WO2017163851A1 - 過硫酸溶液製造供給装置及び方法 - Google Patents

過硫酸溶液製造供給装置及び方法 Download PDF

Info

Publication number
WO2017163851A1
WO2017163851A1 PCT/JP2017/008932 JP2017008932W WO2017163851A1 WO 2017163851 A1 WO2017163851 A1 WO 2017163851A1 JP 2017008932 W JP2017008932 W JP 2017008932W WO 2017163851 A1 WO2017163851 A1 WO 2017163851A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid solution
storage tank
electrolysis system
persulfuric acid
liquid
Prior art date
Application number
PCT/JP2017/008932
Other languages
English (en)
French (fr)
Inventor
小川 祐一
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201780010114.6A priority Critical patent/CN108603299B/zh
Priority to KR1020187022968A priority patent/KR102313925B1/ko
Publication of WO2017163851A1 publication Critical patent/WO2017163851A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to an apparatus and a method for supplying a persulfuric acid solution to a cleaning apparatus for cleaning a semiconductor wafer.
  • At least the anode is electrolyzed with an electrolytic cell equipped with a diamond electrode, and contains a predetermined amount of persulfuric acid (collectively called peroxomonosulfuric acid and peroxodisulfuric acid), Electrolytic sulfuric acid made of a persulfuric acid solution containing no persulfate is generated, and the electrolytic sulfuric acid is sent to a washing machine. Using the solution, the resist and metal on the semiconductor wafer are dissolved and washed.
  • Embodiment 5 of Patent Document 1 Japanese Patent Application Laid-Open No. 2008-111184
  • three electrolytic solution storage tanks are provided, one for discharging to the cleaning unit and one for recovery from the cleaning unit.
  • For the circulation with the electrolysis cell use as in the case of circulation.
  • a system for producing electrolytic sulfuric acid in the ground is described.
  • the electrolysis time takes longer than the washing time, there is a problem that a waiting time until the production of electrolytic sulfuric acid occurs.
  • the persulfuric acid solution production and supply apparatus of the present invention has a first electrolysis system that circulates and supplies the persulfuric acid solution to the wafer cleaning apparatus.
  • This persulfuric acid solution production and supply device is provided separately from the first electrolysis system, and a second electrolysis system for generating a persulfuric acid solution, and transfers the electrolytic solution from the second electrolysis system to the first electrolysis system. And a transfer device.
  • the persulfuric acid solution production and supply method of the present invention supplies a persulfuric acid solution to a wafer cleaning apparatus using the persulfuric acid solution production and supply apparatus of the present invention.
  • a persulfuric acid solution is generated by electrolytic treatment with the second electrolysis system, and the persulfate of the wafer cleaning apparatus and the first electrolysis system is generated.
  • the persulfuric acid solution is discharged from the wafer cleaning apparatus and the first electrolysis system, and then the persulfuric acid solution is transferred from the second electrolysis system to the second electrolysis system.
  • the first electrolysis system electrolyzes a first storage tank that stores a persulfuric acid solution that is circulated and supplied to a wafer cleaning device, and a liquid that is supplied from the first storage tank.
  • the first electrolytic cell for returning the liquid after the electrolytic treatment to the first storage tank is provided.
  • the second electrolysis system supplies the second storage tank and the liquid supplied from the second storage tank.
  • the second electrolytic system for manufacturing the electrolytic sulfuric acid in advance and storing it in the reserve tank is provided.
  • electrolytic sulfuric acid can be generated and stored in the second electrolysis system, so that the wafer cleaning waiting time (chemical change time) can be shortened. Since there is no liquid inflow from the first electrolysis system to the second electrolysis system, there is no possibility of contamination and accumulation of impurities into the second electrolysis system.
  • the persulfuric acid solution production and supply apparatus includes a batch type cleaning machine 10 that collectively cleans a plurality of semiconductor wafers 100, and a first electrolysis system 20 and a second electrolysis system 40.
  • the electrolysis cells 30 and 50 of the electrolysis systems 20 and 40 each include an electrode having at least an anode as a diamond electrode and a power supply device (not shown) for energizing between the anode and the cathode.
  • a bipolar electrode may be provided as the electrode.
  • the batch type cleaning machine 10 includes a cleaning bath 11 filled with an electrolyzed sulfuric acid solution, a high temperature rinsing bath for rinsing the semiconductor wafer 100 after cleaning in the cleaning bath 11, and a semiconductor wafer 100 after rinsing in the high temperature rinsing bath. And a drier for drying the semiconductor wafer 100 after rinsing in the normal temperature rinsing tank (none of which is shown).
  • the liquid outflow part and the liquid inlet part of the washing tank 11 are connected by a circulation line including a pipe 12, a pump 13, a pipe 14, a heater 15, and a pipe 16.
  • a circulation line including a pipe 12, a pump 13, a pipe 14, a heater 15, and a pipe 16.
  • Each pipe and device are made of a material having heat resistance with respect to a temperature of 100 ° C. or higher, and are made of a fluororesin such as PFA, for example.
  • a pipe 17 having a valve 18 branches from the pipe 16 so that the liquid in the system can be discharged out of the system.
  • the first electrolysis system 20 includes a storage tank (first storage tank) 22 into which the cleaning machine discharge liquid is introduced via a pipe 21 branched from the pipe 12, and the electrolysis for electrolytically processing the liquid in the storage tank 22.
  • a cell 30 and the like, and a pipe 23 for returning the electrolytically treated liquid to the pipe 16, a pump 24, a pipe 25, and the like are provided.
  • the liquid in the storage tank 22 is introduced into the electrolysis cell 30 (first electrolysis cell) via the pump 27 and the pipe 28.
  • the electrolytically treated liquid is returned to the storage tank 22 via the pipe 31, the gas-liquid separator 32, and the pipe 33.
  • the gas separated by the gas-liquid separator 32 is sent to the gas processing device 56.
  • the second electrolysis system 40 includes a storage tank (second storage tank) 41 to which sulfuric acid and water are respectively supplied from pipes 42 and 43, and an electrolytic cell (second electrolysis cell) 50 for the liquid in the storage tank 41.
  • a piping 54 for sending the gas separated by the gas-liquid separator 52 to the gas processing device 56.
  • the piping 47 branches from the piping 45, and the liquid in the storage tank 41 can be supplied to the storage tank 22 of the first electrolysis system via the piping 45, 47, the valve 48, and the piping 49.
  • the washing tank 11 is filled with a sulfuric acid solution having a sulfuric acid concentration of 70 to 96% by mass.
  • a part of the liquid flowing out from the cleaning tank 11 to the pipe 12 is circulated through the pump 13, the pipe 14, the heater 15, and the pipe 16.
  • the sulfuric acid solution is circulated at a circulation flow rate of 1/2 to 1/3 V / min with respect to the tank volume V of the cleaning tank 11.
  • the valve 18 is closed.
  • the remainder of the liquid flowing out to the pipe 12 is introduced into the storage tank 22 through the pipe 21.
  • a part of the liquid introduced into the storage tank 22 is circulated to the storage tank 22 via the pump 27, the pipe 28, the electrolytic cell 30, the pipe 31, the gas-liquid separator 32, and the pipe 33, and is subjected to electrolytic treatment.
  • Sulfuric acid is produced.
  • the liquid in the storage tank 22 containing persulfuric acid is supplied to the pipe 16 via the pipe 23, the pump 24, and the pipe 25.
  • water and sulfuric acid are introduced into the storage tank 41 of the second electrolysis system, particularly at least in the initial stage of the wafer cleaning process, and a part of the liquid in the storage tank 41 is pumped.
  • 44, pipe 45, electrolytic cell 50, gas-liquid separator 52, and pipe 53 are circulated and subjected to electrolysis to produce persulfuric acid.
  • the valve 46 is open and the valve 48 is closed.
  • the circulation is stopped and the persulfuric acid solution is stored in the storage tank 41.
  • the valve 18 is opened, and the liquid in the cleaning tank 11, the pipes 12, 14, 16, 21, 23, 25 and the first electrolysis system 20 is passed through the pipe 17. Discharge out of the system.
  • the fresh persulfuric acid solution stored in the storage tank 41 is introduced into the storage tank 22 via the pump 44 and the pipes 45, 47, and 49.
  • the valve 46 is closed and the valve 48 is opened.
  • the capacity of the storage tank 22 of the first electrolysis system 20 can be reduced.
  • the second electrolysis system 40 is not provided, for example, when the washing tank capacity is 60 L, the persulfate solution required for one batch is 100 L, the storage tank capacity is 22 L, the washing tank capacity is 60 L, and the piping capacity is about 10 L.
  • the second electrolysis system 40 is installed, the storage tank 41 capacity 100L, the storage tank 22 capacity 30L, the cleaning tank capacity 60L, and the piping capacity 10L are sufficient, and the capacity of the first electrolysis system storage tank 22 is halved. The increase in the size of the apparatus due to the addition of the second electrolysis system 40 can be suppressed.
  • the capacity of the storage tank 22 of the first electrolysis system 20 is about 10 to 80 L
  • the capacity of the storage tank 41 of the second electrolysis system 40 is about 80 to 150 L.
  • 1 and 2 are batch type cleaning apparatuses, but the present invention is also applicable to the single wafer type cleaning apparatus 60 of FIGS.
  • the single wafer cleaning apparatus 60 includes a cleaning liquid nozzle 61 directed toward the wafer 100 that has been carried in, and a turntable 62 on which the wafer 100 is placed and rotated.
  • the sulfuric acid solution is sprayed as a cleaning liquid or is gradually flowed down by the cleaning liquid nozzle 61 and supplied to the upper surface of the wafer 100 held on the turntable.
  • the cleaning liquid supplied to the upper surface of the wafer 100 receives a centrifugal force due to the rotation of the wafer 100 and spreads the upper surface of the wafer 100 toward the peripheral portion, whereby the wafer 100 is cleaned.
  • the cleaning liquid is shaken off from the periphery of the wafer 100 and scattered laterally, introduced into the recovery tank 63, and introduced into the storage tank 66 through the pump 64 and the pipe 65.
  • the liquid in the storage tank 66 is introduced into the storage tank 70 via the pump 67, the heat exchanger 68, and the pipe 69.
  • the liquid in the storage tank 70 is supplied to the cleaning liquid nozzle 61 via the pump 71, the rapid heater 72, the pipe 73, the valve 74, and the pipe 75.
  • a pipe (bypass line) 76 branches from the pipe 73, and a valve 77 is provided in the pipe 76.
  • the valve 74 is opened and the valve 77 is closed.
  • the valve 74 is closed and the valve 77 is opened, and the liquid from the pipe 73 is supplied to the storage tank 66 via the pipe 76.
  • the rapid heater 72 rapidly heats the sulfuric acid solution to 120 to 220 ° C. in a transient manner using, for example, a near infrared heater.
  • the first electrolysis system 80 includes the storage tank 70 and the electrolytic cell 30 that performs electrolytic treatment on the liquid in the storage tank 70.
  • the configurations of the electrolysis cell 30 and the mechanism for circulating and supplying the liquid to the electrolysis cell 30 are the same as those in FIGS. That is, the liquid in the storage tank 70 is introduced into the electrolytic cell 30 via the pump 27 and the pipe 28. The electrolytically treated liquid is returned to the storage tank 70 via the pipe 31, the gas-liquid separator 32, and the pipe 33. The gas separated by the gas-liquid separator 32 is sent to the gas processing device 56.
  • the configuration of the second electrolysis system 40 is the same as that shown in FIGS. 1 and 2, and the same members are denoted by the same reference numerals and the description thereof is omitted.
  • water and sulfuric acid are stored in the storage tank 41 of the second electrolysis system, particularly at least in the initial stage of the wafer cleaning process. Is introduced, and a part of the liquid in the storage tank 41 is circulated through the pump 44, the pipe 45, the electrolytic cell 50, the gas-liquid separator 52, and the pipe 53, and is electrolyzed to generate persulfuric acid. At this time, the valve 46 is open and the valve 48 is closed. When the persulfuric acid concentration in the storage tank 41 reaches a predetermined concentration, the circulation is stopped and the persulfuric acid solution is stored in the storage tank 41.
  • the cleaning device 60, the recovery tank 63, the storage tank 66, the pipes 65, 69, 73, 75, and the liquid in the first electrolysis system 20 are recovered in the recovery tank 63 or its It is discharged out of the system through a drain line (not shown) connected to the upstream side.
  • the fresh persulfuric acid solution stored in the storage tank 41 is introduced into the storage tank 70 via the pump 44 and the pipes 47 and 49.
  • the valve 46 is closed and the valve 48 is opened.
  • the first electrolysis system 80 It is only necessary to discharge the waste liquid and transfer the persulfuric acid solution from the second electrolysis system 40 to them, and the persulfuric acid solution renewal work (chemical change) time is remarkably shortened.
  • the present invention can be suitably used particularly when the concentration of the oxidizing agent in the persulfuric acid solution is high (for example, 0.03 to 0.1 mol / L) or when the cleaning liquid temperature is high (for example, 150 to 180 ° C.).
  • FIG. 1 the second electrolysis system 40 is omitted.
  • electrolytic cells 30 were installed in the first electrolysis system 20. A chemical change was performed using this device. The existing solution was drained from the pipe 17 and fresh sulfuric acid and water were added to the washing tank 11 and the storage tank 22 so that the sulfuric acid concentration became 85%. The solution temperature in the washing tank 11 was set to 120 ° C. Thereafter, the electrolytic cell 30 was energized at a current density of 0.4 A / cm 2 to generate an electrolytic sulfuric acid solution, the oxidizing agent concentration was 0.01 mol / L, and the chemical change was completed.
  • the time taken to complete the chemical change was 300 minutes.
  • the oxidant concentration of the electrolytic sulfuric acid solution was stable.
  • Comparative Example 2 In Comparative Example 1, the procedure was the same except that the number of electrolytic cells 30 was ten. A chemical change was performed using this device. The existing solution was drained, and sulfuric acid and water were newly added to the washing tank 11 and the storage tank 22 so that the sulfuric acid concentration became 85%. The solution temperature in the washing tank 11 was set to 120 ° C. Thereafter, the electrolytic cell 30 was energized at a current density of 0.4 A / cm 2 to generate an electrolytic sulfuric acid solution, the oxidant concentration was 0.03 mol / L, and the chemical change was completed.
  • the time taken to complete the chemical change was 300 minutes.
  • the oxidant concentration of the electrolytic sulfuric acid solution was stable.
  • Comparative Example 3 In Comparative Example 1, it was the same except that the number of electrolytic cells 30 was 15. A chemical change was performed using this device. The existing solution was drained, and sulfuric acid and water were newly added to the washing tank 11 and the storage tank 22 so that the sulfuric acid concentration became 85%. The solution temperature in the washing tank 11 was set to 150 ° C. Thereafter, the electrolytic cell 30 was energized at a current density of 0.4 A / cm 2 to generate an electrolytic sulfuric acid solution, the oxidant concentration was 0.01 mol / L, and the chemical change was completed.
  • the time taken to complete the chemical change was 300 minutes.
  • the oxidant concentration of the electrolytic sulfuric acid solution was stable.
  • Example 1 As shown in FIG. 1, a second electrolysis system 40 was installed. Four electrolysis cells 30 in the first electrolysis system and two electrolysis cells 50 in the second electrolysis system were installed. During the wafer processing using this apparatus, sulfuric acid and water were newly added to the storage tank 41 by the second electrolysis system 40 so that the sulfuric acid concentration became 85%. The electrolytic cells 30 and 50 were energized at a current density of 0.4 A / cm 2 to generate an electrolytic sulfuric acid solution, and the oxidizing agent concentration was adjusted to 0.01 mol / L.
  • the electrolytic sulfuric acid solution of the cleaning tank 11 and the pipes 12 to 16 and the first electrolysis system 20 is drained, and the electrolytic sulfuric acid solution manufactured by the second electrolysis system 40 is stored from the storage tank 41. It was transferred to the tank 22.
  • the solution temperature in the washing tank 11 was set to 120 ° C.
  • the chemical change time time during which wafer processing cannot be performed was 60 minutes.
  • the oxidant concentration of the electrolytic sulfuric acid solution was stable.
  • Example 2 In Example 1, it was the same except that six electrolysis cells 30 of the first electrolysis system and three electrolysis cells 50 of the second electrolysis system were installed. During the wafer cleaning process using this apparatus, sulfuric acid and water were newly added to the storage tank 41 by the second electrolysis system 40 so that the sulfuric acid concentration became 85%. Thereafter, the electrolytic cells 30 and 50 were energized at a current density of 0.4 A / cm 2 to generate an electrolytic sulfuric acid solution, and the oxidizing agent concentration was set to 0.03 mol / L. The chemical change was performed in the same manner as in Example 1. The solution temperature in the washing tank 11 was set to 120 ° C. As a result, the chemical change time (time during which wafer processing cannot be performed) was 60 minutes. During the subsequent wafer cleaning process (12 hours), the oxidant concentration of the electrolytic sulfuric acid solution was stable.
  • Example 3 In Example 1, it was the same except that eight electrolysis cells 30 of the first electrolysis system and two electrolysis cells 50 of the second electrolysis system were installed. Using this apparatus, while performing the wafer cleaning process, it was introduced into the storage tank 41 so that the sulfuric acid concentration became 85%. The electrolytic cells 30 and 50 were energized at a current density of 0.4 A / cm 2 to generate an electrolytic sulfuric acid solution, and the oxidizing agent concentration was adjusted to 0.01 mol / L. The chemical change was performed in the same manner as in Example 1. The solution temperature in the washing tank 11 was set to 150 ° C. As a result, the chemical change time (time during which wafer processing cannot be performed) was 60 minutes. During the subsequent wafer cleaning process (12 hours), the oxidant concentration of the electrolytic sulfuric acid solution was stable.
  • Table 1 shows the results of comparative examples and examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

半導体ウエハ洗浄装置での過硫酸溶液の入れ替えの時間が短縮される過硫酸溶液製造供給装置及び方法が提供される。第1電解システム20によって、洗浄槽11へ過硫酸溶液を循環供給している間に、第2電解システムの貯留槽41に水と硫酸が導入され、ポンプ44、配管45、電解セル50、気液分離器52、配管53を介して循環され、過硫酸が生成する。ケミカルチェンジ時には、第1電解システム20から排液した後、貯留槽41内の過硫酸溶液を貯留槽22に移送する。

Description

過硫酸溶液製造供給装置及び方法
 本発明は、半導体ウエハを洗浄処理する洗浄装置等に過硫酸溶液を供給するための装置及び方法に関するものである。
 電解硫酸溶液により半導体ウエハを洗浄する際は、少なくとも陽極にダイヤモンド電極を備えた電解セルにより硫酸を電気分解して所定量の過硫酸(ペルオキソ一硫酸とペルオキソ二硫酸の総称とする)を含み、過硫酸塩を含まない過硫酸溶液からなる電解硫酸を生成し、洗浄機に電解硫酸を送液する。その液を用いて、半導体ウエハ上のレジストや金属の溶解や洗浄を行う。
 硫酸を電気分解して所定量の過硫酸が生成するまでは長い時間を要するので、ウエハの洗浄工程に合わせて洗浄液として電解硫酸を生成・供給するためには、電解セルを多く設置する必要がある。
 特許文献1(特開2008-111184)の実施形態5には、電解液貯留槽を3個設け、1つを洗浄部への排出用に、1つを洗浄部からの回収用に、1つを電解セルとの循環用に、のように使い分け、1ターンが終わると循環用⇒排出用、排出用⇒回収用、回収用⇒循環用に通液を切り替えるメリーゴーランド方式の処理により洗浄中にバックグラウンドで電解硫酸を生成するシステムが記載されている。しかし洗浄時間より電解時間の方が長時間を要するため電解硫酸製造までの待ち時間が発生してしまうという問題がある。
 電解硫酸では、SPM(硫酸+過酸化水素)のように過硫酸再生に伴って硫酸濃度が低下しないため、洗浄液を循環して再生して洗浄に再利用することが容易にできる。このことから、上記特許文献1ではその方式を採用している。しかし、洗浄排液に含まれる不純物(ウエハから溶出した微量の金属の他に、レジスト剥離除去の場合は有機物や有機物由来のSS、残渣金属溶解除去の場合は残渣金属の残留物)が循環回数が増えるに伴って液中に混入・蓄積する。そのため経時的には電解処理や洗浄処理に悪影響が及ぶリスクがある。
 そのため特に循環式では定期的に洗浄液をフレッシュな洗浄液と入れ替える必要がある。具体的には、系内の液を定期的に全部、あるいは定期的又は連続的に一部を押し出して、その分の硫酸を補給して電解硫酸を生成してウエハ洗浄を再開する、といった工程が必要になる。しかし上記従来技術では溶液入れ替えについて考慮されていない。
 特開2008-111184のようなメリーゴーランド方式のシステムでは、全ての貯留槽を同じ大きさにしなければならない。そのため、このシステムは、例えば、第1貯留槽100L、第2貯留槽100L、第3貯留槽100L、洗浄槽容量60L、配管容量10Lのように大掛かりになってしまう。
 上記のように、電解硫酸による半導体ウエハ洗浄において、洗浄排液を循環再利用する場合は、洗浄排液に含まれる不純物の経時的な蓄積を考慮して溶液の入れ替えを行うが、硫酸を電気分解して過硫酸を生成するには、長時間を要するので、電気分解して所定量の過硫酸が生成するまでは、ウエハの処理を行うことができない。
特開2008-111184号公報
 本発明は、半導体ウエハ洗浄装置での過硫酸溶液の入れ替えの時間が短縮される過硫酸溶液製造供給装置及び方法を提供することを目的とする。
 本発明の過硫酸溶液製造供給装置は、ウエハ洗浄装置に過硫酸溶液を循環供給する第1電解システムを有する。この過硫酸溶液製造供給装置は、該第1電解システムとは別個に設けられた、過硫酸溶液生成用の第2電解システムと、第1電解システムに対し第2電解システムから電解溶液を移送する移送装置とを備える。
 本発明の過硫酸溶液製造供給方法は、本発明の過硫酸溶液製造供給装置を用いてウエハ洗浄装置に過硫酸溶液を供給する。この方法では、該ウエハ洗浄装置でウエハを洗浄している工程の少なくとも一部において、第2電解システムで電解処理して過硫酸溶液を生成させ、前記ウエハ洗浄装置及び第1電解システムの過硫酸溶液入れ替え時に、該ウエハ洗浄装置及び第1電解システムから過硫酸溶液を排出した後第2電解システムから該第2の電解システムに過硫酸溶液を移送する。
 本発明の一態様では、前記第1電解システムは、ウエハ洗浄装置に循環供給される過硫酸溶液を貯留する第1の貯留槽と、該第1の貯留槽から供給される液を電解処理し、電解処理後の液を該第1の貯留槽に戻す第1の電解セルを備えており、第2電解システムは、第2の貯留槽と、該第2の貯留槽から供給される液を電解処理し、電解処理後の液を第2の貯留槽に戻す第2の電解セルと、第2の貯留槽に硫酸及び水を供給する装置とを有する。
 本発明では、半導体ウエハ洗浄装置に電解硫酸を供給・返送する第1電解システムを有する過硫酸溶液製造供給装置において、予め電解硫酸を製造して予備タンクに貯留しておく第2電解システムを設ける。
 本発明装置及び方法では、ウエハ洗浄中に、第2電解システムで電解硫酸を生成させて貯留させておくことができるため、ウエハ洗浄の待ち時間(ケミカルチェンジ時間)を短縮できる。第1電解システムから第2電解システムへの液流入がないので、第2電解システムへの不純物の混入・蓄積のおそれもない。
実施の形態を示すブロック図である。 図1の過硫酸溶液製造供給装置のフロー図である。 別の実施の形態を示すブロック図である。 図3の過硫酸溶液製造供給装置のフロー図である。
 本発明の第1実施形態の過硫酸溶液製造供給装置を図1に基づいて説明する。
 この過硫酸溶液製造供給装置は、複数枚の半導体ウエハ100をまとめて洗浄するバッチ式洗浄機10と、第1電解システム20及び第2電解システム40とを有する。各電解システム20,40の電解セル30,50は、少なくとも陽極をダイヤモンド電極とした電極を有すると共に、陽極、陰極間に通電する電源装置(図示しない)を備える。電極としてバイポーラ電極を備えるものであってもよい。
 バッチ式洗浄機10は、電解された硫酸溶液が満たされる洗浄槽11のほか、洗浄槽11での洗浄後の半導体ウエハ100をリンスする高温リンス槽、高温リンス槽でのリンス後の半導体ウエハ100を更にリンスする常温リンス槽、および常温リンス槽でのリンス後の半導体ウエハ100を乾燥する乾燥機を有している(いずれも図示せず)。
 洗浄槽11の液流出部と液入口部は、配管12、ポンプ13、配管14、ヒータ15、配管16よりなる循環ラインによって接続されている。各配管及び機器は、100℃以上の温度に対し耐熱性を有する材料で構成されており、例えばPFA等のフッ素樹脂製とされている。
 配管16からは、バルブ18を有した配管17が分岐しおり、系内の液を系外に排出できるようになっている。
 第1電解システム20は、配管12から分岐した配管21を介して洗浄機排出液が導入される貯留槽(第1の貯留槽)22と、該貯留槽22内の液を電解処理する前記電解セル30等と、電解処理された液を配管16に返送するための配管23、ポンプ24、配管25等を有している。
 貯留槽22内の液は、ポンプ27、配管28を介して電解セル30(第1の電解セル)に導入される。電解処理された液は、配管31、気液分離器32、配管33を介して貯留槽22に戻される。気液分離器32で分離されたガスは、ガス処理装置56へ送られる。
 第2電解システム40は、配管42,43から硫酸及び水がそれぞれ供給される貯留槽(第2の貯留槽)41と、該貯留槽41内の液を電解セル(第2の電解セル)50へ供給するためのポンプ44、配管45、バルブ46と、電解セル50で電解された液が配管51を介して導入される気液分離器52と、気液分離器52から液を貯留槽41に戻す配管53と、気液分離器52で分離されたガスをガス処理装置56へ送る配管54等を備えている。
 配管45からは、配管47が分岐しており、該配管45,47、バルブ48、配管49を介して貯留槽41内の液が第1電解システムの貯留槽22へ供給可能とされている。
 次に、上記過硫酸溶液製造供給装置の動作について図2を参照して説明する。
 洗浄槽11には、硫酸濃度70~96質量%の硫酸溶液が満たされている。洗浄槽11から配管12へ流出した液の一部は、ポンプ13、配管14、ヒータ15、配管16を介して循環される。例えば、洗浄槽11の槽容積Vに対し、1/2~1/3V/分の循環流量で硫酸溶液が循環される。このときバルブ18は閉となっている。
 配管12へ流出した液の残部は、配管21を介して貯留槽22へ導入される。貯留槽22内に導入された液の一部は、ポンプ27、配管28、電解セル30、配管31、気液分離器32、配管33を介して貯留槽22へ循環され、電解処理され、過硫酸が生成する。過硫酸を含んだ貯留槽22内の液は、配管23、ポンプ24、配管25を介して配管16へ供給される。
 このように、ウエハ洗浄が行われている間に、特にウエハ洗浄工程の少なくとも初期において、第2電解システムの貯留槽41に水と硫酸が導入され、貯留槽41内の液の一部はポンプ44、配管45、電解セル50、気液分離器52、配管53を介して循環され、電解処理され過硫酸が生成する。なお、このときは、バルブ46は開、バルブ48は閉とされている。貯留槽41内の過硫酸濃度が所定濃度に達したならば、この循環を停止し、貯留槽41内に過硫酸溶液を貯留しておく。
 所定時間、又は所定枚数のウエハを洗浄した後、バルブ18を開とし、洗浄槽11及び配管12,14,16,21,23,25並びに第1電解システム20内の液を配管17を介して系外に排出する。
 次いで、バルブ18を閉とした後、貯留槽41内に貯留しておいたフレッシュな過硫酸溶液を、ポンプ44及び配管45,47,49を介して貯留槽22へ導入する。この際、バルブ46は閉、バルブ48は開とする。
 所定量の過硫酸溶液を貯留槽22に移送した後、移送を停止し、槽22内の液をポンプ24、配管23,25を介して洗浄槽11へ供給し、洗浄槽11と、配管12,14,16の循環ラインを過硫酸溶液で満たした後、ウエハ洗浄を再開する。
 このように、図2の通り、洗浄槽11でウエハ100を洗浄している間に、第2電解システム40において過硫酸溶液を製造しているので、1つのバッチのウエハ洗浄と次のバッチのウエハ洗浄との間では、洗浄槽11及び第1電解システム20からの液排出と、洗浄槽11と第1電解システム20に第2電解システム40から過硫酸溶液の移送だけを行うだけで次のバッチの洗浄を開始することができ、バッチ間の過硫酸溶液更新作業(ケミカルチェンジ)時間が著しく短縮される。
 本発明では、第1電解システム20の貯留槽22の容量を小さくすることができる。第2電解システム40が設けられていない場合、例えば洗浄槽容量60L、1バッチに必要な過硫酸溶液が100Lのとき貯留槽22容量100L、洗浄槽容量60L、配管容量10L程度であるのに対し、第2電解システム40を設置した場合、貯留槽41容量100L、貯留槽22容量30L、洗浄槽容量60L、配管容量10L程度で足り、第1電解システム貯留槽22の容量は半減されるので、第2電解システム40の増設による装置の大型化を抑えることができる。
 通常は、第1電解システム20の貯留槽22の容量は10~80L、第2電解システム40の貯留槽41の容量は80~150L程度となる。
 図1,2はバッチ式洗浄装置であるが、本発明は図3,4の枚葉式の洗浄装置60にも適用可能である。
 この枚葉式の洗浄装置60は、搬入されたウエハ100に向けた洗浄液ノズル61と、ウエハ100を載置して回転させる回転台62とを備える。洗浄液ノズル61で、洗浄液として硫酸溶液がスプレーされるか少量ずつ流れ落ちて、回転台に保持されたウエハ100の上面に供給される。
 ウエハ100上面に供給された洗浄液は、ウエハ100の回転による遠心力を受けて、ウエハ100の上面を周縁部に向けて拡がり、ウエハ100の洗浄が行われる。洗浄液は、ウエハ100の周縁から振り切られて側方に飛散し、回収槽63に導入され、ポンプ64、配管65を介して貯留槽66に導入される。貯留槽66内の液は、ポンプ67、熱交換器68、配管69を介して貯留槽70に導入される。貯留槽70内の液は、ポンプ71、急速加熱器72、配管73、バルブ74、配管75を介して洗浄液ノズル61へ供給される。配管73からは配管(バイパスライン)76が分岐しており、該配管76にバルブ77が設けられている。洗浄装置60でウエハを洗浄しているときには、バルブ74を開、バルブ77を閉とする。洗浄装置60でのウエハ洗浄が停止しているときには、バルブ74を閉、バルブ77を開とし、配管73からの液を配管76を介して貯留槽66へ供給する。急速加熱器72は、例えば近赤外線ヒータによって硫酸溶液を一過式で120~220℃に急速加熱する。
 第1電解システム80は、この貯留槽70と、該貯留槽70内の液を電解処理する前記電解セル30等を有している。電解セル30及び該電解セル30への液の循環供給機構の構成は図1,2の場合と同じである。即ち、貯留槽70内の液は、ポンプ27、配管28を介して電解セル30に導入される。電解処理された液は、配管31、気液分離器32、配管33を介して貯留槽70に戻される。気液分離器32で分離されたガスは、ガス処理装置56へ送られる。
 第2電解システム40の構成は図1,2のものと同一であり、同一部材に同一符号を付してその説明を省略する。
 この枚葉式の洗浄装置においても、図4の通り、洗浄装置60でウエハ洗浄が行われている間に、特にウエハ洗浄工程の少なくとも初期において、第2電解システムの貯留槽41に水と硫酸が導入され、貯留槽41内の液の一部はポンプ44、配管45、電解セル50、気液分離器52、配管53を介して循環され、電解処理され過硫酸が生成する。なお、このときは、バルブ46は開、バルブ48は閉とされている。貯留槽41内の過硫酸濃度が所定濃度に達したならば、この循環を停止し、貯留槽41内に過硫酸溶液を貯留しておく。
 所定時間、又は所定枚数のウエハを洗浄した後、洗浄装置60、回収槽63、貯留槽66、及び配管65,69,73,75、並びに第1電解システム20内の液を回収槽63又はその上流側に接続されている排液ライン(図示略)を介して系外に排出する。
 次いで、貯留槽41内に貯留しておいたフレッシュな過硫酸溶液を、ポンプ44及び配管47,49を介して貯留槽70へ導入する。この際、バルブ46は閉、バルブ48は開とする。
 所定量の過硫酸溶液を貯留槽70に移送した後、移送を停止し、貯留槽70内の液をポンプ71、配管73,75を介して洗浄装置60へ供給し、ウエハ洗浄を再開する。
 このように、洗浄装置60でウエハ100を洗浄している間に、第2電解システム40において過硫酸溶液を製造しているので、過硫酸溶液更新作業を行う場合、第1電解システム80からの排液排出とそれらへの第2電解システム40から過硫酸溶液の移送だけを行うだけでよく、過硫酸溶液更新作業(ケミカルチェンジ)時間が著しく短縮される。
 本発明は特に過硫酸溶液の酸化剤濃度が高いとき(例えば0.03~0.1mol/L)や、洗浄液温度が高いとき(例えば150~180℃)に好適に用いることができる。
 以下に、本発明の実施例および比較例を示す。
[比較例1]
 図1において、第2電解システム40を省略した。第1電解システム20には4機の電解セル30を設置した。本装置を用いて、ケミカルチェンジを行った。既存の溶液を配管17からドレインして、新たな硫酸と水を洗浄槽11及び貯留槽22に投入して硫酸濃度が85%となるようにした。洗浄槽11内の溶液温度は120℃に設定した。その後、電解セル30に0.4A/cmの電流密度で通電し、電解硫酸溶液を生成させ、酸化剤濃度0.01mol/Lとし、ケミカルチェンジ完了とした。
 ケミカルチェンジ完了までにかかった時間は、300分であった。その後のウエハ洗浄処理(12時間)の際、電解硫酸溶液の酸化剤濃度は安定していた。
[比較例2]
 比較例1において、電解セル30の数を10機としたこと以外は同様とした。本装置を用いて、ケミカルチェンジを行った。既存の溶液をドレインして、新たなに硫酸と水を洗浄槽11及び貯留槽22に投入して硫酸濃度が85%となるようにした。また、洗浄槽11内の溶液温度は120℃に設定した。その後、電解セル30に0.4A/cmの電流密度で通電し、電解硫酸溶液を生成し、酸化剤濃度0.03mol/Lとし、ケミカルチェンジ完了とした。
 ケミカルチェンジ完了までにかかった時間は、300分であった。その後のウエハ洗浄処理(12時間)の際、電解硫酸溶液の酸化剤濃度は安定していた。
[比較例3]
 比較例1において、電解セル30の数を15機としたこと以外は同様とした。本装置を用いて、ケミカルチェンジを行った。既存の溶液をドレインして、新たなに硫酸と水を洗浄槽11及び貯留槽22に投入して硫酸濃度が85%となるようにした。洗浄槽11内の溶液温度は、150℃に設定した。その後、電解セル30に0.4A/cmの電流密度で通電し、電解硫酸溶液を生成し、酸化剤濃度0.01mol/Lとし、ケミカルチェンジ完了とした。
 ケミカルチェンジ完了までにかかった時間は、300分であった。その後のウエハ洗浄処理(12時間)の際、電解硫酸溶液の酸化剤濃度は安定していた。
[実施例1]
 図1の通り、第2電解システム40を設置した。第1電解システムにおける電解セル30を4機、第2電解システムにおける電解セル50を2機設置した。本装置を用いて、ウエハ処理を行っている間に、第2電解システム40で新たに硫酸と水を貯留槽41に投入して硫酸濃度が85%となるようにした。電解セル30,50に0.4A/cmの電流密度で通電し、電解硫酸溶液を生成し、酸化剤濃度0.01mol/Lとした。ケミカルチェンジの際は、まず、洗浄槽11と配管12~16、第1電解システム20の電解硫酸溶液をドレインし、第2電解システム40で製造しておいた電解硫酸溶液を貯留槽41から貯留槽22に移送した。洗浄槽11内の溶液温度は、120℃に設定した。これにより、ケミカルチェンジ時間(ウエハ処理ができない時間)は60分であった。その後のウエハ洗浄処理(12時間)の際、電解硫酸溶液の酸化剤濃度は安定していた。
[実施例2]
 実施例1において、第1電解システムの電解セル30を6機、第2電解システムの電解セル50を3機設置したこと以外は同様とした。本装置を用いて、ウエハ洗浄処理を行っている間に、第2電解システム40で新たなに硫酸と水を貯留槽41に投入して硫酸濃度が85%となるようにした。その後、電解セル30,50に0.4A/cmの電流密度で通電し、電解硫酸溶液を生成し、酸化剤濃度0.03mol/Lとした。ケミカルチェンジは実施例1と同様にして行った。洗浄槽11内の溶液温度は、120℃に設定した。これにより、ケミカルチェンジ時間(ウエハ処理ができない時間)は60分であった。その後のウエハ洗浄処理(12時間)の際、電解硫酸溶液の酸化剤濃度は安定していた。
[実施例3]
 実施例1において、第1電解システムの電解セル30を8機、第2電解システムの電解セル50を2機設置したこと以外は同様とした。本装置を用いて、ウエハ洗浄処理を行っている間に、貯留槽41に投入して硫酸濃度が85%となるようにした。電解セル30,50に0.4A/cmの電流密度で通電し、電解硫酸溶液を生成し、酸化剤濃度0.01mol/Lとした。ケミカルチェンジは実施例1と同様にして行った。洗浄槽11内の溶液温度は、150℃に設定した。これにより、ケミカルチェンジ時間(ウエハ処理ができない時間)は60分であった。その後のウエハ洗浄処理(12時間)の際、電解硫酸溶液の酸化剤濃度は安定していた。
 比較例、実施例の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1~3では、第1電解システムの電解硫酸生成部からの洗浄液循環ライン中の循環液をフレッシュな電解硫酸に置換するのに長時間を要していたが、実施例1~3では、液入れ替えの時間を大幅に短縮することができた。
 比較例2の通り、電解硫酸中の酸化剤濃度の設定濃度が高い場合、過硫酸の消失を考慮して、電解硫酸装置内の電解セル数を増やす必要があったが、本発明では実施例2の通り、電解セル数の増設数を抑えることもできることが裏付けられた。
 比較例3の通り、洗浄槽11内の温度が高温の場合、過硫酸の消失を考慮して、電解硫酸装置内の電解セル数を増やす必要があったが、本発明では実施例3の通り、電解セル数の増設数を抑えることもできることが裏付けられた。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2016年3月25日付で出願された日本特許出願2016-061470に基づいており、その全体が引用により援用される。
 11 洗浄槽
 15 ヒータ
 20,80 第1電解システム
 30,50 電解セル
 40 第2電解システム
 73 急速加熱器

Claims (3)

  1.  ウエハ洗浄装置に過硫酸溶液を循環供給する第1電解システムを有する過硫酸溶液製造供給装置において、
     該第1電解システムとは別個に設けられた、過硫酸溶液生成用の第2電解システムと、
     第1電解システムに対し第2電解システムから電解溶液を移送する移送装置と
    を備えたことを特徴とする過硫酸溶液製造供給装置。
  2.  請求項1において、前記第1電解システムは、ウエハ洗浄装置に循環供給される過硫酸溶液を貯留する第1の貯留槽と、該第1の貯留槽から供給される液を電解処理し、電解処理後の液を該第1の貯留槽に戻す第1の電解セルを備えており、
     第2電解システムは、第2の貯留槽と、該第2の貯留槽から供給される液を電解処理し、電解処理後の液を第2の貯留槽に戻す第2の電解セルと、第2の貯留槽に硫酸及び水を供給する装置とを有することを特徴とする過硫酸溶液製造供給装置。
  3.  請求項1又は2の過硫酸溶液製造供給装置を用いてウエハ洗浄装置に過硫酸溶液を供給する方法であって、
     該ウエハ洗浄装置でウエハを洗浄している工程の少なくとも一部において、第2電解システムで電解処理して過硫酸溶液を生成させ、
     前記ウエハ洗浄装置及び第1電解システムの過硫酸溶液入れ替え時に、該ウエハ洗浄装置及び第1電解システムから過硫酸溶液を排出した後第2電解システムから該第2の電解システムに過硫酸溶液を移送することを特徴とする過硫酸溶液製造供給方法。
PCT/JP2017/008932 2016-03-25 2017-03-07 過硫酸溶液製造供給装置及び方法 WO2017163851A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780010114.6A CN108603299B (zh) 2016-03-25 2017-03-07 过硫酸溶液制造供给装置及方法
KR1020187022968A KR102313925B1 (ko) 2016-03-25 2017-03-07 과황산 용액 제조 공급 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061470 2016-03-25
JP2016061470A JP6191720B1 (ja) 2016-03-25 2016-03-25 過硫酸溶液製造供給装置及び方法

Publications (1)

Publication Number Publication Date
WO2017163851A1 true WO2017163851A1 (ja) 2017-09-28

Family

ID=59798921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008932 WO2017163851A1 (ja) 2016-03-25 2017-03-07 過硫酸溶液製造供給装置及び方法

Country Status (5)

Country Link
JP (1) JP6191720B1 (ja)
KR (1) KR102313925B1 (ja)
CN (1) CN108603299B (ja)
TW (1) TWI715746B (ja)
WO (1) WO2017163851A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685879B (zh) * 2019-06-11 2020-02-21 力晶積成電子製造股份有限公司 工作溶液的更新方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051340A (ja) * 2005-08-18 2007-03-01 Kurita Water Ind Ltd 硫酸リサイクル型過硫酸供給装置
JP2007059603A (ja) * 2005-08-24 2007-03-08 Kurita Water Ind Ltd 硫酸リサイクル型洗浄システム
WO2011155335A1 (ja) * 2010-06-07 2011-12-15 栗田工業株式会社 洗浄システムおよび洗浄方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557167B2 (ja) * 2005-08-12 2010-10-06 栗田工業株式会社 硫酸リサイクル型洗浄システム
JP5024528B2 (ja) 2006-10-04 2012-09-12 栗田工業株式会社 過硫酸供給システムおよび過硫酸供給方法
JP5024521B2 (ja) * 2006-10-11 2012-09-12 栗田工業株式会社 高温高濃度過硫酸溶液の生成方法および生成装置
JP2012180538A (ja) * 2011-02-28 2012-09-20 Kurita Water Ind Ltd 硫酸電解方法および硫酸電解装置
JP5997130B2 (ja) * 2011-03-08 2016-09-28 デノラ・ペルメレック株式会社 硫酸電解装置及び硫酸電解方法
JP5787098B2 (ja) * 2012-08-22 2015-09-30 栗田工業株式会社 半導体基板の洗浄方法および洗浄システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051340A (ja) * 2005-08-18 2007-03-01 Kurita Water Ind Ltd 硫酸リサイクル型過硫酸供給装置
JP2007059603A (ja) * 2005-08-24 2007-03-08 Kurita Water Ind Ltd 硫酸リサイクル型洗浄システム
WO2011155335A1 (ja) * 2010-06-07 2011-12-15 栗田工業株式会社 洗浄システムおよび洗浄方法

Also Published As

Publication number Publication date
TWI715746B (zh) 2021-01-11
CN108603299A (zh) 2018-09-28
CN108603299B (zh) 2020-08-14
KR102313925B1 (ko) 2021-10-15
JP2017172018A (ja) 2017-09-28
KR20180126454A (ko) 2018-11-27
JP6191720B1 (ja) 2017-09-06
TW201805483A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2011114885A1 (ja) 電子材料の洗浄方法および洗浄システム
TWI594316B (zh) 半導體基板的清洗方法與清洗系統
JP5761521B2 (ja) 洗浄システムおよび洗浄方法
JP2007059603A (ja) 硫酸リサイクル型洗浄システム
JP5660279B2 (ja) 機能性溶液供給システムおよび供給方法
JP4412301B2 (ja) 洗浄システム
JP2006228899A (ja) 硫酸リサイクル型洗浄システム
JP2012195524A (ja) 電子材料洗浄方法および洗浄装置
JP2007266497A (ja) 半導体基板洗浄システム
JP5939373B2 (ja) 電子材料洗浄方法および洗浄装置
JP2011205015A (ja) 電子材料の洗浄方法
WO2017163851A1 (ja) 過硫酸溶液製造供給装置及び方法
JP4600666B2 (ja) 硫酸リサイクル型枚葉式洗浄システム
JP4573043B2 (ja) 硫酸リサイクル型洗浄システム
JP2007266477A (ja) 半導体基板洗浄システム
JP5751426B2 (ja) 洗浄システムおよび洗浄方法
JP6609919B2 (ja) 半導体基板の洗浄方法
JP4600667B2 (ja) 硫酸リサイクル型洗浄システムおよび硫酸リサイクル型洗浄方法
JP5024521B2 (ja) 高温高濃度過硫酸溶液の生成方法および生成装置
JP2016167560A (ja) 電解硫酸溶液の製造方法および電解硫酸溶液製造装置
JP5126478B2 (ja) 洗浄液製造方法および洗浄液供給装置ならびに洗浄システム
JP4862981B2 (ja) 硫酸リサイクル型洗浄システムおよびその運転方法
JP6866751B2 (ja) 洗浄システム
JP2007049086A (ja) 硫酸リサイクル型洗浄システム
JP2007289842A (ja) 排水処理方法、及び排水処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022968

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769896

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769896

Country of ref document: EP

Kind code of ref document: A1