WO2015186608A1 - エンジン装置 - Google Patents

エンジン装置 Download PDF

Info

Publication number
WO2015186608A1
WO2015186608A1 PCT/JP2015/065453 JP2015065453W WO2015186608A1 WO 2015186608 A1 WO2015186608 A1 WO 2015186608A1 JP 2015065453 W JP2015065453 W JP 2015065453W WO 2015186608 A1 WO2015186608 A1 WO 2015186608A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
engine
air
fuel
gas
Prior art date
Application number
PCT/JP2015/065453
Other languages
English (en)
French (fr)
Inventor
宏一 廣瀬
大志 村上
達郎 大皿
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2015186608A1 publication Critical patent/WO2015186608A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an engine device employing a multi-fuel that can handle both gaseous fuel such as natural gas and liquid fuel such as heavy oil.
  • a diesel engine is used as a driving source.
  • exhaust gas from a diesel engine is rich in nitrogen oxides, sulfur oxides, particulate matter, and the like that are harmful substances that hinder environmental conservation. Therefore, in recent years, gas engines that can reduce the amount of harmful substances generated are becoming popular as engines that can replace diesel engines.
  • a premixed combustion method in which a gaseous fuel (fuel gas) such as natural gas is mixed with air and supplied to a combustion chamber for combustion, and heavy oil
  • a dual fuel engine that can be used in combination with a diffusion combustion method in which liquid fuel such as the above is injected into a combustion chamber and burned (see Patent Document 1 and Patent Document 2).
  • the dual fuel engine has a different air-fuel ratio between the diesel mode and the gas mode, and requires less air flow in the gas mode than the diesel mode for the same load. Therefore, while it is necessary to adjust the supercharger to the specifications in the diesel mode, when operating in the gas mode, it is necessary to be able to supply an air flow rate that matches the air-fuel ratio in the gas mode. Further, when the conventional dual fuel engine is operated in the gas mode, the responsiveness in the air flow rate control is poor, and it is difficult to execute the appropriate air-fuel ratio control with good followability to the load fluctuation.
  • the invention of claim 1 includes an intake manifold that supplies air into the cylinder, an exhaust manifold that exhausts exhaust gas from the cylinder, a main fuel injection valve that injects and burns liquid fuel into the cylinder, and the intake air
  • An engine apparatus comprising: a gas injector that mixes gaseous fuel with air supplied from a manifold and sucks the cylinder; and a supercharger that compresses air with exhaust gas from the exhaust manifold; and An intercooler that cools the compressed air that is compressed and supplies the air to the intake manifold, and a main throttle valve is provided at a connection point between the supercharger outlet and the intercooler inlet, and the exhaust manifold outlet And an exhaust bypass passage connecting the exhaust outlet of the supercharger and the exhaust bypass Is that arranging the exhaust bypass valve in the flow path.
  • an air supply bypass passage that bypasses the compressor of the supercharger is provided, and an air supply bypass valve is disposed in the air supply bypass passage. Is.
  • the air supply bypass flow path is connected to a position between the intercooler inlet and the main throttle valve, and the air supply bypass flow path Then, the compressed air discharged from the compressor is returned to the compressor inlet.
  • an intake manifold that supplies air into a cylinder, an exhaust manifold that exhausts exhaust gas from the cylinder, a main fuel injection valve that injects and burns liquid fuel into the cylinder, and an intake manifold
  • An engine apparatus comprising a gas injector that mixes gaseous fuel with supplied air and sucks into the cylinder, and a supercharger that compresses air by exhaust gas from the exhaust manifold, and is compressed by the supercharger
  • An intercooler that cools the compressed air and supplies it to the intake manifold, and a main throttle valve is provided at a connection point between the supercharger outlet and the intercooler inlet, and the exhaust manifold outlet and the An exhaust bypass passage connecting the exhaust outlet of the supercharger and the exhaust bypass Since the exhaust bypass valve is disposed in the flow path, when the turbocharger is optimized for the combustion mode specification using liquid fuel, the exhaust gas is adjusted in accordance with the engine load variation even in the combustion mode using gas fuel.
  • an air supply bypass passage for bypassing the compressor of the supercharger is provided, and an air supply bypass valve is disposed in the air supply bypass passage, so that the air supply is adjusted in accordance with fluctuations in engine load.
  • an air supply bypass valve By controlling the opening degree of the bypass valve, it is possible to supply the engine with air that matches the air-fuel ratio required for the combustion of gaseous fuel.
  • the response speed to the load fluctuation in the gas mode can be increased by using the control operation by the air supply bypass valve with good responsiveness in combination.
  • the air supply bypass passage is connected to a position between the intercooler inlet and the main throttle valve, and the compressed air discharged from the compressor is supplied to the compressor via the air supply bypass passage.
  • FIG. 1 is an overall side view of a ship according to an embodiment of the present invention. It is side surface sectional drawing of an engine room. It is plane explanatory drawing of an engine room. It is the schematic which shows the structure of the fuel supply path of the engine apparatus in embodiment of this invention. It is the schematic which shows the structure of the intake / exhaust path in the engine apparatus. It is a control block diagram of the engine device. It is a figure which shows the relationship between the supercharger pressure ratio and the air flow rate in the engine apparatus. It is a right view of the engine apparatus in embodiment of this invention. It is a left view of the engine apparatus. It is a top view of the engine apparatus. It is a rear view of the engine device. It is a front view of the engine device.
  • a ship 1 As shown in FIGS. 1 to 3, a ship 1 according to this embodiment includes a hull 2, a cabin 3 (bridge) provided on the stern side of the hull 2, and a funnel 4 (chimney) disposed behind the cabin 3. ) And a pair of propellers 5 and a rudder 6 provided at the lower rear part of the hull 2.
  • a pair of skegs 8 are integrally formed on the stern side bottom 7.
  • a propeller shaft 9 that rotates the propeller 5 is supported on each skeg 8.
  • Each skeg 8 is formed symmetrically with respect to a hull center line CL (see FIG. 3) that divides the hull 2 in the left-right width direction. That is, in the first embodiment, twin skeg is adopted as the stern shape of the hull 2.
  • a hull 10 is provided on the bow side and the center of the hull 2, and an engine room 11 is provided on the stern side of the hull 2.
  • a pair of propulsion and power generation mechanisms 12, which serve both as a drive source for the propeller 5 and a power supply source for the ship 1, are distributed to the left and right across the hull center line CL.
  • Each propeller 5 is rotationally driven by the rotational power transmitted from each propulsion and power generation mechanism 12 to the propulsion shaft 9.
  • the interior of the engine room 11 is partitioned vertically by an upper deck 13, a second deck 14, a third deck 15 and an inner bottom plate 16.
  • Each propulsion and power generation mechanism 12 of the first embodiment is installed on the inner bottom plate 16 at the lowest stage of the engine room 11.
  • the hold 10 is divided into a plurality of sections.
  • each propulsion and power generation mechanism 12 includes a medium speed engine device 21 (a dual fuel engine in the embodiment) that is a drive source of the propeller 5, and the power of the engine device 21 to the propulsion shaft 9.
  • a medium speed engine means one that is driven at a rotational speed of about 500 to 1000 revolutions per minute.
  • a “low speed” engine is driven at a rotational speed of 500 revolutions per minute
  • a “high speed” engine is driven at a rotational speed of 1000 revolutions per minute.
  • the engine device 21 of the embodiment is configured to be driven at a constant speed within a medium speed range (about 700 to 750 revolutions per minute).
  • the engine device 21 includes a cylinder block 25 having an engine output shaft 24 (crankshaft) and a cylinder head 26 mounted on the cylinder block 25.
  • a base stand 27 is installed directly or via a vibration isolator (not shown).
  • the cylinder block 25 of the engine device 21 is mounted on the base table 27.
  • the engine output shaft 24 extends in a direction along the longitudinal direction of the hull 2. That is, the engine device 21 is disposed in the engine room 11 in a state where the direction of the engine output shaft 24 is along the longitudinal direction of the hull 2.
  • the speed reducer 22 and the shaft drive generator 23 are disposed on the stern side of the engine device 21.
  • the rear end side of the engine output shaft 24 protrudes from the rear surface side of the engine device 21.
  • a reduction gear 22 is connected to the rear end side of the engine output shaft so as to be able to transmit power.
  • a shaft drive generator 23 is arranged on the side opposite to the engine device 21 with the speed reducer 22 interposed therebetween.
  • the engine device 21, the speed reducer 22, and the shaft drive generator 23 are arranged in this order from the front in the engine room 11. In this case, the speed reducer 22 and the shaft drive generator 23 are disposed in or near the skeg 8 on the stern side. Therefore, it is possible to arrange the engine device 21 as close to the stern side as possible regardless of the restrictions of the badock line of the ship 1, which contributes to the downsizing of the engine room 11.
  • the propulsion shaft 9 is provided on the power transmission downstream side of the speed reducer 22.
  • the outer shape of the speed reducer 22 protrudes below the engine device 21 and the shaft drive generator 23.
  • the front end side of the propulsion shaft 9 is connected to the rear surface side of the overhanging portion so that power can be transmitted.
  • the engine output shaft 24 (axial core line) and the propulsion shaft 9 are positioned coaxially in a plan view.
  • the propulsion shaft 9 extends in the longitudinal direction of the hull 2 in a state of being eccentric in the vertical direction with respect to the engine output shaft 24 (axial core line). In this case, the propulsion shaft 9 is placed at a position lower than the shaft drive generator 23 and the engine output shaft 24 (shaft core line) and close to the inner bottom plate 16 in a side view. That is, the shaft drive generator 23 and the propulsion shaft 9 are distributed vertically and do not interfere with each other. Therefore, each propulsion and power generation mechanism 12 can be made compact.
  • the constant speed power of the engine device 21 is branched and transmitted from the rear end side of the engine output shaft 24 to the shaft drive generator 23 and the propulsion shaft 9 via the speed reducer 22.
  • a part of the constant speed power of the engine device 21 is reduced to a rotational speed of, for example, about 100 to 120 revolutions per minute by the speed reducer 22 and transmitted to the propulsion shaft 9.
  • the propeller 5 is rotationally driven by the deceleration power from the speed reducer 22.
  • the propeller 5 employs a variable pitch propeller capable of adjusting the ship speed by changing the blade angle of the propeller blades.
  • a part of the constant speed power of the engine device 21 is increased to a rotational speed of, for example, about 1200 or 1800 revolutions per minute by the speed reducer 22 and transmitted to a PTO shaft that is rotatably supported by the speed reducer 22. Is done.
  • the rear end side of the PTO shaft of the speed reducer 22 is connected to the shaft drive generator 23 so as to be able to transmit power, and the shaft drive generator 23 is driven to generate power based on the rotational power from the speed reducer 22.
  • the generated power generated by driving the shaft drive generator 23 is supplied to the electrical system in the hull 2.
  • the engine device 21 is connected to an intake path (not shown) for air intake and an exhaust path 28 for exhaust gas discharge.
  • the air taken in through the intake path is sent into each cylinder 36 of the engine device 21 (inside the cylinder in the intake stroke). Since there are two engine devices 21, there are two exhaust paths 28.
  • Each exhaust path 28 is connected to an extended path 29.
  • the extension path 29 extends to the funnel 4 and is configured to communicate directly with the outside. Exhaust gas from each engine device 21 is discharged out of the ship 1 via each exhaust path 28 and extension path 29.
  • a pair of propulsion and power generation mechanisms 12 combined with a shaft-driven generator 23 for generating power is provided, and the pair of propulsion and power generation mechanisms 12 are distributed to the engine room 11 in the hull 2 to the left and right with the hull center line CL interposed therebetween. Therefore, the engine installation space in the engine room 11 can be reduced as compared with the conventional structure in which a plurality of engines (main engine and auxiliary engine) are arranged in the engine room.
  • the engine room 11 can be configured compactly by shortening the longitudinal length of the engine room 11, and as a result, it is easy to secure a hold space (a space other than the engine room 11) in the hull 2.
  • the propulsion efficiency of the ship 1 can be improved by driving the two propellers 5.
  • the two engine devices 21 serving as the main engine are provided, even if one engine device 21 fails and cannot be driven, the other engine device 21 can be navigated, and the marine prime mover device. As a result, the redundancy of the ship 1 can be secured.
  • the propeller 5 can be rotationally driven and the shaft-driven generator 23 can be driven by the engine device 21, any one of the shaft-driven generators 23 can be reserved during normal navigation. Therefore, for example, when the power supply is stopped due to a failure of one engine device 21 or the shaft drive generator 23, the other shaft drive generator 23 is started, the frequency and voltage are established, and the power supply can be restored. That's fine. Further, when the engine device 21 is stopped at the time of navigation with only one engine device 21, the other stopped engine device 21, and thus the shaft drive generator 23 corresponding thereto, is started, and the frequency and What is necessary is just to establish voltage and to reset electric power feeding.
  • the dual fuel engine 21 (hereinafter simply referred to as the “engine device 21”) has a premixed combustion method in which fuel gas such as natural gas is mixed with air and burns, and liquid fuel (fuel oil) such as heavy oil is diffused. Select and drive the diffusion combustion method to burn.
  • FIG. 4 is a diagram showing a fuel system for the engine device 21
  • FIG. 5 is a diagram showing an intake / exhaust system in the engine device 21
  • FIG. 6 is a control block diagram in the engine device 21.
  • the engine device 21 is supplied with fuel from two fuel supply paths 30, 31.
  • a gas fuel tank 32 is connected to one fuel supply path 30, and the other A liquid fuel tank 33 is connected to the fuel supply path 31. That is, in the engine device 21, fuel gas is supplied from the fuel supply path 30 to the engine device 21, while fuel oil is supplied from the fuel supply path 31 to the engine device 21.
  • the fuel supply path 30 includes a gas fuel tank 32 that stores gaseous fuel in a liquefied state, a vaporizer 34 that vaporizes liquefied fuel (fuel gas) in the gas fuel tank 32, and a fuel gas from the vaporizer 34 to the engine device 21. And a gas valve unit 35 for adjusting the supply amount. That is, the fuel supply path 30 is configured by sequentially arranging the vaporizer 34 and the gas valve unit 35 from the gas fuel tank 32 toward the engine device 21.
  • the engine device 21 has a configuration in which a plurality of cylinders 36 (6 cylinders in the present embodiment) are arranged in series on a cylinder block 25.
  • Each cylinder 36 communicates with an intake manifold (intake passage) 67 (see FIG. 20) configured in the cylinder block 25 via an intake port 37.
  • Each cylinder 36 communicates with an exhaust manifold (exhaust flow path) 44 disposed above the cylinder head 26 via an exhaust port 38.
  • a gas injector 98 is disposed in the intake port 37 of each cylinder 36. Accordingly, air from the intake manifold 67 is supplied to each cylinder 36 via the intake port 37, while exhaust gas from each cylinder 36 is discharged to the exhaust manifold 44 via the exhaust port 38.
  • the fuel gas is supplied from the gas injector 98 to the intake port 37, the fuel gas is mixed with the air from the intake manifold 67, and each cylinder 35 is preliminarily mixed. Supply mixed gas.
  • the exhaust inlet of the turbine 49a of the supercharger 49 is connected to the exhaust outlet side of the exhaust manifold 44, and the air outlet (new air) of the intercooler 51 is connected to the air inlet side (new air inlet side) of the intake manifold 67. Outlet) is connected.
  • the air discharge port (fresh air outlet) of the compressor 49 b of the supercharger 49 is connected to the air intake port (fresh air inlet) of the intercooler 51.
  • a main throttle valve V1 is disposed between the compressor 49b and the intercooler 51, and the flow rate of air supplied to the intake manifold 44 is adjusted by adjusting the valve opening degree of the main throttle valve V1.
  • An air supply bypass passage 17 for bypassing the compressor 49b connects the air inlet (fresh air inlet) side of the compressor 49b and the air inlet side of the intercooler 51. That is, the air supply bypass passage 17 is connected to the connection portion between the intercooler 51 and the main throttle valve V1 while being released to the outside air upstream of the air intake port of the compressor 49b.
  • An air supply bypass valve V2 is disposed on the air supply bypass flow path 17, and the valve opening degree of the air supply bypass valve V2 is adjusted to pass through the air supply bypass flow path 17 from the downstream side of the main throttle valve V1. Adjust the flow rate of air flowing to the outside air.
  • An exhaust bypass passage 18 for bypassing the turbine 49 a connects the exhaust outlet side of the turbine 49 a and the exhaust outlet side of the exhaust manifold 44. That is, the exhaust bypass passage 18 is connected to a connection portion between the exhaust outlet of the turbine 49a and the exhaust inlet of the turbine 49a while being released to the outside air on the downstream side of the exhaust outlet of the turbine 49a.
  • An exhaust bypass valve V3 is disposed on the exhaust bypass passage 18, and the amount of compressed air in the compressor 49b is adjusted by adjusting the valve opening of the exhaust bypass valve V3 to adjust the flow rate of exhaust gas flowing through the turbine 49a. Adjust.
  • the engine device 21 includes a supercharger 49 that compresses air using exhaust gas from the exhaust manifold 44, and an intercooler 51 that cools the compressed air compressed by the supercharger 49 and supplies the compressed air to the intake manifold 67. ing.
  • the engine device 21 is provided with a main throttle valve V1 at a connection point between the supercharger 49 outlet and the intercooler 51 inlet.
  • the engine device 21 includes an exhaust bypass passage 18 that connects an outlet of the exhaust manifold 44 and an exhaust outlet of the supercharger 49, and an exhaust bypass valve V ⁇ b> 3 is disposed in the exhaust bypass passage 18.
  • the air-fuel ratio optimum for the engine load is realized by controlling the opening degree of the exhaust bypass valve V3 in accordance with the fluctuation of the engine load even in the gas mode. it can. Therefore, when the load fluctuates, it is possible to prevent an excess or deficiency in the amount of air necessary for combustion, and the engine device 21 operates optimally even in the gas mode while using a turbocharger optimized in the diesel mode.
  • the engine device 21 includes an air supply bypass passage 17 that bypasses the supercharger 49, and an air supply bypass valve V ⁇ b> 2 is disposed in the air supply bypass passage 17.
  • an air supply bypass valve V ⁇ b> 2 is disposed in the air supply bypass passage 17.
  • the engine device 21 connects the air supply bypass passage 17 at a position between the inlet of the intercooler 51 and the main throttle valve V1, and returns the compressed air discharged from the compressor 49b to the inlet of the compressor 49b.
  • the responsiveness of the flow control by the exhaust bypass valve V3 can be compensated by the supply air bypass valve V2, and at the same time, the control width of the supply air bypass valve V2 can be supplemented by the exhaust bypass valve V3. Therefore, the followability of the air-fuel ratio control in the gas mode can be improved at the time of load fluctuation or switching of the operation mode in marine applications.
  • the engine device 21 has an engine control device 73 for controlling each part of the engine device 21 as shown in FIG.
  • the engine device 21 is provided with a pilot fuel injection valve 82, a fuel injection pump 89, and a gas injector 98 for each cylinder 36.
  • the engine control device 73 gives control signals to the pilot fuel injection valve 82, the fuel injection pump 89, and the gas injector 98, so that the pilot fuel injection by the pilot fuel injection valve 82, the fuel oil supply by the fuel injection pump 89, and the gas Each of the gas fuel supply by the injector 98 is controlled.
  • the engine control device 73 gives control signals to the main throttle valve V1, the supply air bypass valve V2, and the exhaust gas bypass valve V3, respectively, and adjusts the valve opening, respectively, so that the air pressure (intake manifold pressure) in the intake manifold 67 is adjusted. adjust.
  • the engine control device 73 receives the measurement signal from the pressure sensor 39 that measures the air pressure in the intake manifold 65 and detects the intake manifold pressure.
  • the engine control device 73 receives a measurement signal from the load measuring device 19 such as a watt transducer or a torque sensor, and calculates a load applied to the engine device 21.
  • the engine control device 73 receives a measurement signal from the engine rotation sensor 20 such as a pulse sensor that measures the rotation speed of the crankshaft 24 and detects the engine rotation speed of the engine device 21.
  • the engine control device 73 controls the opening and closing of the control valve in the fuel injection pump 89 to generate combustion in each cylinder 36 at a predetermined timing. That is, by opening the control valve of the fuel injection pump 89 in accordance with the injection timing of each cylinder 36, the fuel oil is injected into each cylinder 36 through the main fuel injection valve 79 and ignited in the cylinder 36. In the diesel mode, the engine control device 73 stops the supply of pilot fuel and fuel gas.
  • the engine control device 73 determines the main fuel injection valve in each cylinder 36 based on the engine load (engine output) measured by the load measuring device 19 and the engine speed measured by the engine rotation sensor 20.
  • the injection timing 79 is feedback controlled.
  • the engine 21 outputs the engine load required by the propulsion and power generation mechanism 12 and at the same time rotates at the engine speed corresponding to the propulsion speed of the ship.
  • the engine control device 73 controls the opening of the main throttle valve V1 based on the intake manifold pressure measured by the pressure sensor 39, so that the compressed air having an air flow rate corresponding to the required engine output is excessive.
  • the air is supplied from the feeder 49 to the intake manifold 67.
  • the engine control device 73 When operating the engine device 21 in the gas mode, the engine control device 73 adjusts the valve opening degree in the gas injector 98 to set the flow rate of fuel gas supplied into each cylinder 36. Then, the engine control device 73 controls the opening and closing of the pilot fuel injection valve 82 to generate combustion in each cylinder 36 at a predetermined timing. That is, the gas injector 98 supplies fuel gas having a flow rate corresponding to the valve opening degree to the intake port 37, mixes it with air from the intake manifold 67, and supplies premixed fuel to the cylinder 36.
  • the engine control device 73 determines the fuel gas flow rate by the gas injector 98 and each cylinder 36 based on the engine load measured by the load measuring device 19 and the engine speed measured by the engine rotation sensor 20. Feedback control by the pilot injection valve 82 is performed. Further, the engine control device 73 adjusts the opening degrees of the main throttle valve V1, the supply air bypass valve V2, and the exhaust gas bypass valve V3 based on the intake manifold pressure measured by the pressure sensor 39. Thus, the intake manifold pressure can be adjusted to a pressure corresponding to the required engine output, and the air-fuel ratio with the fuel gas supplied from the gas injector 98 can be adjusted to a value corresponding to the engine output.
  • the supercharger 49 has a capacity corresponding to the engine device 21 during diesel mode operation. Therefore, when the engine device 21 is operated in the gas mode, it is necessary to make the capacity of the supercharger 49 correspond to the engine device 21 in the gas mode operation in a pseudo manner.
  • FIG. 7 shows the relationship between the pressure ratio in the supercharger 49 (the ratio between the discharge pressure and the suction pressure of the compressor 49b) and the air flow rate (the discharge flow rate of the compressor 49b or the supply air flow rate to the intake manifold 67). As shown in FIG. 7, when the engine load is the same, each of the compression ratio and the air flow rate at the operation point P2 in the gas mode is lower than the operation point P1 in the diesel mode.
  • the supply air bypass valve V2 is opened, and the compressed air discharged from the compressor 49b is supplied to the supply air bypass channel 17.
  • the exhaust bypass valve V3 is opened to lower the rotational speed of the turbine 49a. That is, the compressed air of the compressor 49b is lowered as shown in FIG. 7 by letting the compressed air flow from the discharge port of the compressor 49b to the suction port by the supply air bypass passage 17. Therefore, the amount of decrease in the compression ratio of the compressor 49b due to the control of the exhaust bypass valve V3 can be reduced, and the switching time to the handling point to the gas mode can be shortened.
  • the dual fuel engine 21 (engine device 21) having the above-described schematic configuration
  • the front / rear / left / right positional relationship in the configuration of the engine device 21 is designated with the connection side with the speed reducer 22 as the rear side.
  • the engine device 21 includes an engine output shaft 24 in a cylinder block 25 placed on a base table 27 (see FIG. 2), and a plurality of head covers 40 are arranged in a line in the front and rear direction.
  • a cylinder head 26 is mounted on the cylinder block 25.
  • the engine device 21 has a gas manifold (gaseous fuel pipe) 41 extending on the right side surface of the cylinder head 26 in parallel with the head cover 40 row, and is extended on the left side surface of the cylinder block 25 in parallel with the head cover 40 row.
  • a side cover 43 covering the fuel oil pipe (liquid fuel pipe) 42 is disposed.
  • an exhaust manifold (exhaust flow path) 44 described later extends in parallel with the head cover 40 row, and the outer periphery of the exhaust manifold 44 is covered with a heat shield cover 45.
  • a cylinder head upper cooling water pipe 46 connected to the cooling water passage in the cylinder head 26 extends in parallel with the head cover 40 row.
  • a common rail (pilot fuel pipe) 47 for supplying pilot fuel such as light oil extends in parallel with the head cover 40 row on the upper side of the cooling water pipe 46, similarly to the cooling water pipe 46.
  • the cooling water pipe 46 is connected to and supported by the cylinder head 26, and the common rail 47 is connected to and supported by the cooling water pipe 46.
  • the heat insulating cover 45 is connected to and supported by the cooling water pipe 46 and the cylinder block 25.
  • the front end (exhaust outlet side) of the exhaust manifold 44 is connected to a supercharger 49 via an exhaust relay pipe 48. Therefore, the exhaust gas exhausted through the exhaust manifold 44 flows into the turbine 49a of the supercharger 49 through the exhaust relay pipe 48, whereby the turbine 49a rotates and the compressor 49b that is coaxial with the turbine 49a is rotated. Rotate.
  • the supercharger 49 is disposed on the upper side of the front end of the engine device 21, and includes a turbine 49a on the right side and a compressor 49b on the left side.
  • the exhaust outlet pipe 50 is disposed on the right side of the supercharger 49 and is connected to the exhaust outlet of the turbine 49a to exhaust the exhaust gas from the turbine 49a to the exhaust path 28 (see FIG. 2).
  • An intercooler 51 for cooling the compressed air from the compressor 49b of the supercharger 49 is disposed below the supercharger 49. That is, the intercooler 51 is installed on the front end side of the cylinder block 25, and the supercharger 49 is placed on the intercooler 51.
  • An air discharge port of the compressor 49b is provided in the left and right middle layer position of the supercharger 49 so as to open toward the rear (cylinder block 25 side).
