WO2009151023A1 - 磁気センサ及び磁気センサモジュール - Google Patents

磁気センサ及び磁気センサモジュール Download PDF

Info

Publication number
WO2009151023A1
WO2009151023A1 PCT/JP2009/060450 JP2009060450W WO2009151023A1 WO 2009151023 A1 WO2009151023 A1 WO 2009151023A1 JP 2009060450 W JP2009060450 W JP 2009060450W WO 2009151023 A1 WO2009151023 A1 WO 2009151023A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic body
element portion
magnetic sensor
sensitivity axis
Prior art date
Application number
PCT/JP2009/060450
Other languages
English (en)
French (fr)
Inventor
寛充 佐々木
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2010516844A priority Critical patent/JP5149964B2/ja
Publication of WO2009151023A1 publication Critical patent/WO2009151023A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Definitions

  • the present invention relates to a magnetic sensor and a magnetic sensor module using a magnetoresistive effect element used as, for example, a geomagnetic sensor.
  • a magnetic sensor using a magnetoresistive effect element can be used, for example, as a geomagnetic sensor for detecting the geomagnetism incorporated in a mobile device such as a mobile phone.
  • the magnetoresistance effect element the electric resistance value fluctuates with respect to the magnetic field from the sensitivity axis direction.
  • Patent Document 1 a plurality of strip-shaped magnetoresistive films are arranged in parallel with each other, and the end portions of the magnetoresistive elements are connected by a permanent magnet film to form a serpentine magnetic shape.
  • a sensor is disclosed.
  • Patent Document 1 no device is made to be able to effectively increase the strength (magnetic flux density) of the magnetic field in the direction of the sensitivity axis acting on the magnetoresistive element. JP, 2005-183614, A
  • the present invention is to solve the above-mentioned conventional problems, and in particular, it is possible to effectively increase the strength (magnetic flux density) of the magnetic field from the soft magnetic body to the magnetoresistance effect element from the sensitivity axis direction.
  • An object of the present invention is to provide a magnetic sensor and a magnetic sensor module as described above.
  • the present invention is a magnetic sensor provided with a magnetoresistive element having a predetermined sensitivity axis
  • the magnetoresistive effect element includes an element portion that exhibits a magnetoresistive effect, and a soft magnetic material.
  • the element portion and the soft magnetic body are arranged in a non-contact manner so as to be arranged in the order of the soft magnetic body, the element portion, and the soft magnetic body in the direction of the sensitivity axis,
  • the film thickness center of the element portion is located below the film thickness center of the soft magnetic material,
  • the side surface of the soft magnetic body facing the element portion is formed of a tapered surface.
  • the strength (magnetic flux density) of the magnetic field from the soft magnetic body acting on the element portion in the direction of the sensitivity axis can be effectively increased, and the magnetic detection accuracy can be improved.
  • the fact that the lower surface of the element portion is located on the same surface as the lower surface of the soft magnetic body or the upper surface of the element portion is located below the lower surface of the soft magnetic body acts on the element portion from the soft magnetic material
  • the strength of the magnetic field from the sensitivity axis direction can be increased more effectively, which is preferable.
  • the present invention is a magnetic sensor provided with a magnetoresistive element having a predetermined sensitivity axis
  • the magnetoresistive effect element includes an element portion that exhibits a magnetoresistive effect, and a soft magnetic material.
  • the element portion and the soft magnetic body are arranged in a non-contact manner so as to be arranged in the order of the soft magnetic body, the element portion, and the soft magnetic body in the direction of the sensitivity axis,
  • the film thickness center of the element portion is located above the film thickness center of the soft magnetic material,
  • the side surface of the soft magnetic body facing the element portion side is formed by an inverse taper surface.
  • the strength (magnetic flux density) of the magnetic field from the soft magnetic body acting on the element portion in the direction of the sensitivity axis can be effectively increased, and the magnetic detection accuracy can be improved.
  • the lower surface of the element portion be located above the upper surface of the soft magnetic body, because the strength of the magnetic field in the sensitivity axis direction extending from the soft magnetic body to the element portion can be more effectively increased.
  • an end near the element part among the lower end and the upper end of the side is formed in an acute-angled shape.
  • an end portion on the side far from the element portion is formed in an R shape.
  • the present invention provides a magnetic sensor provided with a magnetoresistive element having a predetermined sensitivity axis
  • the magnetoresistive effect element includes an element portion that exhibits a magnetoresistive effect, and a soft magnetic material.
  • the element portion and the soft magnetic body are disposed in a non-contact manner so as to be arranged in the order of the soft magnetic body, the element portion, and the soft magnetic body in the direction of the sensitivity axis.
  • the magnetic body is opposed in the direction of the sensitivity axis,
  • the side surface of the soft magnetic body facing the element portion is formed of a reverse tapered surface from the lower end portion to an intermediate portion substantially facing the element portion in the sensitivity axis direction, and is formed of a tapered surface from the intermediate portion to the upper end portion It is characterized by
  • the intensity (magnetic flux density) of the magnetic field from the soft magnetic body acting on the element portion in the direction of the sensitivity axis can be effectively increased, so that the magnetic detection accuracy can be improved.
  • the cross-sectional shape in the film thickness direction formed by at least the tapered surface, the reverse tapered surface, and the middle portion may be a trapezoidal shape, but the middle portion is preferably formed in an angular shape.
  • the magnetic flux can be effectively concentrated in the middle portion, and the strength of the magnetic field from the soft magnetic body acting on the element portion in the direction of the sensitivity axis can be more effectively increased.
  • the upper end portion and the lower end portion of the side surface be formed in an R shape.
  • the amount of magnetic flux leaking from the upper end and lower end to the outside can be reduced, and the magnetic flux can be concentrated effectively in the middle part, and the strength of the magnetic field from the soft magnetic body to the element part from the sensitivity axis direction can be more effective. It can be enlarged.
  • a plurality of the element portions are arranged at intervals in the element width direction, and the end portions of the element portions are connected to form a meander shape. It is preferable that the soft magnetic body be provided on both sides of each element portion.
  • a magnetic sensor module includes a plurality of the magnetic sensors described in any of the above, and each of the magnetoresistance effects is arranged such that the sensitivity axes of one set of magnetoresistance effect elements of the plurality of magnetic sensors are orthogonal to each other. An element is disposed.
  • the magnetic sensor module of the present invention is a geomagnetic sensor.
  • the intensity (magnetic flux density) of the magnetic field in the direction of the sensitivity axis acting on the element portion from the soft magnetic material can be increased, and the magnetic detection accuracy can be improved.
  • FIG. 1 is a diagram showing particularly a part of a magnetoresistive element of the magnetic sensor in the first embodiment ((a) is a partial plan view, and (b) is a height direction along line AA of (a) A partial cross-sectional view cut in the direction of the arrow Z (shown in the figure) and viewed in the direction of the arrow,
  • FIG. 2 is an image diagram for explaining the state of a magnetic field formed between soft magnetic bodies in the present embodiment
  • FIG. FIG. 4 is an enlarged cross-sectional view of a preferred soft magnetic body of the present embodiment
  • FIG. 5 is a magnetic resistance of the magnetic sensor according to the second embodiment in particular.
  • FIG. 6 is a partial enlarged cross-sectional view showing in particular a portion of the magnetoresistive effect element of the magnetic sensor in the third embodiment
  • FIG. 7 is a particular magnetoresistive resistance of the magnetic sensor in another embodiment.
  • FIG. 8 is a plan view showing a portion of the effect element.
  • 7 is a partially enlarged cross-sectional view taken in the height direction (the Z direction in the figure) along the line B-B and viewed from the arrow direction
  • FIG. 9 shows the fixed magnetic layer constituting the magnetoresistive effect element (element portion) The figure for demonstrating the relationship between a fixed magnetization direction, the magnetization direction of a free magnetic layer, and an electrical resistance value, FIG.
  • FIG. 10 is when the element part which comprises a magnetoresistive effect element (element part) is cut
  • disconnected from the film thickness direction 11 is a circuit diagram of the magnetic sensor of the present embodiment
  • FIG. 12 shows a cross section at the same position as FIG. 8, and a partially enlarged cross sectional view of a shape different from FIG.
  • FIG. 14 is a partially enlarged plan view showing particularly a part of an element portion in the form of a preferable magnetoresistive element
  • FIG. 14 is a perspective view of a geomagnetic sensor (magnetic sensor module) in the present embodiment.
  • the magnetic sensor module using the magnetic sensor 1 provided with the magnetoresistance effect element in the present embodiment is used, for example, as a geomagnetic sensor mounted on a portable device such as a mobile phone.
  • the geomagnetic sensor 1 includes a sensor unit 6 in which the magnetoresistive effect elements 2 and 3 and fixed resistance elements 4 and 5 are bridge-connected, and an input terminal 7 electrically connected to the sensor unit 6. It comprises an integrated circuit (IC) 11 provided with a ground terminal 8, a differential amplifier 9, an external output terminal 10 and the like.
  • IC integrated circuit
  • a plurality of element portions 12 having an element length L1 longer than the element width W1 are formed in the X direction. They are arranged in parallel at predetermined intervals in the orthogonal Y direction, and the end portions of the respective element portions 12 are electrically connected by the connection electrode portion 13 to form a meander shape.
  • the electrode unit 15 connected to the input terminal 7, the ground terminal 8, and the output extraction unit 14 (see FIG. 11) is connected to one of the element units 12 at both ends formed in a meander shape.
  • the connection electrode portion 13 and the electrode portion 15 are nonmagnetic conductive materials such as Al, Ta, Au and the like.
  • the connection electrode portion 13 and the electrode portion 15 are formed by sputtering or plating.
  • the element sections 12 constituting the magnetoresistive effect elements 2 and 3 are all configured in the same laminated structure shown in FIG. FIG. 10 shows a cut surface cut in the film thickness direction from the direction parallel to the element width W1.
  • the element unit 12 is formed by, for example, laminating the antiferromagnetic layer 33, the pinned magnetic layer 34, the nonmagnetic layer 35, and the free magnetic layer 36 in this order from the bottom, and covering the surface of the free magnetic layer 36 with the protective layer 37. It is The element unit 12 is formed by sputtering, for example.
  • the antiferromagnetic layer 33 is formed of an antiferromagnetic material such as an Ir-Mn alloy (iridium-manganese alloy).
  • the pinned magnetic layer 34 is formed of a soft magnetic material such as a Co--Fe alloy (cobalt-iron alloy).
  • the nonmagnetic layer 35 is Cu (copper) or the like.
  • the free magnetic layer 36 is formed of a soft magnetic material such as a Ni-Fe alloy (nickel-iron alloy).
  • the protective layer 37 is Ta (tantalum) or the like.
  • the nonmagnetic layer 35 is a giant magnetoresistive element (GMR element) formed of a nonmagnetic conductive material such as Cu, but a tunnel magnetoresistive element formed of an insulating material such as Al 2 O 3 (TMR element) may be used.
  • GMR element giant magnetoresistive element
  • TMR element tunnel magnetoresistive element formed of an insulating material such as Al 2 O 3
  • the stacked configuration of the element unit 12 shown in FIG. 10 is an example, and may be another stacked configuration.
  • the free magnetic layer 36, the nonmagnetic layer 35, the pinned magnetic layer 34, the antiferromagnetic layer 33, and the protective layer 37 may be stacked in this order from the bottom.
  • the magnetization direction of the pinned magnetic layer 34 is fixed by the antiferromagnetic coupling between the antiferromagnetic layer 33 and the pinned magnetic layer 34.
  • the pinned magnetization direction (P direction) of the pinned magnetic layer 34 is in the element width direction (Y direction). That is, the fixed magnetization direction (P direction) of the fixed magnetic layer 34 is orthogonal to the longitudinal direction of the element unit 12.
  • the magnetization direction (F direction) of the free magnetic layer 36 fluctuates due to the external magnetic field.
  • the external magnetic field Y1 acts from the same direction as the fixed magnetization direction (P direction) of the fixed magnetic layer 34 and the magnetization direction (F direction) of the free magnetic layer 36 points in the external magnetic field Y1 direction
  • the fixed magnetization direction (P direction) of the fixed magnetic layer 34 and the magnetization direction (F direction) of the free magnetic layer 36 approach parallel, and the electric resistance value decreases.
  • the external magnetic field Y2 acts from the direction opposite to the fixed magnetization direction (P direction) of the fixed magnetic layer 34, and the magnetization direction (F direction) of the free magnetic layer 36 points in the external magnetic field Y2 direction.
  • the fixed magnetization direction (P direction) of the fixed magnetic layer 34 and the magnetization direction (F direction) of the free magnetic layer 36 approach antiparallel to increase the electric resistance value.
  • the element portion 12 constituting the magnetoresistive effect elements 2 and 3 may be an anisotropic magnetoresistive effect element (AMR element).
  • AMR element anisotropic magnetoresistive effect element
  • GMR or TMR is used as the element portion 12 constituting the magnetoresistive effect elements 2 and 3
  • the resistance change ratio (MR ratio) to the external magnetic field can be increased, and the linearity of the resistance change ratio (MR ratio) can be obtained. It is possible to perform external magnetic field detection with high accuracy.
  • the magnetoresistive elements 2 and 3 are formed on a substrate 16.
  • the magnetoresistance effect elements 2 and 3 are covered with an insulating layer 17 such as Al 2 O 3 or SiO 2 .
  • the insulating layer 17 also fills the space between the element portions 12 constituting the magnetoresistive effect elements 2 and 3.
  • the insulating layer 17 is formed by sputtering, for example.
  • the upper surface of the insulating layer 17 is formed to be a flat surface using, for example, a CMP technique.
  • the upper surface of the insulating layer 17 may be formed as a concavo-convex surface following the step between the element portion 12 and the substrate 16.
  • the soft magnetic body 18 is provided between the respective element units 12 constituting the magnetoresistive effect elements 2 and 3 and outside the element unit 12 located on the outermost side.
  • the soft magnetic body 18 is formed into a thin film by sputtering or plating, for example.
  • the soft magnetic body 18 is formed of NiFe, CoFe, CoFeSiB, CoZrNb, or the like.
  • the width dimension W2 of the soft magnetic body 18 is larger than the element width W1 of the element portion 12 in FIG. 1A, it is not particularly limited.
  • the length dimension L2 of the soft magnetic body 18 is longer than the element length L1 of the element portion 12, and as shown in FIG. 1A, the soft magnetic body 18 extends in the longitudinal direction (X direction) of the element portion 12. And an extending portion 18g extending in the longitudinal direction from both sides of the
  • the soft magnetic body 18 is formed on the insulating layer 17 between the element units 12. Although not shown, the soft magnetic body 18 and the space between the soft magnetic bodies 18 are covered with an insulating protective layer.
  • the magnetic sensor 1 shown in FIG. 1 is for detecting geomagnetism from a direction parallel to the Y direction (element width direction) shown in the drawing. Therefore, the Y direction in the drawing is the sensitivity axis direction, and the X direction (element length direction) orthogonal to the Y direction in the drawing is the longitudinal direction of the element unit 12.
  • the fixed magnetization direction (P direction) of the fixed magnetic layer 34 is oriented in the Y direction shown in the drawing which is the sensitivity axis direction.
  • connection electrode portion 13 and the electrode portion 15 cross the soft magnetic extension portion 18g, but an insulating layer is formed between the connection electrode portion 13 and the electrode portion 15 and the soft magnetic extension portion 18g.
  • the connection electrode portion 13 and the electrode portion 15 may be formed on either the lower portion or the upper portion as long as they are electrically insulated from the soft magnetic body 18.
  • the connection electrode portion 13 and the electrode portion 15 may bypass the outside of the soft magnetic extension portion 18g without crossing each other.
  • the element width W1 of the element portion 12 constituting the magnetoresistive effect elements 2 and 3 is preferably in the range of 2 to 6 ⁇ m in order to use shape anisotropy when used as a geomagnetic sensor (see FIG. 1 (a)).
  • the element length L1 of the element unit 12 is preferably in the range of 60 to 100 ⁇ m (see FIG. 1A).
  • the film thickness T1 of the element section 12 is preferably in the range of 200 to 300 ⁇ (see FIG. 1B).
  • the average width W2 of the soft magnetic body 18 is preferably in the range of 1 to 6 ⁇ m in this embodiment when used as a geomagnetic sensor (see FIG. 1A).
  • the length dimension L2 of the soft magnetic body 18 is preferably in the range of 80 to 200 ⁇ m (see FIG. 1A). Further, the film thickness T2 of the soft magnetic body 18 is preferably in the range of 0.2 to 1 ⁇ m (see FIG. 1 (b)).
  • the aspect ratio (element length L1 / element width W1) of the element unit 12 is preferably 10 or more when used as a geomagnetic sensor.
  • the aspect ratio (length dimension L 2 / width dimension W 2) of the soft magnetic body 18 is preferably equal to or more than the aspect ratio of the element unit 12.
  • the length dimension T8 of the extended portion 18g of the soft magnetic body 18 is preferably 20 ⁇ m or more (see FIG. 1A).
  • the distance T3 between the soft magnetic bodies 18 is preferably 2 to 8 ⁇ m in the width dimension W2 or more of the soft magnetic bodies (see FIG. 1 (b)).
  • the distance T4 in the Y1-Y2 direction between the element portion 12 and the soft magnetic body 18 adjacent to the element portion 12 is preferably 0 to 3 ⁇ m (see FIG. 1 (b)).
  • the distance T5 between the soft magnetic body 18 and the element portion 12 in the height direction (Z direction) is preferably 0.1 to 1 ⁇ m (see FIG. 1B).
  • the magnetic sensor 1 in the present embodiment is for detecting geomagnetism from the vertical direction (Y direction; element width direction). Therefore, the Y direction in the drawing is the sensitivity axis direction, and the lateral direction (X direction) is the longitudinal direction of the element unit 12.
  • the element portion 12 and the soft magnetic body 18 are arranged in a non-contact manner so that the soft magnetic body 18, the element portion 12 and the soft magnetic body 18 are arranged in the order of the sensitivity axis.
  • the fixed magnetization direction (P direction) of the fixed magnetic layer 34 is oriented in the Y direction which is the sensitivity axis direction.
  • the non-contact soft magnetic body 18 is provided on both sides of the element unit 12 and above the element unit 12.
  • the soft magnetic body 18 has a shape elongated in the element length direction (the X direction in the figure), similarly to the element portion 12.
  • both-sides 18a, 18a of the Y direction of illustration of the soft-magnetic body 18 is formed by a taper surface. Therefore, the width dimension W2 of the soft magnetic body 18 gradually decreases from the lower surface to the upper surface.
  • FIG. 3 is a comparative example.
  • the side surface 18 a of the soft magnetic body 18 is not a tapered surface but a vertical surface.
  • the intensity (magnetic flux density) of the magnetic field (geomagnetism) acting on the element portion 12 from the soft magnetic body 18 slightly increases in the direction of the element portion 12 including the magnetic layer, but the lower end as in the embodiment of FIG. Since the portion 18b is not tapered, the magnetic flux can not be concentrated on the lower end portion 18b of the soft magnetic body 18 as in the embodiment of FIG. 2 and the magnetic field (geomagnetism) acting on the element portion 12 as compared with this embodiment. Strength (magnetic flux density) can not be effectively increased.
  • the strength (magnetic flux density) of the magnetic field (geomagnetism) acting on the element unit 12 from the soft magnetic body 18 can be effectively increased. it can.
  • the lower end 18 b of the soft magnetic body 18 preferably has an acute angle. Thereby, the magnetic flux can be effectively concentrated to the lower end portion 18 b, and the strength (magnetic flux density) of the magnetic field (geomagnetism) acting on the element portion 12 from the soft magnetic body 18 can be more effectively increased.
  • the upper end 18 c of the soft magnetic body 18 has an obtuse angle shape. That is, although the upper end 18c may have a corner, if the upper end 18c is shaped like an R as shown in FIG. 4, the amount of magnetic flux of the magnetic field (geomagnetism) leaking from the vicinity of the upper end 18c can be reduced. The magnetic flux can be concentrated on 18 b more effectively, and the strength of the magnetic field (geomagnetism) acting on the element portion 12 from the soft magnetic body 18 can be more effectively increased.
  • the soft magnetic body 18 shown in FIGS. 1, 2 and 4 can be formed, for example, by the following method. First, a soft magnetic layer is formed by sputtering or the like on the entire top surface of the insulating layer 17 shown in FIG. 1B, and then a resist layer similar in shape to the soft magnetic body 18 is provided on the soft magnetic layer. If the soft magnetic layer not covered with the resist layer is removed, it is possible to obtain a shape in which both end faces 18a, 18a of the soft magnetic body 18 of this embodiment are tapered. Further, as shown in FIG. 4, in order to make the upper end portion 18c into an R shape, it can be obtained, for example, by performing ion milling on the upper end portion 18c.
  • the strength of the magnetic field in the sensitivity axis direction generated between the soft magnetic bodies 18 is from the film thickness center of the soft magnetic body 18 Since the film thickness center of the element unit 12 is set lower than the film thickness center of the soft magnetic body 18, the soft magnetic body 18 acts on the element unit 12 since the film thickness center of the element unit 12 is lower than the upper direction.
  • the strength of the magnetic field from the sensitivity axis direction can be increased.
  • the soft magnetic body 18 acts on the element unit 12. It is preferable that the strength of the magnetic field can be increased more effectively. More preferably, as shown in FIG. 1B, the element portion 12 is located below the soft magnetic body 18 (the space is provided in the height direction between the element portion 12 and the soft magnetic body 18).
  • the soft magnetic body 18 is located above the element unit 12.
  • the soft magnetic body 18 is located on both sides of the element unit 12 and below the element unit 12.
  • both end surfaces 18a, 18a facing in the sensitivity axis direction (Y direction) of the soft magnetic body 18 are formed by reverse tapered surfaces. That is, the width dimension W2 of the soft magnetic body 18 gradually increases from the lower surface to the upper surface.
  • the insulating layer 30 is provided between the soft magnetic bodies 18, and the upper surface of the soft magnetic bodies 18 and the upper surface of the insulating layer 30 are formed as a planarized surface.
  • the insulating layer 31 is formed on the soft magnetic body 18 and the insulating layer 30, and the element portion 12 is formed on the insulating layer 31 so as to be located just between the soft magnetic bodies 18. Be done.
  • the formation of the insulating layer 31 is not essential. That is, although the insulating layer 31 does not have to be formed, it is preferable to provide a thin insulating layer 31 if there is a possibility that the soft magnetic body 18 and the element portion 12 come in contact with each other.
  • the upper end portion 18c has a tapered shape. Therefore, contrary to FIG. 2, the magnetic flux can be concentrated on the upper end 18c inside the soft magnetic body 18, and the strength of the magnetic field (geomagnetism) acting on the element unit 12 formed at a position near the upper end 18c The size can be effectively increased, and the magnetic detection accuracy can be improved.
  • the upper end 18 c of the soft magnetic body 18 be formed in an acute angle. Further, it is preferable that the lower end portion 18b of the soft magnetic body 18 be formed in an R shape.
  • the soft magnetic body 18 shown in FIG. 5 can be formed, for example, by the following method. First, insulating layers 30 having tapered surfaces on both sides are formed on the substrate 16, and a soft magnetic layer is formed by sputtering or the like from between the insulating layers 30 to over the insulating layer 30. Subsequently, the soft magnetic layer is scraped using a CMP technique or the like to form the upper surface of the soft magnetic layer and the upper surface of the insulating layer 30 on the same planarized surface. As a result, it is possible to form a soft magnetic body 18 in which both side surfaces 18a, 18a are formed by reverse taper surfaces between the insulating layers 30.
  • the strength of the magnetic field in the sensitivity axis direction generated between the soft magnetic bodies 18 is lower than the film thickness center of the soft magnetic body 18. Since the film thickness center of the element unit 12 is set higher than the film thickness center of the soft magnetic body 18, the sensitivity of acting on the element unit 12 from the soft magnetic body 18 is larger. The strength of the magnetic field from the axial direction can be increased.
  • the element portion 12 is positioned above the soft magnetic body 18 (the space between the element portion 12 and the soft magnetic body 18 is increased in the height direction).
  • the element portion 12 and the soft magnetic body 18 are opposed in the sensitivity axis direction (Y direction).
  • both side surfaces 18a and 18a of the soft magnetic body 18 facing in the sensitivity axis direction (Y direction) are reverse tapered surfaces 18e from the lower end portion 18b to the intermediate portion 18d substantially facing the element portion 12 in the sensitivity axis direction.
  • the tapered surface 18 f is formed from the intermediate portion 18 d to the upper end portion 18 c.
  • the middle portion 18d since the middle portion 18d has a tapered shape, the magnetic flux inside the soft magnetic body 18 tends to be concentrated at the middle portion 18d.
  • the intermediate portion 18d is formed in a rectangular shape (particularly, an acute shape is preferable), and the lower end portion 18b and the upper end portion 18c are formed in an R shape, so that the magnetic flux inside the soft magnetic body 18 is generated by the intermediate portion 18d. It is possible to concentrate effectively.
  • the intensity (magnetic flux density) of the magnetic field (geomagnetism) acting on the element portion 12 at a position substantially facing the intermediate portion 18d in the sensitivity axis direction can be effectively increased, and the magnetic detection accuracy can be improved.
  • the soft magnetic body 18 shown in FIG. 6 can be formed, for example, by the following method. First, using the manufacturing method similar to FIG. 5, the soft magnetic body 18 whose both side surfaces are reversely tapered surfaces is formed. Next, using the same manufacturing method as that of FIG. 1B, the soft magnetic material 18 whose both side surfaces are tapered surfaces is formed on the soft magnetic material 18 whose both side surfaces are reversely tapered surfaces. Next, the element portion 12 is formed on the insulating layer 30 with the soft magnetic body 18 protected.
  • the soft-magnetic body 25 further shown by the dotted line may be provided in the both sides of the soft-magnetic body 18 provided in the both sides of sensitivity axis direction.
  • the soft magnetic body 18 exerts a magnetic shielding effect against a disturbance magnetic field in a direction (X direction) orthogonal to the sensitivity axis direction, but in order to enhance this magnetic shielding effect, soft magnetic material is further provided on both sides of the soft magnetic body 18 Even when the body 25 is provided, the present embodiment can be applied. That is, it is better to form the tapered surfaces shown in FIG. 1B on both side surfaces of the soft magnetic body 25 in the sensitivity axis direction.
  • both side surfaces of the soft magnetic body 25 are formed by reverse tapered surfaces
  • both side surfaces of the soft magnetic body 25 are reverse tapered surfaces. It forms by 18e and taper surface 18f.
  • the tapered surface of the soft magnetic body 18 shown in FIG. 1 (b), the reverse tapered surface of the soft magnetic body 18 shown in FIG. 5, and the reverse tapered surface 18e and the tapered surface 18f of the soft magnetic body shown in FIG. It may be formed on at least a side surface facing the element portion 12 and may not be formed on the other side surface. That is, for example, in the case of FIG. 1 (b), even if the side surfaces 18a (shown by the symbols X and Y in FIG. 1 (b)) facing the outside of the soft magnetic body 18 located on the both sides are Good. However, it is preferable to form a tapered surface in the same manner as the side surface 18 a facing the element portion 12 because the manufacturing method can be simplified. The same applies to FIGS. 5 and 6.
  • the magnetoresistive effect elements 2 and 3 are configured to include an element portion 12, an intermediate permanent magnet layer 21, and an outer permanent magnet layer 23.
  • the intermediate permanent magnet layer 21 and the outer permanent magnet layer 23 are, for example, CoPt or CoPtCr, which are formed by sputtering, for example.
  • a plurality of element units 12 are juxtaposed with an interval in the element length direction in the element length direction (X direction), and an intermediate permanent magnet is formed within the interval provided between each element unit 12.
  • the magnet layer 21 intervenes.
  • an element connector 22 is formed which extends in a strip shape in the X direction in the figure, in which the element sections 12 are connected via the intermediate permanent magnet layer 21.
  • a plurality of element connectors 22 are arranged in parallel at intervals in the element width direction (Z direction), and an outer permanent magnet layer 23 is formed at an end of each element connector 22.
  • the outer permanent magnet layers 23 provided on both sides in the longitudinal direction of the element coupling body 22 are connected by an electrode layer 19 formed of a good conductor such as Al, Au, or Cu.
  • the electrode layer 19 is formed in a linear shape (strip shape) in the Y direction.
  • the magnetoresistance effect elements 2 and 3 into a meander shape by the configuration shown in FIG. As shown in FIG. 7, in the region between the element connectors 22 and on the outside of the element connectors 22 located on both sides in the element width direction of the element connectors 22, the longitudinal direction of the element connectors 22 (X direction ) Is disposed. Then, as shown in FIG. 7, the electrode layer 19 is located below the soft magnetic body 18. As described above, the electrode layer 19 may be formed on either the lower portion or the upper portion as long as it is electrically insulated from the soft magnetic body 18. Further, the electrode layers 19 may bypass the outside of the soft magnet 18 without crossing.
  • a low resistance layer 20 having a resistance value smaller than that of the intermediate permanent magnet layer 21 be formed on the intermediate permanent magnet layer 21 in an overlapping manner.
  • the low resistance layer 20 is preferably formed of a nonmagnetic conductive material such as Au, Al, Cu or the like.
  • the low resistance layer 20 is formed on the intermediate permanent magnet layer 21 by sputtering, plating or the like.
  • a plurality of element portions 12 are connected to form a meander shape, but since the resistance of the intermediate permanent magnet layer 21 is a parasitic resistance, it is low on the intermediate permanent magnet layer 21 as in this embodiment.
  • parasitic resistance can be reduced.
  • the outer permanent magnet layer 23 also has a parasitic resistance, but since the electrode layer 19 is superimposed on the outer permanent magnet layer 23 as shown in FIG. 7, the parasitic resistance can be effectively reduced.
  • the element portion 12 is completely removed in FIG. 8 to form the intermediate permanent magnet layer 21 and the low resistance layer 20
  • the protective layer 37 and the free magnetic layer 36 are completely removed as shown in FIG.
  • the parasitic resistance component is reduced by contact from the end face to become surface contact, and the pinned magnetic layer 34 is cut to cut the pinned magnetic layer
  • the magnetization direction of the pinned magnetic layer becomes uniform, so that the magnetoresistance change due to the magnetization angle difference with the free magnetic layer can be effectively generated.
  • the aspect ratio (element length L 3 / element width W 1) of the element portion 12 in the portion sandwiched between the permanent magnet layers 21 becomes large, the bias magnetic field from the permanent magnet layer 21 acts as the element portion. It will not be properly supplied to the whole of 12. For this reason, a magnetic field is applied from a direction (X direction) orthogonal to the sensitivity axis direction, and hysteresis easily occurs in the resistance change area when the magnetic field strength is gradually increased. Therefore, the disturbance magnetic field resistance is likely to be lowered by the expansion of the resistance change region to the magnetic field (disturbance magnetic field) from the orthogonal direction.
  • the aspect ratio of the element unit 12 be small.
  • the aspect ratio of the element unit 12 is preferably 3 or less, and more preferably less than 1.
  • the film thickness of the permanent magnetic layer for appropriately supplying the bias magnetic field to the element unit 12 can also be reduced.
  • the magnetic sensor 1 in the present embodiment is used, for example, as a geomagnetic sensor (magnetic sensor module) shown in FIG.
  • Each of the X-axis magnetic field detection unit 50, the Y-axis magnetic field detection unit 51, and the Z-axis magnetic field detection unit 52 is provided with a sensor unit of a bridge circuit shown in FIG.
  • the fixed magnetization direction (P direction) of the fixed magnetic layer 34 of the element unit 12 of the magnetoresistance effect elements 2 and 3 is directed to the X direction which is the sensitivity axis.
  • the fixed magnetization direction (P direction) of the fixed magnetic layer 34 of the element portion 12 of the magnetoresistive effect elements 2 and 3 is directed to the Y direction which is the sensitivity axis, and further, in the Z axis magnetic field detection portion 52
  • the pinned magnetization direction (P direction) of the pinned magnetic layer 34 of the element portion 12 of the elements 2 and 3 is in the Z direction which is the sensitivity axis.
  • the X axis magnetic field detection unit 50, the Y axis magnetic field detection unit 51, the Z axis magnetic field detection unit 52, and the integrated circuit (ASIC) 54 are all provided on a base 53.
  • the formation surfaces of the magnetoresistance effect elements 2 and 3 of the X axis magnetic field detection unit 50 and the Y axis magnetic field detection unit 51 are both XY planes, but the magnetoresistance effect elements 2 and 3 of the Z axis magnetic field detection unit 52
  • the formation surface of the magnetoresistive effect elements 2 and 3 of the Z axis magnetic field detection unit 52 is the XZ plane, and the magnetoresistive effect elements 2 of the X axis magnetic field detection unit 50 and the Y axis magnetic field detection unit 51 are formed.
  • And 3 are perpendicular to each other.
  • the magnetic shield effect is provided in the direction orthogonal to the sensitivity axis direction, and an appropriate sensitivity is provided in the sensitivity axis direction. Therefore, even if two or more detection units of the X-axis magnetic field detection unit 50, the Y-axis magnetic field detection unit 51, and the Z-axis magnetic field detection unit 52 are provided on the base 53, each detection unit is orthogonal to the sensitivity axis direction.
  • the magnetic field from the direction can be appropriately magnetically shielded, and the geomagnetism from the direction of the sensitivity axis of each detection unit can be appropriately detected.
  • a module combining the geomagnetic sensor shown in FIG. 14 with an acceleration sensor or the like may be used other than the configuration shown in FIG.
  • FIG. 1 The figure which shows especially the part of a magnetoresistive effect element of the magnetic sensor in 1st Embodiment ((a) is a partial plan view, (b) is a height direction along the AA line of (a) (the Z direction shown) ) And a partial sectional view seen from the direction of the arrow),
  • An image diagram for explaining a state of a magnetic field formed between soft magnetic bodies of the present embodiment An image diagram for explaining the state of the magnetic field formed between the soft magnetic bodies of the comparative example, An enlarged cross-sectional view of a preferred soft magnetic body of the present embodiment;
  • FIG. 7 is a partially enlarged cross-sectional view taken along the line B-B in the height direction (the Z direction shown) and viewed from the arrow direction;
  • Fig. 8 shows a cross section at the same position as Fig. 8 and a partially enlarged cross sectional view of a shape different from Fig. 8;
  • FIG. 6 is a perspective view of a geomagnetic sensor (magnetic sensor module) in the present embodiment,

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】 特に、軟磁性体から磁気抵抗効果素子に作用する感度軸方向からの磁場の強度(磁束密度)を、効果的に大きくできるようにした磁気センサ及び磁気センサモジュールを提供することを目的とする。 【解決手段】 磁気抵抗効果素子2,3は、磁気抵抗効果を発揮する素子部12と軟磁性体18を備える。素子部12と軟磁性体18とが、感度軸方向(Y方向)に軟磁性体18、素子部12、軟磁性体18の順で並ぶように非接触で配置される。素子部12は、軟磁性体18よりも下方に位置している。軟磁性体18の感度軸方向(Y方向)に向く側面18aはテーパ面で形成されている。

Description

磁気センサ及び磁気センサモジュール
 本発明は、例えば地磁気センサとして使用される磁気抵抗効果素子を用いた磁気センサ及び磁気センサモジュールに関する。
 磁気抵抗効果素子を用いた磁気センサは例えば、携帯電話等の携帯機器に組み込まれる地磁気を検知する地磁気センサとして使用できる。磁気抵抗効果素子は感度軸方向からの磁場に対して電気抵抗値が変動する。
 下記の特許文献1に記載された発明では、複数の帯状の磁気抵抗効果膜を互いに平行に配置し、各磁気抵抗効果素子の端部間を永久磁石膜で接続して、つづら折り形状とした磁気センサが開示されている。
 しかしながら特許文献1には、磁気抵抗効果素子に作用する感度軸方向からの磁場の強度(磁束密度)を、効果的に大きくできるような工夫は何らなされていない。
特開2005-183614号公報
 そこで本発明は、上記従来の課題を解決するためのものであり、特に、軟磁性体から磁気抵抗効果素子に作用する感度軸方向からの磁場の強度(磁束密度)を、効果的に大きくできるようにした磁気センサ及び磁気センサモジュールを提供することを目的とする。
 本発明は、所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
 前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
 前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、
 前記素子部の膜厚中心は、前記軟磁性体の膜厚中心よりも下方に位置しており、
 前記軟磁性体の素子部側に向く側面はテーパ面で形成されることを特徴とするものである。
 これにより、軟磁性体から素子部に作用する感度軸方向からの磁場の強度(磁束密度)を効果的に大きくでき、磁気検出精度を向上させることができる。
 上記において、前記素子部の下面が前記軟磁性体の下面と同一面上か、あるいは素子部の上面が軟磁性体の下面以下に位置していることが、軟磁性体から素子部に作用する感度軸方向からの磁場の強度をより効果的に大きくでき好ましい。
 あるいは本発明は、所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
 前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
 前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、
 前記素子部の膜厚中心は、前記軟磁性体の膜厚中心よりも上方に位置しており、
 前記軟磁性体の素子部側に向く側面は逆テーパ面で形成されることを特徴とするものである。
 これにより、軟磁性体から素子部に作用する感度軸方向からの磁場の強度(磁束密度)を効果的に大きくでき、磁気検出精度を向上させることができる。
 上記において、前記素子部の下面は、前記軟磁性体の上面以上に位置していることが軟磁性体から素子部に及ぶ感度軸方向からの磁場の強度をより効果的に大きくできて好ましい。
 上記の発明において、前記側面の下端部及び上端部のうち、前記素子部に近い側の端部は、鋭角形状で形成されていることが好ましい。これにより、素子部に近い側の端部に効果的に磁束を集中でき、軟磁性体から素子部に作用する感度軸方向からの磁場の強度をより効果的に大きくできる。
 また上記の発明において、前記側面の下端部及び上端部のうち、前記素子部から遠い側の端部は、R形状で形成されていることが好ましい。これにより素子部から遠い側の端部から外部へ漏れる磁束量を減らし、素子部に近い側の端部に効果的に磁束を集中でき、軟磁性体から素子部に作用する感度軸方向からの磁場の強度をより効果的に大きくできる。
 または本発明は、所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
 前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
 前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、前記素子部と前記軟磁性体とは前記感度軸の方向にて対向しており、
 前記軟磁性体の素子部側に向く側面は、下端部から前記素子部と感度軸方向で略対向する中間部まで逆テーパ面で形成され、前記中間部から上端部までテーパ面で形成されることを特徴とするものである。
 これにより、軟磁性体から素子部に作用する感度軸方向からの磁場の強度(磁束密度)を効果的に大きくすることができるので、磁気検出精度を向上させることができる。
 上記の発明において、少なくともテーパ面と逆テーパ面と中間部で形成される膜厚方向の断面形状は台形形状であれば良いが、前記中間部は、角形状で形成されていることが好ましい。これにより、中間部に効果的に磁束を集中でき、軟磁性体から素子部に作用する感度軸方向からの磁場の強度をより効果的に大きくできる。
 また上記の発明において、前記側面の上端部及び下端部は、R形状で形成されていることが好ましい。これにより上端部及び下端部から外部へ漏れる磁束量を減らして、中間部に効果的に磁束を集中でき、軟磁性体から素子部に作用する感度軸方向からの磁場の強度をより効果的に大きくできる。
 本発明では、前記素子部が複数、素子幅方向に間隔を空けて配置され、各素子部の端部間が接続されてミアンダ形状で形成されており、
 各素子部の両側方に前記軟磁性体が設けられている構造であることが好適である。
 また本発明における磁気センサモジュールは、上記のいずれかに記載の磁気センサを複数有し、少なくとも前記複数の磁気センサのうち一組の磁気抵抗効果素子の感度軸が直交するように各磁気抵抗効果素子が配置されていることを特徴とするものである。例えば本発明の磁気センサモジュールは地磁気センサである。
 本発明の磁気センサによれば、軟磁性体から素子部に作用する感度軸方向からの磁場の強度(磁束密度)を大きくでき、磁気検出精度を向上させることができる。
 図1は、第1実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す図((a)は部分平面図、(b)は、(a)のA-A線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分断面図、図2は、本実施形態における軟磁性体間に形成される磁場の状態を説明するためのイメージ図、図3は、比較例における軟磁性体間に形成される磁場の状態を説明するためのイメージ図、図4は、本実施形態の好ましい軟磁性体の拡大断面図、図5は、第2実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す部分断面図、図6は、第3実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す部分拡大断面図、図7は他の実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す平面図、図8は、図7に示すB-B線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分拡大断面図、図9は、磁気抵抗効果素子(素子部)を構成する固定磁性層の固定磁化方向及びフリー磁性層の磁化方向と、電気抵抗値との関係を説明するための図、図10は、磁気抵抗効果素子(素子部)を構成する素子部を膜厚方向から切断した際の切断面を示す部分断面図、図11は本実施形態の磁気センサの回路構成図、図12は図8と同じ位置での断面を示し、図8と異なる形状の部分拡大断面図、図13は、好ましい磁気抵抗効果素子の形態の特に素子部の部分を示す部分拡大平面図、図14は本実施形態における地磁気センサ(磁気センサモジュール)の斜視図、である。
 本実施形態における磁気抵抗効果素子を備えた磁気センサ1を用いた磁気センサモジュールは例えば携帯電話等の携帯機器に搭載される地磁気センサとして使用される。
 地磁気センサ1は、図11に示すように、磁気抵抗効果素子2,3と固定抵抗素子4,5とがブリッジ接続されてなるセンサ部6と、センサ部6と電気接続された入力端子7、グランド端子8、差動増幅器9及び外部出力端子10等を備えた集積回路(IC)11とで構成される。
 磁気抵抗効果素子2,3は、図1(a)に示すように、素子幅W1に比べて素子長さL1が長く形成された図示X方向に細長い形状の複数の素子部12がX方向に直交するY方向に所定の間隔を空けて並設され、各素子部12の端部間が接続電極部13により電気的に接続されてミアンダ形状となっている。ミアンダ形状に形成された両端にある素子部12の一方には入力端子7、グランド端子8、出力取出し部14(図11参照)に接続される電極部15が接続されている。接続電極部13及び電極部15は、Al、Ta、Au等の非磁性導電材料である。接続電極部13及び電極部15はスパッタやメッキで形成される。
 磁気抵抗効果素子2,3を構成する各素子部12は、全て図10に示す同じ積層構造で構成される。なお図10は、素子幅W1と平行な方向から膜厚方向に切断した切断面を示している。
 素子部12は、例えば下から反強磁性層33、固定磁性層34、非磁性層35、およびフリー磁性層36の順に積層されて成膜され、フリー磁性層36の表面が保護層37で覆われている。素子部12は例えばスパッタにて形成される。
 反強磁性層33は、Ir-Mn合金(イリジウム-マンガン合金)などの反強磁性材料で形成されている。固定磁性層34はCo-Fe合金(コバルト-鉄合金)などの軟磁性材料で形成されている。非磁性層35はCu(銅)などである。フリー磁性層36は、Ni-Fe合金(ニッケル-鉄合金)などの軟磁性材料で形成されている。保護層37はTa(タンタル)などである。上記構成では非磁性層35がCu等の非磁性導電材料で形成された巨大磁気抵抗効果素子(GMR素子)であるが、Al23等の絶縁材料で形成されたトンネル型磁気抵抗効果素子(TMR素子)であってもよい。また図10に示す素子部12の積層構成は一例であって他の積層構成であってもよい。例えば、下からフリー磁性層36、非磁性層35、固定磁性層34、反強磁性層33及び保護層37の順に積層されてもよい。
 素子部12では、反強磁性層33と固定磁性層34との反強磁性結合により、固定磁性層34の磁化方向が固定されている。図1及び図10に示すように、固定磁性層34の固定磁化方向(P方向)は、素子幅方向(Y方向)に向いている。すなわち固定磁性層34の固定磁化方向(P方向)は、素子部12の長手方向と直交している。
 一方、フリー磁性層36の磁化方向(F方向)は、外部磁場により変動する。
 図9に示すように、固定磁性層34の固定磁化方向(P方向)と同一方向から外部磁場Y1が作用してフリー磁性層36の磁化方向(F方向)が外部磁場Y1方向に向くと、固定磁性層34の固定磁化方向(P方向)とフリー磁性層36の磁化方向(F方向)とが平行に近づき電気抵抗値が低下する。
 一方、図9に示すように、固定磁性層34の固定磁化方向(P方向)と反対方向から外部磁場Y2が作用してフリー磁性層36の磁化方向(F方向)が外部磁場Y2方向に向くと、固定磁性層34の固定磁化方向(P方向)とフリー磁性層36の磁化方向(F方向)とが反平行に近づき電気抵抗値が増大する。
 なお磁気抵抗効果素子2,3を構成する素子部12は異方性磁気抵抗効果素子(AMR素子)であってもよい。ただし磁気抵抗効果素子2,3を構成する素子部12をGMRやTMRとしたほうが、外部磁場に対する抵抗変化率(MR比)を大きくでき、また抵抗変化率(MR比)の直線性を得ることができ、高精度な外部磁場検知を行うことが可能である。
 図1(b)に示すように磁気抵抗効果素子2,3は基板16上に形成される。磁気抵抗効果素子2,3上はAl23やSiO2等の絶縁層17に覆われる。また磁気抵抗効果素子2,3を構成する素子部12間も絶縁層17で埋められる。絶縁層17は例えばスパッタにて形成される。
 図1(b)のように絶縁層17の上面は、例えばCMP技術を用いて平坦面に形成されている。ただし、絶縁層17の上面は、素子部12と基板16間の段差に倣って、凹凸面で形成されていてもよい。
 図1(b)に示すように、磁気抵抗効果素子2,3を構成する各素子部12の間、及び最も外側に位置する素子部12の外側に軟磁性体18が設けられている。軟磁性体18は例えばスパッタやメッキにて薄膜形成される。軟磁性体18は、NiFe、CoFe、CoFeSiBやCoZrNb等で形成される。図1(a)では軟磁性体18の幅寸法W2は素子部12の素子幅W1より大きくなっているが特に限定されるものではない。
 また、軟磁性体18の長さ寸法L2は素子部12の素子長さL1よりも長く、図1(a)に示すように、軟磁性体18は、素子部12の長手方向(X方向)の両側から長手方向に延出する延出部18gを備える。
 図1(b)に示すように、軟磁性体18は、素子部12間にある絶縁層17上に形成される。また図示しないが軟磁性体18上及び軟磁性体18間は絶縁性の保護層にて覆われている。
 図1に示す磁気センサ1は、図示Y方向(素子幅方向)と平行な方向からの地磁気を検知するためのものである。よって図示Y方向が感度軸方向であり、図示Y方向に直交するX方向(素子長さ方向)が素子部12の長手方向である。固定磁性層34の固定磁化方向(P方向)は感度軸方向である図示Y方向に向けられている。
 図1では接続電極部13及び電極部15は軟磁性延出部18gと交差しているが、接続電極部13及び電極部15と軟磁性延出部18g間は絶縁層が形成されている。接続電極部13及び電極部15は軟磁性体18と電気的に絶縁されていれば、下部、上部どちらに形成されてもよい。また、交差せず、接続電極部13及び電極部15が軟磁性延出部18gの外側を迂回する形でもよい。
 磁気抵抗効果素子2,3を構成する素子部12の素子幅W1は、地磁気センサとして使用する場合は形状異方性を利用するため、2~6μmの範囲内であることが好適である(図1(a)参照)。また素子部12の素子長さL1は、60~100μmの範囲内であることが好適である(図1(a)参照)。また、素子部12の膜厚T1は、200~300Åの範囲内であることが好適である(図1(b)参照)。また軟磁性体18の平均幅寸法W2は、この実施形態では、地磁気センサとして使用する場合、1~6μmの範囲内であることが好適である(図1(a)参照)。また軟磁性体18の長さ寸法L2は、80~200μmの範囲内であることが好適である(図1(a)参照)。また、軟磁性体18の膜厚T2は、0.2~1μmの範囲内であることが好適である(図1(b)参照)。素子部12のアスペクト比(素子長さL1/素子幅W1)は、地磁気センサとして使用する場合は10以上であることが好適である。また軟磁性体18のアスペクト比(長さ寸法L2/幅寸法W2)は、素子部12のアスペクト比以上であると好適である。また軟磁性体18の延出部18gの長さ寸法T8は、20μm以上であることが好適である(図1(a)参照)。
 また各軟磁性体18間の距離(Y1-Y2方向への距離)T3は、軟磁性体の幅寸法W2以上で2~8μmであることが好適である(図1(b)参照)。また、素子部12と隣接した位置にある軟磁性体18とのY1-Y2方向への距離T4は、0~3μmであることが好適である(図1(b)参照)。また、軟磁性体18と素子部12間の高さ方向(Z方向)への距離T5は、0.1~1μmであることが好適である(図1(b)参照)。
 本実施形態における磁気センサ1は、縦方向(Y方向;素子幅方向)からの地磁気を検知するためのものである。よって図示Y方向が感度軸方向であり、横方向(X方向)が素子部12の長手方向である。素子部12と軟磁性体18とが、感度軸の方向に、軟磁性体18、素子部12、軟磁性体18の順で並ぶように非接触で配置されている。固定磁性層34の固定磁化方向(P方向)は感度軸方向であるY方向に向けられている。
 本実施形態では、素子部12の両側であって、素子部12の上方に非接触の軟磁性体18が設けられている。軟磁性体18は、素子部12と同様に、素子長さ方向(図示X方向)に細長い形状である。
 そして本実施形態では図1(b)に示すように軟磁性体18の図示Y方向の両側面18a,18aがテーパ面で形成される。よって軟磁性体18の幅寸法W2は、下面から上面に向けて徐々に小さくなっている。
 このため図2に示すように、感度軸方向(Y方向)から外部磁場(地磁気)が作用したときに、軟磁性体18の内部で磁束が、先細る下端部18b付近に集中しやすくなり、軟磁性体18の下端部18bに近い位置に設けられた素子部12に作用する外部磁場(地磁気)の強度(磁束密度)を効果的に大きくできる。
 図3は比較例である。図3では、軟磁性体18の側面18aがテーパ面でなく垂直面である。この場合でも、軟磁性体18から素子部12に作用する磁場(地磁気)の強度(磁束密度)は、磁性層を備える素子部12方向にやや大きくなるものの、図2の実施形態のように下端部18bが先細る形状でないため、図2の実施形態ほど軟磁性体18の下端部18bに磁束を集中させることができず、本実施形態に比べて、素子部12に作用する磁場(地磁気)の強度(磁束密度)を効果的に大きくすることができない。
 これに対して上記したように本実施形態では、軟磁性体18から素子部12に作用する磁場(地磁気)の強度(磁束密度)を効果的に大きくできるので、磁気検出精度を向上させることができる。
 図4に示すように軟磁性体18の下端部18bは、鋭角形状であることが好ましい。これにより、下端部18bに効果的に磁束を集中でき、軟磁性体18から素子部12に作用する磁場(地磁気)の強度(磁束密度)をより効果的に大きくできる。
 また、図1(b)、図2では、軟磁性体18の上端部18cは鈍角形状である。すなわち上端部18cに角があってもよいが、図4のように上端部18cをR形状で形状したほうが、上端部18c付近から漏れる磁場(地磁気)の磁束量を減らすことができ、下端部18bに、より効果的に磁束を集中でき、軟磁性体18から素子部12に作用する磁場(地磁気)の強度をより効果的に大きくすることができる。
 図1、図2,図4に示す軟磁性体18は、例えば、次の方法で形成できる。まず図1(b)に示す絶縁層17の上面全体に軟磁性体層をスパッタ等で成膜し、続いて、軟磁性体18と相似形状のレジスト層を軟磁性体層上に設けて、レジスト層に覆われていない軟磁性体層を除去すれば本実施形態の軟磁性体18の両端面18a,18aがテーパ面とされた形状を得ることが出来る。また図4のように上端部18cをR形状にするには、例えばイオンミリングを上端部18cに対して行うことで得ることが出来る。
 図2のイメージ図に示すように、軟磁性体18の両側面18aをテーパ面とすると、軟磁性体18間で発生する感度軸方向への磁場の強度は、軟磁性体18の膜厚中心から上方向よりも下方向のほうが大きくなるので、素子部12の膜厚中心を、軟磁性体18の膜厚中心よりも下方向に設置することで、軟磁性体18から素子部12に作用する感度軸方向からの磁場の強度を大きくできる。
 ただし、素子部12の下面を軟磁性体18の下面と同一面上か、あるいは、素子部12の上面を軟磁性体18の下面以下に設置したほうが、軟磁性体18から素子部12に作用する磁場の強度をより効果的に大きくできて好適である。より好ましくは、図1(b)に示すように、素子部12を軟磁性体18の下方(素子部12と軟磁性体18間の高さ方向に間隔が空いている)に位置させる。
 図1,図2,図4に示す実施形態では、軟磁性体18が、素子部12よりも上方に位置する。これに対して図5に示す実施形態では軟磁性体18が素子部12の両側であって、素子部12よりも下方に位置している。
 図5に示すように軟磁性体18の感度軸方向(Y方向)に向く両端面18a,18aは逆テーパ面で形成される。すなわち軟磁性体18の幅寸法W2は、下面から上面に向うにしたがって徐々に大きくなっている。図5に示すように軟磁性体18の間には絶縁層30が設けられ、軟磁性体18の上面と絶縁層30の上面とが平坦化面で形成されている。
 図5に示すように、軟磁性体18上及び絶縁層30上には絶縁層31が形成され、その絶縁層31上に、ちょうど軟磁性体18の間に位置するように素子部12が形成される。絶縁層31の形成は必須でない。すなわち絶縁層31は形成されなくてもよいが、軟磁性体18と素子部12が接触する可能性があれば薄い絶縁層31を設けることが好適である。
 図5に示す実施形態では、軟磁性体18の側面18aが逆テーパ面で形成されるので、上端部18cが先細る形状となっている。よって図2とは逆で、軟磁性体18の内部では上端部18cに磁束を集中させることができ、上端部18cに近い位置に形成された素子部12に作用する磁場(地磁気)の強度を効果的に大きくでき、磁気検出精度を向上させることができる。
 図5に示す実施形態では、軟磁性体18の上端部18cが鋭角形状で形成されることが好ましい。また軟磁性体18の下端部18bがR形状で形成されることが好ましい。
 図5に示す軟磁性体18は例えば次の方法で形成できる。まず両側面にテーパ面を備える絶縁層30を基板16上に形成し、絶縁層30間から絶縁層30上にかけてスパッタ等で軟磁性体層を形成する。続いて、CMP技術等を用いて軟磁性体層を削り、軟磁性体層の上面と絶縁層30の上面を同一の平坦化面に形成する。これにより絶縁層30間に両側面18a,18aが逆テーパ面で形成された軟磁性体18を形成することが出来る。
 図5に示すように、軟磁性体18の両側面18aを逆テーパ面とすると、軟磁性体18間で発生する感度軸方向への磁場の強度は、軟磁性体18の膜厚中心から下方向よりも上方向のほうが大きくなるので、素子部12の膜厚中心を、軟磁性体18の膜厚中心よりも上方向に設置することで、軟磁性体18から素子部12に作用する感度軸方向からの磁場の強度を大きくできる。
 ただし、素子部12の下面を軟磁性体18と感度軸方向で対向する位置より軟磁性体18の上面以上に設置したほうが、軟磁性体18から素子部12に作用する磁場の強度をより効果的に大きくできて好適である。より好ましくは、図5に示すように、素子部12を軟磁性体18よりも上方(素子部12と軟磁性体18間に高さ方向に間隔を空ける)に位置させる。
 図6に示す実施形態では、素子部12と軟磁性体18とが感度軸方向(Y方向)にて対向している。図6に示すように、軟磁性体18の感度軸方向(Y方向)に向く両側面18a,18aは下端部18bから素子部12と感度軸方向で略対向する中間部18dまで逆テーパ面18eで形成され、中間部18dから上端部18cまでテーパ面18fで形成される。
 図6に示す実施形態では、中間部18dが先細り形状であるため、軟磁性体18の内部の磁束が中間部18dに集中しやすくなる。特に、中間部18dを角形状(特に鋭角形状が好適である)で形成し、下端部18b及び上端部18cをR形状で形成することで、軟磁性体18の内部の磁束を中間部18dにより効果的に集中することが可能である。
 よって、中間部18dと感度軸方向で略対向した位置にある素子部12に作用する磁場(地磁気)の強度(磁束密度)を効果的に大きくでき、磁気検出精度を向上させることができる。
 図6に示す軟磁性体18は例えば次のような方法で形成できる。まず図5と同様の製造方法を用いて、両側面が逆テーパ面となる軟磁性体18を形成する。次に、図1(b)と同様の製造方法を用いて、両側面がテーパ面となる軟磁性体18を両側面が逆テーパ面の軟磁性体18上に重ねて形成する。次に、軟磁性体18を保護した状態で、絶縁層30上に素子部12を形成する。
 図1(a)に示すように、感度軸方向の両側に設けられた軟磁性体18の両側には、さらに点線で示された軟磁性体25が設けられていてもよい。
 軟磁性体18は、感度軸方向に直交する方向(X方向)の外乱磁場に対して磁気シールド効果を発揮するが、この磁気シールド効果を高めるために、軟磁性体18のさらに両側に軟磁性体25を設けた場合でも、本実施形態の適用が可能である。すなわち軟磁性体25の感度軸方向の両側面についても図1(b)に示すテーパ面で形成したほうがよい。図5の実施形態に適用する場合には、軟磁性体25の両側面を逆テーパ面で形成し、図6の実施形態に適用する場合には、軟磁性体25の両側面を逆テーパ面18eとテーパ面18fとで形成する。
 また図1(b)で示した軟磁性体18のテーパ面、図5で示した軟磁性体18の逆テーパ面、図6で示した軟磁性体の逆テーパ面18e及びテーパ面18fは、少なくとも素子部12側に向く側面に形成し、それ以外の側面に形成しなくてもよい。すなわち例えば図1(b)で言えば、最も両側に位置する軟磁性体18の外側を向く側面18a(図1(b)では、符号X,Yで示した)は例えば垂直面であってもよい。ただし、素子部12側に向く側面18aと同じようにテーパ面で形成したほうが製造方法を簡単にでき好ましい。図5,図6についても同様である。
 図7に示す他の実施形態では、磁気抵抗効果素子2,3は、素子部12と、中間永久磁石層21と、外側永久磁石層23とを備えて構成される。中間永久磁石層21及び外側永久磁石層23はCoPtやCoPtCr等であり例えばスパッタ成膜されたものである。
 図7に示すように、素子長さ方向(X方向)に複数の素子部12が素子長さ方向に間隔を空けて並設され、各素子部12の間に空けられた間隔内に中間永久磁石層21が介在している。これにより各素子部12が中間永久磁石層21を介して連結された図示X方向に帯状に延びる素子連結体22が構成される。素子連結体22は、素子幅方向(Z方向)に間隔を空けて複数本並設され、各素子連結体22の端部に外側永久磁石層23が形成されている。
 図7に示すように、素子連結体22の長手方向の両側に設けられた外側永久磁石層23間が、Al、Au、あるいはCu等の良導体で形成された電極層19により接続されている。電極層19は、Y方向に直線状(帯状)で形成される。
 図7に示す構成にて磁気抵抗効果素子2,3をミアンダ形状にすることが可能である。図7に示すように、素子連結体22の間の領域、及び素子連結体22の素子幅方向の両側に位置する素子連結体22の外側に、夫々、素子連結体22の長手方向(X方向)に延びる軟磁性体18が配置されている。そして、図7に示すように、軟磁性体18の下側に電極層19が位置している。前述のように電極層19は軟磁性体18と電気的に絶縁されていれば、下部、上部どちらに形成されてもよい。また、交差せず、電極層19が軟磁性18の外側を迂回する形でもよい。
 また図8に示すように、中間永久磁石層21上には中間永久磁石層21よりも抵抗値が小さい低抵抗層20が重ねて形成されていることが好ましい。低抵抗層20はAu、Al、Cu等の非磁性導電材料で形成されることが好適である。低抵抗層20は、中間永久磁石層21上にスパッタやメッキ等で形成される。素子抵抗を大きくするために複数の素子部12を連結してミアンダ形状としているが、中間永久磁石層21の抵抗は寄生抵抗であるため、本実施形態のように中間永久磁石層21上に低抵抗層20を重ねて形成することで、寄生抵抗を低減できる。外側永久磁石層23も寄生抵抗になるが、図7で示すように外側永久磁石層23上には電極層19が重ねられているので、寄生抵抗を効果的に低減できる。
 図7に示す実施形態でも図1,図5及び図6で説明した軟磁性体18の側面形態を適用できる。
 また、図8では素子部12を完全に除去し、中間永久磁石層21、低抵抗層20を形成しているが、図12のように、保護層37及びフリー磁性層36を完全に除去し、非磁性層35を介して中間永久磁石層21とで接続することで、端面での接触から、面接触となることで寄生抵抗成分を減らし、固定磁性層34を切断することによる固定磁性層の磁区の乱れをなくなることにより、固定磁性層の磁化方向が一様となるため、フリー磁性層との磁化角度差による磁気抵抗変化を効果的に発生させることが出来る。
 また図13に示すように、永久磁石層21間に挟まれた部分の素子部12のアスペクト比(素子長さL3/素子幅W1)が大きくなると、永久磁石層21からのバイアス磁界が素子部12の全体に適切に供給されなくなる。このため感度軸方向に対して直交方向(X方向)から磁界を作用させ、磁界強度を徐々に強くしていったときの抵抗変化領域にヒステリシスが生じやすくなる。よって直交方向からの磁界(外乱磁場)に対する抵抗変化領域が広がることで、外乱磁場耐性が低下しやすくなる。また感度磁場に対してもヒステリシスは生じやすくなり、感度磁場に対する磁場応答性が低下する。したがって、素子部12の全体に適切にバイアス磁界を供給するため素子部12のアスペクト比は小さいことが好ましい。具体的には素子部12のアスペクト比は3以下が好適であり、1より小さいことがより好ましい。これにより素子部12に適切にバイアス磁界を供給するための永久磁性層膜厚も薄くすることができる。
 本実施形態における磁気センサ1は例えば、図14に示す地磁気センサ(磁気センサモジュール)として使用される。X軸磁場検知部50、Y軸磁場検知部51、Z軸磁場検知部52では、いずれも図11に示すブリッジ回路のセンサ部が設けられている。X軸磁場検知部50では磁気抵抗効果素子2,3の素子部12の固定磁性層34の固定磁化方向(P方向)が感度軸であるX方向を向いており、また、Y軸磁場検知部51では磁気抵抗効果素子2,3の素子部12の固定磁性層34の固定磁化方向(P方向)が感度軸であるY方向を向いており、さらに、Z軸磁場検知部52では磁気抵抗効果素子2,3の素子部12の固定磁性層34の固定磁化方向(P方向)が感度軸であるZ方向を向いている。
 X軸磁場検知部50、Y軸磁場検知部51、Z軸磁場検知部52、及び集積回路(ASIC)54はいずれも基台53上に設けられる。X軸磁場検知部50、及びY軸磁場検知部51の磁気抵抗効果素子2,3の形成面はいずれもX-Y平面であるが、Z軸磁場検知部52の磁気抵抗効果素子2,3の形成面はX-Z平面であり、Z軸磁場検知部52の磁気抵抗効果素子2,3の形成面は、X軸磁場検知部50、及びY軸磁場検知部51の磁気抵抗効果素子2,3の形成面に対して直交した関係にある。
 本実施形態では感度軸方向と直交する方向に対して磁気シールド効果があり、また感度軸方向に対しては適切な感度を備える。したがって、X軸磁場検知部50、Y軸磁場検知部51、及びZ軸磁場検知部52のうち2以上の検知部を基台53上に設けても、各検知部において、感度軸方向と直交方向からの磁場を適切に磁気シールドできるとともに、各検知部の感度軸方向からの地磁気を適切に検知できる。
 図14の構成以外に、図14に示す地磁気センサと加速度センサ等を組み合わせたモジュールとすることもできる。
第1実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す図((a)は部分平面図、(b)は、(a)のA-A線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分断面図)、 本実施形態の軟磁性体間に形成される磁場の状態を説明するためのイメージ図、 比較例の軟磁性体間に形成される磁場の状態を説明するためのイメージ図、 本実施形態の好ましい軟磁性体の拡大断面図、 第2実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す部分断面図、 第3実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す部分拡大断面図、 他の実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す平面図、 図7に示すB-B線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分拡大断面図、 磁気抵抗効果素子(素子部)を構成する固定磁性層の固定磁化方向及びフリー磁性層の磁化方向と、電気抵抗値との関係を説明するための図、 磁気抵抗効果素子(素子部)を構成する素子部を膜厚方向から切断した際の切断面を示す部分断面図、 本実施形態の磁気センサの回路構成図、 図8と同じ位置での断面を示し、図8と異なる形状の部分拡大断面図、 好ましい磁気抵抗効果素子の形態の特に素子部の部分を示す部分拡大平面図、 本実施形態における地磁気センサ(磁気センサモジュール)の斜視図、
1 磁気センサ
2、3 磁気抵抗効果素子
4、5 固定抵抗素子
6 ブリッジ回路
7 入力端子
8 グランド端子
9 差動増幅器
10 外部出力端子
11 集積回路
12 素子部
13 接続電極部
14 出力取出し部
15 電極部
16 基板
17、30、31 絶縁層
18 軟磁性体
18a 側面
18b 下端部
18c 上端部
18d 中間部
18e 逆テーパ面
18f テーパ面
19 電極
20 低抵抗層
21 中間永久磁石層
22 素子連結体
23 外側永久磁石層
33 反強磁性層
34 固定磁性層
35 非磁性層
36 フリー磁性層
37 保護層
50 X軸磁場検知部
51 Y軸磁場検知部
52 Z軸磁場検知部

Claims (12)

  1.  所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
     前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
     前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、
     前記素子部の膜厚中心は、前記軟磁性体の膜厚中心よりも下方に位置しており、
     前記軟磁性体の素子部側に向く側面はテーパ面で形成されることを特徴とする磁気センサ。
  2.  前記素子部の下面が前記軟磁性体の下面と同一面上に位置している請求項1記載の磁気センサ。
  3.  前記素子部の上面が前記軟磁性体の下面以下に位置している請求項1記載の磁気センサ。
  4.  所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
     前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
     前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、
     前記素子部の膜厚中心は、前記軟磁性体の膜厚中心よりも上方に位置しており、
     前記軟磁性体の素子部側に向く側面は逆テーパ面で形成されることを特徴とする磁気センサ。
  5.  前記素子部の下面は、前記軟磁性体の上面以上に位置している請求項4記載の磁気センサ。
  6.  前記側面の下端部及び上端部のうち、前記素子部に近い側の端部は、鋭角形状で形成されている請求項1ないし5のいずれかに記載の磁気センサ。
  7.  前記側面の下端部及び上端部のうち、前記素子部から遠い側の端部は、R形状で形成されている請求項1ないし6のいずれかに記載の磁気センサ。
  8.  所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
     前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
     前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、前記素子部と前記軟磁性体とは前記感度軸の方向にて対向しており、
     前記軟磁性体の素子部側に向く側面は、下端部から前記素子部と感度軸方向で略対向する中間部まで逆テーパ面で形成され、前記中間部から上端部までテーパ面で形成されることを特徴とする磁気センサ。
  9.  前記中間部は、角形状で形成されている請求項8記載の磁気センサ。
  10.  前記側面の上端部及び下端部は、R形状で形成されている請求項8又は9に記載の磁気センサ。
  11.  前記素子部が複数、素子幅方向に間隔を空けて配置され、各素子部の端部間が接続されてミアンダ形状で形成されており、
     各素子部の両側方に前記軟磁性体が設けられている請求項1ないし10のいずれかに記載の磁気センサ。
  12.  請求項1ないし11のいずれかに記載の磁気センサを複数有し、少なくとも前記複数の磁気センサのうち一組の磁気抵抗効果素子の感度軸が直交するように各磁気抵抗効果素子が配置されていることを特徴とする磁気センサモジュール。
PCT/JP2009/060450 2008-06-11 2009-06-08 磁気センサ及び磁気センサモジュール WO2009151023A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010516844A JP5149964B2 (ja) 2008-06-11 2009-06-08 磁気センサ及び磁気センサモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008152725 2008-06-11
JP2008-152725 2008-06-11

Publications (1)

Publication Number Publication Date
WO2009151023A1 true WO2009151023A1 (ja) 2009-12-17

Family

ID=41416729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060450 WO2009151023A1 (ja) 2008-06-11 2009-06-08 磁気センサ及び磁気センサモジュール

Country Status (2)

Country Link
JP (1) JP5149964B2 (ja)
WO (1) WO2009151023A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113473A1 (en) * 2011-11-04 2013-05-09 Sae Magnetics (H.K.) Magnetic sensor with shunting layers and manufacturing method thereof
WO2017163471A1 (ja) * 2016-03-23 2017-09-28 Tdk株式会社 磁気センサ
DE102017126451A1 (de) 2017-02-09 2018-08-09 Tdk Corporation Magnetsensor und Verfahren zur Herstellung dieses Magnetsensors
JP2019158508A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 磁気センサ
JP2019163934A (ja) * 2018-03-19 2019-09-26 Tdk株式会社 磁気センサ
JPWO2018155701A1 (ja) * 2017-02-27 2019-12-19 Tdk株式会社 磁気センサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10261138B2 (en) 2017-07-12 2019-04-16 Nxp B.V. Magnetic field sensor with magnetic field shield structure and systems incorporating same
US10718825B2 (en) 2017-09-13 2020-07-21 Nxp B.V. Stray magnetic field robust magnetic field sensor and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634131A (en) * 1979-08-29 1981-04-06 Nec Corp Element for detecting magnetic field
JPS58197892A (ja) * 1982-05-14 1983-11-17 Hitachi Ltd 磁場検出素子
JPH09129944A (ja) * 1995-10-31 1997-05-16 Hitachi Ltd 磁電変換素子
JPH09145374A (ja) * 1995-11-29 1997-06-06 Sony Corp 地磁気方位センサ
JP2005183614A (ja) * 2003-12-18 2005-07-07 Yamaha Corp 磁気センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634131A (en) * 1979-08-29 1981-04-06 Nec Corp Element for detecting magnetic field
JPS58197892A (ja) * 1982-05-14 1983-11-17 Hitachi Ltd 磁場検出素子
JPH09129944A (ja) * 1995-10-31 1997-05-16 Hitachi Ltd 磁電変換素子
JPH09145374A (ja) * 1995-11-29 1997-06-06 Sony Corp 地磁気方位センサ
JP2005183614A (ja) * 2003-12-18 2005-07-07 Yamaha Corp 磁気センサ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113473A1 (en) * 2011-11-04 2013-05-09 Sae Magnetics (H.K.) Magnetic sensor with shunting layers and manufacturing method thereof
WO2017163471A1 (ja) * 2016-03-23 2017-09-28 Tdk株式会社 磁気センサ
JP2017173118A (ja) * 2016-03-23 2017-09-28 Tdk株式会社 磁気センサ
CN108780130A (zh) * 2016-03-23 2018-11-09 Tdk株式会社 磁传感器
US11022660B2 (en) 2016-03-23 2021-06-01 Tdk Corporation Magnetic sensor including a magnetic member offset from a magnetoresistive effect element
DE102017126451A1 (de) 2017-02-09 2018-08-09 Tdk Corporation Magnetsensor und Verfahren zur Herstellung dieses Magnetsensors
US10634740B2 (en) 2017-02-09 2020-04-28 Tdk Corporation Magnetic sensor and method of manufacturing the same
JPWO2018155701A1 (ja) * 2017-02-27 2019-12-19 Tdk株式会社 磁気センサ
JP7099438B2 (ja) 2017-02-27 2022-07-12 Tdk株式会社 磁気センサ
JP2019158508A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 磁気センサ
JP7077679B2 (ja) 2018-03-12 2022-05-31 Tdk株式会社 磁気センサ
JP2019163934A (ja) * 2018-03-19 2019-09-26 Tdk株式会社 磁気センサ

Also Published As

Publication number Publication date
JP5149964B2 (ja) 2013-02-20
JPWO2009151023A1 (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5066579B2 (ja) 磁気センサ及び磁気センサモジュール
JP5297442B2 (ja) 磁気センサ
JP5066580B2 (ja) 磁気センサ及び磁気センサモジュール
JP5174911B2 (ja) 磁気センサ及び磁気センサモジュール
JP5297075B2 (ja) 磁気センサおよびその製造方法、並びに電流検出方法および電流検出装置
JP5297539B2 (ja) 磁気センサ
WO2009151023A1 (ja) 磁気センサ及び磁気センサモジュール
JP5597206B2 (ja) 磁気センサ
JP4433820B2 (ja) 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
JP5210983B2 (ja) 地磁気センサ
WO2009151024A1 (ja) 磁気センサ及び磁気センサモジュール
JP2009300150A (ja) 磁気センサ及び磁気センサモジュール
JP2009175120A (ja) 磁気センサ及び磁気センサモジュール
JP5899012B2 (ja) 磁気センサ
JP5066581B2 (ja) 磁気センサ及び磁気センサモジュール
JP2009162499A (ja) 磁気センサ
JP2009162540A (ja) 磁気センサ及びその製造方法
US10852368B2 (en) Magnetic sensor device
JP5171933B2 (ja) 磁気センサ
WO2011074488A1 (ja) 磁気センサ
JP6121311B2 (ja) 磁気検知装置
US10830838B2 (en) Magnetic sensor
JP5453198B2 (ja) 磁気センサ
JP5341865B2 (ja) 磁気センサ
JP7096349B2 (ja) 磁気センサおよび電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516844

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762453

Country of ref document: EP

Kind code of ref document: A1