WO2017169085A1 - 炭化珪素半導体装置 - Google Patents

炭化珪素半導体装置 Download PDF

Info

Publication number
WO2017169085A1
WO2017169085A1 PCT/JP2017/003712 JP2017003712W WO2017169085A1 WO 2017169085 A1 WO2017169085 A1 WO 2017169085A1 JP 2017003712 W JP2017003712 W JP 2017003712W WO 2017169085 A1 WO2017169085 A1 WO 2017169085A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
region
semiconductor device
trench
impurity region
Prior art date
Application number
PCT/JP2017/003712
Other languages
English (en)
French (fr)
Inventor
透 日吉
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US16/089,448 priority Critical patent/US10756168B2/en
Publication of WO2017169085A1 publication Critical patent/WO2017169085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Definitions

  • the present invention relates to a silicon carbide semiconductor device.
  • This application claims priority based on Japanese Patent Application No. 2016-071217 filed on Mar. 31, 2016, which is a Japanese patent application. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 International Publication No. 2012/077617
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2012-99601
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2013-69964
  • Patent Document 4 discloses a silicon carbide semiconductor device having a deep p-type region formed in a source region.
  • Patent Document 5 discloses a silicon carbide semiconductor device having a buried p-type region.
  • a silicon carbide semiconductor device includes a silicon carbide substrate, a first silicon carbide layer, a second silicon carbide layer, a third silicon carbide layer, a fourth silicon carbide layer, A first impurity region.
  • the first silicon carbide layer is disposed on the silicon carbide substrate and has the first conductivity type.
  • the second silicon carbide layer is disposed on the first silicon carbide layer and has the first conductivity type.
  • the third silicon carbide layer is disposed on the second silicon carbide layer and has a second conductivity type different from the first conductivity type.
  • the fourth silicon carbide layer is disposed on the third silicon carbide layer and has the first conductivity type.
  • the first impurity region is formed to penetrate through the second silicon carbide layer, the third silicon carbide layer, and the fourth silicon carbide layer, and has the second conductivity type.
  • a trench is formed in the silicon carbide semiconductor device so as to reach the second silicon carbide layer from the fourth silicon carbide layer through the third silicon carbide layer.
  • the silicon carbide semiconductor device includes a gate insulating film in contact with a trench wall, a gate electrode, a second impurity region, a third impurity region, and a fourth impurity region.
  • the gate electrode contacts the gate insulating film and fills the trench.
  • the second impurity region is disposed below the trench and spaced from the bottom of the trench, and has the second conductivity type.
  • the third impurity region is formed below the first impurity region so as to be in contact with the first impurity region, has the second conductivity type, and is electrically connected to the second impurity region.
  • the fourth impurity region is formed between the second impurity region and the third impurity region, and has the first conductivity type.
  • FIG. 1 is a cross-sectional view showing a structure of a silicon carbide semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for illustrating the operation when the silicon carbide semiconductor device according to the embodiment of the present invention is turned on.
  • FIG. 3 is a diagram for explaining an off state of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • FIG. 4 is a cross sectional view showing a part of a comparative example of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • FIG. 5 is a partial enlarged view for illustrating a voltage applied in the vicinity of the bottom of the trench when a reverse bias voltage is applied to the silicon carbide semiconductor device according to the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a structure of a silicon carbide semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for illustrating the operation when the silicon carbide semiconductor device according to the embodiment of the present invention is turned on.
  • FIG. 6 is a partially enlarged view for illustrating a configuration of a comparative example of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • FIG. 7 is a partially enlarged view for illustrating a current flowing when the silicon carbide semiconductor device according to the embodiment of the present invention is turned on.
  • FIG. 8 is a cross sectional view showing another example of the configuration of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • FIG. 9 is a cross sectional view showing still another example of the configuration of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing a modification of the IGBT shown in FIG.
  • An object of the present disclosure is to provide a silicon carbide semiconductor device that can reduce the possibility of damage to a gate insulating film when an avalanche breakdown occurs without causing an increase in on-resistance. [Effects of the present disclosure] According to the present disclosure, it is possible to realize a silicon carbide semiconductor device that can reduce the possibility of breakdown of the gate insulating film at the time of avalanche breakdown without increasing the on-resistance.
  • the individual orientation is indicated by []
  • the collective orientation is indicated by ⁇ >
  • the individual plane is indicated by ()
  • the collective plane is indicated by ⁇ .
  • a negative crystallographic index is usually expressed by adding a “-” (bar) above a number, but in this specification a crystal is obtained by adding a negative sign before the number.
  • a negative academic exponent is expressed. The angle is described using a system in which the omnidirectional angle is 360 degrees.
  • a silicon carbide semiconductor device (1) includes a silicon carbide substrate (10), a first silicon carbide layer (11), a second silicon carbide layer (13), 3 silicon carbide layer (14), a fourth silicon carbide layer (15), and a first impurity region (16).
  • the first silicon carbide layer (11) is disposed on the silicon carbide substrate (10) and has the first conductivity type.
  • the second silicon carbide layer (13) is disposed on the first silicon carbide layer (11) and has the first conductivity type.
  • the third silicon carbide layer (14) is disposed on the second silicon carbide layer (13) and has a second conductivity type different from the first conductivity type.
  • the fourth silicon carbide layer (15) is disposed on the third silicon carbide layer (14) and has the first conductivity type.
  • the first impurity region (16) is formed so as to penetrate the second silicon carbide layer (13), the third silicon carbide layer (14), and the fourth silicon carbide layer (15). Has conductivity type.
  • the silicon carbide semiconductor device (1) so that the trench (21) penetrates the third silicon carbide layer (14) from the fourth silicon carbide layer (15) to the second silicon carbide layer (13). Formed.
  • the silicon carbide semiconductor device (1) includes a gate insulating film (25) in contact with the wall of the trench (21), a gate electrode (30), a second impurity region (17), and a third impurity region (18). ) And a fourth impurity region (20).
  • the gate electrode (30) contacts the gate insulating film (25) and fills the trench (21).
  • the second impurity region (17) is disposed below the trench (21) and spaced from the bottom of the trench (21), and has the second conductivity type.
  • the third impurity region (18) is formed below the first impurity region (16) so as to be in contact with the first impurity region (16), has a second conductivity type, and has a second conductivity type. It is electrically connected to the impurity region (17).
  • the fourth impurity region (20) is formed between the second impurity region (17) and the third impurity region (18), and has the first conductivity type.
  • a silicon carbide semiconductor device that can reduce the possibility of destruction of the gate insulating film at the time of avalanche breakdown without increasing the on-resistance.
  • a second impurity region is disposed below the trench and spaced from the bottom of the trench. Therefore, an increase in on-resistance due to constriction resistance can be suppressed. Furthermore, even when an avalanche breakdown occurs, the possibility that a current passing through the gate insulating film is generated can be reduced. Therefore, the possibility of destruction of the gate insulating film can be reduced.
  • the impurity concentration (N D2 ) of the second silicon carbide layer (13) is higher than the impurity concentration (N D1 ) of the first silicon carbide layer (11). large.
  • the impurity concentration (N J ) of the fourth impurity region (20) is higher than the impurity concentration (N D2 ) of the second silicon carbide layer (13).
  • the impurity concentration (N BP ) of the second impurity region (17) is higher than the impurity concentration (N J ) of the fourth impurity region (20).
  • the on-resistance of the silicon carbide semiconductor device can be lowered. Furthermore, the on-resistance of the silicon carbide semiconductor device can be lowered because the impurity concentration of the fourth impurity region is higher than the impurity concentration of the second silicon carbide layer. On the other hand, the impurity concentration of the second impurity region is higher than the impurity concentration of the fourth impurity region. Thereby, even when a reverse bias voltage of a predetermined magnitude is applied to the drain electrode of the silicon carbide semiconductor device, the second impurity region is not easily depleted. Since the electric field applied to the gate insulating film can be relaxed, the possibility that the gate insulating film is broken can be reduced.
  • a fourth impurity region from the interface (11A) between the first silicon carbide layer (11) and the second silicon carbide layer (13) The depth (D J ) of (20) is smaller than the depth (D BP ) of the second impurity region (17) from the interface (11A).
  • the distance of the bottom of the trench (21) from (21B) to the second impurity region (17) is represented as D 1, 0
  • the relationship of 1 ⁇ m ⁇ D 1 ⁇ 3.0 ⁇ m is established.
  • the lateral width (W BP1 ) of the third impurity region (18) is equal to the lateral width of the second impurity region (17). It is smaller than the width in the direction (W BP2 ).
  • an avalanche breakdown is more likely to occur in the third impurity region than in the second impurity region. Therefore, the possibility that the gate insulating film breaks when avalanche breakdown occurs can be reduced.
  • the lateral width (W BP2 ) of the second impurity region (17) is the lateral width of the trench (21) ( W trench ).
  • the lateral width of the depletion layer extending from the second impurity region can be made larger than the lateral width of the trench. Therefore, the electric field applied to the gate insulating film at the bottom of the trench can be reduced.
  • the thickness (t g1 ) of the gate insulating film (25) at the bottom of the trench (21) is on the side wall of the trench (21). It is larger than the thickness (t g2 ) of the portion of the gate insulating film (25) in contact therewith .
  • the crystal plane orientation of the side wall (21A) of the trench (21) is ⁇ 1-100> or ⁇ 11-20>.
  • the on-resistance of the silicon carbide semiconductor device can be reduced.
  • the trench (21) has a side wall surface (21A) inclined with respect to the ⁇ 0001 ⁇ plane.
  • the silicon carbide semiconductor device according to any one of (1) to (9) is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the silicon carbide substrate (10) has the first conductivity type.
  • a MOSFET having a trench gate can be realized by a silicon carbide semiconductor device.
  • the silicon carbide semiconductor device according to any one of (1) to (9) above is an IGBT (Insulated Gate Bipolar Transistor).
  • the silicon carbide substrate (10) has the second conductivity type.
  • an IGBT having a trench gate can be realized by the silicon carbide semiconductor device.
  • MOSFET is illustrated below as an example of the silicon carbide semiconductor device which concerns on embodiment of this invention.
  • FIG. 1 is a cross-sectional view showing a structure of a silicon carbide semiconductor device according to an embodiment of the present invention.
  • silicon carbide semiconductor device 1 includes a silicon carbide substrate 10, silicon carbide epitaxial layers 11 and 12, gate insulating film 25, gate electrode 30, interlayer insulating film 40, and source electrode 50. And the drain electrode 70.
  • Silicon carbide substrate 10 has main surfaces 10A and 10B. Main surfaces 10A and 10B are located on opposite sides. Silicon carbide epitaxial layer 11 (first silicon carbide layer) is arranged on main surface 10A. Silicon carbide epitaxial layer 12 is arranged on silicon carbide epitaxial layer 11.
  • Silicon carbide substrate 10 and silicon carbide epitaxial layers 11 and 12 have the first conductivity type.
  • the first conductivity type is n-type.
  • Silicon carbide substrate 10 and silicon carbide epitaxial layers 11 and 12 include an n-type impurity such as N (nitrogen).
  • Silicon carbide epitaxial layer 12 includes drift region 13, body region 14, source region 15, and deep region 16 (first impurity region).
  • the drift region 13, the body region 14, and the source region 15 are formed in layers. That is, drift region 13, body region 14, and source region 15 correspond to a second silicon carbide layer, a third silicon carbide layer, and a fourth silicon carbide layer, respectively.
  • the conductivity type of the drift region 13 is n-type.
  • the impurity concentration of drift region 13 is substantially equal to the impurity concentration of silicon carbide epitaxial layer 12.
  • the body region 14 is formed on the drift region 13.
  • Body region 14 has a second conductivity type different from the first conductivity type.
  • the second conductivity type is p-type.
  • Body region 14 includes a p-type impurity such as Al (aluminum) or B (boron).
  • the source region 15 is formed on the body region 14.
  • the conductivity type of the source region 15 is n-type.
  • Source region 15 includes an n-type impurity such as P (phosphorus).
  • the concentration of the n-type impurity contained in the source region 15 is higher than the concentration of the n-type impurity in the drift region 13.
  • the deep region 16 is in contact with the source electrode 50. Deep region 16 penetrates source region 15, body region 14, and drift region 13. Bottom portion 16 ⁇ / b> B of deep region 16 is in contact with interface 11 ⁇ / b> A between silicon carbide epitaxial layer 11 and silicon carbide epitaxial layer 12.
  • the conductivity type of the deep region 16 is p-type. Deep region 16 includes a p-type impurity such as Al (aluminum). The p-type impurity concentration in the deep region 16 is higher than the p-type impurity concentration in the body region 14. Deep region 16 is electrically connected to body region 14 and source electrode 50.
  • trench 21 is formed in the silicon carbide epitaxial layer 12.
  • Trench 21 opens to main surface 12 ⁇ / b> A side of silicon carbide epitaxial layer 12.
  • Main surface 12A is a surface of silicon carbide epitaxial layer 12 located on the side opposite to interface 11A.
  • the trench 21 reaches the drift region 13 while penetrating the source region 15 and the body region 14.
  • the trench 21 has a side wall surface 21A and a bottom portion 21B.
  • the bottom 21B of the trench 21 is not in contact with the interface 11A. That is, the depth of the deep region 16 is greater than the depth of the trench 21 in the depth direction from the main surface 12A.
  • the “depth direction” corresponds to the Y direction shown in FIG.
  • the crystal plane orientation of the side wall surface 21A is ⁇ 1-100> or ⁇ 11-20>.
  • a channel is formed in the body region 14 in the vicinity of the side wall surface 21A of the trench 21.
  • Gate insulating film 25 is in contact with main surface 10 ⁇ / b> A and is also in contact with side wall surface 21 ⁇ / b> A and bottom portion 21 ⁇ / b> B of trench 21.
  • the material of the gate insulating film 25 is SiO 2 (silicon dioxide).
  • the gate electrode 30 is disposed inside the trench 21 so as to contact the gate insulating film 25 and fill the trench 21.
  • the gate electrode 30 is made of polysilicon doped with impurities, for example.
  • Silicon carbide epitaxial layer 11 includes buried regions 17, 18, and 20. Each of the buried regions 17, 18, 20 is in contact with the interface 11A.
  • the buried region 17 (second impurity region) is disposed below the bottom 21B of the trench 21.
  • the buried region 17 is separated from the bottom 21 ⁇ / b> B of the trench 21.
  • the conductivity type of the buried region 17 is p-type.
  • Buried region 17 includes a p-type impurity such as Al (aluminum). Although not shown in FIG. 1, the buried region 17 is electrically connected to the buried region 18.
  • the embedded region 18 is in contact with the bottom 16B of the deep region 16.
  • the conductivity type of the buried region 18 is p-type.
  • Buried region 18 includes a p-type impurity such as Al (aluminum).
  • the buried region 18 is electrically connected to the deep region 16. Therefore, the deep region 16, the buried region 17, and the buried region 18 are electrically connected to each other.
  • the buried region 20 is disposed between the buried region 17 and the buried region 18 in the lateral direction.
  • the lateral direction is a direction orthogonal to the depth direction and corresponds to the X direction shown in FIG.
  • the conductivity type of the buried region 20 is n-type.
  • Buried region 20 includes an n-type impurity such as P (phosphorus).
  • Interlayer insulating film 40 is made of, for example, SiO 2 (silicon dioxide) and arranged on main surface 12A. Interlayer insulating film 40 is in contact with gate insulating film 25 and gate electrode 30. The interlayer insulating film 40 is disposed so as to surround the gate electrode 30 together with the gate insulating film 25, and electrically insulates the gate electrode 30 from the source electrode 50.
  • the source electrode 50 is in contact with the source region 15 and the deep region 16. Therefore, the source electrode 50 is electrically connected to the source region 15 and the deep region 16.
  • Drain electrode 70 is in contact with main surface 10B of silicon carbide substrate 10.
  • the drain electrode 70 is made of the same material as that of the source electrode 50, for example. Drain electrode 70 is electrically connected to silicon carbide substrate 10.
  • the thickness means a width along the depth direction (Y direction).
  • Impurity concentration N D1 of silicon carbide epitaxial layer 11 is in the range of 1 ⁇ 10 14 cm ⁇ 3 to 2 ⁇ 10 16 cm ⁇ 3 .
  • Thickness t 1 of silicon carbide epitaxial layer 11 is in the range of 3 ⁇ m to 150 ⁇ m.
  • the impurity concentration N D1 is about 5 ⁇ 10 15 cm ⁇ 3 and the thickness t 1 is about 10 ⁇ m.
  • Impurity concentration N D2 of silicon carbide epitaxial layer 12 is in the range of 1 ⁇ 10 15 cm ⁇ 3 to 5 ⁇ 10 17 cm ⁇ 3 .
  • Thickness t 2 of silicon carbide epitaxial layer 12 is in the range of 1 ⁇ m to 5 ⁇ m.
  • the impurity concentration N D2 is about 5 ⁇ 10 16 cm ⁇ 3 and the thickness t 2 is about 2 ⁇ m.
  • impurity concentration N D2 of silicon carbide epitaxial layer 12 is substantially equal to the impurity concentration of drift region 13.
  • the impurity concentration of the body region 14 is in the range of 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the thickness of the body region 14 is in the range of 0.2 ⁇ m to 1.5 ⁇ m.
  • the impurity concentration of the body region 14 is about 1 ⁇ 10 18 cm ⁇ 3 , and the thickness of the body region 14 is about 0.5 ⁇ m.
  • the impurity concentration of the source region 15 is in the range of 5 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 .
  • the depth of the source region 15 from the main surface 12A is in the range of 0.1 ⁇ m to 0.5 ⁇ m.
  • the impurity concentration of the source region 15 is about 5 ⁇ 10 19 cm ⁇ 3 , and the depth of the source region 15 from the main surface 12A is about 0.3 ⁇ m.
  • the impurity concentration of the deep region 16 is in the range of 1 ⁇ 10 19 cm ⁇ 3 to 2 ⁇ 10 20 cm ⁇ 3 .
  • the depth of the deep region 16 from the main surface 12A is in the range of 1.0 ⁇ m to 5.0 ⁇ m.
  • the impurity concentration of the deep region 16 is about 1 ⁇ 10 20 cm ⁇ 3
  • the depth of the deep region 16 from the main surface 12A is about 2.0 ⁇ m.
  • the depth of deep region 16 from main surface 12 ⁇ / b > A is substantially equal to thickness t 2 of silicon carbide epitaxial layer 12.
  • Buried region 17 and buried region 18 have substantially the same impurity concentration NBP and substantially the same thickness.
  • the thickness of the buried regions 17 and 18 corresponds to the depth from the interface 11A.
  • the impurity concentration N BP of the buried regions 17 and 18 is in the range of 5 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10 19 cm ⁇ 3 , and the depth D BP from the interface 11A of the buried regions 17 and 18 is , In the range of 0.1 ⁇ m to 1.0 ⁇ m.
  • the impurity concentration N BP is about 5 ⁇ 10 18 cm ⁇ 3 and the depth D BP is about 0.4 ⁇ m.
  • the distance D 1 is the distance in the depth direction from the bottom 21 B of the trench 21 to the buried region 17.
  • the distance D 1 is less than 0.1 ⁇ m, the buried region 17 substantially contacts the bottom 21B of the trench 21. For this reason, a withstand pressure
  • the range of the distance D 1 is preferably 0.1 ⁇ m ⁇ D 1 ⁇ 3.0 ⁇ m.
  • the impurity concentration N J of the buried region 20 is in the range of 1 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 , and the depth D J from the interface 11A of the buried region 20 is 0.1 ⁇ m. It is in the range of ⁇ 1.0 ⁇ m.
  • the impurity concentration N J is about 1 ⁇ 10 17 cm ⁇ 3 and the depth D BP is about 0.2 ⁇ m.
  • the thickness t g1 of the gate insulating film 25 at the bottom 21B of the trench 21 is in the range of 50 nm to 500 nm, preferably 200 nm.
  • the thickness t g2 of the gate insulating film 25 on the side wall surface 21A of the trench 21 is about 50 nm.
  • the thickness t g1 is preferably larger than the thickness t g2 .
  • N D1 ⁇ N D2 ⁇ N J ⁇ N BP is established among the impurity concentrations N D1 , N D2 , N J , and N BP
  • D J ⁇ D BP is established between the depth D J of the buried region 20 from the interface 11A and the depth D BP of the buried region 17 from the interface 11A.
  • the width of the bottom portion 21B of the trench 21 represents a W Trench
  • the width of the buried region 17 is represented with W BP2
  • relationship W trench ⁇ W BP2 is established.
  • W BP1 a relationship of W BP1 ⁇ W BP2 is established between the width W BP1 and the width W BP2 .
  • W J of the buried region 20 is not particularly limited.
  • the width W J is larger than 0 ⁇ m and is set to an appropriate value for achieving the characteristics required for the silicon carbide semiconductor device 1 (breakdown voltage, resistance value at turn-on, etc.).
  • “voltage” means a potential difference based on the potential of the source electrode 50.
  • the potential of the source electrode 50 is set to the ground potential.
  • FIG. 1 shows an example in which silicon carbide semiconductor device 1 is an n-type MOSFET.
  • silicon carbide semiconductor device 1 is an n-type MOSFET.
  • the MOSFET is non-conductive when the voltage of the gate electrode 30 is less than the threshold voltage.
  • FIG. 2 is a diagram for illustrating an operation when silicon carbide semiconductor device 1 according to the embodiment of the present invention is on.
  • the channel 14 a is formed in the body region 14. Since a positive voltage is applied to the drain electrode 70, a current flows from the drain electrode 70 toward the source electrode 50. As indicated by the arrows, current flows from drain electrode 70 through silicon carbide substrate 10, silicon carbide epitaxial layer 11, buried region 20, drift region 13, channel 14 a, and source region 15 to source electrode 50. Flowing.
  • the buried region 17 is electrically connected to the buried region 18, and the buried region 18 is electrically connected to the deep region 16. Further, the deep region 16 is electrically connected to the body region 14 and is also electrically connected to the source electrode 50.
  • silicon carbide substrate 10, silicon carbide epitaxial layer 11, buried region 20 and drift region 13 are electrically connected to each other and a positive voltage is applied thereto.
  • the depletion layer When a reverse bias voltage is applied between the p-type region and the n-type region, the depletion layer extends from the junction to each of the p-type region and the n-type region.
  • the width of the depletion layer in each region depends on the impurity concentration of the p-type region and the n-type region and the reverse bias voltage.
  • the “side where the depletion layer expands” refers to a region of the p-type region and the n-type region where the width of the depletion layer from the junction is larger.
  • Body region 14, deep region 16, region 17 buried region 17 and buried region 18 have the second conductivity type (p-type) and are electrically connected to each other.
  • silicon carbide substrate 10, silicon carbide epitaxial layer 11, buried region 20, and drift region 13 have the first conductivity type (n-type) and are electrically connected to each other.
  • Depletion layers 11a, 13a, 17a, and 17b are formed by the reverse bias voltage.
  • Depletion layer 11a extends from the interface between buried region 18 and silicon carbide epitaxial layer 11 to the silicon carbide epitaxial layer 11 side.
  • the depletion layer 13a extends from the interface between the drift region 13 and the body region 14 to the drift region 13 side.
  • the depletion layer 17a extends from the interface (junction surface) between the buried region 17 and the drift region 13 to the drift region 13 side.
  • Depletion layer 17b extends from the interface (junction surface) between buried region 17 and silicon carbide epitaxial layer 11 to the silicon carbide epitaxial layer 11 side.
  • FIG. 3 is a diagram for explaining an off state of silicon carbide semiconductor device 1 according to the embodiment of the present invention.
  • MOSFET silicon carbide semiconductor device 1
  • the voltage of gate electrode 30 is not more than the threshold voltage.
  • the potential of the gate electrode 30 is equal to the potential of the source electrode 50. That is, the voltage of the gate electrode 30 is 0V.
  • a high voltage eg, 1200 V
  • a high voltage eg, 1200 V
  • both depletion layers 17a and 13a expand to the drift region 13 side. Therefore, as illustrated in FIG. 3, the depletion layers 13a and 17a are combined.
  • depletion layers 11a and 17b extend to the silicon carbide epitaxial layer 11 side. Thereby, the depletion layers 11a and 17b are combined.
  • the depletion layer formed on the silicon carbide epitaxial layer 11 side can alleviate electric field concentration in the silicon carbide epitaxial layer 11.
  • electric field concentration in the gate insulating film 25 can be reduced. Thereby, even if an avalanche breakdown occurs, the possibility that the gate insulating film 25 is broken can be reduced.
  • FIG. 4 is a cross-sectional view showing a part of a comparative example of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • silicon carbide semiconductor device 101 buried region 17 is in contact with bottom portion 21 ⁇ / b> B of trench 21.
  • the current flows through a non-depleted portion between the depletion layer 17a and the depletion layer 13a.
  • the depletion layers 17a and 13a expand toward the drift region 13, the current flow path is narrow in the vicinity of the channel 14a. That is, a constriction resistance occurs in the vicinity of the channel 14a. Since the resistance value in the vicinity of the channel 14a is large, the on-resistance increases.
  • the buried region 17 and the bottom 21B of the trench 21 are separated. Therefore, both depletion layers 17a and 13a spread toward the drift region 13 due to the drain voltage when silicon carbide semiconductor device 1 is turned on.
  • the width of the current path in the vicinity of the channel 14a is larger than that of the configuration shown in FIG. Thereby, an increase in on-resistance can be suppressed.
  • the distance from the bottom 21B of the trench 21 to the buried region 17 is preferably at least 0.1 ⁇ m. From the viewpoint of suppressing an increase in on-resistance, it is preferable that the distance D 1 is large. On the one hand, the distance D 1 increases, at the time of the silicon carbide semiconductor device 1 off, the gate insulating film 25, a possibility that a voltage is applied exceeding the breakdown voltage of the gate insulating film 25 is high. Of suppressing an electric field in view of being applied to the gate insulating film 25, it is preferable that the distance D 1 is 3.0 ⁇ m or less. Therefore, the distance D 1 is preferably 0.1 ⁇ m ⁇ D 1 ⁇ 3.0 ⁇ m.
  • Impurity concentration N D2 of drift region 13 is higher than impurity concentration N D1 of silicon carbide epitaxial layer 11 (N D1 ⁇ N D2 ). Thereby, the on-resistance of silicon carbide semiconductor device 1 can be lowered. Since the impurity concentration N BP of the buried region 17 is higher than the impurity concentration N D2 , the depletion layer 17a spreads toward the drift region 13 when a high voltage is applied between the drain and the source. The depletion layer 17a can suppress an electric field applied to the gate insulating film 25 from becoming extremely high.
  • the width W BP2 of the buried region 17 is larger than the width W trench of the bottom 21B of the trench 21 (W BP2 > W trench ).
  • the width of the depletion layer 17a can be made larger than the width W trench , so that the electric field applied to the gate insulating film 25 at the bottom 21B of the trench 21 can be reduced.
  • the thickness t g1 of the gate insulating film 25 at the bottom 21B of the trench 21 is larger than the thickness t g2 of the gate insulating film 25 on the side wall surface 21A of the trench 21 (t g2 ⁇ t g1 ).
  • the width W BP1 of the buried region 18 is smaller than the width W BP2 of the buried region 17 (W BP1 ⁇ W BP2 ).
  • an avalanche breakdown is more likely to occur in the region immediately below the buried region 18 than in the region immediately below the buried region 17. .
  • the breakdown current flows to the source electrode 50 via the buried region 18 and the deep region 16. Since the breakdown current does not flow through the bottom of the trench 21, the effect of preventing the gate insulating film 25 from being broken is further enhanced.
  • the impurity concentration N BP of the buried region 17 is set so that the buried region 17 is not completely depleted. Determined. Furthermore, the potential of the gate electrode 30 is 0V.
  • FIG. 5 is a partial enlarged view for illustrating a voltage applied in the vicinity of bottom portion 21B of trench 21 when a reverse bias voltage is applied to the silicon carbide semiconductor device according to the embodiment of the present invention.
  • the voltage of gate electrode 30 is 0V.
  • a region between bottom 21B of trench 21 and buried region 17 is depleted, and depletion layer 17a is formed.
  • a potential distribution is generated in the depletion layer 17a.
  • the buried region 17 includes a portion that is not depleted. The voltage of this part is 0V.
  • the voltage at the portion of the gate electrode 30 and the buried region 17 that is not depleted is 0 V
  • the gradient of the electric field intensity along the depth direction from the gate electrode 30 is reduced. Therefore, the electric field applied to the portion of the gate insulating film 25 disposed on the bottom 21B of the trench 21 can be reduced. Note that when the buried region 17 is completely depleted, a potential distribution is also generated inside the buried region 17, so that the gradient of the electric field strength along the depth direction from the gate electrode 30 increases. For this reason, the electric field applied to the portion of the gate insulating film 25 disposed on the bottom 21B of the trench 21 increases.
  • the impurity concentration N BP of the buried region 17 is higher than the impurity concentration N D2 of the drift region 13 (N D2 ⁇ N BP ).
  • the impurity concentration N J of the buried region 20 is larger than the impurity concentration N D2 (N D2 ⁇ N J ). Thereby, the on-resistance of silicon carbide semiconductor device 1 can be lowered.
  • the impurity concentration N J is smaller than the impurity concentration N BP in the buried region 17 (N J ⁇ N BP ). As a result, the depletion layer expands from the junction surface between the buried region 17 and the buried region 20 toward the buried region 20, so that the buried region 17 is hardly completely depleted.
  • FIG. 6 is a partially enlarged view for illustrating a configuration of a comparative example of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • depletion layers 11a and 17a extend to the silicon carbide epitaxial layer 11 side.
  • An arrow represents a current flowing through silicon carbide epitaxial layer 11.
  • FIG. 7 is a partially enlarged view for illustrating a current flowing when the silicon carbide semiconductor device according to the embodiment of the present invention is turned on. As shown in FIG. 7, when D J ⁇ D BP , even if depletion layers 11 a and 17 a spread to the silicon carbide epitaxial layer 11 side, the width of the current flow path is large. Therefore, it is possible to suppress an increase in on-resistance of silicon carbide semiconductor device 1.
  • the shape of the trench 21 is not limited to the shape shown in FIG.
  • FIG. 8 is a cross sectional view showing another example of the configuration of the silicon carbide semiconductor device according to the embodiment of the present invention. As shown in FIG. 8, the two opposing side wall surfaces 21A are inclined with respect to the main surface 12A.
  • the side wall surface 21A is, for example, a surface inclined by 50 degrees or more and 80 degrees or less with respect to the ⁇ 000-1 ⁇ plane. More specifically, the side wall surface 21A is macroscopically viewed from the plane orientations ⁇ 0-33-8 ⁇ , ⁇ 0-11-2 ⁇ , ⁇ 0-11-4 ⁇ , and ⁇ 0-11-1 ⁇ . Any of the following. Note that “macroscopic” means ignoring a fine structure having a dimension on the order of atomic spacing. As such a macroscopic off-angle measurement, for example, a general method using X-ray diffraction can be used. By employing the above surface, the on-resistance of silicon carbide semiconductor device 1 can be further reduced.
  • silicon carbide semiconductor device 1 according to the embodiment of the present invention is not limited to being a MOSFET.
  • FIG. 9 is a cross sectional view showing still another example of the configuration of the silicon carbide semiconductor device according to the embodiment of the present invention.
  • silicon carbide semiconductor device 1 according to the embodiment of the present invention may be an IGBT.
  • the conductivity type of silicon carbide substrate 10 is p-type.
  • the IGBT shown in FIG. 9 is different from the MOSFET shown in FIG.
  • FIG. 10 is a diagram showing a modification of the IGBT shown in FIG.
  • the IGBT trench 21 is formed so as to expand in a tapered shape toward the main surface 12 ⁇ / b> A, and may have two opposing side wall surfaces 21 ⁇ / b> A.
  • the two side wall surfaces 21A are, for example, surfaces inclined by 50 degrees or more and 80 degrees or less with respect to the ⁇ 000-1 ⁇ plane, and the plane orientations ⁇ 0-33-8 ⁇ , ⁇ 0-11-2 ⁇ , ⁇ 0-11-4 ⁇ and ⁇ 0-11-1 ⁇ .
  • the first conductivity type is n-type and the second conductivity type is p-type, but the first conductivity type is p-type and the second conductivity type is n-type. There may be.
  • 1, 101 silicon carbide semiconductor device 10 silicon carbide substrate, 10A, 10B, 12A main surface, 11, 12 silicon carbide epitaxial layer, 11A interface, 11a, 13a, 17a, 17b depletion layer, 13 drift region, 14 body region, 14a channel, 15 source region, 16 deep region, 16B bottom (deep region), 17, 18, 20 buried region, 21 trench, 21A side wall surface, 21B bottom (trench), 25 gate insulating film, 30 gate electrode, 40 Interlayer insulating film, 50 source electrode, 70 drain electrode, D 1 distance, D BP , D J depth, N BP , N D1 , N D2 , N J impurity concentration, W BP1 , W BP2 , W J , W trench width , T 1 , t 2 , t g1 , t g2 thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

炭化珪素半導体装置は、炭化珪素基板と、炭化珪素基板上に配置され、第1の導電型を有する、第1の炭化珪素層と、第1の炭化珪素層上に配置され、第1の導電型を有する第2の炭化珪素層と、第2の炭化珪素層上に配置され、第1の導電型と異なる第2の導電型を有する、第3の炭化珪素層と、第3の炭化珪素層上に配置され、第1の導電型を有する、第4の炭化珪素層と、第2の炭化珪素層、第3の炭化珪素層および第4の炭化珪素層を貫通するように形成され、第2の導電型を有する第1の不純物領域とを備える。トレンチが、第4の炭化珪素層から第3の炭化珪素層を貫通して第2の炭化珪素層に達するように、炭化珪素半導体装置に形成される。炭化珪素半導体装置は、トレンチの壁に接触したゲート絶縁膜と、ゲート絶縁膜に接触し、かつ、トレンチに充填されたゲート電極と、トレンチの下方にトレンチの底部から離間して配置され、第2の導電型を有する、第2の不純物領域と、第1の不純物領域に接するように第1の不純物領域の下方に形成され、第2の導電型を有し、かつ、第2の不純物領域に電気的に接続された第3の不純物領域と、第2の不純物領域と第3の不純物領域との間に形成され、第1の導電型を有する第4の不純物領域とを備える。

Description

炭化珪素半導体装置
 本発明は、炭化珪素半導体装置に関する。本出願は、2016年3月31日に出願した日本特許出願である特願2016-071217号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 たとえば国際公開2012/077617号(特許文献1)、特開2012-99601号公報(特許文献2)および特開2013-69964号公報(特許文献3)は、トレンチの下部に形成されたp型拡散層を含む炭化珪素半導体装置を開示する。
 特開2013-145770号公報(特許文献4)は、ソース領域に形成された深いp型領域を有する炭化珪素半導体装置を開示する。特開2014-41990号公報(特許文献5)は、埋め込まれたp型領域を有する炭化珪素半導体装置を開示する。
国際公開2012/077617号 特開2012-99601号公報 特開2013-69964号公報 特開2013-145770号公報 特開2014-41990号公報
 本発明の一態様に係る炭化珪素半導体装置は、炭化珪素基板と、第1の炭化珪素層と、第2の炭化珪素層と、第3の炭化珪素層と、第4の炭化珪素層と、第1の不純物領域とを備える。第1の炭化珪素層は、炭化珪素基板上に配置され、第1の導電型を有する。第2の炭化珪素層は、第1の炭化珪素層上に配置され、第1の導電型を有する。第3の炭化珪素層は、第2の炭化珪素層上に配置され、第1の導電型と異なる第2の導電型を有する。第4の炭化珪素層は、第3の炭化珪素層上に配置され、第1の導電型を有する。第1の不純物領域は、第2の炭化珪素層、第3の炭化珪素層および第4の炭化珪素層を貫通するように形成され、第2の導電型を有する。トレンチが、第4の炭化珪素層から第3の炭化珪素層を貫通して第2の炭化珪素層に達するように、炭化珪素半導体装置に形成される。炭化珪素半導体装置は、トレンチの壁に接触したゲート絶縁膜と、ゲート電極と、第2の不純物領域と、第3の不純物領域と、第4の不純物領域とを備える。ゲート電極は、ゲート絶縁膜に接触し、かつ、トレンチに充填される。第2の不純物領域は、トレンチの下方にトレンチの底部から離間して配置され、第2の導電型を有する。第3の不純物領域は、第1の不純物領域に接するように第1の不純物領域の下方に形成され、第2の導電型を有し、かつ、第2の不純物領域に電気的に接続される。第4の不純物領域は、第2の不純物領域と第3の不純物領域との間に形成され、第1の導電型を有する。
図1は、本発明の一実施形態に係る炭化珪素半導体装置の構造を示した断面図である。 図2は、本発明の実施の形態に係る炭化珪素半導体装置のオン時の動作を説明するための図である。 図3は、本発明の実施の形態に係る炭化珪素半導体装置のオフ状態を説明するための図である。 図4は、本発明の実施の形態に係る炭化珪素半導体装置の比較例の一部を示した断面図である。 図5は、本発明の実施の形態に係る炭化珪素半導体装置に逆バイアス電圧が印加された時にトレンチの底部の近傍に印加される電圧を説明するための部分拡大図である。 図6は、本発明の実施の形態に係る炭化珪素半導体装置の比較例の構成を説明するための部分拡大図である。 図7は、本発明の実施の形態に係る炭化珪素半導体装置のオン時に流れる電流を説明するための部分拡大図である。 図8は、本発明の実施の形態に係る炭化珪素半導体装置の別の構成の例を示した断面図である。 図9は、本発明の実施の形態に係る炭化珪素半導体装置のさらに別の構成の例を示した断面図である。 図10は、図9に示されたIGBTの変形例を示した図である。
[本開示が解決しようとする課題]
 特許文献1~3に開示された炭化珪素半導体装置においては、p型領域がトレンチの底部に配置される。しかし、このような構造においては、狭窄抵抗が、そのp型領域と、p型のボディ領域との間に生じやすい。狭窄抵抗の抵抗値が高いことによって、炭化珪素半導体装置のオン抵抗の増大をもたらす。
 そのp型領域においてアバランシェブレークダウンが生じた場合には、ゲート絶縁膜を貫通してトレンチゲートに大電流が流れる可能性がある。すなわち、アバランシェブレークダウンによって、ゲート絶縁膜が損傷する可能性がある。
 本開示の目的は、オン抵抗の増加を招くことなく、アバランシェブレークダウンの発生時におけるゲート絶縁膜の損傷の可能性を低くすることができる炭化珪素半導体装置を提供することである。
[本開示の効果]
 本開示によれば、オン抵抗の増加を招くことなく、アバランシェブレークダウン時におけるゲート絶縁膜の破壊の可能性を低くすることができる炭化珪素半導体装置を実現できる。
 [本発明の実施形態の説明]
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一または対応する要素には同一の符号を付して、それらについての詳細な説明は繰り返さない。
 本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付すことで結晶学上の負の指数が表現される。また角度の記載には、全方位角を360度とする系を用いている。
 最初に本発明の実施態様を列記して説明する。
 (1)本発明の一態様に係る炭化珪素半導体装置(1)は、炭化珪素基板(10)と、第1の炭化珪素層(11)と、第2の炭化珪素層(13)と、第3の炭化珪素層(14)と、第4の炭化珪素層(15)と、第1の不純物領域(16)とを備える。第1の炭化珪素層(11)は、炭化珪素基板(10)上に配置され、第1の導電型を有する。第2の炭化珪素層(13)は、第1の炭化珪素層(11)上に配置され、第1の導電型を有する。第3の炭化珪素層(14)は、第2の炭化珪素層(13)上に配置され、第1の導電型と異なる第2の導電型を有する。第4の炭化珪素層(15)は、第3の炭化珪素層(14)上に配置され、第1の導電型を有する。第1の不純物領域(16)は、第2の炭化珪素層(13)、第3の炭化珪素層(14)および第4の炭化珪素層(15)を貫通するように形成され、第2の導電型を有する。トレンチ(21)が、第4の炭化珪素層(15)から第3の炭化珪素層(14)を貫通して第2の炭化珪素層(13)に達するように、炭化珪素半導体装置(1)に形成される。炭化珪素半導体装置(1)は、トレンチ(21)の壁に接触したゲート絶縁膜(25)と、ゲート電極(30)と、第2の不純物領域(17)と、第3の不純物領域(18)と、第4の不純物領域(20)とを備える。ゲート電極(30)は、ゲート絶縁膜(25)に接触し、かつ、トレンチ(21)に充填される。第2の不純物領域(17)は、トレンチ(21)の下方にトレンチ(21)の底部から離間して配置され、第2の導電型を有する。第3の不純物領域(18)は、第1の不純物領域(16)に接するように第1の不純物領域(16)の下方に形成され、第2の導電型を有し、かつ、第2の不純物領域(17)に電気的に接続される。第4の不純物領域(20)は、第2の不純物領域(17)と第3の不純物領域(18)との間に形成され、第1の導電型を有する。
 上記によれば、オン抵抗の増加を招くことなく、アバランシェブレークダウン時におけるゲート絶縁膜の破壊の可能性を低くすることができる炭化珪素半導体装置を実現できる。第2の不純物領域が、トレンチの下方にトレンチの底部から離間して配置される。したがって、狭窄抵抗によるオン抵抗の増大を抑えることができる。さらに、アバランシェブレークダウンが発生した際にも、ゲート絶縁膜を貫通する電流が生じる可能性を小さくすることができる。したがって、ゲート絶縁膜の破壊の可能性を低くすることができる。
 (2)上記(1)の炭化珪素半導体装置において、第2の炭化珪素層(13)の不純物濃度(ND2)は、第1の炭化珪素層(11)の不純物濃度(ND1)よりも大きい。第4の不純物領域(20)の不純物濃度(NJ)は、第2の炭化珪素層(13)の不純物濃度(ND2)よりも大きい。第2の不純物領域(17)の不純物濃度(NBP)は、第4の不純物領域(20)の不純物濃度(NJ)よりも大きい。
 第2の炭化珪素層の不純物濃度が第1の炭化珪素層の不純物濃度よりも大きいことにより、炭化珪素半導体装置のオン抵抗を下げることができる。さらに、第4の不純物領域の不純物濃度が第2の炭化珪素層の不純物濃度よりも大きいことにより、炭化珪素半導体装置のオン抵抗を下げることができる。一方で、第2の不純物領域の不純物濃度は、第4の不純物領域の不純物濃度よりも大きい。これにより、これにより所定の大きさの逆バイアス電圧が炭化珪素半導体装置にドレイン電極に印加された場合にも、第2の不純物領域が完全に空乏化しにくくなる。ゲート絶縁膜に印加される電界を緩和することができるので、ゲート絶縁膜が破壊する可能性を小さくすることができる。
 (3)上記(1)または(2)の炭化珪素半導体装置において、第1の炭化珪素層(11)と第2の炭化珪素層(13)との界面(11A)からの第4の不純物領域(20)の深さ(DJ)は、その界面(11A)からの第2の不純物領域(17)の深さ(DBP)よりも小さい。
 上記によれば、炭化珪素半導体装置のオン抵抗が上昇することを抑えることができる。
 (4)上記(1)から(3)のいずれかの炭化珪素半導体装置において、トレンチ(21)の底部(21B)から第2の不純物領域(17)までの距離をD1と表すと、0.1μm≦D1≦3.0μmの関係が成り立つ。
 上記によれば、オン抵抗の増大を抑えることができるとともに、アバランシェブレークダウンが生じた際にゲート絶縁膜が破壊する可能性を小さくすることができる。
 (5)上記(1)から(4)のいずれかの炭化珪素半導体装置において、第3の不純物領域(18)の横方向の幅(WBP1)は、第2の不純物領域(17)の横方向の幅(WBP2)よりも小さい。
 上記によれば、第2の不純物領域に比べて第3の不純物領域のほうがアバランシェブレークダウンが生じやすい。したがってアバランシェブレークダウンが生じた際にゲート絶縁膜が破壊する可能性を小さくすることができる。
 (6)上記(1)から(5)のいずれかの炭化珪素半導体装置において、第2の不純物領域(17)の横方向の幅(WBP2)は、トレンチ(21)の横方向の幅(Wtrench)よりも大きい。
 上記によれば、第2の不純物領域から広がる空乏層の横方向の幅を、トレンチの横方向の幅よりも大きくすることができる。したがって、トレンチの底部において、ゲート絶縁膜に印加される電界を低減することができる。
 (7)上記(1)から(6)のいずれかの炭化珪素半導体装置において、トレンチ(21)の底部におけるゲート絶縁膜(25)の厚さ(tg1)は、トレンチ(21)の側壁に接するゲート絶縁膜(25)の部分の厚さ(tg2)よりも大きい。
 上記によれば、トレンチの底部においてアバランシェブレークダウンが生じた場合にも、ゲート絶縁膜が破壊する可能性を小さくすることができる。
 (8)上記(1)から(7)のいずれかの炭化珪素半導体装置において、トレンチ(21)の側壁(21A)の結晶面方位が<1-100>または<11-20>である。
 上記によれば、炭化珪素半導体装置のオン抵抗を小さくすることができる。
 (9)上記(1)から(8)のいずれかの炭化珪素半導体装置において、トレンチ(21)は、{0001}面に対して傾斜した側壁面(21A)を有する。
 上記によれば、炭化珪素半導体装置のオン抵抗を小さくすることができる。
 (10)上記(1)から(9)のいずれかの炭化珪素半導体装置は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。炭化珪素基板(10)は、第1の導電型を有する。
 上記によれば、炭化珪素半導体装置によって、トレンチゲートを有するMOSFETを実現できる。
 (11)上記(1)から(9)のいずれかの炭化珪素半導体装置は、IGBT(Insulated Gate Bipolar Transistor)である。炭化珪素基板(10)は、第2の導電型を有する。
 上記によれば、炭化珪素半導体装置によって、トレンチゲートを有するIGBTを実現できる。
 [本発明の実施形態の詳細]
 本発明の実施の形態に係る炭化珪素半導体装置の一例として、MOSFETが以下に例示される。
 図1は、本発明の一実施形態に係る炭化珪素半導体装置の構造を示した断面図である。図1を参照して、炭化珪素半導体装置1は、炭化珪素基板10と、炭化珪素エピタキシャル層11,12と、ゲート絶縁膜25と、ゲート電極30と、層間絶縁膜40と、ソース電極50と、ドレイン電極70とを含む。
 炭化珪素基板10は、主面10A,10Bを有する。主面10A,10Bは互いに反対の側に位置する。炭化珪素エピタキシャル層11(第1の炭化珪素層)は、主面10A上に配置される。炭化珪素エピタキシャル層12は、炭化珪素エピタキシャル層11上に配置される。
 炭化珪素基板10、および炭化珪素エピタキシャル層11,12は、第1の導電型を有する。この実施の形態では、第1の導電型はn型である。炭化珪素基板10、および炭化珪素エピタキシャル層11,12は、たとえばN(窒素)などのn型不純物を含む。
 炭化珪素エピタキシャル層12は、ドリフト領域13、ボディ領域14、ソース領域15およびディープ領域16(第1の不純物領域)を含む。ドリフト領域13、ボディ領域14、ソース領域15は、層状に形成される。すなわち、ドリフト領域13、ボディ領域14、ソース領域15は、それぞれ、第2の炭化珪素層、第3の炭化珪素層、および第4の炭化珪素層に相当する。
 ドリフト領域13の導電型はn型である。ドリフト領域13の不純物濃度は、炭化珪素エピタキシャル層12の不純物濃度に実質的に等しい。
 ボディ領域14は、ドリフト領域13上に形成される。ボディ領域14は、第1の導電型と異なる第2の導電型を有する。この実施の形態では、第2の導電型はp型である。ボディ領域14は、たとえばAl(アルミニウム)やB(硼素)などのp型不純物を含む。
 ソース領域15は、ボディ領域14上に形成される。ソース領域15の導電型はn型である。ソース領域15は、たとえばP(リン)などのn型不純物を含む。ソース領域15に含まれるn型不純物の濃度は、ドリフト領域13のn型不純物の濃度よりも高い。
 ディープ領域16は、ソース電極50に接触する。ディープ領域16は、ソース領域15、ボディ領域14およびドリフト領域13を貫通する。ディープ領域16の底部16Bは、炭化珪素エピタキシャル層11と炭化珪素エピタキシャル層12との界面11Aに接触する。
 ディープ領域16の導電型はp型である。ディープ領域16は、たとえばAl(アルミニウム)などのp型不純物を含む。ディープ領域16のp型不純物濃度は、ボディ領域14のp型不純物濃度よりも高い。ディープ領域16は、ボディ領域14およびソース電極50に電気的に接続される。
 トレンチ21は、炭化珪素エピタキシャル層12に形成される。トレンチ21は、炭化珪素エピタキシャル層12の主面12A側に開口する。主面12Aは、界面11Aとは反対側に位置する、炭化珪素エピタキシャル層12の面である。
 トレンチ21は、ソース領域15およびボディ領域14を貫通しつつ、ドリフト領域13に達する。トレンチ21は、側壁面21Aおよび底部21Bを有する。トレンチ21の底部21Bは、界面11Aには接していない。すなわち、主面12Aからの深さ方向において、トレンチ21の深さよりも、ディープ領域16の深さのほうが大きい。「深さ方向」とは、図1に示されたY方向に対応する。
 側壁面21Aの結晶面方位は、<1-100>または<11-20>である。MOSFETのオン時には、チャネルがボディ領域14において、トレンチ21の側壁面21Aの近傍に形成される。上記の結晶面方位を選択することにより、炭化珪素半導体装置1のオン抵抗を下げることができる。
 ゲート絶縁膜25は、主面10Aに接触するとともに、トレンチ21の側壁面21Aおよび底部21Bに接触する。この実施の形態では、ゲート絶縁膜25の材質は、SiO(二酸化珪素)である。
 ゲート電極30は、ゲート絶縁膜25に接触するとともに、トレンチ21を充填するようにトレンチ21の内部に配置される。ゲート電極30は、たとえば不純物が添加されたポリシリコンからなる。
 炭化珪素エピタキシャル層11は、埋込領域17,18,20を含む。埋込領域17,18,20の各々は、界面11Aに接する。
 埋込領域17(第2の不純物領域)は、トレンチ21の底部21Bの下方に配置される。埋込領域17は、トレンチ21の底部21Bから離される。埋込領域17の導電型はp型である。埋込領域17は、たとえばAl(アルミニウム)などのp型不純物を含む。図1には示されていないが、埋込領域17は、埋込領域18に電気的に接続される。
 埋込領域18は、ディープ領域16の底部16Bに接する。埋込領域18の導電型はp型である。埋込領域18は、たとえばAl(アルミニウム)などのp型不純物を含む。埋込領域18は、ディープ領域16に電気的に接続される。したがって、ディープ領域16、埋込領域17、埋込領域18は互いに電気的に接続される。
 埋込領域20は、横方向において、埋込領域17と埋込領域18との間に配置される。横方向とは、深さ方向に直交する方向であり、図1に示されたX方向に対応する。埋込領域20の導電型はn型である。埋込領域20は、たとえばP(リン)などのn型不純物を含む。
 層間絶縁膜40は、たとえばSiO(二酸化珪素)からなり、主面12A上に配置される。層間絶縁膜40は、ゲート絶縁膜25およびゲート電極30に接触する。層間絶縁膜40は、ゲート絶縁膜25とともにゲート電極30を取り囲むように配置されて、ゲート電極30をソース電極50から電気的に絶縁する。
 ソース電極50は、ソース領域15およびディープ領域16に接触する。したがってソース電極50は、ソース領域15およびディープ領域16に電気的に接続される。
 ドレイン電極70は、炭化珪素基板10の主面10Bに接触する。ドレイン電極70は、たとえばソース電極50と同様の材料からなる。ドレイン電極70は、炭化珪素基板10に電気的に接続される。
 次に、炭化珪素半導体装置1の構成についてさらに詳細に説明する。以下の記載において、厚さとは、深さ方向(Y方向)に沿った幅を意味する。
 炭化珪素エピタキシャル層11の不純物濃度ND1は、1×1014cm-3~2×1016cm-3の範囲内にある。炭化珪素エピタキシャル層11の厚さt1は、3μm~150μmの範囲内にある。好ましくは、不純物濃度ND1は、5×1015cm-3程度であり、厚さt1は、10μm程度である。
 炭化珪素エピタキシャル層12の不純物濃度ND2は、1×1015cm-3~5×1017cm-3の範囲内にある。炭化珪素エピタキシャル層12の厚さt2は、1μm~5μmの範囲内にある。好ましくは、不純物濃度ND2は、5×1016cm-3程度であり、厚さt2は、2μm程度である。上記の通り、炭化珪素エピタキシャル層12の不純物濃度ND2は、ドリフト領域13の不純物濃度に実質的に等しい。
 ボディ領域14の不純物濃度は、1×1017cm-3~1×1019cm-3の範囲内にある。ボディ領域14の厚さは、0.2μm~1.5μmの範囲内にある。好ましくは、ボディ領域14の不純物濃度は、1×1018cm-3程度であり、ボディ領域14の厚さは、0.5μm程度である。
 ソース領域15の不純物濃度は、5×1018cm-3~1×1020cm-3の範囲内にある。ソース領域15の主面12Aからの深さは、0.1μm~0.5μmの範囲内にある。好ましくは、ソース領域15の不純物濃度は、5×1019cm-3程度であり、ソース領域15の主面12Aからの深さは、0.3μm程度である。
 ディープ領域16の不純物濃度は、1×1019cm-3~2×1020cm-3の範囲内にある。ディープ領域16の主面12Aからの深さは、1.0μm~5.0μmの範囲内にある。好ましくは、ディープ領域16の不純物濃度は、1×1020cm-3程度であり、ディープ領域16の主面12Aからの深さは、2.0μm程度である。なお、ディープ領域16の主面12Aからの深さは、炭化珪素エピタキシャル層12の厚さt2に実質的に等しい。
 埋込領域17および埋込領域18は、実質的に同じ不純物濃度NBPおよび実質的に同じ厚さを有する。埋込領域17,18の厚さとは、界面11Aからの深さに相当する。
 埋込領域17,18の不純物濃度NBPは、5×1016cm-3~5×1019cm-3の範囲内にあり、埋込領域17,18の界面11Aからの深さDBPは、0.1μm~1.0μmの範囲内にある。好ましくは、不純物濃度NBPは、5×1018cm-3程度であり、深さDBPは、0.4μm程度である。
 D1は、トレンチ21の底部21Bから埋込領域17までの深さ方向の距離である。距離D1が0.1μm未満である場合、埋込領域17は、トレンチ21の底部21Bに実質的に接触する。このために、耐圧が低下する可能性がある。一方、距離D1を3.0μmよりも大きくすると、ゲート絶縁膜25への電界集中を緩和する効果が弱くなる。したがって、距離D1の範囲は、0.1μm≦D1≦3.0μmであることが好ましい。
 埋込領域20の不純物濃度NJは、1×1016cm-3~5×1018cm-3の範囲内にあり、埋込領域20の界面11Aからの深さDJは、0.1μm~1.0μmの範囲内にある。好ましくは、不純物濃度NJは、1×1017cm-3程度であり、深さDBPは、0.2μm程度である。
 トレンチ21の底部21Bにおけるゲート絶縁膜25の厚さtg1は、50nm~500nmの範囲内にあり、好ましくは200nmである。トレンチ21の側壁面21Aにおけるゲート絶縁膜25の厚さtg2は、50nm程度である。厚さtg1は、厚さtg2よりも大きいことが好ましい。
 不純物濃度ND1,ND2,NJ,NBPの間には、ND1<ND2<NJ<NBPの関係が成立する。埋込領域20の界面11Aからの深さDJと埋込領域17の界面11Aからの深さDBPとの間には、DJ<DBPの関係が成立する。
 トレンチ21の底部21Bの幅をWtrenchと表し、埋込領域17の幅をWBP2と表すと、Wtrench<WBP2の関係が成立する。さらに、埋込領域18の幅をWBP1と表すと、幅WBP1および幅WBP2の間には、WBP1<WBP2の関係が成立する。なお、埋込領域20の幅WJは、特に限定されない。幅WJは、0μmよりも大きく、かつ、炭化珪素半導体装置1に要求される特性(耐圧、ターンオン時の抵抗値など)を達成するための適切な値に定められる。
 次に、炭化珪素半導体装置1の動作について説明する。なお、以下の説明では、「電圧」とは、ソース電極50の電位を基準とした電位差を意味する。たとえばソース電極50の電位は、接地電位に設定される。
 図1には、炭化珪素半導体装置1がn型MOSFETである例が示される。n型MOSFETの場合、ドレインに正電圧が印加されたとしても、ゲート電極30の電圧が閾値電圧未満のときには、MOSFETは非導通状態である。
 図2は、本発明の実施の形態に係る炭化珪素半導体装置1のオン時の動作を説明するための図である。図2に示されるように、ゲート電極30に閾値電圧以上の電圧が印加されたときには、チャネル14aが、ボディ領域14に形成される。ドレイン電極70には正電圧が印加されているので、ドレイン電極70からソース電極50に向けて電流が流れる。矢印によって示されるように、電流は、ドレイン電極70から、炭化珪素基板10、炭化珪素エピタキシャル層11、埋込領域20、ドリフト領域13、チャネル14a、およびソース領域15を通り、ソース電極50へと流れる。
 埋込領域17は、埋込領域18に電気的に接続され、埋込領域18は、ディープ領域16に電気的に接続される。さらに、ディープ領域16は、ボディ領域14に電気的に接続されるとともに、ソース電極50に電気的に接続される。一方、炭化珪素基板10、炭化珪素エピタキシャル層11、埋込領域20およびドリフト領域13は、互いに電気的に接続されるとともに、正の電圧が印加される。
 逆バイアス電圧がp型領域とn型領域との間に印加されることにより、空乏層が、接合からp型領域およびn型領域の各々に拡がる。各領域の空乏層の幅は、p型領域およびn型領域の不純物濃度と、逆バイアス電圧とに依存する。以下では、「空乏層が拡がる側」とは、p型領域とn型領域とのうち、接合からの空乏層の幅が大きいほうの領域を指す。
 ボディ領域14、ディープ領域16、領域17埋込領域17、および埋込領域18は第2の導電型(p型)を有し、かつ、互いに電気的に接続されている。同じく、炭化珪素基板10、炭化珪素エピタキシャル層11、埋込領域20、およびドリフト領域13は、第1の導電型(n型)を有し、かつ、互いに電気的に接続されている。
 逆バイアス電圧によって、空乏層11a,13a,17a,17bが形成される。空乏層11aは、埋込領域18と炭化珪素エピタキシャル層11との界面から炭化珪素エピタキシャル層11側に拡がる。空乏層13aは、ドリフト領域13とボディ領域14との界面からドリフト領域13側に拡がる。空乏層17aは、埋込領域17とドリフト領域13との界面(接合面)からドリフト領域13側に拡がる。空乏層17bは、埋込領域17と炭化珪素エピタキシャル層11との界面(接合面)から炭化珪素エピタキシャル層11側に拡がる。
 図3は、本発明の実施の形態に係る炭化珪素半導体装置1のオフ状態を説明するための図である。図3を参照して、炭化珪素半導体装置1(MOSFET)のオフ時には、ゲート電極30の電圧は、閾値電圧以下である。たとえばゲート電極30の電位は、ソース電極50の電位に等しい。すなわちゲート電極30の電圧は0Vである。
 炭化珪素半導体装置1のスイッチングによって、炭化珪素半導体装置1のオフ時には、高い電圧(たとえば1200V)がドレイン電極70に印加されうる。空乏層17a,13aがともにドリフト領域13側に拡がる。したがって、図3に例示されるように、空乏層13a,17aが合わさる。同じように、空乏層11a,17bが炭化珪素エピタキシャル層11側に拡がる。これにより、空乏層11a,17bが合わさる。
 炭化珪素エピタキシャル層11側に形成された空乏層によって、炭化珪素エピタキシャル層11における電界集中を緩和することができる。また、ドリフト領域13において、ゲート絶縁膜25の周囲の領域が空乏化されているので、ゲート絶縁膜25における電界集中を緩和することができる。これにより、アバランシェブレークダウンが生じたとしても、ゲート絶縁膜25が破壊する可能性を小さくすることができる。
 図4は、本発明の実施の形態に係る炭化珪素半導体装置の比較例の一部を示した断面図である。図4を参照して、炭化珪素半導体装置101において、埋込領域17は、トレンチ21の底部21Bに接する。ターンオン時には、電流は、空乏層17aと空乏層13aとの間にある、空乏化されていない部分を流れる。しかしながら、空乏層17a,13aが、ドリフト領域13の側に拡がるため、チャネル14aの近傍では、電流の流れる経路が狭い。すなわちチャネル14aの近傍では、狭窄抵抗が生じる。チャネル14aの近傍の抵抗値が大きいために、オン抵抗が増大する。
 これに対して、本発明の実施の形態によれば、埋込領域17と、トレンチ21の底部21Bとが離れている。したがって、炭化珪素半導体装置1のオン時のドレイン電圧によって、空乏層17a,13aがともにドリフト領域13の側に拡がる。しかし、図4に示された構成に比べて、本発明の実施の形態では、チャネル14aの近傍における電流の経路の幅が大きい。これにより、オン抵抗の増大を抑えることができる。
 オン抵抗の増大を抑える観点からは、トレンチ21の底部21Bから埋込領域17までの距離(図1に示したD1)は、少なくとも0.1μmであることが好ましい。オン抵抗の増大を抑える観点からは、距離D1が大きいほうが好ましい。一方では、距離D1が大きくなるほど、炭化珪素半導体装置1のオフ時において、ゲート絶縁膜25に、ゲート絶縁膜25の絶縁耐圧を上回る電圧が印加される可能性が高くなる。ゲート絶縁膜25に印加される電界を抑制する観点からは、距離D1は3.0μm以下であることが好ましい。このため、距離D1は、0.1μm≦D1≦3.0μmであることが好ましい。
 ドリフト領域13(炭化珪素エピタキシャル層12)の不純物濃度ND2は、炭化珪素エピタキシャル層11の不純物濃度ND1よりも大きい(ND1<ND2)。これにより、炭化珪素半導体装置1のオン抵抗を下げることができる。埋込領域17の不純物濃度NBPが不純物濃度ND2よりも大きいので、ドレイン-ソース間に高電圧が印加された場合に、空乏層17aがドリフト領域13側に拡がる。この空乏層17aによって、ゲート絶縁膜25に印加される電界が著しく高くなることを抑制することができる。
 埋込領域17の幅WBP2は、トレンチ21の底部21Bの幅Wtrenchよりも大きい(WBP2>Wtrench)。これにより、空乏層17aの幅も幅Wtrenchより大きくすることができるので、トレンチ21の底部21Bにおいて、ゲート絶縁膜25に印加される電界を低減することができる。さらに、トレンチ21の底部21Bにおけるゲート絶縁膜25の厚さtg1は、トレンチ21の側壁面21Aにおけるゲート絶縁膜25の厚さtg2よりも大きい(tg2<tg1)。これにより、アバランシェブレークダウンが生じたときに、ゲート絶縁膜25に印加される電界を下げることができる。したがって、アバランシェブレークダウンが生じたときに、ゲート絶縁膜25が破壊される可能性をより小さくすることができる。
 さらに埋込領域18の幅WBP1は、埋込領域17の幅WBP2よりも小さい(WBP1<WBP2)。このように幅WBP1および幅WBP2の間の関係を定義することにより、埋込領域17の直下の領域に比べて、埋込領域18の直下の領域のほうが、アバランシェブレークダウンが発生しやすい。埋込領域18の直下の領域においてアバランシェブレークダウンが発生した場合、ブレークダウン電流は、埋込領域18およびディープ領域16を経由してソース電極50へと流れる。ブレークダウン電流が、トレンチ21の底を流れないので、ゲート絶縁膜25の破壊を防ぐ効果がより高められる。
 図3に示されるように、所定の高電圧(たとえば1200V)がドレイン電極70に印加された場合に、埋込領域17が完全に空乏化しないように、埋込領域17の不純物濃度NBPが定められる。さらに、ゲート電極30の電位が0Vである。
 図5は、本発明の実施の形態に係る炭化珪素半導体装置に逆バイアス電圧が印加された時にトレンチ21の底部21Bの近傍に印加される電圧を説明するための部分拡大図である。図5に示されるように、炭化珪素半導体装置1がオフしたときには、ゲート電極30の電圧は0Vである。トレンチ21の底部21Bと埋込領域17との間の領域が空乏化されて、空乏層17aが形成される。空乏層17a内には電位分布が生じる。一方、埋込領域17には、空乏化されていない部分が存在する。この部分の電圧は0Vである。ゲート電極30および埋込領域17の空乏化されていない部分の電圧が0Vであるので、ゲート電極30から深さ方向に沿った電界強度の傾きが小さくなる。したがって、トレンチ21の底部21Bに配置されたゲート絶縁膜25の部分に印加される電界を小さくすることができる。なお、埋込領域17が完全に空乏化した場合には、埋込領域17の内部にも電位分布が生じるため、ゲート電極30から深さ方向に沿った電界強度の傾きが大きくなる。このためトレンチ21の底部21Bに配置されたゲート絶縁膜25の部分に印加される電界が大きくなる。
 本発明の実施の形態によれば、埋込領域17の不純物濃度NBPは、ドリフト領域13の不純物濃度ND2よりも大きい(ND2<NBP)。これにより所定の高電圧(たとえば1200V)がドレイン電極70に印加された場合にも、埋込領域17が完全に空乏化しにくくなる。したがって、高い電界によってゲート絶縁膜25が破壊する可能性を小さくすることができる。
 さらに、本発明の実施の形態によれば、埋込領域20の不純物濃度NJは、不純物濃度ND2よりも大きい(ND2<NJ)。これにより、炭化珪素半導体装置1のオン抵抗を下げることができる。一方で、不純物濃度NJは、埋込領域17の不純物濃度NBPよりも小さい(NJ<NBP)。これにより、空乏層は、埋込領域17と埋込領域20との接合面から埋込領域20側に拡がるので、埋込領域17が完全に空乏化しにくくなる。
 図6は、本発明の実施の形態に係る炭化珪素半導体装置の比較例の構成を説明するための部分拡大図である。図6に示されるように、空乏層11a,17aは炭化珪素エピタキシャル層11側に拡がる。矢印は、炭化珪素エピタキシャル層11を流れる電流を表す。DJ>DBPである場合には、電流の流れる経路が狭くなるので、抵抗値が高くなる。この結果、炭化珪素半導体装置のオン抵抗は高い。
 一方、本発明の実施の形態では、界面11Aからの埋込領域20の深さDJは、埋込領域17,18の各々の界面11Aからの深さDBPよりも小さい(DJ<DBP)。図7は、本発明の実施の形態に係る炭化珪素半導体装置のオン時に流れる電流を説明するための部分拡大図である。図7に示されるように、DJ<DBPである場合には、空乏層11a,17aが炭化珪素エピタキシャル層11側に拡がったとしても、電流の流れる経路の幅が大きい。したがって、炭化珪素半導体装置1のオン抵抗が上昇することを抑えることができる。
 なお、本発明の実施の形態では、トレンチ21の形状は、図1等に示された形状に限定されるものではない。図8は、本発明の実施の形態に係る炭化珪素半導体装置の別の構成の例を示した断面図である。図8に示されるように、対向する2つの側壁面21Aは、主面12Aに対して傾斜する。
 側壁面21Aは、たとえば{000-1}面に対して50度以上80度以下傾斜した面である。より具体的には、側壁面21Aは、巨視的に見て、面方位{0-33-8}、{0-11-2}、{0-11-4}および{0-11-1}のいずれかを有し得る。なお、「巨視的」とは、原子間隔程度の寸法を有する微細構造を無視することを意味する。このように巨視的なオフ角の測定としては、たとえば、一般的なX線回折を用いた方法を用い得る。上記の面を採用することによって、炭化珪素半導体装置1のオン抵抗をさらに低減することができる。
 さらに、本発明の実施の形態に係る炭化珪素半導体装置1は、MOSFETであると限定されるものではない。図9は、本発明の実施の形態に係る炭化珪素半導体装置のさらに別の構成の例を示した断面図である。図9に示されるように、本発明の実施の形態に係る炭化珪素半導体装置1は、IGBTであってもよい。図9に示された構成によれば、炭化珪素基板10の導電型はp型である。この点において、図9に示されたIGBTは、図1に示されたMOSFETと相違する。
 炭化珪素半導体装置1がIGBTである場合にも、トレンチ21の形状は特に限定されるものではない。図10は、図9に示されたIGBTの変形例を示した図である。図8および図10の比較から理解されるように、IGBTのトレンチ21は、主面12Aに向かってテーパ状に拡がるように形成され、対向する2つの側壁面21Aを有していてもよい。2つの側壁面21Aは、たとえば{000-1}面に対して50度以上80度以下傾斜した面であり、上記の面方位{0-33-8}、{0-11-2}、{0-11-4}および{0-11-1}のいずれかを有し得る。
 さらに、上記の説明では、第1の導電型はn型であり、第2の導電型はp型であるが、第1の導電型がp型であり、第2の導電型がn型であってもよい。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1,101 炭化珪素半導体装置、10 炭化珪素基板、10A,10B,12A 主面、11,12 炭化珪素エピタキシャル層、11A 界面、11a,13a,17a,17b 空乏層、13 ドリフト領域、14 ボディ領域、14a チャネル、15 ソース領域、16 ディープ領域、16B 底部(ディープ領域)、17,18,20 埋込領域、21 トレンチ、21A 側壁面、21B 底部(トレンチ)、25 ゲート絶縁膜、30 ゲート電極、40 層間絶縁膜、50 ソース電極、70 ドレイン電極、D1 距離、DBP,DJ 深さ、NBP,ND1,ND2,NJ 不純物濃度、WBP1,WBP2,WJ,Wtrench 幅、t1,t2,tg1,tg2 厚さ。

Claims (11)

  1.  炭化珪素半導体装置であって、
     炭化珪素基板と、
     前記炭化珪素基板上に配置され、第1の導電型を有する、第1の炭化珪素層と、
     前記第1の炭化珪素層上に配置され、前記第1の導電型を有する第2の炭化珪素層と、
     前記第2の炭化珪素層上に配置され、前記第1の導電型と異なる第2の導電型を有する、第3の炭化珪素層と、
     前記第3の炭化珪素層上に配置され、前記第1の導電型を有する、第4の炭化珪素層と、
     前記第2の炭化珪素層、前記第3の炭化珪素層および前記第4の炭化珪素層を貫通するように形成され、前記第2の導電型を有する第1の不純物領域とを備え、
     トレンチが、前記第4の炭化珪素層から前記第3の炭化珪素層を貫通して前記第2の炭化珪素層に達するように、前記炭化珪素半導体装置に形成され、
     前記炭化珪素半導体装置は、
     前記トレンチの壁に接触したゲート絶縁膜と、
     前記ゲート絶縁膜に接触し、かつ、前記トレンチに充填されたゲート電極と、
     前記トレンチの下方に前記トレンチの底部から離間して配置され、前記第2の導電型を有する、第2の不純物領域と、
     前記第1の不純物領域に接するように前記第1の不純物領域の下方に形成され、前記第2の導電型を有し、かつ、前記第2の不純物領域に電気的に接続された第3の不純物領域と、
     前記第2の不純物領域と前記第3の不純物領域との間に形成され、前記第1の導電型を有する第4の不純物領域とを備える、炭化珪素半導体装置。
  2.  前記第2の炭化珪素層の不純物濃度は、前記第1の炭化珪素層の不純物濃度よりも大きく、
     前記第4の不純物領域の不純物濃度は、前記第2の炭化珪素層の不純物濃度よりも大きく、
     前記第2の不純物領域の不純物濃度は、前記第4の不純物領域の不純物濃度よりも大きい、請求項1に記載の炭化珪素半導体装置。
  3.  前記第1の炭化珪素層と前記第2の炭化珪素層との界面からの前記第4の不純物領域の深さは、前記界面からの前記第2の不純物領域の深さよりも小さい、請求項1または請求項2に記載の炭化珪素半導体装置。
  4.  前記トレンチの前記底部から前記第2の不純物領域までの距離をD1と表すと、
     0.1μm≦D1≦3.0μm
     の関係が成り立つ、請求項1から請求項3のいずれか1項に記載の炭化珪素半導体装置。
  5.  前記第3の不純物領域の横方向の幅は、前記第2の不純物領域の横方向の幅よりも小さい、請求項1から請求項4のいずれか1項に記載の炭化珪素半導体装置。
  6.  前記第2の不純物領域の横方向の幅は、前記トレンチの横方向の幅よりも大きい、請求項1から請求項5のいずれか1項に記載の炭化珪素半導体装置。
  7.  前記トレンチの底部における前記ゲート絶縁膜の厚さは、前記トレンチの側壁に接する前記ゲート絶縁膜の部分の厚さよりも大きい、請求項1から請求項6のいずれか1項に記載の炭化珪素半導体装置。
  8.  前記トレンチの側壁の結晶面方位が<1-100>または<11-20>である、請求項1から請求項7のいずれか1項に記載の炭化珪素半導体装置。
  9.  前記トレンチは、{000-1}面に対して傾斜した側壁面を有する、請求項1から請求項8のいずれか1項に記載の炭化珪素半導体装置。
  10.  前記炭化珪素半導体装置は、MOSFETであり、
     前記炭化珪素基板は、前記第1の導電型を有する、請求項1から請求項9のいずれか1項に記載の炭化珪素半導体装置。
  11.  前記炭化珪素半導体装置は、IGBTであり、
     前記炭化珪素基板は、前記第2の導電型を有する、請求項1から請求項9のいずれか1項に記載の炭化珪素半導体装置。
PCT/JP2017/003712 2016-03-31 2017-02-02 炭化珪素半導体装置 WO2017169085A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/089,448 US10756168B2 (en) 2016-03-31 2017-02-02 Silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071217 2016-03-31
JP2016071217A JP6708954B2 (ja) 2016-03-31 2016-03-31 炭化珪素半導体装置

Publications (1)

Publication Number Publication Date
WO2017169085A1 true WO2017169085A1 (ja) 2017-10-05

Family

ID=59963844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003712 WO2017169085A1 (ja) 2016-03-31 2017-02-02 炭化珪素半導体装置

Country Status (3)

Country Link
US (1) US10756168B2 (ja)
JP (1) JP6708954B2 (ja)
WO (1) WO2017169085A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186459A (ja) * 2018-04-13 2019-10-24 トヨタ自動車株式会社 スイッチング素子
WO2021070382A1 (ja) * 2019-10-11 2021-04-15 株式会社デンソー スイッチング素子

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658406B2 (ja) * 2016-08-31 2020-03-04 株式会社デンソー 炭化珪素半導体装置の製造方法
CN109952656B (zh) * 2016-11-11 2021-11-05 住友电气工业株式会社 碳化硅半导体器件
JP6981890B2 (ja) * 2018-01-29 2021-12-17 ルネサスエレクトロニクス株式会社 半導体装置
JP7106882B2 (ja) * 2018-02-09 2022-07-27 富士電機株式会社 半導体装置および半導体装置の製造方法
DE102019207761A1 (de) * 2019-05-27 2020-12-03 Robert Bosch Gmbh Verfahren zur Herstellung eines Leistungstransistors und Leistungstransistor
GB2589543A (en) * 2019-09-09 2021-06-09 Mqsemi Ag Method for forming a low injection P-type contact region and power semiconductor devices with the same
JP7442932B2 (ja) * 2020-03-09 2024-03-05 三菱電機株式会社 半導体装置
CN113990919A (zh) * 2021-10-12 2022-01-28 松山湖材料实验室 碳化硅半导体结构、器件及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117593A (ja) * 2007-11-06 2009-05-28 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2011100967A (ja) * 2009-07-21 2011-05-19 Rohm Co Ltd 半導体装置
JP2012038770A (ja) * 2010-08-03 2012-02-23 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2013145770A (ja) * 2012-01-13 2013-07-25 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2013219161A (ja) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
JP2014053595A (ja) * 2012-08-07 2014-03-20 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2015026726A (ja) * 2013-07-26 2015-02-05 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP2015220408A (ja) * 2014-05-20 2015-12-07 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
WO2016002766A1 (ja) * 2014-06-30 2016-01-07 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置およびその製造方法
WO2016038833A1 (ja) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099601A (ja) 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
DE112011104322T5 (de) 2010-12-10 2013-10-02 Mitsubishi Electric Corporation Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitervorrichtung
JP2013069964A (ja) 2011-09-26 2013-04-18 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
JP6111673B2 (ja) 2012-07-25 2017-04-12 住友電気工業株式会社 炭化珪素半導体装置
US9978840B2 (en) * 2014-06-30 2018-05-22 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117593A (ja) * 2007-11-06 2009-05-28 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2011100967A (ja) * 2009-07-21 2011-05-19 Rohm Co Ltd 半導体装置
JP2012038770A (ja) * 2010-08-03 2012-02-23 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2013145770A (ja) * 2012-01-13 2013-07-25 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2013219161A (ja) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
JP2014053595A (ja) * 2012-08-07 2014-03-20 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2015026726A (ja) * 2013-07-26 2015-02-05 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP2015220408A (ja) * 2014-05-20 2015-12-07 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
WO2016002766A1 (ja) * 2014-06-30 2016-01-07 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置およびその製造方法
WO2016038833A1 (ja) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186459A (ja) * 2018-04-13 2019-10-24 トヨタ自動車株式会社 スイッチング素子
JP7073873B2 (ja) 2018-04-13 2022-05-24 株式会社デンソー スイッチング素子
WO2021070382A1 (ja) * 2019-10-11 2021-04-15 株式会社デンソー スイッチング素子
JPWO2021070382A1 (ja) * 2019-10-11 2021-04-15
JP7169459B2 (ja) 2019-10-11 2022-11-10 株式会社デンソー スイッチング素子

Also Published As

Publication number Publication date
JP2017183604A (ja) 2017-10-05
JP6708954B2 (ja) 2020-06-10
US20190237536A1 (en) 2019-08-01
US10756168B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2017169085A1 (ja) 炭化珪素半導体装置
JP5668576B2 (ja) 炭化珪素半導体装置
JP5893172B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5840308B2 (ja) 炭化珪素半導体装置およびその製造方法
US8890237B2 (en) Power semiconductor device
JP6323556B2 (ja) 半導体装置
JP7139678B2 (ja) 炭化ケイ素半導体装置
JP6199755B2 (ja) 半導体装置
JP2012069797A (ja) 絶縁ゲート型トランジスタ
US10199457B2 (en) Silicon carbide semiconductor device
JP6291988B2 (ja) 炭化珪素半導体装置
JP2016225343A (ja) 半導体装置
JP3875245B2 (ja) 半導体装置
JP7166053B2 (ja) 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP7051890B2 (ja) ワイドギャップ半導体装置
WO2013179820A1 (ja) 半導体装置
US11424326B2 (en) Semiconductor device
JP6651801B2 (ja) 半導体装置および半導体装置の製造方法
JP4443884B2 (ja) 半導体装置
US9905686B2 (en) Insulated gate bipolar transistor with improved on/off resistance
JP2014192242A (ja) 半導体装置
US20220293724A1 (en) Semiconductor device
JP7092129B2 (ja) 炭化珪素半導体装置
JP2008198652A (ja) 半導体装置
JP5784860B1 (ja) 炭化ケイ素半導体装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773634

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773634

Country of ref document: EP

Kind code of ref document: A1