WO2016140029A1 - 蛍光体 - Google Patents

蛍光体 Download PDF

Info

Publication number
WO2016140029A1
WO2016140029A1 PCT/JP2016/053962 JP2016053962W WO2016140029A1 WO 2016140029 A1 WO2016140029 A1 WO 2016140029A1 JP 2016053962 W JP2016053962 W JP 2016053962W WO 2016140029 A1 WO2016140029 A1 WO 2016140029A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
mcusi
intensity
crystal phase
formula
Prior art date
Application number
PCT/JP2016/053962
Other languages
English (en)
French (fr)
Inventor
純一 伊東
行弘 小澤
崇好 森
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US15/533,057 priority Critical patent/US10538679B2/en
Priority to CN201680004613.XA priority patent/CN107109218B/zh
Priority to KR1020177012706A priority patent/KR101948593B1/ko
Priority to JP2017503392A priority patent/JP6693942B2/ja
Priority to EP16758724.5A priority patent/EP3266849B1/en
Publication of WO2016140029A1 publication Critical patent/WO2016140029A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to a phosphor that is excited by visible light and can emit near-infrared light.
  • a near infrared spectroscopic measurement device using a near infrared light emitting element is rich in moisture such as living organisms and fruits and vegetables. Particularly suitable for evaluation of inclusions.
  • OCT optical coherence tomography
  • silicon has the highest photoresponsiveness in the near infrared region, so if visible light can be converted into near infrared light, the power generation efficiency will be further improved. Can be increased.
  • a phosphor capable of emitting near-infrared light it is possible to develop new fluorescent paints and printed fluorescent paints.
  • ultraviolet fluorescent pigments have been mainly used for anti-counterfeit printing used for banknotes and the like. If this can be replaced with a near-infrared fluorescent pigment, it cannot be detected with the naked eye, but a new anti-counterfeit printing that can be detected with solid-state image sensors using photodiodes such as silicon and InGaAs, and equipment using photomultiplier tubes Is possible.
  • the infrared glass phosphor used in the OCT apparatus includes Yb 2 O 3 and Nd 2 O 3 , and further includes Bi 2 O 3 and B 2 O 3.
  • Patent Document 2 Japanese Patent Publication No. 2004-526330 discloses a near-infrared emitter that is excited by near-infrared light using a glass-ceramic material doped with transition metal ions, and is also proposed for use in an OCT apparatus. Has been.
  • the infrared glass phosphor used in the OCT apparatus includes Yb 2 O 3 and Nd 2 O 3 , and further includes Bi 2 O 3 and B 2 O 3.
  • An infrared glass phosphor containing glass was disclosed.
  • the present invention is intended to provide a new phosphor that is excited by visible light in a wide band and can emit near-infrared light with high intensity.
  • the present invention relates to a crystal phase represented by the formula (1): MCuSi 2 O 6 (wherein M is one or more of Ba, Sr and Ca), and the formula (2): MCuSi. 4 O 10 (wherein M is a crystal phase represented by one or more of Ba, Sr and Ca), and powder X-ray diffraction measurement (XRD) using CuK ⁇ rays
  • a phosphor is characterized in that the ratio ⁇ of the diffraction peak intensity of MCuSi 4 O 10 to the diffraction peak intensity of MCuSi 2 O 6 is 0 ⁇ ⁇ 0.50.
  • the phosphor proposed by the present invention is excited by visible light in a wide band and can emit near-infrared light with high intensity. Therefore, as described above, as a phosphor constituting a light-emitting element mounted on a near-infrared spectroscopic measurement apparatus or an optical coherence tomographic image apparatus (OCT), light reception mounted on a solar cell, a solar power generation apparatus, or the like. It can also be suitably used as a wavelength conversion material constituting the element. Moreover, the phosphor proposed by the present invention can be suitably used as a phosphor to be included in a fluorescent paint printed material or a printed material having a near infrared light emitting image recognition unit.
  • OCT optical coherence tomographic image apparatus
  • FIG. 2 is a diagram showing an XRD pattern of a phosphor (sample) obtained in Example 1.
  • FIG. 6 is a diagram showing an XRD pattern of a phosphor (sample) obtained in Example 2.
  • FIG. It is the figure which showed the XRD pattern of the fluorescent substance (sample) obtained by the comparative example 1. It is the figure which showed the XRD pattern of the fluorescent substance (sample) obtained by the comparative example 2. It is the figure which showed the XRD pattern of the fluorescent substance (sample) obtained by the comparative example 3. It is the figure which showed the XRD pattern of the fluorescent substance (sample) obtained in the comparative example 4.
  • Example 1 and the comparative example 1 show the excitation spectrum and fluorescence spectrum of Example 1 and the comparative example 1 as a relative value when the maximum value of the excitation intensity and fluorescence intensity of a vertical axis
  • FIG. It is the figure which showed the excitation spectrum and fluorescence spectrum of Example 1, Example 2, and the comparative example 4 as a relative value when the maximum value of the excitation intensity of a vertical axis
  • the phosphor according to an example of the present embodiment has the formula (1): MCuSi 2 O 6 (wherein M is one or more of Ba, Sr and Ca). And a crystal phase (referred to as “MCuSi 2 O 6 crystal phase”) and a formula (2): MCuSi 4 O 10 (wherein M is one or two of Ba, Sr and Ca) And a phosphor containing at least a crystal phase (referred to as “MCuSi 4 O 10 crystal phase”).
  • MCuSi 2 O 6 crystal phase a crystal phase
  • MCuSi 4 O 10 crystal phase a phosphor containing at least a crystal phase
  • the present phosphor may be a polycrystal composed of a plurality of crystal phases or a mixture containing a plurality of crystal phases.
  • crystal phase when expressed as an MCuSi 2 O 6 crystal phase, if the “crystal phase” contains MCuSi 2 O 6 as a main component, it cannot be detected that other components such as XRD exist in the crystal phase. It may contain components. The same applies to other crystal phases.
  • the MCuSi 2 O 6 crystal phase is preferably the main crystal phase.
  • the diffraction peak intensity derived from the crystal phase of MCuSi 2 O 6 is the diffraction peak intensity derived from any other crystal phase. Is preferably larger.
  • the ratio ⁇ of peak intensity is 0 ⁇ ⁇ 0.50. If MCuSi 2 O 6 and MCuSi 4 O 10 are included in such a range, the excitation spectrum band can be expanded while maintaining the fluorescence spectrum intensity.
  • the ratio ⁇ of the diffraction peak intensity of MCuSi 4 O 10 to the diffraction peak intensity of MCuSi 2 O 6 is preferably 0 ⁇ ⁇ 0.50, and more preferably 0 ⁇ ⁇ 0.31. Particularly preferred, and more preferably 0 ⁇ ⁇ 0.10.
  • the content of each crystal phase is expressed not by chemical analysis but by the diffraction peak intensity of each crystal phase in the XRD pattern.
  • the content of each crystal phase is indicated by chemical analysis, for example, flux While it is difficult to accurately express the characteristics of this phosphor because it is greatly affected by the amount of additive added, the effect of the amount of additive added can be expressed by the diffraction peak intensity of each crystal phase in the XRD pattern. This is because the characteristics of the phosphor can be expressed more accurately.
  • the phosphor preferably further contains a SiO 2 crystal phase. However, the phosphor does not have to contain a SiO 2 crystal phase.
  • the present phosphor contains a SiO 2 crystal phase, SiO 2 with respect to the diffraction peak intensity of MCuSi 2 O 6 in the XRD pattern obtained by measuring the present phosphor by powder X-ray diffraction measurement (XRD) using CuK ⁇ rays.
  • the ratio ⁇ of the diffraction peak intensity is preferably 0 ⁇ ⁇ 0.45. If the SiO 2 crystal phase is included in such a range, scattering of excitation light can be prevented and higher fluorescence spectrum intensity can be obtained.
  • the ratio ⁇ of the diffraction peak intensity of SiO 2 is preferably 0 ⁇ ⁇ 0.45, particularly preferably 0.16 ⁇ , more preferably ⁇ ⁇ 0.35, and more preferably ⁇ ⁇ 0.3. It is particularly preferable that 0.20 ⁇ or ⁇ ⁇ 0.25 is more preferable.
  • the phosphor may or may not contain a BaSi 2 O 5 phase. This is because at present, neither the advantage nor the defect due to the inclusion of the BaSi 2 O 5 phase has been confirmed.
  • a part of Cu in the formula (1): MCuSi 2 O 6 or the formula (2): MCuSi 4 O 10 or both is substituted with Mg or Zn or both.
  • MgO 4 and ZnO 4 are formed in the crystal structure, self-absorption of light emission by adjacent CuO 4 is prevented, and improvement in quantum efficiency can be expected.
  • the phosphor preferably further contains one or more elements selected from the group consisting of Li, Na, K, B, P, F, Cl, Br and I. At this time, the content of these elements is preferably 0.005 to 3% by mass, more preferably 0.008% by mass or more and 2% by mass or less, and particularly preferably 0.01% by mass or more or 1% by mass or less. It is particularly preferred. When this phosphor contains these elements, the emission peak intensity can be increased as a result. These elements can be added as part of the sintering aid.
  • the present phosphor may contain an element component other than the above as long as it is less than 20% by mass. This is because it is considered that the content of this level does not affect the characteristics of the present phosphor.
  • the present phosphor is not limited to its form such as a thin film, plate or particle. However, it is preferably in the form of particles from the viewpoint of processability to a light emitting element mounting apparatus or a printed material to be used.
  • This phosphor can be manufactured by the following manufacturing method.
  • the manufacturing method of this fluorescent substance is not limited to the manufacturing method demonstrated below.
  • This phosphor mixes M element raw material in Formula (1): MCuSi 2 O 6 , Cu raw material, and silicon raw material, adds a flux (sintering aid) as necessary, and fires the mixture. You can get it.
  • examples of the M element raw material include oxides, carbonates, nitrates, acetates, and the like of the M element (one or more elements selected from Ba, Sr, and Ca).
  • examples of the Cu raw material include Cu oxides, carbonates, sulfates and metals.
  • examples of the silicon raw material include silicon oxide, carbide, nitride, and silicon. In addition, it is preferable not to add a reducing agent from a viewpoint of keeping the oxidation number of Cu bivalent.
  • the mixing ratio (molar ratio) of the M element raw material and the Cu raw material is preferably 1.5: 1.0 to 0.8: 1.0, and more preferably 1.3: 1.0 to 0.9: 1.0, particularly 1.2: 1.0 to 1.0: 1.0 is particularly preferable.
  • the mixing ratio (mass ratio) of the Cu raw material and the silicon raw material is preferably 1.0: 2.0 to 1.0: 5.0, and more preferably 1.0: 3.0 to 1.0. : 4.5, and particularly preferably 1.0: 3.5 to 1.0: 4.2.
  • the chemical reaction can be promoted and the amount of unreacted material can be reduced.
  • a flux (sintering aid) containing one or more elements selected from the group consisting of Li, Na, K, B, P, F, Cl, Br and I can be mentioned. Of these, Li, Na, K, B, F, Cl and the like are particularly preferable.
  • the blending amount (mass ratio) of the flux (sintering aid) is preferably 0.1 to 15% with respect to the total weight of the mixed M element raw material, Cu raw material and silicon raw material, in particular 1% or more or It is even more preferable that it is 10% or less, particularly 2% or more or 7% or less.
  • the firing atmosphere is not a reducing atmosphere
  • an appropriate atmosphere can be adopted.
  • an inert gas atmosphere, an air atmosphere, an oxidizing atmosphere, or the like can be employed.
  • the firing temperature may be 700 to 1100 ° C. This is because the reaction is difficult to proceed at a temperature lower than 700 ° C., but may melt at a temperature higher than 1100 ° C.
  • the first baking can be performed in a temperature range of 700 to 900 ° C.
  • the second baking can be performed in a temperature range of 800 to 1100 ° C. after pulverizing the obtained baking powder.
  • the baking powder can be washed with an acidic solution such as water or hydrochloric acid, and then the second baking can be performed.
  • an acidic solution such as water or hydrochloric acid
  • This phosphor is excited by visible light and can emit near infrared light. That is, this phosphor has a feature that it has an excitation spectrum in the visible light region (380 nm to 750 nm) and an emission peak in the near infrared region (750 nm to 2500 nm).
  • the excitation band width of 80% or more of the maximum excitation intensity can be 90 nm or more, more preferably 100 nm or more, and still more preferably 150 nm or more.
  • the phosphor can further increase the emission intensity in the near infrared region by containing a crystal phase represented by MCuSi 4 O 10 or a crystal phase such as cristobalite, tridymite, or quartz represented by SiO 2. It has the characteristics.
  • the phosphor is mixed with, for example, an organic resin or an inorganic filler, such as glass particles or a metal oxide, if necessary, together with a solvent or a dispersant, applied as a liquid composition, and then dried or / And it solidifies through hardening etc. and can be used as forms, such as a fluorescent substance composition layer or a fluorescent substance composition filling.
  • an organic resin or an inorganic filler such as glass particles or a metal oxide
  • this phosphor Since this phosphor is excited by visible light and can emit near-infrared light, it can be used for a near-infrared light-emitting element, using the near-infrared light-emitting element, As a phosphor constituting a light emitting element mounted on a light emitting element mounting device such as an optical coherence tomography apparatus (OCT), as a wavelength conversion material constituting a light receiving element mounted on a light receiving element mounting device such as a solar power generation device Moreover, it can use suitably as a fluorescent substance included in the fluorescent paint used for the fluorescent paint printed matter or the printed matter provided with the image recognition part of near infrared light emission.
  • OCT optical coherence tomography apparatus
  • this near-infrared light emitting element a near-infrared light emitting element including this phosphor
  • the phosphor is mounted as a wavelength conversion material for a near infrared light source.
  • the light receiving element containing this fluorescent substance is used for a solar power generation device, since the visible light component of sunlight can be converted into near-infrared light, power generation efficiency can be further improved.
  • the phosphor can be mounted as a wavelength conversion material on the light receiving side.
  • light-receiving elements using silicon photodiodes are known to have high spectral sensitivity in the near-infrared light wavelength band of 800 to 1000 nm, and in the peak wavelength band of near-infrared light emission of this phosphor. It is excellent in matching with certain 900 to 950 nm and is suitable as a wavelength conversion material.
  • this phosphor emits near-infrared light even when an electron beam or X-ray is used as an excitation source, for example, if X-rays are used as an excitation source, an X-ray diagnostic apparatus for medical or security use as a scintillation material Application to is also possible.
  • a fluorescent paint printed material used for anti-counterfeit printing used for banknotes can be produced and cannot be detected with the naked eye, but made of silicon or InGaAs.
  • New anti-counterfeit printing that can be sensed by a solid-state imaging device using a photodiode such as a photo diode or a device using a photomultiplier tube can be performed.
  • these fluorescent paints are blended with a transparent resin component as a matrix and mixed with an inorganic component or organic component flow regulator, an organic solvent, or the like, and are prepared as an ink or a paste.
  • the resin component include an epoxy resin, a phenol resin, a silicone resin, an acrylic resin, and polymethyl methacrylate.
  • glass particles that are light scattering components may be mixed as necessary.
  • XRD measurement> The phosphors (samples) obtained in the examples and comparative examples were used as samples for powder X-ray diffraction measurement (XRD), this sample was mounted on a holder, and MXP18 (Bruker AXS Co., Ltd.) was used.
  • the XRD pattern was obtained by measuring the angle and intensity of the diffraction line under the following conditions.
  • Excitation band width of 80% or more of maximum excitation intensity is 120 nm or more
  • B Excitation band width of 80% or more of maximum excitation intensity is 90 nm or more
  • C Excitation band width of 80% or more of maximum excitation intensity is less than 90 nm
  • the fluorescence spectrum at the excitation wavelength (620 nm, 570 nm, 520 nm) was evaluated according to the following criteria.
  • Example 1 BaCO 3 , CuO, and SiO 2 were mixed at a molar ratio of 1: 1: 3.5, and BaCl 2 was added as a flux in an amount of 3% by mass with respect to the mixture and mixed. This mixture was put in an alumina crucible and baked in the air at 1000 ° C. for 24 hours to obtain a phosphor (sample).
  • the XRD pattern of the obtained phosphor (sample) is shown in FIG.
  • the obtained phosphor (sample) was a compound containing a BaCuSi 2 O 6 phase as a main crystal phase and containing a SiO 2 phase, a small amount of BaCuSi 4 O 10 phase and a BaSi 2 O 5 phase.
  • the amount of Cl contained in this compound was 0.02% by mass with fluorescent X-rays.
  • Example 2 BaCO 3 , CuO and SiO 2 were mixed at a molar ratio of 1: 1: 4, and BaCl 2 was added as a flux in an amount of 3% by mass with respect to the mixture and mixed. This mixture was put in an alumina crucible and baked in the air at 1000 ° C. for 24 hours to obtain a phosphor (sample).
  • the XRD pattern of the obtained phosphor (sample) is shown in FIG.
  • the obtained phosphor (sample) was a compound having a BaCuSi 2 O 6 phase as a main crystal phase and containing a SiO 2 phase, a BaCuSi 4 O 10 phase, and a BaSi 2 O 5 phase.
  • the amount of Cl contained in this compound was 0.01% by mass with fluorescent X-rays.
  • the XRD pattern of the obtained phosphor (sample) is shown in FIG.
  • the obtained phosphor (sample) was a single phase of BaCuSi 4 O 10 .
  • the content of halogen elements such as Cl, alkali metals such as Na, and P in this phosphor (sample) was all less than 0.005% by mass with fluorescent X-rays.
  • the XRD pattern of the obtained phosphor (sample) is shown in FIG.
  • the obtained phosphor (sample) was a compound having a BaCuSi 2 O 6 phase as a main crystal phase and a trace amount of BaSi 2 O 5 phase.
  • the contents of halogen elements such as Cl, alkali metals such as Na, and P contained in this compound were all less than 0.005% by mass with fluorescent X-rays.
  • the XRD pattern of the obtained phosphor (sample) is shown in FIG.
  • the obtained phosphor (sample) was a compound having a SiO 2 phase as a main crystal phase and containing a BaCuSi 2 O 6 phase and a small amount of BaSi 2 O 5 phase.
  • the contents of halogen elements such as Cl, alkali metals such as Na, and P contained in this compound were all less than 0.005% by mass with fluorescent X-rays.
  • the XRD pattern of the obtained phosphor (sample) is shown in FIG.
  • the obtained phosphor (sample) was a compound containing a BaCuSi 4 O 10 phase and a BaCuSi 2 O 6 phase as main crystal phases and containing a SiO 2 phase and a BaSi 2 O 5 phase.
  • the contents of halogen elements such as Cl, alkali metals such as Na, and P contained in this compound were all less than 0.005% by mass with fluorescent X-rays.
  • FIG. 7 is a diagram showing the excitation spectrum and the fluorescence spectrum of Example 1 and Comparative Example 1 as relative values when the maximum value of the excitation intensity and the fluorescence intensity on the vertical axis is normalized as 1.
  • FIG. Focusing on the excitation spectrum, Example 1 has small wavelength dependence, and the intensity difference is within 20% in the range of 500 nm to 650 nm. That is, it can be seen that if excitation is performed at a wavelength in this range, the difference in fluorescence intensity can be suppressed to within 20%, and the wavelength dependency is small. This indicates that the conversion efficiency to near infrared light can be further enhanced by using a white light source or a plurality of monochromatic light sources.
  • the excitation wavelength is highly dependent, and the excitation wavelength band in which the difference in fluorescence intensity can be suppressed within 20% is limited to a narrow range of 615 to 680 nm. That is, the excitation light source that can be used is limited to the red light source, and the conversion efficiency to near-infrared light is kept low.
  • FIG. 8 is a diagram showing the excitation spectrum and the fluorescence spectrum of Example 1, Example 2, and Comparative Example 4 when the maximum values of the excitation intensity and the fluorescence intensity on the vertical axis are normalized as 1.
  • FIG. 8 When matching the XRD patterns of the respective embodiments, with an increase in BaCuSi 4 O 10 phase was found that the wavelength dependency of the excitation spectrum is increased. This is consistent even when the results of the BaCuSi 4 O 10 single phase of Comparative Example 1 are taken into account.
  • FIG. 9 is a diagram comparing excitation spectrum intensity and fluorescence spectrum intensity of Example 1, Example 2, and Comparative Example 4. It can be seen that the spectrum intensity is higher in the order of Example 2> Example 1> Comparative Example 4. As in Example 2, the excitation efficiency in the range of 580 to 700 nm is increased by intentionally including the BaCuSi 4 O 10 phase while the BaCuSi 2 O 6 phase is the main crystal phase, and the fluorescence intensity is improved accordingly. I found out that However, it has also been confirmed that if there are too many BaCuSi 4 O 10 phases, the wavelength dependence of the excitation band tends to increase.
  • Example 1 The excitation spectrum intensity and fluorescence spectrum intensity of Example 1 and Comparative Examples 2 and 3 were compared (see Table 1). The spectrum intensity was higher in the order of Example 1> Comparative Example 2 ⁇ Comparative Example 3. On the other hand, the content of the SiO 2 phase was large in the order of Comparative Example 3> Example 1> Comparative Example 2.
  • alkaline earth metals such as Ba, Sr and Ca have similar properties, it is considered that the same effect as in the above embodiment can be obtained even if Sr or Ca is used instead of Ba or together with Ba. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Paints Or Removers (AREA)

Abstract

 幅広い帯域の可視光によって励起され、高い強度の近赤外光を発光することができる新たな蛍光体を提供せんとする。 式(1):MCuSi26(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相と、式(2):MCuSi410(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相とを含み、且つ、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、MCuSi26の回折ピーク強度に対するMCuSi410の回折ピーク強度の比率βが0<β≦0.50であることを特徴とする蛍光体を提案する。

Description

蛍光体
 本発明は、可視光によって励起され、近赤外光を発光することができる蛍光体に関する。
 分光測定装置を用いて物の評価をする場合、近赤外領域の光は水分による吸収が少ないため、近赤外発光素子を用いた近赤外分光測定装置は、生体や青果物など水分を多く含む物の評価に特に適している。
 また、光干渉断層画像装置(OCT)は、近赤外光を用いるために、一般的なX線断層撮影よりも生体損傷性が低いばかりか、断層撮影画像の空間分解能に優れているという特徴を有している。
 また、シリコンを用いた太陽電池や太陽光発電装置において、シリコンは近赤外領域の光応答性が最も高いため、仮に可視光を近赤外光に変換することができれば、発電効率をより一層高めることができる。
 他方、近赤外光を発光することができる蛍光体を用いれば、新たな蛍光塗料や蛍光塗料印刷物の開発が可能である。例えば、紙幣などに利用されている偽造防止印刷には、従来、紫外線蛍光顔料が主に用いられてきた。これを近赤外蛍光顔料に置き換えることができれば、肉眼では感知できないが、シリコン製やInGaAs製などのフォトダイオードを用いた固体撮像素子や光電子倍増管を用いた器材では感知できる新たな偽造防止印刷が可能となる。
 このように、可視光によって励起され、近赤外光を発光することができる近赤外発光蛍光体は、今後様々な用途に利用できることが期待される。
 例えば特許文献1(特開2008-185378号公報)において、OCT装置に用いる赤外ガラス蛍光体として、Yb23及びNd23を含み、さらにBi23及びB23からなるガラスを含有し、青色光で励起する近赤外発光蛍光体が開示されている。 また、特許文献2(特表2004-526330号公報)には、遷移金属イオンをドープしたガラス-セラミック材料で近赤外光励起される近赤外発光体が開示され、OCT装置への展開も提案されている。
 これらの蛍光体は、広い蛍光スペクトルを持つことが一つの利点ではあるが、励起されるスペクトルが狭い点が実用化する際の課題であった。特に、可視光での幅広い帯域で励起するとともに、広い蛍光スペクトルを持つ蛍光体の開発が望まれていた。
 しかしながら、従来から知られている近赤外発光蛍光体は僅かであった。例えば特許文献1(特開2008-185378号公報)において、OCT装置に用いる赤外ガラス蛍光体として、Yb23及びNd23を含み、さらにBi23及びB23からなるガラスを含有する赤外ガラス蛍光体が開示されている程度であった。
特開2008-185378号公報 特表2004-526330号公報
 そこで本発明は、幅広い帯域の可視光によって励起され、近赤外光を高強度で発光することができる新たな蛍光体を提供せんとするものである。
 本発明は、式(1):MCuSi26(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相と、式(2):MCuSi410(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相とを含み、且つ、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、MCuSi26の回折ピーク強度に対するMCuSi410の回折ピーク強度の比率βが0<β≦0.50であることを特徴とする蛍光体を提案する。
 本発明が提案する蛍光体は、幅広い帯域の可視光によって励起され、近赤外光を高強度で発光することができる。よって、前述したように、近赤外分光測定装置、光干渉断層画像装置(OCT)に搭載される発光素子を構成する蛍光体として、さらには太陽電池や太陽光発電装置などに搭載される受光素子を構成する波長変換材料としても好適に用いることができる。また、本発明が提案する蛍光体は、蛍光塗料印刷物や、近赤外光発光の画像認識部を備えた印刷物などに用いる蛍光塗料に含ませる蛍光体として、好適に用いることができる。
実施例1で得られた蛍光体(サンプル)のXRDパターンを示した図である。 実施例2で得られた蛍光体(サンプル)のXRDパターンを示した図である。 比較例1で得られた蛍光体(サンプル)のXRDパターンを示した図である。 比較例2で得られた蛍光体(サンプル)のXRDパターンを示した図である。 比較例3で得られた蛍光体(サンプル)のXRDパターンを示した図である。 比較例4で得られた蛍光体(サンプル)のXRDパターンを示した図である。 縦軸の励起強度と蛍光強度の最大値を1として規格化した時の相対値として、実施例1及び比較例1の励起スペクトルと蛍光スペクトルを示した図である。 縦軸の励起強度と蛍光強度の最大値を1として規格化した時の相対値として、実施例1、実施例2及び比較例4の励起スペクトルと蛍光スペクトルを示した図である。 実施例1、実施例2及び比較例4の励起スペクトル強度と蛍光スペクトル強度を比較した図である。
 次に、本発明を実施するための形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
 本実施形態の一例に係る蛍光体(「本蛍光体」と称する)は、式(1):MCuSi26(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相(「MCuSi26結晶相」と称する)と、式(2):MCuSi410(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相(「MCuSi410結晶相」と称する)とを少なくとも含む蛍光体である。
 MCuSi26結晶相とMCuSi410結晶相とを含むことにより、蛍光スペクトル強度を維持しつつ励起スペクトルの帯域を広げることができる。
 本蛍光体は、複数の結晶相からなる多結晶体であっても、複数の結晶相を含む混合物であってもよい。
 なお、MCuSi26結晶相と表現した場合、該“結晶相”としてはMCuSi26を主成分として含んでいれば、他の成分、例えばXRDでは結晶相中に存在することが検知できない成分を含有していてもよい。他の結晶相についても同様である。
 本蛍光体において、MCuSi26結晶相は主結晶相であるのが好ましい。言い換えれば、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、MCuSi26の結晶相に由来する回折ピーク強度が、他のいずれの結晶相に由来する回折ピーク強度よりも大きいことが好ましい。
 また、本蛍光体においては、CuKα線を用いた粉末X線回折測定(XRD)で本蛍光体を測定して得られるXRDパターンにおいて、MCuSi26の回折ピーク強度に対するMCuSi410の回折ピーク強度の比率βは0<β≦0.50である。
 かかる範囲でMCuSi26及びMCuSi410を含んでいれば、蛍光スペクトル強度を維持しつつ励起スペクトルの帯域を広げることができる。
 かかる観点から、MCuSi26の回折ピーク強度に対するMCuSi410の回折ピーク強度の比率βは0<β≦0.50であるのが好ましく、中でも0<β≦0.31であるのが特に好ましく、その中でも0<β≦0.10であるのがさらに好ましい。
 この際、各結晶相の含有量を、化学分析ではなく、XRDパターンにおける各結晶相の回折ピーク強度で表現したのは、化学分析で各結晶相の含有量を示した場合、例えばフラックスなどの添加剤の配合量などによって大きく影響を受け、本蛍光体の特徴を正確に表現することが難しい一方、XRDパターンにおける各結晶相の回折ピーク強度で表現すれば、添加剤の配合量による影響を抑えることができ、本蛍光体の特徴をより正確に表現することができるためである。
 本蛍光体は、さらにSiO2結晶相を含んでいるのが好ましい。但し、本蛍光体はSiO2結晶相を含んでいなくてもよい。
 本蛍光体がSiO2結晶相を含む場合、CuKα線を用いた粉末X線回折測定(XRD)で本蛍光体を測定して得られるXRDパターンにおいて、MCuSi26の回折ピーク強度に対するSiO2の回折ピーク強度の比率αが0<α<0.45であるのが好ましい。かかる範囲でSiO2結晶相を含めば、励起光の散乱を防ぎ、より高い蛍光スペクトル強度を得ることができる。
 かかる観点から、SiO2の回折ピーク強度の比率αは、0<α<0.45、中でも0.16<αであるのが好ましく、その中でもα<0.35、中でもさらにα<0.3であるのが特に好ましく、その中でも0.20<α或いはα<0.25であるのがさらに好ましい。
 なお、本蛍光体は、BaSi25相を含んでいても、含んでいなくてもよい。現時点では、BaSi25相を含有することによる利点も欠点も確認できていないからである。
 また、式(1):MCuSi26又は式(2):MCuSi410又はこれら両方おけるCuの一部がMg又はZn又は両方で置換されているのが好ましい。Cuの一部がMg又はZn又は両方で置換されていても、Cuの局所構造(CuO)に発光を阻害するような悪影響は抑えられるからである。さらに、結晶構造内にMgOやZnOが形成されることで隣接するCuO同士による発光の自己吸収を防いで量子効率の改善が期待できるからである。
 本蛍光体は、さらにLi、Na、K、B、P、F、Cl、Br及びIからなる群から選ばれる一種又は二種以上の元素を含んでいるのが好ましい。この際、これらの元素の含有量は0.005~3質量%であるのが好ましく、中でも0.008質量%以上或いは2質量%以下、その中でも0.01質量%以上或いは1質量%以下であるのが特に好ましい。
 本蛍光体がこれらの元素を含むと、結果的に発光ピーク強度を高めることができる。これらの元素は、焼結助剤の一部として添加することができる。
 本蛍光体は、20質量%未満であれば、上記以外の元素成分を含んでいてもよい。この程度の含有量であれば、本蛍光体の特性に影響しないと考えられるからである。
 本蛍光体は、薄膜状、板状、粒子状、などその態様には制限されない。ただし、用いられる発光素子搭載装置や印刷物などへの加工性の点から粒子状であることが好ましい。
<本蛍光体の製造方法>
 本蛍光体は、次の製造方法によって製造することができる。但し、本蛍光体の製造方法が、次に説明する製造方法に限定されるものではない。
 本蛍光体は、式(1):MCuSi2におけるM元素原料と、Cu原料と、ケイ素原料とを混合し、必要に応じてフラックス(焼結助剤)を添加し、その混合物を焼成することで得ることができる。
 この際、M元素原料としては、M元素(Ba、Sr及びCaのうちの1種又は2種以上の元素)の酸化物、炭酸塩、硝酸塩、酢酸塩などを挙げることができる。
 Cu原料としては、Cuの酸化物、炭酸塩、硫酸塩、金属などを挙げることができる。
 ケイ素原料としては、ケイ素の酸化物、炭化物、窒化物、ケイ素などを挙げることができる。
 なお、還元剤は、Cuの酸化数を2価に保つ観点から添加しない方が好ましい。
 M元素原料とCu原料との配合割合(モル比)は、1.5:1.0~0.8:1.0であるのが好ましく、中でも1.3:1.0~0.9:1.0、その中でも1.2:1.0~1.0:1.0であるのが特に好ましい。また、Cu原料とケイ素原料との配合割合(質量割合)は、1.0:2.0~1.0:5.0であるのが好ましく、中でも1.0:3.0~1.0:4.5、その中でも1.0:3.5~1.0:4.2であるのが特に好ましい。
 フラックス(焼結助剤)を配合することにより、化学反応を促進することができ、未反応物を少なくすることができる。
 フラックス(焼結助剤)としては、例えばLi、Na、K、B、P、F、Cl、Br及びIからなる群から選ばれる一種又は二種以上の元素を含むフラックス(焼結助剤)を挙げることができる。中でも、Li、Na、K、B、F、Clなどは特に好ましい。
 フラックス(焼結助剤)の配合量(質量割合)は、M元素原料とCu原料とケイ素原料を混合した総重量に対して0.1~15%であるのが好ましく、特に1%以上或いは10%以下、その中でも特に2%以上或いは7%以下であるのがより一層好ましい。
 焼成雰囲気は、還元雰囲気でなければ適宜雰囲気を採用可能である。例えば不活性ガス雰囲気、大気雰囲気、酸化性雰囲気などを採用することができる。
 焼成温度は700~1100℃であればよい。700℃未満では、反応が進みにくい一方、1100℃以上では融けてしまう可能性があるからである。
 また、複数回の焼成を繰り返してもよい。即ち、例えば1回目の焼成は700~900℃の温度範囲で行い、得られた焼成粉を解砕した後に2回目の焼成を800~1100℃の温度範囲で行うこともできる。
 さらに、1回目の焼成後に水や塩酸などの酸性溶液で焼成粉を洗浄した後に、2回目の焼成を行うこともできる。こうすることで、各焼成段階により適した焼結助剤の配合量に調整することができ、最終製品である本蛍光体中に含まれるLi、Na、K、B、P、F、Cl、Br及びIの元素量もより最適な範囲に制御しやすくなる。
<本蛍光体の特徴>
 本蛍光体は、可視光によって励起され、近赤外光を発光することができる。すなわち、本蛍光体は、可視光領域(380nm~750nm)に励起スペクトルを有し、且つ、近赤外領域(750nm~2500nm)に発光ピークを有するという特徴を有している。
 また、本蛍光体の特徴の一つとして、励起帯域が広い点を挙げることができる。例えば、最大励起強度の80%以上の励起帯幅を90nm以上、より好ましくは100nm以上、よりさらに好ましくは150nm以上とすることができる。
 本蛍光体はまた、MCuSi410で示される結晶相や、SiOで示されるクリストバライトやトリディマイト、石英などの結晶相を含有させることにより、近赤外領域の発光強度をさらに高めることができるという特徴を有している。
<用途>
 本蛍光体は、例えば、有機系樹脂や無機フィラー、例えばガラス粒子や金属酸化物等と、必要に応じてさらに溶媒や分散剤などと共に混合し、液状組成物として塗布成形した後、乾燥又は/及び硬化などを経て固形化し、蛍光体組成物層又は蛍光体組成物充填物等の形態として用いることが可能である。
 本蛍光体は、可視光によって励起され、近赤外光を発光することができるから、近赤外発光素子に用いることができ、当該近赤外発光素子を用いて近赤外分光測定装置、光干渉断層画像装置(OCT)などの発光素子搭載装置に搭載される発光素子を構成する蛍光体として、太陽光発電装置などの受光素子搭載装置に搭載される受光素子を構成する波長変換材料として、また、蛍光塗料印刷物や近赤外光発光の画像認識部を備えた印刷物などに用いる蛍光塗料に含ませる蛍光体として、好適に用いることができる。
 本蛍光体を含む近赤外発光素子(「本近赤外発光素子」と称する)を分光測定装置に用いれば、生体や青果物などの評価装置に使用することができる。
 分光測定装置においては、本蛍光体は近赤外光源の波長変換材料として搭載される。
 また、本蛍光体を含む受光素子を太陽光発電装置に用いれば、太陽光の可視光成分を近赤外光に変換することができるから、発電効率をより一層高めることができる。
 太陽光分光測定装置においては、本蛍光体を受光側の波長変換材料として搭載することができる。特に、シリコン製フォトダイオードを用いた受光素子は、近赤外光の800~1000nmの波長帯域で高い分光感度を持つことが知られており、本蛍光体の近赤外発光のピーク波長帯域である900~950nmとのマッチング性に優れ波長変換材料として好適である。
 なお、本蛍光体は電子線やX線などを励起源にしても近赤外光を放射するため、例えばX線を励起源に用いれば、シンチレーション材料として医療やセキュリティ用のX線診断装置などへの応用も可能である。
 また、本蛍光体を用いて蛍光塗料を作製すれば、例えば、紙幣などに利用されている偽造防止印刷に用いる蛍光塗料印刷物を作製することができ、肉眼では感知できないが、シリコン製やInGaAs製などのフォトダイオードを用いた固体撮像素子や光電子倍増管を用いた器材では感知できる新たな偽造防止印刷を行うことができる。
 これらの蛍光塗料は、本蛍光体に加え、透明な樹脂成分をマトリックスとして、無機成分や有機成分の流動調整材、有機溶剤などと混合し、インクやペーストとして調合される。樹脂成分としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、アクリル樹脂、ポリメタクリル酸メチルなどを挙げることができる。この他、必要に応じて光散乱成分であるガラス粒子などを混合してもよい。
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
<XRD測定>
 実施例及び比較例で得られた蛍光体(サンプル)を粉末X線回折測定(XRD)用のサンプルとし、このサンプルをホルダーに装着し、MXP18(ブルカー・エイエックスエス(株)社製)を使用し、下記条件で回折線の角度と強度を測定し、XRDパターンを得た。
(管球)CuKα線
(管電圧)40kV
(管電流)150mA
(サンプリング間隔)0.02°
(スキャンスピード)4.0°/min
(開始角度)5.02°
(終了角度)80°
<蛍光特性測定>
 実施例及び比較例で得られた蛍光体(サンプル)を発光特性測定用のサンプルとし、分光蛍光光度計(日本分光(株)社製 FP-8600)を用いて、励起側と蛍光側のバンド幅はともに10nm、走査速度1000nm/minの条件で、励起スペクトル及び蛍光スペクトルを測定した。
 励起スペクトルについて次の基準で評価した。
 A:最大励起強度の80%以上の励起帯幅が120nm以上
 B:最大励起強度の80%以上の励起帯幅が90nm以上
 C:最大励起強度の80%以上の励起帯幅が90nm未満
 励起波長(620nm、570nm、520nm)における蛍光スペクトルについて次の基準で評価した。
 A:ピーク強度が4000カウント以上
 B:ピーク強度が3000カウント以上4000カウント未満
 C:ピーク強度が3000カウント未満
(総合評価) 
 前記した4つの評価項目、つまり評価励起スペクトルの励起帯幅および各励起波長(620nm、570nm、520nm)における蛍光スペクトルのピーク強度、について次の基準で評価した。
 AA:4つの評価項目が全てA
  A:4つの評価項目がAまたはBで、且つAが2個以上
  B:4つの評価項目がAまたはBで、且つAが1個以下
  C:4つの評価項目でCが1個以上
(実施例1)
 BaCO3、CuO及びSiO2を、モル比で1:1:3.5となるように混合し、更にフラックスとしてBaCl2を前記混合物に対し3質量%となる量を加えて混合した。この混合物をアルミナ坩堝に入れて大気中で、1000℃×24時間焼成して蛍光体(サンプル)を得た。
 得られた蛍光体(サンプル)のXRDパターンを図1に示す。
 得られた蛍光体(サンプル)は、BaCuSi2相を主結晶相とし、SiO2相、微量のBaCuSi410相とBaSi25相を含有する化合物であった。
 この化合物中に含まれるCl量は、蛍光X線で0.02質量%であった。
(実施例2)
 BaCO3、CuO及びSiO2を、モル比で1:1:4となるように混合し、更にフラックスとしてBaCl2を前記混合物に対し3質量%となる量を加えて混合した。この混合物をアルミナ坩堝に入れて大気中で、1000℃×24時間焼成して蛍光体(サンプル)を得た。
 得られた蛍光体(サンプル)のXRDパターンを図2に示す。
 得られた蛍光体(サンプル)は、BaCuSi2相を主結晶相とし、SiO2相、BaCuSi410相、BaSi25相を含有する化合物であった。
 この化合物中に含まれるCl量は、蛍光X線で0.01質量%であった。
(比較例1)
 BaCO3、CuO及びSiO2を、モル比で1:1:4となるように秤量し、アセトン中で湿式混合した。
 この混合物をアルミナ坩堝に入れて大気中で、960℃×16時間焼成して、蛍光体(サンプル)を得た。
 得られた蛍光体(サンプル)のXRDパターンを図3に示す。
 得られた蛍光体(サンプル)は、BaCuSi410 の単相であった。
 この蛍光体(サンプル)中のCl等のハロゲン元素、Na等のアルカリ金属、Pの含有量は、蛍光X線で何れも0.005質量%未満であった。
(比較例2)
 BaCO3、CuO及びSiO2を、モル比で1:1:2となるように混合し、この混合物をアルミナ坩堝に入れて大気中で、1000℃×24時間焼成して蛍光体(サンプル)を得た。
 得られた蛍光体(サンプル)のXRDパターンを図4に示す。
 得られた蛍光体(サンプル)は、BaCuSi26相を主結晶相とし、微量のBaSi25相を含有する化合物であった。
 この化合物中に含まれるCl等のハロゲン元素、Na等のアルカリ金属、Pの含有量は、蛍光X線で何れも0.005質量%未満であった。
(比較例3)
 BaCO3、CuO及びSiO2を、モル比で1:1:3となるように混合し、この混合物をアルミナ坩堝に入れて大気中で、1000℃×24時間焼成して蛍光体(サンプル)を得た。
 得られた蛍光体(サンプル)のXRDパターンを図5に示す。
 得られた蛍光体(サンプル)は、SiO2相を主結晶相とし、BaCuSi26相、微量のBaSi25相を含有する化合物であった。
 この化合物中に含まれるCl等のハロゲン元素、Na等のアルカリ金属、Pの含有量は、蛍光X線で何れも0.005質量%未満であった。
(比較例4)
 BaCO3、Cu2CO3・(OH)2・H2O及びSiO2を、モル比で1:0.5:4となるように混合し、エタノール中で湿式混合した。この混合物をアルミナ坩堝に入れて大気中で、1100℃×24時間焼成して蛍光体(サンプル)を得た。
 得られた蛍光体(サンプル)のXRDパターンを図6に示す。
 得られた蛍光体(サンプル)は、BaCuSi410相とBaCuSi26相が主な結晶相であり、SiO2相、BaSi25相を含有する化合物であった。
 この化合物中に含まれるCl等のハロゲン元素、Na等のアルカリ金属、Pの含有量は、蛍光X線で何れも0.005質量%未満であった。
Figure JPOXMLDOC01-appb-T000001
(考察)
 図7は、縦軸の励起強度と蛍光強度の最大値を1として規格化した時の相対値として、実施例1、比較例1の励起スペクトルと蛍光スペクトルを示した図である。
 励起スペクトルに着目すると、実施例1は波長依存性が小さく、500nm~650nmの範囲で強度差が20%以内に収まっている。すなわち、この範囲の波長で励起すれば、蛍光強度差を20%以内に抑えることができ、波長依存性が小さいことが分かる。このことは、白色光源や複数の単色光源を用いれば、近赤外光への変換効率をより一層高められることを示すものである。
 他方、比較例1では、励起波長の依存性が大きく、蛍光強度差を20%以内に抑えられる励起波長帯は615~680nmの狭い範囲に限られる。すなわち、利用できる励起光源は赤色光源に限定され、近赤外光への変換効率が低く抑えられることになる。
 次にBaCuSi410相を含有する効果について検討した。
 図8は、縦軸の励起強度と蛍光強度の最大値を1として規格化した時の実施例1、実施例2、比較例4の励起スペクトルと蛍光スペクトルを示した図である。
 各実施例のXRDパターンと照合すると、BaCuSi410相の増加に伴い、励起スペクトルの波長依存性が大きくなることが分かった。これは、比較例1のBaCuSi410単相の結果を加味しても矛盾しない。
 図9は、実施例1、実施例2、比較例4の励起スペクトル強度と蛍光スペクトル強度を比較した図である。
 スペクトル強度は、実施例2>実施例1>比較例4 の順に高いことが分かる。実施例2のように、BaCuSi26相を主結晶相としつつ、意図的にBaCuSi410相を含有させることで、580~700nmの範囲の励起効率が上がり、それに伴い蛍光強度を向上させることができることが分かった。但し、BaCuSi410相が多すぎると、励起帯の波長依存性が強くなる傾向があることも確認されている。
 このような実施例の結果並びにこれまで発明者が行ってきた各種試験の結果から、BaCuSi2相の割合を多くすれば励起スペクトルの帯域は広がる一方、発光強度が低下する傾向があるため、発光強度を維持しつつ励起スペクトルの帯域は広げる観点から、BaCuSi2相を主結晶相としつつ適当量のBaCuSi410相を含有するのが好ましい。言いかえれば、2θ19.5~20.5°にあるBaCuSi410回折線ピークの強度IB と2θ23.5~24.5°にあるBaCuSi26回折線ピークの強度IPの強度比β(=IB/IP)とした時、好ましい範囲は0<β≦0.50であり、中でも0<β≦0.31であるのが特に好ましく、その中でも0<β≦0.10であるのがさらに好ましいと考えることができる。実施例1ではβ=0.08であった。
 次にSiO2相を含有する効果について検討した。
 実施例1、比較例2及び3の励起スペクトル強度と蛍光スペクトル強度を比較した(表1参照)。
 スペクトル強度は、実施例1>比較例2≒比較例3の順に高かった。これに対し、SiO2相の含有量は、比較例3>実施例1>比較例2の順に多かった。
 このような実施例の結果並びにこれまで発明者が行ってきた各種試験の結果から、SiO2相を含有していなくても実用上は問題ない一方、SiO2相を含有する場合には、2θ20.6°~21.1°にあるSiO2回折線ピークの強度ISと2θ23.5°~24.5°にあるBaCuSi26回折線ピークの強度IPの強度比α(=IS/IP)とした時、好ましい範囲は0<α<0.45である、中でも0.1<α或いはα<0.3であるのが特に好ましいと考えることができる。実施例1ではα=0.21であった。
 なお、SiO2主ピーク(2θ26.6°付近)は、BaCuSi26のピーク(2θ27.1°付近)と重なるため、強度比の算出には不適当と判断した。
 Ba、Sr及びCaなどのアルカリ土類金属は性質が似ているため、Baの代わりに或いはBaと共にSr又はCaを用いても、上記実施例と同様の効果を得ることができるものと考えることができる。
 

Claims (8)

  1.  式(1):MCuSi26(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相と、式(2):MCuSi410(式中のMは、Ba、Sr及びCaのうちの1種又は2種以上からなる)で示される結晶相とを含み、且つ、
     CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、MCuSi26の回折ピーク強度に対するMCuSi410の回折ピーク強度の比率βが0<β≦0.50であることを特徴とする蛍光体。
  2.  さらにSiO2結晶相を含み、且つ、CuKα線を用いた粉末X線回折測定(XRD)で得られるXRDパターンにおいて、MCuSi26の回折ピーク強度に対するSiO2の回折ピーク強度の比率αが0<α<0.45であることを特徴とする請求項1記載の蛍光体。
  3.  式(1):MCuSi26又は式(2):MCuSi410又はこれら両方の式おけるCuの一部がMg又はZn又は両方で置換された化合物を含むことを特徴とする請求項1又は2に記載の蛍光体。
  4.  さらにLi、Na、K、B、P、F、Cl、Br及びIからなる群から選ばれる一種又は二種以上の元素を0.005~3質量%含むことを特徴とする請求項1~3の何れかに記載の蛍光体。
  5.  請求項1~4の何れかに記載の蛍光体を備えた近赤外発光素子。
  6.  請求項5に記載の近赤外発光素子を備えた装置。
  7.  請求項1~4の何れかに記載の蛍光体を含有する蛍光塗料。
  8.  請求項7記載の蛍光塗料を用いた蛍光体印刷物。
PCT/JP2016/053962 2015-03-02 2016-02-10 蛍光体 WO2016140029A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/533,057 US10538679B2 (en) 2015-03-02 2016-02-10 Phosphor
CN201680004613.XA CN107109218B (zh) 2015-03-02 2016-02-10 荧光体
KR1020177012706A KR101948593B1 (ko) 2015-03-02 2016-02-10 형광체
JP2017503392A JP6693942B2 (ja) 2015-03-02 2016-02-10 蛍光体
EP16758724.5A EP3266849B1 (en) 2015-03-02 2016-02-10 Fluorophore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-040471 2015-03-02
JP2015040471 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140029A1 true WO2016140029A1 (ja) 2016-09-09

Family

ID=56849307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053962 WO2016140029A1 (ja) 2015-03-02 2016-02-10 蛍光体

Country Status (6)

Country Link
US (1) US10538679B2 (ja)
EP (1) EP3266849B1 (ja)
JP (1) JP6693942B2 (ja)
KR (1) KR101948593B1 (ja)
CN (1) CN107109218B (ja)
WO (1) WO2016140029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159175A1 (ja) * 2016-03-14 2017-09-21 三井金属鉱業株式会社 蛍光体
WO2018143198A1 (ja) * 2017-01-31 2018-08-09 三菱ケミカル株式会社 発光装置、および蛍光体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019122925A1 (de) * 2018-08-29 2020-03-05 Osa Opto Light Gmbh Breitband-Emitter für elektromagnetische Strahlung
CN113736460B (zh) * 2021-09-23 2023-07-21 五邑大学 一种高热稳定性的红外荧光粉及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504771A (ja) * 1994-02-11 1997-05-13 ローヌ−プーラン シミ アルカリ土類金属、銅及び隨意としてのチタンを基とする珪酸塩、これら珪酸塩を基とする青又は紫色顔料、それらの製造方法並びにそれらの使用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391015A4 (en) 2001-05-03 2009-04-15 Corning Inc BROADBAND SOURCE WITH METAL TRANSITION IONS
JP4982751B2 (ja) 2007-01-29 2012-07-25 国立大学法人名古屋大学 赤外ガラス蛍光体及び半導体発光素子で構成した光干渉断層撮影装置用光源。
JP5295654B2 (ja) 2008-06-19 2013-09-18 本田技研工業株式会社 排気浄化触媒及びこれを用いた排気浄化装置
US9062853B2 (en) * 2010-07-12 2015-06-23 National University Corporation Nagoya University Broadband infrared light emitting device
CN104098103B (zh) * 2013-04-09 2017-11-24 中国科学技术大学 一种“中国紫”和“中国蓝”颜料传统烧制方法
CN103601202B (zh) * 2013-11-14 2015-09-02 吉林大学 水热技术制备SrCuSi4O10和BaCuSi4O10蓝色颜料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504771A (ja) * 1994-02-11 1997-05-13 ローヌ−プーラン シミ アルカリ土類金属、銅及び隨意としてのチタンを基とする珪酸塩、これら珪酸塩を基とする青又は紫色顔料、それらの製造方法並びにそれらの使用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E.KENDRICK ET AL.: "Structure and colour properties in the Egyptian Blue Family,M1- xM'xCuSi4010,as a function of M, M' where M,M'=Ca,Sr and Ba", DYES AND PIGMENTS, vol. 73, pages 13 - 18, XP005527486 *
G. GIESTER. ET AL.: "Wesselsite,SrCu[Si4010],a further new gillespite-group mineral from the Kalahari Manganese Field, South Africa", MINERALOGICAL MAGAZINE, vol. 60, 1996, pages 795 - 798, XP055478372 *
LI YA-JIE ET AL.: "Temperature-dependent near- infrared emission of highly concentrated Cu2+ in CaCuSi4010 phosphor", JOURNAL OF MATERIALS CHEMISTRY C, vol. 2, no. 48, 28 December 2014 (2014-12-28), pages 10395 - 10402, XP055478380, ISSN: 2050-7526 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159175A1 (ja) * 2016-03-14 2017-09-21 三井金属鉱業株式会社 蛍光体
JPWO2017159175A1 (ja) * 2016-03-14 2018-08-30 三井金属鉱業株式会社 蛍光体
US11292964B2 (en) 2016-03-14 2022-04-05 Mitsui Mining & Smelting Co., Ltd. Phosphor
WO2018143198A1 (ja) * 2017-01-31 2018-08-09 三菱ケミカル株式会社 発光装置、および蛍光体
JPWO2018143198A1 (ja) * 2017-01-31 2019-11-21 三菱ケミカル株式会社 発光装置、および蛍光体
JP7088027B2 (ja) 2017-01-31 2022-06-21 三菱ケミカル株式会社 発光装置、および蛍光体
JP7424530B2 (ja) 2017-01-31 2024-01-30 三菱ケミカル株式会社 発光装置、および蛍光体
JP7487816B2 (ja) 2017-01-31 2024-05-21 三菱ケミカル株式会社 発光装置、および蛍光体
JP7487815B2 (ja) 2017-01-31 2024-05-21 三菱ケミカル株式会社 発光装置、および蛍光体

Also Published As

Publication number Publication date
KR20170069259A (ko) 2017-06-20
JPWO2016140029A1 (ja) 2017-12-14
JP6693942B2 (ja) 2020-05-13
CN107109218B (zh) 2020-03-10
US10538679B2 (en) 2020-01-21
CN107109218A (zh) 2017-08-29
EP3266849A4 (en) 2018-08-01
KR101948593B1 (ko) 2019-02-15
EP3266849B1 (en) 2019-04-03
US20170335184A1 (en) 2017-11-23
EP3266849A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6589048B2 (ja) 蛍光体
WO2018207703A1 (ja) 発光装置、および蛍光体
JP6693942B2 (ja) 蛍光体
WO2013073598A1 (ja) 窒化物蛍光体とその製造方法
JP2007146102A (ja) 無機酸化物蛍光体
CN107406765A (zh) 无机发光材料和无机发光材料转换型led
KR20150098661A (ko) 발광 물질
JP2018002870A (ja) β型サイアロン蛍光体とその製造方法及びそれを用いた発光装置
CN112342021A (zh) 一种近红外宽带发射的发光材料、其制备方法及包含该材料的发光装置
CN110857388A (zh) 一种近红外发光材料以及含该发光材料的发光装置
JP2013127061A (ja) 窒化物蛍光体とその製造方法
JP6129649B2 (ja) アップコンバージョン蛍光体及びその製造方法
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP2014523952A (ja) 蛍光体前駆体組成物
KR20160133548A (ko) 유로퓸 또는 사마륨-도핑된 테르븀 몰리브덴산염
RODRIGUEZ-GARCIA Synthesis and Characterisation of New Inorganic Silicate Luminescent Materials
US9758723B2 (en) Up-conversion phosphor
US9346999B2 (en) Method of forming efficient phosphor powders
JP2023049445A (ja) 蛍光体、その製造方法および発光装置
JP5342648B2 (ja) シンチレータ用蛍光体
JP2018109079A (ja) 緑色蛍光体、発光素子及び発光装置
JP2017128731A (ja) アップコンバージョン蛍光体及びその製造方法
TW201414802A (zh) 銪摻雜磷光體的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503392

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177012706

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016758724

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE