WO2017163471A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2017163471A1
WO2017163471A1 PCT/JP2016/081108 JP2016081108W WO2017163471A1 WO 2017163471 A1 WO2017163471 A1 WO 2017163471A1 JP 2016081108 W JP2016081108 W JP 2016081108W WO 2017163471 A1 WO2017163471 A1 WO 2017163471A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetoresistive element
magnetic body
terminal
magnetic sensor
Prior art date
Application number
PCT/JP2016/081108
Other languages
English (en)
French (fr)
Inventor
圭 田邊
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201680083885.3A priority Critical patent/CN108780130B/zh
Priority to US16/085,706 priority patent/US11022660B2/en
Priority to DE112016006631.7T priority patent/DE112016006631B4/de
Publication of WO2017163471A1 publication Critical patent/WO2017163471A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1253Measuring galvano-magnetic properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects

Definitions

  • the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor suitable for closed-loop control.
  • a magnetic sensor that detects a weak magnetic field emitted from a human body or the like is strongly influenced by an environmental magnetic field such as geomagnetism. For this reason, in this type of apparatus, it is essential to cancel the influence of the environmental magnetic field.
  • the magnetic sensor described in Patent Document 1 has a configuration in which a cancel coil, a magnetoresistive effect element, and a magnetic body are laminated in this order on the surface of a sensor chip, and a magnetic flux generated by a magnetic field to be detected is magnetoresistive effect element.
  • the closed loop control is realized by causing the current to flow through the cancel coil in accordance with the change in the resistance value of the magnetoresistive effect element.
  • Patent Document 1 has an excellent feature that the entire size is very small because the cancel coil, the magnetoresistive effect element, and the magnetic body are integrated in one sensor chip. ing. However, in recent years, further downsizing and cost reduction are required for magnetic sensors.
  • an object of the present invention is to further reduce the size and cost of a magnetic sensor suitable for closed loop control.
  • the magnetic sensor according to the present invention includes first to fourth terminals, a first magnetoresistive element that is electrically connected between the first and second terminals and extends in a first direction, A first magnetic body electrically connected between the third and fourth terminals and extending in the first direction along the first magnetoresistive element.
  • the effect element is arranged to be offset with respect to a center position of the first magnetic body in a second direction intersecting with the first direction.
  • the magnetic flux to be detected is collected by the first magnetic body, and the closed loop control is performed by flowing a current to the first magnetic body in accordance with the resistance value of the first magnetoresistive element.
  • the closed loop control is performed by flowing a current to the first magnetic body in accordance with the resistance value of the first magnetoresistive element.
  • a feedback circuit that allows a feedback current to flow between the third terminal and the fourth terminal may be added based on the potential appearing at the first or second terminal.
  • the first magnetic body is preferably made of a soft magnetic material.
  • the first magnetoresistive element may be disposed at a position that does not overlap the first magnetic body when viewed from a third direction intersecting the first and second directions. preferable. According to this, since most of the magnetic flux component bent in the second direction by the first magnetic body is applied to the first magnetoresistive element, the fixed magnetization direction of the first magnetoresistive element is Higher detection sensitivity can be obtained when the direction is two.
  • the length of the first magnetic body in the first direction is preferably equal to or longer than the length of the first magnetoresistive element in the first direction. According to this, since the magnetic field in the second direction is obtained over a longer region of the first magnetoresistive element, the fixed magnetization direction of the first magnetoresistive element is the second direction. It becomes possible to obtain a higher detection sensitivity.
  • the magnetic sensor according to the present invention includes a fifth terminal, a second magnetoresistive element electrically connected between the second and fifth terminals and extending in a predetermined direction, and the third and second 4 and a second magnetic body that is electrically connected between the terminals and extends in the predetermined direction along the second magnetoresistive element, and the second magnetoresistive element includes: It is preferable that the second magnetic body is disposed so as to be offset with respect to a direction intersecting the predetermined direction. According to this, since the differential signal is obtained by the two magnetoresistive effect elements, the detection sensitivity can be further increased.
  • the first magnetoresistive element is formed in a first wiring layer of a sensor chip, and the first magnetic body is a second wiring layer different from the first wiring layer of the sensor chip. It is preferable to be formed. According to this, three functions of magnetism collection, magnetic detection, and magnetic field cancellation can be realized by two wiring layers.
  • the first magnetic body may be a block body made of a magnetic material fixed to the second wiring layer, or may be a thin film made of a magnetic material formed on the second wiring layer. It does not matter.
  • FIG. 1 is a schematic perspective view showing an appearance of a magnetic sensor 10A according to the first embodiment of the present invention.
  • FIG. 2 is a top view of the magnetic sensor 10A.
  • FIG. 3 is a side view of the magnetic sensor 10A.
  • FIG. 4 is a circuit diagram of the feedback circuit 60 connected to the first to fourth terminals 41 to 44.
  • FIG. 5 is a schematic diagram for explaining the directions of the magnetic fluxes ⁇ 1 and ⁇ 2.
  • FIG. 6 is a schematic cross-sectional view for explaining in more detail the positional relationship between the magnetoresistive element MR1 and the magnetic body 31 in the y direction.
  • FIG. 7 is a top view showing the configuration of the magnetic sensor 10B 1 according to the second embodiment of the present invention.
  • Figure 8 is a schematic diagram for explaining the directions of the magnetic fluxes ⁇ 1 to ⁇ 3.
  • Figure 9 is a top view showing the configuration of a magnetic sensor 10B 2 according to a modification of the second embodiment.
  • Figure 10 is a top view showing the configuration of a magnetic sensor 10B 3 according to another modification of the second embodiment.
  • FIG. 1 is a schematic perspective view showing an appearance of a magnetic sensor 10A according to the first embodiment of the present invention.
  • 2 is a top view of the magnetic sensor 10A
  • FIG. 3 is a side view of the magnetic sensor 10A.
  • the magnetic sensor 10A according to the present embodiment includes a sensor chip 20 and a first magnetic body 31 fixed to the sensor chip 20.
  • the sensor chip 20 includes a substrate 21 having a substantially rectangular parallelepiped shape and an insulating film 22 covering the surface thereof.
  • the surface of the substrate 21 constitutes the first wiring layer L1
  • the surface of the insulating film 22 constitutes the second wiring layer L2.
  • the sensor chip has two wiring layers.
  • the first wiring layer L1 is formed of an xy plane, and a first magnetoresistive element MR1 extending in the x direction which is the first direction is formed.
  • the second wiring layer L2 is also made of an xy plane.
  • First to fourth terminals 41 to 44 and first to fourth wirings 51 to 54 are formed, and the magnetic body 31 is fixed.
  • a method for manufacturing the sensor chip 20 a method of forming a large number of sensor chips 20 on a collective substrate at the same time and separating them is generally used, but the present invention is not limited to this. Alternatively, each sensor chip 20 may be manufactured separately.
  • the magnetoresistive element MR1 is an element whose electric resistance changes according to the direction and strength of the magnetic field, and its magnetization fixed direction is the second direction (y direction) indicated by the arrow A in FIGS. .
  • One end of the magnetoresistive element MR1 in the x direction is electrically connected to the first terminal 41 via the first wiring 51, and the other end in the x direction is connected to the second terminal 42 via the second wiring 52. Is electrically connected.
  • the electrical connection between the magnetoresistive effect element MR1 and the wirings 51 and 52 is made through through conductors 58 and 59 provided through the insulating film 22.
  • a portion of the wirings 51 and 52 that is in contact with the magnetoresistive effect element MR1 is formed in the first wiring layer L1, and a portion of the wirings 51 and 52 that is formed in the first wiring layer L1 and the second wiring layer are formed.
  • the portions formed in L2 may be connected by through conductors 58 and 59.
  • the magnetic body 31 is a block body made of a soft magnetic material having high magnetic permeability and low electrical resistance.
  • the material of the magnetic body 31 is not particularly limited, but a material having a magnetic permeability of 100 or more and a resistance value of 1 M ⁇ or less is preferably used. Examples thereof include metals (nanocrystalline soft magnetic materials).
  • the magnetic body 31 extends in the x direction along the magnetoresistive effect element MR1, but the two do not overlap in a plan view (that is, viewed from the z direction).
  • the magnetoresistive effect element MR1 is arranged offset in the y direction.
  • One end of the magnetic body 31 in the x direction is electrically connected to the third terminal 43 via the third wiring 53, and the other end in the x direction is electrically connected to the fourth terminal 44 via the fourth wiring 54. Connected. With this configuration, the magnetic body 31 is electrically connected between the third terminal 43 and the fourth terminal 44.
  • the length L1 of the magnetic body 31 in the x direction is equal to or longer than the length L2 of the magnetoresistive element MR1 in the x direction (L1 ⁇ L2), and the total length of the magnetoresistive element MR1 in the x direction is the same as that of the magnetic body 31. Adjacent.
  • the magnetic body 31 serves to collect magnetic flux in the z direction, bend it in the y direction, and apply it to the magnetoresistive element MR1. Then, by adjoining the magnetic body 31 over the entire length of the magnetoresistive element MR1 in the x direction, a magnetic field in the y direction can be obtained over a longer region of the magnetoresistive element MR1.
  • FIG. 4 is a circuit diagram of the feedback circuit 60 connected to the first to fourth terminals 41 to 44.
  • the feedback circuit 60 includes an operational amplifier 61, a constant voltage source 62, a constant current source 63, and a resistor 64.
  • the non-inverting input terminal (+) of the operational amplifier 61 is connected to the constant voltage source 62, and the inverting input terminal ( ⁇ ) is connected to the second terminal 42.
  • the constant current source 63 is also connected to the second terminal 42.
  • the output terminal of the operational amplifier 61 is connected to the third terminal 43.
  • the first terminal 41 is connected to the ground, and the fourth terminal 44 is connected to the ground via the resistor 64.
  • the output level Out of the fourth terminal 44 is supplied to a detection circuit (not shown).
  • the magnetic flux ⁇ 1 to be detected when the magnetic flux ⁇ 1 to be detected is applied from the z direction, the magnetic flux ⁇ 1 is collected by the magnetic body 31, and then bent in the y direction to return to the magnetic flux generation source. . Since the magnetoresistive element MR1 is disposed on the y direction side of the magnetic body 31, the resistance value of the magnetoresistive element MR1 changes (for example, the resistance value increases) by the magnetic flux ⁇ 1. In the example shown in FIG. 5, the magnetic flux ⁇ 1 is applied to the magnetoresistive element MR1 in the y-minus direction.
  • the potential level of the second terminal 42 changes. Change. For example, when the resistance value of the magnetoresistive element MR1 is increased, the potential level of the second terminal 42 is increased.
  • the potential level of the output terminal of the operational amplifier 61 also changes accordingly. For example, when the potential level of the second terminal 42 increases, the potential level of the output terminal of the operational amplifier 61 decreases, and the feedback current I flows from the fourth terminal 44 to the third terminal 43.
  • a magnetic field is generated around the magnetic body 31 according to the so-called right-handed screw law.
  • the magnetic flux ⁇ 2 generated thereby is in the direction shown in FIG. 5, and at the position where the magnetoresistive element MR1 is provided.
  • the magnetic flux ⁇ 2 is in the y plus direction. That is, the magnetic flux ⁇ 1 and the magnetic flux ⁇ 2 cancel each other.
  • the change in the resistance value of the magnetoresistive element MR1 caused by the magnetic flux ⁇ 1 to be detected is fed back in the direction to return to the original, so that closed loop control is realized.
  • the actual detection result is detected by a detection circuit (not shown) based on the output level Out of the fourth terminal 44.
  • the magnetic body 31 that collects the magnetic flux ⁇ 1 to be detected also serves as a cancel coil. For this reason, it is not necessary to separately provide a magnetic body for magnetism collection and a cancel coil, and the number of necessary elements is reduced. As a result, it is possible to further reduce the size and cost of the magnetic sensor.
  • the magnetoresistive element MR1 is arranged in the first wiring layer L1, and the magnetic body 31 is arranged in the second wiring layer L2, so that the magnetic sensor 10A is formed by two wiring layers. It is possible to configure, thereby realizing a reduction in size and cost. It is possible to arrange the magnetoresistive element MR1 and the magnetic body 31 in the same wiring layer, and in this case, a magnetic sensor can be constituted by one wiring layer.
  • the elements constituting the feedback circuit 60 may be integrated in the sensor chip 20 or may be formed on another substrate.
  • the feedback circuit 60 may be formed on the printed board, and the printed board and the magnetic sensor 10A may be connected using a bonding wire or the like.
  • FIG. 6 is a schematic cross-sectional view for explaining in more detail the positional relationship between the magnetoresistive element MR1 and the magnetic body 31 in the y direction.
  • FIG. 6 illustrates four positions (a) to (d) as positions of the magnetoresistive effect element MR1.
  • the position (a) is as described with reference to FIGS. 1 to 3, and is a position that does not overlap the magnetic body 31 and is adjacent to the magnetic body 31 in a plan view.
  • the distance from the center position B in the y direction of the magnetic body 31 to the center in the y direction of the magnetoresistive element MR1 is 1 mm or less.
  • the magnetoresistive element MR1 is most preferably arranged at the position (a).
  • the position (b) is a position that is not overlapped with the magnetic body 31 in a plan view but is far from the magnetic body 31.
  • the distance between the magnetoresistive element MR1 and the magnetic body 31 in the y direction as viewed from the z direction is increased as in the position (b)
  • the influence of the magnetic fluxes ⁇ 1 and ⁇ 2 on the magnetoresistive element MR1 is reduced.
  • the detection sensitivity is lowered.
  • the distance between the centers of the magnetoresistive element MR1 and the magnetic body 31 in the y direction as viewed from the z direction is preferably 1 mm or less as described above.
  • the position (c) is a position that coincides with the center position B in the y direction of the magnetic body 31. If the magnetoresistive element MR1 is arranged at such a position (c), the y-direction component of the magnetic flux ⁇ 1 is not given to the magnetoresistive element MR1, so that it does not function as a magnetic sensor. Therefore, it is inappropriate to dispose the magnetoresistive element MR1 at such a position (c).
  • the position (d) overlaps with the magnetic body 31 in plan view, but is offset from the center position B in the y direction of the magnetic body 31.
  • the y-direction component of the magnetic flux ⁇ 1 is given to the magnetoresistive element MR1 to some extent, it functions correctly as a magnetic sensor.
  • the magnetoresistive effect element MR1 overlaps the magnetic body 31 when viewed from the z direction as in the position (d), the y-direction component of the magnetic flux ⁇ 1 applied to the magnetoresistive effect element MR1 is reduced. Therefore, it is desirable to dispose the magnetoresistive element MR1 at a position where they do not overlap each other as in the position (a).
  • FIG. 7 is a top view showing the configuration of the magnetic sensor 10B 1 according to the second embodiment of the present invention.
  • the magnetic sensor 10 ⁇ / b> B 1 includes a second magnetoresistive element MR ⁇ b> 2, a second magnetic body 32, and a fifth terminal 45.
  • the magnetoresistive element MR2 is connected between the second terminal 42 and the fifth terminal 45, and extends in the x direction like the magnetoresistive element MR1.
  • the magnetization fixed direction of the magnetoresistive effect element MR2 is the same direction as the magnetoresistive effect element MR1, as indicated by the arrow A.
  • One end of the magnetoresistive element MR2 in the x direction is electrically connected to the second terminal 42 via the fifth wiring 55, and the other end in the x direction is the fifth terminal via the sixth wiring 56. 45 is electrically connected.
  • the magnetoresistive effect element MR ⁇ b> 2 is electrically connected between the second terminal 42 and the fifth terminal 45.
  • the direction of the current flowing through the magnetoresistive element MR1 is the x plus direction
  • the direction of the current flowing through the magnetoresistive element MR2 is the x minus direction.
  • the magnetic body 32 extends in the x direction along the magnetoresistive element MR2, but the two do not overlap in a plan view (that is, viewed from the z direction).
  • the magnetoresistive element MR2 is arranged offset in the y direction.
  • the offset direction is opposite to the offset direction of the magnetoresistive effect element MR1 with respect to the magnetic body 31. That is, the magnetoresistive element MR1 is offset in the y-minus direction with respect to the magnetic body 31, whereas the magnetoresistive element MR2 is offset in the y-plus direction with respect to the magnetic body 32.
  • One end of the magnetic body 32 in the x direction is electrically connected to the magnetic body 31 via the fourth wiring 54, and the other end in the x direction is electrically connected to the fourth terminal 44 via the seventh wiring 57. Connected. With this configuration, the magnetic bodies 31 and 32 are electrically connected in series between the third terminal 43 and the fourth terminal 44.
  • FIG. 7 also shows the feedback circuit 60 connected to the first to fifth terminals 41 to 45. Also in this embodiment, the non-inverting input terminal (+) of the operational amplifier 61 is connected to the constant voltage source 62, and the inverting input terminal ( ⁇ ) is connected to the second terminal 42. However, the constant current source 63 shown in FIG. 4 is not used, and instead, the fifth terminal is connected to the power supply Vcc.
  • the magnetic flux ⁇ 1 to be detected when the magnetic flux ⁇ 1 to be detected is applied from the z direction, the magnetic flux ⁇ 1 is collected by the magnetic bodies 31 and 32, and then bent in the y direction. Return to the source.
  • the magnetoresistive element MR1 is disposed on the negative side of the magnetic body 31 in the y direction, and the magnetoresistive element MR2 is disposed on the positive side of the magnetic body 32 in the y direction.
  • the resistance values of the magnetoresistive effect elements MR1 and MR2 change. In the example shown in FIG.
  • the magnetic flux ⁇ 1 is applied to the magnetoresistive effect element MR1 in the y-minus direction, and the magnetic flux ⁇ 1 is applied to the magnetoresistive effect element MR2 in the y-plus direction.
  • the resistance value of the magnetoresistive effect element MR2 is Lower.
  • the resistance value of the magnetoresistive element MR2 is increased. That is, the magnetoresistive effect elements MR1 and MR2 constitute a differential circuit.
  • the potential level of the second terminal 42 which is a connection point between the magnetoresistive element MR1 and the magnetoresistive element MR2, changes depending on the strength of the magnetic flux ⁇ 1. For example, when the resistance value of the magnetoresistive element MR1 increases and the resistance value of the magnetoresistive element MR2 decreases, the potential level of the second terminal 42 increases. When the potential level of the second terminal 42 changes, the potential level of the output terminal of the operational amplifier 61 also changes accordingly. For example, when the potential level of the second terminal 42 increases, the potential level of the output terminal of the operational amplifier 61 decreases, and the feedback current I flows from the fourth terminal 44 to the third terminal 43.
  • the feedback current I flows through the magnetic bodies 31 and 32.
  • the magnetic bodies 31 and 32 are connected so as to be folded back, the directions of the feedback currents I flowing through the magnetic bodies 31 and 32 are opposite to each other. Therefore, for example, when the feedback current I flows from the fourth terminal 44 to the third terminal 43, the magnetic flux ⁇ 2 generated in the magnetic body 31 thereby becomes the direction shown in FIG. 8, and the magnetoresistive element MR1 is In the provided position, the magnetic flux ⁇ 2 is in the y plus direction.
  • the magnetic flux ⁇ 3 generated in the magnetic body 32 is in the direction shown in FIG. 8, and the magnetic flux ⁇ 3 is in the y-minus direction at the position where the magnetoresistive element MR2 is provided.
  • the magnetic flux ⁇ 1 and the magnetic flux ⁇ 2 cancel each other, and the magnetic flux ⁇ 1 and the magnetic flux ⁇ 3 cancel each other.
  • the actual detection result is detected by a detection circuit (not shown) based on the output level Out of the fourth terminal 44.
  • the magnetic sensor 10B 1 since the two magnetoresistive elements MR1, MR2 and uses two magnetic bodies 31 and 32, a second terminal due to the magnetic flux ⁇ 1 to be detected The change in the potential level of 42 increases. For this reason, it becomes possible to perform detection with higher sensitivity than the magnetic sensor 10A according to the first embodiment.
  • Figure 9 is a top view showing the configuration of a magnetic sensor 10B 2 according to a modification of the second embodiment.
  • Other configurations are the same as the magnetic sensor 10B 1 shown in FIG.
  • the magnetic bodies 31 and 32 may be formed of a single member.
  • Figure 10 is a top view showing the configuration of a magnetic sensor 10B 3 according to another modification of the second embodiment.
  • the magnetic sensor 10B 3 shown in FIG. 10 in that the magnetoresistive element MR2 and the magnetic member 32 extends in the x-direction is different from the magnetic sensor 10B 1 shown in FIG.
  • Other configurations are the same as the magnetic sensor 10B 1 shown in FIG.
  • the extending directions of the magnetoresistive effect elements MR1 and MR2 do not have to be the same, and the deformation shown in FIG. As in the example, they may be orthogonal to each other.
  • block bodies made of a magnetic material are used as the magnetic bodies 31 and 32.
  • the present invention is not limited to this, and a thin film made of a magnetic material is used instead of the block bodies. It doesn't matter.
  • the magnetic bodies 31 and 32 may be formed on the wiring layer L2 using a thin film method such as sputtering.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】クローズドループ制御に適した磁気センサを小型化及び低コスト化する。 【解決手段】端子41,42間に電気的に接続され、x方向に延在する磁気抵抗効果素子MR1と、端子43,44間に電気的に接続され、磁気抵抗効果素子MR1に沿ってx方向に延在する磁性体31とを備える。磁気抵抗効果素子MR1は、y方向における磁性体31の中心位置に対してオフセットして配置されている。本発明によれば、検出すべき磁束が磁性体31によって集められるとともに、磁気抵抗効果素子MR1の抵抗値に応じて磁性体31に電流を流すことにより、クローズドループ制御を実現することができる。つまり、磁性体31は、集磁機能とキャンセルコイルの機能を併せ持っていることから、必要な回路素子数を削減することができ、小型化及び低コスト化を実現することができる。

Description

磁気センサ
 本発明は磁気センサに関し、特に、クローズドループ制御に適した磁気センサに関する。
 人体などから発せられる微弱な磁界を検出する磁気センサは、地磁気などの環境磁界の影響を強く受ける。このため、この種の装置においては、環境磁界の影響をキャンセルすることが必須となる。
 特許文献1に記載された磁気センサは、センサチップの表面にキャンセルコイル、磁気抵抗効果素子及び磁性体をこの順に積層した構成を有しており、検出すべき磁界によって生じる磁束を磁気抵抗効果素子に誘導するとともに、磁気抵抗効果素子の抵抗値の変化に応じてキャンセルコイルに電流を流すことによってクローズドループ制御を実現している。
特開2015-219061号公報
 特許文献1に記載された磁気センサは、キャンセルコイル、磁気抵抗効果素子及び磁性体が1つのセンサチップに集積されていることから、全体のサイズが非常に小型であるという優れた特徴を有している。しかしながら、近年、磁気センサにはよりいっそうの小型化及び低コスト化が求められている。
 したがって、本発明は、クローズドループ制御に適した磁気センサをよりいっそう小型化及び低コスト化することを目的とする。
 本発明による磁気センサは、第1乃至第4の端子と、前記第1及び第2の端子間に電気的に接続され、第1の方向に延在する第1の磁気抵抗効果素子と、前記第3及び第4の端子間に電気的に接続され、前記第1の磁気抵抗効果素子に沿って前記第1の方向に延在する第1の磁性体とを備え、前記第1の磁気抵抗効果素子は、前記第1の方向と交差する第2の方向における前記第1の磁性体の中心位置に対してオフセットして配置されていることを特徴とする。
 本発明によれば、検出すべき磁束が第1の磁性体によって集められるとともに、第1の磁気抵抗効果素子の抵抗値に応じて第1の磁性体に電流を流すことにより、クローズドループ制御を実現することができる。つまり、第1の磁性体は、集磁機能とキャンセルコイルの機能を併せ持っていることから、必要な回路素子数を削減することができ、小型化及び低コスト化を実現することができる。実際にクローズドループ制御を行うためには、第1又は第2の端子に現れる電位に基づいて、第3の端子と第4の端子との間に帰還電流を流すフィードバック回路を付加すればよい。ここで、第1の磁性体は、軟磁性材料からなるものであることが好ましい。
 本発明において、前記第1の磁気抵抗効果素子は、前記第1及び第2の方向と交差する第3の方向から見て、前記第1の磁性体と重ならない位置に配置されていることが好ましい。これによれば、第1の磁性体によって第2の方向に曲げられた磁束成分の多くが第1の磁気抵抗効果素子に与えられることから、第1の磁気抵抗効果素子の固定磁化方向が第2の方向である場合により高い検出感度を得ることが可能となる。
 本発明において、前記第1の磁性体の前記第1の方向における長さは、前記第1の磁気抵抗効果素子の前記第1の方向における長さ以上であることが好ましい。これによれば、第1の磁気抵抗効果素子のより長い領域に亘って第2の方向の磁界が得られることから、第1の磁気抵抗効果素子の固定磁化方向が第2の方向である場合により高い検出感度を得ることが可能となる。
 本発明による磁気センサは、第5の端子と、前記第2及び第5の端子間に電気的に接続され、所定の方向に延在する第2の磁気抵抗効果素子と、前記第3及び第4の端子間に電気的に接続され、前記第2の磁気抵抗効果素子に沿って前記所定の方向に延在する第2の磁性体とをさらに備え、前記第2の磁気抵抗効果素子は、前記所定の方向と交差する方向における前記第2の磁性体の中心位置に対してオフセットして配置されていることが好ましい。これによれば、2つの磁気抵抗効果素子によって差動信号が得られることから、検出感度をより高めることが可能となる。
 本発明において、前記第1の磁気抵抗効果素子はセンサチップの第1の配線層に形成され、前記第1の磁性体は前記センサチップの前記第1の配線層とは異なる第2の配線層に形成されていることが好ましい。これによれば、2層の配線層によって集磁、磁気検出及び磁界のキャンセルという3つの機能を実現することができる。この場合、前記第1の磁性体は、前記第2の配線層に固定された磁性材料からなるブロック体であっても構わないし、前記第2の配線層に形成された磁性材料からなる薄膜であっても構わない。
 本発明によれば、クローズドループ制御に適した磁気センサのよりいっそうの小型化及び低コスト化を実現することが可能となる。
図1は、本発明の第1の実施形態による磁気センサ10Aの外観を示す略斜視図である。 図2は、磁気センサ10Aの上面図である。 図3は、磁気センサ10Aの側面図である。 図4は、第1~第4の端子41~44に接続されるフィードバック回路60の回路図である。 図5は、磁束φ1及びφ2の向き説明するための模式図である。 図6は、磁気抵抗効果素子MR1と磁性体31のy方向における位置関係をより詳細に説明するための模式的な断面図である。 図7は、本発明の第2の実施形態による磁気センサ10Bの構成を示す上面図である。 図8は、磁束φ1~φ3の向きを説明するための模式図である。 図9は、第2の実施形態の変形例による磁気センサ10Bの構成を示す上面図である。 図10は、第2の実施形態の別の変形例による磁気センサ10Bの構成を示す上面図である。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
<第1の実施形態>
 図1は、本発明の第1の実施形態による磁気センサ10Aの外観を示す略斜視図である。また、図2は磁気センサ10Aの上面図であり、図3は磁気センサ10Aの側面図である。
 図1~図3に示すように、本実施形態による磁気センサ10Aは、センサチップ20と、センサチップ20に固定された第1の磁性体31を備えている。
 センサチップ20は、略直方体形状を有する基板21及びその表面を覆う絶縁膜22を備える。基板21の表面は第1の配線層L1を構成し、絶縁膜22の表面は第2の配線層L2を構成する。本実施形態においては、センサチップの配線層数が2層である。第1の配線層L1はxy面からなり、第1の方向であるx方向に延在する第1の磁気抵抗効果素子MR1が形成されている。第2の配線層L2もxy面からなり、第1~第4の端子41~44と、第1~第4の配線51~54が形成されているとともに、磁性体31が固定されている。センサチップ20の作製方法としては、集合基板に多数のセンサチップ20を同時に形成し、これらを分離することによって多数個取りする方法が一般的であるが、本発明がこれに限定されるものではなく、個々のセンサチップ20を別個に作製しても構わない。
 磁気抵抗効果素子MR1は、磁界の向き及び強度に応じて電気抵抗が変化する素子であり、その磁化固定方向は、図2及び図3の矢印Aが示す第2の方向(y方向)である。磁気抵抗効果素子MR1のx方向における一端は第1の配線51を介して第1の端子41に電気的に接続され、x方向における他端は第2の配線52を介して第2の端子42に電気的に接続される。尚、磁気抵抗効果素子MR1と配線51,52との電気的接続は、絶縁膜22を貫通して設けられた貫通導体58,59を介して行われる。或いは、配線51,52のうち磁気抵抗効果素子MR1と接する部分を第1の配線層L1に形成し、配線51,52のうち第1の配線層L1に形成された部分と第2の配線層L2に形成された部分を貫通導体58,59によって接続しても構わない。かかる構成により、磁気抵抗効果素子MR1は、第1の端子41と第2の端子42との間に電気的に接続されることになる。
 磁性体31は、透磁率が高く且つ電気抵抗の低い軟磁性材料からなるブロック体である。磁性体31の材料については特に限定されないが、透磁率が100以上、抵抗値が1MΩ以下の材料を用いることが好ましく、具体的な材料としては、軟鉄、パーマロイ、ニッケル、珪素鋼板、センダスト,アモルファス金属(ナノ結晶軟磁性材)などが挙げられる。磁性体31は、磁気抵抗効果素子MR1に沿ってx方向に延在しているが、両者は平面視で(つまりz方向から見て)重なりを有しておらず、磁性体31に対して磁気抵抗効果素子MR1がy方向にオフセットして配置されている。磁性体31のx方向における一端は第3の配線53を介して第3の端子43に電気的に接続され、x方向における他端は第4の配線54を介して第4の端子44に電気的に接続される。かかる構成により、磁性体31は、第3の端子43と第4の端子44との間に電気的に接続されることになる。
 磁性体31のx方向における長さL1は、磁気抵抗効果素子MR1のx方向における長さL2以上であり(L1≧L2)、且つ、磁気抵抗効果素子MR1のx方向における全長が磁性体31と隣接している。磁性体31はz方向の磁束を集め、これをy方向に曲げて磁気抵抗効果素子MR1に印加する役割を果たす。そして、磁気抵抗効果素子MR1のx方向における全長に亘って磁性体31を隣接させることにより、磁気抵抗効果素子MR1のより長い領域に亘ってy方向の磁界が得られることになる。
 図4は、第1~第4の端子41~44に接続されるフィードバック回路60の回路図である。
 図4に示すように、フィードバック回路60は、オペアンプ61と、定電圧源62と、定電流源63と、抵抗64とを備えている。オペアンプ61の非反転入力端子(+)は定電圧源62に接続され、反転入力端子(-)は第2の端子42に接続されている。定電流源63も第2の端子42に接続されている。オペアンプ61の出力端子は、第3の端子43に接続される。また、第1の端子41はグランドに接続され、第4の端子44は抵抗64を介してグランドに接続されている。また、第4の端子44の出力レベルOutは、図示しない検出回路に供給される。かかる構成により、本実施形態による磁気センサ10Aは、フィードバック回路60によってクローズドループ制御が行われる。
 具体的には、図5に示すように、検出すべき磁束φ1がz方向から与えられると、磁束φ1は磁性体31によって集磁された後、y方向に曲げられて磁束の発生源に戻る。そして、磁性体31のy方向側には磁気抵抗効果素子MR1が配置されていることから、かかる磁束φ1によって磁気抵抗効果素子MR1の抵抗値が変化する(例えば抵抗値が高くなる)。図5に示す例では、磁気抵抗効果素子MR1に対して磁束φ1がyマイナス方向に印加されている。
 ここで、図4に示すように、第2の端子42には定電流源63が接続されていることから、磁気抵抗効果素子MR1の抵抗値が変化すると、第2の端子42の電位レベルが変化する。例えば、磁気抵抗効果素子MR1の抵抗値が高くなった場合、第2の端子42の電位レベルが高くなる。第2の端子42の電位レベルが変化すると、これに応じてオペアンプ61の出力端子の電位レベルも変化する。例えば、第2の端子42の電位レベルが高くなると、オペアンプ61の出力端子の電位レベルが低下し、第4の端子44から第3の端子43へと帰還電流Iが流れる。
 磁性体31に帰還電流Iが流れると、いわゆる右ねじの法則によって磁性体31の周囲には磁界が発生する。例えば、第4の端子44から第3の端子43へと帰還電流Iが流れた場合、これにより発生する磁束φ2は図5に示す方向となり、磁気抵抗効果素子MR1が設けられている位置においては、磁束φ2がyプラス方向となる。つまり、磁束φ1と磁束φ2は、互いに打ち消し合うことになる。これにより、検出すべき磁束φ1に起因する磁気抵抗効果素子MR1の抵抗値の変化が元に戻る方向にフィードバックされるため、クローズドループ制御が実現される。実際の検出結果は、第4の端子44の出力レベルOutに基づき、図示しない検出回路によって検出される。
 このように、本実施形態による磁気センサ10Aは、検出すべき磁束φ1を集磁する磁性体31がキャンセルコイルの役割を兼ねている。このため、集磁用の磁性体とキャンセルコイルをそれぞれ別個に設ける必要がなくなり、必要な素子数が低減される。これにより、磁気センサのよりいっそうの小型化及び低コスト化を実現することが可能となる。
 例えば、本実施形態においては、第1の配線層L1に磁気抵抗効果素子MR1を配置し、第2の配線層L2に磁性体31を配置することにより、2層の配線層によって磁気センサ10Aを構成することが可能であり、これにより小型化及び低コスト化が実現される。尚、磁気抵抗効果素子MR1と磁性体31を同一の配線層に配置することも可能であり、この場合には、1層の配線層によって磁気センサを構成することができる。
 ここで、フィードバック回路60を構成する素子の一部又は全部は、センサチップ20に集積しても構わないし、他の基板上に形成しても構わない。例えば、センサチップ20をプリント基板上に搭載する場合、プリント基板にフィードバック回路60を形成し、ボンディングワイヤなどを用いてプリント基板と磁気センサ10Aを接続しても構わない。
 図6は、磁気抵抗効果素子MR1と磁性体31のy方向における位置関係をより詳細に説明するための模式的な断面図である。
 図6には、磁気抵抗効果素子MR1の位置として4箇所の位置(a)~(d)が例示されている。このうち、位置(a)は図1~図3を用いて説明したとおりであり、平面視で磁性体31と重ならず、且つ、磁性体31と隣接している位置である。位置(a)においては、磁性体31のy方向における中心位置Bから磁気抵抗効果素子MR1のy方向における中心まで距離が1mm以下である。本発明において、磁気抵抗効果素子MR1は、位置(a)に配置することが最も好ましい。
 一方、位置(b)は、平面視で磁性体31と重ならないものの、磁性体31からの距離が離れている位置である。位置(b)のように、z方向から見た磁気抵抗効果素子MR1と磁性体31のy方向における距離が離れていると、磁束φ1,φ2が磁気抵抗効果素子MR1に及ぼす影響が小さくなってしまい、検出感度が低下してしまう。この点を考慮すれば、z方向から見た磁気抵抗効果素子MR1と磁性体31のy方向における中心間距離は、上述の通り、1mm以下であることが好ましい。
 これに対し、位置(c)は、磁性体31のy方向における中心位置Bと一致する位置である。このような位置(c)に磁気抵抗効果素子MR1を配置すると、磁束φ1のy方向成分が磁気抵抗効果素子MR1に全く与えられないことから、磁気センサとして機能しない。したがって、磁気抵抗効果素子MR1をこのような位置(c)に配置することは不適切である。
 一方、位置(d)は、平面視で磁性体31と重なるものの、磁性体31のy方向における中心位置Bからオフセットされている。この場合は、磁束φ1のy方向成分がある程度磁気抵抗効果素子MR1に与えられることから、磁気センサとして正しく機能する。但し、位置(d)のように、磁気抵抗効果素子MR1がz方向から見て磁性体31と重なりを有していると、磁気抵抗効果素子MR1に与えられる磁束φ1のy方向成分が少なくなるため、位置(a)のように、両者が重ならない位置に磁気抵抗効果素子MR1を配置することが望ましい。
<第2の実施形態>
 図7は、本発明の第2の実施形態による磁気センサ10Bの構成を示す上面図である。
 図7に示すように、本実施形態による磁気センサ10Bは、第2の磁気抵抗効果素子MR2、第2の磁性体32及び第5の端子45が追加されている。磁気抵抗効果素子MR2は、第2の端子42と第5の端子45との間に接続されており、磁気抵抗効果素子MR1と同様、x方向に延在している。磁気抵抗効果素子MR2の磁化固定方向は、矢印Aが示すとおり、磁気抵抗効果素子MR1と同じ方向である。
 磁気抵抗効果素子MR2のx方向における一端は、第5の配線55を介して第2の端子42に電気的に接続され、x方向における他端は第6の配線56を介して第5の端子45に電気的に接続される。かかる構成により、磁気抵抗効果素子MR2は、第2の端子42と第5の端子45との間に電気的に接続されることになる。そして、第1の端子41と第5の端子45との間に電流が流れると、磁気抵抗効果素子MR1と磁気抵抗効果素子MR2に流れる電流の方向は互いに逆方向となる。例えば、第5の端子45から第1の端子41に電流が流れると、磁気抵抗効果素子MR1に流れる電流の方向はxプラス方向となり、磁気抵抗効果素子MR2に流れる電流の方向はxマイナス方向となる。
 磁性体32は、磁気抵抗効果素子MR2に沿ってx方向に延在しているが、両者は平面視で(つまりz方向から見て)重なりを有しておらず、磁性体32に対して磁気抵抗効果素子MR2がy方向にオフセットして配置されている。そのオフセット方向は磁性体31に対する磁気抵抗効果素子MR1のオフセット方向とは逆である。つまり、磁気抵抗効果素子MR1は磁性体31に対してyマイナス方向にオフセットされているのに対し、磁気抵抗効果素子MR2は磁性体32に対してyプラス方向にオフセットされている。磁性体32のx方向における一端は第4の配線54を介して磁性体31に電気的に接続され、x方向における他端は第7の配線57を介して第4の端子44に電気的に接続される。かかる構成により、磁性体31,32は、第3の端子43と第4の端子44との間に電気的に直列に接続されることになる。
 図7には、第1~第5の端子41~45に接続されるフィードバック回路60についても図示されている。本実施形態においても、オペアンプ61の非反転入力端子(+)は定電圧源62に接続され、反転入力端子(-)は第2の端子42に接続されている。但し、図4に示した定電流源63は用いられず、その代わりに、第5の端子が電源Vccに接続される。
 このような回路構成により、図8に示すように、検出すべき磁束φ1がz方向から与えられると、磁束φ1は磁性体31,32によって集磁された後、y方向に曲げられて磁束の発生源に戻る。そして、磁性体31のy方向におけるマイナス側には磁気抵抗効果素子MR1が配置され、磁性体32のy方向におけるプラス側には磁気抵抗効果素子MR2が配置されていることから、かかる磁束φ1によって磁気抵抗効果素子MR1,MR2の抵抗値が変化する。図8に示す例では、磁気抵抗効果素子MR1に対して磁束φ1がyマイナス方向に印加され、磁気抵抗効果素子MR2に対して磁束φ1がyプラス方向に印加されている。上述のとおり、磁気抵抗効果素子MR1,MR2の固定磁化方向は互いに同方向であることから、例えば、磁束φ1によって磁気抵抗効果素子MR1の抵抗値が高くなると、磁気抵抗効果素子MR2の抵抗値は低くなる。逆に、磁束φ1によって磁気抵抗効果素子MR1の抵抗値が低くなると、磁気抵抗効果素子MR2の抵抗値は高くなる。つまり、磁気抵抗効果素子MR1,MR2は差動回路を構成することになる。
 このため、磁気抵抗効果素子MR1と磁気抵抗効果素子MR2の接続点である第2の端子42の電位レベルは、磁束φ1の強度によって変化する。例えば、磁気抵抗効果素子MR1の抵抗値が高くなり、磁気抵抗効果素子MR2の抵抗値が低くなった場合、第2の端子42の電位レベルが高くなる。第2の端子42の電位レベルが変化すると、これに応じてオペアンプ61の出力端子の電位レベルも変化する。例えば、第2の端子42の電位レベルが高くなると、オペアンプ61の出力端子の電位レベルが低下し、第4の端子44から第3の端子43へと帰還電流Iが流れる。
 本実施形態においては、帰還電流Iが磁性体31,32に流れる。ここで、磁性体31,32は、折り返すように接続されていることから、磁性体31,32に流れる帰還電流Iの方向は互いに逆となる。このため、例えば、第4の端子44から第3の端子43へと帰還電流Iが流れた場合、これにより磁性体31に発生する磁束φ2は図8に示す方向となり、磁気抵抗効果素子MR1が設けられている位置においては、磁束φ2がyプラス方向となる。一方、磁性体32に発生する磁束φ3は図8に示す方向となり、磁気抵抗効果素子MR2が設けられている位置においては、磁束φ3がyマイナス方向となる。つまり、磁束φ1と磁束φ2が互いに打ち消し合うとともに、磁束φ1と磁束φ3が互いに打ち消し合うことになる。これにより、検出すべき磁束φ1に起因する磁気抵抗効果素子MR1,MR2の抵抗値の変化が元に戻る方向にフィードバックされるため、クローズドループ制御が実現される。実際の検出結果は、第4の端子44の出力レベルOutに基づき、図示しない検出回路によって検出される。
 このように、本実施形態による磁気センサ10Bは、2つの磁気抵抗効果素子MR1,MR2と2つの磁性体31,32を用いていることから、検出すべき磁束φ1に起因する第2の端子42の電位レベルの変化が大きくなる。このため、第1の実施形態による磁気センサ10Aよりも高感度な検出を行うことが可能となる。
 図9は、第2の実施形態の変形例による磁気センサ10Bの構成を示す上面図である。図9に示す磁気センサ10Bは、磁性体31と磁性体32が一体化されたU字型形状を有している点において、図7に示した磁気センサ10Bと相違している。その他の構成は、図7に示した磁気センサ10Bと同一である。このように、2つの磁気抵抗効果素子MR1,MR2を使用して差動信号を得る場合、これらに対応する磁性体31,32を別部材とする必要はなく、図9に示す変形例のように磁性体31,32を単一の部材によって構成しても構わない。
 図10は、第2の実施形態の別の変形例による磁気センサ10Bの構成を示す上面図である。図10に示す磁気センサ10Bは、磁気抵抗効果素子MR2及び磁性体32がx方向に延在している点において、図7に示した磁気センサ10Bと相違している。その他の構成は、図7に示した磁気センサ10Bと同一である。このように、2つの磁気抵抗効果素子MR1,MR2を使用して差動信号を得る場合、磁気抵抗効果素子MR1,MR2の延在方向を互いに同一方向とする必要はなく、図10に示す変形例のように互いに直交させても構わない。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記の実施形態では、磁性体31,32として磁性材料からなるブロック体を用いているが、本発明がこれに限定されるものではなく、ブロック体の代わりに磁性材料からなる薄膜を用いても構わない。この場合、スパッタリング法などの薄膜工法を用いて磁性体31,32を配線層L2に形成すればよい。
10A,10B~10B  磁気センサ
20   センサチップ
21   基板
22   絶縁膜
31   第1の磁性体
32   第2の磁性体
41~45  端子
51~57  配線
58,59  貫通導体
60   フィードバック回路
61   オペアンプ
62   定電圧源
63   定電流源
64   抵抗
I    帰還電流
L1   第1の配線層
L2   第2の配線層
MR1  第1の磁気抵抗効果素子
MR2  第2の磁気抵抗効果素子
φ1~φ3  磁束

