WO2013164987A1 - 過給式エンジンの制御装置及び制御方法 - Google Patents

過給式エンジンの制御装置及び制御方法 Download PDF

Info

Publication number
WO2013164987A1
WO2013164987A1 PCT/JP2013/062410 JP2013062410W WO2013164987A1 WO 2013164987 A1 WO2013164987 A1 WO 2013164987A1 JP 2013062410 W JP2013062410 W JP 2013062410W WO 2013164987 A1 WO2013164987 A1 WO 2013164987A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
operation state
supercharged
valve
passage
Prior art date
Application number
PCT/JP2013/062410
Other languages
English (en)
French (fr)
Inventor
尚純 加藤
露木 毅
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013164987A1 publication Critical patent/WO2013164987A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device and a control method for a supercharged engine that supercharges intake air.
  • a supercharged engine including an intake bypass passage provided in an intake passage so as to communicate between an upstream side and a downstream side of a compressor constituting a supercharger, and a recirculation valve that opens and closes the intake bypass passage is provided.
  • the recirculation valve is opened when decelerating from the supercharging operation state, and the intake air that has passed through the intake air compressor is returned to the upstream side of the intake air compressor.
  • the surge noise is noise that is generated when the intake air flows backward from the downstream side to the upstream side of the intake compressor when the supercharging pressure becomes high.
  • JP2009-138722A has a supercharging type that opens the recirculation valve when decelerating from the supercharging operation state, and then closes the recirculation valve quickly when reaccelerating, thereby improving the acceleration response at the time of reacceleration.
  • An engine is disclosed.
  • An object of the present invention is to provide a control device and a control method for a supercharged engine that can sufficiently improve acceleration response at the time of reacceleration.
  • a compressor of a supercharger that is provided in an intake passage and supercharges intake air
  • a throttle valve that is provided in an intake passage downstream of the compressor, and an intake passage between the compressor and the throttle valve
  • a recirculation valve that opens and closes the intake bypass passage, and a control device for a supercharged engine
  • the control device includes a state determination unit that determines whether or not a transition from a supercharged operation state to a non-supercharged operation state, a condition determination unit that determines whether or not an acceleration priority condition is satisfied, a supercharger, And a valve control unit that closes the recirculation valve when the acceleration priority condition is satisfied at the time of transition from the operating state to the non-supercharged operating state.
  • FIG. 1 is a schematic configuration diagram of a supercharged engine according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of valve control executed by a controller that controls the supercharged engine.
  • FIG. 3 is a timing chart for explaining acceleration response at the time of reacceleration after deceleration.
  • a supercharged engine 100 according to an embodiment of the present invention will be described with reference to FIG.
  • the supercharged engine 100 includes a cylinder block 10 and a cylinder head 20 disposed above the cylinder block 10.
  • the cylinder block 10 is formed with a cylinder 11 that houses the piston 1.
  • a combustion chamber 2 is formed by the crown surface of the piston 1, the wall surface of the cylinder 11, and the lower surface of the cylinder head 20. When the air-fuel mixture burns in the combustion chamber 2, the piston 1 receives the combustion pressure due to combustion and reciprocates the cylinder 11.
  • the cylinder head 20 is formed with an intake port 3 for supplying intake air to the combustion chamber 2 and an exhaust port 4 for discharging exhaust gas from the combustion chamber 2.
  • the cylinder head 20 is provided with an intake valve 5 that opens and closes the intake port 3 and an exhaust valve 6 that opens and closes the exhaust port 4.
  • the intake valve 5 is driven by the intake side cam 5A, and the exhaust valve 6 is driven by the exhaust side cam 6A.
  • An ignition plug 7 for igniting the air-fuel mixture in the combustion chamber 2 is installed in the cylinder head 20 between the intake valve 5 and the exhaust valve 6.
  • the intake passage 30 guides air (intake) taken from outside to the intake port 3 via the intake manifold 33.
  • an intake compressor 51, a throttle valve 31, and an intercooler 32 of the supercharger 50 are provided in order from the upstream side.
  • the supercharger 50 includes an intake compressor 51 disposed in the intake passage 30, an exhaust turbine 52 disposed in the exhaust passage 40, and a shaft 53 connecting the intake compressor 51 and the exhaust turbine 52.
  • the intake compressor 51 is driven by rotation of the exhaust turbine 52 by the exhaust discharged from the combustion chamber 2, and supercharges intake air flowing through the intake passage 30.
  • the throttle valve 31 is installed in the intake passage 30 on the downstream side of the intake compressor 51.
  • the throttle valve 31 adjusts the amount of intake air introduced into the combustion chamber 2 by changing (squeezing) the intake flow area of the intake passage 30.
  • the opening degree of the throttle valve 31 is controlled by a controller 90 described later.
  • the intercooler 32 is installed in the intake passage 30 on the downstream side of the throttle valve 31.
  • the intercooler 32 cools the intake air that has been compressed by the intake compressor 51 and has reached a high temperature.
  • the intake air that has passed through the intercooler 32 is distributed to each cylinder through an intake manifold 33.
  • the intake manifold 33 includes a collector portion 33A that is a volume chamber, and a branch pipe 33B that connects the collector portion 33A and the intake port 3 of each cylinder.
  • the branch pipe 33B of the intake manifold 33 is provided with a fuel injection valve 8 that injects fuel according to the engine operating state.
  • a pressure sensor 34 for detecting the pressure of the intake air after passing through the intake compressor 51 (supercharging pressure) is provided in the intake passage 30 between the intake compressor 51 and the throttle valve 31. Further, a pressure sensor 35 for detecting the pressure of the intake air (collector pressure) in the collector portion 33A is provided in the collector portion 33A of the intake manifold 33.
  • the supercharged engine 100 receives a part of the intake air after passing through the intake compressor 51 upstream of the intake compressor 51 so that the supercharging pressure does not become too high when the throttle valve 31 is closed during deceleration of the vehicle or the like.
  • An intake bypass passage 60 that recirculates to the side is provided.
  • the intake bypass passage 60 is a passage that branches from the intake passage 30 between the intake compressor 51 and the throttle valve 31 and joins the intake passage 30 upstream of the intake compressor 51.
  • a recirculation valve 61 is provided in the intake bypass passage 60.
