WO2017164459A1 - 고흡수성 수지의 제조 방법 - Google Patents

고흡수성 수지의 제조 방법 Download PDF

Info

Publication number
WO2017164459A1
WO2017164459A1 PCT/KR2016/006263 KR2016006263W WO2017164459A1 WO 2017164459 A1 WO2017164459 A1 WO 2017164459A1 KR 2016006263 W KR2016006263 W KR 2016006263W WO 2017164459 A1 WO2017164459 A1 WO 2017164459A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
alumina particles
meth
base resin
super absorbent
Prior art date
Application number
PCT/KR2016/006263
Other languages
English (en)
French (fr)
Inventor
황민호
남혜미
이상기
이수진
장태환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/755,340 priority Critical patent/US10653812B2/en
Priority to CN201680050459.XA priority patent/CN107922636B/zh
Priority to EP16895585.4A priority patent/EP3318596B1/en
Publication of WO2017164459A1 publication Critical patent/WO2017164459A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to a process for producing a super absorbent polymer, which exhibits improved liquid permeability and absorption rate while maintaining good absorption performance.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight. Mater i al), etc. are respectively named as' another name. Such super absorbent polymers have been put into practical use as physiological devices, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in food distribution, and It is widely used as a material for steaming.
  • these superabsorbent polymers are widely used in the field of sanitary products such as diapers and sanitary napkins.
  • the superabsorbent polymers need to exhibit high absorption of moisture and must not escape moisture absorbed by external pressure.
  • it is necessary to maintain the shape well even in the state of volume expansion (swelling) by absorbing water to show excellent permeabi li ty.
  • the present invention provides a method for producing a super absorbent polymer, which exhibits improved liquid permeability and absorption rate while maintaining excellent absorption performance.
  • the water-soluble ethylenically unsaturated monomer having a neutralized acidic group is crosslinked to form a hydrogel polymer including a crosslinked polymer; Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder;
  • the surface crosslinking step is the crab 1 alumina particles, and the surface
  • the base resin powder may be subjected to a surface crosslinking by heat treatment.
  • the surface crosslinking may include adding and treating the first alumina particles in a solid state on the base resin powder; And surface crosslinking by heat-treating the base resin powder in the presence of a surface crosslinking solution including the surface crosslinking agent.
  • the first alumina particles may have a contact angle of 10 ° to 150 ° with respect to water.
  • the first alumina particles may be used in an amount of 0.001 to 1.0 parts by weight based on 100 parts by weight of the base resin.
  • the group water-soluble ethylenically unsaturated monomers are acrylic acid, methacrylic acid, maleic anhydride, fumaric acid crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloylpropane Anionic monomers of sulfonic acid or 2- (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, mesopolyethylene glycol (meth) acrylate or polyethylene glycol ( Nonionic hydrophilic-containing monomers of meth) acrylate; And amino group-containing unsaturated monomers of ( ⁇ , ⁇ ) -dimethylaminoethyl (meth) acrylate or (
  • the internal crosslinking agent may be a poly (meth) of polyol containing bis (meth) acrylamide containing an alkyl group having 2 to 12 carbon atoms or polyethylene glycol having 2 to 12 carbon atoms, an alkyl group having 2 to 12 carbon atoms or polyethylene glycol having 2 to 12 carbon atoms ) And one type of unknown phase selected from the group consisting of poly (meth) allyl ethers of polyols containing an alkyl group having 2 to 12 carbon atoms or polyethylene glycol having 2 to 12 carbon atoms.
  • the base resin powder may be pulverized and classified to have a particle diameter of 150 to 850 mm 3.
  • the surface crosslinking step is heated to a maximum temperature of 140 ° C to 200 ° C over 10 minutes to 30 minutes at an initial temperature of 20 ° C to 130 ° C, heat treatment by maintaining the maximum temperature for 5 to 60 minutes By proceeding.
  • the second alumina particles may have a contact angle of 10 ° to 150 ° with respect to water.
  • the second alumina particles may be used in an amount of 0.05 to 0.5 parts by weight based on 100 parts by weight of the surface-crosslinked superabsorbent polymer.
  • the mixing of the second alumina particles may be performed at a speed of 100 to 3000 RPM, it may be performed for 2 seconds to 3 minutes.
  • the present invention it is possible to produce and provide a superabsorbent polymer having excellent water absorption performance such as water-retaining capacity and pressure-absorbing capacity, and exhibiting more improved liquid permeability and absorption rate.
  • Such superabsorbent polymers can be suitably used for sanitary materials such as diapers, in particular, ultra-thin sanitary materials with reduced pulp content.
  • first and second are used to describe various components, which terms are used only for the purpose of distinguishing one component from other components.
  • crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having at least a partly neutralized acid value to form a hydrogel polymer comprising a crosslinked polymer; Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder;
  • the present inventors have continued to improve the liquid permeability and absorption rate of the superabsorbent polymer, and as a result, the conditions of the manufacturing process of the superabsorbent polymer, for example, by optimizing the type and content of the internal crosslinking agent and polymerization conditions described below Previously known by obtaining a base resin powder having a high gel strength and applying conditions at specific surface crosslinking and immediately after surface crosslinking (for example, using specific alumina particles both at the surface crosslinking and immediately after crosslinking). It has been found that a superabsorbent polymer can be provided that exhibits significantly improved fluid permeability and absorption rate while retaining good absorption performance (absorption under pressure and pressure; CRC, GBP, and vor ex, etc. described below).
  • the first alumina particles defined in a predetermined contact angle range at the time of surface crosslinking, and performing surface crosslinking under a constant temperature raising condition, the first alumina particles have a predetermined level or more on the base resin powder having a high gel strength.
  • the surface cross-linked layer uniformly, appears to be formed. This is because the first alumina particles are uniformly included in the crosslinked structure of the surface crosslinked layer to make the crosslinked structure more firm, and when the surface crosslinks, the surface crosslinking reaction occurs properly around the first alumina particles under the elevated temperature conditions. It is expected because a crosslinked structure can be formed.
  • the surface crosslinked superabsorbent polymer by surface treatment of the second alumina particles defined by a predetermined contact angle range, effectively prevents direct puncture between the superabsorbent polymer particles. It is possible to maintain the permeability and improve the permeability of the superabsorbent polymer.
  • the present invention can surface-treat the first alumina particles and the second alumina particles, respectively, to improve solution permeability, to prevent aggregation, or to increase the absorption rate, and to maintain the pressure absorption capability in an excellent range.
  • the superabsorbent polymer of one embodiment has a high gel strength, and greatly improved absorbency under pressure and fluid, which is supported by Examples described later. Liquid phase (GBP) and thus an improved absorption rate.
  • the superabsorbent polymer prepared by the method of the embodiment may maintain excellent absorption performance at a relatively high absorption rate (vortex) and water retention capacity (CRC) as the internal crosslinking structure and the surface crosslinking structure are optimized.
  • the superabsorbent polymer of one embodiment exhibits excellent absorption performance, along with a significantly improved liquid permeability and absorption rate than previously known, and thus can be very preferably applied to various hygiene materials such as ultra-thin diapers having a reduced pulp content.
  • various hygiene materials such as ultra-thin diapers having a reduced pulp content.
  • the super absorbent polymer is, for example, a mixture of acrylic acid and sodium salt thereof in which at least some carboxylic acid is increased by sodium salt or the like.
  • the superabsorbent polymer cross-polymerizes the monomer in the presence of an internal crosslinking agent to obtain a base resin powder, and then the base in the presence of a predetermined surface crosslinking agent and first alumina particles. It can be obtained by surface crosslinking the resin powder.
  • the first and second alumina particles as follows can be used at the time of surface crosslinking and immediately after the surface crosslinking.
  • the wet method including the first alumina particles in the surface crosslinking solution during the surface crosslinking and the second alumina particles in the dry crosslinking after the surface crosslinking are simultaneously introduced, thereby improving solution permeability and preventing aggregation or improving the absorption rate.
  • first alumina particles having a contact angle of more than 10 ° , or more than 10 ° up to 150 ° , more suitably from 12 ° to 150 ° .
  • the super absorbent polymer prepared by the method of the embodiment may further include first alumina particles dispersed on the surface of the base resin powder, for example, on the surface crosslinked layer. More specifically, the first alumina particles may be included in the surface crosslinking liquid and treated as described in more detail below, or may be mixed and treated in a solid state on the base resin powder before surface crosslinking.
  • first alumina particles may, for example, be present at least in part on the surface of the base resin powder, for example on the surface crosslinked layer, the remainder being embedded in or on the surface of the base resin powder. May exist in a buried state.
  • the hydrophilic alumina particles may be dispersed on the surface crosslinked layer and present in the crosslinked structure four included therein.
  • the first alumina particles for improving the liquid permeability are present in at least the surface crosslinked layer, excellent physical properties such as improved liquid permeability and absorption rate can be expressed and maintained for a long time.
  • the first alumina particles one or more of the commercialized alumina particles having the above-described contact angle range may be used without any particular limitation, and more preferably, when the first alumina particles are included in the surface crosslinking solution, Particles having a contact angle of more than 10 ° and 50 ° or less may be used in view of dispersibility to the surface crosslinking solution, or particles having a contact angle of 50 ° to 150 ° or less may be used together with a separate dispersant.
  • first alumina particles when added and mixed in the solid state to the base resin powder prior to surface crosslinking and dry treatment, particles having a contact angle of 50 ° to 150 ° or less in terms of more effective fluid permeability and absorption rate are improved. More preferably, it can be used.
  • alumina particles such as Aeroxide Alu 65, Aeroxide Alu C, and Aeroxide Alu 130 may be appropriately used to further improve the fluid permeability and absorption rate of the superabsorbent polymer.
  • the contact angle with respect to the water of the alumina particles may be defined as the contact angle with respect to the water of each alumina particles measured on the glass substrate.
  • the water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryl Loyleethanesulfonic acid , Anionic monomer of 2- (meth) acryloylpropanesulfonic acid " , or 2- (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (meth) acrylamide, N-substituted (meth) acrylate, 2 Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate,
  • the production of superabsorbent polymers having superior physical properties using such monomers may be used. Becomes possible.
  • the acrylic acid and its alkali metal salts are used as monomers, at least a part of the acwolic acid may be neutralized with a basic compound such as caustic soda (NaOH).
  • bis (meth) acrylamide containing an alkyl group having 2 to 12 carbon atoms or polyethylene glycol having 2 to 12 carbon atoms, an alkyl group having 2 to 12 carbon atoms, or having 2 to 12 carbon atoms At least one selected from the group consisting of poly (meth) acrylates of polyols containing polyethylene glycol and the like, and poly (meth) allyl ethers of polyols containing alkyl groups having 2 to 12 carbon atoms or polyethylene glycols having 2 to 12 carbon atoms Can be used.
  • the internal crosslinking agent is one selected from the group consisting of polyethylene glycol di (meth) acrylate, polypropyleneoxy di (meth) acrylate, glycerin diacrylate, glycerin triacrylate, and trimethy triacrylate.
  • the poly (meth) acrylate of the above polyol can be used suitably.
  • an internal crosslinking agent such as polyethylene glycol di (meth) acrylate
  • a base resin powder having an optimized internal crosslinking structure and having a high gel strength, etc. can be obtained, resulting in high physical properties by striking excellent physical properties. Water absorbent resin Can be appropriately obtained.
  • the specific internal crosslinking agent is 0.005 mol or more, or 0.005 to 0.1 mol
  • black is 0.005 to 0.05 mol (or 0.3 weight relative to 100 parts by weight of acrylic acid) based on 1 mol of unneutralized acrylic acid contained in the monomer. Or more, or 0.3 to 0.6 parts by weight).
  • a base resin powder having a high gel strength before surface crosslinking can be appropriately obtained, and a superabsorbent polymer having excellent physical properties can be obtained through the method of one embodiment.
  • a base resin powder can be obtained through drying, pulverization and classification, and the like.
  • the superabsorbent polymer obtained is suitably manufactured and provided to have a particle size of 150 to 850 ⁇ . More specifically, at least 95% by weight or more of the base resin powder and the superabsorbent polymer obtained therefrom have a particle size of 150 to 850, and the fine powder having a particle size of less than 150 is less than 3 wt% 3 ⁇ 4>, or 1.5 wt%. Can be less than.
  • the superabsorbent polymer may more properly exhibit the excellent physical properties already described above.
  • the method of preparing a superabsorbent polymer may include forming a hydrogel polymer including a crosslinked polymer by thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator; Drying the hydrogel polymer; Grinding and classifying the dried polymer to form a base resin powder; In the presence of the first alumina particles, diols, triphenyls containing alkylene carbonates of 2 to 5 carbon atoms, alkyl groups of 2 to 12 carbon atoms or polyethylene glycols of 2 to 12 carbon atoms; The base by using a surface crosslinking liquid comprising a polyol and at least one surface crosslinking agent selected from the group consisting of diepoxy, triepoxy or polyepoxy containing an alkyl group having 2 to 12 carbon atoms or polyethylene glycol having 2 to 12 carbon atoms Surface crosslinking the resin powder;
  • the monomer composition includes a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent and a polymerization initiator, and the type of the monomer is as described above.
  • the concentration of the water-soluble ethylenically unsaturated monomer may be 20 to 60% by weight, or 40 to > 50 weight 3 ⁇ 4> with respect to the total monomer composition containing each of the above-described raw materials and solvents,
  • the concentration may be appropriate in consideration of the polymerization time and reaction conditions. However, if the concentration of the monomer is too low, the yield of the super absorbent polymer may be low and economic problems may occur. On the contrary, if the concentration is too high, some of the monomers may be precipitated or the pulverization efficiency of the polymerized hydrogel polymer may be low, resulting in process problems, and the physical properties of the superabsorbent polymer may be reduced.
  • the said polymerization initiator will not be specifically limited if it is generally used for manufacture of a super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to uv irradiation depending on the polymerization method.
  • the thermal polymerization initiator may be additionally included.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, and benzyldimethyl ketal. (Benzyl Dimethyl Ketal), acyl phosphine and One or more selected from the group consisting of alpha-aminoketone may be used. Meanwhile, as an example of acylphosphine, commercially available lucirin TP0, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-tr imethyl phosphine oxide) may be used. Can be. For a wider variety of photoinitiators, see Reinhold Schwa lm, "UV Coatings: Basics, Recent Developments and New Appli- cation (Elsevier 2007 pll5), and are not limited to the examples described above.
  • the photopolymerization initiator may be included in a concentration of 0.01 to 1.0% by weight based on the monomer composition. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K2S208), and ammonium persul fate (NH 4 ) 2 S 2 0 8
  • azo initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azob is (2-am idi nopr opane) dihydrochlor ide) , 2, 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride (2 , 2 ⁇ a bis— (N, N—dimethylene) isobutyr ami dine di hydrochloride), 2- (carbamoyl Azo) isobutyronitrile (2 ⁇ )
  • the thermal polymerization initiator may be included in a concentration of 0.001 to 0.5% by weight based on the monomer composition. When the concentration of such a thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, so that the addition of the thermal polymerization initiator may occur. The effect may be insignificant, and if the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be nonuniform.
  • the type of the internal crosslinking agent included in the monomer composition is already described above, and the internal crosslinking agent may be included in a concentration of 0.01 to 0.5% by weight based on the monomer composition to crosslink the polymerized polymer. .
  • the internal crosslinking agent is 0.005 mol or more, or 0.005 to 0.01 mol
  • black is 0.005 to 0.05 mol (black is acrylic acid) based on 1 mol of unneutralized acrylic acid contained in the monomer. 0.3 parts by weight or more based on 100 parts by weight, or 3 to 0.6 parts by weight).
  • black is 0.005 to 0.05 mol (black is acrylic acid) based on 1 mol of unneutralized acrylic acid contained in the monomer. 0.3 parts by weight or more based on 100 parts by weight, or 3 to 0.6 parts by weight).
  • the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants, and the like, as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation in the configuration as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1, 4-butanediol, Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol Ethyl ether, toluene, xylene : butyrolactone, carby, methyl cellosolve acetate, and one or more selected from ⁇ , ⁇ -dimethylacetamide and the like can be used in combination.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition. ⁇
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, in the case of the 'normal thermal polymerization, it can be carried out in a semi-unggigi having a stirring shaft such as kneader, when the photopolymerization It can be carried out in a semi-unggi equipped with a movable conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the hydrogel polymer obtained by thermal polymerization by supplying hot air or by heating the reactor according to the shape of the stirring shaft provided in the reaction vessel is provided in a reaction vessel such as a kneader having a stirring shaft.
  • the hydrogel polymer discharged to the reaction vessel outlet may be in the form of several centimeters to several millimeters.
  • the size of the resulting hydrogel polymer may vary depending on the concentration and the injection rate of the monomer composition to be injected, it can be obtained a hydrogel polymer having a weight average particle diameter of 2 to 50 kPa.
  • the form of the hydrogel polymer generally obtained may be a hydrogel polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet is preferably supplied through a 1-mer compositions depend on the concentration and the injection rate of the monomer composition to be injected, so that the normal polymer having a thickness of 0.5 to 5 cm sheet can be obtained ⁇
  • the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, it is not preferable because the production efficiency is low, and when the thickness of the polymer on the sheet exceeds 5 cni, the polymerization reaction spreads over the entire thickness. It may not happen evenly.
  • the normal water content of the hydrogel polymer obtained by the above method may be 40 to 80% by weight.
  • water content 1 means the amount of water occupied by the total weight of the hydrogel polymer, minus the weight of the polymer in the dry state.
  • drying conditions are determined by the water content of the total drying time in such a manner as to maintain at 180 ° C after raising the temperature from room temperature to 180 ° C comprises 5 at a temperature ramping up step is set to 20 minutes.
  • the pulverizer used is not limited in configuration, and specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, and the like.
  • rotary cutter mill, cutter mill, disc mill, shred crusher, crusher, chopper and disc cutter It may include any one selected from the group consisting of the grinding device, but is not limited to the above-described example.
  • the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is 2 to 10 2.
  • drying is performed on the hydrogel polymer immediately after polymerization which is coarsely pulverized or black is not subjected to the coarsely pulverized step.
  • the drying temperature of the drying step can be from 150 to 250 ° C. have. If the low water temperature is less than 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds 250 ° C, only the polymer surface is dried excessively, Fine powder may occur in the grinding process, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Therefore, preferably, the drying may be performed at a temperature of 150 to 200 ° C, more preferably at a temperature of 160 to 180 ° C.
  • drying time in consideration of process efficiency, etc., it may proceed for 20 to 90 minutes, but is not limited thereto.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by hot wind supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.1 to about 10% by weight.
  • the obtained dried polymer is pulverized.
  • the polymer powder obtained after the grinding step may have a particle size of 150 to 850 / / m.
  • Grinders used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. A jog mill or the like may be used, but is not limited to the example described above.
  • the polymer powder obtained after grinding may be subjected to a separate process of classifying according to the particle size.
  • a polymer having a particle size of 150 to 850 mm 3 is classified, and only a polymer powder having such a particle size can be produced through a surface crosslinking reaction step. Since the particle size distribution of the base resin powder obtained through the above process has already been described above, further detailed description thereof will be omitted.
  • the base resin powder in the presence of a surface crosslinking liquid containing the alumina particles and the surface crosslinking agent, the base resin powder may be treated by annealing and surface crosslinking. after the alumina particles on a base resin powder, mixed and, it added to the dry treatment in a solid state, in the presence of a surface cross-linking solution containing the surface cross-linking agent, by heating a base resin powder may proceed in a way that cross-linking the surface.
  • the method according to another example of dry treatment of alumina particles first is more preferable than the method according to one example. Preferred was preferable.
  • particles having a contact angle of more than 10 ° and 50 ° or less that is, alumina particles exhibiting relatively small hydrophobicity
  • particles having a less than 50 ° to 150 ° ⁇ the contact angle with a separate dispersing agent.
  • any of the dispersants used to disperse the alumina particles in a polar solvent such as an aqueous solvent may be used without any particular limitation.
  • the surface of the alumina particles may be mixed with the base resin powder in a solid state, and the surface may be subjected to dry treatment.
  • the treatment may be performed by dry treatment and / or mixing of a general inorganic powder. You can follow the method.
  • the first alumina particles may be used in an amount of 0.001 to 1.0 parts by weight, and black 0.01 to 0.2 parts by weight based on 100 parts by weight of the total base resin.
  • the fluid permeability and the absorption rate of a super absorbent polymer can be improved more effectively.
  • the structure also about the method of adding the said surface crosslinking liquid containing the said 1st alumina particle, a surface crosslinking agent, or a surface crosslinking agent to a base resin powder.
  • the surface crosslinking solution is mixed with the base resin powder-ol reaction tank, or the surface crosslinking solution is sprayed onto the base resin powder, and the base resin powder and the surface crosslinking solution are continuously supplied to the mixer which is operated continuously.
  • Method and the like can be used.
  • more suitable examples of the alkylene carbonate having 2 to 5 carbon atoms that can be used as the surface crosslinking agent include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of course, it can also be used.
  • an alkyl group having 2 to 12 carbon atoms or 2 to 10 carbon atoms that can be used as a surface crosslinking agent are examples of the alkylene carbonate having 2 to 5 carbon atoms that can be used as the surface crosslinking agent.
  • a more suitable example of a diol, a triol, or a polyol crosslinking agent containing polyethylene glycol having 2 to 12 carbon atoms and the like, 1, 2-propanediol ' , 1, 3—propanedi, glycerin, diethylene glycol, triethylene glycol, Tetraethylene glycol etc. are mentioned,
  • a more suitable example of the diepoxy, triepoxy, polyepoxy type crosslinking agent containing a C2-C12 alkyl group, a C2-C12 polyethyleneglycol, etc. is a diethylene glycol diglycidyl. Ether, triethylenicol diglycidyl ether, ethylene glycol diglycidyl ether and the like.
  • the surface crosslinking liquid may further include water and / or methanol as a medium.
  • the surface crosslinking agent and the first alumina particles can be evenly dispersed on the base resin powder.
  • the content of water and methanol is 100 weight of the base resin powder for the purpose of inducing even dispersion of the surface crosslinking agent and the first alumina particles, preventing aggregation of the base resin powder and optimizing the surface penetration depth of the surface crosslinking agent. It can be applied by adjusting the addition ratio to the part.
  • the surface crosslinking step the base resin powder to which the surface crosslinking solution is added, 140 ° C to 210 ° C, black is 150 ° C to 200 ° C at a reaction temperature of 5 minutes to 120 minutes, or 10
  • the heat treatment may be performed for about 100 minutes, or about 20 minutes to about 80 minutes, to proceed the surface crosslinking reaction.
  • the surface cross-linking step is a sublimation of the reaction at the initial temperature of 20 ° C to 130 ° C, or 40 ° C to 120 ° C to 10 minutes to 30 minutes to the maximum reaction temperature, the maximum temperature of 5 It can be carried out by maintaining the heat treatment for minutes to 120 minutes.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • the kind of heat medium that can be used may be a mild fluid such as steam, hot air, or hot oil. It is not limited to this, and also supplied
  • the temperature of the heat medium can be appropriately selected in consideration of the means, the temperature increase rate, and the temperature rise of the heat medium.
  • the heat source directly supplied may include a heating method through a heating gas through electricity, but is not limited to the above-described example, the method for producing a super absorbent polymer according to the present invention is the surface-crosslinked superabsorbent The second alumina particles are added to the resin and then mixed.
  • the superabsorbent polymer in the constricted state as described above has a disadvantage in that a disintegration process is required to reduce the particle size to an appropriate particle size because the particle size is unsuitably large.
  • a strong force is applied in the disintegration process, there is a problem that physical properties may be degraded due to crushing of the super absorbent polymer.
  • the first alumina particles are used to form an appropriate crosslinked structure, and the second alumina particles defined in a predetermined contact angle range immediately after the surface crosslinking can ensure more agglomeration prevention effect. .
  • the manufacturing method it is possible to use second-alumina particles having a contact angle of 10 ° is exceeded, or 10 ° more than 150 ° or less, and more suitably from 12 ° to 150 ° for a time of surface cross-linked water.
  • the super absorbent polymer prepared by the method of the embodiment may further include second alumina particles dispersed on the surface of the surface crosslinked resin powder.
  • the second alumina particles are 0.01 to 1.0 parts by weight based on 100 parts by weight of the surface-crosslinked superabsorbent polymer, and black to 0.05 to It is preferable to add 0.3 weight part.
  • the mixing speed after adding the second alumina particles to the surface-crosslinked hydrogel gel polymer is preferably mixed at a speed of 200 to 3000 rpm. If the mixing speed is less than 200 rpm, the effect due to mixing is not sufficient, and if the mixing speed exceeds 3000 rpm, there is a problem of excessive grinding.
  • the method or equipment for adding the second alumina particles to the surface-crosslinked hydrogel polymer and then mixing may be used without particular limitation, as long as they are used in the same technology.
  • the mixing time after adding the second alumina particles to the surface-crosslinked hydrogel polymer is preferably mixed for 2 seconds to 3 minutes. If the mixing time is less than 2 seconds, the effect of mixing is not sufficient, and if it exceeds 3 minutes, the grinding may proceed excessively.
  • the super absorbent polymer prepared by the above-described method may have a centrifugal water retention capacity (CRC) of 25 to 35 g / g, or 26. 5 to 32 g / g.
  • CRC centrifugal water retention capacity
  • the super absorbent polymer of one embodiment may exhibit excellent absorbency under no pressure.
  • the centrifugal water retention capacity (CRC) for the physiological saline can be calculated by the following formula 1 after absorbing the superabsorbent resin in physiological saline over 30 minutes.
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • Kg is absorbed by immersion in physiological saline for 30 minutes without using the superabsorbent resin, and then dehydrated for 3 minutes at 250G using a centrifuge
  • the weight of the device after measurement, W 2 ( g ) is absorbed by immersing the super absorbent resin in physiological saline for 30 minutes at room temperature, and then dehydrated at 250G for 3 minutes using a centrifuge, containing the super absorbent resin
  • the superabsorbent polymer may have a pressure absorption capacity (AUP) of 24 to 30 g / g, or 24.2 to 26. g / g.
  • AUP pressure absorption capacity
  • This pressure absorption capacity may be calculated according to the following formula 2 after absorbing the super absorbent polymer in physiological saline under a pressure of 0.7 psi over 1 hour.
  • AUP (g / g) [W 4 (g)-W 3 (g)] / W 0 (g) ⁇
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 4 (g ) Is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for 1 hour under a load (0.7 ps i).
  • the absorption rate (vortex) of the super absorbent polymer according to the present invention is the absorption rate (vortex) of the super absorbent polymer according to the present invention.
  • the absorption rate under pressure (0.3Ge vac.) Can be at least 20 g / g or from 20 to 22 g / g, and the gel bed permeability (GBP) is at least 45 darcy Or 40 to 85 darcy, and the absorbency under pressure (0.9AUL) may be 19.5 g / g or more or 19.5 to 25 g / g.
  • the superabsorbent polymer obtained according to the above-described manufacturing method maintains excellent water absorption performance, such as water-retaining capacity and pressure-absorbing capacity, and can satisfy more improved liquid permeability and absorption rate. Therefore, hygiene materials such as diapers, in particular, ultra-thin hygiene materials having a reduced content of the peel and the like can be suitably used.
  • water absorption performance such as water-retaining capacity and pressure-absorbing capacity
  • ultra-thin hygiene materials having a reduced content of the peel and the like can be suitably used.
  • NaOH sodium hydroxide
  • the heat of neutralization was generated about 70 ° C. After cooling so that the silver of the neutralizing solution was about 40 ° C., 55 g of an aqueous solution containing 1.02 g of sodium per sul fate as a thermal initiator, 0.03 g of S1670 as a surfactant, and 1.02 g of sodium bicarbonate as a blowing agent were mixed with the neutralizing solution.
  • the mixed solution prepared above was poured into a Vat-shaped tray equipped with a light irradiation device on the top and installed in a square agitator preheated to 80 ° C. Thereafter, the mixed solution was irradiated with light. It was confirmed that a gel was formed on the surface after about 25 seconds from the time of light irradiation, and it was confirmed that the foaming reaction occurred about 35 seconds after the light irradiation. Thereafter, the polymerization reaction was further performed for 2 minutes, and the polymerized sheet was taken out and cut into a size of 5 cm X 5 cm. The cut sheet was then crumpled through a chopping process using a meat chopper.
  • the hydrogel polymer was dried for 30 minutes in a hot air dryer at 185 ° C., and the dried hydrogel polymer was pulverized with a pin mill grinder. Then, the sheave (s ieve) with a particle size of "less than about 150 polymer, a particle size of about 150 m to 850 A polymer was classified by using a.
  • the base resin Within this surface crosslinking reaction, the base resin.
  • the powder was found to gradually increase in temperature at an initial temperature near 80 ° C. After 15 minutes It was operated to reach a reaction maximum temperature of 190 ° C. After this reaction maximum peak was reached, a further reaction was taken for 40 minutes before the final prepared superabsorbent polymer sample was taken.
  • 0.1 g (0.1 parts by weight) of the second alumina particles of Aeroxide Alu 130 was mixed at 100 RPM for 60 seconds to 100 g of the surface crosslinked superabsorbent polymer. Subsequently, surface-crosslinked superabsorbent polymers having a particle size of about 150 to 850 ⁇ were obtained using sieve from the mixture.
  • the particle size of Aeroxide Alu 130 used above was 5, and had a BET specific surface area of 700 m 2 / g, and the contact angle with respect to water was 144 ° .
  • Measurement of the particle size of the Aeroxide Alu 130 according to ISO 13320, using a HELOS Hel ium—Neon Laser Opt i cal system, particle size by a variable-free ultra-fast optical diffraction method (Laser Di f fract i on). was analyzed.
  • the BET specific surface area and porosity were measured using a BET analyzer.
  • the contact angle of water was measured using a contact angle analyzer (KRUSS DSA100).
  • Example 2 Specifically, a double-sided tape was attached to a flat glass plate, and microparticles were applied as a mono layer on it. When placed on the floor, the room is placed in the form. At this time, the angle between the water droplet and the glass plate was measured four times, and then the average value was calculated.
  • Example 2
  • Example 3 After reaching the maximum reaction temperature of 190 ° C. in Example 1, a high hop water resin was obtained in the same manner as in Example 1, except that the reaction product was further reacted for 45 minutes.
  • Example 3
  • Example 4 A super absorbent polymer was obtained in the same manner as in Example 1, except that 0.12 g (0.12 wt%) of the second alumina was used in Example 1. Comparative Example 1
  • a super absorbent polymer was obtained in the same manner as in Example 1, except that 0.1 g (0.1 wt%) of Aerosil 380 hydrophobic silica particles were used instead of the second alumina particles in Example 1. Comparative Example 2
  • a super absorbent polymer was obtained in the same manner as in Example 1, except that 0.1 g (0.1 wt%) of Aerosil 380 hydrophobic silica particles were used instead of the first alumina particles in Example 1. Comparative Example 3
  • a super absorbent polymer was obtained in the same manner as in Example 1, except that the first alumina particles were not used in Example 1. Comparative Example 6
  • Comparative Example 3 the second alumina particles were not used.
  • a super absorbent polymer was obtained in the same manner as in Example 1 except for the above. Comparative Example 7
  • a super absorbent polymer was obtained in the same manner as in Example 1, except that neither the first and second alumina particles were used in Example 1.
  • Examples 1 to 4 and Comparative Examples 1 to 8 specific components and contents of the inorganic material used at the time of surface crosslinking and immediately after the surface crosslinking in the superabsorbent polymer manufacturing process are shown in Table 1 below.
  • Aeroxide Aeroxide 40 Example 1 alumina 0.1 a 1 urn i na 0.1
  • Aeroxide Aeroxide 45 Example 2 alumina 0.1 a 1 urn i na 0.1
  • Aeroxide Aeroxide 40 Example 3 a 1 urn i na 0.1 a 1 urn i na 0.08
  • Aeroxide Aeroxide 40 Example 4 a 1 urn i na 0.1 a 1 urn i na 0.12
  • Aerosi 1 Aeroxide 40 Comparative Example 2 si 1 ica 0.1 a 1 urn i na 0.1
  • Aerosi 1 40 Comparative Example 6 si 1 ica 0.1---380
  • the particle diameters of the base resin powder and the super absorbent polymer used in the examples and the comparative examples were measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
  • EDANA European Disposables and Nonwovens Association
  • the solution was immersed in a physiological saline solution of 0.9 wt% aqueous sodium chloride solution at room temperature. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. Moreover, the mass ⁇ (g) at that time was measured after performing the same operation without using resin.
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • W g is used in physiological saline for 30 minutes without using a super absorbent polymer. It is the weight of the device measured after immersion by absorption and dehydration at 250G for 3 minutes using a centrifuge.
  • W 2 (g) was born at room temperature, soaked in a saline solution for 30 minutes, soaked with a super absorbent polymer, and then using a centrifuge. After dehydration at 250G for 3 minutes, it is the weight of the device including the super absorbent polymer.
  • the Absorbency Under Pressure is measured according to the method of the European Di sposables and Nonwovens Assoc i at i on standard EDANA WSP 242.3. .
  • a stainless steel 400 mesh wire was mounted on the bottom of a 60 mm diameter plastic cylinder. Evenly spread the resin W 0 (g, 0.90 g) obtained in Examples 1-4 and Comparative Examples 1-8 on a wire mesh under a temperature of 23 ⁇ 2 ° C. and a relative humidity of 45% and thereon 4.83 kPa (
  • the piston which can give a more uniform load of 0.7 ps i), has an outer diameter of slightly smaller than 60 mm, has no inner wall and no movement of the cylinder.
  • the weight W 3 ( g ) of the apparatus was measured.
  • a glass filter having a thickness of 5 mm 3 and a diameter of 125 mm 3 was placed inside a Petri dish having a diameter of 150 mm 3, and the physiological saline consisting of 0.90 weight sodium monochloride was set at the same level as the upper surface of the glass filter.
  • One sheet of filter paper having a diameter of 120 mm 3 was loaded thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted and the weight W 4 (g) was measured.
  • AUP ( g / g) was calculated to confirm the pressure absorption capacity.
  • AUP (g / g) [f 4 (g>-W 3 (g)] / W 0 (g)
  • W 0 (g) is the initial weight (g) of the high hop water resin
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer.
  • 3 ⁇ 4 (g) is the sum of the weight of the superabsorbent resin and the weight of the device capable of loading the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for one hour under a load (0.7 ps i).
  • the rate of absorption of the superabsorbent polymer was measured in seconds by adding 2 g of the superabsorbent polymer to 50 mL of physiological saline and stirring at 600 rpm to remove the vortex.
  • Pressurized absorption capacity (AUL) of 0.9 ps i for physiological saline was measured according to the method of EDANA method WSP 242.2. Specifically, a stainless steel 400 mesh screen was mounted on the bottom of the plastic cylinder having an inner diameter of 25 mm 3. Then, the superabsorbent polymer W 0 (g, about 0.16 g), which is to be measured for absorbing pressure under pressure at room temperature and 50% humidity, was uniformly sprayed. Subsequently, piston ol was added to the superabsorbent polymer to uniformly impart a load of 6.3 kPa (0.9 ps i).
  • the outer diameter of the piston is slightly smaller than 25 ⁇ without the inner wall of the cylinder and the oil, was used to be able to move freely up and down.
  • the weight (g) of the device thus prepared was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a petri dish having a diameter of 150 mm 3, and 0.9 wt% of saline was poured into the petri dish.
  • the saline solution was poured until the surface of the saline solution became horizontal with the upper surface of the glass filter.
  • one sheet of filter paper having a diameter of 90 mm was placed on the glass filter.
  • the prepared device was then placed on the filter paper so that the superabsorbent resin in the device was swollen with physiological saline under load. After 1 hour, the weight W 6 (g) of the device containing the swollen superabsorbent resin was measured. To do this, using the measured Bouguer was calculated pressure absorbing ability by the following equation 3.
  • AUL (g / g) [W 6 (g)-W 5 (g)] / W 0 (g)
  • W 0 ( g ) is the initial weight (g) of the superabsorbent polymer
  • W 5 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 6 (g) is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for 1 hour under a load (0.9 ps i). .
  • a stainless steel 400 mesh screen was mounted on the bottom of a plastic cylinder having an internal diameter of 25 mm 3. Then, at room temperature and 50% humidity, the screen was evenly sprayed with a superabsorbent polymer W 0 (g) to measure Ge 1 -Vacuum AUL for 5 minutes. Subsequently, 0.3 ps i was lowered onto the superabsorbent polymer. The piston which can give uniformly was added. At this time, the outer diameter of the piston is slightly smaller than 25 mm, there is no gap with the inner wall of the cylinder, was used to be able to move freely up and down. Then, the weight W 7 ( g ) of the device thus prepared was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm 3 was placed inside a petri dish having a diameter of 150 iiini, and 0.9 wt% of saline was poured into the petri dish.
  • physiological saline was poured until the surface of physiological saline became horizontal with the upper surface of the glass filter.
  • a piece of filter paper having a diameter of 90 mm was placed on the glass filter.
  • the prepared device was placed on the filter paper so that the superabsorbent resin in the device was swollen by physiological saline under load. After 5 minutes, the residual liquid was removed using a vacuum pump.
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • W 7 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 8 (g) is the weight of the superabsorbent resin measured after absorbing physiological saline into the superabsorbent resin for 5 minutes under a load (0.3 ps i), and removing the remaining liquid with a vacuum device and the load on the superabsorbent resin. The sum of the device weights that can be given.
  • Free swelling gel bed permeability (GBP) for physiological saline was measured according to the following method described in Korean Patent Application No. 10—2014-7018005. Specifically, the apparatus shown in Figs. 1 to 3 was used to measure the free swelling GBP. First, the plunger 536 equipped with the weight 548 is placed in the empty sample container 530 and the bottom of the sample container 530 from the top of the weight 548 up to an accuracy of 0. ⁇ using a suitable gauge. The height up to was measured. During the measurement, the force applied by the thickness gauge was adjusted to less than about 0.74 N.
  • the super absorbent resin passed through the US standard 30 mesh screen and retained on the US standard 50 mesh screen was selected to obtain a super absorbent resin having a particle size of 300 to 600.
  • About 2.0 g of the super absorbent polymer thus classified was placed in the sample container 530 and evenly spread over the bottom of the sample container. And then the plunger 536 The vessel, which did not contain the weight 548, was immersed in 0.9% physiological saline for about 60 minutes to swell the superabsorbent polymer under no pressure.
  • the sample vessel 530 was placed on a mesh located in the liquid reservoir, so that the sample vessel 530 was slightly above the bottom of the liquid reservoir, which influenced the movement of physiological saline to the sample vessel 530. What was not used was used. During saturation the height of the physiological saline was adjusted such that the surface in the sample vessel was defined by the swollen superabsorbent resin, not by the saline solution. At the end of this period, the assembly of the plunger 536 and the weight 548 is laid down on the swollen superabsorbent resin 568 in the sample container 530, and then the sample container 530, plunger 536, weight ( 548) and the swollen superabsorbent resin 568 were removed from the solution.
  • the sample vessel 530, plunger 536, weight 548 and the swollen superabsorbent resin 568 are then placed on a flat, large grid, uniformly thick non-deformation plate, prior to GBP measurements. Leave it on for a while. Then, using the same thickness gauge as previously used, the height from the top of the weight 548 to the bottom of the sample container 530 was measured again. And, the above estimation 548, a swelling height measured value of that unit position of the apparatus
  • the plunger 536 is in an empty sample container 530, and the second at a height measurement of the unit containing the water-absorbent resin (568) The thickness or height "H" of the swollen superabsorbent resin was determined.
  • the flow rate Q through the swollen superabsorbent resin 568 is Determined in g / sec by a linear least-square fit of fluid (g) versus time (sec) passing through the swollen superabsorbent resin 568.
  • the GBP (cm 2 ) was calculated according to the following equation 5 using the data values thus obtained.
  • is the gel bed transmission (cm 2 )
  • H is the height (cm) of the swollen superabsorbent resin
  • is the liquid viscosity ( ⁇ ) (the viscosity of the physiological saline used in this test is about lcP),
  • A is the cross-sectional area for the liquid flow (28.27cuf for the sample vessel used in this test)
  • p is the liquid density (g / cm 3 ) (about 1 g / cm 3 for the saline solution used in this test),
  • P is the hydrostatic pressure (dyne / cm 2) (normally less euroneun about 7, 797dyne / cm 2).
  • Example 1 30.8 35 19.8 20.3 74
  • Example 2 30.4 30 20.8 20.0 84
  • Example 3 30.2 32 21. 1 20.8 60
  • Example 4 29.8 32 21.2 20.4 73 Comparative Example 1 30.5 43 19.7 19.8 63
  • Comparative Example 2 30.2 38 18.9 20.2 60
  • Comparative Example 3 30.5 39 17.2 20.4 57
  • Comparative Example 4 30.5 45 22.3 21.0 24
  • Comparative Example 5 30.5 42 20. 1 20.9 44
  • Comparative Example 6 30.5 44 20.7 21.4 29 Comparative Example 7 30.4 42 19.8 20.0.
  • the absorption rate (vortex) is 30 to 35 seconds
  • the absorption rate under pressure (0.3Gel-vac.) Can be 20.0 g / g or more or 20.0 to 20.8 g / g
  • the gel bed transmittance (GBP) is 60 to 84 darcy can be seen that significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 우수한 흡수 성능을 유지하면서도, 보다 향상된 통액성 및 흡수 속도를 나타내는 고흡수성 수지의 제조 방법에 관한 것이다. 상기 고흡수성 수지의 제조 방법은 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 제 1 알루미나 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디올, 트리올, 또는 폴리올, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디에폭시, 트리에폭시, 또는 폴리에폭시로 이루어진 군에서 선택된 1종 이상의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계; 및 상기 표면 가교된 고흡수성 수지에 제 2 알루미나 입자를 첨가한 후 혼합하는 단계;를 포함할 수 있다.

Description

[명세서】
【발명의 명칭]
고흡수성 수지의 제조 방법
【기술분야]
관련 출원 (들)과의 상호 인용
본 출원은 2016년 3월 25일자 한국 특허 출원 제 10-2016- 0036380호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개사된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 우수한 흡수 성능을 유지하면서도, 보다 향상된 통액성 및 흡수 속도를 나타내는 고흡수성 수지의 제조 방법에 관한 것이다.
【배경기술】
고흡수성 수지 (Super Absorbent Polymer , SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Mater ial ) , AGKAbsorbent Ge l Mater i al ) 등 각기 '다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
가장 많은 경우에 ᅳ 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하몌 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를 잘 유지하여 우수한 통액성 (permeabi l i ty)을 나타낼 필요가 있다.
특히, 최근 들어 보다 얇은 두께 및 가벼운 중량을 가지면서도, 우수한 성능을 나타내는 기저귀를 제공하기 위한 노력이 계속됨에 따라, 통액성 및 흡수 속£가 보다 향상된 고흡수성 수지를 제공하는데 많은 관심이 집중되고 있다. 이와 같은 빠른 흡수 속도 및 향상된 통액성을 달성하기 위해서는, 고흡수성 수지 입자, 특히 표면 가교층의 표면 강도가 보다 단단하여 높은 겔 강도를 나타낼 필요가 있고, 이로 인해 소변이 기저귀의 흡수체 코어에 고르고 빠르게 분산될 필요가 있게 된다.
그러나, 이전에 알려진 방법으로 겔 강도를 높이고 통액성 및 흡수 속도를 향상시키고자 할 경우, 기본적인 흡수 성능 (무가압하 및 가압하 흡수량) 자체가 크게 저하되는 단점이 있었다.
이로 인해, 기본적인 흡수 성능을 우수하게 유지하면서도, 통액성 및 흡수 속도가 보다 향상된 고흡수성 수지의 제공을 가능케 하는 기술의 개발이 계속적으로 요구되고 있다.
【발명의 내용】
[해결하려는 과제】
본 발명은 우수한 흡수 성능을 유지하면서도, 보다 향상된 통액성 및 흡수 속도를 나타내는 고흡수성 수지의 제조 방법을 제공한다.
【과제의 해결 수단]
발명의 일 구현예에 따르면, 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중함하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 제 1 알루미나 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디올, 트리올, 또는 폴리올, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디에폭시, 트리에폭시, 또는 폴리에폭시로 이루어진 군에서 선택된 1종 이상의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계; 및 상기 표면 가교된 고흡수성 수지에 제 2 알루미나 입자를 첨가한 후 흔합하는 단계;를 포함하는 고흡수성 수지의 제조 방법이 제공된다.
상기 표면 가교 단계는 상기 게 1 알루미나 입자, 및 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함할 수 있다. 또한, 상기 표면 가교 단계는 상기 베이스 수지 분말 상에 제 1 알루미나 입자를 고체 상태로 첨가하여 처리하는 단계; 및 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함할 수 있다.
본 발명에서 상기 제 1 알루미나 입자는 물에 대해 10° 내지 150° 의 접촉각을 갖는 것일 수 있다. 또한, 상기 제 1 알루미나 입자는 상기 베이스 수지의 100 중량부에 대해, 0.001 내지 1 .0 중량부의 함량으로 사용될 수 있다.
샅기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2- 메타크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2- 히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메특시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν , Ν)- 디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν , Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 블포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 내부 가교제는 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 비스 (메트)아크릴아미드, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 폴리올의 폴리 (메트)아크릴레이트, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 폴리올의 폴리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 미상을 포함할 수 있다.
본 발명에서 상기 베이스 수지 분말은 150 내지 850 卿의 입경을 갖도록 분쇄 및 분급될 수 있다. 상기 표면 가교 단계는 20 °C 내지 130 °C의 초기 온도에서 10 분 내쩌 30 분에 걸쳐 140 °C 내지 200 °C의 최고 온도로 승온하고, 상기 최고 온도를 5 분 내지 60 분 동안 유지하여 열처리함으로써 진행될 수 있다. 한편, 상기 제 2 알루미나 입자는 물에 대해 10° 내지 150° 의 접촉각을 갖는 것일 수 있다. 또한 상기 제 2 알루미나 입자는 상기 표면 가교된 고흡수성 수지 100 중량부에 대해, 0.05 내지 0.5 중량부의 함량으로 사용될 수 있다.
또한, 상기 제 2 알루미나 입자의 혼합은 100 내지 3000 RPM의 속도로 수행할 수 있으며, 2초 내지 3분 동안 수행할 수 있다.
【발명의 효과]
본 발명에 따르면, 보수능과 가압 흡수능 등의 흡수 성능이 우수하게 유지되며, 보다 향상된 통액성 및 흡수 속도 등을 나타내는 고흡수성 수지가 제조 및 제공돨 수 있다.
이러한 고흡수성 수지는 기저귀 등 위생재, 특히, 펄프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
본 발명에서, 제 1 , 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 봇하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "함유하다 ", "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 (또는 구성 성분), 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소 (또는 구성 성분) , 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 았는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이하에서는 본 발명의 바람직한 일 구현예에 따른 고흡수성 수지의 제조 방법 등에 대해 보다 구체적으로 설명하기로 한다.
- 본 발명의 일 구현예에 따르면, 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성가를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 제 1 알루미나 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디올, 트리올, 또는 폴리올, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디에폭시, 트리에폭시 또는 폴리에폭시로 이루어진 군에서 선택된 1종 이상의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계; 및 상기 표면 가교된 고흡수성 수지에 제 2 알루미나 입자를 첨가한 후 흔합하는 단계;를 포함하는 고흡수성 수지의 제조 방법이 제공된다.
본 발명자들이 고흡수성 수지의 통액성 및 흡수 속도를 보다 향상시키기 위해 계속적으로 연구한 결과, 고흡수성 수지의 제조 공정의 조건, 예를 들어, 후술하는 내부 가교제의 종류 및 함량과 중합 조건을 최적화하여 높은 겔 강도를 갖는 베이스 수지 분말을 얻고, 특정한 표면 가교시 및 표면 가교 직후의 조건 (예를 들어, 특정한 알루미나 입자를 표면 가교 및 가교 직후에 모두 사용하는 등)을 적용함에 따라, 이전에 알려진 것보다 크게 향상된 통액성 및 흡수 속도를 나타내면서도 우수한 흡수 성능 (무가압하 및 가압하 흡수량; 후술하는 CRC , GBP 및 vor t ex 등)을 유지하는 고흡수성 수지가 제공될 수 있음을 확인하였다. 특히, 소정의 접촉각 범위로 정의되는 제 1 알루미나 입자를 표면 가교시에 사용하고, 일정한 승온 조건 등으로 표면 가교를 진행함에 따라, 상기 높은 겔 강도를 갖는 베이스 수지 분말 상에 일정 수준 이상의 두께를 갖는 표면 가교층이 균일하게 '형성될 수 있는 것으로 보인다. 이는 상기 제 1 알루미나 입자가 표면 가교층의 가교 구조 내에 균일하게 포함되어 이러한 가교 구조를 더욱 단단히 할 수 있을 뿐 아니라, 표면 가교시 상기 승온 조건 하에서제 1 알루미나 입자 주위로 표면 가교 반웅이 적절히 일어나 적절한 가교 구조를 형성될 수 있기 때문으로 예측된다.
이와 함께, 표면 가교된 고흡수성 수지에 대해, 소정의 접촉각 범위로 정의되는 제 2 알루미나 입자를 표면 처리함으로써 , 고흡수성 수지 입자간의 직접적인 웅집을 효과적으로 방지하고. 통액투과성을 향상하며 고흡성 수지의 흡수 특성이 우수한 정도로 유지할 수 있다.
일반적으로 알루미나를 표면가교에 사용하는 경우 용액 투과성의 효율이 상대적으로 떨어지며 , 후첨하는 경우 가압하 흡수능의 저하 폭 증가 및 포장, 보관, 운반 등의 과정에서 고흡수성 수지 표면으로부터 이탈이 가능하여 물성 하락이 생길 수 있는 것으로 알려져 있다. 이에 따라, 본 발명은 제 1 알루미나 입자와 제 2 알루미나 입자를 각각 표면처리함으로써 용액 투과성의 향상과 뭉침 방지 또는 흡수 속도 향상과 함께, 가압흡수능을 우수한 범위로 유지할 수 있다.
또한, 상기 표면 가교층이 고흡수성 수지 입자 각각의 겔 강도를 더욱 높일 수 있으므로, 일 구현예의 고흡수성 수지는 높은 겔 강도와 함께, 후술하는 실시예 등에 의해 뒷받침되는 크게 향상된 가압하 흡수 성능 및 통액성 (GBP)과, 이에 따른 향상된 흡수 속도를 나타낼 수 있다. 또한, 일 구현예의 방법으로 제조된 고흡수성 수지는 내부 가교 구조 및 표면 가교 구조가 최적화됨에 따라, 상대적으로 높은 흡수 속도 (vortex)와 보수능 (CRC) 등으로 우수한 흡수 성능을 유지할 수 있다.
따라서, 일 구현예의 고흡수성 수지는 이전에 알려진 것보다 크게 향상된 통액성 및 흡수 속도와 함께, 우수한 흡수 성능을 나타냄에 따라, 펄프의 함량이 감소된 초박형 기저귀 등 각종 위생재에 매우 바람직하게 적용될 수 있다. 이하, 일 구현예의 고흡수성 수지의 제조 방법에 대해 보다 구체적으로 설명하기로 한다, 통상 고흡수성 수지는, 예를 들어, 적어도 일부의 카르복시산이 나트륨염 등으로 증화된 아크릴산 및 이의 나트륨염의 혼합물 등과 같이 , 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 내부 가교제의 존재 하에 중합시킨 후, 이를 건조, 분쇄 및 분급하고 표면 가교하여 제조될 수 있다. 구체적인 예에서, 상기 일 구현예의 제조 방법에서는, 상기 고흡수성 수지가 상기 단량체를 내부 가교제의 존재 하에 가교 중합시켜 베이스 수지 분말을 얻은 후, 소정의 표면 가교제와, 제 1 알루미나 입자의 존재 하에 상기 베이스 수지 분말을 표면 가교시킴으로서 얻을 수 있다.
특히, 내부 가교제의 종류 및 함량과 중합 조건 등을 조절하여 높은 겔 강도를 갖는 베이스 수지 분말을 얻고, 예를 들어, 특정한 제 1 알루미나 입자를 사용하여 표면 가교를 진행하고, 표면 가교된 수지에 대해 특정한 제 2 알루미나 입자로 처리함에 따라, 상술한 우수한 물성 및 효과 등을 나타내는 고흡수성 수지가 제조될 수 있음이 확인되었다. 이러한 일 구현예의 제조 방법에서는, 특징적으로 이하와 같은 제 1 및 제 2의 알루미나 입자를 표면 가교시 및 표면 가교 직후에 사용할 수 있다. 예컨대, 본 발명에서는 제 1 알루미나 입자를 표면가교시 표면가교 용액에 포함하는 습식 방식과 제 2 알루미나 입자는 표면 가교후 건식 처리하는 방식을 동시에 도입함으로써, 용액 투과성의 향상과 뭉침 방지 또는 흡수 속도 향상과 함께, 우수한 가압흡수능을 확보할 수 있다.
먼저, 상기 일 구현예의 제조 방법에서는, 표면 가교시 물에 대해
10° 초과, 또는 10° 초과 150° 이하, 보다 적절하게는 12° 내지 150° 의 접촉각을 갖는 제 1 알루미나 입자를 사용할 수 밌다. 이에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지는 상기 베이스 수지 분말의 표면 위, 예를 들어, 표면 가교층 상에 분산되어 있는 제 1 알루미나 입자를 더 포함할 수 있다. 보다 구체적으로, 상기 제 1 알루미나 입자는 이하에 더욱 상세히 설명하는 바와 같이, 표면 가교액에 포함되어 처리되거나, 혹은 표면 가교 전에 상기 베이스 수지 분말 상에 고체 상태로 흔합 및 처리될 수도 있다. 따라서, 이러한 제 1 알루미나 입자는, 예를 들어, 적어도 일부가 베이스 수지 분말의 표면 위, 예를 들어, 상기 표면 가교층 상에 존재할 수 있고, 나머지는 베이스 수지 분말의 표면에 박히거나 그 내부에 매립된 상태로 존재할 수 있다. 또한, 상기 친수성 알루미나 입자는 상기 표면 가교층 상에 분산되어, 이에 포함된 가교 구조 네에 존재할 수 있다.
이와 같이 통액성 향상을 위한 제 1 알루미나 입자가 적어도 표면 가교층 내에 존재함에 따라, 이에 의한 통액성이나 흡수 속도 향상 등 우수한 물성이 장기간 동안 발현 및 유지될 수 있다.
상기 제 1 알루미나 입자로는 상술한 접촉각 범위를 갖는 상용화된 알루미나 입자의 1종 이상을 별다른 제한 없이 모두 사용할 수 있고, 보다 적절하게는 상기 제 1 알루미나 입자를 표면 가교액에 포함시켜 사용할 경우에, 표면 가교액에 대한 분산성 등의 측면에서 10° 초과 50° 이하의 접촉각을 갖는 입자를 사용하거나, 50° 내지 150° 이하의 접촉각을 갖는 입자를 별도의 분산제와 함께 사용할 수도 있다.
그리고, 상기 제 1 알루미나 입자를 표면 가교 전에 베이스 수지 분말에 고체 상태로 첨가 및 혼합하여 건식 처리할 경우, 보다 효과적인 통액성 및 흡수 속도의 향상 측면에서 50° 내지 150° 이하의 접촉각을 갖는 입자를 보다 바람직하게 사용할 수 있다.
보다 구체적으로, 상기 알루미나 입자로는 상품명 Aeroxide Alu 65 , Aeroxide Alu C , Aeroxide Alu 130 등으로 되는 알루미나 입자를 적절히 사용하여, 고흡수성 수지의 통액성이나 흡수 속도 등을 보다 향상시킬 수 있다.
그리고, 상기 알루미나 입자가 갖는 물에 대한 접촉각은 유리 기판 상에서 측정된 각 알루미나 입자의 물에 대한 접촉각으로 정의될 수 있다. 한편, 일 구현예의 고흡수성 수지의 제조 방법에서, 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산", 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N- 치환 (메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2- 히드록시프로필 (메트)아크릴레이트,
메톡시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리쎄틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν , Ν)- 디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν , Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 '4급화물;로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이중에서도, 아크릴산 또는 이의 염, 예를 들어, 아크릴산의 적어도 일부가 중화된 아크릴산 및 /또는 이의 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산 및 이의 알칼리 금속염을 단량체로 사용하는 경우, 아크월산의 적어도 일부를 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다.
또한, 이러한 단량체를 가교 증합하기 위한 내부 가교제로는 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜 등을 포함하는 비스 (메트)아크릴아미드, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜 등을 포함하는 폴리올의 폴리 (메트)아크릴레이트, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜 등을 포함하는 폴리올의 폴리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 보다 구체적으로, 상기 내부 가교제로는 폴리에틸렌글리콜 디 (메트)아크릴레이트, 폴리프로필렌옥시 디 (메트)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트 및 트리메티를 트리아크릴레이트로 이루어진 군에서 선택된 하나 이상의 폴리올의 폴리 (메트)아크릴레이트를 적절히 사용할 수 있다. 이 중에서도, 상기 폴리에틸렌글리콜 디 (메트)아크릴레이트 등의 내부 가교제를 사용함에 따라, 내부 가교 구조가 최적화되고 높은 겔 강도를 갖는 베이스 수지 분말 등이 얻어질 수 있고, 이를 통해 우수한 물성을 층족하는 고흡수성 수지가 보다 적절히 얻어질 수 있다.
또한, 상기 특정 내부 가교제를 단량체에 포함된 미중화 상태의 아크릴산 1몰을 기준으로, 0.005 몰 이상, 혹은 0.005 내지 0. 1 몰, 흑은 0.005 내지 0.05 몰 (혹은 아크릴산의 100 중량부 대비 0.3 중량부 이상, 혹은 0.3 내지 0.6 중량부)의 비율로 사용할 수 있다. 이러한 내부 가교제의 함량 범위에 따라, 표면 가교 전의 겔 강도가 높은 베이스 수지 분말을 적절히 얻을 수 있고, 일 구현예의 방법을 통해 우수한 물성을 갖는 고흡수성 수지를 얻을 수 있다.
그리고, 상기 내부 가교제를 사용하여 단량체를 가교 중합시킨 후에는, 건조, 분쇄 및 분급 등의 공정을 거쳐 베이스 수지 분말을 얻을 수 있는데, 이러한 분쇄 및 분급 등의 공정을 통해, 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지는 150 내지 850 μηι의 입경을 갖도록 제조 및 제공됨이 적절하다. 보다 구체적으로, 상기 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지의 적어도 95 중량 % 이상이 150 내지 850 의 입경을 가지며, 150 미만의 입경을 갖는 미분이 3 증량 ¾> 미만, 혹은 1. 5 중량 % 미만으로 될 수 있다.
이와 같이 상기 베이스 수지 분말 및 고흡수성 수지의 입경 분포가 바람직한 범위로 조절됨에 따라, 상기 고흡수성 수지가 이미 상술한 우수한 물성을 보다 적절히 나타낼 수 있다.
한편, 이하에서는 상술한 일 구현예의 방법에 대해 각 단계별로 보다 구체적으로. 설명하기로 한다. 다만, 이미 상술한 단량체, 내부 가교제, 알루미나 입자 및 입경 분포 등에 대해서는, 중복 설명을 생략하고, 나머지 공정 구성 및 조건을 단계별로 설명하기로 한다.
상기 고흡수성 수지의 제조 방법은 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합개시제를 포함하는 단량체 조성물에 열 중합 또는 광 중합을 진행하여 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조하는 단계; 상기 건조된 중합체를 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 제 1 알루미나 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디올, 트리을ᅳ 또는 폴리올, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디에폭시, 트리에폭시, 또는 폴리에폭시로 이루어진 군에서 선택된 1종 이상의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계; 및 상기 표면 가교된 고흡수성 수지에 제 2 알루미나 입자를 첨가한 후 흔합하는 단계 ;를 포함할 수 있다.
이러한 제조 방법에서, 상기 단량체 조성물은 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는데, 상기 단량체의 종류에 관해서는 이미 상술한 바와 같다.
또, 이러한 조성물 중에서, 상기 수용성 에틸렌계 불포화 단량체의 농도는, 상술한 각 원료 물질 및 용매를 포함하는 전체 단량체 조성물에 대해 20 내지 60 증량 % , 혹은 40 내지 >50 중량 ¾>로 될 수 있으며, 중합 시간 및 반웅 조건 등을 고려해 적절한 농도로 될 수 있다. 다만 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수. 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 증합된 함수겔 중합체의 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.
또한, 상기 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 uv 조사에 따른 광중합 개시제를 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광증합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether ) , 디알킬아세토페논 (di alkyl acetophenone) , 하이드록실 알킬케톤 (hydroxyl alkylketone) , 페닐글리옥실레이트 (phenyl glyoxyl ate) , 벤질디메틸케탈 (Benzyl Dimethyl Ketal ) , 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 ( α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TP0, 즉, 2,4,6-트리메틸 -벤조일-트리메틸 포스핀 옥사이드 (2,4, 6- tr imethyl-benzoyl-tr imethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwa lm 저서인 "UV Coatings: Basics, Recent Developments and New Appl icat ion(Elsevier 2007년 pll5에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 광중합 개시제는 상기 단량체 조성물에 대하여 0.01 내지 1.0 중량 %의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S208) , 과황산칼륨 (Potassium persulfate; K2S208) , 과황산암모늄 (Ammonium persul fate; (NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2·ᅳ아조비스 -(2- 아미디노프로판)이염산염 (2, 2-azob i s ( 2-am i d i nopr opane ) dihydrochlor ide) , 2, 2-아조비스 -(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2, 2一 a bis— (N, N—dimethylene) isobutyr ami dine di hydrochloride), 2- (카바모일아조)이소부티로니트릴 (2ᅳ
( car bamoy 1 azo ) i sobu t y 1 on i t r i 1 ) , 2, 2-아조비스 [2-(2-이미다졸린 -2-' 일)프로판] 디하이드로클로라이드 ^-azobis^-^-imidazolin^- y propane] di hydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4- azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymer izat ion(Wi ley , 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 열중합 개시제는 상기 단량체 조성물에 대하여 0.001 내지 0.5 중량 %의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
그리고, 상기 단량체 조성물에 함께 포함되는 내부 가교제의 종류에 대해서는 이미 상술한 바와 같으며, 이러한 내부 가교제는 상기 단량체 조성물에 대하여 0.01 내지 0.5 중량 %의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. 또한, 이미 상술한 바와 같이, 상기 내부 가교제는 단량체 중에 포함된 미중화 상태의 아크릴산 1몰을 기준으로, 0.005 몰 이상, 혹은 0.005 내지 0. 1 몰, 흑은 0.005 내지 0.05 몰 (흑은 아크릴산의 100 중량부 대비 0.3 중량부 이상, 혹은 으 3 내지 0.6 중량부)의 비율로 사용될 수 있다. 이러한 내부 가교제가 이러한 함량 범위로 사용됨에 따라, 베이스 수지 분말의 높은 겔 강도가 적절히 달성될 수 있고, 이를 사용해 이미 상술한 일 구현예의 물성을 보다 적절히 충족하는 고흡수성 수지가 제조될 수 있다ᅳ
또, 상기 단량체 조성물은 필요에 따라 증점제 (thickener ) , 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 단량체 조성물 용액의 형태로 준비될 수 있다. '
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 , 4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트 , 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 크실렌 : 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 Ν , Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.
상기 용매는 단량체 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다. ·
한편, 이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔 증합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통'상 열중합을 진행하는 경우, 니더 (kneader )와 같은 교반축을 가진 반웅기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한중합 방법에 한정되지는 않는다. 일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader )와 같은 반웅기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔 증합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50醒인 함수겔 증합체가 얻어질 수 있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 광증합을 진행하는 경우, 통상 얻어지는 함수겔 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 0. 5 내지 5 cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 1 량체 조성물을 공급하는 것이 바람직하다ᅳ 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5 cni를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반웅이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.
이때 이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 40 내지 80 중량 %일 수 있다. 한편, 본 명세서 전체에서 "함수율1'은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 180 °C까지 온도를 상승시킨 뒤 180 °C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5 분을 포함하여 20 분으로 설정하여 함수율을 측정한다.
다음에, 얻어진 함수겔 중합체를 건조하는 단계를 수행한다.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer) , 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), . 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이때 조분쇄 단계는 함수겔 중합체의 입경이 2 내지 10隱로 되도록 분쇄할 수 있다.
입경이 2隱 미만으로 분쇄하는 것은 함수겔 중합체의 높은 함수율로 인해 기술작으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10 mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.
상기와 같이 조분쇄되거나, 흑은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 150 내지 250 °C일 수. 있다. 간조 온도가 150 °C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250 °C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 150 내지 200 °C의 온도에서, 더욱 바람직하게는 160 내지 180 °C의 온도에서 진행될 수 있다.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 20 내지 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다. 상기 건조 단계의 건조 방법 역시 함수겔 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량 %일 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 .얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 150 내지 850//m 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어.지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 150 내지 850卿인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반웅 단계를 거쳐 제품화할 수 있다. 이러한 과정을 통해 얻어진 베이스 수지 분말의 입경 분포에 관해서는 이미 상술한 바도 있으므로, 이에 관한 더 이상의 구체적인 설명은 생략하기로 한다.
한편, 상술한 분쇄 및 /또는 분급 공정을 거쳐 베이스 수지 분말을 얻은 후에는, 표면 가교 공정을 통해 일 구현예의 고흡수성 수지를 제조할 수 있다. 이러한 표면 가교 공정에서 사용 가능한 알루미나 입자의 종류에 관해서는 이미 상술한 바 있으므로, 관련 설명은 생략한다.
이러한 표면 가교 공정에서는, 일 예에서, 상기 알루미나 입자, 및 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 멸처리하여 표면 가교하는 방법으로 진행할 수도 있지만, 다른 예에서, 상기 베이스 수지 분말 상에 알루미나 입자를 고체 상태로 혼합 및 ' 첨가하여 건식 처리한 후, 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에 , 상기 베이스 수지 분말을 열처리하여 표면 가교하는 방법으로 진행할 수도 있다. 이 중, 후술하는 실시예에 의해 뒷받침되는 바와 같이, 고흡수상 수지의 통액성 및 흡수 속도 등의 향상 측면에서, 일 예에 따른 방법보다는 알루미나 입자를 먼저 건식 처리하는 다른 예에 따른 방법이 보다 바람직함이 확인되었다.
또, 상기 일 예에 따른 방법에서는, 알루미나 입자를 표면 가교액에 적절히 분산시켜 사용하기 위해, 10° 초과 50° 이하의 접촉각을 갖는 입자 (즉, 상대적으로 작은 소수성을 나타내는 알루미나 입자)를 사용하거나, 50° 내지 150° 이하의 · 접촉각을 갖는 입자를 별도의 분산제와 함께 사용할 수도 있다. 이러한 분산제로는 알루미나 입자를 수용매 등 극성 용매에 분산시키기 위해 사용되던 분산제를 별다른 제한 없이 모두 사용할 수 있다.
그리고, 상기 알루미나 입자를 별도로 먼저 처리하는 다른 예의 방법에서는, 베이스 수지 분말에 알루미나 입자를 고체 상태로 혼합하여 그 표면을 건식 처리할 수 있는데, 이의 처리 방법은 일반적인 무기 분말의 건식 처리 및 /또는 혼합 방법에 따를 수 있다.
또한, 상기 제 1 알루미나 입자는 상기 베이스 수지의 전체 100 증량부에 대해, 0.001 내지 1.0 중량부, 흑은 0.01 내지 0.2 증량부의 함량으로 사용될 수 있다. 이로써, 제 1 알루미나 입자의 사용에 따라, 고흡수성 수지의 통액성 및 흡수 속도를 보다 효과적으로 향상시킬 수 있다. 그리고, 상기제 1 알루미나 입자 및 표면 가교제, 또는 표면 가교제를 포함하는 상기 표면 가교액을 베이스 수지 분말에 첨가하는 방법에 대해서도 그 구성의 특별한 한정은 없다. 예를 들어, 표면 가교액과, 베이스 수지 분말올 반응조에 넣고 흔합하거나, 베이스 수지 분말에 표면 가교액를 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지 분말과 표면 가교액을 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다. 또한, 상기 표면 가교 단계에서, 표면 가교제로 사용 가능한 탄소수 2 내지 5의 알킬렌 카보네이트의 보다 적절한 예로는, 에틸렌 카보네이트, 프로필렌 카보네이트 또는 부틸렌 카보네이트 등을 들 수 있고, 이돌 중에 선택된 2종 이상을 함께 사용할 수도 있음은 물론이다. 이와 함께, 표면 가교제로 사용 가능한 탄소수 2 내지 12 또는 탄소수 2 내지 10의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜 등을 포함하는 디올, 트리을, 폴리올류 가교제의 보다 적절한 예로는, 1 , 2-프로판디올', 1 , 3—프로판디을, 글리세린, 디에틸렌 글리콜, 트리에틸렌 글리콜, 테트라에틸렌 글리콜 등을 들 수 있으며, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜 등을 포함하는 디에폭시, 트리에폭시, 폴리에폭시류 가교제의 보다 적절한 예로는, 디에틸렌글리콜 디글리시딜 에테르, 트리에틸레늘리콜 디글리시딜 에테르, 또는 에틸렌글리콜디글리시딜에테르 등을 들 수 있다.
부가하여, 상기 표면 가교액은 매질로서 물 및 /또는 메탄올을 더 포함할 수 있다. 이로서, 표면 가교제 및 제 1 알루미나 입자가 베이스 수지 분말 상에 골고루 분산될 수 있는 이점이 있다. 이때, 물 및 메탄올의 함량은 표면 가교제 및 제.1 알루미나 입자의 고른 분산을 유도하고 베이스 수지 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 베이스 수지 분말 100 중량부에 대한 첨가 비율을 조절하여 적용할 수 있다.
한편, 상기 표면 가교 단계는, 상기 표면 가교액이 첨가된 베이스 수지 분말에 대해 140 °C 내지 210 °C , 흑은 150 °C 내지 200 °C의 반웅 최고 온도에서 5 분 내지 120 분, 또는 10 분 내지 100 분, 또는 20 분 내지 80 분 동안 열처리를 진행하여 표면 가교 반웅을 진행시키는 방법으로 진행할 수 있다. 보다 구체적으로는, 상기 표면 가교 단계는 20 °C 내지 130 °C , 혹은 40 °C 내지 120 °C의 초기 온도에서 10분 내지 30 분에 걸쳐 상기 반웅 최고 은도로 승은하고, 상기 최고 온도를 5 분 내지 120 분 동안 유지하여 열처리함으로써 진행될 수 있다.
이러한 표면 가교 공정 조건 (특히, 승은 조건 및 반웅 최고 은도에서의 반웅 조건)의 충족에 의해 우수한 통액성 및 흡수 속도 등을 적절히 충족하는 고흡수성 수지가 제조될 수 있다.
표면 가교 반웅을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승은한 유체 등을 사용할 수 있으나. 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승은 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다 이 후, 본 발명에 따른 고흡수성 수지의 제조 방법은 상기 표면 가교된 고흡수성 수지에 제 2 알루미나 입자를 첨가한 후 혼합하는 단계를 거친다.
일반적으로 고흡수성 수지의 표면은 친수성을 뛰며, 수분 흡수 후 건조시 입자 사이에 존재하는 물에 의한 모세관력, 수소결합, 고분자 inter-part i caular di f fusion' 또는 입자간의 반데르발스 힘 등에 의하여 비가역적 응집이 발생하게 된다. 따라서, 고흡수성 수지의 중합 및 표면 가교 공정에서도 필수적으로 물을 사용하게 되는데, 이에 따른 웅집이 발생하기 때문에, 내부 부하를 증가시키며, 결과적으로 장비 고장의 원인이 될 수 있다. 또한, 상기와 같이 웅집된 상태의 고흡수성 수지는 입도가 웅용에 부적합하게 크기 때문에, 이를 적정 입도로 줄이는 해쇄 공정을 도입해야 하는 단점이 있다. 또한 상기 해쇄 공정에서 강한 힘이 가해지므로 고흡수성 수지 파쇄에 따른 물성하락이 발생할 수 있다는 문제점이 존재하였다.
본 발명에서는 표면 가교시 제 1 알루미나 입자를 사용하여 적절한 가교 구조를 형성함과 동시에, 표면 가교 직후에 소정의 접촉각 범위로 정의되는 제 2 알루미나 입자를 처리함으로써 보다 충분한 뭉침 방지 효과를 확보할 수 있다.
먼저, 상기 일 구현예의 제조 방법에서는, 표면 가교시 물에 대해 10° 초과, 또는 10° 초과 150° 이하, 보다 적절하게는 12° 내지 150° 의 접촉각을 갖는 제 2 알루미나 입자를 사용할 수 있다. 이에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지는 상기 표면 가교된 수지 분말의 표면 위에 분산되어 있는 제 2 알루미나 입자를 더 포함할 수 있다. 상기 표면 가교된 고흡수성 수지에 상기 제 2 알루미나 입자를 첨가한 후 흔합하는 단계에 있어서, 상기 제 2 알루미나 입자는 표면 가교된 고흡수성 수지 100 중량부에 대해 0.01 내지 1.0 중량부, 흑은 0.05 내지 0.3 중량부로 첨가되는 것이 바람직하다. 상기 제 2 알루미나 입자의 포함량이 상기 범위보다 적으면 고흡수성 수지의 뭉침 방지 효과가 충분하지 않고, 상기 범위보다 많으면 수지의 가공성이 떨어지게 된다. 또한, 상기 제 2 알루미나 입자를 흔합하는 단계에서, 표면 가교된 함수겔^ 중합체에 상기 제 2 알루미나 입자를 첨가한 후 흔합하는 속도는 200 내지 3000 rpni의 속도로 흔합하는 것이 바람직하다. 흔합 속도가 200 rpm 미만이면, 혼합에 따른 효과가 충분히 되지 않으며, 3000 rpm을 초과하면, 지나치게 분쇄가 되는 문제가 있다. 또한, 상기 제 2 알루미나 입자를 흔합하는 단계에서, 표면 가교된 함수겔상 중합체에 상기 제 2 알루미나 입자를 첨가한 후 혼합하는 방법 또는 장비는 동종 기술에서 사용하는 것이라면, 특별한 제한 없이 사용할 수 있다. 또한, 상기 제 2 알루미나 입자를 흔합하는 단계에서, 표면 가교된 함수겔상 중합체에 제 2 알루미나 입자를 첨가한 후 혼합하는 시간은 2초 내지 3분간 흔합하는 것이 바람직하다. 혼합 시간이 2초 미만이면, 흔합에 따른 효과가 충분히 되지 않으며, 3분을 초과하면, 지나치게 분쇄가 진행될 수도 있다.
한편, 상술한 방법으로 제조된 고흡수성 수지는 원심분리 보수능 (CRC)이 25 내지 35 g/g , 혹은 26. 5 내지 32 g/g로 될 수 있다. 이와 같이, 일 구현예의 고흡수성 수지는 무가압 하에서 우수한 흡수성을 나타낼 수 있다.
이때, 상기 생리 식염수에 대한 원심분리 보수능 (CRC)은 고흡수성 수지를 30분에 걸쳐 생리 식염수에 흡수시킨 후, 다음과 같은 계산식 1에 의해 산출될 수 있다.
[계산식 1]
CRC(g/g) = { [W2(g) - Wi(g) - Wo(g) ] /W0(g) }
상기 계산식 1에서,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, Kg)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, W2(g)는 상온에서 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다. 또한, 상기 고흡수성 수지는 가압 흡수능 (AUP)이 24 내지 30 g/g , 혹은 24.2 내지 26. g/g로 될 수 있다. 이와 같이, 일 구현예의 고흡수성 수지는 가압 하에서도 우수한 흡수성을 나타낼 수 있다.
이러한 가압 흡수능 (AUP)은 고흡수성 수지를 1 시간에 걸쳐 0.7 psi의 가압 하에 생리 식염수에 흡수시킨 후, 하기 계산식 2에 따라 산출될 수 있다.
[계산식 2]
AUP(g/g) = [W4(g) - W3(g) ] / W0(g) ᅳ
상기 계산식 2에서,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W4(g)는 하중 (0.7 ps i ) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
이와 함께, 본 발명에 따른 고흡수성 수지의 흡수속도 (vortex)는
35초 이하 또는 20 내지 35초가 될 수 있고, 가압하 흡수속도 (0.3Ge vac . )는 20 g/g 이상 또는 20 내지 22 g/g이 될 수 있고, 겔 베드 투과율 (GBP)은 45 darcy 이상 또는 40 내지 85 darcy가 될 수 있으며, 가압 흡수능 (0.9AUL)은 19.5 g/g 이상 또는 19.5 내지 25 g/g이 될 수 있다.
상술한 제조방법에 따라 수득된 고흡수성 수지는 보수능과 가압 흡수능 등의 흡수 성능이 우수하게 유지되며, 보다 향상된 통액성 및 흡수 속도 등을 충족할 수 있다. 따라서, 기저귀 등 위생재, 특히, 필프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다. 이하, 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
<실시예 >
실시예 1 아크릴산 500 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=523) 1.05 g, 에틸렌 옥사이드가 9 몰 %로 포함된 트리메틸올프로판 트리아크릴레이트 0.69 g, 광개시제로 IRGACURE 819를 0.04 g 흔합하였다. 이어서 24% 가성소다 (NaOH) 860 g을 흔합하여, 중화한 모노머 수용액을 제조하였다.
상기 모노머 수용액을 중화하는 과정에서 중화열이 약 70 °C 정도 발생하였다. 중화액의 은도가 약 40 °C가 되도록 냉각 후 열개시제로 sodium per sul fate 1.02 g, 계면활성제로 S1670 0.03 g , 발포제로 sodium bi carbonate 1.02 g 포함하는 수용액 55 g을 중화액에 혼합하였다.
상부에 광조사 장치가 장착되어 있고 내부가 80 °C로 예열된 정방형 합기 내에 설치된 Vat 형태의 트레이 ( tray)에 상기에서 준비한 흔합 용액을 부었다. 이후, 상기 흔합 용액에 광을 조사하였다. 광 조사 시부터 약 25초 후에 표면에 겔이 형성되는 것이 확인되었고, 광 조사 시부터 약 35초 후에 발포 반웅이 일어나는 것이 확인하였다. 이후, 추가로 2 분간 중합 반응을 진행하고, 중합된 시트를 꺼내어 5cm X 5cm의 크기로 재단하였다. 그리고, 미트 쵸퍼 (meat chopper )를 이용하는 다지기 공정 (chopping)을 통해 상기 재단된 시트를 가로 (crump)로 제조하였다.
이어서, 상기 함수겔 중합체에 대하여 185 °C 온도의 열풍건조기에서 30분 동안 건조하고, 건조된 함수겔 중합체를 핀밀 분쇄기로 분쇄하였다. 그런 다음, 시브 (s ieve)를 이용하여 입경이 '약 150 미만인 중합체와, 입경 약 150 m 내지 850 인 중합체를 분급하였다.
Aeroxide Alu 130의 제 1 알루미나 입자 0.2 g (0. 1 중량부) , 알릴 메타크릴레이트 (al lyl mehtacylate) 0.8 g (0.4 중량부) 및 용매로서 물의 6.0 g (3.0 중량부)과 메탄올 7.0 g(3.5 중량부)를 포함하는 표면 처리액을 형성하였다. 이러한 표면 가교액을 베이스 수지 분말 200 g에 분사하고 상온에서 교반하여 베이스 수지 분말에 표면 처리액이 고르게 분포하도록 흔합하였다. 이후, 이러한 베이스 수지 분말을 표면 가교 반응기에 넣고 표면 가교 반웅을 진행하였다.
이러한 표면 가교 반웅기 내에서, 베이스 수지.분말은 80 °C 근방의 초기 온도에서 점진적으로 승온되는 것으로 확인되었고, 15 분 경과 후에 190 °C의 반응 최고 온도에 도달하도록 조작하였다. 이러한 반웅 최고 은도에 도달한 이후에, 40 분 동안 추가 반웅시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 상기 표면 가교 공정 후, 표면 가교된 고흡수성 수지 100 g에 Aeroxide Alu 130의 제 2 알루미나 입자 0. 1 g (0. 1 중량부)을 1000 RPM으로 60초간 흔합하였다. 이후, 상기 흔합물로부터 시브 (s ieve)를 이용하여 입경이 약 150 내지 850 ᅵ인 표면 가교된 고흡수성 수지를 얻었다.
상기에서 사용한 Aeroxide Alu 130의 입도는 5 이고, 700 m2/g의 BET 비표면적을 갖고, 물에 대한 접촉각은 144° 이었다. 상기 Aeroxide Alu 130의 입도의 측정은 ISO 13320에 따라서 , HELOS Hel i um— Neon Laser Opt i cal [0086] System)를 사용하여, 무변수 초고속 광회절법 (Laser Di f fract i on)에 의하여 입도를 분석하였다. BET 비표면적 및 공극률은 BET analyzer를 이용하였다. 물에 대한 접촉각의 측정은 contact angle analyzer (KRUSS DSA100)를 사용하였으며, 구체적으로 평평한 유리판에 양면 테이프를 붙인 후 그 위에 미세입자를 단일층 (Mono layer )으로 도포한 후, 초순수 5 y L를 단일층 위에 올리면 방을 형태로 위치하며, 이때 물방을과 유리판이 이루는 각도를 4회 반복하여 측정한 후 평균값을 계산하였다. 실시예 2
상기 실시예 1에서 190 °C의 반웅 최고 온도에 도달한 이후에, 45 분 동안 추가 반웅시킨 것을 제외하고, 실시예 1과 동일한 방법으로 고홉수성 수지를 얻었다. 실시예 3
상기 실시예 1에서 제 2 알루미나의 함량을 0.08 g(0.08 wt ^으로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 실시예 4 상기 실시예 1에서 제 2 알루미나의 함량을 0.12 g(0.12 wt%)으로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 비교예 1
상기 실시예 1에서 제 2 알루미나 입자 대신에, Aerosil 380의 소수성 실리카 입자를 0.1 g(0.1 wt%)으로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 비교예 2
상기 실시예 1에서 제 1 알루미나 입자 대신에, Aerosil 380의 소수성 실리카 입자를 0.1 g(0.1 wt%)으로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 비교예 3
. 상기 실시예 1에서 제 1 알루미나 입자 대신에 Aerosil 380의 소수성 실리카 입자를 0.2 g(0.1 wt%)으로 사용하고, 제 2 알루미나 입자 대신에 Aerosil 380의 소수성 실리카 입자를 0.1 g(0.1 wtD으로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 비교예 4
상기 실시예 1에서 제 2 알루미나 입자를 사용하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 비교예 5
상기 실시예 1에서 제 1 알루미나 입자를 사용하지 않은 것을 제외하고, 실시예 1과.동일한 방법으로 고흡수성 수지를 얻었다. 비교예 6
상기 비교예 3에서 제 2 알루미나 입자를 사용하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 비교예 7
상기 비교예 3에서 제 1 알루미나 입자를 사용하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 비교예 8
상기 실시예 1에서 제 1 및 제 2 알투미나 입자를 모두 사용하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 얻었다. 실시예 1 내지 4 및 비교예 1 내지 8에서 고흡수성 수지 제조 공정 중 표면 가교시 및 표면 가교 직후에 사용되는 무기물에 대한 구체적인 성분 및 함량은 하기 표 1에 나타낸 바와 같다.
[표 1]
표면 가교시 표면 가교 직후 최고온도 에서 추가 口 첨가량 첨가량 표면가교 제품명 丁시百 제품명
(%) (%) 반웅시간
(min)
Aeroxide Aeroxide 40 실시예 1 alumina 0.1 a 1 urn i na 0.1
Alu 130 Alu 130
Aeroxide Aeroxide 45 실시예 2 alumina 0.1 a 1 urn i na 0.1
Alu 130 Alu 130
Aeroxide Aeroxide 40 실시예 3 a 1 urn i na 0.1 a 1 urn i na 0.08
Alu 130 Alu 130
Aeroxide Aeroxide 40 실시예 4 a 1 urn i na 0.1 a 1 urn i na 0.12
Ala 130 Alu 130
Aeroxide Aerosi 1 40 비교예 1 alumina 0.1 si I ica 0.1
Alu 130 380
Aerosi 1 Aeroxide 40 비교예 2 si 1 ica 0.1 a 1 urn i na 0.1
380 Alu 130
Aerosi 1 Aeros i 1 40 비교예 3 si 1 ica 0.1 si I ica 0.1
380 380
Aeroxide 40 비교예 4 a 1 urn i na 0.1 - ―
Alu 130
Aeroxide ― 비교예 5 - ― - alumina 0.1
Alu 130
Aerosi 1 40 비교예 6 si 1 ica 0.1 - - - 380
Aerosi 1
비교예 7 - - - si 1 ica 0.1
380 비교예 8 - - - -
<시험예 >
실시예 1 내지 4 및 비교예 1 내지 8의 고흡수성 수지에 대하여 CRC, Vortex, 0.9AUL, 0.3Gel-vac. , GBP 등의 각 물성은 다음의 방법으로 측정 및 평가하였다. 一
(1) 입경평가
실시예 및 비교예에서 사용된 베이스 수지 분말 및 고흡수성 수지의 입경은 유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정을 하였다.
(2) 원심분리 보수능 (CRC, Centrifuge Retention Capacity)
유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 실시예 및 비교예의 고흡수성 수지에 대하여, 무하중하 흡수배율에 의한 원심분리 보수능 (CRC)을 측정하였다.
즉, 실시예 및 비교예의 수지 W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후에, 상온에 0.9 중량 %의 염화 나트륨 수용액으로 되는 생리 식염수에 침수했다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 ^(g)을 측정했다.
이렇게 얻어진 각 질량올 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.
[계산식 1]
CRC(g/g) = {[W2(g) 一 Kg) - W0(g)]/Wo(g)}
상기 계산식 1에서,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고,
W g)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고,
W2(g)는 상온에서 생라 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여. 250G로 3분간 탈수한 후에 고흡수성 수지를 포함하여 측정한 장치 무게이다.
(3) 가압흡수능 (Absorbing under Pressure, AUP)
― 실시예 및 비교예의 고흡수성 수지에 대하여, 유럽부직포산업협회 (European Di sposables and Nonwovens Assoc i at i on) 규격 EDANA WSP 242.3의 방법에 따라 가압 흡수능 (AUP : Absorbency under Pressure)을 측정하 ¾다.
먼저 , 내경 60 隱의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 23 ± 2°C의 온도 및 45%의 상대 습도 조건하에서 철망상에 실시예 1~4 및 비교예 1~8로 얻어진 수지 W0(g , 0.90 g)을 균일하게 살포하고 그 위에 4.83 kPa(0.7 ps i )의 하중을 균일하게 더 부여할 수 있는 피스톤 (pi ston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 름이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 隱의 페트리 접시의 내측에 직경 125 隱로 두께 5 隱의 유리 필터를 두고, 0.90 중량 1염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 120 隱의 여과지 1장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2에 따라
AUP(g/g)를 산출하여 가압 흡수능을 확인하였다.
[계산식 2]
AUP(g/g) = [f4(g> - W3(g) ] / W0(g)
상기 계산식 2에서,
W0(g)는 고홉수성 수지의 초기 무게 (g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고ᅳ
¾(g)는 하중 (0.7 ps i ) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
(4) 흡수속도 (vortex)
고흡수성 수지의 흡수 속도는, 50 mL의 생리 식염수에 2 g의 고흡수성 수지를 넣고, 600 rpm으로 교반하여 와류 (vortex)가 사라질 때까지의 시간을 초 단위로 측정하였다.
(5) 가압흡수능 (0,9AUL, Absorbency under Load)
생리 식염수에 대한 0.9 ps i의 가압 흡수능 (AUL)은 EDANA 법 WSP 242.2의 방법에 따라 측정되었다. 구체적으로, 내경이 25 隱인 플라스틱 원통 하단에 스테인리스제 400 mesh 스크린을 장착하였다. 그리고, 상온 및 50%의 습도 하에서 상기 스크린에 가압 흡수능을 측정하고자 하는 고흡수성 수지 W0(g, 약 0. 16g)를 균일하게 살포하였다. 이어서, 상기 고흡수성 수지 위에 6.3 kPa (0.9 ps i )의 하중을 균일하게 부여할 수 있는 피스톤올 부가하였다. 이때, 피스톤으로는 외경이 25 瞧보다 약간 작아 원통의 내벽과 름이 없으며, 상하로 자유롭게 움직일 수 있도록 제작된 것을 사용하였다. 그리고, 이렇게 준비된 장치의 무게 (g)를 측정하였다. 이어서, 직경 150 隱의 페트리 접시의 내측에 직경 90 隱, 두께 5 隱의 유리 필터를 넣고, 상기 페트리 접시에 0.9 중량 %의 생리 식염수를 부었다. 이때, 생리 식염수의 수면이 유리 필터의 윗면과 수평이 될 때까지 생리 식염수를 부었다. 그리고, 유리 필터 위에 직경 90 mm의 여과지 1장을 놓았다. 이어서, 여과지 위에 준비된 장치를 얹어 장치 내의 고흡수성 수지가 하중 하에서 생리 식염수에 의해 팽윤되도록 하였다. 1 시간 후, 팽윤된 고흡수성 수지가 담긴 장치의 무게 W6(g)를 측정하였다. 이렇게 측정된 부게를 ' 이용하여 다음의 계산식 3에 따라 가압 흡수능을 산출하였다.
[계산식 3]
AUL(g/g) = [W6(g) - W5(g) ] / W0(g)
상기 계산식 3에서,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고,
W5(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고,
W6(g)는 하중 (0.9 ps i ) 하에 1 시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
(6) 5분의 0.3 Gel -Vacuum AUL (0.3Gel-vac. 5min)
내경이 25 隱인 플라스틱 원통 하단에 스테인리스제 400 mesh 스크린을 장착하였다. 그리고, 상온 및 50%의 습도 하에서 상기 스크린에 5분의 Ge l -Vacuum AUL을 측정하고자 하는 고흡수성 수지 W0(g)를 균일하게 살포하였다ᅳ 이어서, 상기 고흡수성 수지 위에 0.3 ps i의 하증을 균일하게 부여할 수 있는 피스톤을 부가하였다. 이때, 피스톤으로는 외경이 25 画보다 약간 작아 원통의 내벽과 틈이 없으며, 상하로 자유롭게 움직일 수 있도록 제작된 것을 사용하였다. 그리고, 이렇게 준비된 장치의 무게 W7(g)를 측정하였다. 이어서, 직경 150 iiini의 페트리 접시의 내측에 직경 90 mm , 두께 5 瞧의 유리 필터를 넣고, 상기 페트리 접시에 0.9 중량 %의 생리 식염수를 부었다. 이때, 생리 식염수의 수면이 유리 필터의 윗면과 수평이 될 때까지 생리 식염수를 부었다. 그리고, 유리 필터 위에 직경 90 画의 여과지 1장을 놓았다. 이어서, 여과지 위에 준비된 장치를 얹어 장치 내의 고흡수성 수지가 하중 하에서 생리 식염수에 의해 팽윤되도록 하였다. 5분 후, 진공 펌프를 이용하여 잔여 액체를 제거하였다. 이때, 팽윤된 고흡수성 수지 입자들 사이의 흡수되지 않은 잔여 액체가 제거되었다. 아후, 고흡수성 수지가 담긴 장치의 무게 W8(g)를 측정하였다. 이렇게 측정된 무게를 이용하여 다음의 계산식 4에 따라 5분의 Ge l-Vacuum AUL을 산출하였다.
[계산식 4]
5분의 Ge l -Vacuum AUL(g/g) = [W8(g) - W7(g) ] / W0(g)
상기 계산식 4에서
W0(g)는 고흡수성 수지의 초기 무게 (g)이고,
W7(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고,
W8(g)는 하중 (0.3 ps i ) 하에 5분 동안 상기 고흡수성 수지에 생리 식염수를 흡수시키고, 잔여 액체를 진공 장치로 제거한 후에 측정한 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
. (7) 겔 베드 투과율 (GBP , Ge l Bed Permeabi l i ty)
생리 식염수에 대한 자유 팽윤 겔 베드 투과율 (GBP)은 한국특허 출원번호 제 10— 2014-7018005호에 기재된 이하의 방법에 따라 측정되었다. 구체적으로, 자유 팽윤 GBP를 측정하기 위해 도 1 내지 도 3에 도시한 장치를 이용하였다. 우선, 추 (548)가 장치된 플런저 (536)를 빈 샘플 용기 (530) 안에 위치시키고, 적합한 게이지를 사용하여 정확도 0.이隱까지, 추 (548)의 상부로부터 샘플 용기 (530)의 바닥까지의 높이를 측정하였다. 측정하는 동안, 두께 게이지가 인가하는 힘은 약 0.74N 미만으로 조절되었다. 한편, GBP를 측정하고자 하는 고흡수성 수지 중 미국 표준 30 mesh 스크린은 통과하고, 미국 표준 50 mesh 스크린 위에는 유지되는 고흡수성 수지를 선별하여 입경이 300 내지 600 인 고흡수성 수지를 얻었다. 이렇게 분급된 약 2.0 g의 고흡수성 수지를 샘플 용기 (530) 안에 넣고, 샘플 용기의 바닥 위에 골고루 펼쳤다. 이어서, 플런저 (536)와 추 (548)가 포함되자 않은 상태의 이 용기를 0.9% 생리 식염수 속에 약 60분간 담가 무가압 하에서 고흡수성 수지를 팽윤시켰다. 아때, 샘플 용기 (530)가 액체 저장소의 바닥보다 약간 올라오도록 샘플 용기 (530)를 액체.저장소 내에 위치된 mesh 위에 올려 놓았으며, 상기 mesh로는 샘플 용기 (530)로의 생리 식염수의 이동에 영향을 미치지 않는 것을 사용하였다. 포화되는 동안 생리 식염수의 높이를 샘플 용기 내의 표면이 ^리 식염수가 아니라 팽윤된 고흡수성 수지에 의해 규정되도록 조절하였다. 이 기간의 종료시에, 플런저 (536)와 추 (548)의 조립체를 샘플 용기 (530) 내의 팽윤된 고흡수성 수지 (568) 위에 을려놓은 다음, 샘플 용기 (530), 플런저 (536), 추 (548) 및 팽윤된 고흡수성 수지 (568)를 용액으로부터 꺼냈다. 이후, GBP 측정하기 전에, 샘플 용기 (530) , 플런저 (536), 추 (548) 및 팽윤된 고흡수성 수지 (568)를 편평하고 큰 그리드의 균일한 두께의 비-변형성 플레이트 상에 약 30초 동안 그대로 두었다. 그리고, 앞서 사용한 것과 동일한 두께 게이지를 사용하여, 추 (548)의 상부로부터 샘플 용기 (530)의 바닥까지의 높이를 다시 측정하였다. 그리고, 앞서 추 (548)가 장치된 플런저 (536)를 빈 샘플 용기 (530) 안에 위치시킨 장치의 높이 측정값을 팽윤된 '고흡수성 수지 (568)가 포함된 장치의 높이 측정값에서 제하여 팽윤된 고흡수성 수지의 두께 혹은 높이 "H"를 구하였다.
GBP 측정을 위해, 팽윤된 고흡수성 수지 (568), 플런저 (536) 및 추 (548)가 들어 있는 샘플 용기 (530) 안으로 으 9 중량 생리 식염수를 유동시켰다. 생리 식염수가 실린더 (534)의 상부로 오버플로우되도록 샘플 용기 (530) 안으로의 생리 식염수의 유량 ( f low rate)을 조정하여 샘플 용기 (530)의 높이와 동등한 일관된 헤드 압력이 나타나도록 하였다. 그리고, 저울 (602) 및 비커 (603)를 사용하여, 팽윤된 고흡수성 수지 (568)를 통과하는 용액의 양 대 시간을 중량측정법으로 측정하였다. 일단 오버플로우가 시작되면, 60초 이상 동안 매초마다 저울 (602)로부터 데이터 포인트들을 수집하였다. 팽윤된 고흡수성 수지 (568)를 통과하는 유량 (Q)은, 팽윤된 고흡수성 수지 (568)를 통과하는 유체 (g) 대 시간 ( sec)의 선형 최소제곱 적합 ( l inear least-square f i t )에 의해 g/sec 단위로 결정하였다. 이렇게 얻어진 데이터 값을 이용하여 다음의 계산식 5에 따라 상기 GBP(cm2)를 산출하였다.
[계산식 5]
K = [Q X H X μ ] / [A x p x Ρ]
상기 계산식 5에서,
Κ는 겔 베드 투과율 (cm2)이고,
Q는 유량 (g/sec)이고,
H는 팽윤된 고흡수성 수지의 높이 (cm)이고,
μ는 액체 점도 (Ρ) (이번 시험에 사용한 생리 식염수의 점도는 약 lcP)이고,
A는 액체 유동에 대한 단면적 (이번 시험에 사용한 샘플 용기에 대해서는 28.27cuf)이고,
p는 액체 밀도 (g/cm3) (이번 시험에 사용한 생리 식염수에 대해서는 약 1 g/cm3)이고,
P는 정수압 (dyne/cm2) (정상작으로는약 7 , 797dyne/cm2)이다. 정수압은 식 P = p g h로부터 계산되며 , 여기서 p는 액체 밀도 (g/cm3)이고, g는 증력 가속도 (공칭적으로는 981cm/sec2)이고, h는 유체 높이 (예를 들면, 본 명세서에 기재된 GBP 시험에 대해서는 7.95cm)이다. 최소 2개의 샘플을 시험하고, 그 결과를 평균하여 고흡수성 수자의 자유 팽윤 GBP를 결정하고, 단위를 darcy로 변환 ( ldarcy = 0.98692 x 10 cm2)하였다. 실시예 1 내지 4 비교예 1 내지 8의 고흡수성 수지에 대하여 측정된 물성값은 하기 표 2에 나타낸 바와 같다.
[표 2]
Figure imgf000033_0001
실시예 1 30.8 35 19.8 20.3 74 실시예 2 30.4 30 20.8 20.0 84 실시예 3 30.2 32 21. 1 20.8 60 실시예 4 29.8 32 21.2 20.4 73 비교예 1 30.5 43 19.7 19.8 63 비교예 2 30.2 38 18.9 20.2 60 비교예 3 30.5 39 17.2 20.4 57 비교예 4 30.5 45 22.3 21.0 24 비교예 5 30.5 42 20. 1 20.9 44 비교예 6 30.5 44 20.7 21.4 29 비교예 7 30.4 42 19.8 20.0 . 36 비교예 8 ' 30.5 50 24 18.9 13 상기 표 2에 나타낸 바와 같이 , 본 발명에 따라 표면 가교시 및 가교 직후에 특정한 알루미나 입자를 사용하여 고흡수성 수지를 제조할 경우에, 보수능과 가압 흡수능 등의 흡수 성능이 우수하게 유지되며, 보다 향상된 통액성 및 흡수 속도 등을 확보할 수 있음을 알 수 있다. 특히, 실시예 1 내지 4의 고흡수성 수지의 경우에는, 원심분리 보수능 (CRC)가 29.8 내지 30.8 g/g이며 가압 흡수능 (0.9AUL)은 19.8 내지 21.2 g/g으로 우수한 정도로 유지함과 동시에, 흡수속도 (vortex)가 30 내지 35초이며, 가압하 흡수속도 (0.3Gel-vac . )는 20.0 g/g 이상 또는 20.0 내지 20.8 g/g이 될 수 있고, 겔 베드 투과율 (GBP)은 60 내지 84 darcy으로 현저히 향상되었음을 알 수 있다.
반면에, 기존의 방식으로 1종의 알루미나 입자를 사용하거나 실리카 입자를 사용한 비교예 1 내지 8의 경우에는 보수능과 가압 흡수능 등의 흡수 성능이 저하되거나, 용액 투과성과 뭉침 방지 또는 흡수 속도가 현저히 저하되었음을 알 수 있다.

Claims

【청구범위】
【청구항 1】
내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 증합하여 가교 증합체를 포함하는 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계;
제 1 알루미나 입자의 존재 하에, 탄소수 2 내지 5의 알킬렌 카보네이트, 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디올, 트리올, 또는 폴리올, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 디에폭시, 트리에폭시, 또는 폴리에폭시로 이루어진 군에서 선택된 1종 이상의 표면 가교제를 포함하는 표면 가교액을 사용하여 상기 베이스 수지 분말을 표면 가교하는 단계; 및
상기 표면 가교된 고흡수성 수지에 제 2 알루미나 입자를 첨가한 후 혼합하는 단계 ;
를 포함하는 고흡수성 수지의 제조 방법 .
【청구항 2】 —
제 1항에 있어서, ,
상기 표면 가교 단계는 상기 제 1 알루미나 입자, 및 상기 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함하는 고흡수성 수지의 제조 방법. 【청구항 3】
제 1항에 있어서,
상기 표면 가교 단계는 상기 베이스 수지 분말 상에 제 1 알루미나 입자를 고체 상태로 첨가하여 처리하는 단계; 및
상기 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함하는 고흡수성 수지의 제조 방법 .
【청구항 4】
제 1항에 있어서,
상기 제 1 알루미나 입자는 물에
갖는 것인 고흡수성 수지의 제조 방법.
【청구항 5】
제 1항에 있어서:
상기 제 1 알루미나 입자는 상기 베이스 수지의 100 중량부에 대해,
0.001 내지 1.0 중량부의 함량으로 사용되는 고흡수성 수지의 제조 방법.
【청구항 6】
제 1항에 있어서,
상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2- 메타크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2- 히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν , Ν)- 디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν , Ν)- 다메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지의 제조 방법 .
【청구항 7】
제 1항에 있어서,
상기 내부 가교제는 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 ■ 12의 폴리에틸렌글리콜을 포함하는 비스 (메트)아크릴아미드, 탄소수 2 내지 ■ 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 폴리올의 폴리 (메트)아크릴레이트, 및 탄소수 2 내지 12의 알킬기 또는 탄소수 2 내지 12의 폴리에틸렌글리콜을 포함하는 폴리올의 폴리 (메트)알릴에테르로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지의 제조 방법 .
. 【청구항 8】
제 1항에 있어서,
상기 베이스 수지 분말은 150 내지 850 의 입경을 갖도록 분쇄 및 분급되는 고흡수성 수지의 제조 방법 .
【청구항 9】
제 1항에 있어서,
상기 표면 가교 단계는 20 °C 내지 130 °C의 초기 온도에서 10 분 내지 30 분에 걸쳐 140 °C 내지 200 °C의 최고 온도로 승은하고, 상기 최고 온도를 5 분 내지 60 분 동안 유지하여 열처리함으로서 진행되는 고흡수성 수지의 제조 방법. 【청구항 10
제 1항에 있어서,
상기 제 2 알루미나 입자는 물에 대해 10° 내지 150° 의 접촉각을 갖는 것인 고흡수성 수지의 제조 방법. 【청구항 11】
제 1항에 있어서,
상기 제 2 알루미나 입자는 상기 표면 가교된 고흡수성 수지 100 중량부에 대해, 0.05 내지 ' 0.5 중량부의 함량으로 사용되는 고흡수성 수지의 제조 방법 . 【청구항 12】
제 1항에 있어서,
상기 게 2 알루미나 입자의 흔합은 100 내지 3000 RPM의 속도로 수행하는 고흡수성 수지의 제조 방법.
[청구항 13】
제 1항에 있어서,
상기 제 2 알루미나 입자의 흔합은 2초 내지 3분간 수행하는 고흡수성 수지의 제조 방법 .
PCT/KR2016/006263 2016-03-25 2016-06-13 고흡수성 수지의 제조 방법 WO2017164459A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/755,340 US10653812B2 (en) 2016-03-25 2016-06-13 Method of preparing superabsorbent polymer
CN201680050459.XA CN107922636B (zh) 2016-03-25 2016-06-13 制备超吸收性聚合物的方法
EP16895585.4A EP3318596B1 (en) 2016-03-25 2016-06-13 Method of preparing superabsorbent polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0036380 2016-03-25
KR1020160036380A KR101959547B1 (ko) 2016-03-25 2016-03-25 고흡수성 수지의 제조 방법

Publications (1)

Publication Number Publication Date
WO2017164459A1 true WO2017164459A1 (ko) 2017-09-28

Family

ID=59899658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006263 WO2017164459A1 (ko) 2016-03-25 2016-06-13 고흡수성 수지의 제조 방법

Country Status (5)

Country Link
US (1) US10653812B2 (ko)
EP (1) EP3318596B1 (ko)
KR (1) KR101959547B1 (ko)
CN (1) CN107922636B (ko)
WO (1) WO2017164459A1 (ko)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
CN103347561B (zh) 2010-12-08 2016-09-07 康沃特克科技公司 用于评估伤口分泌液的集成系统
EP2648794B1 (en) 2010-12-08 2019-08-28 ConvaTec Technologies Inc. Wound exudate system accessory
GB201115182D0 (en) 2011-09-02 2011-10-19 Trio Healthcare Ltd Skin contact material
GB2497406A (en) 2011-11-29 2013-06-12 Webtec Converting Llc Dressing with a perforated binder layer
JP2016507663A (ja) 2012-12-20 2016-03-10 コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc 化学修飾セルロース系繊維の加工
TW201800069A (zh) 2016-03-30 2018-01-01 康華特科技有限公司 傷口中微生物感染檢測方法
EP3436820A2 (en) 2016-03-30 2019-02-06 Qualizyme Diagnostics GmbH&Co KG Detecting microbial infection in wounds
KR20190028467A (ko) 2016-07-08 2019-03-18 컨바텍 테크놀러지스 인크 체액 수집 장치
TW201805035A (zh) 2016-07-08 2018-02-16 美商康瓦鐵克科技股份有限公司 流體流動感測
KR20190026858A (ko) 2016-07-08 2019-03-13 컨바텍 테크놀러지스 인크 가요성 부압 시스템
KR102162503B1 (ko) 2016-12-23 2020-10-06 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102094453B1 (ko) * 2016-12-23 2020-03-27 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102086052B1 (ko) 2016-12-27 2020-03-06 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
JP6901588B2 (ja) 2017-12-08 2021-07-14 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
KR102364365B1 (ko) 2017-12-08 2022-02-17 주식회사 엘지화학 신규한 가교제 화합물 및 이를 이용하여 제조되는 중합체
KR102568226B1 (ko) 2017-12-11 2023-08-18 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
WO2019117511A1 (ko) * 2017-12-11 2019-06-20 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102498238B1 (ko) * 2017-12-14 2023-02-08 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102417079B1 (ko) 2018-03-30 2022-07-05 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
WO2019190120A1 (ko) * 2018-03-30 2019-10-03 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102202059B1 (ko) 2018-05-11 2021-01-12 주식회사 엘지화학 고흡수성 수지 시트의 제조 방법
KR102457232B1 (ko) 2018-09-27 2022-10-20 주식회사 엘지화학 고흡수성 수지 시트의 제조 방법
KR102418591B1 (ko) 2018-11-13 2022-07-07 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102422636B1 (ko) 2018-12-10 2022-07-19 주식회사 엘지화학 고흡수성 수지의 제조 방법
US11827729B2 (en) * 2018-12-17 2023-11-28 Maruzen Petrochemical Co., Ltd. Method for producing polyvinylphosphonic acid copolymer
US11331221B2 (en) 2019-12-27 2022-05-17 Convatec Limited Negative pressure wound dressing
US11771819B2 (en) 2019-12-27 2023-10-03 Convatec Limited Low profile filter devices suitable for use in negative pressure wound therapy systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990027352A (ko) * 1997-09-29 1999-04-15 이종학 필러 함유 고흡수성 고분자의 제조방법
KR100873455B1 (ko) * 2003-04-25 2008-12-11 에보닉 스톡하우젠, 인코포레이티드 투과성이 높은 초흡수성 중합체
KR20130018350A (ko) * 2013-01-09 2013-02-20 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20140107491A (ko) * 2011-12-30 2014-09-04 에보닉 코포레이션 초흡수성 중합체 및 가교제 조성물에 대한 공정
KR20160016714A (ko) * 2014-08-04 2016-02-15 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164459A (en) 1990-04-02 1992-11-17 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treating the surface of an absorbent resin
US5419956A (en) 1991-04-12 1995-05-30 The Procter & Gamble Company Absorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials mixed with inorganic powders
US5610208A (en) * 1994-02-17 1997-03-11 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
JP2000342963A (ja) 1995-09-01 2000-12-12 Nippon Shokubai Co Ltd 吸収剤組成物およびその製造方法、並びに、吸収剤組成物を含む吸収物品
US6124391A (en) 1998-08-18 2000-09-26 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having anti-caking characteristics
JP2002226599A (ja) 2001-02-05 2002-08-14 Sanyo Chem Ind Ltd 吸水性樹脂の製造法
JP4199679B2 (ja) 2004-01-07 2008-12-17 株式会社日本触媒 吸水性樹脂組成物およびその製造方法、並びに、それらを用いた吸収体、吸収性物品
DE102005062929A1 (de) * 2005-12-29 2007-07-05 Basf Ag Herstellung eines wasserabsorbierenden Harzes unter Einmischen eines wasserabsorbierenden Harzpulvers
US8596931B2 (en) 2007-03-29 2013-12-03 Nippon Shokubai Co., Ltd. Particulate water absorbing agent and method for producing the same
KR20110006771A (ko) 2009-07-15 2011-01-21 주식회사 엘지화학 고흡수성 수지의 제조 방법
EP2797971B1 (en) 2011-12-30 2018-12-05 Evonik Corporation Process to make superabsorbent polymers with specific internal crosslinkers
KR20140144259A (ko) 2012-03-30 2014-12-18 바스프 에스이 색 안정적 초흡수체
CN104619755B (zh) 2012-09-11 2019-03-15 株式会社日本触媒 聚丙烯酸(盐)系吸水剂的制造方法及其吸水剂
JP5952431B2 (ja) * 2013-01-29 2016-07-13 株式会社日本触媒 吸水性樹脂材料及びその製造方法
KR20140134219A (ko) * 2013-05-13 2014-11-21 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
US9950308B2 (en) 2013-08-01 2018-04-24 Lg Chem, Ltd. Superabsorbent polymer
KR20150064649A (ko) * 2013-12-03 2015-06-11 주식회사 엘지화학 고흡수성 수지의 제조방법
WO2015084059A1 (ko) 2013-12-03 2015-06-11 주식회사 엘지화학 고흡수성 수지의 제조방법
CN105612187B (zh) 2013-12-03 2017-12-26 株式会社Lg化学 超吸收性聚合物及其制备方法
US20150283284A1 (en) * 2014-04-07 2015-10-08 Evonik Corporation Superabsorbent polymer having fast absorption
KR20160004967A (ko) 2014-07-04 2016-01-13 한화케미칼 주식회사 고흡수성 수지 및 이의 제조 방법
KR101960042B1 (ko) * 2016-03-24 2019-03-19 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990027352A (ko) * 1997-09-29 1999-04-15 이종학 필러 함유 고흡수성 고분자의 제조방법
KR100873455B1 (ko) * 2003-04-25 2008-12-11 에보닉 스톡하우젠, 인코포레이티드 투과성이 높은 초흡수성 중합체
KR20140107491A (ko) * 2011-12-30 2014-09-04 에보닉 코포레이션 초흡수성 중합체 및 가교제 조성물에 대한 공정
KR20130018350A (ko) * 2013-01-09 2013-02-20 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20160016714A (ko) * 2014-08-04 2016-02-15 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318596A4 *

Also Published As

Publication number Publication date
US10653812B2 (en) 2020-05-19
EP3318596A4 (en) 2018-07-25
EP3318596B1 (en) 2019-10-09
CN107922636B (zh) 2021-04-13
KR20170111295A (ko) 2017-10-12
US20180243464A1 (en) 2018-08-30
KR101959547B1 (ko) 2019-03-18
EP3318596A1 (en) 2018-05-09
CN107922636A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017164459A1 (ko) 고흡수성 수지의 제조 방법
KR102075737B1 (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
KR102069312B1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
US11633719B2 (en) Superabsorbent polymer composition and method for preparing the same
WO2016204458A1 (ko) 고흡수성 수지
WO2016204390A1 (ko) 고흡수성 수지의 제조 방법
KR102086053B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2018124550A1 (ko) 다공성 고흡수성 수지의 제조방법
WO2018110758A1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102447936B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102075733B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2018110760A1 (ko) 고흡수성 수지 및 이의 제조 방법
JP6837139B2 (ja) 高吸水性樹脂およびその製造方法
JP2019518839A (ja) 高吸水性樹脂およびその製造方法
KR102086052B1 (ko) 고흡수성 수지 및 이의 제조 방법
CN108884240B (zh) 用于制造超吸收性聚合物的方法及超吸收性聚合物
KR102075738B1 (ko) 고흡수성 수지
JP2021518874A (ja) 高吸水性樹脂およびその製造方法
WO2019117541A1 (ko) 고흡수성 수지 및 이의 제조 방법
KR101668856B1 (ko) 고흡수성 수지의 제조 방법
KR20210037450A (ko) 고흡수성 수지의 제조 방법
JP2020505477A (ja) 高吸水性樹脂およびその製造方法
WO2019083211A9 (ko) 고흡수성 수지의 제조 방법
WO2017155197A1 (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
WO2017171208A1 (ko) 고흡수성 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016895585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15755340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE