WO2017159175A1 - 蛍光体 - Google Patents
蛍光体 Download PDFInfo
- Publication number
- WO2017159175A1 WO2017159175A1 PCT/JP2017/005249 JP2017005249W WO2017159175A1 WO 2017159175 A1 WO2017159175 A1 WO 2017159175A1 JP 2017005249 W JP2017005249 W JP 2017005249W WO 2017159175 A1 WO2017159175 A1 WO 2017159175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- diffraction
- crystal phase
- maximum peak
- intensity
- Prior art date
Links
- 239000000126 substance Substances 0.000 title abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 108
- 239000013078 crystal Substances 0.000 claims description 84
- 238000002441 X-ray diffraction Methods 0.000 claims description 31
- 238000005259 measurement Methods 0.000 claims description 27
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 17
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 239000003973 paint Substances 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 description 21
- 238000002189 fluorescence spectrum Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 16
- 239000002994 raw material Substances 0.000 description 15
- 239000011734 sodium Substances 0.000 description 15
- 230000004907 flux Effects 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 230000005284 excitation Effects 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 238000012014 optical coherence tomography Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000000695 excitation spectrum Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000001354 calcination Methods 0.000 description 4
- HFNQLYDPNAZRCH-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O.OC(O)=O HFNQLYDPNAZRCH-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- DHNCFAWJNPJGHS-UHFFFAOYSA-J [C+4].[O-]C([O-])=O.[O-]C([O-])=O Chemical compound [C+4].[O-]C([O-])=O.[O-]C([O-])=O DHNCFAWJNPJGHS-UHFFFAOYSA-J 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 235000012055 fruits and vegetables Nutrition 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- GDTSJMKGXGJFGQ-UHFFFAOYSA-N 3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B([O-])OB2OB([O-])OB1O2 GDTSJMKGXGJFGQ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- 229910017976 MgO 4 Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006112 glass ceramic composition Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 208000008918 voyeurism Diseases 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/59—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/22—Luminous paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/29—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for multicolour effects
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/59—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
- C09K11/592—Chalcogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Definitions
- the present invention relates to a phosphor that is excited by visible light and can emit near-infrared light.
- a near infrared spectroscopic measurement device using a near infrared light emitting element is rich in moisture such as living organisms and fruits and vegetables. Particularly suitable for evaluation of inclusions.
- OCT optical coherence tomographic apparatus
- silicon has the highest photoresponsiveness in the near infrared region, so if visible light can be converted into near infrared light, the power generation efficiency will be further improved. Can be increased.
- a phosphor capable of emitting near-infrared light it is possible to develop new fluorescent paints and printed fluorescent paints.
- ultraviolet fluorescent pigments have been mainly used for anti-counterfeit printing used for banknotes and the like. If this can be replaced with a near-infrared fluorescent pigment, it cannot be detected with the naked eye, but a new anti-counterfeit printing that can be detected with solid-state image sensors using photodiodes such as silicon and InGaAs, and equipment using photomultiplier tubes Is possible.
- near-infrared light-emitting phosphors that can be excited by visible light and emit near-infrared light can be used in various applications in the future.
- the near-infrared phosphor conventionally, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2008-185378), Yb 2 O 3 and Nd 2 O 3 are included as infrared glass phosphors used in the OCT apparatus, and Bi A near-infrared light-emitting phosphor containing glass composed of 2 O 3 and B 2 O 3 and excited by blue light is disclosed.
- Patent Document 2 Japanese Patent Publication No. 2004-526330 discloses a near-infrared emitter that is excited by near-infrared light using a glass-ceramic material doped with transition metal ions, and is proposed for use in an OCT apparatus. Has been.
- near-infrared phosphors For near-infrared phosphors, the development of near-infrared phosphors that are excited in a wide band of visible light to emit a broad fluorescence spectrum and can emit near-infrared light with high intensity is desired. It was rare.
- the present invention is to provide a new phosphor capable of emitting a broad fluorescence spectrum when excited by visible light in a wide band and emitting near-infrared light with high intensity.
- the present invention is an oxide containing Ca, Cu and Si, and the molar ratio of the elements is 0.15 ⁇ Ca / Si ⁇ 0.25, and 0.13 ⁇ Cu / Si ⁇ 0.
- a phosphor characterized by 25 is proposed.
- the present invention is an oxide having a crystal phase composed of CaCuSi 4 O 10 as a main crystal phase.
- XRD powder X-ray diffraction measurement
- a diffraction angle 2 ⁇ 26.
- the present invention is an oxide having a crystal phase composed of CaCuSi 4 O 10 as a main crystal phase.
- a characteristic phosphor is proposed.
- the present invention is an oxide having a crystal phase composed of CaCuSi 4 O 10 as a main crystal phase.
- a characteristic phosphor is proposed.
- the phosphor proposed by the present invention is excited by a wide band of visible light to emit a broad fluorescence spectrum and can emit near infrared light with high intensity. Therefore, as described above, the phosphor proposed by the present invention can be used as a phosphor constituting a light-emitting element mounted on a near-infrared spectrometer or an optical coherence tomography apparatus (OCT). It can also be suitably used as a wavelength conversion material constituting a light receiving element mounted on a photovoltaic device or the like. Moreover, the phosphor proposed by the present invention can be suitably used as a phosphor to be included in a paint used for a fluorescent paint print or a print that emits near infrared light.
- OCT optical coherence tomography apparatus
- Example 1 It is the figure which showed the excitation spectrum and fluorescence spectrum of the fluorescent substance (sample) obtained in Example 1 and Comparative Example 1.
- Comparative Example 1 the maximum value of excitation intensity and fluorescence intensity on the vertical axis is 1.
- the relative intensity value relative to Comparative Example 1 is indicated.
- 2 is a diagram showing an XRD pattern of a phosphor (sample) obtained in Example 1.
- FIG. It is the figure which showed the XRD pattern of the fluorescent substance (sample) obtained in Example 4.
- FIG. FIG. 4 is a diagram in which data of Examples 1 to 5 and Comparative Example 1 are plotted in coordinates composed of a horizontal axis: diffraction intensity ratio A / B and a vertical axis: relative light emission intensity.
- FIG. 5 is a diagram in which data of Examples 1 to 5 and Comparative Example 1 are plotted in coordinates composed of a horizontal axis: diffraction intensity ratio A / C and a vertical axis: relative light emission intensity.
- FIG. 5 is a diagram in which data of Examples 1 to 5 and Comparative Example 1 are plotted in coordinates composed of a horizontal axis: diffraction intensity ratio A / D and a vertical axis: relative light emission intensity.
- FIG. 5 is a diagram in which data of Examples 1 to 5 and Comparative Example 1 are plotted in coordinates composed of a horizontal axis; a diffraction intensity ratio A / E, and a vertical axis: relative light emission intensity.
- the phosphor according to an example of the present embodiment (referred to as “the present phosphor”) is an oxide containing Ca, Cu, and Si, and the molar ratio of the elements is 0.15 ⁇ Ca / Si ⁇ . It is preferable that 0.25 and 0.13 ⁇ Cu / Si ⁇ 0.25.
- the molar ratio of Ca to Si / Si in the phosphor is 0.15 or more, while ensuring the amount of Ca necessary for the formation of the phosphor having a large contribution to near infrared light emission, If excessive SiO 2 phase generation can be suppressed and Ca / Si is less than 0.25, the excess of subphases such as CaSiO 3 phase and Ca 2 SiO 4 phase that contribute little to near infrared light emission are small. It is preferable because generation can be suppressed.
- the Ca / Si of the present phosphor is preferably 0.15 or more and less than 0.25, more preferably 0.17 or more and 0.23 or less, especially 0.18. More preferably, it is 0.21 or less.
- the content molar ratio of Cu / Si in the phosphor that is, Cu to Si is 0.13 or more, a sufficient amount of Cu ions that contribute to near-infrared light emission are dissolved in the phosphor.
- Cu / Si is less than 0.25, it is preferable because generation of an impurity phase that inhibits near-infrared light emission such as a CuO phase or a Cu 2 O phase can be suppressed.
- the Cu / Si of the phosphor is preferably 0.13 or more and less than 0.25, more preferably 0.17 or more and 0.23 or less, especially 0.18. More preferably, it is 0.21 or less.
- the Ca / Si is preferably larger than the Cu / Si, that is, Ca / Si> Cu / Si. It is preferable that Ca / Si is larger than Cu / Si because generation of CuO phase and Cu 2 O phase, which are impurity phases that absorb visible light that is excitation light and also absorb emitted near-infrared light, can be suppressed. .
- the phosphor preferably has a crystal phase composed of a planar four-coordinate structure in which four O 2 ⁇ ions are bonded around one Cu 2+ ion, and in particular, the crystal phase composed of the planar four-coordinate structure is mainly used. What has as a crystal phase is preferable. If the phosphor has a crystal phase composed of the planar four-coordinate structure, particularly as the main crystal phase, it can absorb visible light strongly, and electrons excited by the absorption of visible light are in the ground state. When returning, energy is emitted as near infrared light, which is preferable.
- Crystal composed of the planar four-coordinate structure in the present phosphor is preferably a CaCuSi 4 O 10 comprising a crystal phase (referred to as "CaCuSi 4 O 10 crystal phase").
- CaCuSi 4 O 10 crystal phase a crystal phase
- whether or not it has a CaCuSi 4 O 10 crystal phase as a main crystal phase is determined by diffraction derived from the CaCuSi 4 O 10 crystal phase in an XRD pattern obtained by powder X-ray diffraction measurement (XRD) using CuK ⁇ rays. It can be judged by whether the maximum intensity of the peak is larger than the maximum intensity of the diffraction peak derived from any other crystal phase.
- the phosphor When the phosphor has a CaCuSi 4 O 10 crystal phase as a main crystal phase, it preferably has an SiO 2 crystal phase (referred to as “SiO 2 crystal phase”). Since the present phosphor has a SiO 2 crystal phase, it is possible to prevent scattering of excitation light and obtain a higher fluorescence spectrum intensity.
- a part of Ca or Cu in the CaCuSi 4 O 10 crystal phase may be substituted with another element as long as the effect of the present phosphor is not hindered, or a part of Ca or Cu May be missing.
- a part of the Ca or Cu may be substituted with one or two of Ba and Sr. This is because at present, neither the advantages nor the disadvantages of having these phases have been confirmed.
- a part of Cu in the CaCuSi 4 O 10 crystal phase may be substituted with one or two of Mg and Zn. This is because even if a part of Cu is substituted with one or two of Mg and Zn, it is considered that light emission of the local structure of Cu (CuO 4 ) is not inhibited. Furthermore, since MgO 4 or ZnO 4 is formed as a local structure in the crystal phase, self-absorption of light emission between adjacent CuO 4 is prevented, so that improvement in quantum efficiency can be expected.
- the present phosphors if it has a CaCuSi 4 O 10 crystal phase as a main crystal phase, may have the CaCuSi 4 O 10 crystal phase and SiO 2 crystal phase other than the crystalline phase. Moreover, you may have the component which cannot be detected by XRD.
- the phosphor preferably does not contain a rare earth element.
- the content is preferably less than 1% by mass.
- the phosphor may contain a component containing one or more elements selected from the group consisting of Li, Na, K, B, P, F, Cl, Br, and I.
- the content of these elements is preferably 0.005 to 3% by mass, more preferably 0.008% by mass or more and 2% by mass or less, and among these, 0.01% by mass or more or 1% by mass or less. Is particularly preferred. If the present phosphor contains these elements in appropriate amounts, it can be expected that the emission peak intensity can be increased as a result.
- the said element is added as a part of sintering auxiliary agent at the time of manufacturing this fluorescent substance, for the purpose of acceleration
- the present phosphor may contain a component containing an element other than the above. In that case, it can be considered that the content of the phosphor is not affected if the content is less than 5% by mass, particularly less than 3% by mass, and less than 1% by mass.
- the ratio (A / B) of the diffraction intensity A of the diffraction peak is preferably 1.70 or more. If the CaCuSi 4 O 10 crystal phase is included within this range, the fluorescence spectrum intensity can be increased. From this viewpoint, the diffraction intensity ratio A / B is preferably 1.70 or more, more preferably 1.90 or more, and more preferably 2.00 or more. The upper limit of the diffraction intensity ratio A / B is empirically preferably about 4.50, and more preferably 4.00. To adjust the diffraction intensity ratio A / B, adjust the firing temperature and time, the amount of flux added to an appropriate range, or adjust the molar ratio of Ca / Si or Cu / Si to an appropriate range. Just do it. However, it is not limited to these methods.
- the maximum peak appearing at a diffraction angle 2 ⁇ 27 to 27.5 ° in the XRD pattern obtained by measurement with a powder X-ray diffraction measurement apparatus (XRD) using CuK ⁇ rays, that is, CaCuSi 4 O
- the maximum peak appearing at a diffraction angle 2 ⁇ 23 to 24 ° with respect to the diffraction intensity C of the diffraction peak derived from the crystal plane ([202] plane) of the 10 crystal lattice, that is, the crystal plane ([004] plane of the CaCuSi 4 O 10 crystal lattice
- the ratio (A / C) of the diffraction intensity A of the diffraction peak derived from) is 3.50 or more.
- the fluorescence spectrum intensity can be increased.
- the diffraction intensity ratio A / C is preferably 3.50 or more, more preferably 4.50 or more, and even more preferably 6.00 or more.
- the upper limit of the diffraction intensity ratio A / C is empirically preferably about 20.00, and more preferably 16.00.
- the firing temperature and time, the amount of flux added, etc. are adjusted to an appropriate range, or the molar ratio of Ca / Si or Cu / Si is adjusted to an appropriate range. Just do it. However, it is not limited to these methods.
- the maximum peak appearing at 2 ⁇ 27.5 to 28.5 ° in the XRD pattern obtained by measurement with a powder X-ray diffractometer (XRD) using CuK ⁇ rays, that is, CaCuSi 4
- the maximum peak appearing at 2 ⁇ 23 to 24 ° with respect to the diffraction intensity D of the diffraction peak derived from the crystal plane of the O 10 crystal lattice ([211] plane), that is, the crystal plane of the CaCuSi 4 O 10 crystal lattice ([004] plane)
- the ratio (A / D) of the diffraction intensity A of the diffraction peak derived from is 9.00 or more.
- the fluorescence spectrum intensity can be increased.
- the diffraction intensity ratio A / D is preferably 9.00 or more, more preferably 12.00 or more, and more preferably 15.00 or more.
- the upper limit of the diffraction intensity ratio A / D is empirically preferably about 50.00, more preferably 36.00.
- the firing temperature and time, the amount of flux added, etc. are adjusted to an appropriate range, or the molar ratio of Ca / Si or Cu / Si is adjusted to an appropriate range. Just do it. However, it is not limited to these methods.
- the ratio (A / E) of the diffraction intensity A of the diffraction peak is 5.00 or more.
- the fluorescence spectrum intensity can be increased.
- the diffraction intensity ratio A / E is preferably 5.00 or more, more preferably 6.00 or more, and particularly preferably 6.50 or more.
- the upper limit of the diffraction intensity ratio A / E is empirically preferably about 20.00, and more preferably 13.00.
- To adjust the diffraction intensity ratio A / E adjust the firing temperature and time, the amount of flux added, etc. to an appropriate range, or adjust the molar ratio of Ca / Si or Cu / Si to an appropriate range. Just do it. However, it is not limited to these methods.
- the present phosphor is not limited to its form such as a thin film, plate or particle. However, it is preferably in the form of particles from the viewpoint of processability to a light emitting element mounting apparatus or a printed material to be used.
- This phosphor can be manufactured by the following manufacturing method.
- the manufacturing method of this fluorescent substance is not limited to the manufacturing method demonstrated below.
- the present phosphor can be obtained by mixing a Ca raw material, a Cu raw material, and a Si raw material, adding a flux such as a sintering aid as necessary, and firing the mixture.
- examples of the Ca raw material include Ca oxide, carbonate, nitrate, and acetate.
- examples of the Cu raw material include Cu oxides, carbonates, sulfates and metals.
- examples of the Si raw material include Si oxides, carbides, nitrides, and silicon. In addition, it is preferable not to add a reducing agent from a viewpoint of keeping the oxidation number of Cu bivalent.
- the mixing ratio (molar ratio) of the Ca raw material and the Si raw material is preferably 1: 3 to 1: 7, particularly 1: 4 to 1: 6, and more preferably 1: 4.5 to 1: 5.5. Is particularly preferred. Further, the blending ratio (molar ratio) of the Cu raw material and the Si raw material is preferably 1: 3 to 1: 7, more preferably 1: 4 to 1: 6, and most preferably 1: 4.5 to 1: 5. Is particularly preferred.
- a flux such as a sintering aid
- a chemical reaction can be promoted and unreacted substances can be reduced.
- the flux include a flux containing one or more elements selected from the group consisting of Li, Na, K, B, P, F, Cl, Br, and I. Of these, Li, Na, K, B, F, Cl and the like are particularly preferable.
- the blending amount (mass ratio) of the flux is preferably 0.01 to 15% with respect to the total weight of the Ca raw material, the Cu raw material and the Si raw material, and particularly 0.5% or more or 10% or less. In particular, it is more preferably 2% or more or 7% or less.
- the firing atmosphere is not a reducing atmosphere
- an appropriate atmosphere can be adopted.
- an inert gas atmosphere, an air atmosphere, an oxidizing atmosphere, or the like can be employed.
- the firing temperature is preferably 700 to 1100 ° C. This is because if the temperature is 700 ° C. or higher, the reaction easily proceeds, whereas if it is 1100 ° C. or lower, melting is easily suppressed.
- the firing temperature is more preferably 950 ° C. or higher. This is because if the temperature is 950 ° C. or higher, the Ca / Si molar ratio after firing is likely to be larger than the Cu / Si molar ratio.
- the first baking can be performed in a temperature range of 700 to 900 ° C.
- the second baking can be performed in a temperature range of 800 to 1100 ° C. after pulverizing the obtained baking powder.
- the second baking temperature is preferably higher than the first baking temperature.
- the baking powder can be washed with an acidic solution such as water or hydrochloric acid, and then the second baking can be performed.
- an acidic solution such as water or hydrochloric acid
- this phosphor is characterized by being excited by visible light in a wavelength range (450 to 750 nm) having a strong energy.
- a wavelength range 450 to 750 nm
- excitation with visible light of 500 to 700 nm, particularly visible light of 580 to 660 nm is preferable.
- the phosphor preferably has a high excitation intensity in the above-mentioned wavelength range, particularly in the entire wavelength range.
- the present phosphor has a peak wavelength in the infrared region of 800 to 1200 nm. In the infrared region of 850 to 980 nm, stronger emission intensity is obtained, and in the infrared region of 880 to 950 nm, stronger emission intensity is obtained. In a preferred embodiment, the present phosphor also has a feature that the half width of the fluorescence spectrum exceeds 100 nm (125 nm in FIG. 1). Thus, the present phosphor is excited by a wide band of visible light and emits a broad fluorescence spectrum, and can emit near-infrared light with high intensity.
- the present phosphor Since the present phosphor is excited by visible light and can emit near infrared light, it can be used for a near infrared light emitting element. For example, when this phosphor is combined with a red LED having an emission peak at 630 nm, a near-infrared LED light source with excellent energy efficiency can be provided. Further, it can be used in combination with a general-purpose white LED, blue LED, green LED or the like. In addition, this phosphor is mounted with a light receiving element such as a solar power generation device as a phosphor constituting a light emitting element mounted on a light emitting element mounting apparatus such as a near-infrared spectrometer or an optical coherence tomography apparatus (OCT).
- a light receiving element such as a solar power generation device as a phosphor constituting a light emitting element mounted on a light emitting element mounting apparatus such as a near-infrared spectrometer or an optical coherence tomography apparatus (OC
- OCT optical coherence tomography
- this phosphor when used, for example, it is mixed with an organic resin or an inorganic filler such as glass particles (for example, silica particles) or a metal oxide, together with a solvent or a dispersing agent, if necessary, as a liquid composition. After coating and molding, it can be solidified through drying or / and curing, and used as a phosphor composition layer or a phosphor composition filling.
- an organic resin or an inorganic filler such as glass particles (for example, silica particles) or a metal oxide
- this near-infrared light emitting element a near-infrared light emitting element including this phosphor
- the phosphor is mounted as a wavelength conversion material for a near infrared light source.
- the light receiving element containing this fluorescent substance is used for a solar power generation device, since the visible light component of sunlight can be converted into near-infrared light, power generation efficiency can be further improved.
- the phosphor can be mounted as a wavelength conversion material on the light receiving side.
- light receiving elements using silicon photodiodes are known to have high spectral sensitivity in the wavelength range of 800 to 1000 nm of near infrared light, and in the peak wavelength range of near infrared emission of this phosphor. It is excellent in matching with certain 900 to 950 nm and is suitable as a wavelength conversion material.
- this phosphor emits near-infrared light even when an electron beam or X-ray is used as an excitation source, for example, if X-rays are used as an excitation source, an X-ray diagnostic apparatus for medical or security use as a scintillation material Application to such is also possible.
- Fluorescent paint can also be produced using this phosphor.
- a visible light lamp irradiating a visible light lamp and detecting near-infrared light.
- the near-infrared emission spectrum has a very rare broad shape, it can be clearly differentiated from existing anti-counterfeit inks, and authenticity can be determined with very high accuracy.
- printed fluorescent paint used for anti-counterfeit printing used for banknotes, etc. can be produced and cannot be detected with the naked eye, but a solid-state imaging device or photomultiplier tube using a photodiode such as silicon or InGaAs is used.
- New anti-counterfeiting printing that can be detected with existing equipment.
- near-infrared fluorescent pigment in the paper and base material of documents and posters containing confidential information, it can be used for anti-copying printing and anti-voyeurism printing.
- a fluorescent pigment when photographing with a digital camera or a copying machine, a fluorescent pigment is excited by visible light such as illumination light or flash light, and near infrared light is emitted, and this is used as a solid-state image sensor using a photodiode such as silicon. When detected, this near-infrared light is reflected together with the object to be photographed, so that photographing can be hindered.
- These fluorescent paints may be prepared as inks or pastes by mixing a transparent resin component as a matrix with a flow control material of an inorganic component or an organic component, an organic solvent or the like in addition to the phosphor.
- the resin component include an epoxy resin, a phenol resin, a silicon resin, an acrylic resin, and a polyolefin resin.
- glass particles that are light scattering components may be mixed as necessary.
- XRD measurement> The phosphors (samples) obtained in the examples and comparative examples were used as samples for powder X-ray diffraction measurement (XRD), this sample was mounted on a holder, and MXP18 (Bruker AXS Co., Ltd.) was used.
- the XRD pattern was obtained by measuring the angle and intensity of the diffraction line under the following conditions.
- Example 1 Ca carbonate, basic carbonate carbonate and Si dioxide are mixed so that the molar ratio is 0.80: 0.80: 4.0, and Na carbonate is added as flux in an amount of 5% by mass with respect to the mixture. Added and mixed. This mixture was placed in an alumina crucible and calcined in the air at 850 ° C. for 12 hours. After calcination, the mixture was crushed in a mortar and then fired in the air at 1000 ° C. for 3 hours to obtain a phosphor (sample). .
- the XRD pattern of the obtained phosphor (sample) is shown in FIG.
- the obtained phosphor (sample) has a crystal phase of CaCuSi 4 O 10 having a planar four-coordinate structure in which four O 2 ⁇ ions are bonded around one Cu 2+ ion as a main crystal phase, and other crystals. It was a compound having a SiO 2 phase as a phase. The amount of Na contained in this compound was 1.7% by mass.
- ICP inductively coupled plasma emission spectroscopy
- Example 2 Ca carbonate, basic carbonate carbonate and Si dioxide are mixed at a molar ratio of 0.85: 0.80: 4.0, and Na tetraborate as a flux is 5% by mass with respect to the mixture. Add and mix. This mixture was placed in an alumina crucible and calcined in the air at 850 ° C. for 16 hours. After calcination, the mixture was crushed in a mortar and then calcined in an oxygen atmosphere at 1000 ° C. for 3 hours to obtain a phosphor (sample). .
- the obtained phosphor was a compound having the CaCuSi 4 O 10 crystal phase as the main crystal phase and the SiO 2 phase as the other crystal phase.
- the amount of Na contained in this compound was 1.5% by mass.
- Example 3 Carbon carbonate, Cu (II) oxide and Si dioxide are mixed so that the molar ratio is 0.75: 0.75: 4.0, and Na chloride as a flux is 5% by mass with respect to the mixture. And mixed.
- This mixture was put in an alumina crucible and calcined in the atmosphere at 850 ° C. for 8 hours. After calcination, the mixture was crushed in a mortar and then baked in the atmosphere at 1000 ° C. for 3 hours to obtain a phosphor (sample). .
- the obtained phosphor was a compound having the CaCuSi 4 O 10 crystal phase as the main crystal phase and the SiO 2 phase as the other crystal phase.
- the amount of Na contained in this compound was 1.6% by mass.
- Example 4 Carbon carbonate, Cu (II) oxide and Si dioxide are mixed in a molar ratio of 0.95: 0.80: 4.0, and Na chloride as a flux is 5% by mass with respect to the mixture. And mixed. This mixture was placed in an alumina crucible and baked at 1000 ° C. for 12 hours in the air to obtain a phosphor (sample).
- the XRD pattern of the obtained phosphor (sample) is shown in FIG.
- the obtained phosphor (sample) was a compound having the CaCuSi 4 O 10 crystal phase as the main crystal phase and the SiO 2 phase as the other crystal phase.
- the amount of Na contained in this compound was 1.6% by mass.
- Example 5 Ca carbonate, basic carbonate carbonate and Si dioxide are mixed at a molar ratio of 1.0: 1.0: 4.0, and sodium tetraborate as a flux is 5% by mass with respect to the mixture. Add and mix. This mixture was placed in an alumina crucible and calcined at 850 ° C. for 4 hours in the air. After calcination, the mixture was stirred and washed in a 0.1 mol / L dilute hydrochloric acid aqueous solution for 2 hours, filtered and dried, then placed in an alumina crucible and baked in air at 1000 ° C. for 3 hours to obtain a phosphor (sample).
- the obtained phosphor was a compound having the CaCuSi 4 O 10 crystal phase as the main crystal phase and the SiO 2 phase as the other crystal phase.
- the amount of Na contained in this compound was 0.05% by mass.
- the obtained phosphor was a single-phase compound composed of a crystal phase of CaCuSi 4 O 10 .
- the amount of Na contained in this compound was 1.0% by mass.
- FIG. 1 is a diagram showing an excitation spectrum and a fluorescence spectrum of the phosphors (samples) obtained in Example 1 and Comparative Example 1.
- the vertical axis indicates the maximum excitation intensity and fluorescence intensity.
- the relative intensity value when the value is 1 is shown, and in the case of Example 1, the relative intensity value with respect to Comparative Example 1 is shown.
- all of the phosphors (samples) obtained in Examples 1 to 5 are characterized by being excited by visible light of at least 450 to 750 nm and emitting near-red light of at least 800 to 1200 nm.
- Table 1 it was confirmed that the relative light emission intensity was higher than that of Comparative Example 1. That is, it is confirmed that all of the phosphors obtained in Examples 1 to 5 are excited by a broad band of visible light to emit a broad fluorescence spectrum and can emit near infrared light with high intensity. It was done.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Luminescent Compositions (AREA)
- Paints Or Removers (AREA)
- Led Device Packages (AREA)
Abstract
Description
また、光干渉断層画像装置(OCT)は、近赤外光を用いるために、一般的なX線断層撮影よりも生体損傷性が低いばかりか、断層撮影画像の空間分解能に優れている。
また、シリコンを用いた太陽電池や太陽光発電装置において、シリコンは近赤外領域の光応答性が最も高いため、仮に可視光を近赤外光に変換することができれば、発電効率をより一層高めることができる。
近赤外蛍光体に関しては、従来、例えば特許文献1(特開2008-185378号公報)において、OCT装置に用いる赤外ガラス蛍光体として、Yb2O3及びNd2O3を含み、さらにBi2O3及びB2O3からなるガラスを含有し、青色光で励起する近赤外発光蛍光体が開示されている。
また、特許文献2(特表2004-526330号公報)には、遷移金属イオンをドープしたガラス-セラミック材料で近赤外光励起される近赤外発光体が開示され、OCT装置への利用が提案されている。
また、現在普及している近赤外LEDをみても、同様に発光強度は高いものの、励起スペクトル及びスペクトルがシャープであるために、異なる波長のLEDを複数組み合わせないと、近赤外領域をカバーすることが十分にできないという課題を抱えていた。
このように、近赤外蛍光体については、可視光での幅広い帯域で励起されてブロードな蛍光スペクトルを発光すると共に、近赤外光を高強度で発光できる近赤外蛍光体の開発が望まれていた。
また、本発明は、CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=26~27゜に現れる最大ピークの回折強度Bに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/B)が1.70以上であることを特徴とする蛍光体を提案する。
さらにまた、CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=27~27.5゜に現れる最大ピークの回折強度Cに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/C)が3.50以上であることを特徴とする蛍光体を提案する。
さらにまた、本発明は、CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=27.5~28.5゜に現れる最大ピークの回折強度Dに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/D)が9.00以上であることを特徴とする蛍光体を提案する。
さらにまた、本発明は、CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=39.5~40.5゜に現れる最大ピークの回折強度Eに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/E)が5.00以上であることを特徴とする蛍光体を提案する。
本実施形態の一例に係る蛍光体(「本蛍光体」と称する)は、Ca、Cu及びSiを含有する酸化物であり、且つ、前記元素の含有モル比が0.15≦Ca/Si<0.25、及び、0.13≦Cu/Si<0.25であるのが好ましい。
かかる観点から、本蛍光体のCa/Siは、0.15以上0.25未満であるのが好ましく、中でも0.17以上或いは0.23以下であるのがより好ましく、その中でも特に0.18以上或いは0.21以下であるのがさらに好ましい。
かかる観点から、本蛍光体のCu/Siは、0.13以上0.25未満であるのが好ましく、中でも0.17以上或いは0.23以下であるのがより好ましく、その中でも特に0.18以上或いは0.21以下であるのがさらに好ましい。
本蛍光体が当該平面4配位構造からなる結晶相を有する、特に主結晶相として有すれば、可視光を強く吸収することができ、また可視光の吸収によって励起された電子が基底状態に戻る際に近赤外光としてエネルギーを放射するようになるため、好ましい。
この際、CaCuSi4O10結晶相を主結晶相として有するか否かは、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、CaCuSi4O10結晶相に由来する回折ピークの最大強度が、他のいずれの結晶相に由来する回折ピークの最大強度よりも大きいか否かで判断することができる。
本蛍光体がSiO2の結晶相を有することで、励起光の散乱を防ぎ、より一層高い蛍光スペクトル強度を得ることができる。
Cuの一部がMg及びZnのうちの1種又は2種で置換されていても、Cuの局所構造(CuO4)の発光を阻害しないと考えられるからである。さらに、結晶相内に局所構造としてMgO4やZnO4が形成されることで、隣接するCuO4同士による発光の自己吸収を防ぐため、量子効率の改善が期待できる。
本蛍光体は、Li、Na、K、B、P、F、Cl、Br及びIからなる群から選ばれる一種又は二種以上の元素を含有する成分を含んでいてもよい。この際、これらの元素の含有量は、0.005~3質量%であるのが好ましく、中でも0.008質量%以上或いは2質量%以下、その中でも0.01質量%以上或いは1質量%以下であるのが特に好ましい。
本蛍光体がこれらの元素を適量に含むと、結果的に発光ピーク強度を高めることができることを期待することができる。
なお、上記元素は、例えば本蛍光体を製造する際の焼結助剤の一部として、反応促進や焼結の促進又は抑制を目的として添加されて、本蛍光体に含有される場合を想定することができる。
本蛍光体においては、CuKα線を用いた粉末X線回折測定装置(XRD)で測定して得られるXRDパターンにおいて、回折角2θ=26~27゜に現れる最大ピークすなわちCaCuSi4O10結晶格子の結晶面([104]面)に由来する回折ピークの回折強度Bに対する、回折角2θ=23~24゜に現れる最大ピークすなわちCaCuSi4O10結晶格子の結晶面([004]面)に由来する回折ピークの回折強度Aの比率(A/B)が1.70以上であるのが好ましい。
かかる範囲でCaCuSi4O10結晶相を含んでいれば、蛍光スペクトル強度を高めることができる。
かかる観点から、上記回折強度比率A/Bは、1.70以上であるのが好ましく、中でも1.90以上、その中でも2.00以上であるのがさらに好ましい。上記回折強度比率A/Bの上限は、経験的には4.50程度が好ましく、中でも4.00であるのが好ましい。
回折強度比率A/Bを調整するには、焼成時の温度と時間、フラックスの添加量などを適当な範囲に調整したり、Ca/SiやCu/Siのモル比を適当な範囲に調整したりすればよい。但し、これらの方法に限定されるものではない。
かかる範囲のCaCuSi4O10結晶相を含んでいれば、蛍光スペクトル強度を高めることができる。
かかる観点から、上記回折強度比率A/Cは3.50以上であるのが好ましく、中でも4.50以上、その中でも6.00以上であるのがさらに好ましい。上記回折強度比率A/Cの上限は、経験的には20.00程度が好ましく、中でも16.00であるのが好ましい。
回折強度比率A/Cを調整するには、焼成時の温度と時間、フラックスの添加量などを適当な範囲に調整したり、Ca/SiやCu/Siのモル比を適当な範囲に調整したりすればよい。但し、これらの方法に限定されるものではない。
かかる範囲のCaCuSi4O10結晶相を含んでいれば、蛍光スペクトル強度を高めることができる。
かかる観点から、上記回折強度比率A/Dは、9.00以上であるのが好ましく、中でも12.00以上、その中でも15.00以上であるのがさらに好ましい。上記回折強度比率A/Dの上限は、経験的には50.00程度が好ましく、中でも36.00であるのが好ましい。
回折強度比率A/Dを調整するには、焼成時の温度と時間、フラックスの添加量などを適当な範囲に調整したり、Ca/SiやCu/Siのモル比を適当な範囲に調整したりすればよい。但し、これらの方法に限定されるものではない。
かかる範囲のCaCuSi4O10結晶相を含んでいれば、蛍光スペクトル強度を高めることができる。
かかる観点から、上記回折強度比率A/Eは、5.00以上であるのが好ましく、中でも6.00以上、その中でも6.50以上であるのがさらに好ましい。上記回折強度比率A/Eの上限は、経験的には20.00程度が好ましく、中でも13.00であるのが好ましい。
回折強度比率A/Eを調整するには、焼成時の温度と時間、フラックスの添加量などを適当な範囲に調整したり、Ca/SiやCu/Siのモル比を適当な範囲に調整したりすればよい。但し、これらの方法に限定されるものではない。
本蛍光体は、薄膜状、板状、粒子状、などその態様には制限されない。ただし、用いられる発光素子搭載装置や印刷物などへの加工性の点から粒子状であることが好ましい。
本蛍光体は、次の製造方法によって製造することができる。但し、本蛍光体の製造方法が、次に説明する製造方法に限定されるものではない。
Cu原料としては、Cuの酸化物、炭酸塩、硫酸塩、金属などを挙げることができる。
Si原料としては、Siの酸化物、炭化物、窒化物、ケイ素などを挙げることができる。
なお、還元剤は、Cuの酸化数を2価に保つ観点から添加しない方が好ましい。
また、Cu原料とSi原料との配合割合(モル比)は、1:3~1:7であるのが好ましく、中でも1:4~1:6、その中でも1:4.5~1:5.5であるのが特に好ましい。
CaCuSi2O6で示される結晶相を主結晶相とする場合に比べて、Si原料の配合比率が多い点が、本蛍光体の製造方法の特徴の一つである。但し、後述する実施例5のように、後工程で酸洗浄が入る場合など、Si原料の配合比を量論比(Ca:Si=1:4)より少なくしてもよい場合もある。
フラックスとしては、例えばLi、Na、K、B、P、F、Cl、Br及びIからなる群から選ばれる一種又は二種以上の元素を含むフラックスを挙げることができる。中でも、Li、Na、K、B、F、Clなどは特に好ましい。
フラックスの配合量(質量割合)は、Ca原料とCu原料とSi原料を混合した総重量に対して0.01~15%であるのが好ましく、特に0.5%以上或いは10%以下、その中でも特に2%以上或いは7%以下であるのがより一層好ましい。
焼成温度は700~1100℃とすることが好ましい。700℃以上であれば反応が進みやすい一方、1100℃以下であれば融解を抑制しやすいからである。また焼成温度は950℃以上とすることがさらに好ましい。950℃以上であれば、焼成後のCa/Siのモル比を、Cu/Siのモル比より大きくしやすいからである。
さらに、1回目の焼成後に水や塩酸などの酸性溶液で焼成粉を洗浄した後に、2回目の焼成を行うこともできる。こうすることで、各焼成段階により適した焼結助剤の配合量に調整することができ、最終製品である本蛍光体に含有するLi、Na、K、B、P、F、Cl、Br及びIの元素量もより最適な範囲に制御しやすくなる。
本蛍光体の好ましい実施態様においては、エネルギーの強い波長域(450~750nm)の可視光で励起されることが特徴である。より効率的な発光のためには500~700nmの可視光、特に580~660nmの可視光で励起させることが好ましい。本蛍光体は、上記波長域、特に波長域全域において励起強度が大きいことが好ましい。
本蛍光体は好ましい実施形態において、蛍光スペクトルの半値幅が100nmを超える(図1においては125nm)という特徴も有している。
このように、本蛍光体は、幅広い帯域の可視光によって励起されてブロードな蛍光スペクトルを発光すると共に、近赤外光を高強度で発光することができる
本蛍光体は、可視光によって励起され、近赤外光を発光することができるから、近赤外発光素子に用いることができる。
例えば本蛍光体を、630nmに発光ピークを有する赤色LEDと組み合わせれば、エネルギー効率の優れた近赤外LED光源を提供できる。また、汎用の白色LEDや青色LED、緑色LED等と組み合わせて利用することもできる。
また、本蛍光体は、近赤外分光測定装置、光干渉断層画像装置(OCT)などの発光素子搭載装置に搭載される発光素子を構成する蛍光体として、太陽光発電装置などの受光素子搭載装置に搭載される受光素子を構成する波長変換材料として好適に用いることができる。この際、近赤外光源を小型化して内視鏡と組み合わせることができれば、眼や口腔など限定的であった光干渉断層画像(OCT)法の診断対象がより広がる可能性がある。
分光測定装置においては、本蛍光体は近赤外光源の波長変換材料として搭載される。
太陽光分光測定装置においては、本蛍光体を受光側の波長変換材料として搭載することができる。特に、シリコン製フォトダイオードを用いた受光素子は、近赤外光の800~1000nmの波長域で高い分光感度を持つことが知られており、本蛍光体の近赤外発光のピーク波長域である900~950nmとのマッチング性に優れ波長変換材料として好適である。
本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
実施例及び比較例で得られた蛍光体(サンプル)を粉末X線回折測定(XRD)用のサンプルとし、このサンプルをホルダーに装着し、MXP18(ブルカー・エイエックスエス(株)社製)を使用し、下記条件で回折線の角度と強度を測定し、XRDパターンを得た。
(管電圧)40kV
(管電流)150mA
(サンプリング間隔)0.02°
(スキャンスピード)4.0°/min
(開始角度)5.02°
(終了角度)80°
実施例及び比較例で得られた蛍光体(サンプル)を発光特性測定用のサンプルとし、分光蛍光光度計(日本分光(株)社製 FP-8700)を用いて、励起側と蛍光側のバンド幅はともに10nm、走査速度1000nm/minの条件で、励起スペクトル及び蛍光スペクトルを測定した。蛍光スペクトルの励起波長は625nmとし、励起スペクトルのモニター波長は各サンプルの蛍光スペクトルの極大発光波長(ピーク波長)とした。
そして、表1に示すように、比較例1のサンプルの蛍光スペクトルのピーク強度を1.0として、各サンプルの蛍光スペクトルのピーク強度を相対発光強度として示した。
炭酸Ca、塩基性炭酸Cu及び二酸化Siを、モル比で0.80:0.80:4.0となるように混合し、更にフラックスとして炭酸Naを前記混合物に対し5質量%となる量を加えて混合した。この混合物をアルミナ坩堝に入れて大気中で、850℃×12時間仮焼し、仮焼後に乳鉢で解砕した後、大気中で1000℃×3時間焼成して蛍光体(サンプル)を得た。
得られた蛍光体(サンプル)は、1つのCu2+イオンの周りに4つのO2-イオンが結合した平面4配位構造からなるCaCuSi4O10の結晶相を主結晶相とし、その他の結晶相としてSiO2相を有する化合物であった。
この化合物中に含まれるNa量は1.7質量%であった。Na量の測定には、誘導結合プラズマ発光分光分析法(以下、ICPと称する)を用いた(後述する実施例でも同様)。
炭酸Ca、塩基性炭酸Cu及び二酸化Siを、モル比で0.85:0.80:4.0となるように混合し、更にフラックスとして四ホウ酸Naを前記混合物に対し5質量%となる量を加えて混合した。この混合物をアルミナ坩堝に入れて大気中で、850℃×16時間仮焼し、仮焼後に乳鉢で解砕した後、酸素雰囲気で1000℃×3時間焼成して蛍光体(サンプル)を得た。
この化合物中に含まれるNa量は1.5質量%であった。
炭酸Ca、酸化Cu(II)及び二酸化Siを、モル比で0.75:0.75:4.0となるように混合し、更にフラックスとして塩化Naを前記混合物に対し5質量%となる量を加えて混合した。この混合物をアルミナ坩堝に入れて大気中で、850℃×8時間仮焼し、仮焼後に乳鉢で解砕した後、大気中で1000℃×3時間焼成して蛍光体(サンプル)を得た。
この化合物中に含まれるNa量は1.6質量%であった。
炭酸Ca、酸化Cu(II)、二酸化Siを、モル比で0.95:0.80:4.0となるように混合し、更にフラックスとして塩化Naを前記混合物に対し5質量%となる量を加えて混合した。この混合物をアルミナ坩堝に入れて大気中で、1000℃×12時間焼成して蛍光体(サンプル)を得た。
得られた蛍光体(サンプル)は、前記CaCuSi4O10の結晶相を主結晶相とし、その他の結晶相としてSiO2相を有する化合物であった。
この化合物中に含まれるNa量は1.6質量%であった。
炭酸Ca、塩基性炭酸Cu及び二酸化Siを、モル比で1.0:1.0:4.0となるように混合し、更にフラックスとして四ホウ酸Naを前記混合物に対し5質量%となる量を加えて混合した。
この混合物をアルミナ坩堝に入れて大気中で、850℃×4時間仮焼した。仮焼後に0.1mol/Lの希塩酸水溶液中で2時間撹拌洗浄し、ろ過乾燥した後に、アルミナ坩堝に入れて大気中で、1000℃×3時間焼成して蛍光体(サンプル)を得た。
この化合物中に含まれるNa量は0.05質量%であった。
炭酸Ca、塩基性炭酸Cu及び二酸化Siを、モル比で1.0:1.0:4.0となるように混合し、アルミナ坩堝に入れて大気中で、850℃×16時間焼成して蛍光体(サンプル)を得た。
この化合物中に含まれるNa量は1.0質量%であった。
図1は、実施例1及び比較例1で得られた蛍光体(サンプル)の励起スペクトルと蛍光スペクトルを示した図であり、比較例1の場合は、縦軸の励起強度と蛍光強度の最大値を1とした場合の相対強度値で示し、実施例1の場合は、比較例1に対する相対強度値で示したものである。
このように、実施例1~5で得られた蛍光体(サンプル)はいずれも、少なくとも450~750nmの可視光で励起され、且つ、少なくとも800~1200nmの近赤光を放射する特徴を有しており、表1で示すように、比較例1に比べて、相対発光強度が大きいことが確認された。すなわち、実施例1~5で得られた蛍光体はいずれも、幅広い帯域の可視光によって励起されてブロードな蛍光スペクトルを発光すると共に、近赤外光を高強度で発光することができることが確認された。
Claims (19)
- Ca、Cu及びSiを含有する酸化物であり、且つ、前記元素の含有モル比が0.15≦Ca/Si<0.25、及び、0.13≦Cu/Si<0.25であることを特徴とする蛍光体。
- 少なくとも450~750nmの可視光で励起され、且つ、少なくとも800~1200nmの近赤光を放射することを特徴とする請求項1に記載の蛍光体。
- 1つのCu2+イオンの周りに4つのO2-イオンが結合した平面4配位構造からなる結晶相を有する請求項1又は2に記載の蛍光体。
- 前記結晶相はCaCuSi4O10からなる結晶相であるとともに、当該結晶相が主結晶相であることを特徴とする請求項3に記載の蛍光体。
- SiO2からなる結晶相を有することを特徴とする請求項4に記載の蛍光体。
- 希土類元素を含まないことを特徴とする請求項1~5の何れかに記載の蛍光体。
- 前記Ca/Siは、前記Cu/Siより大きいことを特徴とする請求項1~6の何れかに記載の蛍光体。
- CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=26~27゜に現れる最大ピークの回折強度Bに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/B)が1.70以上であることを特徴とする請求項1~7の何れかに記載の蛍光体。
- CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=27~27.5゜に現れる最大ピークの回折強度Cに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/C)が3.50以上であることを特徴とする請求項1~8の何れかに記載の蛍光体。
- CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=27.5~28.5゜に現れる最大ピークの回折強度Dに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/D)が9.00以上であることを特徴とする請求項1~9の何れかに記載の蛍光体。
- CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=39.5~40.5゜に現れる最大ピークの回折強度Eに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/E)が5.00以上であることを特徴とする請求項1~10の何れかに記載の蛍光体。
- CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、
CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=26~27゜に現れる最大ピークの回折強度Bに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/B)が1.70以上であることを特徴とする蛍光体。 - CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、
CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=27~27.5゜に現れる最大ピークの回折強度Cに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/C)が3.50以上であることを特徴とする蛍光体。 - CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、
CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=27.5~28.5゜に現れる最大ピークの回折強度Dに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/D)が9.00以上であることを特徴とする蛍光体。 - CaCuSi4O10からなる結晶相を主結晶相として有する酸化物であり、
CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、回折角2θ=39.5~40.5゜に現れる最大ピークの回折強度Eに対する、回折角2θ=23~24゜に現れる最大ピークの回折強度Aの比率(A/E)が5.00以上であることを特徴とする蛍光体。 - 請求項1~15の何れかに記載の蛍光体を備えた近赤外発光素子。
- 請求項16に記載の近赤外発光素子を備えた装置。
- 請求項1~15の何れかに記載の蛍光体を含有する蛍光塗料。
- 請求項18に記載の蛍光塗料を用いた蛍光体印刷物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17766182.4A EP3431569B1 (en) | 2016-03-14 | 2017-02-14 | Fluorescent substance |
JP2018505354A JP6589048B2 (ja) | 2016-03-14 | 2017-02-14 | 蛍光体 |
US16/084,744 US11292964B2 (en) | 2016-03-14 | 2017-02-14 | Phosphor |
CN201780010951.9A CN108603111B (zh) | 2016-03-14 | 2017-02-14 | 荧光体 |
KR1020187022004A KR102100213B1 (ko) | 2016-03-14 | 2017-02-14 | 형광체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-049313 | 2016-03-14 | ||
JP2016049313 | 2016-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159175A1 true WO2017159175A1 (ja) | 2017-09-21 |
Family
ID=59851878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/005249 WO2017159175A1 (ja) | 2016-03-14 | 2017-02-14 | 蛍光体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11292964B2 (ja) |
EP (1) | EP3431569B1 (ja) |
JP (1) | JP6589048B2 (ja) |
KR (1) | KR102100213B1 (ja) |
CN (1) | CN108603111B (ja) |
TW (1) | TWI712673B (ja) |
WO (1) | WO2017159175A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019240150A1 (ja) * | 2018-06-12 | 2019-12-19 | 国立研究開発法人産業技術総合研究所 | 発光装置 |
WO2020043709A1 (de) * | 2018-08-29 | 2020-03-05 | Osa Opto Light Gmbh | Breitband-emitter für elektromagnetische strahlung |
JP2020188044A (ja) * | 2019-05-10 | 2020-11-19 | 国立研究開発法人物質・材料研究機構 | 発光装置 |
KR20210040842A (ko) * | 2019-08-22 | 2021-04-14 | 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 | 광학장치 |
JP2021136293A (ja) * | 2020-02-26 | 2021-09-13 | サンケン電気株式会社 | 発光装置 |
JP2022501799A (ja) * | 2019-08-22 | 2022-01-06 | 有研稀土新材料股▲フン▼有限公司 | 光学装置 |
JP2022082683A (ja) * | 2017-11-16 | 2022-06-02 | 昭和アルミニウム缶株式会社 | 飲料容器および飲料容器セット |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102408688B1 (ko) * | 2020-09-14 | 2022-06-16 | (주)올릭스 | 파장 가변 초광대역 근적외 발광 장치 |
CN113285005B (zh) * | 2021-05-28 | 2022-08-05 | 杭州电子科技大学 | 一种近红外发光器件的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09504771A (ja) * | 1994-02-11 | 1997-05-13 | ローヌ−プーラン シミ | アルカリ土類金属、銅及び隨意としてのチタンを基とする珪酸塩、これら珪酸塩を基とする青又は紫色顔料、それらの製造方法並びにそれらの使用 |
JP2004526330A (ja) | 2001-05-03 | 2004-08-26 | コーニング インコーポレイテッド | 遷移金属イオンを含む広帯域光源 |
JP2008185378A (ja) | 2007-01-29 | 2008-08-14 | Univ Nagoya | 赤外ガラス蛍光体及び半導体発光素子で構成した光干渉断層撮影装置用光源。 |
WO2016140029A1 (ja) * | 2015-03-02 | 2016-09-09 | 三井金属鉱業株式会社 | 蛍光体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100665298B1 (ko) | 2004-06-10 | 2007-01-04 | 서울반도체 주식회사 | 발광장치 |
KR100665299B1 (ko) * | 2004-06-10 | 2007-01-04 | 서울반도체 주식회사 | 발광물질 |
KR101055769B1 (ko) * | 2007-08-28 | 2011-08-11 | 서울반도체 주식회사 | 비화학양론적 정방정계 알칼리 토류 실리케이트 형광체를채택한 발광 장치 |
DE102009059798A1 (de) | 2009-12-21 | 2011-06-22 | LITEC-LP GmbH, 17489 | Mittel zur Verbesserung der Stabilität gegenüber der auftretenden Strahlenbelastung sowie Resistenz gegenüber dem Einfluß von Luftfeuchtigkeit bei Strontiumoxyorthosilikat-Leuchtstoffen |
KR20100033392A (ko) * | 2010-02-11 | 2010-03-29 | 서울반도체 주식회사 | 발광물질 |
US9028957B2 (en) | 2012-09-12 | 2015-05-12 | University Of Georgia Research Foundation, Inc. | Metal silicate nanosheets, methods of making metal silicate nanosheets, and methods of use |
-
2017
- 2017-02-14 KR KR1020187022004A patent/KR102100213B1/ko active IP Right Grant
- 2017-02-14 JP JP2018505354A patent/JP6589048B2/ja active Active
- 2017-02-14 US US16/084,744 patent/US11292964B2/en active Active
- 2017-02-14 CN CN201780010951.9A patent/CN108603111B/zh active Active
- 2017-02-14 WO PCT/JP2017/005249 patent/WO2017159175A1/ja active Application Filing
- 2017-02-14 EP EP17766182.4A patent/EP3431569B1/en active Active
- 2017-03-01 TW TW106106627A patent/TWI712673B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09504771A (ja) * | 1994-02-11 | 1997-05-13 | ローヌ−プーラン シミ | アルカリ土類金属、銅及び隨意としてのチタンを基とする珪酸塩、これら珪酸塩を基とする青又は紫色顔料、それらの製造方法並びにそれらの使用 |
JP2004526330A (ja) | 2001-05-03 | 2004-08-26 | コーニング インコーポレイテッド | 遷移金属イオンを含む広帯域光源 |
JP2008185378A (ja) | 2007-01-29 | 2008-08-14 | Univ Nagoya | 赤外ガラス蛍光体及び半導体発光素子で構成した光干渉断層撮影装置用光源。 |
WO2016140029A1 (ja) * | 2015-03-02 | 2016-09-09 | 三井金属鉱業株式会社 | 蛍光体 |
Non-Patent Citations (6)
Title |
---|
CHEN, WEIBO. ET AL.: "Near-infrared emission and photon energy upconversion of two-dimensional copper silicates", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 35, 17 August 2015 (2015-08-17), pages 20571 - 20577, XP055542901, ISSN: 1932-7447, Retrieved from the Internet <URL:https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b04819> * |
E.KENDRICK. ET AL.: "Structure and colour properties in the Egyptian Blue Family, M1-xM' xCuSi4010, as a function of M, M' where M,M'= Ca,Sr and Ba", DYES AND PIGMENTS, vol. 73, 5 December 2005 (2005-12-05), pages 13 - 18, XP005527486, Retrieved from the Internet <URL:doi:10.1016/j.dyepig.2005.10.006> * |
JOHNSON M, DARRAH. ET AL.: "Exfoliation of Egyptian blue and Han blue, two alkali earth copper silicate-based pigments", JOURNAL OF VISUALIZED EXPERIMENTS, vol. 86, 24 April 2014 (2014-04-24), pages e51686/1 - e51686/10, XP055542899, ISSN: 1940-087X, Retrieved from the Internet <URL:doi:10.3791/51686> * |
LI YA-JIE. ET AL.: "Temperature-dependent near- infrared emission of highly concentrated Cu2+ in CaCuSi4010 phosphor", JOURNAL OF MATERIALS CHEMISTRY C, vol. 2, no. 48, 28 December 2014 (2014-12-28), pages 10395 - 10402, XP055542949, ISSN: 2050-7526, Retrieved from the Internet <URL:DOI:10.1039/C4TC01966K> * |
ZHUANG, YIXI. ET AL.: "Forward and back energy transfer between Cu2+ and Yb3+ in Ca1- xCuSi4010: Ybx crystals", JOURNAL OF APPLIED PHYSICS, vol. 112, no. 9, 1 September 2012 (2012-09-01), pages 093521/1 - 093521/6, XP055542967, ISSN: 0021-8979, Retrieved from the Internet <URL:https://doi.org/10.1063/1.4765013> * |
ZHUANG, YIXI. ET AL.: "Interactive energy transfer between Cu2+ and Yb3+ in Ca1- xCuSi4010: Ybx", PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, vol. 9, no. 12, 13 November 2012 (2012-11-13), pages 2304 - 2307, XP055483000, ISSN: 1610-1642, Retrieved from the Internet <URL:DOI 10.1002/pssc.201200281> * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022082683A (ja) * | 2017-11-16 | 2022-06-02 | 昭和アルミニウム缶株式会社 | 飲料容器および飲料容器セット |
CN112262481A (zh) * | 2018-06-12 | 2021-01-22 | 国立研究开发法人产业技术综合研究所 | 发光装置 |
JP7428323B2 (ja) | 2018-06-12 | 2024-02-06 | 国立研究開発法人産業技術総合研究所 | 発光装置 |
JPWO2019240150A1 (ja) * | 2018-06-12 | 2021-07-26 | 国立研究開発法人産業技術総合研究所 | 発光装置 |
US11641009B2 (en) | 2018-06-12 | 2023-05-02 | National Institute Of Advanced Industrial Science And Technology | Light-emitting device |
WO2019240150A1 (ja) * | 2018-06-12 | 2019-12-19 | 国立研究開発法人産業技術総合研究所 | 発光装置 |
EP3809475A4 (en) * | 2018-06-12 | 2022-03-02 | National Institute Of Advanced Industrial Science And Technology | LIGHT EMITTING DEVICE |
WO2020043709A1 (de) * | 2018-08-29 | 2020-03-05 | Osa Opto Light Gmbh | Breitband-emitter für elektromagnetische strahlung |
JP2020188044A (ja) * | 2019-05-10 | 2020-11-19 | 国立研究開発法人物質・材料研究機構 | 発光装置 |
JP7226789B2 (ja) | 2019-05-10 | 2023-02-21 | 国立研究開発法人物質・材料研究機構 | 発光装置 |
JP2022501799A (ja) * | 2019-08-22 | 2022-01-06 | 有研稀土新材料股▲フン▼有限公司 | 光学装置 |
JP7114750B2 (ja) | 2019-08-22 | 2022-08-08 | 有研稀土新材料股▲フン▼有限公司 | 光学装置 |
JP7212703B2 (ja) | 2019-08-22 | 2023-01-25 | 有研稀土新材料股▲フン▼有限公司 | 光学装置 |
JP2021536119A (ja) * | 2019-08-22 | 2021-12-23 | 有研稀土新材料股▲フン▼有限公司 | 光学装置 |
KR102516843B1 (ko) | 2019-08-22 | 2023-03-30 | 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 | 광학장치 |
KR20210040842A (ko) * | 2019-08-22 | 2021-04-14 | 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 | 광학장치 |
JP2021136293A (ja) * | 2020-02-26 | 2021-09-13 | サンケン電気株式会社 | 発光装置 |
JP7452086B2 (ja) | 2020-02-26 | 2024-03-19 | サンケン電気株式会社 | 発光装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108603111B (zh) | 2021-07-30 |
KR20180098660A (ko) | 2018-09-04 |
JPWO2017159175A1 (ja) | 2018-08-30 |
US11292964B2 (en) | 2022-04-05 |
EP3431569A1 (en) | 2019-01-23 |
TWI712673B (zh) | 2020-12-11 |
EP3431569B1 (en) | 2020-12-16 |
JP6589048B2 (ja) | 2019-10-09 |
CN108603111A (zh) | 2018-09-28 |
US20190071600A1 (en) | 2019-03-07 |
KR102100213B1 (ko) | 2020-04-13 |
EP3431569A4 (en) | 2019-09-11 |
TW201800559A (zh) | 2018-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6589048B2 (ja) | 蛍光体 | |
Wu et al. | α-(Y, Gd) FS: Ce 3+: a novel red-emitting fluorosulfide phosphor for solid-state lighting | |
Rajkumar et al. | A highly intense double perovskite BaSrYZrO5. 5: Eu3+ phosphor for latent fingerprint and security ink applications | |
CN107109218B (zh) | 荧光体 | |
JP2011021161A (ja) | 蛍光体 | |
WO2022080265A1 (ja) | 蛍光体、及び発光装置 | |
JPWO2016186058A1 (ja) | 発光器具および画像表示装置 | |
Makhija et al. | Green emission from trivalent cerium doped LaAlO 3/MgO nano-composite for photonic and latent finger printing applications | |
KR101148998B1 (ko) | 형광체 | |
JP2020100703A (ja) | 希土類アルミン酸塩蛍光体の製造方法、希土類アルミン酸塩蛍光体及び発光装置 | |
US20210009897A1 (en) | Method of preparing mechanoluminescent material and composite material containing it | |
CN116018388B (zh) | 铕活化β型塞隆荧光体和发光装置 | |
JP2014523952A (ja) | 蛍光体前駆体組成物 | |
Yashodha et al. | Study of (La, Gd) OCl: Eu3+ phosphors for WLEDs application: photoluminescence and Judd-Ofelt analysis | |
WO2022209033A1 (ja) | 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 | |
US12006459B2 (en) | Phosphor powder and light emitting device | |
US11952520B2 (en) | Method for manufacturing phosphor powder, phosphor powder, and light emitting device | |
JP2016121300A (ja) | 蛍光体 | |
WO2022004406A1 (ja) | 蛍光体、波長変換体、及び発光装置 | |
JP2023049445A (ja) | 蛍光体、その製造方法および発光装置 | |
JP2022146260A (ja) | Mn賦活蛍光体、波長変換体、及び発光装置 | |
CN118647690A (zh) | 铕活化β塞隆荧光体 | |
WO2015125771A1 (ja) | アップコンバージョン蛍光体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018505354 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187022004 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017766182 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017766182 Country of ref document: EP Effective date: 20181015 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766182 Country of ref document: EP Kind code of ref document: A1 |