WO2017154988A1 - エンジンの排気装置 - Google Patents

エンジンの排気装置 Download PDF

Info

Publication number
WO2017154988A1
WO2017154988A1 PCT/JP2017/009286 JP2017009286W WO2017154988A1 WO 2017154988 A1 WO2017154988 A1 WO 2017154988A1 JP 2017009286 W JP2017009286 W JP 2017009286W WO 2017154988 A1 WO2017154988 A1 WO 2017154988A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
valve
engine
exhaust
speed
Prior art date
Application number
PCT/JP2017/009286
Other languages
English (en)
French (fr)
Inventor
満幸 室谷
貴史 西尾
周平 辻田
栄之介 末國
潤司 梅村
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to DE112017000102.1T priority Critical patent/DE112017000102T5/de
Priority to US15/763,740 priority patent/US10584655B2/en
Priority to CN201780003125.1A priority patent/CN108884775B/zh
Publication of WO2017154988A1 publication Critical patent/WO2017154988A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the technology disclosed here relates to an engine exhaust device.
  • Patent Document 1 describes that in an engine with a turbocharger, an exhaust valve device is interposed between an independent exhaust passage communicating with each cylinder and a turbine.
  • the exhaust valve device changes the flow rate of the exhaust gas introduced into the turbine by changing the flow area of the exhaust gas discharged from the engine according to the engine speed.
  • This engine is an in-line four-cylinder engine having four cylinders of No. 1 to No. 4.
  • the independent exhaust passage includes a first exhaust passage that communicates with the first cylinder, a second exhaust passage that communicates with the second and third cylinders, and a third exhaust passage that communicates with the fourth cylinder.
  • the exhaust valve device includes an upstream exhaust passage connected to the independent exhaust passage.
  • the turbocharger includes a downstream exhaust passage that connects the upstream exhaust passage and the turbine housing.
  • the upstream exhaust passage is composed of three independent passages communicating with each of the first to third exhaust passages. Each of the three passages branches into two passages, a low speed passage and a high speed passage.
  • the downstream exhaust passage has an independent low speed passage and a high speed passage communicating with the low speed passage and the high speed passage of the upstream exhaust passage. Each of the low-speed passage and the high-speed passage in the downstream exhaust passage is joined by three independent passages in the upstream exhaust passage.
  • the downstream end of the downstream exhaust passage is connected to the turbine inlet after the low speed passage and the high speed passage merge.
  • a butterfly valve is arranged in the high-speed passage in the upstream exhaust passage. By rotating a drive shaft connected to the butterfly valve by an actuator, the butterfly valve is switched between open and closed.
  • Patent Document 2 describes performing fuel cut when a predetermined fuel cut condition is satisfied during deceleration of an automobile in order to improve fuel consumption performance.
  • JP 2014-256842 A Japanese Patent Laid-Open No. 10-30477
  • the throttle valve opening is small and combustion in the combustion chamber is not performed, so the pressure state in the cylinder at the end of the expansion stroke without combustion is higher than in the intake passage and the exhaust passage. Lower. Therefore, if the exhaust valve is opened at the beginning of the exhaust stroke, the gas in the exhaust passage flows back into the cylinder, while the gas in the cylinder is pushed out into the exhaust passage as the exhaust stroke advances and the piston rises. It comes to be.
  • the butterfly valve that closes the high-speed passage is alternately subjected to the fluid pressure when the gas in the exhaust passage flows back into the cylinder and the fluid pressure when the gas in the cylinder is pushed out into the exhaust passage. . As a result, the butterfly valve flutters in the direction of rotation about the drive shaft, and there is concern about the generation of abnormal noise and a decrease in durability of the butterfly valve.
  • the technology disclosed herein has been made in view of such a point, and an object thereof is to prevent flapping of a valve during fuel cut in an exhaust system of an engine in which a valve is disposed in an exhaust passage. There is to do.
  • the technology disclosed herein is disposed in an exhaust passage that connects an exhaust port of a combustion chamber provided inside an engine and a catalyst device provided outside the engine, and by rotating a drive shaft,
  • the present invention relates to an engine exhaust device including a plate-like valve configured to be rotatable so as to change a passage cross-sectional area of the exhaust passage, and a valve control unit configured to control an opening degree of the valve.
  • the engine executes a fuel injection valve configured to supply fuel to the combustion chamber, and fuel cut control for prohibiting fuel injection from the fuel injection valve when a predetermined condition is satisfied while the vehicle is running
  • a fuel injection valve controller configured as described above, wherein the exhaust passage is branched into a common passage connected to the exhaust port and a downstream portion of the common passage, and is provided in parallel with each other A passage and a second passage; and a collection portion where the first passage and the second passage gather at a downstream portion of the first passage and the second passage, and a collection portion of the first passage and the second passage Is connected to a turbine housing of a turbocharger including a turbine, and the valve is disposed in the first passage and is configured to change a passage sectional area of the first passage, and the valve control unit
  • the valve When the rotational speed is lower than a predetermined rotational speed, the valve is closed to close the first passage, and when the rotational speed is equal to or higher than the predetermined rotational speed, the valve is opened to open the first passage, and the
  • the valve disposed in the first passage of the exhaust passage is closed when the engine speed is lower than the predetermined speed, and closes the first passage.
  • the valve is also opened when the engine speed is equal to or higher than a predetermined speed to open the first passage.
  • the valve may be fully opened or may be adjusted to an intermediate opening.
  • Exhaust gas can be introduced into the turbine through both the first passage and the second passage, reducing the exhaust resistance and increasing the driving force of the turbine.
  • the valve control unit when the fuel injection valve control unit is executing the fuel cut control, the valve control unit opens the valve and opens the first passage even if the engine speed is lower than the predetermined speed. At this time, the valve may be fully opened or may be adjusted to an intermediate opening.
  • fluid pressure is prevented from acting on the valve even if the gas in the exhaust passage flows back into the cylinder or the gas in the cylinder is pushed out into the exhaust passage as the exhaust valve opens and closes Is done. As a result, flapping of the valve during fuel cut can be prevented.
  • the apparatus includes an accelerator opening detection unit configured to detect an accelerator opening, and a torque estimation unit configured to estimate an actual torque of the engine, and the valve control unit includes the accelerator opening.
  • the degree detection unit detects that the accelerator opening is zero and the torque estimation unit estimates that the actual torque of the engine is less than or equal to a predetermined value, the engine speed is greater than the predetermined speed. Even when it is low, the valve may be opened.
  • the valve controller in response to the start of fuel cut, the valve controller does not open the valve, but opens the valve at the same time as the start of fuel cut. Therefore, the valve is opened when it is detected that the accelerator opening is zero and the actual engine torque is detected to be equal to or less than a predetermined value. By doing so, it becomes possible to quickly open the valve simultaneously with the start of the fuel cut from the state in which the valve is closed. As a result, fluttering of the valve can be surely prevented, and generation of abnormal noise can be avoided.
  • the valve control unit may open the valve when the accelerator opening detecting unit detects that the state where the accelerator opening is zero continues for a predetermined time.
  • valve controller When the accelerator opening temporarily becomes zero, the valve controller does not immediately open the valve, but when the accelerator opening continues to be zero, the valve controller opens the valve. As a result, when the driver releases the accelerator pedal for a moment but immediately depresses the accelerator pedal, the valve disposed in the exhaust passage is prevented from opening. This prevents the drivability from being impaired.
  • the engine speed is set to the predetermined speed.
  • FIG. 1 is a conceptual diagram showing an engine system to which an engine exhaust device is applied.
  • FIG. 2 is a partial cross-sectional schematic diagram showing the configuration of the exhaust system of the engine.
  • FIG. 3 is a cross-sectional view showing a configuration of an engine exhaust device.
  • FIG. 4 is a perspective view showing the configuration of the exhaust valve device as seen from the turbine side.
  • 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a cross-sectional view of the negative pressure actuator.
  • FIG. 7 is a block diagram showing the configuration of the engine system.
  • FIG. 8 is a diagram illustrating a control map relating to opening and closing of the exhaust variable valve.
  • FIG. 9 is a flowchart illustrating control related to opening and closing of the exhaust variable valve.
  • FIG. 1 is a conceptual diagram showing an engine system to which an engine exhaust device is applied.
  • FIG. 2 is a partial cross-sectional schematic diagram showing the configuration of the exhaust system of the engine.
  • FIG. 1 shows an engine system to which the exhaust device 100 is applied.
  • the engine system includes an engine 1 configured as a spark ignition internal combustion engine.
  • the engine 1 is a turbocharged engine. Although not shown, the engine 1 is mounted in a so-called horizontal position in the front engine room of the automobile.
  • the engine 1 may be installed vertically.
  • a crankshaft 29 that is an output shaft of the engine 1 is connected to driving wheels via a transmission (not shown). The vehicle travels by transmitting the output of the engine 1 to the drive wheels.
  • the engine 1 includes a cylinder block 11 and a cylinder head 10 placed on the cylinder block 11.
  • a plurality of cylinders 2 are provided inside the cylinder block 11.
  • the engine 1 has first to fourth four cylinders 2A to 2D, as will be described later.
  • the four cylinders 2 are arranged side by side in a direction perpendicular to the paper surface in FIG.
  • the number of cylinders 2 included in the engine 1 and the arrangement of the cylinders 2 are not limited to a specific number and arrangement.
  • the crankshaft 29 is connected to the piston 27 via a connecting rod 271 (not shown).
  • the engine 1 has a crank angle sensor 211 that detects the rotational speed of the crankshaft 29, that is, the rotational speed of the engine 1.
  • Piston 27 is inserted in each cylinder 2 so as to be able to reciprocate.
  • the piston 27, the cylinder head 10, and the cylinder 2 define a combustion chamber 200.
  • an intake port 12 is formed for each cylinder 2.
  • the intake port 12 communicates with the combustion chamber 200.
  • An intake valve 301 capable of blocking an intake port provided in the combustion chamber 200 is disposed in the intake port 12.
  • the intake valve 301 is driven by an intake valve mechanism 310.
  • the intake valve 301 opens and closes the intake port 12 at a predetermined timing.
  • the cylinder head 10 is also provided with an exhaust port 13 for each cylinder 2.
  • the exhaust port 13 communicates with the combustion chamber 200.
  • the exhaust port 13 is provided with an exhaust valve 303 capable of blocking an exhaust port provided in the combustion chamber 200.
  • the exhaust valve 303 is driven by the exhaust valve mechanism 330.
  • the exhaust valve 303 opens and closes the exhaust port 13 at a predetermined timing.
  • the intake valve mechanism 310 is configured to be able to change the lift amount of the intake valve 301 and the valve opening period of the intake valve 301.
  • the intake valve mechanism 310 can employ various known configurations. As shown in FIG. 7, the intake valve mechanism 310 receives a signal from the engine control unit 7 and changes the lift amount of the intake valve 301 and the valve opening period of the intake valve 301.
  • the exhaust valve mechanism 330 is also configured to be able to change the lift amount of the exhaust valve 303 and the valve opening period of the exhaust valve 303.
  • the exhaust valve mechanism 330 can employ various known configurations. As shown in FIG. 7, the exhaust valve mechanism 330 receives a signal from the engine control unit 7 and changes the lift amount of the exhaust valve 303 and the valve opening period of the exhaust valve 303.
  • An intake passage 52 is connected to the intake port 12.
  • the intake passage 52 guides intake air to the cylinder 2.
  • a throttle valve 511 is interposed in the intake passage 52.
  • the throttle valve 511 is an electric control type.
  • the throttle actuator 512 that receives the control signal output from the engine control unit 7 adjusts the opening degree of the throttle valve 511.
  • a compressor 55 of the turbocharger 50 is disposed upstream of the throttle valve 511 in the intake passage 52.
  • the compressor 55 operates to supercharge intake air.
  • An intercooler 513 for cooling the air compressed by the compressor 55 is disposed between the throttle valve 511 and the compressor 55.
  • a surge tank 521 and an independent passage 522 branched to each of the four cylinders 2 on the downstream side of the surge tank 521 are provided downstream of the throttle valve 511 in the intake passage 52.
  • an air flow sensor 520 that detects the intake air amount introduced into the cylinder 2 and the intake air temperature is disposed downstream of the compressor 55.
  • An exhaust passage 53 is connected to the exhaust port 13.
  • An exhaust device 100 is provided in the exhaust passage 53. Details of the exhaust device 100 will be described later.
  • a turbine 56 of the turbocharger 50 is disposed in the exhaust passage 53.
  • the turbocharger 50 constitutes a part of the exhaust device 100.
  • the turbine 56 is rotated by the exhaust gas flow, and the compressor 55 connected to the turbine 56 via the connecting shaft 57 is operated by the rotation of the turbine 56.
  • the exhaust passage 53 is provided with an exhaust bypass passage 531 for flowing the exhaust gas by bypassing the turbine 56.
  • a waste gate valve 93 is provided in the exhaust bypass passage 531.
  • the wastegate valve 93 adjusts the flow rate of the exhaust gas flowing through the exhaust bypass passage 531. As the opening degree of the wastegate valve 93 is increased, the flow rate of the exhaust gas flowing through the exhaust bypass passage 531 increases, and the flow rate flowing through the turbine 56 decreases.
  • a first catalyst device 81 and a second catalyst device 82 configured to purify exhaust gas are disposed downstream of the turbine 56.
  • the exhaust passage 53 is also provided with two O 2 sensors 83 and 84 for detecting the oxygen concentration in the exhaust gas. Each of the O 2 sensors 83 and 84 outputs a detection signal to the engine control unit 7 as shown in FIG.
  • the engine 1 is provided with a fuel injection valve 41 for each cylinder 2.
  • the fuel injection valve 41 is configured to inject fuel (in this case, gasoline or fuel containing gasoline) directly into the cylinder 2.
  • the fuel injection valve 41 may be configured to inject fuel into the intake port 12.
  • the fuel injection valve 41 may have any configuration.
  • the fuel injection valve 41 may be a multi-injection type fuel injection valve. As shown in FIG. 7, the fuel injection valve 41 injects a predetermined amount of fuel into the cylinder 2 at a predetermined timing in accordance with a fuel injection pulse from the engine control unit 7.
  • the fuel injection valve 41 is attached to the side portion of the cylinder 2 on the intake side. The attachment position of the fuel injection valve 41 in the cylinder 2 is not limited to the position shown in the figure.
  • the engine 1 is also provided with a spark plug 42 for each cylinder 2.
  • the spark plug 42 is attached on the ceiling surface of the cylinder head 10 so that the electrode is on the axis of the cylinder 2.
  • the spark plug 42 ignites the air-fuel mixture in the combustion chamber 200 by generating a spark in the combustion chamber 200. As shown in FIG. 7, the spark plug 42 generates a spark at a desired ignition timing by an ignition signal from the engine control unit 7.
  • the exhaust device 100 includes an exhaust manifold for exhausting exhaust gas generated by the engine 1, an exhaust valve device 20, which will be described in detail later, and a turbocharger 50.
  • This engine is not provided with an independent part as an exhaust manifold, and will be described in detail later, but the independent exhaust passages 14, 15, 16 of the engine 1 (cylinder head 10) and the upstream exhaust passage of the exhaust valve device 20 are described later. 24, 25 and 26, and the exhaust introduction passage 51 and the collecting portion 54 of the turbocharger 50 cooperate to constitute an exhaust manifold.
  • the engine 1 is configured to increase the intake pressure by compressing the intake air introduced into the cylinders 2A to 2D by operating the turbocharger 50 with the exhaust gas discharged through the exhaust manifold. . And according to the driving
  • the engine torque increase effect by the turbocharger 50 is configured to be obtained over a wide range from the low engine speed range to the high engine speed range.
  • the arrangement direction of the cylinders 2A to 2D in the engine 1 is the “left-right direction”, and the direction orthogonal to this (the vertical direction in FIG. 2). Is the “front-rear direction”, and the turbocharger 50 side is the “front side” of the engine.
  • the first independent exhaust passage 14 connected to the exhaust port 13 of the first cylinder 2A and used for the exhaust of the first cylinder 2A, the second cylinder 2B and the third cylinder whose exhaust sequences are not continuous with each other Connected to the exhaust port 13 of each of 2C, connected to the second independent exhaust passage 15 used in common for the exhaust of the second cylinder 2B and the third cylinder 2C, and to the exhaust port 13 of the fourth cylinder 2D, and A third independent exhaust passage 16 used for exhausting the fourth cylinder 2D is formed.
  • the second independent exhaust passage 15 has a shape in which the upstream side branches in a Y shape so that it can be used in common for the second cylinder 2B and the third cylinder 2C.
  • an EGR downstream passage 18 is formed in the cylinder head 10. As shown in FIG. 2, the EGR downstream passage 18 is formed so as to cross the left side of the first cylinder 2 ⁇ / b> A in the cylinder head 10 in the front-rear direction. The upstream end of the EGR downstream passage 18 is open to the front surface of the cylinder head 10 and to the left of the independent exhaust passage 14. On the other hand, the downstream end of the EGR downstream passage 18 is open to the rear surface of the cylinder head 10. The downstream end of the EGR downstream passage 18 opens to the left side of the intake port 12 of the first cylinder 2A.
  • FIG. 4 shows the exhaust valve device 20 as viewed from the turbine side.
  • the exhaust valve device 20 changes the flow area of the exhaust gas discharged from the engine 1 to change the flow rate of the exhaust gas introduced into the turbocharger 50. It is fixed by.
  • the exhaust valve device 20 includes three independent upstream exhaust passages 24, 25, 26 (first upstream exhaust passage 24, second upstream upstream) that communicate with the independent exhaust passages 14, 15, 16 on the cylinder head 10 side.
  • 26 is provided with an exhaust variable valve 3 for changing the flow area of the exhaust gas in the interior.
  • the apparatus main body 21 is comprised with the metal casting.
  • the upstream exhaust passages 24, 25, and 26 each have a shape in which the downstream side branches in a Y shape. That is, as shown in FIGS. 3 and 4, the first upstream exhaust passage 24 is branched into a common passage 24 a communicating with the first independent exhaust passage 14 on the cylinder head 10 side, and an upper and lower bifurcated shape from the common passage 24 a. A high-speed passage 24b and a low-speed passage 24c.
  • the second upstream exhaust passage 25 and the third upstream exhaust passage 26 have common passages 25a and 26a (not shown) respectively communicating with the independent exhaust passages 15 and 16 on the cylinder head 10 side, and the common passage 25a, It has high-speed passages 25b and 26b and low-speed passages 25c and 26c that bifurcate up and down from 26a.
  • the high-speed passages 24b, 25b, and 26b in the upstream exhaust passages 24, 25, and 26 correspond to the first passage
  • the low-speed passages 24c, 25c, and 26c correspond to the second passage.
  • the low-speed passages 24c, 25c, and 26c are formed to have a smaller flow path cross-sectional area than the high-speed passages 24b, 25b, and 26b. Further, the common passages 24a, 25a, 26a and the independent exhaust passages 14, 15, 16 correspond to a common passage connected to the exhaust port.
  • Each of the high-speed passages 24b, 25b, and 26b has a substantially rectangular cross section, and is formed in a line in the left-right direction as shown in FIG.
  • each of the low speed passages 24c, 25c, and 26c has a substantially rectangular cross-sectional shape, and is formed so as to be aligned in one example in the left-right direction at a position above each of the high speed passages 24b, 25b, and 26b.
  • the EGR intermediate passage 28 is formed at the left end of the apparatus main body 21 as shown in FIGS.
  • the EGR intermediate passage 28 has a substantially rectangular cross-sectional shape, and is located in the lower left of the high-speed passage 24 b in the first upstream exhaust passage 24.
  • the exhaust variable valve 3 changes the flow area of the exhaust gas in the high-speed passages 24b, 25b, 26b among the upstream exhaust passages 24, 25, 26.
  • the exhaust variable valve 3 includes a valve body 31 including a total of three butterfly valves 30 disposed in the high-speed passages 24b, 25b, and 26b, a drive shaft 32 connected to the valve body 31, and the drive shaft. And a negative pressure type actuator 4 that rotates 32.
  • the exhaust variable valve 3 opens and closes the high-speed passages 24b, 25b, and 26b simultaneously by rotationally driving the butterfly valves 30 via the drive shaft 32 by the negative pressure actuator 4.
  • Each butterfly valve 30 is formed in a rectangular plate shape corresponding to the cross-sectional shape of each of the high-speed passages 24b, 25b, and 26b, as shown in FIGS. As will be described later, each butterfly valve 30 has a high-speed passage 24b as shown by a solid line in FIG. 5 when the stopper engaging portion 47 of the negative pressure actuator 4 is in contact with the stopper 46 (see FIG. 6). , 25b, 26b are closed. From this state, when the negative pressure actuator 4 is driven and the stopper engaging portion 47 is separated from the stopper 46, the valve body 31 rotates in the clockwise direction in FIG. Each butterfly valve 30 opens the high-speed passages 24b, 25b, and 26b.
  • the drive shaft 32 is connected to the left end portion of the valve main body 31 although not shown in detail. As shown in FIG. 4, the drive shaft 32 extends through the apparatus main body 21 to the outside of the left side of the upstream exhaust passages 24, 25, and 26. The distal end portion of the drive shaft 32 is supported by an auxiliary bearing portion 22 provided integrally with the apparatus main body 21 so as to be rotatable about the axis X1. The auxiliary bearing portion 22 is provided at a predetermined distance from the upstream exhaust passages 24, 25, and 26.
  • a lever member 33 is attached to the distal end portion of the drive shaft 32, specifically, the distal end portion of the drive shaft 32 that protrudes to the left of the auxiliary bearing portion 22.
  • the tip of the output shaft 44 of the negative pressure actuator 4 is connected to the lever member 33.
  • the negative pressure type actuator 4 is fixed to the apparatus main body 21 via a bracket 45 as shown in FIGS.
  • the negative pressure actuator 4 is configured such that the output shaft 44 advances and retreats as negative pressure is supplied and discharged through a negative pressure pipe 411 connected to the bottom.
  • the lever member 33 swings about the axis X1 of the drive shaft 32, and the drive shaft 32 rotates about the axis X1.
  • a stopper 46 is attached to the bracket 45 of the negative pressure actuator 4.
  • the stopper 46 since the bracket 45 is attached on the locus where the output shaft 44 advances and retreats, the stopper 46 is attached to the bracket 45.
  • the stopper 46 is attached on the advance and retreat locus of the output shaft 44. Therefore, for example, when the bracket 45 is attached to other than the locus, the stopper 46 may be attached directly to the main body of the negative pressure actuator 4.
  • a stopper engaging portion 47 that engages with the stopper 46 is fixed to the output shaft 44.
  • the stopper 46 and the stopper engaging portion 47 engage with each other when the output shaft 44 moves in the retracting direction, thereby preventing the output shaft 44 from moving further in the retracting direction.
  • the stopper 46 is a hat-shaped member, and a passage hole 461 through which the output shaft 44 passes is formed at the center position thereof.
  • the passage hole 461 has a diameter sufficiently larger than the diameter of the output shaft 44.
  • the stopper 46 also has a first contact surface 462 that bulges in a convex shape at a central position including the passage hole 461.
  • the stopper engaging portion 47 is fixed at an intermediate position of the output shaft 44.
  • the stopper engaging portion 47 has a second contact surface 471 that contacts the first contact surface 462 of the stopper 46.
  • the second contact surface 471 has a concave spherical shape.
  • each butterfly valve 30 closes each high-speed passage 24b, 25b, 26b as shown by a solid line in FIG.
  • the negative pressure actuator 4 that is, the negative pressure actuator is turned off
  • the output shaft 44 moves in the advance direction.
  • each butterfly valve 30 opens each high-speed passage 24b, 25b, 26b as shown by a two-dot chain line in FIG.
  • the exhaust variable valve 3 is configured to be normally open.
  • the turbocharger 50 is fixed to the main body 21 of the exhaust valve device 20 with bolts as shown in FIGS.
  • the turbocharger 50 includes an exhaust introduction passage portion 51 fixed to the mounting surface 21a (see FIG. 4) of the apparatus main body 21, a turbine housing 560 continuous to the exhaust introduction passage portion 51, and the turbine housing 560.
  • a turbine 56 provided and a compressor 55 disposed in an intake passage 52 which is not shown in FIG. 2 are included.
  • the exhaust introduction passage 51 includes an independent high-speed passage 51b and a low-speed passage 51c that communicate with the high-speed passages 24b, 25b, and 26b and the low-speed passages 24c, 25c, and 26c in the exhaust valve device 20, respectively.
  • the high-speed passage 51b of the exhaust introduction passage portion 51 joins three high-speed passages 24b, 25b, and 26b that are independent in the exhaust valve device 20.
  • three low-speed passages 24c, 25c, and 26c that were independent in the exhaust valve device 20 join the low-speed passage 51c of the exhaust introduction passage portion 51.
  • the exhaust introduction passage 51 is provided at its downstream end with a gathering portion 54 where the high speed passage 51b and the low speed passage 51c gather. Exhaust gases from the high-speed passage 51b and the low-speed passage 51c in the downstream exhaust passage section are merged in the collecting section 54 and sent to the turbine 56.
  • this engine is not provided with an independent part as an exhaust manifold, and is independent exhaust passages 14, 15, 16 of the engine 1 (cylinder head 10) and an upstream exhaust passage 24 of the exhaust valve device 20. 25, 26, and the exhaust introduction passage portion 51 and the collecting portion 54 of the turbocharger 50 constitute an exhaust manifold.
  • an EGR upstream side passage 58 communicating with the EGR intermediate passage 28 of the exhaust valve device 20 is formed on the left side of the exhaust introduction passage portion 51 of the turbine housing 560.
  • a part of the exhaust gas flowing into the turbocharger 50 is introduced into the intake passage as EGR gas through the EGR upstream passage 58, the EGR intermediate passage 28, and the EGR downstream passage 18. That is, in this engine, the EGR passage is constituted by the EGR downstream passage 18, the EGR intermediate passage 28, and the EGR upstream passage 58.
  • the exhaust gas generated by the engine 1 is sent from the independent exhaust passages 14, 15, 16 through the upstream exhaust passages 24, 25, 26 of the exhaust valve device 20 to the turbocharger. 50. At that time, the distribution area of the exhaust gas flowing through each of the high speed passages 24b, 25b, 26b of the exhaust valve device 20 is changed by the engine control unit 7 in the driving state of the automobile.
  • the exhaust valve device 20 is configured so as to close the high-speed passages 24b, 25b, and 26b in a low rotation range where the rotation speed of the engine 1 is lower than a predetermined rotation speed (for example, 1600 rpm). Be controlled. That is, each butterfly valve 30 closes the exhaust variable valve 3 so as to close the high-speed passages 24b, 25b, and 26b as indicated by solid lines in FIG. Thereby, a small amount of exhaust gas is concentrated in the low-speed passages 24c, 25c, and 26c to increase the flow rate of the exhaust gas, thereby increasing the driving force of the turbine 56 of the turbocharger 50 and increasing the intake pressure.
  • a predetermined rotation speed for example, 1600 rpm
  • the ejector effect is obtained in the downstream low-speed passage 51c where the upstream low-speed passages 24c, 25c, and 26c gather, and the burned gas in each of the cylinders 2A to 2D is sucked out.
  • the scavenging effect is also obtained.
  • each butterfly valve 30 opens the exhaust variable valve 3 so as to open the high-speed passages 24b, 25b, and 26b as indicated by a two-dot chain line in FIG.
  • the turbocharger By introducing the exhaust gas into the turbocharger 50 through both the high-speed passages 24b, 25b, 26b and the low-speed passages 24c, 25c, 26c, the turbocharger is suppressed while suppressing a decrease in the scavenging performance due to the exhaust passage resistance. 50 is driven to increase the intake pressure.
  • the exhaust variable valve 3 is switched between fully open and fully closed at a predetermined rotational speed. Therefore, high responsiveness is required for the opening / closing operation of the exhaust variable valve 3.
  • FIG. 7 is a block diagram showing the configuration of the engine system.
  • the engine system has an engine control unit 7.
  • the engine control unit 7 is connected to the air flow sensor 520, the O 2 sensors 83 and 84, and the crank angle sensor 211 described above.
  • the engine control unit 7 also includes a water temperature sensor 210 that is attached to the cooling water passage of the engine 1 and detects the cooling water temperature, an accelerator opening sensor 212 that detects the accelerator opening, and a gear stage that detects the gear stage of the transmission.
  • a detecting means 215 and a vehicle speed sensor 214 for detecting the vehicle speed are connected.
  • the engine control unit 7 sets the target torque of the engine 1 from the target acceleration of the automobile set based on the detection results of these sensors and the like.
  • the engine control unit 7 includes a fuel injection valve 41, a spark plug 42, an intake valve mechanism 310, an exhaust valve mechanism 330, a throttle valve 511, and an exhaust variable valve 3. Output a control signal.
  • the engine control unit 7 constitutes a valve control unit that controls the opening degree of the butterfly valve 30.
  • the engine control unit 7 is also configured to perform fuel cut control for stopping fuel supply to the engine 1 when a preset fuel cut condition is satisfied during deceleration of the automobile.
  • the engine control unit 7 constitutes a fuel injection valve control unit that executes fuel cut control for prohibiting fuel injection from the fuel injection valve 41 when a predetermined condition is satisfied.
  • the fuel cut condition is that the accelerator pedal is not depressed, the accelerator opening is zero, the rotational speed of the engine 1 is equal to or higher than the predetermined rotational speed, and the torque of the engine 1 is reduced to the predetermined torque. including.
  • the predetermined rotational speed corresponds to the rotational speed when returning from the fuel cut control (that is, when the fuel supply is resumed) so as not to cause engine stall.
  • the predetermined rotational speed is slightly higher than the idle rotational speed. For example, when the idle rotational speed is 750 rpm, the predetermined rotational speed may be 1000 rpm.
  • the predetermined number of rotations can be set as appropriate.
  • the predetermined torque corresponds to a torque for starting the fuel cut control, and is a torque that does not cause a torque shock even when the fuel cut control is started.
  • the predetermined torque can also be set as appropriate.
  • the region where the fuel cut control is performed includes a region where the exhaust variable valve 3 is closed as shown as F / C in FIG.
  • the force in the direction of strengthening the contact state between the stopper engaging portion 47 and the stopper 46 and the force in the direction of separating the contact act alternately, and the butterfly valve 30 (that is, the valve body 31) is driven. It flutters in the direction of rotation about the shaft 32, and there is concern about the generation of abnormal noise and the deterioration of the durability of the butterfly valve 30.
  • this engine system is configured to open the exhaust variable valve 3 during fuel cut control.
  • the opening / closing control of the exhaust variable valve 3 will be specifically described with reference to the flowchart shown in FIG.
  • the flowchart shown in FIG. 9 corresponds to a flow during the deceleration of the automobile.
  • the engine control unit 7 performs control related to the start and return of the fuel cut in parallel with this flowchart.
  • step S1 the operating state of the engine 1 is read. Specifically, the engine speed and the actual torque of the engine 1 are read. The engine speed is detected based on the detection signal of the crank angle sensor 211. In this example, the actual torque of the engine is estimated from the mass air amount introduced into the cylinder 2 calculated from the intake air amount and the intake air temperature detected by the air flow sensor 520, and the ignition timing of the spark plug 42. The Further, the engine torque may be estimated based on the fuel injection amount and the ignition timing instead of the mass air amount.
  • step S2 it is determined whether the engine speed Ne is 1600 rpm or more. As shown in FIG. 8, 1600 rpm is a rotation speed that becomes a boundary for opening and closing the exhaust variable valve 3. When the engine speed is 1600 rpm or more, it is determined that the engine 1 is in the high engine speed range and the routine proceeds to step S6, where the exhaust variable valve 3 is opened.
  • step S3 it is determined whether or not the accelerator-off state continues for a predetermined time. If NO, the process proceeds to step S7. In step S7, the exhaust variable valve 3 is closed because the engine 1 is in the low speed range.
  • step S4 it is determined whether the rotational speed Ne of the engine 1 is lower than 1000 rpm. 1000 rpm corresponds to the rotation speed when returning from the fuel cut control.
  • the routine proceeds to step S7 and the exhaust variable valve 3 is closed.
  • the process proceeds to step S5.
  • step S5 it is determined whether or not the actual torque of the engine 1 has been reduced to a fuel cut (F / C) possible torque that does not cause a torque shock even if the fuel cut control is started.
  • the F / C possible torque is determined based on the detection values of the accelerator opening sensor 212, the vehicle speed sensor 214, and the gear stage detection means 215 of the transmission.
  • the routine proceeds to step S7 and the exhaust variable valve 3 is closed.
  • step S6 the exhaust variable valve 3 is opened.
  • the engine control unit 7 determines the start of fuel cut separately from this flow. Determination of the start of fuel cut is substantially the same as steps S2 to S5 in the flow of FIG. Therefore, the start of fuel cut by stopping fuel injection to the fuel injection valve 41 and the opening of the exhaust variable valve 3 are performed substantially simultaneously.
  • FIG. 10 is a time chart showing changes in accelerator opening, throttle opening, engine speed, engine torque, fuel injection amount, and opening / closing of the variable exhaust valve 3 during deceleration of the automobile.
  • the engine speed reaches the speed at which the exhaust variable valve 3 is closed (here, 1600 rpm as described above). Thereby, the exhaust variable valve 3 is changed from open to closed.
  • the accelerator opening becomes zero and the state continues thereafter.
  • the throttle opening is maintained at the idle operation opening.
  • the engine speed and the engine torque gradually decrease.
  • the engine speed that has gradually decreased during the fuel cut reaches a predetermined speed (that is, idle speed + ⁇ ).
  • a predetermined speed that is, idle speed + ⁇ .
  • the engine control unit 7 in response to the start of fuel cut, does not open the exhaust variable valve 3 but opens the exhaust variable valve 3 simultaneously with the start of the fuel cut. Can be opened quickly. As a result, it is possible to reliably prevent the valve body 31 from flapping, and to avoid the generation of abnormal noise.
  • the engine control unit 7 opens the exhaust variable valve 3 when it is detected that the state where the accelerator opening is zero has continued for a predetermined time, so that when the accelerator opening temporarily becomes zero, The exhaust variable valve 3 is not opened.
  • the exhaust variable valve 3 is prevented from opening. As a result, loss of drivability is prevented.
  • the engine of the embodiment described above is an example of a preferred embodiment of the exhaust device 100 of the engine 1, and the specific configuration of the engine and the exhaust valve device 20 incorporated therein is the gist of the present invention. As long as it does not deviate from the above, it can be appropriately changed.
  • Engine 100 Exhaust device 212 Accelerator opening sensor (accelerator opening detector) 24a Common passage 24b, 25b, 26b High-speed passage (first passage) 24c, 25c, 26c Low speed passage (second passage) 3 Exhaust variable valve 30 Butterfly valve (valve) 31 valve body 32 drive shaft 41 fuel injection valve 50 turbocharger 53 exhaust passage 54 collecting part 56 turbine 560 turbine housing 7 engine control part (valve control part, fuel injection valve control part, torque estimation part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

排気通路53は、第1通路(高速用通路24b、25b、26b)と第2通路(低速用通路24c、25c、26c)とを含むと共に、集合部54よりも下流にタービンハウジング560が接続される。エンジンの排気装置100は、第1通路を開閉するよう構成されたバルブ(排気可変弁3)を備える。制御部(エンジン制御部7)は、エンジン1の回転数が所定回転数よりも低いときに、バルブを閉じ、所定回転数以上のときに、バルブを開ける。制御部は、エンジンの回転数が所定回転数よりも低いときであっても、燃料カット制御を実行しているときには、バルブを開ける。

Description

エンジンの排気装置
 ここに開示する技術は、エンジンの排気装置に関する。
 特許文献1には、ターボ過給機付きエンジンにおいて、各気筒に通じる独立排気通路とタービンとの間に、排気弁装置を介設することが記載されている。排気弁装置は、エンジンの回転数に応じてエンジンから排出される排気ガスの流通面積を変更することにより、タービンに導入する排気ガスの流速を変更する。
 特許文献1に記載されている排気装置についてさらに詳細に説明をする。このエンジンは、1番~4番の4つの気筒を有する直列4気筒エンジンである。独立排気通路は、1番気筒に通じる第1排気通路と、2番及び3番気筒に通じる第2排気通路と、4番気筒に通じる第3排気通路と、を含んでいる。排気弁装置は、独立排気通路に接続される上流側排気通路を備えている。ターボ過給機は、上流側排気通路とタービンハウジングとをつなぐ下流側排気通路を備えている。
 上流側排気通路は、第1~第3排気通路のそれぞれに連通する独立した3つの通路によって構成されている。3つの通路はそれぞれ、低速用通路及び高速用通路の2つの通路に分岐している。下流側排気通路は、上流側排気通路の低速用通路及び高速用通路のそれぞれに連通する独立した低速用通路と高速用通路とを有している。下流側排気通路の低速用通路及び高速用通路はそれぞれ、上流側排気通路において独立していた3つの通路が合流している。下流側排気通路の下流端は、低速用通路と高速用通路とが合流した上で、タービンの入口に接続されている。
 上流側排気通路における高速用通路には、バタフライバルブを配設している。バタフライバルブに連結された駆動軸をアクチュエータによって回転することによって、バタフライバルブは、開及び閉が切り替わる。
 エンジンが所定回転数以下の低回転域においては、バタフライバルブを閉じる。このことで、排気ガスの流通面積が絞られるから、排気ガスの流速が高まり、エンジンの低回転域においてタービンの駆動力が高まる。また、排気ガスの流速が高まることで、低速用通路の独立した3つの通路の集合箇所においてエゼクタ効果が得られ、低回転域では、気筒内の既燃ガスを吸い出す効果も得られる。一方、エンジンの高回転域では、低速用通路と高速用通路との両方を通じて排気ガスをタービンに導入することができ、排気抵抗を低減してタービンの駆動力が高まる。
 特許文献2には、燃費性能を向上させるために、自動車の減速中に所定の燃料カット条件が成立したときに、燃料カットを行うことが記載されている。
特開2014-256942号公報 特開平10-30477号公報
 ところで、特許文献1に記載されているような排気装置を備えたエンジンに、特許文献2に記載されているような燃料カット制御を組み合わせると、燃料カット中にエンジン回転数が所定回転数以下になったときに、バタフライバルブが閉じて、高速用通路を閉塞する。
 ここで、燃料カット中は、スロットルバルブの開度が小さくかつ、燃焼室内における燃焼が行われないため、燃焼を伴わない膨張行程終了時の気筒内の圧力状態は、吸気通路及び排気通路よりも低くなる。そのため、排気行程の初期に排気弁が開弁すると、排気通路内のガスが気筒内に逆流するようになる一方、排気行程が進んでピストンが上昇するに従い、気筒内のガスが排気通路に押し出されるようになる。高速用通路を閉塞しているバタフライバルブには、排気通路内のガスが気筒内に逆流するときの流体圧力と、気筒内のガスが排気通路に押し出されるときの流体圧力とが交互に作用する。その結果、バタフライバルブが、駆動軸を中心とする回動方向に、ばたつくようになり、異音の発生や、バタフライバルブの耐久性の低下が懸念される。
 ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、排気通路内にバルブが配設されたエンジンの排気装置において、燃料カット中のバルブのばたつきを防止することにある。
 ここに開示する技術は、エンジンの内部に設けられる燃焼室の排気口と前記エンジンの外部に設けられる触媒装置とを接続する排気通路内に配設されかつ、駆動軸を回動させることにより、当該排気通路の通路断面積を変更するよう回動可能に構成された板状のバルブと、前記バルブの開度を制御するよう構成されたバルブ制御部と、を備えたエンジンの排気装置に関する。
 前記エンジンは、前記燃焼室に燃料を供給するよう構成された燃料噴射弁と、車両の走行中に所定条件が成立したときに前記燃料噴射弁からの燃料噴射を禁止する燃料カット制御を実行するよう構成された燃料噴射弁制御部と、を有し、前記排気通路は、前記排気口に接続された共通通路と、該共通通路の下流部において分岐しかつ、互いに並行に設けられた第1通路及び第2通路と、前記第1通路及び前記第2通路の下流部において前記第1通路及び前記第2通路が集合する集合部と、を含み、前記第1通路及び第2通路の集合部は、タービンを備えたターボ過給機のタービンハウジングに接続され、前記バルブは、前記第1通路に配設されかつ、前記第1通路の通路断面積を変更するよう構成され、前記バルブ制御部は、前記エンジンの回転数が所定回転数よりも低いときに、前記バルブを閉じて前記第1通路を閉塞し、前記所定回転数以上のときに、前記バルブを開けて前記第1通路を開け、前記バルブ制御部は、前記エンジンの回転数が前記所定回転数よりも低いときであっても、前記燃料噴射弁制御部が前記燃料カット制御を実行しているときには、前記バルブを開けるように構成されている。
 この構成によると、排気通路の第1通路に配設されたバルブは、エンジンの回転数が所定回転数よりも低いときに閉じて、第1通路を閉塞する。排気ガスの流通面積が絞られることで排気ガスの流速が高まり、エンジンの低回転域においてタービンの駆動力が高まる。前記バルブはまた、エンジンの回転数が所定回転数以上のときは開いて、第1通路を開ける。バルブは全開にしてもよいし、中間開度に調整してもよい。第1通路と第2通路との両方を通じて排気ガスをタービンに導入することができ、排気抵抗を低減してタービンの駆動力が高まる。
 そうして、燃料噴射弁制御部が燃料カット制御を実行しているときには、エンジンの回転数が所定回転数より低くても、バルブ制御部はバルブを開けて、第1通路を開ける。このときに、バルブは、全開にしてもよいし、中間開度に調整してもよい。燃料カット中に、排気弁の開閉に伴い、排気通路内のガスが気筒内に逆流したり、気筒内のガスが排気通路に押し出されたりしても、バルブに流体圧力が作用することが抑制される。その結果、燃料カット中のバルブのばたつきを防止することが可能になる。
 前記装置は、アクセル開度を検出するよう構成されたアクセル開度検出部と、前記エンジンの実トルクを推定するよう構成されたトルク推定部と、を備え、前記バルブ制御部は、前記アクセル開度検出部がアクセル開度がゼロであることを検出しかつ、前記トルク推定部が前記エンジンの実トルクが所定値以下であることを推定したときには、前記エンジンの回転数が前記所定回転数よりも低いときであっても、前記バルブを開ける、としてもよい。
 つまり、バルブ制御部は、燃料カットを開始したことを受けて、バルブを開けるのではなく、燃料カットの開始と同時に、バルブを開けるようにする。そのために、アクセル開度がゼロであることが検出されかつ、エンジンの実トルクが所定値以下であることが検出されたときにバルブを開ける。こうすることで、バルブを閉じている状態から、燃料カットの開始と同時に、バルブを速やかに開けることが可能になる。その結果、バルブのばたつきを確実に防止することが可能になり、異音の発生を回避することが可能になる。
 前記バルブ制御部は、前記アクセル開度検出部が、前記アクセル開度がゼロの状態が、所定時間継続したことを検出したときに、前記バルブを開ける、としてもよい。
 アクセル開度が一時的にゼロになったときに、直ちにバルブを開けるのではなく、アクセル開度がゼロの状態が継続したときに、バルブ制御部は、バルブを開ける。これにより、運転者が、アクセルペダルを一瞬離したが、すぐに踏み直したような場合に、排気通路に配設したバルブが開いてしまうことが回避される。こうすることで、ドライバビリティを損なうことが防止される。
 以上説明したように、前記のエンジンの排気装置によると、エンジンの回転数が所定回転数よりも低いときに閉じるバルブを、燃料カット制御を実行しているときには、エンジンの回転数が所定回転数より低くても開けて、第1通路を開けることにより、燃料カット中に、排気弁の開閉に伴う流体圧力がバルブに作用することが抑制され、燃料カット中のバルブのばたつきを防止することが可能になる。
図1は、エンジンの排気装置が適用されるエンジンシステムを示す概念図である。 図2は、エンジンの排気装置の構成を示す、一部断面の概略図である。 図3は、エンジンの排気装置の構成を示す断面図である。 図4は、排気弁装置の構成を示すタービン側から見た斜視図である。 図5は、図3のV-V断面図である。 図6は、負圧式アクチュエータの断面図である。 図7は、エンジンシステムの構成を示すブロック図である。 図8は、排気可変弁の開閉に係る制御マップを例示する図である。 図9は、排気可変弁の開閉に係る制御を示すフローチャートである。 図10は、排気可変弁が開いている走行状態から燃料カット制御に至るまでの、アクセル開度、スロットル開度、エンジン回転数、エンジントルク、燃料噴射量及び排気可変弁の開閉状態の変化を例示するタイムチャートである。
 以下、ここに開示するエンジンの排気装置について、図面を参照しながら詳細に説明をする。尚、以下の説明は例示である。図1は、前記排気装置100が適用されるエンジンシステムを示している。
 (エンジンシステムの全体構成)
 エンジンシステムは、火花点火式内燃機関として構成されたエンジン1を備えている。エンジン1は、ターボ過給機付きエンジンである。エンジン1は、図示は省略するが、自動車における前部のエンジンルーム内で、いわゆる横置きに搭載される。エンジン1は縦置きであってもよい。エンジン1の出力軸であるクランクシャフト29は、図示を省略する変速機を介して駆動輪に連結されている。エンジン1の出力を駆動輪に伝達することによって、自動車が走行する。
 エンジン1は、シリンダブロック11と、シリンダブロック11の上に載置されるシリンダヘッド10と、を備えている。シリンダブロック11の内部には、複数の気筒2が設けられている。この例では、エンジン1は、後述するように、第1~第4の4つの気筒2A~2Dを有する。4つの気筒2は、図1における紙面に垂直な方向に並んで配置されている。尚、エンジン1が有する気筒2の数、及び、気筒2の配列は、特定の数及び配列に限定されない。
 クランクシャフト29は、一部の図示を省略するコネクティングロッド271を介してピストン27に連結されている。エンジン1は、クランクシャフト29の回転数、つまりエンジン1の回転数を検知するクランク角センサ211を有している。
 ピストン27は、各気筒2内に往復動可能に内挿されている。ピストン27と、シリンダヘッド10と、気筒2とは、燃焼室200を区画形成する。
 シリンダヘッド10には、気筒2毎に吸気ポート12が形成されている。吸気ポート12は、燃焼室200に連通する。吸気ポート12には、燃焼室200に設けられた吸気口を遮断可能な吸気弁301が配設されている。吸気弁301は、吸気動弁機構310によって駆動される。吸気弁301は、所定のタイミングで吸気ポート12を開閉する。
 シリンダヘッド10にはまた、気筒2毎に排気ポート13が形成されている。排気ポート13は、燃焼室200に連通する。排気ポート13には、燃焼室200に設けられた排気口を遮断可能な排気弁303が配設されている。排気弁303は、排気動弁機構330によって駆動される。排気弁303は、所定のタイミングで排気ポート13を開閉する。
 吸気動弁機構310は、吸気弁301のリフト量及び吸気弁301の開弁期間を変更可能に構成されている。吸気動弁機構310は、公知の様々な構成を採用することが可能である。吸気動弁機構310は、図7に示すように、エンジン制御部7からの信号を受けて、吸気弁301のリフト量及び吸気弁301の開弁期間を変更する。
 排気動弁機構330も、排気弁303のリフト量及び排気弁303の開弁期間を変更可能に構成されている。排気動弁機構330は、公知の様々な構成を採用することが可能である。排気動弁機構330は、図7に示すように、エンジン制御部7からの信号を受けて、排気弁303のリフト量及び排気弁303の開弁期間を変更する。
 吸気ポート12には、吸気通路52が接続されている。吸気通路52は、気筒2に吸気を導く。吸気通路52には、スロットルバルブ511が介設している。スロットルバルブ511は、電気制御式である。エンジン制御部7が出力した制御信号を受けたスロットルアクチュエータ512が、スロットルバルブ511の開度を調整する。
 吸気通路52におけるスロットルバルブ511よりも上流には、ターボ過給機50のコンプレッサ55が配設されている。コンプレッサ55が作動することにより、吸気の過給を行う。スロットルバルブ511とコンプレッサ55との間には、コンプレッサ55により圧縮された空気を冷却するインタークーラ513が配設されている。
 吸気通路52におけるスロットルバルブ511よりも下流には、サージタンク521と、サージタンク521の下流側で4つの気筒2のそれぞれに分岐される独立通路522とが設けられている。
 吸気通路52において、コンプレッサ55よりも下流には、気筒2に導入する吸入空気量と、吸気の温度とを検出するエアフローセンサ520が配設されている。
 排気ポート13には、排気通路53が接続されている。排気通路53には、排気装置100が設けられている。排気装置100の詳細は後述する。
 排気通路53には、ターボ過給機50のタービン56が配設されている。ターボ過給機50は、排気装置100の一部を構成する。タービン56が排気ガス流により回転し、タービン56の回転により、タービン56と連結軸57を介して連結されたコンプレッサ55が作動する。
 排気通路53には、排気ガスを、タービン56をバイパスして流すための排気バイパス通路531が設けられている。排気バイパス通路531には、ウエストゲートバルブ93が設けられている。ウエストゲートバルブ93は、排気バイパス通路531を流れる排気ガスの流量を調整する。ウエストゲートバルブ93の開度が大きいほど、排気バイパス通路531を流れる排気ガスの流量が増え、タービン56を流れる流量が少なくなる。
 排気通路53において、タービン56よりも下流には、排気ガスを浄化するよう構成された、第1触媒装置81と第2触媒装置82とが配設されている。排気通路53にはまた、排気ガス中の酸素濃度を検知するための、2つのOセンサ83、84が介設している。各Oセンサ83、84はそれぞれ、図7に示すように、エンジン制御部7に検知信号を出力する。
 エンジン1には、気筒2毎に燃料噴射弁41が取り付けられている。燃料噴射弁41は、気筒2内に直接、燃料(ここでは、ガソリン、又は、ガソリンを含む燃料)を噴射するように構成されている。燃料噴射弁41は、吸気ポート12に燃料を噴射するように構成してもよい。燃料噴射弁41の構成は、どのようなものであってみよいが、例えば多噴口型の燃料噴射弁としてもよい。図7に示すように、燃料噴射弁41は、エンジン制御部7からの燃料噴射パルスに従って、所定の量の燃料を、所定のタイミングで、気筒2内に噴射する。尚、図1の例では、燃料噴射弁41を、気筒2の吸気側の側部に取り付けている。気筒2内における燃料噴射弁41の取り付け位置は、図例の位置に限らない。
 エンジン1にはまた、気筒2毎に、点火プラグ42が取り付けられている。点火プラグ42は、シリンダヘッド10の天井面において、電極が気筒2の軸心上となるように取り付けられている。点火プラグ42は、燃焼室200内で火花を発生させることによって、燃焼室200内の混合気に点火する。点火プラグ42は、図7に示すように、エンジン制御部7からの点火信号により、所望の点火タイミングで火花を発生させる。
 (エンジンの排気装置の構成)
 図2及び図3は、エンジンの排気装置100を示している。前述したように、エンジンは、ターボ過給機50を備えた4サイクルエンジンであり、本実施形態では1番気筒、3番気筒、4番気筒、2番気筒の順に燃焼が行なわれるように構成されている。このエンジン1は、4つの気筒2A~2D(1番気筒2A、2番気筒2B、3番気筒2C、4番気筒2D)が列状に並んでいる。排気装置100は、エンジン1で生成された排気ガスを排出するための排気マニホールドと、詳細は後述する排気弁装置20と、ターボ過給機50とを備えている。
 このエンジンには、排気マニホールドとして独立した部品は備えられておらず、詳細は後述するが、エンジン1(シリンダヘッド10)の独立排気通路14、15、16、排気弁装置20の上流側排気通路24、25、26、並びに、ターボ過給機50の排気導入通路部51及び集合部54が協働して排気マニホールドを構成している。
 エンジン1は、排気マニホールドを通じて排出される排気ガスによりターボ過給機50を作動させることで、各気筒2A~2Dへと導入される吸気を圧縮して吸気圧を上昇させるように構成されている。そして、自動車の運転状態に応じ、ターボ過給機50に導入される排気ガスの流速が、エンジン1とターボ過給機50との間に介設される前記排気弁装置20によって制御されることで、このターボ過給機50によるエンジントルク上昇効果が、エンジン回転数域の低回転域から高回転域の広範囲にわたって得られるように構成されている。
 尚、以下の説明では、方向関係を明確にするために、図2を基準として、エンジン1における気筒2A~2Dの配列方向を「左右方向」、これに直交する方向(図2の上下方向)を「前後方向」とし、ターボ過給機50側をエンジンの「前側」とする。
 エンジン1のシリンダヘッド10には、4つの気筒2A~2Dに対して3つの独立排気通路が形成されている。具体的には、1番気筒2Aの排気ポート13に接続されかつ、1番気筒2Aの排気に使用される第1独立排気通路14と、排気順序が互いに連続しない2番気筒2B及び3番気筒2Cそれぞれの排気ポート13に接続されかつ、2番気筒2B及び3番気筒2Cの排気に共通して使用される第2独立排気通路15と、4番気筒2Dの排気ポート13に接続されかつ、4番気筒2Dの排気に使用される第3独立排気通路16とが形成されている。第2独立排気通路15は、2番気筒2B及び3番気筒2Cに対して共通に使用可能なように上流側がY字状に分岐した形状とされている。
 これら独立排気通路14、15、16は、その下流側端部がシリンダヘッド10の左右方向略中央に集約されるように形成され、互いに近接して左右方向に一列に並んだ状態でシリンダヘッド10の前面に開口している。
 また、シリンダヘッド10には、EGR下流側通路18が形成されている。このEGR下流側通路18は、図2に示すように、シリンダヘッド10のうち、1番気筒2Aの左側を前後方向に横断するように形成されている。このEGR下流側通路18の上流側端部は、シリンダヘッド10の前面であって前記独立排気通路14の左側の位置に開口している。一方、EGR下流側通路18の下流側端部は、シリンダヘッド10の後面に開口している。尚、前記EGR下流側通路18の下流側端部は、1番気筒2Aの吸気ポート12の左側の位置に開口している。
 図4は、タービン側から見た排気弁装置20を示している。前記排気弁装置20は、エンジン1から排出される排気ガスの流通面積を変更することにより、ターボ過給機50に導入される排気ガスの流速を変更させるものであり、エンジン1の前面にボルトにより固定されている。
 この排気弁装置20は、シリンダヘッド10側の前記独立排気通路14、15、16それぞれに連通する3つの独立した上流側排気通路24、25、26(第1上流側排気通路24、第2上流側排気通路25、第3上流側排気通路26)と、シリンダヘッド10側の前記EGR下流側通路18に連通するEGR中間通路28とが形成された装置本体21と、上流側排気通路24、25、26内の排気ガスの流通面積を変更するための排気可変弁3とを備えている。尚、装置本体21は、金属鋳造体で構成されている。
 各上流側排気通路24、25、26はそれぞれ、下流側がY字状に分岐した形状とされている。すなわち、図3及び図4に示すように、第1上流側排気通路24は、シリンダヘッド10側の第1独立排気通路14に連通する共通通路24aと、この共通通路24aから上下二股状に分岐する高速用通路24b及び低速用通路24cとを有している。第2上流側排気通路25及び第3上流側排気通路26も同様に、シリンダヘッド10側の独立排気通路15、16にそれぞれ連通する共通通路25a、26a(図示省略)と、この共通通路25a、26aから二股状に上下に分岐する高速用通路25b、26b及び低速用通路25c、26cとを有している。尚、当実施形態では、各上流側排気通路24、25、26における高速用通路24b、25b、26bが第1通路に、低速用通路24c、25c、26cが第2通路に相当する。低速用通路24c、25c、26cは、高速用通路24b、25b、26bよりも流路断面積が小さく形成されている。また、共通通路24a、25a、26a及び独立排気通路14、15、16が、排気口に接続される共通通路に相当する。
 各高速用通路24b、25b、26bは、断面形状が略矩形であり、図4に示すように、左右方向に一列に並ぶように形成されている。各低速用通路24c、25c、26cも同様に、断面形状が略矩形であり、前記各高速用通路24b、25b、26bの上方の位置において、左右方向に一例に並ぶように形成されている。
 一方、前記EGR中間通路28は、図2及び図4に示すように、装置本体21の左端に形成されている。このEGR中間通路28は、断面形状が略矩形であり、第1上流側排気通路24のうち高速用通路24bの左下に位置している。
 前記排気可変弁3は、前記上流側排気通路24、25、26のうち、各高速用通路24b、25b、26b内の排気ガスの流通面積を変更するものである。この排気可変弁3は、各高速用通路24b、25b、26b内にそれぞれ配置される合計3つのバタフライバルブ30を含むバルブ本体31と、バルブ本体31に連結された駆動軸32と、この駆動軸32を回転させる負圧式アクチュエータ4とを含む。排気可変弁3は、負圧式アクチュエータ4により駆動軸32を介して各バタフライバルブ30を回転駆動することにより、各高速用通路24b、25b、26bを同時に開閉する。
 ここで、排気可変弁3の構成について具体的に説明する。図4に示すように、バルブ本体31は、左右方向に並んだ3つのバタフライバルブ30を互いに連結して構成されている。左右方向に並んだ高速用通路24b、25b、26bは、その横断面の中心部分が左右方向に互いに連通しており、バルブ本体31は、互いに連通した高速用通路24b、25b、26bの横断面の中心部分を横切るように、左右方向に延びて配設されている。バルブ本体31の左右の両端部には、支持部311が、バルブ本体31と一体的に設けられている。各支持部311は、装置本体21に対して軸心X1(図5参照)回りに回転可能に支持されている。バルブ本体31は、高温の排気ガスに曝されるため、耐熱性を有する材料によって構成される。
 各バタフライバルブ30は、図4及び図5に示すように、各高速用通路24b、25b、26bの断面形状に対応した矩形の板状に形成されている。各バタフライバルブ30は、後述するように、負圧式アクチュエータ4のストッパー係合部47がストッパー46に当接しているときに(図6参照)、図5に実線で示すように、高速用通路24b、25b、26bを閉じた状態にする。その状態から、負圧式アクチュエータ4が駆動することによって、ストッパー係合部47がストッパー46から離れると、バルブ本体31が、図5における時計回りの方向に回転し、二点鎖線で示すように、各バタフライバルブ30は、高速用通路24b、25b、26bを開けた状態にする。
 駆動軸32は、詳細な図示は省略するが、バルブ本体31の左端部に連結されている。駆動軸32は、図4に示すように、装置本体21を貫通して、上流側排気通路24、25、26の左側の外にまで延びている。駆動軸32の先端部分は、装置本体21に一体に設けられた補助軸受部22に、軸心X1回りに回転可能に支持されている。補助軸受部22は、上流側排気通路24、25、26から、所定の距離だけ離れて設けられている。
 駆動軸32の先端部、詳細には、補助軸受部22よりも左側に突出した駆動軸32の先端部には、レバー部材33が取り付けられている。レバー部材33に対し、負圧式アクチュエータ4の出力軸44の先端が連結される。
 負圧式アクチュエータ4は、図4及び図6に示すように、ブラケット45を介して装置本体21に固定されている。負圧式アクチュエータ4は、底部に接続した負圧管411を通じて負圧が供給及び排出されることに伴い、出力軸44が進退するように構成される。出力軸44の進退に伴い、レバー部材33は、駆動軸32の軸心X1を中心に揺動し、駆動軸32は、軸心X1を中心に回転する。
 負圧式アクチュエータ4のブラケット45には、ストッパー46が取り付けられている。尚、本実施形態では、ブラケット45を出力軸44が進退する軌跡上に取り付けているため、ストッパー46をブラケット45に取り付けているが、ストッパー46は、出力軸44の進退軌跡上に取り付けられていれば良いので、例えば、ブラケット45を前記軌跡上以外に取り付けている場合には、ストッパー46を負圧式アクチュエータ4の本体に直接取り付けるようにしても良い。
 出力軸44には、ストッパー46に係合するストッパー係合部47が固定されている。ストッパー46及びストッパー係合部47は、出力軸44が退避方向へ移動したときに互いに係合することによって、出力軸44がそれ以上に退避方向に移動することを阻止する。
 ストッパー46は、ハット状の部材であり、その中心位置に、出力軸44が通過する通過孔461が形成されている。この通過孔461は、出力軸44の径よりも十分に大きな径を有している。ストッパー46はまた、通過孔461を含む中心位置に、凸状に膨らんだ第1当接面462を有している。
 ストッパー係合部47は、出力軸44の中間位置に固定されている。ストッパー係合部47は、ストッパー46の第1当接面462に当接する第2当接面471を有している。第2当接面471は、凹球面状である。
 負圧式アクチュエータ4に負圧を供給したとき(つまり、負圧式アクチュエータをオンにしたとき)には、出力軸44は退避方向に移動をして、図6に示すように、ストッパー46及びストッパー係合部47が互いに係合する。これにより、各バタフライバルブ30が、図5に実線で示すように、各高速用通路24b、25b、26bを閉じる。一方、負圧式アクチュエータ4から負圧を排出する(つまり、負圧式アクチュエータをオフにする)と、出力軸44は進出方向に移動をする。これにより、各バタフライバルブ30が、図5に二点鎖線で示すように、各高速用通路24b、25b、26bを開ける。排気可変弁3は、ノーマルオープンに構成されている。
 前記ターボ過給機50は、図2及び図3に示すように、排気弁装置20の装置本体21にボルトにより固定される。ターボ過給機50は、装置本体21の取付面21a(図4参照)に固定される排気導入通路部51と、排気導入通路部51に連続するタービンハウジング560と、このタービンハウジング560内に配設されるタービン56と、図2においては図外となる吸気通路52内に配設されるコンプレッサ55とを含む。
 排気導入通路部51は、排気弁装置20における高速用通路24b、25b、26b、及び、低速用通路24c、25c、26cのそれぞれに連通する、独立した高速用通路51bと低速用通路51cとを有している。詳細な図示は省略するが、排気導入通路部51の高速用通路51bは、排気弁装置20において独立していた3つの高速用通路24b、25b、26bが合流する。同様に、排気導入通路部51の低速用通路51cは、排気弁装置20において独立していた3つの低速用通路24c、25c、26cが合流する。
 排気導入通路部51は、その下流端部に、高速用通路51bと低速用通路51cとが集合する集合部54を備えている。下流側排気通路部の高速用通路51b及び低速用通路51cからの排気ガスがこの集合部54で合流してタービン56に送られる。
 前述したように、このエンジンには、排気マニホールドとして独立した部品は備えられておらず、エンジン1(シリンダヘッド10)の独立排気通路14、15、16、排気弁装置20の上流側排気通路24、25、26、並びに、ターボ過給機50の排気導入通路部51及び集合部54が組み合わさって排気マニホールドを構成している。
 また、タービンハウジング560の排気導入通路部51の左側部には、排気弁装置20の前記EGR中間通路28に連通するEGR上流側通路58が形成されている。ターボ過給機50に流入する排気ガスの一部は、EGRガスとして、EGR上流側通路58、前記EGR中間通路28及びEGR下流側通路18を通じて吸気通路に導入されるようになっている。つまり、このエンジンでは、EGR下流側通路18、EGR中間通路28及びEGR上流側通路58によりEGR通路が構成されている。
 前記のように構成されたエンジンにおいて、エンジン1で生成された排気ガスは、独立排気通路14、15、16から排気弁装置20の上流側排気通路24、25、26を介してターボ過給機50に導入される。その際、排気弁装置20の各高速用通路24b、25b、26bを流通する排気ガスの流通面積が、エンジン制御部7によって、自動車の運転状態において変更される。
 具体的には、図8に示すように、エンジン1の回転数が所定回転数(例えば1600rpm)よりも低い低回転域では、高速用通路24b、25b、26bを閉じるように排気弁装置20が制御される。つまり、各バタフライバルブ30が、図5に実線で示すように、各高速用通路24b、25b、26bを閉じるように、排気可変弁3を閉弁する。これにより、少ない排気ガスを低速用通路24c、25c、26cに集中させることで排気ガスの流速を高め、これによりターボ過給機50のタービン56の駆動力をアップさせて吸気圧を高める。また、低回転域においては、上流側の低速用通路24c、25c、26cが集合する、下流側の低速用通路51cにおいてエゼクタ効果が得られ、各気筒2A~2D内の既燃ガスを吸い出すことによる掃気効果も得られる。
 一方、エンジン1の回転数が所定回転数以上の高回転域では、低速用通路24c、25c、26cのみを使って排気ガスを通過させると通路抵抗により掃気性能が低下してしまう虞があるので、高速用通路24b、25b、26bを開くように排気弁装置20が制御される。つまり、各バタフライバルブ30が、図5に二点鎖線で示すように、各高速用通路24b、25b、26bを開けるように、排気可変弁3を開弁する。高速用通路24b、25b、26b及び低速用通路24c、25c、26cの両方を通じて排気ガスをターボ過給機50に導入することで、排気通路抵抗による掃気性能の低下を抑制しつつターボ過給機50を駆動させて吸気圧を高める。排気可変弁3は、所定の回転数を境にして、全開と全閉とが切り替わる。そのため、排気可変弁3の開閉動作には、高い応答性が求められる。
 (エンジンの制御)
 図7は、エンジンシステムの構成を示すブロック図である。エンジンシステムは、エンジン制御部7を有している。エンジン制御部7には、前述したエアフローセンサ520、Oセンサ83、84、及び、クランク角センサ211が接続される。エンジン制御部7にはまた、エンジン1の冷却水通路に取り付けられかつ、冷却水温を検知する水温センサ210、アクセル開度を検出するアクセル開度センサ212、変速機のギヤ段を検出するギヤ段検出手段215、及び、車速を検出する車速センサ214が接続される。エンジン制御部7は、これらのセンサ等の検出結果に基づいて設定した自動車の目標加速度から、エンジン1の目標トルクを設定する。エンジン制御部7は、設定したエンジン1の目標トルクを実現すべく、燃料噴射弁41、点火プラグ42、吸気動弁機構310、排気動弁機構330、スロットルバルブ511、及び排気可変弁3に、制御信号を出力する。エンジン制御部7は、バタフライバルブ30の開度を制御するバルブ制御部を構成する。
 エンジン制御部7はまた、自動車の減速時に、予め設定した燃料カット条件が成立したときには、エンジン1に対する燃料供給を中止する燃料カット制御を行うように構成されている。エンジン制御部7は、所定条件が成立したときに燃料噴射弁41からの燃料噴射を禁止する燃料カット制御を実行する燃料噴射弁制御部を構成する。燃料カット条件は、アクセルペダルが踏まれておらず、アクセル開度がゼロであること、エンジン1の回転数が所定回転数以上であること、及び、エンジン1のトルクが所定トルクに低下することを含む。
 ここで、所定回転数は、エンジンストールにならないように燃料カット制御から復帰するとき(つまり燃料の供給を再開するとき)の回転数に相当する。所定回転数は、アイドル回転数よりも若干高い回転数であり、例えばアイドル回転数が750rpmである場合には、1000rpmとしてもよい。所定回転数は、適宜設定することが可能である。また、所定トルクは、燃料カット制御を開始するトルクに相当し、燃料カット制御を開始しても、トルクショックが生じないトルクである。所定トルクも適宜設定することが可能である。
 燃料カット制御を行う領域は、図8にF/Cとして示すように、排気可変弁3が閉じられる領域を含む。
 バタフライバルブ30が閉じた状態であっても、排気通路内のガスが、排気口からタービンハウジング560の方に流れることによって生じる流体圧力のみがバタフライバルブ30に作用する時には、ストッパー係合部47とストッパー46との当接によって、バタフライバルブ30のばたつきは抑制されるが、燃料カット制御中は、スロットルバルブ511の開度が小さくかつ、燃焼室200内における燃焼が行われないため、燃焼を伴わない膨張行程終了時の気筒2内の圧力状態は、吸気通路52及び排気通路53よりも低くなる。そのため、排気行程の初期に排気弁303が開弁すると、排気通路53内のガスが排気口を通じて気筒2内に逆流するようになる一方、排気行程が進んでピストン27が上昇するに従い、気筒2内のガスが排気通路53に押し出されるようになる。このときに、高速用通路24b、25b、26bをバタフライバルブ30が閉塞していると、バタフライバルブ30には、排気通路53内のガスが気筒2内に逆流するときの流体圧力と、気筒2内のガスが排気通路53に押し出されるときの流体圧力とが交互に作用する。その結果、ストッパー係合部47とストッパー46との当接状態を強める方向の力と、当接を引き離す方向の力とが交互に作用し、バタフライバルブ30(つまり、バルブ本体31)が、駆動軸32を中心とする回動方向に、ばたつくようになり、異音の発生や、バタフライバルブ30の耐久性の低下が懸念される。
 そこで、このエンジンシステムでは、燃料カット制御中は、排気可変弁3を開くように構成されている。以下、この排気可変弁3の開閉制御について、図9に示すフローチャートを参照しながら、具体的に説明をする。図9に示すフローチャートは、自動車が減速している最中のフローに相当する。また、エンジン制御部7は、このフローチャートに並行して、燃料カットの開始、及び、復帰に関する制御を行う。
 先ず、スタート後のステップS1では、エンジン1の運転状態を読み込む。具体的には、エンジン回転数、及び、エンジン1の実トルクを読み込む。エンジン回転数は、クランク角センサ211の検出信号に基づいて検出される。エンジンの実トルクは、この例では、エアフローセンサ520によって検知される吸入空気量及び吸気温度から算出される、気筒2内に導入される質量空気量と、点火プラグ42の点火時期とにより推定される。また、エンジントルクは、質量空気量に代えて、燃料噴射量と点火時期とに基づいて推定してもよい。
 続くステップS2では、エンジンの回転数Neが、1600rpm以上か否かを判定する。1600rpmは、図8に示すように、排気可変弁3を開閉する境界となる回転数である。エンジンの回転数が、1600rpm以上のときには、エンジン1の回転数が高回転域にあるとしてステップS6に移行して、排気可変弁3を開ける。
 一方、エンジン回転数が1600rpmよりも低いときには、ステップS3に移行する。ステップS3では、アクセルオフの状態が所定時間継続しているか否かを判断する。NOのときには、ステップS7に移行する。ステップS7では、エンジン1の回転数が低回転域にあるため、排気可変弁3を閉じる。
 ステップS4では、エンジン1の回転数Neが、1000rpmよりも低いか否かを判定する。1000rpmは、燃料カット制御から復帰するときの回転数に相当する。YESのときには、燃料カットを行わないため、ステップS7に移行をして、排気可変弁3を閉じる。一方、NOのときには、ステップS5に移行する。
 ステップS5では、エンジン1の実トルクが燃料カット制御を開始しても、トルクショックが生じない燃料カット(F/C)可能トルクにまで低下したか否かを判定する。F/C可能トルクは、アクセル開度センサ212、車速センサ214、変速機のギヤ段検出手段215の検出値に基づいて決定される。NOのときには、燃料カット制御が開始しないため、ステップS7に移行をして、排気可変弁3を閉じる。一方、YESのときには、燃料カット制御が開始するとして、ステップS6に移行をして、排気可変弁3を開ける。前述したように、エンジン制御部7は、このフローとは別に、燃料カットの開始を判断している。燃料カットの開始の判断は、図9のフローにおけるステップS2~S5と実質的に同じである。従って、燃料噴射弁41に対して燃料の噴射を停止させることによる燃料カットの開始と、排気可変弁3の開弁とは、実質的に同時に行われる。
 図10は、自動車の減速時における、アクセル開度、スロットル開度、エンジン回転数、エンジントルク、燃料噴射量、及び排気可変弁3の開閉の変化を示すタイムチャートである。先ず、時刻t0において、排気可変弁3が開いている状態で、アクセルペダルの踏み込みが次第に解除されて、自動車の減速が開始したとする。アクセル開度の低減に伴い、スロットル開度が低減する。それに対応して燃料噴射量も低減する。そうしてエンジン回転数及びエンジントルクが共に、低下する。
 時刻t1において、エンジン回転数が、排気可変弁3を閉じる回転数(ここでは、前述したように1600rpm)に到達したとする。これにより、排気可変弁3が、開から閉に変更される。
 時刻t2において、アクセル開度がゼロとなり、以降、その状態が継続をしたとする。スロットル開度は、アイドル運転開度に維持される。エンジン回転数、及び、エンジントルクは、次第に低下する。
 時刻t3において、エンジントルクが、燃料カット移行可能トルクに達したとする。これを受けて、燃料の供給が停止される。また、図9に示すフローチャートに従い、閉じられていた排気可変弁3は、再び開けられる。
 時刻t4において、燃料カット中に次第に低下していたエンジン回転数が、所定回転数(つまり、アイドル回転数+α)に到達したとする。これを受けて、燃料噴射が再開されると共に、排気可変弁3は、開状態から、閉状態に変更される。
 以上説明したように、この構成のエンジン1の排気装置100では、エンジン1が燃料カット制御を行っているときには、エンジン1の回転数が所定回転数よりも低くても、排気可変弁3を開けて、高速用通路24b、25b、26bを開ける。これにより、燃料カット中に、排気弁303の開閉に伴い、排気通路53内のガスが気筒2内に逆流したり、気筒2内のガスが排気通路53に押し出されたりしても、バタフライバルブ30に流体圧力が作用することが抑制される。その結果、燃料カット中のバルブ本体31のばたつきを防止することが可能になる。
 また、エンジン制御部7は、燃料カットを開始したことを受けて、排気可変弁3を開けるのではなく、燃料カットの開始と同時に、排気可変弁3を開けるようにするため、排気可変弁3を速やかに開けることが可能になる。その結果、バルブ本体31のばたつきを確実に防止することが可能になり、異音の発生を回避することが可能になる。
 さらに、エンジン制御部7は、アクセル開度がゼロの状態が、所定時間継続したことが検出されたときに、排気可変弁3を開けるため、アクセル開度が一時的にゼロになったときには、排気可変弁3は開かない。運転者が、アクセルペダルを一瞬離したが、すぐに踏み直したような場合に、排気可変弁3が開いてしまうことが回避される。その結果、ドライバビリティを損なうことが防止される。
 尚、以上説明した前記実施形態のエンジンは、エンジン1の排気装置100の好ましい実施形態の例示であって、当該エンジンやこれに組み込まれる排気弁装置20の具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。
 また、前記実施形態では、排気装置100を直列4気筒の4サイクルエンジンに適用した例について説明したが、ここに開示する排気装置は、勿論、前記実施形態以外のエンジンについても適用可能である。
1 エンジン
100 排気装置
212 アクセル開度センサ(アクセル開度検出部)
24a 共通通路
24b、25b、26b 高速用通路(第1通路)
24c、25c、26c 低速用通路(第2通路)
3 排気可変弁
30 バタフライバルブ(バルブ)
31 バルブ本体
32 駆動軸
41 燃料噴射弁
50 ターボ過給機
53 排気通路
54 集合部
56 タービン
560 タービンハウジング
7 エンジン制御部(バルブ制御部、燃料噴射弁制御部、トルク推定部)

Claims (3)

  1.  エンジンの内部に設けられる燃焼室の排気口と前記エンジンの外部に設けられる触媒装置とを接続する排気通路内に配設されかつ、駆動軸を回動させることにより、当該排気通路の通路断面積を変更するよう回動可能に構成された板状のバルブと、
     前記バルブの開度を制御するよう構成されたバルブ制御部と、を備えたエンジンの排気装置であって、
     前記エンジンは、前記燃焼室に燃料を供給するよう構成された燃料噴射弁と、車両の走行中に所定条件が成立したときに前記燃料噴射弁からの燃料噴射を禁止する燃料カット制御を実行するよう構成された燃料噴射弁制御部と、を有し、
     前記排気通路は、前記排気口に接続される共通通路と、該共通通路の下流部において分岐しかつ、互いに並行に設けられた第1通路及び第2通路と、前記第1通路及び前記第2通路の下流部において前記第1通路及び前記第2通路が集合する集合部と、を含み、
     前記第1通路及び第2通路の集合部は、タービンを備えたターボ過給機のタービンハウジングに接続され、
     前記バルブは、前記第1通路に配設されかつ、前記第1通路の通路断面積を変更するよう構成され、
     前記バルブ制御部は、前記エンジンの回転数が所定回転数よりも低いときに、前記バルブを閉じて前記第1通路を閉塞し、前記所定回転数以上のときに、前記バルブを開けて前記第1通路を開け、
     前記バルブ制御部は、前記エンジンの回転数が前記所定回転数よりも低いときであっても、前記燃料噴射弁制御部が前記燃料カット制御を実行しているときには、前記バルブを開けるように構成されているエンジンの排気装置。
  2.  請求項1に記載のエンジンの排気装置において、
     アクセル開度を検出するよう構成されたアクセル開度検出部と、
     前記エンジンの実トルクを推定するよう構成されたトルク推定部と、を備え、
     前記バルブ制御部は、前記アクセル開度検出部がアクセル開度がゼロであることを検出しかつ、前記トルク推定部が前記エンジンの実トルクが所定値以下であることを推定したときには、前記エンジンの回転数が前記所定回転数よりも低いときであっても、前記バルブを開けるエンジンの排気装置。
  3.  請求項2に記載のエンジンの排気装置において、
     前記バルブ制御部は、前記アクセル開度検出部が、前記アクセル開度がゼロの状態が、所定時間継続したことを検出したときに、前記バルブを開けるエンジンの排気装置。
PCT/JP2017/009286 2016-03-11 2017-03-08 エンジンの排気装置 WO2017154988A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017000102.1T DE112017000102T5 (de) 2016-03-11 2017-03-08 Motorauspuffanlage
US15/763,740 US10584655B2 (en) 2016-03-11 2017-03-08 Engine exhaust device
CN201780003125.1A CN108884775B (zh) 2016-03-11 2017-03-08 发动机的排气装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-048996 2016-03-11
JP2016048996A JP6330836B2 (ja) 2016-03-11 2016-03-11 エンジンの排気装置

Publications (1)

Publication Number Publication Date
WO2017154988A1 true WO2017154988A1 (ja) 2017-09-14

Family

ID=59790654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009286 WO2017154988A1 (ja) 2016-03-11 2017-03-08 エンジンの排気装置

Country Status (5)

Country Link
US (1) US10584655B2 (ja)
JP (1) JP6330836B2 (ja)
CN (1) CN108884775B (ja)
DE (1) DE112017000102T5 (ja)
WO (1) WO2017154988A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044572B2 (ja) * 2014-03-19 2016-12-14 マツダ株式会社 ターボ過給機付エンジンの制御装置
US20190003400A1 (en) * 2016-01-08 2019-01-03 Mazda Motor Corporation Negative pressure type actuator and engine gas-exhaustion device provided with negative pressure type actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138124A (ja) * 1984-07-30 1986-02-24 Mazda Motor Corp タ−ボ過給機付エンジン
JPS6143220A (ja) * 1984-08-06 1986-03-01 Mazda Motor Corp 排気タ−ボ過給機付エンジンの制御装置
JP2010229923A (ja) * 2009-03-27 2010-10-14 Mazda Motor Corp 内燃機関の排気再循環を制御する方法およびそのシステム
JP2014109199A (ja) * 2012-11-30 2014-06-12 Isuzu Motors Ltd 天然ガスエンジン及び天然ガスエンジンの運転方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704967C1 (de) * 1987-02-17 1988-05-11 Mtu Friedrichshafen Gmbh Aufgeladene mehrzylindrige Hubkolben-Brennkraftmaschine mit mehreren parallel arbeitenden Abgasturboladern
JP3747521B2 (ja) 1996-07-12 2006-02-22 日産自動車株式会社 内燃機関の燃料カット制御装置
JP2002349241A (ja) * 2001-05-24 2002-12-04 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
DE102005059086A1 (de) * 2005-12-10 2007-06-14 Daimlerchrysler Ag Brennkraftmaschine und Verfahren zum Betreiben derselben
JP5037263B2 (ja) * 2007-03-02 2012-09-26 本田技研工業株式会社 内燃機関の制御装置
JP4462282B2 (ja) * 2007-03-14 2010-05-12 トヨタ自動車株式会社 内燃機関の排気制御装置
JP2012144205A (ja) * 2011-01-14 2012-08-02 Denso Corp ハイブリッド車両及び内燃機関の制御装置
JP5974806B2 (ja) 2012-10-16 2016-08-23 マツダ株式会社 ターボ過給機付多気筒エンジン
JP5849924B2 (ja) * 2012-10-22 2016-02-03 マツダ株式会社 排気弁装置およびターボ過給機付エンジン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138124A (ja) * 1984-07-30 1986-02-24 Mazda Motor Corp タ−ボ過給機付エンジン
JPS6143220A (ja) * 1984-08-06 1986-03-01 Mazda Motor Corp 排気タ−ボ過給機付エンジンの制御装置
JP2010229923A (ja) * 2009-03-27 2010-10-14 Mazda Motor Corp 内燃機関の排気再循環を制御する方法およびそのシステム
JP2014109199A (ja) * 2012-11-30 2014-06-12 Isuzu Motors Ltd 天然ガスエンジン及び天然ガスエンジンの運転方法

Also Published As

Publication number Publication date
US10584655B2 (en) 2020-03-10
JP2017160895A (ja) 2017-09-14
CN108884775A (zh) 2018-11-23
CN108884775B (zh) 2021-08-06
JP6330836B2 (ja) 2018-05-30
US20180283303A1 (en) 2018-10-04
DE112017000102T5 (de) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2013164987A1 (ja) 過給式エンジンの制御装置及び制御方法
US10400717B2 (en) Air-bypass valve control device
JPH08109837A (ja) 内燃機関の吸気流制御装置
JP2004316544A (ja) 圧縮着火式内燃機関の燃料カット制御装置
EP0866219B1 (en) Fuel cut control apparatus for internal combustion engine
WO2017154988A1 (ja) エンジンの排気装置
JP4196343B2 (ja) 内燃機関およびその運転方法
JP2021067230A (ja) エンジン装置
JP2006299992A (ja) 内燃機関の制御システム
JP6772901B2 (ja) 内燃機関の排気システム
JP2012255374A (ja) エンジンブレーキ制御装置
JP2019120204A (ja) エンジン制御装置
US11008934B2 (en) Engine control device
JP6641405B2 (ja) エンジン制御装置
JP2017031841A (ja) エンジン制御装置
JP4706957B2 (ja) エンジンの制御装置
JP2007278208A (ja) 内燃機関の制御装置
JP7304244B2 (ja) エンジン制御装置
JP2005201086A (ja) 内燃機関の制御装置
JP4986168B2 (ja) ブローバイガス処理装置
JP4844343B2 (ja) 内燃機関の制御装置
JP6835655B2 (ja) Egr装置
JP7021467B2 (ja) 内燃機関の制御装置
JPH10238383A (ja) 2サイクルディーゼルエンジンの運転制御装置
JP3714390B2 (ja) 過給機を備えた内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000102

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15763740

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763328

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763328

Country of ref document: EP

Kind code of ref document: A1