性組成物を所定の成形型内に注入し、加熱処理を施すことで実施できる。尚、加熱処理条件は上述の熱硬化性化合物の熱硬化条件と同様の範囲で適宜設定することができる。
 本発明の半導体デバイスの製造方法で得られる半導体デバイスは、半導体素子と、該半導体素子を被覆する封止材とを少なくとも含み、上記封止材が本発明の熱硬化性組成物の硬化物である半導体デバイスである。
 本発明の半導体デバイスは、本発明の熱硬化性組成物を用いて半導体素子が封止されているため、半導体素子やその周辺の構造物が硬化時の熱により劣化することを抑制しつつ半導体素子を封止することができる。また、前記熱硬化性組成物の硬化物(=封止材)は超耐熱性を有するため、半導体素子は、高温環境下でも強靱な硬化物で保護される。従って、本発明の製造方法で得られた半導体デバイスは高機能、高信頼性を有する。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 尚、NMR測定は下記条件で行った。
 NMR(核磁気共鳴)測定装置(商品名「JNM-ECA500」、(株)JEOL RESONANCE製)を用いた。測定溶媒は重溶媒(各実施例に記載)を使用し、化学シフトはTMSを規準とした。
 実施例1
 [両末端にヒドロキシル基を有するカルボン酸エステルの製造]
 撹拌子、冷却管、及びディーン・スターク装置を備えた1.0Lの三ツ口フラスコに、キシレン380.0mL(3.1mol)、ハイドロキノン20.0g(181.6mmol)、ヒドロキシ安息香酸52.7g(381.4mmol)、ホウ酸0.74g(12.0mmol)、硫酸1.9g(19.0mmol)を入れ、窒素雰囲気下、還流させながら1時間撹拌することでエステル化反応を完結させた。その後、反応液を室温まで降温してから析出物を分取し、メタノールで洗浄後、乾燥させて化合物(1)33.9g(96.7mmol)を白色結晶として得た。得られた化合物(1)を、NMR測定によって化学構造を同定したところ、下記式で表される化合物(1,4-フェニレンビス(4-ヒドロキシベンゾエイト、分子量:350.3)であることが確認された。
Figure JPOXMLDOC01-appb-C000008
1H-NMR(DMSO-d6)
δ:6.94(4H,d,J=9.0Hz),7.32(4H,s),8.00(4H,d,J=9.0Hz),10.53(2H,s).
 [熱硬化性化合物の製造]
 撹拌子および冷却管を備えた100mLの三ツ口フラスコに、トルエン23.0mL(2216.4mmol)、4-マレイミド安息香酸5.0g(22.8mmol)、塩化チオニル2.2mL(30.4mmol)、N,N-ジメチルホルムアミド0.36mL(4.6mmol)を入れ、窒素雰囲気下、80℃で1時間撹拌することで、クロル化反応を完結させた。その後、減圧して揮発成分を留去することで、4-マレイミド安息香酸クロライドを黄白色結晶として得た。次いで、得られた4-マレイミド安息香酸クロライド5.4g(22.8mmol)、o-ジクロロベンゼン40.0mL(353.7mmol)、化合物(1)2.0g(5.7mmol)、トリエチルアミン3.2mL(22.8mmol)を、窒素雰囲気下、80℃に加温しながら1時間撹拌することで、エステル化反応を完結させた。その後、反応液を室温まで降温してから析出物を分取し、メタノールで洗浄後、乾燥させて化合物(2)4.1g(5.5mmol)を黄白色結晶として得た。得られた化合物(2)を、NMR測定によって化学構造を同定したところ、下記式(1-1)で表される化合物(分子量:748.7)であることが確認された。また、化合物(2)は、偏光顕微鏡観察によりサーモトロピック液晶性を示すものであることが確認された。更に、化合物(2)は、DMSO、DMF、NMPに良好な溶解性を示すものであることが確認された。
Figure JPOXMLDOC01-appb-C000009
1H-NMR(DMSO-d6)
δ:7.25(4H,s),7.44(4H,s),7.58-7.65(8H,m),8.28(8H,d,J=6.5Hz).
 得られた化合物(2)を金属板に挟み、ホットプレスを用いて340℃で15分間圧縮加熱して、均一な硬化物(1)を得た。得られた硬化物(1)は、偏光顕微鏡観察により異方性を示すものであることが確認された。
 実施例2
 [両末端にヒドロキシル基を有するカルボン酸エステルの製造]
 撹拌子、冷却管およびディーン・スターク装置を備えた100mLの三ツ口フラスコに、キシレン22.0mL(178.2mol)、4,4’-ビフェノール4.0g(21.7mmol)、ヒドロキシ安息香酸3.0g(21.7mmol)、ホウ酸0.044g(0.72mmol)、硫酸0.95g(9.7mmol)を入れ、窒素雰囲気下、還流させながら1時間撹拌することでエステル化反応を完結させた。その後、反応液を室温まで降温してから析出物を分取し、メタノールで洗浄後、乾燥させて化合物(3)1.7g(4.0mmol)を白色結晶として得た。得られた化合物(3)を、NMR測定によって化学構造を同定したところ、下記式で表される化合物(1,1'-ビフェニル-4,4'-ジイルビス(4-ヒドロキシベンゾエイト)、分子量:426.42)であることが確認された。
Figure JPOXMLDOC01-appb-C000010
1H-NMR(DMSO-d6)
δ:6.95(4H,d,J=9.5Hz),7.35(4H,d,J=9.5Hz),7.76(4H,d,J=9.5Hz),8.02(4H,d,J=9.5Hz),10.55(2H,s).
 [熱硬化性化合物の製造]
 撹拌子および冷却管を備えた500mLの三ツ口フラスコに、トルエン31.0mL(291.7mmol)、4-マレイミド安息香酸6.7g(31.0mmol)、塩化チオニル3.0mL(41.2mmol)、N,N-ジメチルホルムアミド0.48mL(6.2mmol)を入れ、窒素雰囲気下、80℃で1時間撹拌することで、クロル化反応を完結させた。その後、減圧して揮発成分を留去することで、4-マレイミド安息香酸クロライドを黄白色結晶として得た。次いで、得られた4-マレイミド安息香酸クロライド7.3g(31.0mmol)、o-ジクロロベンゼン135.0mL(1.2mol)、化合物(3)6.0g(14.1mmol)、トリエチルアミン4.3mL(31.0mmol)を、窒素雰囲気下、80℃に加温しながら1時間撹拌することで、エステル化反応を完結させた。その後、反応液を室温まで降温してから析出物を分取し、メタノールで洗浄後、乾燥させて化合物(4)8.7g(10.6mmol)を黄白色結晶として得た。得られた化合物(4)を、NMR測定によって化学構造を同定したところ、下記式(1-2)で表される化合物(分子量:824.8)であることが確認された。また、化合物(4)は、偏光顕微鏡観察によりサーモトロピック液晶性を示すものであることが確認された。更に、化合物(4)は、DMSO、DMF、NMPに良好な溶解性を示すものであることが確認された。
Figure JPOXMLDOC01-appb-C000011
1H-NMR(DMSO-d6)
δ:7.27(4H,s),7.45(4H,d,J=8.0Hz),7.60(4H,d,J=8.5Hz),7.66(4H,d,J=8.5Hz),7.83(4H,d,J=8.0Hz),8.30(8H,d,J=8.5Hz).
 得られた化合物(4)を金属板に挟み、ホットプレスを用いて340℃で15分間圧縮加熱して、均一な硬化物(2)を得た。得られた硬化物(2)は、偏光顕微鏡観察により異方性を示すものであることが確認された。
 比較例1
 [熱硬化性化合物の製造]
 コンデンサーと撹拌機を取り付けた500mLのフラスコに、4-ヒドロキシ安息香酸94.3g(0.682mol)、6-ヒドロキシ-2-ナフトエ酸102.7g(0.546mol)、4,4'-ジヒドロキシビフェニル25.4g(0.136mol)、無水酢酸156.3g(1.53mol)、及び酢酸カリウム10.0mg(0.10mol)を入れ、窒素雰囲気下で140℃まで徐々に温度を上げた後、温度を維持しながら3時間反応させてアセチル化反応を完結させた。次いで、0.8℃/分の速度で340℃まで昇温しながら酢酸及び未反応の無水酢酸を留去した。その後、フラスコ内を徐々に1Torrまで減圧して揮発成分を留去することで、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する液晶ポリエステルaを得た。得られた液晶ポリエステルaは、液晶ポリエステルaの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の10量体であると見積もられた。
 得られた液晶ポリエステルa3.27gとメチレンビスマレイミド1.42gとを、170℃で6時間溶融混合して反応生成物を得た。反応生成物は熱硬化性液晶ポリエステルを含む組成物であった。
 得られた反応生成物をガラス板に挟んでホットプレートで240℃に加熱し、6時間硬化反応を進行させて、均一な硬化物(3)を得た。
 実施例及び比較例で得られた化合物の融点、発熱ピーク温度、5%重量減少温度、実施例及び比較例で得られた硬化物の5%重量減少温度、250℃における貯蔵弾性率(E’)を下記方法により測定した。
 [融点、及び発熱ピーク温度]
 DSC(示差走査熱量測定)装置(商品名「DSC6200」、エスアイアイナノテクノロジー社製)を用い、窒素気流下(50mL/分)、昇温温度10℃/分にて、化合物(各5mg)を加熱して、融点(Tm)及び発熱ピーク温度を測定した。
 [5%重量減少温度(Td5)]
 TG/DTA(熱重量測定・示差熱分析)装置(商品名「EXSTAR6300」、エスアイアイナノテクノロジー社製)を用い、窒素気流下(300mL/分)、昇温温度10℃/分にて、化合物若しくは硬化物(約5mg)を加熱して、5%重量減少温度(Td5)を測定した。尚、基準物質には、アルミナを用いた。
 [250℃における貯蔵弾性率(E’)]
 硬化物(約200mg)について、DMA(動的粘弾性測定)装置(商品名「RSA-III」、ティー・エイ・インスツルメント社製)を用いて測定した。
 上記結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000012
※「<340」は、340℃で溶融が確認できたことを示す。
 本発明の熱硬化性化合物は良溶剤溶解性を有する。また、加熱処理を施すことにより速硬化して、超耐熱性を有する硬化物を形成することができる。そのため、本発明の熱硬化性化合物は半導体デバイスの封止剤等として好適に使用することができる。

Claims (7)

  1.  下記式(1)で表される熱硬化性化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1、R2は熱硬化性基を示し、D1、D2は、同一又は異なって、単結合又は連結基を示す。Ar1、Ar2、Ar3は、同一又は異なって、2価の芳香族炭化水素基、又は2個以上の芳香族炭化水素が単結合、2価の脂肪族炭化水素基、若しくは2価の脂環式炭化水素基を介して結合した2価の基を示し、Eはエステル結合[-(C=O)O-又は-O(C=O)-]を示す)
  2.  式(1)中のR1、R2が、同一又は異なって、フェニルエチニル基、スチリル基、マレイミド基、ナジイミド基、ビフェニレン基、エチニル基、イソシアネート基、シアネート基、ニトリル基、フタロニトリル基、シクロベンゾブテン基、ベンゾオキサジン基、オキセタン基、及びビニル基からなる群より選択される熱硬化性基である請求項1に記載の熱硬化性化合物。
  3.  サーモトロピック液晶性を有する請求項1又は2に記載の熱硬化性化合物。
  4.  請求項1~3の何れか1項に記載の熱硬化性化合物を含む熱硬化性組成物。
  5.  請求項4に記載の熱硬化性組成物の硬化物。
  6.  請求項4に記載の熱硬化性組成物を用いて半導体素子を封止する工程を有する半導体デバイスの製造方法。
  7.  請求項5に記載の硬化物により半導体素子が被覆された構造を有する半導体デバイス。
PCT/JP2017/010175 2016-03-30 2017-03-14 熱硬化性化合物 WO2017169738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780021115.0A CN108884190A (zh) 2016-03-30 2017-03-14 热固化性化合物
KR1020187030277A KR20180130526A (ko) 2016-03-30 2017-03-14 열경화성 화합물
US16/089,159 US20190119489A1 (en) 2016-03-30 2017-03-14 Thermosetting compound
EP17774282.2A EP3438140A4 (en) 2016-03-30 2017-03-14 HEAT-HARDENING CONNECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016068665A JP6687445B2 (ja) 2016-03-30 2016-03-30 熱硬化性化合物
JP2016-068665 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169738A1 true WO2017169738A1 (ja) 2017-10-05

Family

ID=59964959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010175 WO2017169738A1 (ja) 2016-03-30 2017-03-14 熱硬化性化合物

Country Status (7)

Country Link
US (1) US20190119489A1 (ja)
EP (1) EP3438140A4 (ja)
JP (1) JP6687445B2 (ja)
KR (1) KR20180130526A (ja)
CN (1) CN108884190A (ja)
TW (1) TW201805315A (ja)
WO (1) WO2017169738A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244693A1 (ja) * 2018-06-20 2019-12-26 株式会社ダイセル 硬化性組成物
WO2020045897A1 (ko) * 2018-08-28 2020-03-05 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
KR20200024718A (ko) * 2018-08-28 2020-03-09 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
US11021438B2 (en) 2016-12-16 2021-06-01 Daicel Corporation Curable compound
JPWO2022059648A1 (ja) * 2020-09-16 2022-03-24

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939780B2 (ja) * 2016-06-03 2021-09-22 Dic株式会社 アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物
JP2019137713A (ja) * 2018-02-06 2019-08-22 株式会社ダイセル 熱硬化性組成物
KR102229664B1 (ko) * 2018-08-30 2021-03-18 주식회사 엘지화학 폴리카보네이트 및 이의 제조방법
US10678740B1 (en) 2018-11-21 2020-06-09 Zoox, Inc. Coordinated component interface control framework
KR102625057B1 (ko) * 2019-08-19 2024-01-12 주식회사 엘지화학 디올 화합물, 폴리카보네이트 및 이의 제조방법
KR102617881B1 (ko) * 2019-09-04 2023-12-22 주식회사 엘지화학 폴리카보네이트
WO2023238515A1 (ja) * 2022-06-07 2023-12-14 日東電工株式会社 組成物、液晶ポリマーシート、低誘電基板材、及び配線回路基板
CN117264419B (zh) * 2023-11-23 2024-02-13 成都科宜高分子科技有限公司 一种无卤阻燃高Tg树脂组合物、树脂胶液、半固化片、覆铜板及其制备方法、电路板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251520A (ja) * 1988-08-12 1990-02-21 Hitachi Ltd エポキシ樹脂組成物
JP2005139298A (ja) * 2003-11-06 2005-06-02 Polymatech Co Ltd 異方性エポキシ樹脂硬化物及びその製造方法
JP2006265527A (ja) * 2005-02-25 2006-10-05 Chisso Corp 放熱部材およびその製造方法
WO2009144955A1 (ja) * 2008-05-30 2009-12-03 ダイソー株式会社 エポキシ樹脂硬化物、及びエポキシ樹脂接着剤
JP2011225520A (ja) * 2010-04-02 2011-11-10 Jnc Corp 重合性基を有する光学活性化合物ならびにその重合体
JP2012529558A (ja) * 2009-06-08 2012-11-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 液晶組成物
JP2013006893A (ja) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd 高熱伝導樹脂組成物、高熱伝導性硬化物、接着フィルム、封止用フィルム、及びこれらを用いた半導体装置
JP2016508970A (ja) * 2012-12-21 2016-03-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 反応性メソゲン
JP2017062396A (ja) * 2015-09-25 2017-03-30 旭硝子株式会社 光学素子の製造方法および光学素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868113B2 (en) * 2007-04-11 2011-01-11 Designer Molecules, Inc. Low shrinkage polyester thermosetting resins
JP6128804B2 (ja) * 2012-09-28 2017-05-17 株式会社ダイセル 熱硬化性液晶ポリエステル組成物及びその硬化物
JP6413369B2 (ja) * 2014-06-11 2018-10-31 大日本印刷株式会社 回折格子、撮像装置、表示装置、回折格子の製造方法
WO2016002946A1 (ja) * 2014-07-04 2016-01-07 富士フイルム株式会社 光学機能性層作製用組成物、光学機能性層を含む光学フィルムの製造方法、および光学フィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251520A (ja) * 1988-08-12 1990-02-21 Hitachi Ltd エポキシ樹脂組成物
JP2005139298A (ja) * 2003-11-06 2005-06-02 Polymatech Co Ltd 異方性エポキシ樹脂硬化物及びその製造方法
JP2006265527A (ja) * 2005-02-25 2006-10-05 Chisso Corp 放熱部材およびその製造方法
WO2009144955A1 (ja) * 2008-05-30 2009-12-03 ダイソー株式会社 エポキシ樹脂硬化物、及びエポキシ樹脂接着剤
JP2012529558A (ja) * 2009-06-08 2012-11-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 液晶組成物
JP2011225520A (ja) * 2010-04-02 2011-11-10 Jnc Corp 重合性基を有する光学活性化合物ならびにその重合体
JP2013006893A (ja) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd 高熱伝導樹脂組成物、高熱伝導性硬化物、接着フィルム、封止用フィルム、及びこれらを用いた半導体装置
JP2016508970A (ja) * 2012-12-21 2016-03-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 反応性メソゲン
JP2017062396A (ja) * 2015-09-25 2017-03-30 旭硝子株式会社 光学素子の製造方法および光学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438140A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11021438B2 (en) 2016-12-16 2021-06-01 Daicel Corporation Curable compound
JPWO2019244693A1 (ja) * 2018-06-20 2021-07-26 株式会社ダイセル 硬化性組成物
CN112313284A (zh) * 2018-06-20 2021-02-02 株式会社大赛璐 固化性组合物
WO2019244693A1 (ja) * 2018-06-20 2019-12-26 株式会社ダイセル 硬化性組成物
US20210269593A1 (en) * 2018-06-20 2021-09-02 Daicel Corporation Curable composition
CN112313284B (zh) * 2018-06-20 2023-11-03 株式会社大赛璐 固化性组合物
JP7403448B2 (ja) 2018-06-20 2023-12-22 株式会社ダイセル 硬化性組成物
US11952462B2 (en) 2018-06-20 2024-04-09 Daicel Corporation Curable composition
KR20200024718A (ko) * 2018-08-28 2020-03-09 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
KR102218559B1 (ko) 2018-08-28 2021-02-22 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
WO2020045897A1 (ko) * 2018-08-28 2020-03-05 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
US11932727B2 (en) 2018-08-28 2024-03-19 Lg Chem, Ltd. Phthalonitrile-based resin with improved impact strength
JPWO2022059648A1 (ja) * 2020-09-16 2022-03-24
WO2022059648A1 (ja) * 2020-09-16 2022-03-24 ポリプラスチックス株式会社 熱硬化性組成物及びその硬化物並びにフィルム

Also Published As

Publication number Publication date
CN108884190A (zh) 2018-11-23
KR20180130526A (ko) 2018-12-07
US20190119489A1 (en) 2019-04-25
EP3438140A1 (en) 2019-02-06
JP6687445B2 (ja) 2020-04-22
JP2017179120A (ja) 2017-10-05
TW201805315A (zh) 2018-02-16
EP3438140A4 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6687445B2 (ja) 熱硬化性化合物
CN108368261B (zh) 可聚合组合物
JP7038121B2 (ja) 硬化性化合物
EP3299355B1 (en) Phthalonitrile compound
US8821755B2 (en) Liquid composition containing liquid crystal polyester
Ito et al. Synthesis of liquid–crystalline benzoxazines containing a biphenyl group in the mesogenic moiety
JP2019137713A (ja) 熱硬化性組成物
JP2017179119A (ja) 熱硬化性化合物
JP2017128626A (ja) 熱硬化性化合物
KR102313378B1 (ko) 우수한 내열성을 갖는 프탈로니트릴계 경화성 수지 조성물 및 이의 프리폴리머
JP6297892B2 (ja) 熱硬化性液晶ポリエステル組成物及びその硬化物
US10428182B2 (en) Sulfide-based polymer, film comprising same and method for preparing same
WO2021124938A1 (ja) 硬化性組成物
KR20230163301A (ko) 신규한 디산클로라이드 화합물, 폴리아마이드 중합체 및 이로부터 형성된 폴리벤조옥사졸
KR102534225B1 (ko) 복수의 액정 코어를 갖는 다작용기성 에폭시 화합물과 이로부터 제조된 경화물
WO2022059648A1 (ja) 熱硬化性組成物及びその硬化物並びにフィルム
JP2006193446A (ja) フェノール化合物
KR20230163934A (ko) 신규한 디아민 화합물, 폴리아마이드 중합체 및 이로부터 형성된 폴리벤조옥사졸
KR102380727B1 (ko) 프탈로니트릴 수지
KR101319268B1 (ko) 유연기를 갖는 말레이미드계 열경화성 액정 조성물
JP6278799B2 (ja) 熱硬化性液晶ポリエステル組成物の製造方法及び硬化物の製造方法
KR20210080362A (ko) 방향족 테트라카르복실산 화합물
KR20230116204A (ko) 신규한 디아민계 화합물, 이의 제조 방법, 폴리아마이드계 화합물, 폴리벤조옥사졸 필름 및 플렉서블 디바이스
WO2023058524A1 (ja) 化合物、樹脂、硬化性組成物、硬化物および光学部材
KR20180132753A (ko) 전 방향족 고성능 블록 코폴리머

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030277

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017774282

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774282

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774282

Country of ref document: EP

Kind code of ref document: A1