Claims (10)

  1.  第1乃至第4の端子と、
     前記第1及び第2の端子間に電気的に接続され、第1の方向に延在する第1の磁気抵抗効果素子と、
     前記第3及び第4の端子間に電気的に接続され、前記第1の磁気抵抗効果素子に沿って前記第1の方向に延在する第1の磁性体と、を備え、
     前記第1の磁気抵抗効果素子は、前記第1の方向と交差する第2の方向における前記第1の磁性体の中心位置に対してオフセットして配置されていることを特徴とする磁気センサ。
  2.  前記第1の磁気抵抗効果素子は、前記第1及び第2の方向と交差する第3の方向から見て、前記第1の磁性体と重ならない位置に配置されていることを特徴とする請求項1に記載の磁気センサ。
  3.  前記第1の磁性体の前記第1の方向における長さは、前記第1の磁気抵抗効果素子の前記第1の方向における長さ以上であることを特徴とする請求項1又は2に記載の磁気センサ。
  4.  第5の端子と、
     前記第2及び第5の端子間に電気的に接続され、所定の方向に延在する第2の磁気抵抗効果素子と、
     前記第3及び第4の端子間に電気的に接続され、前記第2の磁気抵抗効果素子に沿って前記所定の方向に延在する第2の磁性体と、をさらに備え、
     前記第2の磁気抵抗効果素子は、前記所定の方向と交差する方向における前記第2の磁性体の中心位置に対してオフセットして配置されていることを特徴とする請求項1乃至3のいずれか一項に記載の磁気センサ。
  5.  前記第1の磁気抵抗効果素子はセンサチップの第1の配線層に形成され、前記第1の磁性体は前記センサチップの前記第1の配線層とは異なる第2の配線層に形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の磁気センサ。
  6.  前記第1の磁性体は、前記第2の配線層に固定された磁性材料からなるブロック体であることを特徴とする請求項1乃至5のいずれか一項に記載の磁気センサ。
  7.  前記第1の磁性体は、前記第2の配線層に形成された磁性材料からなる薄膜であることを特徴とする請求項1乃至5のいずれか一項に記載の磁気センサ。
  8.  前記第1の磁性体は、軟磁性材料からなることを特徴とする請求項1乃至7のいずれか一項に記載の磁気センサ。
  9.  前記第1又は第2の端子に現れる電位に基づいて、前記第3の端子と前記第4の端子との間に帰還電流を流すフィードバック回路をさらに備えることを特徴とする請求項1乃至8のいずれか一項に記載の磁気センサ。
  10.  磁気抵抗効果素子と、
     検出すべき磁束を集め、前記磁気抵抗効果素子の磁化固定方向と平行な方向に前記磁束を誘導する磁性体と、
     前記磁気抵抗効果素子の抵抗値に応じて前記磁性体に帰還電流を流すフィードバック回路と、を備えることを特徴とする磁気センサ。
PCT/JP2016/081108 2016-03-23 2016-10-20 磁気センサ WO2017163471A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680083885.3A CN108780130B (zh) 2016-03-23 2016-10-20 磁传感器
US16/085,706 US11022660B2 (en) 2016-03-23 2016-10-20 Magnetic sensor including a magnetic member offset from a magnetoresistive effect element
DE112016006631.7T DE112016006631B4 (de) 2016-03-23 2016-10-20 Magnetsensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016059004A JP6724459B2 (ja) 2016-03-23 2016-03-23 磁気センサ
JP2016-059004 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163471A1 true WO2017163471A1 (ja) 2017-09-28

Family

ID=59900998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081108 WO2017163471A1 (ja) 2016-03-23 2016-10-20 磁気センサ

Country Status (5)

Country Link
US (1) US11022660B2 (ja)
JP (1) JP6724459B2 (ja)
CN (1) CN108780130B (ja)
DE (1) DE112016006631B4 (ja)
WO (1) WO2017163471A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382852B2 (ja) * 2009-02-06 2014-01-08 株式会社オンチップ・バイオテクノロジーズ 使い捨てチップ型フローセルとそれを用いたフローサイトメーター
JP6644343B1 (ja) * 2019-08-09 2020-02-12 ビフレステック株式会社 ゼロフラックス型磁気センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151023A1 (ja) * 2008-06-11 2009-12-17 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
JP2013210335A (ja) * 2012-03-30 2013-10-10 Alps Electric Co Ltd 磁気センサ
JP2015001467A (ja) * 2013-06-17 2015-01-05 旭化成エレクトロニクス株式会社 磁気センサ
JP2016125901A (ja) * 2014-12-27 2016-07-11 アルプス電気株式会社 磁界検知装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167914A (ja) * 1982-03-29 1983-10-04 Kangiyou Denki Kiki Kk 磁気抵抗素子
JPS6482311A (en) * 1987-09-24 1989-03-28 Hitachi Ltd Magnetic head
KR100434484B1 (ko) * 1997-12-30 2004-07-16 삼성전자주식회사 소프트 어제이션트 레이어로 바이어스된 자기 저항 헤드
US6724582B2 (en) * 2001-01-19 2004-04-20 Kabushiki Kaisha Toshiba Current perpendicular to plane type magnetoresistive device, magnetic head, and magnetic recording/reproducing apparatus
US7116530B2 (en) 2003-09-30 2006-10-03 Hitachi Global Storage Technologies Netherlands B.V. Thin differential spin valve sensor having both pinned and self pinned structures for reduced difficulty in AFM layer polarity setting
US8243502B2 (en) * 2007-12-14 2012-08-14 Nec Corporation Nonvolatile latch circuit and logic circuit using the same
US7923996B2 (en) * 2008-02-26 2011-04-12 Allegro Microsystems, Inc. Magnetic field sensor with automatic sensitivity adjustment
CN101246203A (zh) * 2008-04-02 2008-08-20 吉林大学 非晶合金弱磁场传感器
JP5500785B2 (ja) * 2008-05-14 2014-05-21 新科實業有限公司 磁気センサ
JP5440837B2 (ja) * 2009-03-26 2014-03-12 Tdk株式会社 信号伝達装置
JP5250109B2 (ja) 2009-06-12 2013-07-31 アルプス・グリーンデバイス株式会社 磁気平衡式電流センサ
WO2011089978A1 (ja) * 2010-01-20 2011-07-28 アルプス電気株式会社 磁気センサ
JP5699301B2 (ja) * 2010-02-23 2015-04-08 アルプス・グリーンデバイス株式会社 電流センサ
EP2402777B1 (en) * 2010-06-30 2013-01-09 LEM Intellectual Property SA Autonomously calibrated magnetic field sensor
JP5885209B2 (ja) * 2011-02-01 2016-03-15 公立大学法人大阪市立大学 電力計測装置
CN202083973U (zh) * 2011-05-20 2011-12-21 北京航空航天大学 一种用于磁传感器的电流偏置电路
CN102621505A (zh) * 2011-06-29 2012-08-01 中国科学院空间科学与应用研究中心 一种基于Offset反馈电路的磁阻磁强计
JP2013053903A (ja) * 2011-09-02 2013-03-21 Alps Green Devices Co Ltd 電流センサ
JP2013055281A (ja) * 2011-09-06 2013-03-21 Alps Green Devices Co Ltd 電流センサ
US9599681B2 (en) * 2012-02-07 2017-03-21 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method of the same
WO2013176271A1 (ja) 2012-05-24 2013-11-28 株式会社フジクラ 電流センサ
CN103885005B (zh) * 2012-12-21 2018-11-02 上海矽睿科技有限公司 磁传感装置及其磁感应方法
JP6039697B2 (ja) * 2013-02-04 2016-12-07 アルプス電気株式会社 巨大磁気抵抗効果素子およびそれを用いた電流センサ
CN103901363B (zh) * 2013-09-10 2017-03-15 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
JP6255902B2 (ja) * 2013-10-30 2018-01-10 Tdk株式会社 磁界検出装置
JP6121311B2 (ja) * 2013-11-14 2017-04-26 アルプス電気株式会社 磁気検知装置
JP2017083173A (ja) * 2014-03-11 2017-05-18 コニカミノルタ株式会社 磁気センサー
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
JP2015219061A (ja) 2014-05-15 2015-12-07 Tdk株式会社 磁界検出センサ及びそれを用いた磁界検出装置
US10830840B2 (en) * 2015-12-28 2020-11-10 Konica Minolta, Inc. Magnetic sensor, sensor unit, magnetic detection device, and magnetic measurement device
JP2018048832A (ja) * 2016-09-20 2018-03-29 株式会社東芝 磁気センサ、磁気センサ装置、診断装置
JP6544374B2 (ja) * 2017-03-24 2019-07-17 Tdk株式会社 磁気センサ
JP6969142B2 (ja) * 2017-04-12 2021-11-24 Tdk株式会社 磁気センサ
US10680570B2 (en) * 2017-09-08 2020-06-09 Tdk Corporation Magnetoresistance effect device and high frequency device
JP6690617B2 (ja) * 2017-09-15 2020-04-28 Tdk株式会社 磁気センサ装置および電流センサ
US10509058B2 (en) * 2018-01-12 2019-12-17 Allegro Microsystems, Llc Current sensor using modulation of or change of sensitivity of magnetoresistance elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151023A1 (ja) * 2008-06-11 2009-12-17 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
JP2013210335A (ja) * 2012-03-30 2013-10-10 Alps Electric Co Ltd 磁気センサ
JP2015001467A (ja) * 2013-06-17 2015-01-05 旭化成エレクトロニクス株式会社 磁気センサ
JP2016125901A (ja) * 2014-12-27 2016-07-11 アルプス電気株式会社 磁界検知装置

Also Published As

Publication number Publication date
JP6724459B2 (ja) 2020-07-15
CN108780130B (zh) 2020-09-15
CN108780130A (zh) 2018-11-09
DE112016006631T5 (de) 2018-12-06
JP2017173118A (ja) 2017-09-28
US11022660B2 (en) 2021-06-01
DE112016006631B4 (de) 2024-02-01
US20200300936A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP6822127B2 (ja) 磁気センサ
EP2174152B1 (en) Current sensor having sandwiched magnetic permeability layer
US11442120B2 (en) Magnetic sensor with compensation coil for cancelling magnetic flux applied to a magneto-sensitive element
EP2574950A2 (en) Magnatoresistive sensing component and agnatoresistive sensing device
WO2019167598A1 (ja) 磁気センサ
JP7115242B2 (ja) 磁気センサ
JP6981299B2 (ja) 磁気センサ
KR101122310B1 (ko) 자기 센서 모듈 및 피스톤 위치 검출 장치
JP6384677B2 (ja) 電流センサ
JP2005515667A (ja) 信号アイソレータのための集積磁界ストラップ
JP7095350B2 (ja) 磁気センサ
EP4060360A1 (en) Magnetic sensor
WO2016013650A1 (ja) 磁気センサ装置
WO2017163471A1 (ja) 磁気センサ
JP4689516B2 (ja) 磁気検出装置
WO2011111747A1 (ja) 磁気検出素子を備えた電流センサ
JP2020165762A (ja) 電流センサ
JP6805962B2 (ja) 磁気センサ
JP2007309671A (ja) 磁気デバイス
JP2021101168A (ja) 磁気センサ
JP2001244521A (ja) 移動物体検出装置
JP2019070546A (ja) 磁気センサおよびその製造方法
JPH02195268A (ja) 電流検知ユニット
JP2013234958A (ja) 電流検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895494

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895494

Country of ref document: EP

Kind code of ref document: A1