KR20150064649A - 고흡수성 수지의 제조방법 - Google Patents

고흡수성 수지의 제조방법 Download PDF

Info

Publication number
KR20150064649A
KR20150064649A KR1020140066046A KR20140066046A KR20150064649A KR 20150064649 A KR20150064649 A KR 20150064649A KR 1020140066046 A KR1020140066046 A KR 1020140066046A KR 20140066046 A KR20140066046 A KR 20140066046A KR 20150064649 A KR20150064649 A KR 20150064649A
Authority
KR
South Korea
Prior art keywords
superabsorbent resin
polymer
surface cross
water
fine particles
Prior art date
Application number
KR1020140066046A
Other languages
English (en)
Inventor
이승모
김영삼
오경실
양영인
김예훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/907,470 priority Critical patent/US9700871B2/en
Priority to EP14867984.8A priority patent/EP3078678B1/en
Priority to PCT/KR2014/011788 priority patent/WO2015084059A1/ko
Priority to KR1020140172232A priority patent/KR101507287B1/ko
Priority to RU2016105746A priority patent/RU2636941C1/ru
Priority to JP2016557857A priority patent/JP6449902B2/ja
Priority to CN201480045362.0A priority patent/CN105722863B/zh
Publication of KR20150064649A publication Critical patent/KR20150064649A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels

Abstract

본 발명은 a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계;
b) 상기 함수겔상 중합체를 건조하는 단계;
c) 상기 건조된 함수겔상 중합체를 분쇄하는 단계;
d) 상기 분쇄된 함수겔상 중합체에 하기 ⅰ) 내지 ⅳ)의 특성을 갖는 다공성 초소수성 미세입자와 표면 가교제를 첨가하는 단계; 및
e) 표면 가교 반응을 진행하는 단계를 포함하는 고흡수성 수지의 제조방법에 관한 것이다.
ⅰ) 입도가 2 ㎚ ~ 50 ㎛의 입도,
ⅱ) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),
ⅲ) 물에 대한 접촉각이 125°이상의 초소수성,
ⅳ) 50% 이상의 공극률(porosity)

Description

고흡수성 수지의 제조방법{a Method for Preparing of the Superabsorbent Polymer (SAP) Resin}
본 발명은 고흡수성 수지의 제조방법에 관한 것으로서, 보다 자세하게는 고흡수성 수지 상에 초소수성 미세입자가 도입된 고흡수성 수지의 제조방법에 관한 것이다.
고흡수성 수지(Superabsorbent Polymers, SAPs)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로, 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀, 생리용 위생재 등의 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
이러한 고흡수성 수지의 제조공정에서 물은 중합 매체이며, 표면가교과정에서 가교액의 분산을 용이하게 하는 등 다양하게 사용된다. 또한 최종 제품의 잔류 수분은 수지에 대한 정전기 방지제 및 가소제의 역할을 하여, 응용공정에서 아주 작은 고흡수성 수지 미립자 (dust) 형성을 억제하고 SAPs 입자의 분쇄를 방지한다. 그러나 일반적으로, 고흡수성 수지에 소량이라 할지라도 물을 첨가 시, 표면에 흡수된 물에 의하여 수지 표면의 점도가 (stickiness) 증가하며, 고흡수성 수지 입자 간의 비가역적 응집이 (irreversible agglomeration) 발생하게 된다. 이러한 점도 증가와 응집은, 제조 및 응용공정에서의 부하증가 등 가공성 (processability)을 감소시키며, 결과적으로 고흡수성 수지의 입도 증가, 물성 감소 및 생산성의 저하를 유발하게 된다. 지금까지, 고흡수성 수지에 대한 연구는 중합 공정 및 이를 통한 흡수능 향상, 그리고 고흡수성 수지의 표면 특성 또는 가압 흡수능의 증가를 위한 표면 가교에 대한 연구가 주를 이루었으며, 투과도의 향상 또는 고흡수성 수지의 보관 시에 굳는 것을 방지(anti-caking) 등 일부 문제해결을 위하여 표면 특성 변화 연구가 진행된 바 있다.
이와 관련하여, 종래에는 한국 공개 특허 제 2012-0081113호 등에서, 수불용성 무기 미립자를 포함하는 흡수성 수지의 제조방법 등을 개시하고 있으나, 이러한 종래의 기술로는 고흡수성 수지의 표면의 수분이 증가하면, 표면의 점도가 증가하게 되어 위에서 언급한 응집, 가공성 및 생산성의 감소가 발생하는 등의 문제가 발생하여, 고함수율과 고가공성을 동시에 만족하는 고흡수성 수지에 대한 개발의 필요성이 요구되고 있는 실정이다.
한국 공개특허 2012-0081113호
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서,
고흡수성 수지의 표면을 소수성으로 개질하여 수분 흡수에 따른 점도 및 응집도를 감소함으로써, 가공성 증가를 통한 제조 공정에서의 부하감소 및 입도 및 물성 제어를 용이하게 하고, 고함수율과 고가공성을 동시에 만족하게 함으로써, 응용공정에서의 수지 파손에 따른 물성저하를 최소화할 수 있는 다공성 초소수성 미세입자가 도입된 고흡수성 수지의 제조방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명은,
a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계; b) 상기 함수겔상 중합체를 건조하는 단계; c) 상기 건조된 함수겔상 중합체를 분쇄하는 단계; d) 상기 분쇄된 함수겔상 중합체에 하기 ⅰ) 내지 ⅳ)의 특성을 갖는 다공성 초소수성 미세입자와 표면 가교제를 첨가하는 단계; 및 e) 표면 가교 반응을 진행하는 단계를 포함하는 고흡수성 수지의 제조방법을 제공한다.
ⅰ) 입도가 2 ㎚ ~ 50 ㎛의 입도,
ⅱ) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),
ⅲ) 물에 대한 접촉각이 125°이상의 초소수성,
ⅳ) 50% 이상의 공극률(porosity)
본 발명에 따른 고흡수성 수지의 제조방법에 의하면, 고흡수성 수지의 표면을 소수성으로 개질하여 수분 흡수에 따른 점도 및 응집도를 감소함으로써, 가공성 증가를 통한 제조 공정에서의 부하감소 및 입도 및 물성 제어를 용이하게 하고, 고함수율과 고가공성을 동시에 만족하게 함으로써, 응용공정에서의 수지 파손에 따른 물성저하를 최소화할 수 있다는 장점이 있다.
이하, 본 발명을 상세하게 설명한다.
본 발명에 따른 고흡수성 수지의 제조방법은,
a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계; b) 상기 함수겔상 중합체를 건조하는 단계; c) 상기 건조된 함수겔상 중합체를 분쇄하는 단계; d) 상기 분쇄된 함수겔상 중합체에 하기 ⅰ) 내지 ⅳ)의 특성을 갖는 다공성 초소수성 미세입자와 표면 가교제를 첨가하는 단계; 및 e) 표면 가교 반응을 진행하는 단계를 포함한다.
ⅰ) 입도가 2 ㎚ ~ 50 ㎛의 입도,
ⅱ) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),
ⅲ) 물에 대한 접촉각이 125°이상의 초소수성,
ⅳ) 50% 이상의 공극률(porosity)
먼저, 본 발명에 따른 고흡수성 수지의 제조 방법은 a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계를 거친다.
본 발명의 고흡수성 수지 제조를 위해서는, 당해 기술 분야에서 통상 사용되는 단계 및 방법으로 중합체를 준비할 수 있다. 구체적으로, 본 발명의 고흡수성 수지 제조에 있어서, 상기 단량체 조성물은 중합개시제를 포함하는데, 중합 방법에 따라 광중합 방법에 의할 경우에는 광중합 개시제를 포함하고, 열중합 방법에 의할 경우에는 열중합 개시제 등을 포함할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.
본 발명에 따른 고흡수성 수지의 제조 방법에 사용되는 열중합 개시제는 특별한 제한은 없으나, 바람직하게는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2, 2-아조비스-(2-아미디노프로판)이염산 염(2, 2-azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스-(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2, 2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭산)(4,4-azobis-(4-cyanovaleric acid)) 등을 사용할 수 있다.
또한, 본 발명에 따른 고흡수성 수지의 제조 방법에 사용되는 광중합 개시제로는 특별한 제한은 없으나, 바람직하게는 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다.
또한, 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 상기 수용성 에틸렌계 불포화 단량체로는 고흡수성 수지의 제조에 통상 사용되는 단량체라면 특별한 제한은 없으나, 바람직하게는 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체, 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상을 사용할 수 있다. 구체적으로는 아크릴산, 메타아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄술폰산, 2-메타아크릴로일에탄술폰산, 2-(메타)아크릴로일프로판술폰산, 또는 2-(메타)아크릴아미드-2-메틸프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N-치환(메타)아크릴레이트, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 메톡시폴리에틸렌글리콜(메타)아크릴레이트 또는 폴리에틸렌 글리콜(메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N, N)-디메틸아미노에틸(메타)아크릴레이트 또는 (N, N)-디메틸아미노프로필(메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 바람직하게 사용할 수 있고, 더욱 바람직하게는 아크릴산 또는 그 염을 사용할 수 있는데, 아크릴산 또는 그 염을 단량체로 하는 경우, 특히 흡수성이 향상된 고흡수성 수지를 얻을 수 있다는 장점이 있다.
그리고, 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 자원 재활용에 따른 효과를 위해 상기 단량체 조성물에는 제조된 고흡수성 수지 분말 중 미분, 즉 입도가 150㎛ 미만인 중합체 또는 수지 분말을 일정량 포함시킬 수 있으며, 구체적으로는 단량체 조성물의 중합 반응 시작 전, 또는 중합 반응 시작 후 초기, 중기, 말기 단계에서 상기 입도가 150㎛ 미만인 중합체 또는 수지 분말을 추가할 수 있다. 이 때 추가 가능한 양은 한정은 없으나, 단량체 수지 조성물에 포함된 단량체 100 중량부에 대해 1 내지 10 중량부를 추가하는 것이 최종 제조되는 고흡수성 수지의 물성 저하 방지를 위해 바람직하다.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 단량체 조성물 중 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 선택하여 사용할 수 있으나, 바람직하게는 40 내지 55 중량%로 할 수 있다. 수용성 에틸렌계 불포화 단량체의 농도가 40 중량% 미만인 경우, 경제성 면에서 불리하며, 55 중량% 초과하는 경우, 중합 된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타날 수 있다.
이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 방법 또한 통상 사용 되는 중합 방법이면, 그 구성의 한정이 없다. 구체적으로, 중합 방법은 중합 에너지 원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행 될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.
예를 들어, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 입도가 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이때, 중합체 시트의 두께는 주입되는 모노머 조성물의 농도 및 주입속도에 따라 달라지나, 통상 0.5 내지 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.
이 후, 본 발명에 따른 고흡수성 수지의 제조 방법은 b) 상기 함수겔상 중합체를 건조하는 단계를 거친다.
상기 a) 단계에서 얻어진 함수겔상 중합체의 통상 함수율은 30 내지 60 중량%이다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해, 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의하는데, 이때, 건조 조건은 상온에서 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.
본 명세서 전체에서 "건조 온도"는 건조를 위해 공급되는 열매체의 온도 또는 건조 공정에서 열매체 및 중합체를 포함한 건조 반응기의 온도로 정의될 수 있으며, 이러한 건조 단계는 바람직하게 상기 건조단계의 건조 온도는 150℃ 내지 250℃일 수 있고, 더욱 바람직하게는 160℃ 내지 200℃의 온도에서 진행될 수 있다.
건조 온도가 150℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하 될 우려가 있고, 건조 온도가 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 한편, 건조 시간의 경우에는 그 구성의 한정은 없으나 공정 효율 등을 고려하여, 20분 내지 90분 동안 진행될 수 있다.
그리고, 이와 같은 건조 단계의 건조 방법 역시, 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 0.1 내지 10 중량%일 수 있다.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법은 건조 단계의 효율을 높이기 위하여, 필요에 따라서, 건조 단계의 전에 간단히 분쇄하는 단계를 더 거칠 수 있다. 상기 건조 단계의 전에 간단히 분쇄하는 단계는 함수겔상 중합체의 중합체의 입도가 1mm 내지 15mm로 되도록 분쇄할 수 있다. 이 때, 중합체의 입도가 1mm 미만이 되게 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 어려우며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있으며, 입도가 15mm 초과하도록 분쇄하는 경우, 분쇄에 따른 추후 건조 단계 효율 증대의 효과가 미미해진다.
상기 건조 단계의 전에 간단히 분쇄하는 단계에 있어서, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이와 같이 건조 단계 전에 건조 효율을 높이기 위해서 분쇄하는 단계를 거치는 경우, 함수율이 높은 중합체로 인해, 분쇄기 표면에 들러붙는 현상이 나타날 수도 있다. 따라서, 이와 같은 함수겔상 중합체의 건조 전 분쇄 단계의 효율을 높이기 위해, 분쇄 시, 들러붙는 것을 방지할 수 있는 첨가제 등을 추가로 사용할 수 있다. 구체적으로 사용 가능한 첨가제의 종류는 그 구성의 한정은 없으나, 스팀, 물, 계면활성제, 클레이(Clay) 나 실리카(Silica) 등의 무기 분말 등과 같은 미분 응집 방지제; 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산와 같은 열중합 개시제, 에폭시계 가교제, 디올(diol)류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교제, 수산화기를 포함하는 1관능기의 화합물과 같은 가교제일 수 있으나, 상술한 예에 한정되지 않는다.
이 후, 본 발명에 따른 고흡수성 수지의 제조 방법은 상기 건조 단계를 거친 후, c) 상기 건조된 중합체를 분쇄하는 단계를 거친다. 상기 분쇄 단계 후 얻어지는 중합체의 입도는 150 내지 850㎛ 이다. 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 이와 같은 입도로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
이 후, 본 발명에 따른 고흡수성 수지의 제조 방법은 d) 상기 분쇄된 함수겔상 중합체에 하기 ⅰ) 내지 ⅳ)의 특성을 갖는 다공성 초소수성 미세입자와 표면 가교제를 첨가하는 단계를 거친다.
ⅰ) 입도가 2 ㎚ ~ 50 ㎛의 입도,
ⅱ) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),
ⅲ) 물에 대한 접촉각이 125°이상의 초소수성,
ⅳ) 50% 이상의 공극률(porosity)
일반적으로 고흡수성 수지의 표면은 친수성을 띄며, 수분 흡수 후 건조시 입자 사이에 존재하는 물에 의한 모세관력, 수소결합, 고분자 상호 부분 확산(inter-particaular diffusion) 또는 입자간의 반데르발스 힘 등에 의하여 비가역적 응집이 발생하게 된다. 따라서, 고흡수성 수지의 중합 및 표면 가교 공정에서도 필수적으로 물을 사용하게 되는데, 이에 따른 응집이 발생하기 때문에, 내부 부하를 증가시키며, 결과적으로 장비 고장의 원인이 될 수 있다. 또한, 상기와 같이 응집된 상태의 고흡수성 수지는 입도가 응용에 부적합하게 크기 때문에, 이를 적정 입도로 줄이는 해쇄 공정을 도입해야 하는 단점이 있다. 또한 상기 해쇄 공정에서 강한 힘이 가해지므로 고흡수성 수지 파쇄에 따른 물성하락이 발생할 수 있다는 문제점이 존재하였다.
상기와 같은 문제점을 해결하기 위하여, 고흡수성 수지의 표면에 존재하며, 수지 입자간의 직접적인 응집을 방해하는 역할을 할 수 있는 다양한 미세입자를 도입하려는 시도가 있었으나, 미세입자가 과량이 도입될 경우 응집은 방지되나, 고흡수성 수지의 흡수특성이 감소한다는 단점이 있었다.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 고흡수성 수지에 도입되는 미세입자는 2 ㎚ ~ 50 ㎛의 입도를 갖는다. 또한 상기 미세입자는 300 내지 1500 m2/g, 바람직하게는 500 내지 1500 m2/g, 보다 바람직하게는 700 내지 1500 m2/g 의 BET 비표면적 (specific surface area)을 가질 수 있다. 또한 상기 미세입자는 물에 대한 접촉각이 125° 이상의 초소수성을, 바람직하게는 140° 이상의 초소수성을, 보다 바람직하게는 145° 이상의 초소수성을 가질 수 있다. 또한 상기 미세입자는 50% 이상의 공극률(porosity)을, 바람직하게는 90% 이상의 공극률(porosity)을 가질 수 있다. 본 발명의 고흡수성 수지의 제조방법은 상기와 같은 특징을 가진 미세입자를 사용하기 때문에, 수지 표면에 있는 물의 영향을 감소시킬 수 있을 뿐만 아니라, 다공성 초소수성 미세입자를 사용하기 때문에, 응집을 현저하게 감소시킬 수 있고, 상대적으로 소량의 미세입자를 사용하여도 투과도가 쉽게 향상되고, 고함수량 및 이의 유지가 용이할 수 있다.
본 발명에 따른 고흡수성 수지의 제조방법에서 첨가되는 미세입자는 상기 ⅰ) 내지 ⅳ)와 같은 특성을 갖는 물질이라면 그 성분의 한정이 없으며, 구체적으로 실리카, 알루미나, 타이타늄(TiO2), 탄소(Carbon) 등의 무기 산화물, 무기화합물, 유기고분자, 이온교환수지, 금속, 금속염 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 미세입자는 고흡수성 수지 100 중량부에 대해 0.001 내지 1 중량부로 첨가되는 것이 바람직하다. 미세입자의 포함량이 상기 범위보다 적으면 고흡수성 수지의 소수성이 충분하지 않고, 상기 범위보다 많으면 수지의 가공성이 떨어지게 된다.
또한 미세입자를 첨가하는 공정으로, 모노머 용액 내 분산 후 사용, 중합 후 함수젤 상에 첨가 후, 1차 건조된 수지입자에 건식 혼합, 표면 가교 시 표면 가교액이 녹아 있는 물 또는 유기 용매 내 분산 후 혼합, 표면 가교 시 표면 가교액이 녹아 있는 물 또는 유기용매와 분리되어 건식 혼합, 또는 표면가교가 된 최종 제품에 건식 혼합 등의 방법을 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.
또한, 본 발명에 따른 고흡수성 수지의 제조 방법에서 첨가되는 표면 가교제는 중합체가 갖는 관능기와 반응 가능한 화합물이라면 그 구성의 한정이 없다. 상기 표면 가교제로서는 바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸-1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세롤, 폴리글리세롤, 2-부텐-1,4-디올, 1,4-부탄디올, 1,3-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 및 1,2-사이클로헥산디메탄올로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
그리고, 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 α-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다. 그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 다가 알코올 화합물을 포함하여 사용하는 것이 바람직하며, 더욱 바람직하게는 탄소수 2 내지 10의 다가 알코올 화합물류를 사용할 수 있다.
그리고, 상기와 같이 표면 가교제를 혼합하여, 중합체 입자를 표면 처리하기 위해 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 중합체100 중량부에 대해, 0.001 내지 5 중량부, 바람직하게는 0.01 내지 3 중량부, 더욱 바람직하게는 0.05 내지 2중량부를 사용할 수 있다.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 중량부를 초과하는 경우, 과도한 표면 가교 반응으로 인해 오히려 고흡수성 수지의 물성이 저하될 수 있다.
이때, 표면 가교제를 중합체에 첨가하는 방법은 그 구성의 한정은 없다. 표면 가교제와 중합체 분말을 반응조에 넣고 혼합하거나, 중합체 분말에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서와 같은 반응조에 중합체와 가교제를 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
본 발명에 따른 고흡수성 수지의 제조 방법은 e) 표면 가교 반응을 진행하는 단계를 거친다.
그리고, 본 발명의 다른 구현예에 따라, 표면 가교제를 첨가한 후 표면 가교 반응을 위한 반응 온도로의 승온을 1분 내지 60 분 내로 진행하기 위해, 바람직하게 표면 가교제 첨가 시, 중합체 자체의 온도는 20℃ 내지 80℃일 수 있다. 상기와 같이 중합체 자체의 온도를 나타내기 위해, 비교적 고온으로 진행되는 건조 단계 이 후에 이루어지는 공정을 연속적으로 진행하고, 공정 7시간을 단축하거나, 또는 공정 시간을 단축하기 어려운 경우에는 별도로 중합체를 가열할 수도 있다.
또한, 본 발명에 따른 고흡수성 수지의 제조 방법은, 표면 가교제를 첨가한 후 표면 가교 반응을 위한 반응 온도로의 승온을 1분 내지 60분 내로 진행하기 위해, 중합체에 첨가되는 표면 가교제 자체를 가열할 수도 있다.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법은 표면 가교 반응을 위한 반응 온도로의 승온을 1분 내지 60분 내에 진행한 후, 표면 가교 반응을 진행하는 경우, 표면 가교 공정의 효율을 개선할 수 있어, 최종 얻어지는 고흡수성 수지의 잔존 단량체 함량을 최소화하고, 우수한 물성을 가진 고흡수성 수지를 얻을 수 있다. 이 때, 첨가되는 표면 가교제의 온도는 5℃ 내지 60℃, 더욱 바람직하게는 10℃ 내지 40℃로 조절할 수 있다. 상기 표면 가교제의 온도가 5℃ 미만인 경우, 표면 가교제 승온에 따른 표면 가교 반응으로의 승온 속도 단축의 효과가 미미하고, 표면 가교제의 온도가 60℃를 초과하는 경우, 표면 가교제가 중합체에 골고루 분산되지 않을 수 있다. 본 명세서 전체에서, 표면 가교 반응 온도는 가교반응을 위한 첨가되는 표면 가교제와 중합체의 전체 온도로 정의될 수 있다.
그리고, 표면 가교 반응을 위한 승온 수단으로는, 그 구성의 한정이 없다. 구체적으로, 열매체를 공급하거나, 전기 등의 수단으로 직접 가열할 수 있으나, 본 발명이 상술한 예에 한정되는 것은 아니다. 구체적으로 사용될 수 있는 열원으로는 스팀, 전기, 자외선, 적외선 등이 있으며, 가열된 열유체 등을 사용할 수도 있다.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법에서, 가교 반응을 위한 승온이 이루어진 후, 가교 반응은 1분 내지 60분 바람직하게는 5분 내지 40분, 가장 바람직하게는 10분 내지 20분 동안 진행될 수 있다. 가교 반응 시간이 1분 미만으로 지나치게 짧은 경우, 충분한 정도의 가교 반응이 일어나지 않을 수 있고, 가교 반응 시간이 60분을 초과하는 경우, 과도한 표면 가교 반응으로 고흡수성 수지의 물성이 오히려 나빠질 수 있고, 반응기에서 장기 체류로 인한 중합체 파쇄가 일어날 수 있다.
이하 본 발명을 실시예에 기초하여 더욱 상세하게 설명하지만, 하기에 개시되는 본 발명의 실시 형태는 어디까지 예시로써, 본 발명의 범위는 이들의 실시 형태에 한정되지 않는다. 본 발명의 범위는 특허청구범위에 표시되었고, 더욱이 특허 청구범위 기록과 균등한 의미 및 범위 내에서의 모든 변경을 함유하고 있다. 또한, 이하의 실시예, 비교예에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 질량 기준이다.
실시예
제조예 : 함수겔상 중합체의 제조
아크릴산 100g, 가교제로 폴리에틸렌글리콜디아크릴레이트 0.3 g, 개시제로 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 0.033g, 가성소다(NaOH) 38.9g, 및 물 103.9g의 비율로 혼합하여, 단량체 농도가 50 중량%인 단량체 혼합물을 준비하였다.
이후, 상기 단량체 혼합물을 연속 이동하는 콘베이어 벨트상에 투입하고 자외선을 조사(조사량: 2mW/㎠)하여 2분 동안 UV 중합을 진행하여 함수겔 중합체를 얻었다.
실시예 : 고흡수성 수지의 제조
[실시예 1]
상기 제조예에 따라 준비된 함수겔상 중합체를 5*5mm 크기로 잘라서 170℃ 온도의 열풍건조기에서 2시간 동안 건조하고, 핀밀 분쇄기로 분쇄한 후 시브(sieve)를 이용하여 입경 크기가 150 내지 850 ㎛의 고흡수성 수지를 얻었다. 상기 고흡수성 수지 250 g에 다공성 초소수성 미세입자 silica Aerogel (AeroZelTM, JIOS 사) 0.15g을 1000 RPM으로 60초간 혼합한 후, 표면 가교제로 에틸렌 카보네이트 0.75g과 물 6.75g로 구성된 액상 혼합물을 투여한 뒤 60초간 혼합하였다. 이 후, 상기 혼합물을 190 ℃ 에서 60분간 반응하여 미분쇄 고흡수성 수지를 얻었으며, 다시, 상기 미분쇄 고흡수성 수지의 분쇄전 입도를 측정하고, 핀밀 분쇄기로 분쇄한 후 시브를 이용하여 입경 크기가 150 내지 850 ㎛의 고흡수성 수지를 얻었다. 상기에서 사용한 Aerogel의 입도는 30 nm 이고, 500 m2/g 의 BET 비표면적을 갖고, 물에 대한 접촉각은 150°이고, 공극률은 95%이었다.
[실시예 2]
Silica Aerogel의 양을 0.25g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
[실시예 3]
액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
[실시예 4]
Silica Aerogel의 양을 0.25g, 액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
[비교예 1]
미세입자로 REOLOSIL DM-30S를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다. 상기에서 사용한 REOLOSIL DM-30S의 입도는 7nm 이고, 230 m2/g 의 BET 비표면적을 갖고, 물에 대한 접촉각은 135°이고 공극률은 20% 이하였다.
[비교예 2]
미세입자로 REOLOSIL DM-30S를 0.25g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
[비교예 3]
미세입자로 REOLOSIL DM-30S를, 액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
[비교예 4]
미세입자로 REOLOSIL DM-30S를 0.25g, 액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
[비교예 5]
미세입자를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
[비교예 6]
액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 비교예 5와 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.
상기 실시예 1 내지 4 및 비교예 1 내지 6의 구성을 하기 표 1에 나타내었다.
미세입자 종류 미세입자 사용량 (g) 액상 혼합물
에틸렌 카보네이트 (g) 물 (g)
실시예 1 Aerogel 0.15 0.75 6.75
실시예 2 0.25 6.75
실시예 3 0.15 11.75
실시예 4 0.25 11.75
비교예 1 REOLOSIL
DM-30S
0.15 6.75
비교예 2 0.25 6.75
비교예 3 0.15 11.75
비교예 4 0.25 11.75
비교예 5 - - 6.75
비교예 6 11.75
실험예 : 물성 평가
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4에 따른 고흡수성 수지의 물성을 평가하기 위해 하기와 같은 시험을 진행하였다.
실험예 1: 보수능 ( CRC , Centrifugal Retention Capacity )
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4로 준비된 고흡수성 수지 각각에 대한 보수능을 측정하였다. 보수능의 측정은 EDANA 법 WSP 241.3을 기준으로 하였다. 준비된 고흡수성 수지 중 입도 150 내지 850 ㎛ 또는 기분급된 시료 0.2g을 티백에 넣고 0.9 % 염수 용액에 30분간 침전시켰다. 이후 250G(gravity)의 원심력으로 3분간 탈수한 후 염수 용액이 흡수된 양을 측정하였다.
실험예 2: 가압흡수능 ( AUP , Absorption Under Pressure )
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4로 준비된 고흡수성 수지 각각에 대한 가압흡수능을 측정하였다. 가압흡수능의 측정은 EDANA 법 WSP 242.3을 기준으로 하였다. 준비된 고흡수성 수지 중 입도 150 내지 850 ㎛ 또는 기분급된 시료 0.9g을 EDATA에서 규정하는 실린더에 넣고 피스톤과 추로 0.7 psi의 압력을 가한 후에 0.9 % 염수 용액을 60분간 흡수한 양을 측정하였다.
실험예 3: 미분쇄 고흡수성 수지 입도
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4의 미분쇄 고흡수성 수지에 대한 입도를 측정하였다. 고흡수성 수지 입도의 측정은 EDANA 법 WSP 220.3을 기준으로 하였다. 고흡수성 수지 100g을 850㎛, 600㎛, 300㎛, 150㎛, Pan의 Mesh로 구분하여 1.44 mm 진폭, 진동수 50 Hz로 10분간 진동한 후, 각 체의 상부에 체류량의 비율로 함량을 측정하였다.
상기와 같이 실험예 1 내지 3의 보수능, 가압흡수능 및 미분쇄 고흡수성 수지의 입도를 측정한 결과를 표 2에 나타내었다.
보수능 (g/g) 가압
흡수능 (g/g)
입도 분포 (%)
150㎛ 이하 150~300 ㎛ 300~600㎛ 600~850 ㎛ 850 ㎛ 이상
실시예 1 33.9 20.3 0.0 2.3 27.8 43.9 25.5
실시예 2 33.1 19.5 0.7 11.3 52.3 31.4 4.1
실시예 3 33.3 22.1 0.0 0.6 10.6 20.2 68.0
실시예 4 31.1 20.0 0.0 1.0 28.8 38.7 31.0
비교예 1 33.7 21.3 0.2 2.3 19.8 29.0 48.2
비교예 2 34.5 19.6 0.5 8.4 46.2 36.2 8.0
비교예 3 32.2 22.7 0.0 0.4 5.2 7.3 86.2
비교예 4 32.3 21.5 0.0 0.5 5.6 8.5 85.1
비교예 5 34.1 23.8 0.0 1.7 15.5 27.7 53.5
비교예 6 32.7 24.0 0.0 0.9 6.0 10.9 82.4
상기 표 2의 결과를 바탕으로, 표면에 초소수성 미세입자가 도입된 고흡수성 수지는, 표면의 소수성이 증가함에 따라 응집이 감소하며, 결과적으로 가공성이 증가함을 알 수 있다.
일반적으로 고흡수성 수지의 표면가교공정에서는 표면 가교제를 물에 용해한 후 고흡수성 수지와 혼합함으로써, 수지 표면에 고른 분포 및 침투를 유도하는데, 이때 사용된 물은 고흡수성 수지 표면의 점성을 증가하여 응집이 일어나는 원인이 되며, 또한 응집된 고흡수성 수지의 분쇄에는 강한 힘이 요구되어, 이로 인한 고흡수성 수지의 손상 등의 단점이 발생하게 되는데,
실시예 1의 초소수성 입자가 도입되어 소수성으로 개질된 고흡수성 수지는, 비교예 5을 통하여 제조된 고흡수성 수지보다 입도가 작은 쪽에 분포하는 것으로, 분쇄 공정이 없음에도 850 ㎛ 이하의 입도가 75% 가량 유지됨으로써 가공성이 증가함을 확인할 수 있다.
또한, 실시예 1과 비교예 1은 도입된 초소수성 미세입자의 소수성 차이에 기반한 가공성의 변화를 나타낸다. 초소수성 미세입자의 양을 동일하게 사용할 경우, 응집 감소에 따른 입도의 감소는 소수성이 높은 미세입자를 도입한 실시예 1 내지 실시예 4로부터 얻어진 고흡수성 수지의 입도가 비교예 1 내지 비교예 4로부터 얻어진 고흡수성 수지의 입도에 비하여, 더 작은 쪽에 분포하며, 보수능 및 가압 흡수능의 차이가 적음을 알 수 있다.

Claims (18)

  1. a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계;
    b) 상기 함수겔상 중합체를 건조하는 단계;
    c) 상기 건조된 함수겔상 중합체를 분쇄하는 단계;
    d) 상기 분쇄된 함수겔상 중합체에 하기 ⅰ) 내지 ⅳ)의 특성을 갖는 다공성 초소수성 미세입자와 표면 가교제를 첨가하는 단계; 및
    e) 표면 가교 반응을 진행하는 단계를 포함하는 고흡수성 수지의 제조방법.
    ⅰ) 입도가 2 ㎚ ~ 50 ㎛의 입도,
    ⅱ) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),
    ⅲ) 물에 대한 접촉각이 125°이상의 초소수성,
    ⅳ) 50% 이상의 공극률(porosity)
  2. 청구항 1에 있어서,
    상기 단계 b)의 건조 단계 전에, 함수겔상 중합체를 입도가 1mm 내지 15mm로 분쇄하는 단계를 더 포함하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  3. 청구항 1에 있어서,
    상기 단계 b)의 건조 단계는 150℃ 내지 250℃의 온도에서 진행되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  4. 청구항 1에 있어서,
    상기 단계 c)의 분쇄 단계는, 함수겔상 중합체를 입도가 150 내지 850㎛로 분쇄하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  5. 청구항 1에 있어서,
    상기 단계 d)의 표면 가교제는 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  6. 청구항 1에 있어서,
    상기 단계 d)의 표면 가교제는 분쇄된 중합체 100 중량부에 대해 0.001 내지 5 중량부가 첨가되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  7. 청구항 1에 있어서,
    상기 단계 d)에서, 상기 표면 가교제를 첨가하는 단계에서 상기 중합체의 표면 온도는 60 내지 90℃인 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  8. 청구항 1에 있어서,
    상기 단계 d)에서, 첨가되는 표면 가교제의 온도는 5 내지 40℃인 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  9. 청구항 1에 있어서,
    상기 미세입자는 500 내지 1500 m2/g 의 BET 비표면적 (specific surface area)을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  10. 청구항 1에 있어서,
    상기 미세입자는 700 내지 1500 m2/g 의 BET 비표면적 (specific surface area)을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  11. 청구항 1에 있어서,
    상기 미세입자는 물에 대한 접촉각이 140°이상의 초소수성을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  12. 청구항 1에 있어서,
    상기 미세입자는 물에 대한 접촉각이 145°이상의 초소수성을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  13. 청구항 1에 있어서,
    상기 미세입자는 90% 이상의 공극률(porosity)을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  14. 청구항 1에 있어서,
    상기 미세입자는 고흡수성 수지 100중량부에 대하여 0.001 내지 1 중량부로 포함되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  15. 청구항 1에 있어서,
    상기 미세입자는 실리카, 알루미나, 탄소(Carbon) 및 타이타늄(TiO2)으로 이루어지는 군에서 선택되는 1종 이상인 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  16. 청구항 1에 있어서,
    상기 단계 e)에서, 상기 표면 가교 반응은 10 분 내지 120 분간 진행되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  17. 청구항 1에 있어서,
    상기 단계 e)에서, 스팀, 전기, 자외선 및 적외선으로 이루어진 열원군에서 선택되는 어느 하나 이상을 조사하여 승온하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
  18. 청구항 1에 있어서,
    상기 단계 e)의 표면 가교 반응 단계 후에, 고흡수성 수지를 150 내지 850 ㎛의 입도로 다시 분쇄하는 단계를 더 포함하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.
KR1020140066046A 2013-12-03 2014-05-30 고흡수성 수지의 제조방법 KR20150064649A (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/907,470 US9700871B2 (en) 2013-12-03 2014-12-03 Method for preparing super absorbent resin
EP14867984.8A EP3078678B1 (en) 2013-12-03 2014-12-03 Method for preparing super absorbent resin
PCT/KR2014/011788 WO2015084059A1 (ko) 2013-12-03 2014-12-03 고흡수성 수지의 제조방법
KR1020140172232A KR101507287B1 (ko) 2013-12-03 2014-12-03 고흡수성 수지의 제조방법
RU2016105746A RU2636941C1 (ru) 2013-12-03 2014-12-03 Способ получения супервпитывающей смолы
JP2016557857A JP6449902B2 (ja) 2013-12-03 2014-12-03 高吸水性樹脂の製造方法
CN201480045362.0A CN105722863B (zh) 2013-12-03 2014-12-03 用于制备超吸收性聚合物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130149440 2013-12-03
KR20130149440 2013-12-03

Publications (1)

Publication Number Publication Date
KR20150064649A true KR20150064649A (ko) 2015-06-11

Family

ID=53503161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140066046A KR20150064649A (ko) 2013-12-03 2014-05-30 고흡수성 수지의 제조방법

Country Status (6)

Country Link
US (1) US9700871B2 (ko)
EP (1) EP3078678B1 (ko)
JP (1) JP6449902B2 (ko)
KR (1) KR20150064649A (ko)
CN (1) CN105722863B (ko)
RU (1) RU2636941C1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142230A1 (ko) * 2016-02-17 2017-08-24 주식회사 엘지화학 내고화성이 향상된 고흡수성 수지의 제조 방법
CN107922636A (zh) * 2016-03-25 2018-04-17 株式会社Lg化学 制备超吸收性聚合物的方法
WO2018084392A1 (ko) * 2016-11-04 2018-05-11 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
US10723860B2 (en) 2015-12-14 2020-07-28 Lg Chem, Ltd. Attrition-resistant superabsorbent polymer, method for preparing the same and composition for preparing the same
US11633719B2 (en) 2017-12-11 2023-04-25 Lg Chem, Ltd. Superabsorbent polymer composition and method for preparing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536332B1 (ko) * 2013-12-03 2015-07-14 주식회사 엘지화학 고흡수성 수지 및 이의 제조방법
KR101967807B1 (ko) 2014-12-23 2019-04-10 주식회사 엘지화학 파쇄 저항성 고흡수성 수지 및 그 제조 방법
KR101910098B1 (ko) * 2015-01-05 2018-10-19 주식회사 엘지화학 미세입자를 포함하는 수분산액으로 처리된 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR101949455B1 (ko) 2015-01-07 2019-02-18 주식회사 엘지화학 내고화성이 향상된 고흡수성 수지 및 그 제조 방법
KR20160127938A (ko) 2015-04-28 2016-11-07 주식회사 엘지화학 고흡수성 수지의 제조방법
KR101848470B1 (ko) * 2015-07-10 2018-04-12 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR102075737B1 (ko) 2016-03-11 2020-02-10 주식회사 엘지화학 고흡수성 수지의 제조 방법, 및 고흡수성 수지
KR102075738B1 (ko) * 2016-03-11 2020-02-10 주식회사 엘지화학 고흡수성 수지
KR102094453B1 (ko) 2016-12-23 2020-03-27 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102567287B1 (ko) 2017-03-31 2023-08-14 스미토모 세이카 가부시키가이샤 흡수성 수지 입자
KR102566942B1 (ko) * 2017-10-27 2023-08-14 주식회사 엘지화학 고흡수성 수지의 제조 방법
JP6991389B2 (ja) * 2019-03-08 2022-01-12 住友精化株式会社 吸水性樹脂粒子及びその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849412A (en) * 1955-05-11 1958-08-26 Minnesota Mining & Mfg Plasticization of vulcanized perfluorochloroolefin polymers
EP0621041B1 (en) 1993-04-23 2002-09-11 Mitsubishi Chemical Corporation Highly water-absorptive polymers having enhanced gel strength
JPH08253597A (ja) * 1995-03-15 1996-10-01 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂の造粒法
CN1138825C (zh) 1995-07-12 2004-02-18 丸尾钙株式会社 合成树脂用添加剂及合成树脂组成物
US6403744B1 (en) * 1999-08-18 2002-06-11 Central Glass Company, Limited Fluorine-containing copolymer and composition for preparing low reflectance film
FR2829494B1 (fr) * 2001-07-13 2005-10-28 Rhodia Chimie Sa Compositions aqueuses comprenant un microgel chimique associe a un polymere pontant, preparation et utilisation
DE10202039A1 (de) 2002-01-18 2003-07-24 Basf Ag Mischungen aus hydrogel-formenden Polymeren und Baustoffen
RU2232784C1 (ru) * 2002-11-11 2004-07-20 ФГУП ГНЦ РФ "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" Полимерный гидрогель и способ его получения
WO2005120594A1 (en) * 2004-06-07 2005-12-22 Dow Global Technologies Inc. Polymers with odor control properties and method for their preparation
CN101511395A (zh) 2006-08-31 2009-08-19 巴斯夫欧洲公司 具有优异的凝胶完整性、吸收能力和渗透性的超吸收性聚合物
CN101333275A (zh) * 2007-06-29 2008-12-31 台湾塑胶工业股份有限公司 吸水性树脂的制造方法
JP2009057496A (ja) 2007-08-31 2009-03-19 San-Dia Polymer Ltd 吸水性樹脂粒子、吸収体及び吸収性物品
FI122230B (fi) * 2009-07-02 2011-10-31 Aalto Korkeakoulusaeaetioe Nestettä hylkivä materiaali
CN105363421A (zh) 2009-09-30 2016-03-02 株式会社日本触媒 颗粒状吸水剂及其制造方法
JP5485805B2 (ja) 2010-06-15 2014-05-07 住友精化株式会社 吸水性樹脂
JP2012052080A (ja) 2010-09-02 2012-03-15 Ko Tamihiro 吸湿又は吸放湿性樹脂ペレット
KR101290740B1 (ko) * 2010-11-22 2013-07-29 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR101495779B1 (ko) * 2010-11-30 2015-02-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
DE102011086516A1 (de) * 2011-11-17 2013-05-23 Evonik Degussa Gmbh Superabsorbierende Polymere mit schnellen Absorptionseigenschaften sowieVerfahren zu dessen Herstellung
FR2984125B1 (fr) * 2011-12-16 2013-12-20 Oreal Composition cosmetique comprenant un polymere superabsorbant et des particules d'aerogel de silice
KR101559081B1 (ko) * 2012-11-15 2015-10-08 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조되는 고흡수성 수지
KR101595037B1 (ko) * 2013-01-15 2016-02-17 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN104684969B (zh) * 2013-04-30 2016-03-23 株式会社Lg化学 高吸水树脂
KR20150040476A (ko) * 2013-10-07 2015-04-15 주식회사 엘지화학 고흡수성 수지 및 그 제조 방법
KR101536332B1 (ko) * 2013-12-03 2015-07-14 주식회사 엘지화학 고흡수성 수지 및 이의 제조방법
KR101700907B1 (ko) * 2013-12-10 2017-01-31 주식회사 엘지화학 고흡수성 수지의 제조 방법

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723860B2 (en) 2015-12-14 2020-07-28 Lg Chem, Ltd. Attrition-resistant superabsorbent polymer, method for preparing the same and composition for preparing the same
US11111356B2 (en) 2015-12-14 2021-09-07 Lg Chem, Ltd. Attrition-resistant superabsorbent polymer, method for preparing the same and composition for preparing the same
WO2017142230A1 (ko) * 2016-02-17 2017-08-24 주식회사 엘지화학 내고화성이 향상된 고흡수성 수지의 제조 방법
KR20170096805A (ko) * 2016-02-17 2017-08-25 주식회사 엘지화학 내고화성이 향상된 고흡수성 수지의 제조 방법
CN108137816A (zh) * 2016-02-17 2018-06-08 株式会社Lg化学 用于制备具有改善的抗结块性的超吸收性聚合物的方法
US10471410B2 (en) 2016-02-17 2019-11-12 Lg Chem, Ltd. Method for preparing superabsorbent polymer with improved anti-caking
CN108137816B (zh) * 2016-02-17 2021-06-15 株式会社Lg化学 用于制备具有改善的抗结块性的超吸收性聚合物的方法
CN107922636A (zh) * 2016-03-25 2018-04-17 株式会社Lg化学 制备超吸收性聚合物的方法
US10653812B2 (en) 2016-03-25 2020-05-19 Lg Chem, Ltd. Method of preparing superabsorbent polymer
WO2018084392A1 (ko) * 2016-11-04 2018-05-11 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
US10759912B2 (en) 2016-11-04 2020-09-01 Lg Chem, Ltd. Superabsorbent polymer and preparation method thereof
US11633719B2 (en) 2017-12-11 2023-04-25 Lg Chem, Ltd. Superabsorbent polymer composition and method for preparing the same

Also Published As

Publication number Publication date
JP6449902B2 (ja) 2019-01-09
EP3078678B1 (en) 2017-08-30
CN105722863B (zh) 2017-05-24
US9700871B2 (en) 2017-07-11
JP2016540106A (ja) 2016-12-22
EP3078678A4 (en) 2016-10-12
US20160271584A1 (en) 2016-09-22
CN105722863A (zh) 2016-06-29
EP3078678A1 (en) 2016-10-12
RU2636941C1 (ru) 2017-11-29

Similar Documents

Publication Publication Date Title
KR101507287B1 (ko) 고흡수성 수지의 제조방법
KR101586383B1 (ko) 고흡수성 수지 및 이의 제조방법
US11484863B2 (en) Super absorbent resin having improved solidification resistance, and method for preparing same
KR101855353B1 (ko) 고흡수성 수지의 미분 재조립체를 포함하는 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR20150064649A (ko) 고흡수성 수지의 제조방법
KR101495779B1 (ko) 고흡수성 수지의 제조 방법
KR101631298B1 (ko) 고흡수성 수지 및 이의 제조방법
KR101960041B1 (ko) 고흡수성 수지의 제조방법
JP2016540106A5 (ko)
KR101919985B1 (ko) 내파쇄성 고흡수성 수지 및 그 제조방법
KR20160127938A (ko) 고흡수성 수지의 제조방법
KR101631297B1 (ko) 고흡수성 수지 및 그 제조 방법
KR101680830B1 (ko) 고흡수성 수지 및 이의 제조방법
KR101967807B1 (ko) 파쇄 저항성 고흡수성 수지 및 그 제조 방법
KR101910098B1 (ko) 미세입자를 포함하는 수분산액으로 처리된 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR102073953B1 (ko) 내파쇄성 고흡수성 수지, 그의 제조 방법 및 제조용 조성물

Legal Events

Date Code Title Description
A201 Request for examination
WITB Written withdrawal of application