  • the recirculation valve 61 is an electrically controlled valve that opens and closes the intake bypass passage 60 according to the engine operating state. The opening degree of the recirculation valve 61 is controlled by the controller 90.
  • the exhaust discharged from the exhaust port 4 is guided to the exhaust passage 40 via the exhaust manifold 42.
  • an exhaust turbine 52 and a three-way catalytic converter 41 of the supercharger 50 are provided in order from the upstream side.
  • the exhaust discharged into the exhaust passage 40 rotates the exhaust turbine 52 of the supercharger 50, is purified by the three-way catalytic converter 41, and is discharged to the outside.
  • the exhaust passage 40 is provided with an exhaust bypass passage 70 through which exhaust flows so as to bypass the exhaust turbine 52.
  • the exhaust bypass passage 70 is a passage that branches from the exhaust passage 40 upstream from the exhaust turbine 52 and joins the exhaust passage 40 downstream from the exhaust turbine 52.
  • a waste gate valve 71 is provided in the exhaust bypass passage 70.
  • the waste gate valve 71 is an electrically controlled valve that opens and closes the exhaust bypass passage 70 in accordance with the engine operating state.
  • the opening degree of the waste gate valve 71 is controlled by the controller 90. By controlling the opening degree of the waste gate valve 71, the rotational speeds of the exhaust turbine 52 and the intake compressor 51 can be adjusted.
  • the exhaust gas recirculation passage 80 is a passage that branches from the exhaust passage 40 downstream from the three-way catalytic converter 41 and joins the intake passage 30 upstream from the intake compressor 51.
  • the exhaust gas recirculation passage 80 is provided with an EGR cooler 81 and an EGR valve 82.
  • the EGR cooler 81 is a cooling device that cools the recirculated exhaust gas (external EGR gas).
  • the EGR valve 82 is an electrically controlled valve that opens and closes the exhaust gas recirculation passage 80 according to the engine operating state. The opening degree of the EGR valve 82 is controlled by the controller 90.
  • the controller 90 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 90 may be composed of a plurality of microcomputers.
  • the controller 90 includes a crank angle sensor 91 that generates a crank angle signal for each predetermined crank angle, an accelerator pedal sensor 92 that detects a depression amount of an accelerator pedal provided in the vehicle, a vehicle travel mode ( A signal is input from a mode selector switch 93 that can set the engine operation mode.
  • the crank angle signal is used as a signal representative of the engine speed of the supercharged engine 100.
  • the amount of depression of the accelerator pedal is used as a signal representative of the engine load of the supercharged engine 100.
  • the controller 90 controls the opening degree of the throttle valve 31, the recirculation valve 61, the waste gate valve 71, and the EGR valve 82 based on these input signals.
  • the above-described mode changeover switch 93 is a switch operated by the driver.
  • the mode changeover switch 93 is composed of three switches of a normal mode, an eco mode, and a sports mode.
  • normal traveling control is executed.
  • sport mode travel control having a higher torque change rate with respect to the acceleration operation than that in the normal mode, that is, travel control in which acceleration performance is higher than normal is executed.
  • eco mode travel control is performed such that the fuel consumption rate is suppressed as compared with other travel control modes.
  • valve control processing of the recirculation valve 61 and the waste gate valve 71 executed by the controller 90 will be described.
  • This valve control process is performed at the start of engine operation, and is repeatedly executed at regular intervals, for example, every several milliseconds.
  • step 101 the controller 90 obtains from the accelerator pedal depression amount obtained from the detection signal of the accelerator pedal sensor 92, the engine speed obtained from the detection signal of the crank angle sensor 91, and the switch signal of the mode changeover switch 93. Read the operation mode. Thereafter, the controller 90 executes the process of S102.
  • the controller 90 calculates the target output torque of the supercharged engine 100 based on the accelerator pedal depression amount and the engine rotation speed read in S101.
  • the controller 90 refers to the engine speed-torque map stored in advance in the ROM, and supercharges the engine operating state based on the engine speed read in S101 and the target output torque calculated in S102. It is determined whether or not the engine is in a supercharging operation region that is supercharged by the machine 50.
  • the controller 90 executes the process of S104.
  • the controller 90 controls the recirculation valve (R / V) 61 to be fully closed, controls the waste gate valve (WG / V) 71 to a predetermined opening degree, and ends the valve control process.
  • the supercharging pressure is controlled to the target supercharging pressure determined according to the engine operating state.
  • the controller 90 executes the process of S105.
  • S105 the controller 90 determines whether or not it is a transition from the supercharging operation state to the non-supercharging operation state.
  • the controller 90 executes the process of S106 at the time of transition from the supercharging operation state to the non-supercharging operation state, that is, at the time of deceleration from the supercharging operation state.
  • the controller 90 executes the process of S110.
  • the controller 90 determines whether or not the currently selected driving mode is a sports mode that increases acceleration performance.
  • the controller 90 executes the process of S107.
  • the controller 90 determines whether or not the engine rotation speed read in S101 is higher than the reference rotation speed.
  • the reference rotational speed is a value set so that it can be determined whether or not the vehicle has decelerated from the high engine rotational speed.
  • processing of S106 and S107 is processing for determining whether or not a condition that gives priority to acceleration is satisfied, that is, whether or not the acceleration priority condition is satisfied.
  • it is determined that the acceleration priority condition is satisfied when the driving mode is the sport mode and the vehicle decelerates from the high engine speed.
  • it may be determined that the acceleration priority condition is satisfied when the driving mode is the sports mode or when the vehicle decelerates from the high engine speed.
  • the controller 90 controls the recirculation valve 61 and the waste gate valve 71 to fully open, and ends the valve control process.
  • the acceleration priority condition is not satisfied, and the acceleration response is improved at the time of reacceleration after the deceleration. It is determined that it is not necessary, and the recirculation valve 61 and the waste gate valve 71 are controlled to be fully opened.
  • the intake air after passing through the intake compressor 51 is guided to the upstream side of the intake compressor 51 through the intake bypass passage 60, and the exhaust gas before passing through the exhaust turbine 52 is downstream of the exhaust turbine 52 through the exhaust bypass passage 70. Led to. As a result, it is possible to quickly reduce the supercharging pressure during vehicle deceleration, and it is possible to suppress the occurrence of surge noise caused by the supercharging pressure.
  • the controller 90 executes the process of S109.
  • the controller 90 controls the recirculation valve 61 and the waste gate valve 71 to be fully closed, and ends the valve control process.
  • the acceleration priority condition is satisfied and the acceleration is performed at the time of reacceleration after the deceleration. It is determined that it is necessary to increase the responsiveness, and the recirculation valve 61 and the waste gate valve 71 are controlled to be fully closed.
  • the intake air after passing through the intake compressor 51 is not recirculated to the upstream side of the intake compressor 51, and the entire amount of exhaust gas is guided to the exhaust turbine 52. Therefore, even when the vehicle is decelerated from the supercharging operation state, the supercharging pressure is maintained to some extent, and does not decrease to atmospheric pressure unlike the conventional method. Therefore, the supercharging effect can be obtained immediately even at the time of reacceleration after deceleration, and the acceleration response can be sufficiently enhanced.
  • the controller 90 performs S110. Execute the process.
  • the controller 90 determines whether or not a predetermined time has elapsed since the non-supercharging operation state has been reached.
  • the controller 90 maintains the opening degrees of the recirculation valve 61 and the waste gate valve 71 in the previous state (fully opened or fully closed), and ends the valve control process. . Therefore, until the predetermined time elapses, the control (S108) for suppressing the generation of the surge noise caused by the supercharging pressure or the control (S109) for increasing the acceleration response at the time of re-acceleration after the deceleration is continuously performed.
  • the controller 90 controls the recirculation valve 61 to be fully closed and the waste gate valve 71 to be fully open as a normal valve state during non-supercharging operation. Then, the valve control process is terminated.
  • S105 is a state determination unit and a state determination step for determining whether or not the state is a transition from the supercharging operation state to the non-supercharging operation state, and S106 and S107 are acceleration priority conditions established. It is the condition determination part and condition determination process which determine whether it is doing.
  • S104, S108, S109, S111, and S112 are a valve control unit and a valve control process for controlling the recirculation valve 61 and the waste gate valve 71.
  • the recirculation valve 61 and the waste gate valve 71 are controlled to be fully opened as shown by broken lines (C) and (H) during deceleration from such a supercharging operation state.
  • a part of the intake air is recirculated to the upstream side of the intake compressor 51, and a part of the exhaust gas is detoured to the downstream side of the exhaust turbine 52 so that the rotational speed of the exhaust turbine 52 decreases. Therefore, as shown by the broken line in (D), the supercharging pressure rapidly decreases to atmospheric pressure.
  • the recirculation valve 61 is controlled to be fully closed, and the waste gate valve 71 and the throttle valve 31 are controlled to a predetermined opening.
  • the supercharging pressure is reduced to the atmospheric pressure during deceleration, it takes time t3 for the supercharging pressure to reach the target supercharging pressure.
  • the supercharging pressure is greatly reduced during deceleration from the supercharging operation state. Therefore, the acceleration response at the time of reacceleration after deceleration is poor, and the engine speed after reacceleration is (F ) As shown by the broken line.
  • the recirculation valve 61 and the waste gate valve 71 are controlled to be fully closed as shown by the solid lines in (C) and (H) during deceleration from the supercharging operation state ( (See S109 in FIG. 2).
  • the intake air that has passed through the intake compressor 51 is retained in the intake passage 30 between the intake compressor 51 and the throttle valve 31, and the rotational speed of the exhaust turbine 52 is less likely to decrease as indicated by the solid line (G). Therefore, as shown by the solid line in (D), the supercharging pressure is maintained in a higher state than the conventional method (a state higher than the atmospheric pressure).
  • the recirculation valve 61 After re-acceleration after time t2, the recirculation valve 61 is kept fully closed, and the throttle valve 31 and the waste gate valve 71 are controlled to a predetermined opening (see S104 in FIG. 2).
  • the supercharging pressure can be maintained higher than the atmospheric pressure, and a decrease in the rotational speed of the exhaust turbine 52 can be suppressed.
  • the supercharging pressure and the collector pressure after opening the throttle valve 31 reach the target supercharging pressure before time t3.
  • the engine speed after re-acceleration rapidly increases as shown by the solid line (F).
  • both the recirculation valve 61 and the waste gate valve 71 are used at the time of deceleration from the supercharging operation state.
  • the recirculation valve 61 may be controlled to be fully closed and the waste gate valve 71 may be controlled to be fully open.
  • the supercharging pressure can be maintained higher than the atmospheric pressure, as indicated by the alternate long and short dash line in (D).
  • a part of the exhaust gas is guided to the downstream side of the exhaust turbine 52, and the rotational speed of the exhaust turbine 52 decreases as shown by the one-dot chain line in (G). Therefore, the recirculation valve 61 is closed and the waste gate valve is closed.
  • the supercharging pressure when 71 is opened is slightly lower than when both valves 61 and 71 are closed.
  • the control device for the supercharged engine 100 of the present embodiment described above when the acceleration priority condition is satisfied at the time of deceleration from the supercharging operation state, the recirculation valve 61 is closed and the supercharging pressure is changed from the atmospheric pressure. Therefore, the supercharging effect can be obtained immediately even at the time of reacceleration after deceleration, and the acceleration response can be sufficiently enhanced.
  • the waste gate valve 71 is closed, so that a decrease in the rotational speed of the exhaust turbine 52 during deceleration can be suppressed, and the supercharging pressure is higher. Can be maintained. Thereby, the acceleration responsiveness at the time of reacceleration after deceleration can be further improved.
  • the recirculation valve 61 and the waste gate valve 71 are closed during deceleration from the supercharging operation state, and the recirculation valve 61 and the waste gate valve 71 are opened during other decelerations. Therefore, it is possible to achieve both suppression of occurrence of surge noise and improvement of acceleration response at the time of reacceleration.

Abstract

 吸気通路に設けられる過給機のコンプレッサ及びスロットルバルブと、コンプレッサとスロットルバルブの間の吸気通路から分岐し、コンプレッサより上流側の吸気通路に合流する吸気バイパス通路と、吸気バイパス通路を開閉するリサキュレーションバルブと、を備える過給式エンジンの制御装置であって、過給運転状態から非過給運転状態への移行時か否かを判定する状態判定部と、加速優先条件が成立しているか否かを判定する条件判定部と、過給運転状態から非過給運転状態への移行時に、加速優先条件が成立している場合には、リサキュレーションバルブを閉弁するバルブ制御部と、を備える。

Description

過給式エンジンの制御装置及び制御方法
 本発明は、吸気を過給する過給式エンジンの制御装置及び制御方法に関する。
 従来から、過給機を構成するコンプレッサの上流側と下流側を連通するように吸気通路に設けられる吸気バイパス通路と、この吸気バイパス通路を開閉するリサキュレーションバルブと、を備える過給式エンジンが知られている。過給式エンジンでは、過給運転状態からの減速時にリサキュレーションバルブを開いて、吸気コンプレッサ通過後の吸気を吸気コンプレッサの上流側に還流し、過給圧を低下させることで、サージ音の発生を抑制する。サージ音は、過給圧が高くなった場合に、吸気コンプレッサの下流側から上流側に吸気が逆流することで生じる騒音である。
 JP2009-138722Aには、過給運転状態からの減速時にリサキュレーションバルブを開き、その後再加速する時にリサキュレーションバルブを速やかに閉じることで、再加速時における加速応答性を高めるようにした過給式エンジンが開示されている。
 しかしながら、過給運転状態からの減速時にリサキュレーションバルブを開くと、過給圧はほぼ大気圧まで低下してしまう。そのため、減速後の再加速時にリサキュレーションバルブを速やかに閉じたとしても、過給効果が得られる圧力まで過給圧を高めるためにはある程度の時間が必要となり、加速応答性の改善効果が低いという問題がある。
 本発明の目的は、再加速時における加速応答性を十分に高めることができる過給式エンジンの制御装置及び制御方法を提供することである。
 本発明のある態様によれば、吸気通路に設けられ、吸気を過給する過給機のコンプレッサと、コンプレッサより下流側の吸気通路に設けられるスロットルバルブと、コンプレッサとスロットルバルブの間の吸気通路から分岐し、コンプレッサより上流側の吸気通路に合流する吸気バイパス通路と、吸気バイパス通路を開閉するリサキュレーションバルブと、を備える過給式エンジンの制御装置が提供される。この制御装置は、過給運転状態から非過給運転状態への移行時か否かを判定する状態判定部と、加速優先条件が成立しているか否かを判定する条件判定部と、過給運転状態から非過給運転状態への移行時に、加速優先条件が成立している場合には、リサキュレーションバルブを閉弁するバルブ制御部と、を備える。
 本発明の実施形態及び利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の実施形態による過給式エンジンの概略構成図である。 図2は、過給式エンジンを制御するコントローラが実行するバルブ制御のフローチャートである。 図3は、減速後の再加速時における加速応答性について説明するタイミングチャートである。
 図1を参照して、本発明の実施形態による過給式エンジン100について説明する。
 図1に示す車両用の過給式エンジン100は、直列4気筒エンジンである。過給式エンジン100は、シリンダブロック10と、シリンダブロック10の上側に配置されるシリンダヘッド20と、を備える。
 シリンダブロック10には、ピストン1を収納するシリンダ11が形成される。ピストン1の冠面と、シリンダ11の壁面と、シリンダヘッド20の下面とによって燃焼室2が形成される。燃焼室2で混合気が燃焼すると、ピストン1は燃焼による燃焼圧力を受けてシリンダ11を往復動する。
 シリンダヘッド20には、燃焼室2に吸気を供給するための吸気ポート3と、燃焼室2から排気を排出するための排気ポート4とが形成される。
 シリンダヘッド20には、吸気ポート3を開閉する吸気バルブ5と、排気ポート4を開閉する排気バルブ6とが設けられる。吸気バルブ5は吸気側カム5Aによって駆動され、排気バルブ6は排気側カム6Aによって駆動される。
 吸気バルブ5と排気バルブ6の間のシリンダヘッド20には、燃焼室2内の混合気を点火する点火プラグ7が設置されている。
 吸気通路30は、外部から取り入れた空気(吸気)を、吸気マニホールド33を介して吸気ポート3に導く。吸気通路30には、過給機50の吸気コンプレッサ51、スロットルバルブ31、及びインタークーラ32が上流側から順番に設けられる。
 過給機50は、吸気通路30に配置される吸気コンプレッサ51と、排気通路40に配置される排気タービン52と、吸気コンプレッサ51及び排気タービン52を連結するシャフト53と、を備える。吸気コンプレッサ51は、燃焼室2から排出された排気によって排気タービン52が回転することで駆動され、吸気通路30を流れる吸気を過給する。
 スロットルバルブ31は、吸気コンプレッサ51よりも下流側の吸気通路30に設置される。スロットルバルブ31は、吸気通路30の吸気流通面積を変化させる(絞る)ことで、燃焼室2に導入される吸気量を調整する。スロットルバルブ31の開度は、後述するコントローラ90によって制御される
 インタークーラ32は、スロットルバルブ31よりも下流側の吸気通路30に設置される。インタークーラ32は、吸気コンプレッサ51によって圧縮されて高温となった吸気を冷却する。インタークーラ32を通過した吸気は、吸気マニホールド33を通じて各気筒に分配される。
 吸気マニホールド33は、容積室であるコレクタ部33Aと、コレクタ部33A及び各気筒の吸気ポート3を接続するブランチ管33Bと、から構成されている。吸気マニホールド33のブランチ管33Bには、エンジン運転状態に応じた燃料を噴射する燃料噴射弁8が設けられる。
 吸気コンプレッサ51とスロットルバルブ31の間の吸気通路30には、吸気コンプレッサ51通過後の吸気の圧力(過給圧)を検出する圧力センサ34が設けられる。また、吸気マニホールド33のコレクタ部33Aには、コレクタ部33A内の吸気の圧力(コレクタ圧)を検出する圧力センサ35が設けられる。
 過給式エンジン100は、車両の減速時等にスロットルバルブ31が閉弁した場合に過給圧が高くなりすぎないように、吸気コンプレッサ51通過後の吸気の一部を当該吸気コンプレッサ51の上流側に還流する吸気バイパス通路60を備える。
 吸気バイパス通路60は、吸気コンプレッサ51とスロットルバルブ31の間の吸気通路30から分岐し、吸気コンプレッサ51より上流側の吸気通路30に合流する通路である。吸気バイパス通路60には、リサキュレーションバルブ61が設けられる。リサキュレーションバルブ61は、電動制御式の弁であって、エンジン運転状態に応じて吸気バイパス通路60を開閉する。リサキュレーションバルブ61の開度は、コントローラ90によって制御される。
 過給式エンジン100では、排気ポート4から排出される排気は、排気マニホールド42を介して排気通路40に導かれる。
 排気通路40には、過給機50の排気タービン52及び三元触媒コンバータ41が上流側から順番に設けられる。排気通路40に排出された排気は、過給機50の排気タービン52を回転させ、三元触媒コンバータ41によって浄化されて、外部に放出される。
 排気通路40には、排気タービン52を迂回するように排気を流す排気バイパス通路70が設けられる。
 排気バイパス通路70は、排気タービン52より上流側の排気通路40から分岐し、排気タービン52より下流側の排気通路40に合流する通路である。排気バイパス通路70には、ウェイストゲートバルブ71が設けられる。ウェイストゲートバルブ71は、電動制御式の弁であって、エンジン運転状態に応じて排気バイパス通路70を開閉する。ウェイストゲートバルブ71の開度は、コントローラ90によって制御される。ウェイストゲートバルブ71の開度を制御することで、排気タービン52及び吸気コンプレッサ51の回転数を調整することができる。
 吸気通路30と排気通路40の間には、排気通路40の排気の一部を吸気通路30に還流する排気還流通路80が設けられる。排気還流通路80は、三元触媒コンバータ41より下流側の排気通路40から分岐し、吸気コンプレッサ51より上流側の吸気通路30に合流する通路である。
 排気還流通路80には、EGRクーラ81及びEGRバルブ82が設けられる。EGRクーラ81は、還流される排気(外部EGRガス)を冷却する冷却装置である。EGRバルブ82は、電動制御式の弁であって、エンジン運転状態に応じて排気還流通路80を開閉する。EGRバルブ82の開度は、コントローラ90によって制御される。
 コントローラ90は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。なお、コントローラ90を複数のマイクロコンピュータで構成してもよい。
 コントローラ90には、圧力センサ34,35のほか、所定クランク角ごとにクランク角信号を生成するクランク角センサ91や、車両が備えるアクセルペダルの踏込量を検出するアクセルペダルセンサ92、車両走行モード(エンジン運転モード)を設定可能なモード切換スイッチ93からの信号が入力する。クランク角信号は、過給式エンジン100のエンジン回転速度を代表する信号として用いられる。アクセルペダルの踏込量は、過給式エンジン100のエンジン負荷を代表する信号として用いられる。
 コントローラ90は、これらの入力信号に基づいて、スロットルバルブ31や、リサキュレーションバルブ61、ウェイストゲートバルブ71及びEGRバルブ82の開度を制御する。
 上述したモード切換スイッチ93は、運転者によって操作されるスイッチである。モード切換スイッチ93は、ノーマルモード、エコモード、スポーツモードの3つのスイッチから構成されている。ノーマルモードでは、通常の走行制御が実行される。スポーツモードでは、ノーマルモードと比較して加速操作に対するトルク変化率が高い走行制御、つまり通常時よりも加速性能を高める走行制御が実行される。エコモードでは、他の走行制御モードと比較して燃料消費率が抑制されるような走行制御が実行される。
 図2を参照して、コントローラ90が実行するリサキュレーションバルブ61及びウェイストゲートバルブ71のバルブ制御処理について説明する。このバルブ制御処理は、エンジン運転開始ともに実施され、一定間隔、例えば数ミリ秒周期で繰り返し実行される。
 ステップ101(S101)では、コントローラ90は、アクセルペダルセンサ92の検出信号から得られるアクセルペダル踏込量、クランク角センサ91の検出信号から得られるエンジン回転速度、及びモード切換スイッチ93のスイッチ信号から得られる運転モードを読み込む。その後、コントローラ90はS102の処理を実行する。
 S102では、コントローラ90は、S101で読み込んだアクセルペダル踏込量及びエンジン回転速度に基づいて過給式エンジン100の目標出力トルクを算出する。
 S103では、コントローラ90は、予めROMに記憶されているエンジン回転速度-トルクマップを参照し、S101で読み込んだエンジン回転速度とS102で算出した目標出力トルクとに基づいて、エンジン運転状態が過給機50によって過給される過給運転領域内にあるか否かを判定する。
 エンジン運転状態が過給運転状態となる場合には、コントローラ90はS104の処理を実行する。S104では、コントローラ90は、リサキュレーションバルブ(R/V)61を全閉に制御し、ウェイストゲートバルブ(WG/V)71を所定開度に制御して、バルブ制御処理を終了する。これにより、過給圧がエンジン運転状態に応じて決定された目標過給圧に制御される。
 一方、エンジン運転状態が非過給運転状態となる場合には、コントローラ90はS105の処理を実行する。S105では、コントローラ90は、過給運転状態から非過給運転状態への移行時か否かを判定する。コントローラ90は、過給運転状態から非過給運転状態への移行時、つまり過給運転状態からの減速時にはS106の処理を実行する。また、コントローラ90は、それ以外の場合、例えば前回から非過給運転状態が継続している場合にはS110の処理を実行する。
 S106では、コントローラ90は、現在選択されている運転モードが加速性能を高めるスポーツモードであるか否かを判定する。
 運転モードがスポーツモードではなくノーマルモード又はエコモードである場合には、コントローラ90はS107の処理を実行する。S107では、コントローラ90は、S101で読み込まれたエンジン回転速度が基準回転速度よりも大きいか否かを判定する。基準回転速度は、車両が高エンジン回転速度から減速したか否かを判定できるように設定された値である。
 なお、S106及びS107の処理は、加速を優先させるような条件となっている否か、つまり加速優先条件が成立しているか否かを判定するための処理である。本実施形態では、運転モードがスポーツモードであり、かつ車両が高エンジン回転速度から減速した場合に、加速優先条件が成立していると判定される。これに限らず、運転モードがスポーツモードである場合、又は車両が高エンジン回転速度から減速した場合に、加速優先条件が成立していると判定してもよい。
 S107においてエンジン回転速度が基準回転速度以下であると判定された場合には、コントローラ90はS108の処理を実行する。
 S108では、コントローラ90は、リサキュレーションバルブ61及びウェイストゲートバルブ71を全開に制御して、バルブ制御処理を終了する。
 このように運転モードがエコモード又はノーマルモードであって、車両が高エンジン回転速度から減速していない場合には、加速優先条件が成立しておらず減速後の再加速時に加速応答性を高める必要がないと判断し、リサキュレーションバルブ61及びウェイストゲートバルブ71を全開に制御する。このように制御することで、吸気コンプレッサ51通過後の吸気が吸気バイパス通路60を通じて吸気コンプレッサ51の上流側に導かれ、排気タービン52通過前の排気が排気バイパス通路70を通じて排気タービン52の下流側に導かれる。これにより、車両減速中に過給圧を速やかに低下させることができ、過給圧に起因するサージ音の発生を抑制することが可能となる。
 一方、S106において運転モードがスポーツモードであると判定された場合、又はS107においてエンジン回転速度が基準回転速度より大きいと判定された場合には、コントローラ90はS109の処理を実行する。
 S109では、コントローラ90は、リサキュレーションバルブ61及びウェイストゲートバルブ71を全閉に制御して、バルブ制御処理を終了する。
 このように運転モードがスポーツモードである場合や、運転モードがスポーツモードではなくとも高エンジン回転速度からの減速時である場合には、加速優先条件が成立しており減速後の再加速時に加速応答性を高める必要があると判断し、リサキュレーションバルブ61及びウェイストゲートバルブ71を全閉に制御する。このように制御することで、吸気コンプレッサ51通過後の吸気が吸気コンプレッサ51の上流側に還流されず、また排気の全量が排気タービン52に導かれる。そのため、過給運転状態からの減速時であっても、過給圧がある程度維持され、従来手法のように大気圧まで低下することがない。したがって、減速後の再加速時にも即座に過給効果を得られ、加速応答性を十分に高めることができる。
 ところで、S105において過給運転状態から非過給運転状態への移行時(減速時)でないと判定された場合、例えば前回から非過給運転状態が継続している場合には、コントローラ90はS110の処理を実行する。
 S110では、コントローラ90は、非過給運転状態となってから所定時間経過したか否かを判定する。
 所定時間を経過していない場合には、S111においてコントローラ90は、リサキュレーションバルブ61及びウェイストゲートバルブ71の開度を前回状態(全開又は全閉)のまま維持して、バルブ制御処理を終了する。したがって、所定時間が経過するまでは、過給圧に起因するサージ音の発生を抑制する制御(S108)又は減速後の再加速時に加速応答性を高める制御(S109)が継続して行われる。
 一方、所定時間を経過した場合には、S112においてコントローラ90は、非過給運転時の通常のバルブ状態として、リサキュレーションバルブ61を全閉に制御し、ウェイストゲートバルブ71を全開に制御して、バルブ制御処理を終了する。
 なお、上述したバルブ制御処理において、S105は過給運転状態から非過給運転状態への移行時か否かを判定する状態判定部及び状態判定工程であり、S106及びS107は加速優先条件が成立しているか否かを判定する条件判定部及び条件判定工程である。また、S104、S108、S109、S111、及びS112は、リサキュレーションバルブ61及びウェイストゲートバルブ71を制御するバルブ制御部及びバルブ制御工程である。
 次に、図3を参照して、過給運転状態からの減速後に再加速する場合の加速応答性について説明する。なお、図3においては、車両の走行モード(エンジン運転モード)はスポーツモードに設定されているものとする。
 過給運転状態中の車両において、時刻t1でアクセルオフされると、(A)に示すようにアクセルペダル踏込量が0になり、(B)に示すようにスロットルバルブは全閉に制御される。
 従来手法によるエンジン制御では、このような過給運転状態からの減速時に、(C)及び(H)の破線で示すようにリサキュレーションバルブ61及びウェイストゲートバルブ71を全開に制御する。このように制御することで、吸気の一部を吸気コンプレッサ51の上流側に還流させるとともに、排気タービン52の回転数が低下するように排気の一部を排気タービン52の下流側に迂回させる。したがって、(D)の破線で示すように、過給圧は急速に大気圧まで低下する。
 減速後、時刻t2で再びアクセルペダルが踏み込まれて再加速が行われると、リサキュレーションバルブ61が全閉に制御され、ウェイストゲートバルブ71及びスロットルバルブ31が所定開度に制御される。しかしながら、減速中に過給圧が大気圧まで低下しているので、過給圧が目標過給圧に到達するには時刻t3までかかる。このように従来手法では、過給運転状態からの減速中に過給圧が大きく低下してしまうので、減速後の再加速時における加速応答性が悪く、再加速後のエンジン回転速度は(F)の破線で示すように比較的緩やかに上昇することとなる。
 一方、本実施形態によるエンジン制御によれば、過給運転状態からの減速時に、(C)及び(H)の実線で示すようにリサキュレーションバルブ61及びウェイストゲートバルブ71を全閉に制御する(図2のS109参照)。これにより、吸気コンプレッサ51を通過した吸気は吸気コンプレッサ51とスロットルバルブ31の間の吸気通路30に留められ、(G)の実線で示すように排気タービン52の回転数も低下しにくくなる。したがって、(D)の実線で示すように、過給圧は従来手法よりも高い状態(大気圧よりも高い状態)に維持される。
 時刻t2以降の再加速後は、リサキュレーションバルブ61は全閉のまま保持され、スロットルバルブ31及びウェイストゲートバルブ71は所定開度に制御される(図2のS104参照)。これにより、車両減速中において、過給圧を大気圧よりも高い状態に維持でき、また排気タービン52の回転数の低下を抑制できるので、(D)及び(E)の実線で示すように、過給圧及びスロットルバルブ31開弁後のコレクタ圧は時刻t3よりも前に目標過給圧に到達する。このように本実施形態では、減速後の再加速時における加速応答性を高めることができるので、再加速後のエンジン回転速度は(F)の実線で示すように速やかに上昇する。
 なお、本実施形態では、加速優先条件が成立しており減速後の再加速時に加速応答性を高める必要がある場合、過給運転状態からの減速時にリサキュレーションバルブ61及びウェイストゲートバルブ71の両方を全閉に制御しているが、リサキュレーションバルブ61のみを全閉に制御してウェイストゲートバルブ71を全開に制御してもよい。このように制御した場合においても、(D)の一点鎖線で示すように、過給圧を大気圧よりも高い状態に維持することができる。但し、排気の一部が排気タービン52の下流側に導かれ、(G)の一点鎖線で示すように排気タービン52の回転数が低下してしまうので、リサキュレーションバルブ61を閉じてウェイストゲートバルブ71を開いた時の過給圧は、両バルブ61,71を閉じた場合よりも若干低くなる。
 このように、過給運転状態からの車両減速時に加速優先条件が成立している場合に、リサキュレーションバルブ61のみを閉じるように制御しても、過給圧を大気圧よりも高い状態に維持できる。したがって、両バルブ61,71を閉じた場合よりも改善効果は低下するものの、図3の(D)~(F)の一点鎖線で示すように、減速後の再加速時における加速応答性を高めることができる。
 上記した本実施形態の過給式エンジン100の制御装置によれば、過給運転状態からの減速時に加速優先条件が成立している場合、リサキュレーションバルブ61を閉じて過給圧を大気圧よりも高い状態に維持するので、減速後の再加速時にも即座に過給効果を得られ、加速応答性を十分に高めることができる。
 また、過給運転状態からの減速時に加速優先条件が成立している場合、ウェイストゲートバルブ71を閉じるので、減速中における排気タービン52の回転数の低下を抑制でき、過給圧をより高い状態に維持することができる。これにより、減速後の再加速時における加速応答性をさらに高めることができる。
 特に、加速優先条件が成立した場合にだけ、過給運転状態からの減速中にリサキュレーションバルブ61及びウェイストゲートバルブ71を閉じ、それ以外の減速中はリサキュレーションバルブ61及びウェイストゲートバルブ71を開くので、サージ音の発生の抑制及び再加速時における加速応答性の改善を両立することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年5月1日に日本国特許庁に出願された特願2012-104494に基づく優先権を主張し、これら出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  吸気通路に設けられ、吸気を過給する過給機のコンプレッサと、
     前記コンプレッサより下流側の前記吸気通路に設けられるスロットルバルブと、
     前記コンプレッサと前記スロットルバルブの間の前記吸気通路から分岐し、前記コンプレッサより上流側の前記吸気通路に合流する吸気バイパス通路と、
     前記吸気バイパス通路を開閉するリサキュレーションバルブと、を備える過給式エンジンの制御装置であって、
     過給運転状態から非過給運転状態への移行時か否かを判定する状態判定部と、
     加速優先条件が成立しているか否かを判定する条件判定部と、
     過給運転状態から非過給運転状態への移行時に、加速優先条件が成立している場合には、前記リサキュレーションバルブを閉弁するバルブ制御部と、を備える過給式エンジンの制御装置。
  2.  請求項1に記載の過給式エンジンの制御装置であって、
     前記過給式エンジンは、
     排気を流す排気通路と、
     前記排気通路に設けられる前記過給機のタービンと、
     前記タービンを迂回するように、前記タービンの上流側及び下流側の前記排気通路に接続する排気バイパス通路と、
     前記排気バイパス通路を開閉するウェイストゲートバルブと、をさらに備え、
     前記バルブ制御部は、過給運転状態から非過給運転状態への移行時に、加速優先条件が成立している場合には、前記ウェイストゲートバルブを閉弁する、過給式エンジンの制御装置。
  3.  請求項1又は請求項2に記載の過給式エンジンの制御装置であって、
     前記条件判定部は、前記過給式エンジンが通常時よりも加速性能を高めるスポーツモードで運転されている場合に、加速優先条件が成立していると判定する、過給式エンジンの制御装置。
  4.  請求項1から請求項3のいずれか一つに記載の過給式エンジンの制御装置であって、
     前記条件判定部は、過給運転状態から非過給運転状態への移行時におけるエンジン回転速度が基準回転速度よりも大きい場合に、加速優先条件が成立していると判定する、過給式エンジンの制御装置。
  5.  吸気通路に設けられ、吸気を過給する過給機のコンプレッサと、
     前記コンプレッサより下流側の前記吸気通路に設けられるスロットルバルブと、
     前記コンプレッサと前記スロットルバルブの間の前記吸気通路から分岐し、前記コンプレッサより上流側の前記吸気通路に合流する吸気バイパス通路と、
     前記吸気バイパス通路を開閉するリサキュレーションバルブと、を備える過給式エンジンの制御方法であって、
     過給運転状態から非過給運転状態への移行時か否かを判定する状態判定工程と、
     加速優先条件が成立しているか否かを判定する条件判定工程と、
     過給運転状態から非過給運転状態への移行時に、加速優先条件が成立している場合には、前記リサキュレーションバルブを閉弁するバルブ制御工程と、を備える過給式エンジンの制御方法。
PCT/JP2013/062410 2012-05-01 2013-04-26 過給式エンジンの制御装置及び制御方法 WO2013164987A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-104494 2012-05-01
JP2012104494A JP2015143473A (ja) 2012-05-01 2012-05-01 過給式エンジンの制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2013164987A1 true WO2013164987A1 (ja) 2013-11-07

Family

ID=49514386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062410 WO2013164987A1 (ja) 2012-05-01 2013-04-26 過給式エンジンの制御装置及び制御方法

Country Status (2)

Country Link
JP (1) JP2015143473A (ja)
WO (1) WO2013164987A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161203A (ja) * 2014-02-26 2015-09-07 ヤンマー株式会社 エンジン装置
JP2015161201A (ja) * 2014-02-26 2015-09-07 ヤンマー株式会社 エンジン装置
JP2015214920A (ja) * 2014-05-09 2015-12-03 日産自動車株式会社 車両
WO2015186609A1 (ja) * 2014-06-06 2015-12-10 ヤンマー株式会社 エンジン装置
WO2015186608A1 (ja) * 2014-06-06 2015-12-10 ヤンマー株式会社 エンジン装置
WO2015186610A1 (ja) * 2014-06-06 2015-12-10 ヤンマー株式会社 エンジン装置
JP2015229998A (ja) * 2014-06-06 2015-12-21 ヤンマー株式会社 エンジン装置
JP2015229999A (ja) * 2014-06-06 2015-12-21 ヤンマー株式会社 エンジン装置
JP2015230000A (ja) * 2014-06-06 2015-12-21 ヤンマー株式会社 エンジン装置
JP2016113915A (ja) * 2014-12-11 2016-06-23 ヤンマー株式会社 エンジン装置
KR20160119069A (ko) * 2014-02-26 2016-10-12 얀마 가부시키가이샤 엔진 장치
JP2017020449A (ja) * 2015-07-14 2017-01-26 日産自動車株式会社 内燃機関の制御装置
US20190153931A1 (en) * 2017-11-20 2019-05-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
JP2019124224A (ja) * 2019-04-15 2019-07-25 日産自動車株式会社 内燃機関の制御装置
CN113944553A (zh) * 2021-09-02 2022-01-18 东风汽车集团股份有限公司 一种泄气音的消除方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410212B2 (ja) * 2015-12-17 2018-10-24 マツダ株式会社 ターボ過給機付きエンジンの制御装置
JP2017145730A (ja) * 2016-02-16 2017-08-24 新潟原動機株式会社 エンジンシステム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483820A (en) * 1987-09-28 1989-03-29 Mazda Motor Control device for engine with supercharger
JP2007056842A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp 過給器の制御装置
JP2009138722A (ja) * 2007-12-11 2009-06-25 Nissan Motor Co Ltd 過給機付き内燃機関の制御装置
JP2009191737A (ja) * 2008-02-14 2009-08-27 Mazda Motor Corp エンジンの過給装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483820A (en) * 1987-09-28 1989-03-29 Mazda Motor Control device for engine with supercharger
JP2007056842A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp 過給器の制御装置
JP2009138722A (ja) * 2007-12-11 2009-06-25 Nissan Motor Co Ltd 過給機付き内燃機関の制御装置
JP2009191737A (ja) * 2008-02-14 2009-08-27 Mazda Motor Corp エンジンの過給装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119069A (ko) * 2014-02-26 2016-10-12 얀마 가부시키가이샤 엔진 장치
JP2015161201A (ja) * 2014-02-26 2015-09-07 ヤンマー株式会社 エンジン装置
KR102114527B1 (ko) * 2014-02-26 2020-05-22 얀마 가부시키가이샤 엔진 장치
US10094309B2 (en) 2014-02-26 2018-10-09 Yanmar Co., Ltd. Engine device
JP2015161203A (ja) * 2014-02-26 2015-09-07 ヤンマー株式会社 エンジン装置
JP2015214920A (ja) * 2014-05-09 2015-12-03 日産自動車株式会社 車両
CN106414961A (zh) * 2014-06-06 2017-02-15 洋马株式会社 发动机装置
KR101912513B1 (ko) * 2014-06-06 2018-10-26 얀마 가부시키가이샤 엔진 장치
JP2015229999A (ja) * 2014-06-06 2015-12-21 ヤンマー株式会社 エンジン装置
JP2015230000A (ja) * 2014-06-06 2015-12-21 ヤンマー株式会社 エンジン装置
WO2015186609A1 (ja) * 2014-06-06 2015-12-10 ヤンマー株式会社 エンジン装置
JP2015229997A (ja) * 2014-06-06 2015-12-21 ヤンマー株式会社 エンジン装置
KR20160140935A (ko) * 2014-06-06 2016-12-07 얀마 가부시키가이샤 엔진 장치
US10626809B2 (en) 2014-06-06 2020-04-21 Yanmar Co., Ltd. Engine device
WO2015186610A1 (ja) * 2014-06-06 2015-12-10 ヤンマー株式会社 エンジン装置
CN106414960A (zh) * 2014-06-06 2017-02-15 洋马株式会社 发动机装置
WO2015186608A1 (ja) * 2014-06-06 2015-12-10 ヤンマー株式会社 エンジン装置
JP2015229998A (ja) * 2014-06-06 2015-12-21 ヤンマー株式会社 エンジン装置
CN106414960B (zh) * 2014-06-06 2020-01-14 洋马株式会社 发动机装置
US10337421B2 (en) 2014-06-06 2019-07-02 Yanmar Co., Ltd. Engine device
CN106414961B (zh) * 2014-06-06 2019-10-18 洋马株式会社 发动机装置
JP2016113915A (ja) * 2014-12-11 2016-06-23 ヤンマー株式会社 エンジン装置
JP2017020449A (ja) * 2015-07-14 2017-01-26 日産自動車株式会社 内燃機関の制御装置
US20190153931A1 (en) * 2017-11-20 2019-05-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
US10738686B2 (en) * 2017-11-20 2020-08-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
JP2019124224A (ja) * 2019-04-15 2019-07-25 日産自動車株式会社 内燃機関の制御装置
CN113944553A (zh) * 2021-09-02 2022-01-18 东风汽车集团股份有限公司 一种泄气音的消除方法
CN113944553B (zh) * 2021-09-02 2023-04-14 东风汽车集团股份有限公司 一种泄气音的消除方法

Also Published As

Publication number Publication date
JP2015143473A (ja) 2015-08-06

Similar Documents

Publication Publication Date Title
WO2013164987A1 (ja) 過給式エンジンの制御装置及び制御方法
US8978378B2 (en) Method and system for reducing turbocharger noise during cold start
WO2014013814A1 (ja) 内燃機関の制御装置及び制御方法
JP5545654B2 (ja) ターボチャージャ付き内燃機関
WO2014132544A1 (ja) 内燃機関の制御装置
US11008985B2 (en) Control device for internal combustion engine
JP6041753B2 (ja) エンジンの排気還流装置
US20150219024A1 (en) Internal combustion engine control device and method
JP5649343B2 (ja) 内燃機関の吸気絞り弁制御方法
CN111788378B (zh) 内燃机及其控制方法
JP2004245104A (ja) 過給式エンジン
JP5844216B2 (ja) エンジンの排気還流装置
JP5493936B2 (ja) 内燃機関の制御装置
JP6281404B2 (ja) 車両
WO2017154988A1 (ja) エンジンの排気装置
JP2002188522A (ja) ターボチャージャ付きエンジンのegr制御装置
JP6763488B2 (ja) 車両用内燃機関の制御方法および制御装置
JP5930288B2 (ja) 内燃機関
JP2002188524A (ja) ターボチャージャ付きエンジンのegr制御装置
JP4774870B2 (ja) 車両の制御装置
JP6835655B2 (ja) Egr装置
WO2019145991A1 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP5574922B2 (ja) 内燃機関
JP6154232B2 (ja) 過給機付きエンジンの制御装置
WO2012039052A1 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP