WO2022209033A1 - 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 - Google Patents
蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 Download PDFInfo
- Publication number
- WO2022209033A1 WO2022209033A1 PCT/JP2021/045661 JP2021045661W WO2022209033A1 WO 2022209033 A1 WO2022209033 A1 WO 2022209033A1 JP 2021045661 W JP2021045661 W JP 2021045661W WO 2022209033 A1 WO2022209033 A1 WO 2022209033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- mga
- group
- less
- range
- Prior art date
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000013078 crystal Substances 0.000 claims abstract description 46
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 22
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 22
- 229910052788 barium Inorganic materials 0.000 claims abstract description 21
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 21
- 230000005284 excitation Effects 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims description 45
- 238000010304 firing Methods 0.000 claims description 19
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 15
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052733 gallium Inorganic materials 0.000 abstract description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 abstract description 2
- 239000007858 starting material Substances 0.000 abstract 2
- 238000000034 method Methods 0.000 description 16
- 239000011575 calcium Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- -1 argon Chemical compound 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000004763 sulfides Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229910016655 EuF 3 Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical group [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- XDAHMMVFVQFOIY-UHFFFAOYSA-N methanedithione;sulfane Chemical compound S.S=C=S XDAHMMVFVQFOIY-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/62—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
- C09K11/7731—Chalcogenides with alkaline earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
Definitions
- the present invention relates to phosphors and manufacturing methods thereof.
- the present invention also relates to light-emitting elements and light-emitting devices containing phosphors.
- LEDs blue light-emitting diodes
- phosphors that emit green or red fluorescence.
- the present applicant previously proposed sulfides described in Patent Documents 1 and 2 as phosphors that emit green fluorescence.
- the external quantum efficiency of a phosphor is expressed as the product of the absorption rate and the internal quantum efficiency. Therefore, by increasing the internal quantum efficiency, it is possible to increase the emission intensity of the phosphor.
- the phosphors described in Patent Documents 1 and 2 have high internal quantum efficiencies, but the internal quantum efficiencies are higher than ever due to the current demand for high luminance and low power consumption of light-emitting display devices. Phosphors are needed.
- an object of the present invention is to provide a phosphor having a higher internal quantum efficiency than conventional phosphors and a method for producing the same.
- the present invention provides a crystal phase represented by formula (1): MGa 2 S 4 (wherein M contains at least one element selected from the group consisting of Ba, Sr and Ca), Formula (2): a crystal phase represented by MGa 4 S 7 (wherein M contains at least one element selected from the group consisting of Ba, Sr and Ca); an element A serving as a luminescence center;
- the present invention provides a phosphor containing
- a raw material composition containing Ga, S, M (M includes at least one element selected from the group consisting of Ba, Sr and Ca) and an element A serving as a luminescence center is prepared.
- the present invention provides a method for producing a phosphor, wherein the raw material composition is fired in a partially molten state.
- a raw material composition containing Ga, S, M (M includes at least one element selected from the group consisting of Ba, Sr and Ca) and an element A serving as a luminescence center is prepared.
- MGa 4 S 7 (wherein M contains at least one element selected from the group consisting of Ba, Sr and Ca)
- FIG. 1 is an X-ray diffraction chart of the phosphor of Example 1.
- FIG. 2 is an X-ray diffraction chart of the phosphor of Example 2.
- FIG. 3 is an X-ray diffraction chart of the phosphor of Example 3.
- FIG. 4 is an X-ray diffraction chart of the phosphor of Comparative Example 1.
- the present invention will be described below based on its preferred embodiments.
- the phosphor of the present invention contains sulfide crystals containing gallium (Ga), sulfur (S), and a predetermined metal element (hereinafter, this element is represented by “M”).
- the phosphor contains the crystal structure of the compound represented by "Formula (1): MGa 2 S 4 ".
- M contains at least one element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca).
- the crystal phase derived from formula (1) may be the main phase or the subphase in the phosphor, preferably the main phase in the phosphor.
- main phase refers to the phase to which the maximum peak of the X-ray diffraction pattern belongs among the entire phosphors.
- subphase refers to a crystal phase other than the main phase.
- the element M in this specification is a monovalent or divalent metal element unless otherwise specified.
- a divalent metal element such as Zn is preferably exemplified.
- the description regarding the element M is commonly applied in this specification unless otherwise specified.
- the crystal structure represented by formula (1) is represented by formula (1a): (Ba 1-x Sr x )Ga 2 S 4 (in formula (1a), x is preferably 0.5 or more 1 or less, more preferably 0.6 or more and 0.95 or less.).
- x is preferably 0.5 or more 1 or less, more preferably 0.6 or more and 0.95 or less.
- the above-mentioned diffraction peak is a peak that cannot be observed in a pure crystal of MGa 2 S 4 . It has been found that the internal quantum efficiency is high. Such a crystal structure can be obtained, for example, by the manufacturing method described later.
- the phosphor preferably contains a crystal structure represented by “Formula (2): MGa 4 S 7 ” in addition to the above crystal structure represented by Formula (1). That is, it is preferable that the crystal phase represented by the formula (1) and the crystal phase represented by the formula (2) are contained in one particle of the phosphor.
- M includes at least one selected from the group consisting of Ba, Sr and Ca.
- the crystal derived from formula (2) may be the main phase or the secondary phase in the phosphor, preferably the secondary phase in the phosphor.
- the crystal structure of MGa 2 S 4 contained in the phosphor in each of the above-described embodiments is represented by a stoichiometric ratio of 2 mol of Ga to 1 mol of the element M when the element M is divalent.
- the molar amounts of the element M contained in the phosphor of the present invention, the element A which is a light-emitting element described later, and Ga are respectively X M and X A , X Ga , "X Ga / ( X M +X A )” is preferably within a predetermined range.
- X Ga /(X M +X A ) is preferably 1.6 or more and 2.6 or less, more preferably 1.7 or more and 2.5 or less, still more preferably 1.8 or more and 2.4 or less. , particularly preferably 2.05 or more and 2.35 or less.
- X Ga /(X M +X A ) is in such a range, the melting point is lowered, sintering is promoted in a partially molten state, and a phosphor with high internal quantum efficiency can be obtained with high productivity. can.
- X Ga /(X M +X A ) can be appropriately adjusted, for example, by adjusting the amounts of raw materials containing element M, element A, and Ga used during production.
- the phosphor preferably has a predetermined diffraction peak ratio within a specific range in a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays.
- Ic be the maximum value of the diffraction peak.
- the ratio Ia/Ic of Ia to Ic is preferably 0.4 or more, more preferably 1.0 or more, and still more preferably 1.2 or more.
- Ia/Ic is preferably 50 or less, more preferably 10 or less, and even more preferably 5 or less.
- the reference diffraction peak for Ia is presumed to be derived from MGa 4 S 7
- the reference diffraction peak for Ic is presumed to be derived from M 2 Ga 2 S 5 . Therefore, the fact that the ratio Ia/Ic of the diffraction peaks derived from such a crystal phase is within the above range means that the crystal phase of MGa 2 S 4 described above was produced in an environment in which a large amount was generated. As a result, the internal quantum efficiency can be made high, and a crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency can be easily obtained, making it easy to obtain a phosphor capable of exhibiting high luminous efficiency.
- maximum value of diffraction peak as used herein means the maximum value of X-ray diffraction intensity obtained in the diffraction angle range in X-ray diffraction measurement.
- the ratio Ib/Ic of Ib to Ic is preferably 0.4 or more, more preferably 0.5 or more, and still more preferably 0.8 or more.
- Ib/Ic is preferably 50 or less, more preferably 10 or less, and even more preferably 5 or less.
- the reference diffraction peak for Ib described above originates from MGa 4 S 7 . Therefore, the fact that the ratio Ib/Ic of the diffraction peaks derived from such a crystal phase is within the above range means that the crystal phase of MGa 2 S 4 described above was produced in an environment in which a large amount was generated. As a result, the internal quantum efficiency can be made high, and a crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency can be easily obtained, making it easy to obtain a phosphor capable of exhibiting high luminous efficiency.
- the ratio Ib/Id of Ib to Id is preferably 1.8 or more, more preferably 2.0 or more.
- Ib/Id is preferably 50 or less, more preferably 10 or less, and even more preferably 5 or less.
- the reference diffraction peak for Id is presumed to be derived from M 2 Ga 2 S 5 . Therefore, the fact that the ratio Ib/Id of the diffraction peaks derived from such a crystal phase is within the above range means that the crystal phase of MGa 2 S 4 described above is produced in an environment in which a large amount is generated. As a result, the internal quantum efficiency can be made high, and a crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency can be easily obtained, making it easy to obtain a phosphor capable of exhibiting high luminous efficiency.
- the phosphor does not exhibit a crystal phase represented by formula (3): “M 2 Ga 2 S 5 ”.
- M includes at least one selected from the group consisting of Ba, Sr and Ca. Since the crystal phase represented by M 2 Ga 2 S 5 is not observed, it means that the crystal phase of MGa 2 S 4 described above is produced in an environment where a large amount of the crystal phase is generated, so the internal quantum efficiency is high. In addition, the crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency is easily obtained, and a phosphor material with high luminous efficiency is easily obtained.
- An X-ray diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays in this specification can be obtained, for example, under the following measurement conditions.
- ⁇ Measurement diffraction angle: 2 ⁇ 10 to 80°
- Detector High-speed one-dimensional X-ray detector D/teX Ultra 250 ⁇ Light receiving slit width: 0.3 mm - Divergence slit: 2/3° ⁇ Vertical divergence limiting slit width: 10 mm (using K ⁇ filter)
- the phosphor is selected from the group consisting of europium (Eu), cerium (Ce), manganese (Mn), and samarium (Sm) as the element A functioning as the luminescent center. preferably contains at least one element From the viewpoint of further increasing the internal quantum efficiency in excitation by blue light emitted from the LED, the phosphor preferably contains Eu, and more preferably contains divalent ions of Eu (i.e., Eu 2+ ). It is more preferable to consist only of Eu 2+ among the central elements.
- the ratio of the luminescent center in the phosphor is the element to the sum (X M +X A ) of the molar amount of the element M contained in the phosphor and the molar amount of the element A, which is the luminescent element.
- X A /(X M +X A ) is preferably 0.3 or less, more preferably 0.25 or less, and still more preferably 0.2 or less.
- the phosphor of the present invention is excited by light with a wavelength range of 250 nm or more and 510 nm or less, and has an emission peak in a wavelength range of 420 nm or more and 730 nm or less. Specifically, the phosphor is excited by light having a wavelength of about 450 nm emitted from a blue LED, for example, and emits visible light ranging from green to yellow.
- a raw material composition containing each element of Ga, S, and M, and an element A serving as a luminescence center is prepared.
- the raw material composition may be a single substance, a compound, or a mixture thereof containing one or more of these elements. This raw material composition is typically solid.
- Materials containing Ga include, for example, compounds such as elemental Ga and Ga 2 O 3 and Ga 2 S 3 .
- Raw materials containing S include, for example, S simple substance, H 2 S gas, CS 2 , Ga 2 S 3 and other compounds.
- As raw materials containing M for example, in addition to M alone, oxides of element M such as Ba-containing compounds such as MS, MSO 4 , MCO 3 , M(OH) 2 and MO, Sr-containing compounds, and Ca-containing compounds, water oxides, sulfides, sulfates, carbonates and the like.
- raw materials containing the element A serving as the luminescence center oxides, sulfides, halides, and various salts of the element A can be mentioned.
- examples of raw materials containing Eu as the element A serving as the emission center include Eu 2 O 3 , EuS, EuF 3 , and EuCl 3 .
- Raw materials containing Ce include, for example, CeO 2 , Ce 2 S 3 , CeF 3 , CeCl 3 and the like.
- Examples of raw materials containing Mn include MnO 2 , Mn 2 S 3 , MnF 3 , MnCl 3 and the like.
- Raw materials containing Sm include, for example, Sm 2 O 3 , Sm 2 S 3 , SmF 3 , SmCl 3 and the like.
- the raw material composition can be obtained by dry or wet mixing of the above raw materials, or by wet synthesis in a liquid. Dry mixing can be performed using a mixing device such as a paint shaker or a ball mill. Wet mixing can be performed by suspending each raw material in a liquid medium to form a suspension, and then charging the suspension into the mixing apparatus described above. Thereafter, the mixture is subjected to solid-liquid separation using a sieve or the like, and the obtained solid content is dried to obtain the target raw material composition.
- a solvent such as alcohol such as ethanol or liquid nitrogen, which is vaporized under the heating conditions described below, can be used.
- a sol-gel method a citric acid complex method, a citric acid complex polymerization method, a coprecipitation method, a metal hydroxide precipitation method, a homogeneous precipitation method, and an inorganic salt hydrolysis method.
- an alkoxide method, a redox method, a hydrothermal method, an emulsion method, a solvent evaporation method, a poor solvent dilution method, and the like to obtain a precursor. It can be obtained by contacting a precursor and sulfurizing the precursor.
- the respective molar amounts of element M, element A, and Ga contained in the phosphor are X M and X X Ga /(X M +X A ) when A and X Ga is preferably 1.6 or more and 2.6 or less, more preferably 1.7 or more and 2.5 or less, still more preferably 1.8 or more and 2 It is preferable to mix the Ga-containing raw material, the M-containing raw material and the luminescence center element A-containing raw material so that the ratio is 0.4 or less, particularly preferably 2.05 or more and 2.35 or less.
- the charged molar ratios of the Ga-containing raw material, the M-containing raw material, and the luminescent center element A-containing raw material generally match the molar ratios of Ga, M, and luminescent center element A in the phosphor to be obtained.
- the raw material composition described above is fired.
- the solid raw material composition may be partially melted before firing.
- a phosphor material having a crystal structure represented by formula (1): MGa 2 S 4 and preferably a crystal structure represented by formula (2): MGa 4 S 7 in one particle can be generated, and a phosphor having a higher internal quantum efficiency can be obtained with high productivity.
- the sintering temperature of the raw material composition can be appropriately changed according to the proportion of each raw material, but from the viewpoint of improving the crystallinity, it is preferable to sinter at a higher temperature.
- the firing temperature is preferably 1000° C. or higher and 1400° C. or lower, more preferably 1100° C. or higher and 1300° C. or lower, and still more preferably 1150° C. or higher and 1250° C. or lower.
- the temperature increase rate in firing is preferably 1° C./min or more and 10° C./min or less, more preferably 2° C./min or more and 8° C./min or less. , more preferably 3°C/min or more and 7°C/min or less.
- firing is continued for preferably 1 to 12 hours, more preferably 2 to 10 hours, and still more preferably 3 to 8 hours.
- MGa 2 S 4 is likely to be generated in the temperature range of about 500 to 900° C.
- MGa 4 S 7 is likely to be generated in the temperature range of 1000° C. or higher.
- X Ga /(X M +X A ) is likely to be greater than 2 , and This is advantageous in that MGa 4 S 7 that contributes to the improvement of internal quantum efficiency can be generated more efficiently.
- the firing atmosphere includes nitrogen, carbon dioxide, inert gases such as argon, reducing gases such as hydrogen gas, and sulfur-containing gases such as hydrogen sulfide and carbon disulfide, preferably sulfur-containing gases.
- Ga sulfide may be added to the sintered product sintered as described above and then sintered. This makes it easier to generate MGa 4 S 7 .
- the firing temperature and firing time at this time can be the same conditions as the firing time and firing temperature described above.
- the product obtained through the above steps is a lump, granular or powdery product, it may be used as it is as the phosphor of the present invention.
- the product obtained by the above steps may be subjected to post-treatment such as pulverization or classification using a sieve, mill, liquid, etc., annealing treatment, coating treatment, etc., if necessary. , may be the target phosphor.
- the particle size of the product is preferably 0.01 ⁇ m or more and 150 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of improving the handleability and luminescence of the obtained phosphor.
- the particle size referred to here indicates the volume cumulative particle size at a cumulative volume of 50% by volume measured by a laser diffraction/scattering particle size distribution measurement method.
- the dispersion medium When classifying using a liquid, it can be done by dispersing and sedimenting the product in the dispersion medium by ultrasonic treatment or the like, collecting the sediment, and then drying it. Water or an organic solvent such as ethanol can be used as the dispersion medium.
- the product that has undergone pulverization or classification may be further annealed to obtain the desired phosphor.
- the annealing conditions the temperature, time and molar ratio conditions in the firing conditions described above can be appropriately adopted.
- SiO 2 , ZnO, Al 2 O 3 , TiO 2 , and boron are contained from the viewpoint of maintaining good luminescence of the phosphor while improving durability such as moisture resistance of the phosphor. It is preferable to coat the surface of the phosphor with one or more kinds of inorganic compounds such as oxides and metal sulfates such as BaSO 4 .
- the phosphor obtained through the above steps is preferably a powdery substance composed of aggregates of phosphor particles.
- This phosphor can be used as a light-emitting device, or a light-emitting device can be provided with a single light-emitting device and a plurality of excitation sources.
- the light-emitting element may be used as, for example, lighting members, window members, decorative members, light guide plate members, general lighting members such as projector screens, image display devices such as light-emitting displays, liquid crystal televisions, and personal computers. , mobile devices such as tablets and smartphones, LED elements such as lighting fixtures, and light-emitting devices having excitation sources such as ⁇ LED elements.
- a light-emitting element includes a phosphor and a resin.
- a light-emitting element can be obtained, for example, by adding phosphor particles to a resin in a molten state, kneading the mixture, and molding it into a predetermined shape by an inflation method, a T-die method, a calendering method, or the like.
- a liquid mixture containing an organic solvent capable of dispersing the phosphor and the resin in addition to the phosphor and the resin may be placed on the surface of the excitation source to directly mold the light-emitting element on the excitation source.
- the liquid mixture to be applied on the device includes various printing methods such as screen printing, gravure printing, offset printing, and flexo method, and coating or spraying with a bar, roller, spray gun, etc., and then drying the solvent. .
- thermoplastic resin a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, and a two-liquid mixed curable resin can be used as the resin constituting the light emitting element.
- thermoplastic resins include polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polycarbonate resins; polyvinyl-based resins such as polystyrene and polyvinyl chloride; cellulose-based resins such as triacetylcellulose; and urethane resins such as polyurethane.
- polyolefin resins such as polyethylene and polypropylene
- polyester resins such as polyethylene terephthalate and polybutylene terephthalate
- polycarbonate resins polyvinyl-based resins such as polystyrene and polyvinyl chloride
- cellulose-based resins such as triacetylcellulose
- urethane resins such as polyurethane.
- thermosetting resins include silicone resins, phenol resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethane resins, and polyimide resins.
- ionizing radiation-curable resins include acrylic resins, urethane resins, vinyl ester resins, polyester alkyd resins, and the like. These resins can be not only polymers but also oligomers and monomers.
- An example of a two-component mixed curable resin is an epoxy resin.
- Examples 1 to 3 and Comparative Examples 1 and 2 BaS and SrS were prepared as raw materials containing the element M, EuS as the raw material containing the element A serving as the emission center, and Ga 2 S 3 as the raw material containing Ga. and mixed with a paint shaker for 100 minutes using a zirconia ball of ⁇ 3 mm to obtain a raw material composition.
- the resulting raw material composition was fired in an H 2 S atmosphere at a heating rate of 5° C./min at a firing temperature shown in Table 1 below for a firing time of 6 hours to obtain a product.
- the products were obtained by sintering in a state in which a part of the raw material composition was melted.
- this product is pulverized for 1 minute with a sieving machine (“ALM-360T” manufactured by Nitto Kagaku Co., Ltd.), using 140-mesh and 440-mesh sieves, under a 140-mesh sieve. Then, the powder on the 440-mesh sieve was collected to obtain the target phosphor powder.
- ALM-360T manufactured by Nitto Kagaku Co., Ltd.
- Comparative Example 1 On the other hand, in Comparative Example 1, a diffraction peak derived from SrGa 2 S 4 was observed, but a diffraction peak presumed to be derived from BaGa 4 S 7 was not observed. Moreover, in Comparative Example 1, a diffraction peak presumed to be derived from Sr 2 Ga 2 S 5 was observed.
- the X-ray diffraction charts of the phosphors of Examples and Comparative Example 1 are shown in FIGS. 1 to 4, respectively. Also, diffraction peaks Ia, Ib, Ic and Id, and Ia/Ic, Ib/Ic and Ib/Id are shown in Table 1 below.
- P 1 ( ⁇ ) be the standard whiteboard spectrum
- P 2 ( ⁇ ) be the sample spectrum
- P 3 ( ⁇ ) be the indirectly excited sample spectrum.
- the area L 1 (see formula (i) below) in which the spectrum P 1 ( ⁇ ) is surrounded by the excitation wavelength range of 461 nm to 481 nm is defined as the excitation intensity.
- An area L 2 (see formula (ii) below) in which the spectrum P 2 ( ⁇ ) is surrounded by the excitation wavelength range of 461 nm to 481 nm is taken as sample scattering intensity.
- the area E 2 (see formula (iii) below) of the spectrum P 2 ( ⁇ ) enclosed by the excitation wavelength range of 482 nm to 648.5 nm is defined as the fluorescence intensity of the sample.
- the area L 3 (see formula (iv) below) in which the spectrum P 3 ( ⁇ ) is surrounded by the excitation wavelength range of 461 nm to 481 nm is defined as the indirect scattering intensity.
- the area E 3 (see formula (v) below) in which the spectrum P 3 ( ⁇ ) is enclosed by the excitation wavelength range of 482 nm to 648.5 nm is defined as the indirect fluorescence intensity.
- the absorptivity is the ratio of incident light to the amount of excitation light that is reduced by the sample, as shown in the following equation (vi).
- the external quantum efficiency ⁇ ex is a value obtained by dividing the number of photons N em of the fluorescence emitted from the sample by the number of photons N ex of the excitation light irradiated to the sample.
- the internal quantum efficiency ⁇ in is a value obtained by dividing the number of photons N em of the fluorescence emitted from the sample by the number of photons N abs of the excitation light absorbed by the sample. .
- the fluorescent substance with a higher internal quantum efficiency than before is provided. Moreover, according to the present invention, such a phosphor can be stably produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
式(2):MGa4S7(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、
発光中心となる元素Aと、
を含む蛍光体を提供するものである。
前記原料組成物を、その一部が溶融した状態下に焼成する、蛍光体の製造方法を提供するものである。
前記原料組成物の焼成によって、式(1):MGa2S4(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物と、式(2):MGa4S7(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物とを生成させる、蛍光体の製造方法を提供するものである。
式(1)に由来する結晶相は、蛍光体中の主相であってもよく、副相であってもよく、好ましくは蛍光体中の主相である。本明細書における主相とは、蛍光体全体のうち、X線回折パターンの最大ピークが帰属する相をいう。また本明細書における副相とは、主相以外の結晶相をいう。
上述の回折ピークは、MGa2S4の純粋な結晶では観察されないピークであるところ、このような回折ピークが観察される蛍光体を用いることによって、光の吸収率が従来と同等でありながら、内部量子効率が高いものとなることを見出した。このような結晶構造は、例えば後述する製造方法にて得ることができる。
式(2)で表される結晶構造を含むことによって、光の吸収率が従来と同等でありながら、内部量子効率が高いものとなるとともに、外部量子効率の高いMGa2S4の結晶相が得られやすくなり、高い発光効率を発現できる蛍光体が得やすくなる。
具体的には、XGa/(XM+XA)が、好ましくは1.6以上2.6以下、より好ましくは1.7以上2.5以下、更に好ましくは1.8以上2.4以下、特に好ましくは2.05以上2.35以下である。XGa/(XM+XA)がこのような範囲であることによって、融点を下げ、一部が溶融した状態で焼結が促進され、内部量子効率が高い蛍光体を生産性高く得ることができる。XGa/(XM+XA)は、例えば、製造時に用いる元素Mと元素A及びGaを含む原料の量を調整することで、適宜調整することができる。
具体的には、2θ=27.9°以上28.36°以下の範囲に観察される回折ピークの最大値をIaとし、2θ=25.8°以上26.1°以下の範囲に観察される回折ピークの最大値をIcとする。このとき、Icに対するIaの比Ia/Icが、好ましくは0.4以上、より好ましくは1.0以上、更に好ましくは1.2以上である。また、Ia/Icは、50以下とすることが好ましく、10以下とすることがより好ましく、5以下とすることがさらに好ましい。
本明細書における「回折ピークの最大値」とは、X線回折測定における、該回折角範囲で得られたX線回折強度の最大値を意味する。
・装置:Rigaku ULITIMA IV
・管球:CuKα
・管電圧:50kV
・管電流:300mA
・測定回折角:2θ=10~80°
・測定ステップ幅:0.01°
・収集時間:2°/分
・検出器:高速1次元X線検出器 D/teX Ultra 250
・受光スリット幅:0.3mm
・発散スリット:2/3°
・発散縦制限スリット幅:10mm(Kβフィルターを使用)
Sを含む原料としては、例えばS単体、H2Sガス、CS2、Ga2S3等の化合物が挙げられる。
Mを含む原料としては、例えばM単体の他、MS、MSO4、MCO3、M(OH)2、MO等のBa含有化合物、Sr含有化合物、Ca含有化合物といった、元素Mの酸化物、水酸化物、硫化物、硫酸塩、炭酸塩等が挙げられる。
乾式による混合は、例えば、ペイントシェーカーやボールミル等の混合装置を用いて行うことができる。
湿式による混合は、各原料を液媒に懸濁させて懸濁液としたあと、該懸濁液を上述の混合装置内に投入して行うことができる。その後、この混合物を篩等を用いて固液分離して得られた固体分を乾燥することで、目的とする原料組成物を得ることができる。液媒としては、エタノールなどのアルコールや液体窒素等といった、後述する加熱条件において気化する溶媒を用いることができる。
このような焼成を経て、式(1):MGa2S4で示される結晶構造と、好ましくは式(2):MGa4S7で示される結晶構造とを一粒子中に有する蛍光体用材料を生成させることができ、内部量子効率が更に高い蛍光体を生産性高く得ることができる。
分級を行う場合、得られる蛍光体の取り扱い性と発光性とを高める観点から、生成物の粒子径を好ましくは0.01μm以上150μm以下、より好ましくは1μm以上50μm以下となるようにする。なお、ここでいう粒子径はレーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径を示す。
元素Mを含む原料としてBaS及びSrS、発光中心となる元素Aを含む原料としてEuS、Gaを含む原料としてGa2S3を準備し、各元素が以下の表1に示すモル比率で含まれるように秤量して、φ3mmのジルコニアボールを用いてペイントシェーカーで100分間混合して、原料組成物を得た。
得られた原料組成物を、H2S雰囲気、昇温速度5℃/minにて、焼成温度を以下の表1に示す温度とし、焼成時間6時間にて焼成し、生成物を得た。なお、実施例はいずれも原料組成物の一部が溶融した状態下で焼成し、生成物を得た。そして、この生成物を、らいかい機(日陶科学社製「ALM-360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、目的とする蛍光体の粉末を得た。
なお、比較例2は、原料組成物の全てが溶融してしまい、目的とする蛍光体を取り出すことができなかったので、以後の評価は行わなかった。
各実施例及び比較例1の蛍光体について、上述の条件でX線回折測定を行った。その結果、各実施例は、SrGa2S4に由来するPDF番号01-077-1189のパターンと一致するとともに、BaGa4S7に由来するものと推定される2θ=27.6°以上28.3°以下の範囲、及び2θ=28.45°以上28.75°以下の範囲に回折ピークが観察されたが、Sr2Ga2S5に由来するものと推定される回折ピークは観察されなかった。
一方、比較例1は、SrGa2S4に由来する回折ピークは観察されたが、BaGa4S7に由来するものと推定される回折ピークは観察されなかった。また比較例1は、Sr2Ga2S5に由来するものと推定される回折ピークが観察された。
各実施例及び比較例1の蛍光体についてのX線回折チャートを図1~図4にそれぞれ示す。
また、回折ピークのIa、Ib、Ic及びId、並びにIa/Ic、Ib/Ic及びIb/Idを以下の表1に示す。
実施例及び比較例で得られた蛍光体粉末について、以下のとおり、吸収率と内部量子効率とを測定した。
詳細には、分光蛍光光度計FP-8500、積分球ユニットISF-834(日本分光株式会社製)を用い、固体量子効率計算プログラムに従い行った。分光蛍光光度計は、副標準光源およびローダミンBを用いて補正した。
励起光を450nmとした場合の蛍光体の吸収率、内部量子効率および外部量子効率の計算式を以下に示す。この計算式は、日本分光社製、FWSQ-6-17(32)固体量子効率計算プログラムの取扱説明書の記載に準拠したものである。
吸収率及び内部量子効率の結果を以下の表1に示す。
スペクトルP1(λ)が励起波長範囲461nm~481nmで囲われる面積L1(以下の式(i)参照)を、励起強度とする。
スペクトルP2(λ)が励起波長範囲461nm~481nmで囲われる面積L2(以下の式(ii)参照)を、試料散乱強度とする。
スペクトルP2(λ)が励起波長範囲482nm~648.5nmで囲われる面積E2(以下の式(iii)参照)を、試料蛍光強度とする。
スペクトルP3(λ)が励起波長範囲461nm~481nmで囲われる面積L3(以下の式(iv)参照)を、間接散乱強度とする。
スペクトルP3(λ)が励起波長範囲482nm~648.5nmで囲われる面積E3(以下の式(v)参照)を、間接蛍光強度とする。
外部量子効率εexは、以下の式(vii)に示されるように、試料から放出される蛍光の光子数Nemを、試料に照射された励起光の光子数Nexで除した値となる。
内部量子効率εinは、以下の式(viii)に示されるように、試料から放出される蛍光の光子数Nemを、試料に吸収される励起光の光子数Nabsで除した値となる。
Claims (10)
- 式(1):MGa2S4(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、
式(2):MGa4S7(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、
発光中心となる元素Aと、
を含む、蛍光体。 - 式(1):MGa2S4(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、発光中心となる元素Aとを含み、
CuKα線を用いたX線回折装置により測定されるX線回折パターンにおいて、2θ=27.55°以上28.30°以下の範囲、及び2θ=28.45°以上28.75°以下の範囲に回折ピークが観察される、蛍光体。 - 蛍光体中に含まれる前記元素Mのモル量、前記元素Aのモル量、及びGaのモル量をそれぞれXM、XA、XGaとしたときのXGa/(XM+XA)が、1.6以上2.6以下である、請求項1又は2に記載の蛍光体。
- CuKα線を用いたX線回折装置により測定されるX線回折パターンにおいて、2θ=25.8°以上26.1°以下の範囲に観察される回折ピークの最大値Icに対する、2θ=27.9°以上28.36°以下の範囲に観察される回折ピークの最大値Iaの比Ia/Icが、0.4以上である、請求項1ないし3のいずれか一項に記載の蛍光体。
- CuKα線を用いたX線回折装置により測定されるX線回折パターンにおいて、2θ=25.8°以上26.1°以下の範囲に観察される回折ピークの最大値Icに対する、2θ=28.4°以上28.86°以下の範囲に観察される回折ピークの最大値Ibの比Ib/Icが、0.4以上である、請求項1ないし4のいずれか一項に記載の蛍光体。
- 前記発光中心となる元素Aが、Eu、Ce、Mn及びSmからなる群より選択される少なくとも1種の元素を含む、請求項1ないし5のいずれか一項に記載の蛍光体。
- Ga、S、M(Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)及び発光中心となる元素Aを含む原料組成物を準備し、
前記原料組成物を、その一部が溶融した状態下で焼成する、蛍光体の製造方法。 - Ga、S、M(Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)及び発光中心となる元素Aを含む原料組成物を準備し、
前記原料組成物の焼成によって、式(1):MGa2S4(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物と、式(2):MGa4S7(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物とを生成させる、蛍光体の製造方法。 - 請求項1ないし6のいずれか一項に記載の蛍光体と樹脂とを含む発光素子。
- 請求項1ないし6のいずれか一項に記載の蛍光体及び励起源を備えた発光装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237029171A KR20230137414A (ko) | 2021-03-30 | 2021-12-10 | 형광체 및 그 제조 방법, 형광체를 포함하는 발광 소자 그리고 발광 장치 |
EP21935182.2A EP4317363A1 (en) | 2021-03-30 | 2021-12-10 | Phosphor, method for producing same, light emitting element containing phosphor, and light emitting device |
JP2023510229A JP7459373B2 (ja) | 2021-03-30 | 2021-12-10 | 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 |
US18/279,350 US20240301288A1 (en) | 2021-03-30 | 2021-12-10 | Phosphor, method for producing same, light emitting element containing phosphor, and light emitting device |
CN202180096022.0A CN117120578A (zh) | 2021-03-30 | 2021-12-10 | 荧光体及其制造方法、包含荧光体的发光元件以及发光装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-056337 | 2021-03-30 | ||
JP2021056337 | 2021-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209033A1 true WO2022209033A1 (ja) | 2022-10-06 |
Family
ID=83455721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/045661 WO2022209033A1 (ja) | 2021-03-30 | 2021-12-10 | 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240301288A1 (ja) |
EP (1) | EP4317363A1 (ja) |
JP (1) | JP7459373B2 (ja) |
KR (1) | KR20230137414A (ja) |
CN (1) | CN117120578A (ja) |
TW (1) | TW202305093A (ja) |
WO (1) | WO2022209033A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07242869A (ja) * | 1994-03-04 | 1995-09-19 | Mitsui Mining & Smelting Co Ltd | 薄膜エレクトロルミネッセンス素子 |
JP2007112950A (ja) * | 2005-10-24 | 2007-05-10 | Canon Inc | 蛍光体材料及びこれを用いた発光部材、画像表示装置 |
WO2011033830A1 (ja) * | 2009-09-18 | 2011-03-24 | 三井金属鉱業株式会社 | 蛍光体 |
US20110114985A1 (en) | 2008-09-11 | 2011-05-19 | Mitsui Mining & Smelting Co., Ltd. | Green Emitting Phosphor |
JP2013077825A (ja) * | 2012-11-26 | 2013-04-25 | Dexerials Corp | 緑色発光蛍光体粒子、色変換シート、発光装置及び画像表示装置組立体 |
JP2017088719A (ja) * | 2015-11-09 | 2017-05-25 | 堺化学工業株式会社 | 赤色蛍光体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008274028A (ja) * | 2007-04-25 | 2008-11-13 | Canon Inc | 蛍光体材料、発光部材および画像形成装置 |
WO2010146990A1 (ja) * | 2009-06-19 | 2010-12-23 | 三井金属鉱業株式会社 | 黄色蛍光体 |
JP5923473B2 (ja) * | 2013-09-20 | 2016-05-24 | デクセリアルズ株式会社 | 緑色発光蛍光体 |
KR101850755B1 (ko) * | 2014-03-27 | 2018-04-23 | 미쓰이금속광업주식회사 | 형광체 및 그 용도 |
JP6871098B2 (ja) * | 2017-07-26 | 2021-05-12 | デクセリアルズ株式会社 | 蛍光体、及びその製造方法、蛍光体シート、並びに照明装置 |
-
2021
- 2021-12-10 EP EP21935182.2A patent/EP4317363A1/en active Pending
- 2021-12-10 CN CN202180096022.0A patent/CN117120578A/zh active Pending
- 2021-12-10 US US18/279,350 patent/US20240301288A1/en active Pending
- 2021-12-10 WO PCT/JP2021/045661 patent/WO2022209033A1/ja active Application Filing
- 2021-12-10 JP JP2023510229A patent/JP7459373B2/ja active Active
- 2021-12-10 KR KR1020237029171A patent/KR20230137414A/ko unknown
-
2022
- 2022-01-10 TW TW111100933A patent/TW202305093A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07242869A (ja) * | 1994-03-04 | 1995-09-19 | Mitsui Mining & Smelting Co Ltd | 薄膜エレクトロルミネッセンス素子 |
JP2007112950A (ja) * | 2005-10-24 | 2007-05-10 | Canon Inc | 蛍光体材料及びこれを用いた発光部材、画像表示装置 |
US20110114985A1 (en) | 2008-09-11 | 2011-05-19 | Mitsui Mining & Smelting Co., Ltd. | Green Emitting Phosphor |
WO2011033830A1 (ja) * | 2009-09-18 | 2011-03-24 | 三井金属鉱業株式会社 | 蛍光体 |
US20120018674A1 (en) | 2009-09-18 | 2012-01-26 | Mitsui Mining & Smelting Co., Ltd. | Emitting Phosphor |
JP2013077825A (ja) * | 2012-11-26 | 2013-04-25 | Dexerials Corp | 緑色発光蛍光体粒子、色変換シート、発光装置及び画像表示装置組立体 |
JP2017088719A (ja) * | 2015-11-09 | 2017-05-25 | 堺化学工業株式会社 | 赤色蛍光体 |
Also Published As
Publication number | Publication date |
---|---|
TW202305093A (zh) | 2023-02-01 |
KR20230137414A (ko) | 2023-10-04 |
JPWO2022209033A1 (ja) | 2022-10-06 |
US20240301288A1 (en) | 2024-09-12 |
JP7459373B2 (ja) | 2024-04-01 |
EP4317363A1 (en) | 2024-02-07 |
CN117120578A (zh) | 2023-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6987353B2 (en) | Light emitting device having sulfoselenide fluorescent phosphor | |
US11292964B2 (en) | Phosphor | |
TWI390011B (zh) | 綠色螢光體 | |
TWI424046B (zh) | 綠色螢光體 | |
KR101148998B1 (ko) | 형광체 | |
WO2010119800A1 (ja) | 赤色蛍光体及びその製造方法 | |
US20170210984A1 (en) | Nasicon-structured phosphor and light emitting element comprising same luminesent materials | |
WO2022209033A1 (ja) | 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 | |
EP3088488B1 (en) | Phosphorescent phosphor | |
US20220220378A1 (en) | Metal halide colloidal nanoparticles and method for producing the same | |
JP2009293022A (ja) | 緑色蛍光体 | |
TWI421327B (zh) | 紅色螢光體、紅色發光元件及裝置,以及白色發光元件及裝置 | |
JP4343267B1 (ja) | 緑色蛍光体 | |
KR100387659B1 (ko) | 졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법 | |
WO2024202541A1 (ja) | 蛍光体粉末、蛍光体樹脂組成物、蛍光体、発光素子、及び発光装置 | |
CN110003910B (zh) | 一种Eu3+激活的氟碲酸铋红色荧光粉及其制备方法与应用 | |
JP4708506B2 (ja) | 黄色蛍光体 | |
CN118647689A (zh) | 荧光体粉末、含荧光体组合物、发光元件和发光装置 | |
JP2019127541A (ja) | 石膏系蛍光・蓄光材の作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21935182 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023510229 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237029171 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237029171 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18279350 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021935182 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021935182 Country of ref document: EP Effective date: 20231030 |