WO2022209033A1 - 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 - Google Patents

蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 Download PDF

Info

Publication number
WO2022209033A1
WO2022209033A1 PCT/JP2021/045661 JP2021045661W WO2022209033A1 WO 2022209033 A1 WO2022209033 A1 WO 2022209033A1 JP 2021045661 W JP2021045661 W JP 2021045661W WO 2022209033 A1 WO2022209033 A1 WO 2022209033A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
mga
group
less
range
Prior art date
Application number
PCT/JP2021/045661
Other languages
English (en)
French (fr)
Inventor
明日香 篠倉
昌晃 稲村
行弘 小澤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020237029171A priority Critical patent/KR20230137414A/ko
Priority to EP21935182.2A priority patent/EP4317363A1/en
Priority to JP2023510229A priority patent/JP7459373B2/ja
Priority to US18/279,350 priority patent/US20240301288A1/en
Priority to CN202180096022.0A priority patent/CN117120578A/zh
Publication of WO2022209033A1 publication Critical patent/WO2022209033A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to phosphors and manufacturing methods thereof.
  • the present invention also relates to light-emitting elements and light-emitting devices containing phosphors.
  • LEDs blue light-emitting diodes
  • phosphors that emit green or red fluorescence.
  • the present applicant previously proposed sulfides described in Patent Documents 1 and 2 as phosphors that emit green fluorescence.
  • the external quantum efficiency of a phosphor is expressed as the product of the absorption rate and the internal quantum efficiency. Therefore, by increasing the internal quantum efficiency, it is possible to increase the emission intensity of the phosphor.
  • the phosphors described in Patent Documents 1 and 2 have high internal quantum efficiencies, but the internal quantum efficiencies are higher than ever due to the current demand for high luminance and low power consumption of light-emitting display devices. Phosphors are needed.
  • an object of the present invention is to provide a phosphor having a higher internal quantum efficiency than conventional phosphors and a method for producing the same.
  • the present invention provides a crystal phase represented by formula (1): MGa 2 S 4 (wherein M contains at least one element selected from the group consisting of Ba, Sr and Ca), Formula (2): a crystal phase represented by MGa 4 S 7 (wherein M contains at least one element selected from the group consisting of Ba, Sr and Ca); an element A serving as a luminescence center;
  • the present invention provides a phosphor containing
  • a raw material composition containing Ga, S, M (M includes at least one element selected from the group consisting of Ba, Sr and Ca) and an element A serving as a luminescence center is prepared.
  • the present invention provides a method for producing a phosphor, wherein the raw material composition is fired in a partially molten state.
  • a raw material composition containing Ga, S, M (M includes at least one element selected from the group consisting of Ba, Sr and Ca) and an element A serving as a luminescence center is prepared.
  • MGa 4 S 7 (wherein M contains at least one element selected from the group consisting of Ba, Sr and Ca)
  • FIG. 1 is an X-ray diffraction chart of the phosphor of Example 1.
  • FIG. 2 is an X-ray diffraction chart of the phosphor of Example 2.
  • FIG. 3 is an X-ray diffraction chart of the phosphor of Example 3.
  • FIG. 4 is an X-ray diffraction chart of the phosphor of Comparative Example 1.
  • the present invention will be described below based on its preferred embodiments.
  • the phosphor of the present invention contains sulfide crystals containing gallium (Ga), sulfur (S), and a predetermined metal element (hereinafter, this element is represented by “M”).
  • the phosphor contains the crystal structure of the compound represented by "Formula (1): MGa 2 S 4 ".
  • M contains at least one element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca).
  • the crystal phase derived from formula (1) may be the main phase or the subphase in the phosphor, preferably the main phase in the phosphor.
  • main phase refers to the phase to which the maximum peak of the X-ray diffraction pattern belongs among the entire phosphors.
  • subphase refers to a crystal phase other than the main phase.
  • the element M in this specification is a monovalent or divalent metal element unless otherwise specified.
  • a divalent metal element such as Zn is preferably exemplified.
  • the description regarding the element M is commonly applied in this specification unless otherwise specified.
  • the crystal structure represented by formula (1) is represented by formula (1a): (Ba 1-x Sr x )Ga 2 S 4 (in formula (1a), x is preferably 0.5 or more 1 or less, more preferably 0.6 or more and 0.95 or less.).
  • x is preferably 0.5 or more 1 or less, more preferably 0.6 or more and 0.95 or less.
  • the above-mentioned diffraction peak is a peak that cannot be observed in a pure crystal of MGa 2 S 4 . It has been found that the internal quantum efficiency is high. Such a crystal structure can be obtained, for example, by the manufacturing method described later.
  • the phosphor preferably contains a crystal structure represented by “Formula (2): MGa 4 S 7 ” in addition to the above crystal structure represented by Formula (1). That is, it is preferable that the crystal phase represented by the formula (1) and the crystal phase represented by the formula (2) are contained in one particle of the phosphor.
  • M includes at least one selected from the group consisting of Ba, Sr and Ca.
  • the crystal derived from formula (2) may be the main phase or the secondary phase in the phosphor, preferably the secondary phase in the phosphor.
  • the crystal structure of MGa 2 S 4 contained in the phosphor in each of the above-described embodiments is represented by a stoichiometric ratio of 2 mol of Ga to 1 mol of the element M when the element M is divalent.
  • the molar amounts of the element M contained in the phosphor of the present invention, the element A which is a light-emitting element described later, and Ga are respectively X M and X A , X Ga , "X Ga / ( X M +X A )” is preferably within a predetermined range.
  • X Ga /(X M +X A ) is preferably 1.6 or more and 2.6 or less, more preferably 1.7 or more and 2.5 or less, still more preferably 1.8 or more and 2.4 or less. , particularly preferably 2.05 or more and 2.35 or less.
  • X Ga /(X M +X A ) is in such a range, the melting point is lowered, sintering is promoted in a partially molten state, and a phosphor with high internal quantum efficiency can be obtained with high productivity. can.
  • X Ga /(X M +X A ) can be appropriately adjusted, for example, by adjusting the amounts of raw materials containing element M, element A, and Ga used during production.
  • the phosphor preferably has a predetermined diffraction peak ratio within a specific range in a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays.
  • Ic be the maximum value of the diffraction peak.
  • the ratio Ia/Ic of Ia to Ic is preferably 0.4 or more, more preferably 1.0 or more, and still more preferably 1.2 or more.
  • Ia/Ic is preferably 50 or less, more preferably 10 or less, and even more preferably 5 or less.
  • the reference diffraction peak for Ia is presumed to be derived from MGa 4 S 7
  • the reference diffraction peak for Ic is presumed to be derived from M 2 Ga 2 S 5 . Therefore, the fact that the ratio Ia/Ic of the diffraction peaks derived from such a crystal phase is within the above range means that the crystal phase of MGa 2 S 4 described above was produced in an environment in which a large amount was generated. As a result, the internal quantum efficiency can be made high, and a crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency can be easily obtained, making it easy to obtain a phosphor capable of exhibiting high luminous efficiency.
  • maximum value of diffraction peak as used herein means the maximum value of X-ray diffraction intensity obtained in the diffraction angle range in X-ray diffraction measurement.
  • the ratio Ib/Ic of Ib to Ic is preferably 0.4 or more, more preferably 0.5 or more, and still more preferably 0.8 or more.
  • Ib/Ic is preferably 50 or less, more preferably 10 or less, and even more preferably 5 or less.
  • the reference diffraction peak for Ib described above originates from MGa 4 S 7 . Therefore, the fact that the ratio Ib/Ic of the diffraction peaks derived from such a crystal phase is within the above range means that the crystal phase of MGa 2 S 4 described above was produced in an environment in which a large amount was generated. As a result, the internal quantum efficiency can be made high, and a crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency can be easily obtained, making it easy to obtain a phosphor capable of exhibiting high luminous efficiency.
  • the ratio Ib/Id of Ib to Id is preferably 1.8 or more, more preferably 2.0 or more.
  • Ib/Id is preferably 50 or less, more preferably 10 or less, and even more preferably 5 or less.
  • the reference diffraction peak for Id is presumed to be derived from M 2 Ga 2 S 5 . Therefore, the fact that the ratio Ib/Id of the diffraction peaks derived from such a crystal phase is within the above range means that the crystal phase of MGa 2 S 4 described above is produced in an environment in which a large amount is generated. As a result, the internal quantum efficiency can be made high, and a crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency can be easily obtained, making it easy to obtain a phosphor capable of exhibiting high luminous efficiency.
  • the phosphor does not exhibit a crystal phase represented by formula (3): “M 2 Ga 2 S 5 ”.
  • M includes at least one selected from the group consisting of Ba, Sr and Ca. Since the crystal phase represented by M 2 Ga 2 S 5 is not observed, it means that the crystal phase of MGa 2 S 4 described above is produced in an environment where a large amount of the crystal phase is generated, so the internal quantum efficiency is high. In addition, the crystal phase of MGa 2 S 4 that easily exhibits high external quantum efficiency is easily obtained, and a phosphor material with high luminous efficiency is easily obtained.
  • An X-ray diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays in this specification can be obtained, for example, under the following measurement conditions.
  • ⁇ Measurement diffraction angle: 2 ⁇ 10 to 80°
  • Detector High-speed one-dimensional X-ray detector D/teX Ultra 250 ⁇ Light receiving slit width: 0.3 mm - Divergence slit: 2/3° ⁇ Vertical divergence limiting slit width: 10 mm (using K ⁇ filter)
  • the phosphor is selected from the group consisting of europium (Eu), cerium (Ce), manganese (Mn), and samarium (Sm) as the element A functioning as the luminescent center. preferably contains at least one element From the viewpoint of further increasing the internal quantum efficiency in excitation by blue light emitted from the LED, the phosphor preferably contains Eu, and more preferably contains divalent ions of Eu (i.e., Eu 2+ ). It is more preferable to consist only of Eu 2+ among the central elements.
  • the ratio of the luminescent center in the phosphor is the element to the sum (X M +X A ) of the molar amount of the element M contained in the phosphor and the molar amount of the element A, which is the luminescent element.
  • X A /(X M +X A ) is preferably 0.3 or less, more preferably 0.25 or less, and still more preferably 0.2 or less.
  • the phosphor of the present invention is excited by light with a wavelength range of 250 nm or more and 510 nm or less, and has an emission peak in a wavelength range of 420 nm or more and 730 nm or less. Specifically, the phosphor is excited by light having a wavelength of about 450 nm emitted from a blue LED, for example, and emits visible light ranging from green to yellow.
  • a raw material composition containing each element of Ga, S, and M, and an element A serving as a luminescence center is prepared.
  • the raw material composition may be a single substance, a compound, or a mixture thereof containing one or more of these elements. This raw material composition is typically solid.
  • Materials containing Ga include, for example, compounds such as elemental Ga and Ga 2 O 3 and Ga 2 S 3 .
  • Raw materials containing S include, for example, S simple substance, H 2 S gas, CS 2 , Ga 2 S 3 and other compounds.
  • As raw materials containing M for example, in addition to M alone, oxides of element M such as Ba-containing compounds such as MS, MSO 4 , MCO 3 , M(OH) 2 and MO, Sr-containing compounds, and Ca-containing compounds, water oxides, sulfides, sulfates, carbonates and the like.
  • raw materials containing the element A serving as the luminescence center oxides, sulfides, halides, and various salts of the element A can be mentioned.
  • examples of raw materials containing Eu as the element A serving as the emission center include Eu 2 O 3 , EuS, EuF 3 , and EuCl 3 .
  • Raw materials containing Ce include, for example, CeO 2 , Ce 2 S 3 , CeF 3 , CeCl 3 and the like.
  • Examples of raw materials containing Mn include MnO 2 , Mn 2 S 3 , MnF 3 , MnCl 3 and the like.
  • Raw materials containing Sm include, for example, Sm 2 O 3 , Sm 2 S 3 , SmF 3 , SmCl 3 and the like.
  • the raw material composition can be obtained by dry or wet mixing of the above raw materials, or by wet synthesis in a liquid. Dry mixing can be performed using a mixing device such as a paint shaker or a ball mill. Wet mixing can be performed by suspending each raw material in a liquid medium to form a suspension, and then charging the suspension into the mixing apparatus described above. Thereafter, the mixture is subjected to solid-liquid separation using a sieve or the like, and the obtained solid content is dried to obtain the target raw material composition.
  • a solvent such as alcohol such as ethanol or liquid nitrogen, which is vaporized under the heating conditions described below, can be used.
  • a sol-gel method a citric acid complex method, a citric acid complex polymerization method, a coprecipitation method, a metal hydroxide precipitation method, a homogeneous precipitation method, and an inorganic salt hydrolysis method.
  • an alkoxide method, a redox method, a hydrothermal method, an emulsion method, a solvent evaporation method, a poor solvent dilution method, and the like to obtain a precursor. It can be obtained by contacting a precursor and sulfurizing the precursor.
  • the respective molar amounts of element M, element A, and Ga contained in the phosphor are X M and X X Ga /(X M +X A ) when A and X Ga is preferably 1.6 or more and 2.6 or less, more preferably 1.7 or more and 2.5 or less, still more preferably 1.8 or more and 2 It is preferable to mix the Ga-containing raw material, the M-containing raw material and the luminescence center element A-containing raw material so that the ratio is 0.4 or less, particularly preferably 2.05 or more and 2.35 or less.
  • the charged molar ratios of the Ga-containing raw material, the M-containing raw material, and the luminescent center element A-containing raw material generally match the molar ratios of Ga, M, and luminescent center element A in the phosphor to be obtained.
  • the raw material composition described above is fired.
  • the solid raw material composition may be partially melted before firing.
  • a phosphor material having a crystal structure represented by formula (1): MGa 2 S 4 and preferably a crystal structure represented by formula (2): MGa 4 S 7 in one particle can be generated, and a phosphor having a higher internal quantum efficiency can be obtained with high productivity.
  • the sintering temperature of the raw material composition can be appropriately changed according to the proportion of each raw material, but from the viewpoint of improving the crystallinity, it is preferable to sinter at a higher temperature.
  • the firing temperature is preferably 1000° C. or higher and 1400° C. or lower, more preferably 1100° C. or higher and 1300° C. or lower, and still more preferably 1150° C. or higher and 1250° C. or lower.
  • the temperature increase rate in firing is preferably 1° C./min or more and 10° C./min or less, more preferably 2° C./min or more and 8° C./min or less. , more preferably 3°C/min or more and 7°C/min or less.
  • firing is continued for preferably 1 to 12 hours, more preferably 2 to 10 hours, and still more preferably 3 to 8 hours.
  • MGa 2 S 4 is likely to be generated in the temperature range of about 500 to 900° C.
  • MGa 4 S 7 is likely to be generated in the temperature range of 1000° C. or higher.
  • X Ga /(X M +X A ) is likely to be greater than 2 , and This is advantageous in that MGa 4 S 7 that contributes to the improvement of internal quantum efficiency can be generated more efficiently.
  • the firing atmosphere includes nitrogen, carbon dioxide, inert gases such as argon, reducing gases such as hydrogen gas, and sulfur-containing gases such as hydrogen sulfide and carbon disulfide, preferably sulfur-containing gases.
  • Ga sulfide may be added to the sintered product sintered as described above and then sintered. This makes it easier to generate MGa 4 S 7 .
  • the firing temperature and firing time at this time can be the same conditions as the firing time and firing temperature described above.
  • the product obtained through the above steps is a lump, granular or powdery product, it may be used as it is as the phosphor of the present invention.
  • the product obtained by the above steps may be subjected to post-treatment such as pulverization or classification using a sieve, mill, liquid, etc., annealing treatment, coating treatment, etc., if necessary. , may be the target phosphor.
  • the particle size of the product is preferably 0.01 ⁇ m or more and 150 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of improving the handleability and luminescence of the obtained phosphor.
  • the particle size referred to here indicates the volume cumulative particle size at a cumulative volume of 50% by volume measured by a laser diffraction/scattering particle size distribution measurement method.
  • the dispersion medium When classifying using a liquid, it can be done by dispersing and sedimenting the product in the dispersion medium by ultrasonic treatment or the like, collecting the sediment, and then drying it. Water or an organic solvent such as ethanol can be used as the dispersion medium.
  • the product that has undergone pulverization or classification may be further annealed to obtain the desired phosphor.
  • the annealing conditions the temperature, time and molar ratio conditions in the firing conditions described above can be appropriately adopted.
  • SiO 2 , ZnO, Al 2 O 3 , TiO 2 , and boron are contained from the viewpoint of maintaining good luminescence of the phosphor while improving durability such as moisture resistance of the phosphor. It is preferable to coat the surface of the phosphor with one or more kinds of inorganic compounds such as oxides and metal sulfates such as BaSO 4 .
  • the phosphor obtained through the above steps is preferably a powdery substance composed of aggregates of phosphor particles.
  • This phosphor can be used as a light-emitting device, or a light-emitting device can be provided with a single light-emitting device and a plurality of excitation sources.
  • the light-emitting element may be used as, for example, lighting members, window members, decorative members, light guide plate members, general lighting members such as projector screens, image display devices such as light-emitting displays, liquid crystal televisions, and personal computers. , mobile devices such as tablets and smartphones, LED elements such as lighting fixtures, and light-emitting devices having excitation sources such as ⁇ LED elements.
  • a light-emitting element includes a phosphor and a resin.
  • a light-emitting element can be obtained, for example, by adding phosphor particles to a resin in a molten state, kneading the mixture, and molding it into a predetermined shape by an inflation method, a T-die method, a calendering method, or the like.
  • a liquid mixture containing an organic solvent capable of dispersing the phosphor and the resin in addition to the phosphor and the resin may be placed on the surface of the excitation source to directly mold the light-emitting element on the excitation source.
  • the liquid mixture to be applied on the device includes various printing methods such as screen printing, gravure printing, offset printing, and flexo method, and coating or spraying with a bar, roller, spray gun, etc., and then drying the solvent. .
  • thermoplastic resin a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, and a two-liquid mixed curable resin can be used as the resin constituting the light emitting element.
  • thermoplastic resins include polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polycarbonate resins; polyvinyl-based resins such as polystyrene and polyvinyl chloride; cellulose-based resins such as triacetylcellulose; and urethane resins such as polyurethane.
  • polyolefin resins such as polyethylene and polypropylene
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • polycarbonate resins polyvinyl-based resins such as polystyrene and polyvinyl chloride
  • cellulose-based resins such as triacetylcellulose
  • urethane resins such as polyurethane.
  • thermosetting resins include silicone resins, phenol resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethane resins, and polyimide resins.
  • ionizing radiation-curable resins include acrylic resins, urethane resins, vinyl ester resins, polyester alkyd resins, and the like. These resins can be not only polymers but also oligomers and monomers.
  • An example of a two-component mixed curable resin is an epoxy resin.
  • Examples 1 to 3 and Comparative Examples 1 and 2 BaS and SrS were prepared as raw materials containing the element M, EuS as the raw material containing the element A serving as the emission center, and Ga 2 S 3 as the raw material containing Ga. and mixed with a paint shaker for 100 minutes using a zirconia ball of ⁇ 3 mm to obtain a raw material composition.
  • the resulting raw material composition was fired in an H 2 S atmosphere at a heating rate of 5° C./min at a firing temperature shown in Table 1 below for a firing time of 6 hours to obtain a product.
  • the products were obtained by sintering in a state in which a part of the raw material composition was melted.
  • this product is pulverized for 1 minute with a sieving machine (“ALM-360T” manufactured by Nitto Kagaku Co., Ltd.), using 140-mesh and 440-mesh sieves, under a 140-mesh sieve. Then, the powder on the 440-mesh sieve was collected to obtain the target phosphor powder.
  • ALM-360T manufactured by Nitto Kagaku Co., Ltd.
  • Comparative Example 1 On the other hand, in Comparative Example 1, a diffraction peak derived from SrGa 2 S 4 was observed, but a diffraction peak presumed to be derived from BaGa 4 S 7 was not observed. Moreover, in Comparative Example 1, a diffraction peak presumed to be derived from Sr 2 Ga 2 S 5 was observed.
  • the X-ray diffraction charts of the phosphors of Examples and Comparative Example 1 are shown in FIGS. 1 to 4, respectively. Also, diffraction peaks Ia, Ib, Ic and Id, and Ia/Ic, Ib/Ic and Ib/Id are shown in Table 1 below.
  • P 1 ( ⁇ ) be the standard whiteboard spectrum
  • P 2 ( ⁇ ) be the sample spectrum
  • P 3 ( ⁇ ) be the indirectly excited sample spectrum.
  • the area L 1 (see formula (i) below) in which the spectrum P 1 ( ⁇ ) is surrounded by the excitation wavelength range of 461 nm to 481 nm is defined as the excitation intensity.
  • An area L 2 (see formula (ii) below) in which the spectrum P 2 ( ⁇ ) is surrounded by the excitation wavelength range of 461 nm to 481 nm is taken as sample scattering intensity.
  • the area E 2 (see formula (iii) below) of the spectrum P 2 ( ⁇ ) enclosed by the excitation wavelength range of 482 nm to 648.5 nm is defined as the fluorescence intensity of the sample.
  • the area L 3 (see formula (iv) below) in which the spectrum P 3 ( ⁇ ) is surrounded by the excitation wavelength range of 461 nm to 481 nm is defined as the indirect scattering intensity.
  • the area E 3 (see formula (v) below) in which the spectrum P 3 ( ⁇ ) is enclosed by the excitation wavelength range of 482 nm to 648.5 nm is defined as the indirect fluorescence intensity.
  • the absorptivity is the ratio of incident light to the amount of excitation light that is reduced by the sample, as shown in the following equation (vi).
  • the external quantum efficiency ⁇ ex is a value obtained by dividing the number of photons N em of the fluorescence emitted from the sample by the number of photons N ex of the excitation light irradiated to the sample.
  • the internal quantum efficiency ⁇ in is a value obtained by dividing the number of photons N em of the fluorescence emitted from the sample by the number of photons N abs of the excitation light absorbed by the sample. .
  • the fluorescent substance with a higher internal quantum efficiency than before is provided. Moreover, according to the present invention, such a phosphor can be stably produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

蛍光体は、MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶と、発光中心となる元素Aとを含み、CuKα線を用いたX線回折装置により測定されるX線回折パターンにおいて、2θ=27.6°以上28.3°以下の範囲、及び2θ=28.45°以上28.75°以下の範囲に回折ピークが観察される。また蛍光体の製造方法は、ガリウム元素(Ga)、硫黄元素(S)、元素M(元素Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種を含む。)及び発光中心となる元素Aを含む原料組成物を、その一部が溶融した状態下で焼成する。また本発明は、上述の蛍光体を含む発光素子、及び励起源を備えた発光装置も提供する。

Description

蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置
 本発明は、蛍光体及びその製造方法に関する。また本発明は、蛍光体を含む発光素子及び発光装置に関する。
 光源として例えば青色の発光ダイオード(LED)を用い、これに緑色の蛍光や赤色の蛍光を発光する蛍光体を組み合わせた色再現範囲の広い発光装置が種々開発されている。例えば緑色の蛍光を発光する蛍光体として、本出願人は先に特許文献1及び2に記載の硫化物を提案している。
米国特許出願公開第2011/114985号明細書 米国特許出願公開第2012/018674号明細書
 蛍光体の外部量子効率は、吸収率と内部量子効率の積で表される。したがって、内部量子効率を高くすることで、蛍光体の発光強度を高めることが可能である。上述した特許文献1及び2に記載の蛍光体は内部量子効率が高いものであるが、発光表示デバイスの高輝度化や低消費電力が求められている現在、これまでよりも内部量子効率が高い蛍光体が必要とされている。
 したがって本発明の課題は、従来よりも内部量子効率が高い蛍光体及びその製造方法を提供することにある。
 本発明は、式(1):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、
 式(2):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、
 発光中心となる元素Aと、
 を含む蛍光体を提供するものである。
 また本発明は、Ga、S、M(Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)及び発光中心となる元素Aを含む原料組成物を準備し、
 前記原料組成物を、その一部が溶融した状態下に焼成する、蛍光体の製造方法を提供するものである。
 また本発明は、Ga、S、M(Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)及び発光中心となる元素Aを含む原料組成物を準備し、
 前記原料組成物の焼成によって、式(1):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物と、式(2):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物とを生成させる、蛍光体の製造方法を提供するものである。
図1は、実施例1の蛍光体におけるX線回折チャートである。 図2は、実施例2の蛍光体におけるX線回折チャートである。 図3は、実施例3の蛍光体におけるX線回折チャートである。 図4は、比較例1の蛍光体におけるX線回折チャートである。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の蛍光体は、ガリウム(Ga)及び硫黄(S)、並びに所定の金属元素(以下、この元素を「M」で表す。)を含有する硫化物の結晶を含有する。
 蛍光体は、「式(1):MGa」で表される化合物の結晶構造を含む。式(1)中、Mは、バリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選択される少なくとも1種の元素を含む。元素MとしてBa、Sr及びCaからなる群から選択される少なくとも1種の元素を含むことで、発光色の調整がしやすいものとなる。
 式(1)に由来する結晶相は、蛍光体中の主相であってもよく、副相であってもよく、好ましくは蛍光体中の主相である。本明細書における主相とは、蛍光体全体のうち、X線回折パターンの最大ピークが帰属する相をいう。また本明細書における副相とは、主相以外の結晶相をいう。
 本明細書における元素Mは、特に断りのない限り、1価又は2価の金属元素である。元素Mに包含される元素としては、上述したBa、Sr及びCaの各元素の他、Zn等の2価の金属元素が好ましく挙げられる。この元素Mに関する説明は、特に断りのない限り、本明細書において共通して適用される。
 上述のMのうち、式(1)で表される結晶構造は、式(1a):(Ba1-xSr)Ga(式(1a)中、xは好ましくは0.5以上1以下であり、より好ましくは0.6以上0.95以下である。)で示される化合物の結晶構造を含むことがより好ましい。このような結晶構造を含むことによって、内部量子効率が高いものとすることができるとともに、例えば赤緑青を三原色とするカラー画像表示装置の構成材料として、この蛍光体を適用した際に、上記装置で表示する緑色の彩度が高い、すなわち色純度の高い緑色の表示が可能となる。
 蛍光体がMGaで表される化合物の結晶構造を含むか否かは、例えばCuKα線を用いたX線回折によって測定される回折パターンにおいて、2θ=16.93°±0.5°、23.98°±0.5°、29.88°±0.5°、34.24°±0.5°、及び38.31°±0.5°に特徴的な回折ピークを示すことによって判断することができる。結晶構造に由来する回折ピークの同定には、例えばPDF番号01-077-1189や、00-025-0895のデータを用いることができる。
 蛍光体は、2θ=27.55°以上28.30°以下の範囲、及び2θ=28.45°以上28.75°以下の範囲に回折ピークを示すことが好ましい。つまり、蛍光体は、その一つの粒子内に、主相であるMGaに由来する回折ピークに加えて、上述の回折ピークが更に観察されることが好ましい。
 上述の回折ピークは、MGaの純粋な結晶では観察されないピークであるところ、このような回折ピークが観察される蛍光体を用いることによって、光の吸収率が従来と同等でありながら、内部量子効率が高いものとなることを見出した。このような結晶構造は、例えば後述する製造方法にて得ることができる。
 蛍光体は、式(1)で示される上述の結晶構造に加えて、「式(2):MGa」で表される結晶構造を含むことが好ましい。つまり、蛍光体の一つの粒子内に、式(1)で表される結晶相と、式(2)で表される結晶相とが含まれていることが好ましい。式(2)中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種を含む。式(2)に由来する結晶は、蛍光体中の主相であってもよく、副相であってもよく、好ましくは蛍光体中の副相である。
 式(2)で表される結晶構造を含むことによって、光の吸収率が従来と同等でありながら、内部量子効率が高いものとなるとともに、外部量子効率の高いMGaの結晶相が得られやすくなり、高い発光効率を発現できる蛍光体が得やすくなる。
 蛍光体がMGaで表される化合物の結晶構造を含むか否かは、例えばCuKα線を用いたX線回折によって測定される回折パターンにおいて、2θ=27.55°以上28.30°以下の範囲、及び2θ=28.45°以上28.75°以下の範囲に特徴的な回折ピークを示すことによって判断することができる。結晶構造に由来する回折ピークの同定には、例えばPDF番号01-077-8955のデータを用いることができる。
 上述の各実施形態における蛍光体に含まれるMGaの結晶構造は、元素Mが2価のものである場合、元素Mが1モルに対してGaが2モルである量論比で表されるところ、元素Mが2価の元素である場合において、本発明の蛍光体中に含まれる元素M、後述する発光元素である元素A、及びGaの各モル量をそれぞれX、X、XGaとしたときに、元素Mのモル量と発光元素である元素Aのモル量との和(X+X)に対するGaのモル量XGaの比である「XGa/(X+X)」が所定の範囲であることが好ましい。
 具体的には、XGa/(X+X)が、好ましくは1.6以上2.6以下、より好ましくは1.7以上2.5以下、更に好ましくは1.8以上2.4以下、特に好ましくは2.05以上2.35以下である。XGa/(X+X)がこのような範囲であることによって、融点を下げ、一部が溶融した状態で焼結が促進され、内部量子効率が高い蛍光体を生産性高く得ることができる。XGa/(X+X)は、例えば、製造時に用いる元素Mと元素A及びGaを含む原料の量を調整することで、適宜調整することができる。
 蛍光体は、CuKα線を用いたX線回折測定で得られる回折パターンにおいて、所定の回折ピークの比が特定の範囲であることが好ましい。
 具体的には、2θ=27.9°以上28.36°以下の範囲に観察される回折ピークの最大値をIaとし、2θ=25.8°以上26.1°以下の範囲に観察される回折ピークの最大値をIcとする。このとき、Icに対するIaの比Ia/Icが、好ましくは0.4以上、より好ましくは1.0以上、更に好ましくは1.2以上である。また、Ia/Icは、50以下とすることが好ましく、10以下とすることがより好ましく、5以下とすることがさらに好ましい。
 Iaの基準となる回折ピークはMGaに由来するものと推定され、Icの基準となる回折ピークは、MGaに由来するものと推定される。したがって、このような結晶相に由来する回折ピークの比Ia/Icが上述の範囲となっていることによって、上述したMGaの結晶相が多く生成する環境下で製造されたことを意味するので、内部量子効率が高いものとすることができると共に、高い外部量子効率が発揮し易いMGaの結晶相が得られやすくなり、高い発光効率を発現できる蛍光体が得やすくなる。
 本明細書における「回折ピークの最大値」とは、X線回折測定における、該回折角範囲で得られたX線回折強度の最大値を意味する。
 また、2θ=28.4°以上28.86°以下の範囲に観察される回折ピークの最大値をIbとし、2θ=25.8°以上26.1°以下の範囲に観察される回折ピークの最大値をIcとしたときに、Icに対するIbの比Ib/Icが、好ましくは0.4以上、より好ましくは0.5以上、更に好ましくは0.8以上である。また、Ib/Icは、50以下とすることが好ましく、10以下とすることがより好ましく、5以下とすることがさらに好ましい。
 上述したIbの基準となる回折ピークは、MGaに由来するものと推定される。したがって、このような結晶相に由来する回折ピークの比Ib/Icが上述の範囲となっていることによって、上述したMGaの結晶相が多く生成する環境下で製造されたことを意味するので、内部量子効率が高いものとすることができると共に、高い外部量子効率が発揮し易いMGaの結晶相が得られやすくなり、高い発光効率を発現できる蛍光体が得やすくなる。
 また、2θ=28.4°以上28.86°以下の範囲に観察される回折ピークの最大値をIbとし、2θ=27.3°以上27.8°以下の範囲に観察される回折ピークの最大値をIdとしたときに、Idに対するIbの比Ib/Idが、好ましくは1.8以上、より好ましくは2.0以上である。また、Ib/Idは、50以下とすることが好ましく、10以下とすることがより好ましく、5以下とすることがさらに好ましい。
 Idの基準となる回折ピークはMGaに由来するものと推定される。したがって、このような結晶相に由来する回折ピークの比Ib/Idが上述の範囲となっていることによって、上述したMGaの結晶相が多く生成する環境下で製造されたことを意味するので、内部量子効率が高いものとすることができると共に、高い外部量子効率が発揮し易いMGaの結晶相が得られやすくなり、高い発光効率を発現できる蛍光体が得やすくなる。
 蛍光体は、式(3):「MGa」で表される結晶相が観察されないことが更に好ましい。式(3)中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種を含む。MGaで表される結晶相が観察されないことによって、上述したMGaの結晶相が多く生成する環境下で製造されたことを意味するので、内部量子効率が高いものとすることができると共に、高い外部量子効率が発揮し易いMGaの結晶相が得られやすくなり、発光効率の高い蛍光体用材料が得やすくなる。
 蛍光体がMGaで表される結晶相を含むか否かは、例えばCuKα線を用いたX線回折によって測定される回折パターンにおいて、2θ=25°以上27°以下の範囲、及び2θ=32°以上34°以下の範囲に特徴的な回折ピークを示すことによって判断することができる。結晶構造に由来する回折ピークの同定には、例えばPDF番号00-047-1130のデータを用いることができる。
 本明細書におけるCuKα線を用いたX線回折測定によって得られるX線回折パターンは、例えば以下の測定条件で得ることができる。
 ・装置:Rigaku ULITIMA IV
 ・管球:CuKα
 ・管電圧:50kV
 ・管電流:300mA
 ・測定回折角:2θ=10~80°
 ・測定ステップ幅:0.01°
 ・収集時間:2°/分
 ・検出器:高速1次元X線検出器 D/teX Ultra 250
 ・受光スリット幅:0.3mm
 ・発散スリット:2/3°
 ・発散縦制限スリット幅:10mm(Kβフィルターを使用)
 蛍光体は、上述した実施形態に係る元素に加えて、その発光中心として機能する元素Aとして、ユーロピウム(Eu)、セリウム(Ce)、マンガン(Mn)及びサマリウム(Sm)からなる群より選択される少なくとも1種の元素を含むことが好ましい。LEDから発生した青色光による励起での内部量子効率を更に高める観点から、蛍光体は、Euを含むことが好ましく、Euの二価イオン(すなわちEu2+)を含むことがより好ましく、上述の発光中心となる元素のうちEu2+のみからなることが更に好ましい。
 蛍光体における発光中心の比率は、発光強度を更に向上させる観点から、蛍光体中に含まれる元素Mのモル量と発光元素である元素Aのモル量との和(X+X)に対する元素のモル量Xの比(X/(X+X))が、好ましくは0.05以上、より好ましくは0.07以上、更に好ましくは0.1以上である。また、濃度消光が発生することを防止する観点から、X/(X+X)が好ましくは0.3以下、より好ましくは0.25以下、さらに好ましくは0.2以下である。
 本発明の蛍光体は、波長250nm以上510nm以下の範囲の光によって励起され、波長420nm以上730nm以下の範囲に発光ピークを有する。具体的には、蛍光体は、例えば青色LEDから発せられた波長450nm前後の光によって励起され、緑色から黄色までの範囲の可視光を発するように発光する。
 以下に、蛍光体の好適な製造方法の一実施形態を説明する。本製造方法は、Ga、S、M(Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)及び発光中心となる元素Aを含む原料組成物を焼成するものである。
 まず、Ga、S及びMの各元素、並びに発光中心となる元素Aを含む原料組成物を準備する。原料組成物としては、これらの元素を一種以上含む単体、化合物又はその混合物とすることができる。この原料組成物は、典型的には固体である。
 Gaを含む原料としては、例えば、Ga単体、Ga、Ga等の化合物が挙げられる。
 Sを含む原料としては、例えばS単体、HSガス、CS、Ga等の化合物が挙げられる。
 Mを含む原料としては、例えばM単体の他、MS、MSO、MCO、M(OH)、MO等のBa含有化合物、Sr含有化合物、Ca含有化合物といった、元素Mの酸化物、水酸化物、硫化物、硫酸塩、炭酸塩等が挙げられる。
 発光中心となる元素Aを含む原料としては、該元素Aの酸化物、硫化物、ハロゲン化物、並びに各種の塩が挙げられる。ここで、発光中心となる元素AとしてEuを含む原料としては、例えば、Eu、EuS、EuF、EuCl等が挙げられる。また、Ceを含む原料としては、例えば、CeO、Ce、CeF、CeCl等が挙げられる。Mnを含む原料としては、例えば、MnO、Mn、MnF、MnCl等が挙げられる。Smを含む原料としては、例えば、Sm、Sm、SmF、SmCl等が挙げられる。
 原料組成物は、上述の各原料を乾式又は湿式によって混合するか、あるいは液中で湿式合成することによって得ることができる。
 乾式による混合は、例えば、ペイントシェーカーやボールミル等の混合装置を用いて行うことができる。
 湿式による混合は、各原料を液媒に懸濁させて懸濁液としたあと、該懸濁液を上述の混合装置内に投入して行うことができる。その後、この混合物を篩等を用いて固液分離して得られた固体分を乾燥することで、目的とする原料組成物を得ることができる。液媒としては、エタノールなどのアルコールや液体窒素等といった、後述する加熱条件において気化する溶媒を用いることができる。
 原料組成物を液中で湿式合成する場合には、例えば、ゾルゲル法、クエン酸錯体法、クエン酸錯体重合法、共沈法、金属水酸化物沈殿法、均一沈殿法、無機塩加水分解法、アルコキシド法、酸化還元法、水熱法、エマルジョン法、溶媒蒸発法、貧溶媒希釈法などの各種の製造方法で前駆体を得た後、HSやCS等の硫黄含有気体と該前駆体とを接触させて、該前駆体を硫化させることによって得ることができる。
 上述のX線回折パターンを有する結晶を効率的に得やすくして、内部量子効率を高める観点から、蛍光体中に含まれる元素M、元素A、及びGaの各モル量をそれぞれX、X、XGaとしたときのXGa/(X+X)が、好ましくは1.6以上2.6以下、より好ましくは1.7以上2.5以下、更に好ましくは1.8以上2.4以下、特に好ましくは、2.05以上2.35以下となるように、Ga含有原料、M含有原料及び発光中心元素A含有原料を混合することが好ましい。Ga含有原料、M含有原料及び発光中心元素A含有原料の仕込みモル比は、得られる蛍光体中のGa、M及び発光中心元素Aのモル比と概ね一致するので、このような範囲のモル比となるように原料を混合することによって、上述の特徴的な回折ピークの発現や、XGa/(X+X)を容易に達成しやすくして、内部量子効率が更に高い蛍光体を生産性高く得ることができる。
 続いて、上述の原料組成物を焼成する。本製造方法においては、固体の原料組成物の一部が溶融した状態下に焼成してもよい。
 このような焼成を経て、式(1):MGaで示される結晶構造と、好ましくは式(2):MGaで示される結晶構造とを一粒子中に有する蛍光体用材料を生成させることができ、内部量子効率が更に高い蛍光体を生産性高く得ることができる。
 原料組成物の焼成温度は、各原料の存在割合に応じて適宜変化し得るが、結晶性を向上させる観点から、より高温で焼成させることが好ましい。具体的には、焼成温度は、好ましくは1000℃以上1400℃以下、より好ましくは1100℃以上1300℃以下、更に好ましくは1150℃以上1250℃以下である。
 式(1):MGaで示される化合物と、式(2):MGaで示される化合物を効率よく生成させて、内部量子効率に優れた蛍光体を得やすくする観点から、焼成によって、MGaを生成させたあと、そのMGaをMGaに変化させるように行うことが好ましい。
 このように焼成を行う温度条件の一実施形態としては、例えば、焼成における昇温速度を、好ましくは1℃/min以上10℃/min以下、より好ましくは2℃/min以上8℃/min以下、更に好ましくは3℃/min以上7℃/min以下とする。目的とする焼成温度に達したあと、好ましくは1時間以上12時間以下、より好ましくは2時間以上10時間以下、更に好ましくは3時間以上8時間以下維持して焼成させる。
 上述の原料組成物を用いた場合、500~900℃程度の温度域ではMGaが生成しやすく、1000℃以上の温度域ではMGaが生成しやすい。このような昇温速度、温度及び時間で焼成することによって、MGaの一部をMGaに変化させやすくして、内部量子効率をより一層高めることができる蛍光体が得られやすくなる。これに加えて、原料組成物中の元素Mに対するGaのモル比をMGaの量論比よりも多く含有させることによって、XGa/(X+X)が2超となりやすく、且つ内部量子効率の向上に寄与するMGaを更に効率的に生成させることができる点で有利である。
 焼成雰囲気は、窒素や二酸化炭素、アルゴンなどの不活性ガス、水素ガス等の還元性ガス、硫化水素や二硫化炭素などの硫黄含有ガス等が挙げられ、好ましくは硫黄含有ガスである。硫黄含有ガスを導入しながら焼成することによって、原料組成物中に硫黄を非含有とするか、又は硫黄の含有量が量論比よりも少ない場合でもガス中の硫黄と反応させて、目的とする生成物を生産性高く得ることができる。これに加えて、生成物の意図しない分解を抑制する点でも有利である。
 上述のように焼成した焼成物に硫化Gaを加え、さらに焼成しても良い。このことにより、MGaが更に生成し易くなる。このときの焼成温度や焼成時間は、上述した焼成時間や焼成温度と同様の条件とすることができる。
 以上の工程を経て得られた生成物は、塊状物、粒状物又は粉状物であるので、これをそのまま本発明の蛍光体として用いてもよい。これに代えて、以上の工程で得られた生成物に対して、必要に応じて、篩やミル、液体等を用いた解砕あるいは分級、アニール処理、被覆処理等の後処理工程を行って、目的とする蛍光体としてもよい。
 解砕を行う場合、スタンプミルやペイントシェーカー、らいかい機などを用いて、結晶構造に影響を及ぼさない緩やかな条件で解砕することが好ましい。
 分級を行う場合、得られる蛍光体の取り扱い性と発光性とを高める観点から、生成物の粒子径を好ましくは0.01μm以上150μm以下、より好ましくは1μm以上50μm以下となるようにする。なお、ここでいう粒子径はレーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径を示す。
 液体を用いて分級を行う場合、超音波処理等によって、分散媒中に生成物を分散させ沈降させて沈降物を回収し、その後乾燥させることによって行うことができる。分散媒は、水や、エタノール等の有機溶媒を用いることができる。
 解砕又は分級を経た生成物は、更にアニール処理を行って、目的とする蛍光体としてもよい。アニール処理の条件は、上述の焼成条件における温度、時間及びモル比条件を適宜採用することができる。
 被覆処理を行う場合、蛍光体の耐湿性等の耐久性を向上させつつ、蛍光体が有する良好な発光性を維持させる観点から、SiO、ZnO、Al、TiO、ホウ素を含有する酸化物や、BaSO等の金属硫酸塩等の無機化合物の一種以上を用いて蛍光体の表面を被覆することが好ましい。
 以上の工程を経て得られた蛍光体は、好ましくは蛍光体の粒子の集合体からなる粉状物である。この蛍光体を用いて発光素子としたり、あるいは、発光素子と励起源とをそれぞれ単独で又は複数備えた発光装置としたりすることができる。詳細には、発光素子を、例えば照明用部材、窓用部材、電飾部材、導光板部材、プロジェクタのスクリーンなどの一般照明用の部材や、発光ディスプレイ等の画像表示機器や、液晶テレビ、パソコン、タブレット、スマートフォン等のモバイル機器、照明器具等のLED素子、μLED素子等の励起源を有する発光装置の構成部材として用いることもできる。
 発光素子は、蛍光体と樹脂とを含む。発光素子は、例えば、溶融状態の樹脂に蛍光体の粒子を添加して混練した後、これをインフレーション法、Tダイ法及びカレンダー法等によって、所定の形状に成形することによって得ることができる。
 これに代えて、蛍光体及び樹脂に加えて、蛍光体及び樹脂を分散可能な有機溶媒を含む液状の混合物を励起源の表面に配置して、励起源上に発光素子を直接成形することもできる。デバイス上に適用する液状混合物は、スクリーン印刷、グラビア印刷、オフセット印刷、フレキソ法等の各種印刷方法、バーやローラーやスプレーガン等によって塗工又は噴霧し、その後、溶媒を乾燥する方法が挙げられる。
 発光素子を構成する樹脂は、例えば熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂及び二液混合硬化性樹脂を用いることができる。
 熱可塑性樹脂の例としては、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル系樹脂、ポリカーボネート樹脂、ポリアクリル酸又はそのエステルやポリメタクリル酸又はそのエステル等のポリアクリル酸系樹脂、ポリスチレンやポリ塩化ビニル等のポリビニル系樹脂、トリアセチルセルロース等のセルロース系樹脂、ポリウレタン等のウレタン樹脂などが挙げられる。
 また、熱硬化性樹脂の例としては、シリコーン樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、ポリイミド樹脂などが挙げられる。電離放射線硬化性樹脂の例としては、アクリル樹脂、ウレタン樹脂、ビニルエステル樹脂、ポリエステルアルキド樹脂などが挙げられる。これらの樹脂は、ポリマーだけでなく、オリゴマー、モノマーも使用することができる。二液混合硬化性樹脂の例としては、エポキシ樹脂が挙げられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。以下の表中において「-」で示す欄は、測定又は評価を未実施であることを示す。
〔実施例1ないし3、並びに比較例1及び2〕
 元素Mを含む原料としてBaS及びSrS、発光中心となる元素Aを含む原料としてEuS、Gaを含む原料としてGaを準備し、各元素が以下の表1に示すモル比率で含まれるように秤量して、φ3mmのジルコニアボールを用いてペイントシェーカーで100分間混合して、原料組成物を得た。
 得られた原料組成物を、HS雰囲気、昇温速度5℃/minにて、焼成温度を以下の表1に示す温度とし、焼成時間6時間にて焼成し、生成物を得た。なお、実施例はいずれも原料組成物の一部が溶融した状態下で焼成し、生成物を得た。そして、この生成物を、らいかい機(日陶科学社製「ALM-360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、目的とする蛍光体の粉末を得た。
 なお、比較例2は、原料組成物の全てが溶融してしまい、目的とする蛍光体を取り出すことができなかったので、以後の評価は行わなかった。
〔X線回折測定〕
 各実施例及び比較例1の蛍光体について、上述の条件でX線回折測定を行った。その結果、各実施例は、SrGaに由来するPDF番号01-077-1189のパターンと一致するとともに、BaGaに由来するものと推定される2θ=27.6°以上28.3°以下の範囲、及び2θ=28.45°以上28.75°以下の範囲に回折ピークが観察されたが、SrGaに由来するものと推定される回折ピークは観察されなかった。
 一方、比較例1は、SrGaに由来する回折ピークは観察されたが、BaGaに由来するものと推定される回折ピークは観察されなかった。また比較例1は、SrGaに由来するものと推定される回折ピークが観察された。
 各実施例及び比較例1の蛍光体についてのX線回折チャートを図1~図4にそれぞれ示す。
 また、回折ピークのIa、Ib、Ic及びId、並びにIa/Ic、Ib/Ic及びIb/Idを以下の表1に示す。
〔蛍光体の吸収率及び内部量子効率の測定〕
 実施例及び比較例で得られた蛍光体粉末について、以下のとおり、吸収率と内部量子効率とを測定した。
 詳細には、分光蛍光光度計FP-8500、積分球ユニットISF-834(日本分光株式会社製)を用い、固体量子効率計算プログラムに従い行った。分光蛍光光度計は、副標準光源およびローダミンBを用いて補正した。
 励起光を450nmとした場合の蛍光体の吸収率、内部量子効率および外部量子効率の計算式を以下に示す。この計算式は、日本分光社製、FWSQ-6-17(32)固体量子効率計算プログラムの取扱説明書の記載に準拠したものである。
 吸収率及び内部量子効率の結果を以下の表1に示す。
 P(λ)を標準白板スペクトルとし、P(λ)を試料スペクトルとし、P(λ)を間接励起試料スペクトルとする。
 スペクトルP(λ)が励起波長範囲461nm~481nmで囲われる面積L(以下の式(i)参照)を、励起強度とする。
 スペクトルP(λ)が励起波長範囲461nm~481nmで囲われる面積L(以下の式(ii)参照)を、試料散乱強度とする。
 スペクトルP(λ)が励起波長範囲482nm~648.5nmで囲われる面積E(以下の式(iii)参照)を、試料蛍光強度とする。
 スペクトルP(λ)が励起波長範囲461nm~481nmで囲われる面積L(以下の式(iv)参照)を、間接散乱強度とする。
 スペクトルP(λ)が励起波長範囲482nm~648.5nmで囲われる面積E(以下の式(v)参照)を、間接蛍光強度とする。
Figure JPOXMLDOC01-appb-M000001
 吸収率は、以下の式(vi)に示されるように、励起光の試料による減少分の入射光の比となる。
 外部量子効率εexは、以下の式(vii)に示されるように、試料から放出される蛍光の光子数Nemを、試料に照射された励起光の光子数Nexで除した値となる。
 内部量子効率εinは、以下の式(viii)に示されるように、試料から放出される蛍光の光子数Nemを、試料に吸収される励起光の光子数Nabsで除した値となる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、これまでよりも内部量子効率が高い蛍光体が提供される。また本発明によれば、そのような蛍光体を安定的に製造できる。
 

Claims (10)

  1.  式(1):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、
     式(2):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、
     発光中心となる元素Aと、
     を含む、蛍光体。
  2.  式(1):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される結晶相と、発光中心となる元素Aとを含み、
     CuKα線を用いたX線回折装置により測定されるX線回折パターンにおいて、2θ=27.55°以上28.30°以下の範囲、及び2θ=28.45°以上28.75°以下の範囲に回折ピークが観察される、蛍光体。
  3.  蛍光体中に含まれる前記元素Mのモル量、前記元素Aのモル量、及びGaのモル量をそれぞれX、X、XGaとしたときのXGa/(X+X)が、1.6以上2.6以下である、請求項1又は2に記載の蛍光体。
  4.  CuKα線を用いたX線回折装置により測定されるX線回折パターンにおいて、2θ=25.8°以上26.1°以下の範囲に観察される回折ピークの最大値Icに対する、2θ=27.9°以上28.36°以下の範囲に観察される回折ピークの最大値Iaの比Ia/Icが、0.4以上である、請求項1ないし3のいずれか一項に記載の蛍光体。
  5.  CuKα線を用いたX線回折装置により測定されるX線回折パターンにおいて、2θ=25.8°以上26.1°以下の範囲に観察される回折ピークの最大値Icに対する、2θ=28.4°以上28.86°以下の範囲に観察される回折ピークの最大値Ibの比Ib/Icが、0.4以上である、請求項1ないし4のいずれか一項に記載の蛍光体。
  6.  前記発光中心となる元素Aが、Eu、Ce、Mn及びSmからなる群より選択される少なくとも1種の元素を含む、請求項1ないし5のいずれか一項に記載の蛍光体。
  7.  Ga、S、M(Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)及び発光中心となる元素Aを含む原料組成物を準備し、
     前記原料組成物を、その一部が溶融した状態下で焼成する、蛍光体の製造方法。
  8.  Ga、S、M(Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)及び発光中心となる元素Aを含む原料組成物を準備し、
     前記原料組成物の焼成によって、式(1):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物と、式(2):MGa(式中、Mは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素を含む。)で表される化合物とを生成させる、蛍光体の製造方法。
  9.  請求項1ないし6のいずれか一項に記載の蛍光体と樹脂とを含む発光素子。
  10.  請求項1ないし6のいずれか一項に記載の蛍光体及び励起源を備えた発光装置。
PCT/JP2021/045661 2021-03-30 2021-12-10 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置 WO2022209033A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237029171A KR20230137414A (ko) 2021-03-30 2021-12-10 형광체 및 그 제조 방법, 형광체를 포함하는 발광 소자 그리고 발광 장치
EP21935182.2A EP4317363A1 (en) 2021-03-30 2021-12-10 Phosphor, method for producing same, light emitting element containing phosphor, and light emitting device
JP2023510229A JP7459373B2 (ja) 2021-03-30 2021-12-10 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置
US18/279,350 US20240301288A1 (en) 2021-03-30 2021-12-10 Phosphor, method for producing same, light emitting element containing phosphor, and light emitting device
CN202180096022.0A CN117120578A (zh) 2021-03-30 2021-12-10 荧光体及其制造方法、包含荧光体的发光元件以及发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056337 2021-03-30
JP2021056337 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209033A1 true WO2022209033A1 (ja) 2022-10-06

Family

ID=83455721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045661 WO2022209033A1 (ja) 2021-03-30 2021-12-10 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置

Country Status (7)

Country Link
US (1) US20240301288A1 (ja)
EP (1) EP4317363A1 (ja)
JP (1) JP7459373B2 (ja)
KR (1) KR20230137414A (ja)
CN (1) CN117120578A (ja)
TW (1) TW202305093A (ja)
WO (1) WO2022209033A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242869A (ja) * 1994-03-04 1995-09-19 Mitsui Mining & Smelting Co Ltd 薄膜エレクトロルミネッセンス素子
JP2007112950A (ja) * 2005-10-24 2007-05-10 Canon Inc 蛍光体材料及びこれを用いた発光部材、画像表示装置
WO2011033830A1 (ja) * 2009-09-18 2011-03-24 三井金属鉱業株式会社 蛍光体
US20110114985A1 (en) 2008-09-11 2011-05-19 Mitsui Mining & Smelting Co., Ltd. Green Emitting Phosphor
JP2013077825A (ja) * 2012-11-26 2013-04-25 Dexerials Corp 緑色発光蛍光体粒子、色変換シート、発光装置及び画像表示装置組立体
JP2017088719A (ja) * 2015-11-09 2017-05-25 堺化学工業株式会社 赤色蛍光体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274028A (ja) * 2007-04-25 2008-11-13 Canon Inc 蛍光体材料、発光部材および画像形成装置
WO2010146990A1 (ja) * 2009-06-19 2010-12-23 三井金属鉱業株式会社 黄色蛍光体
JP5923473B2 (ja) * 2013-09-20 2016-05-24 デクセリアルズ株式会社 緑色発光蛍光体
KR101850755B1 (ko) * 2014-03-27 2018-04-23 미쓰이금속광업주식회사 형광체 및 그 용도
JP6871098B2 (ja) * 2017-07-26 2021-05-12 デクセリアルズ株式会社 蛍光体、及びその製造方法、蛍光体シート、並びに照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242869A (ja) * 1994-03-04 1995-09-19 Mitsui Mining & Smelting Co Ltd 薄膜エレクトロルミネッセンス素子
JP2007112950A (ja) * 2005-10-24 2007-05-10 Canon Inc 蛍光体材料及びこれを用いた発光部材、画像表示装置
US20110114985A1 (en) 2008-09-11 2011-05-19 Mitsui Mining & Smelting Co., Ltd. Green Emitting Phosphor
WO2011033830A1 (ja) * 2009-09-18 2011-03-24 三井金属鉱業株式会社 蛍光体
US20120018674A1 (en) 2009-09-18 2012-01-26 Mitsui Mining & Smelting Co., Ltd. Emitting Phosphor
JP2013077825A (ja) * 2012-11-26 2013-04-25 Dexerials Corp 緑色発光蛍光体粒子、色変換シート、発光装置及び画像表示装置組立体
JP2017088719A (ja) * 2015-11-09 2017-05-25 堺化学工業株式会社 赤色蛍光体

Also Published As

Publication number Publication date
TW202305093A (zh) 2023-02-01
KR20230137414A (ko) 2023-10-04
JPWO2022209033A1 (ja) 2022-10-06
US20240301288A1 (en) 2024-09-12
JP7459373B2 (ja) 2024-04-01
EP4317363A1 (en) 2024-02-07
CN117120578A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
US6987353B2 (en) Light emitting device having sulfoselenide fluorescent phosphor
US11292964B2 (en) Phosphor
TWI390011B (zh) 綠色螢光體
TWI424046B (zh) 綠色螢光體
KR101148998B1 (ko) 형광체
WO2010119800A1 (ja) 赤色蛍光体及びその製造方法
US20170210984A1 (en) Nasicon-structured phosphor and light emitting element comprising same luminesent materials
WO2022209033A1 (ja) 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置
EP3088488B1 (en) Phosphorescent phosphor
US20220220378A1 (en) Metal halide colloidal nanoparticles and method for producing the same
JP2009293022A (ja) 緑色蛍光体
TWI421327B (zh) 紅色螢光體、紅色發光元件及裝置,以及白色發光元件及裝置
JP4343267B1 (ja) 緑色蛍光体
KR100387659B1 (ko) 졸겔법을 이용한 스트론튬알루미네이트 형광체의 제조방법
WO2024202541A1 (ja) 蛍光体粉末、蛍光体樹脂組成物、蛍光体、発光素子、及び発光装置
CN110003910B (zh) 一种Eu3+激活的氟碲酸铋红色荧光粉及其制备方法与应用
JP4708506B2 (ja) 黄色蛍光体
CN118647689A (zh) 荧光体粉末、含荧光体组合物、发光元件和发光装置
JP2019127541A (ja) 石膏系蛍光・蓄光材の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237029171

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029171

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18279350

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021935182

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021935182

Country of ref document: EP

Effective date: 20231030