  • the upper surface of the intercooler 51 is provided with an air suction port that opens upward, and the compressed air discharged from the compressor 49b flows into the intercooler 51 through the air suction port.
  • the air discharge port of the compressor 49b and the air intake port of the intercooler 51 are communicated with each other by an intake relay pipe 52 to which one end is connected.
  • the intake relay pipe 52 has the above-described main throttle valve V1 (see FIG. 5).
  • a cooling water pump 53, a pilot fuel pump 54, a lubricating oil pump (priming pump) 55, and a fuel oil pump 56 are installed on the outer peripheral side of the engine output shaft 24 on the front end surface (front surface) of the engine device 21. Yes. At this time, each of the cooling water pump 53 and the fuel oil pump 56 is disposed above and below the left side surface, and each of the pilot fuel pump 54 and the lubricating oil pump 55 is disposed above and below the right side surface. Further, a rotation transmission mechanism (not shown) that transmits the rotational power of the engine output shaft 24 is provided at the front end portion of the engine device 21.
  • the rotational power from the engine output shaft 24 is transmitted through the rotation transmission mechanism, so that the coolant pump 53, the pilot fuel pump 54, the lubricating oil pump 55, and the like provided on the outer periphery of the engine output shaft 24, and Each of the fuel oil pumps 56 also rotates.
  • a camshaft (not shown) having the front and rear axial directions is supported on the upper side of the cooling water pump 53, and the camshaft also rotates the engine output shaft 24 through the rotation transmission mechanism. Power is transmitted to rotate.
  • An oil pan 57 is provided below the cylinder block 25, and lubricating oil flowing through the cylinder block 25 is accumulated in the oil pan 57.
  • the lubricating oil pump 55 is connected to the oil pan 57 via a lower oil suction port via a lubricating oil pipe, and sucks lubricating oil accumulated in the oil pan 57.
  • the lubricating oil pump 55 supplies the lubricating oil sucked from the oil pan 57 to the lubricating oil cooler 58 by connecting the upper discharge port to the lubricating oil inlet of the lubricating oil cooler 58 via the lubricating oil pipe.
  • the lubricant cooler 58 has a lubricant oil inlet at the front and a lubricant oil outlet at the rear, and the lubricant oil outlet 59 is connected to the lubricant oil 59 via a lubricant pipe.
  • the lubricant oil 59 has a lubricant oil inlet at the front and a lubricant oil outlet at the rear, and the lubricant oil outlet is connected to the cylinder block 25. Therefore, the lubricating oil sent from the lubricating oil pump 55 is cooled by the lubricating oil cooler 58 and then purified by the lubricating oil stiffness 59.
  • Lubricating oil cooler 58 and lubricating oil stiffness 59 are fixed to the right side surface of cylinder block 25, respectively.
  • the lubricating oil cooler 58 and the lubricating oil stiffness 59 are arranged in series in the front-rear direction on the right side of the cylinder block 25 so that the lubricating oil cooler 58 is in front (the lubricating oil pump 55 side).
  • a cylinder block right cooling water pipe 60 extending in the front-rear direction is disposed at a position between the gas manifold 41 and the lubricating oil cooler 58 and spaced from the right side surface of the cylinder block 25.
  • the cooling water pipe 60 extends from the front of the cylinder block 25 to the position between the lubricating oil cooler 58 and the lubricating oil stiffness 59 along the gas manifold 41.
  • the cooling water pipe 60 extended along the gas manifold 41 is connected to the intercooler discharge side cooling water pipe 61 discharged from the intercooler 51, and lubricates the cooling water flowing out from the intercooler 51. Water is supplied to the oil cooler 58.
  • the intercooler 51 is inserted with a discharge side cooling water pipe 61 and a water supply side cooling water pipe 62 installed above and below the right side surface of the intercooler 51, and cools the compressed air from the compressor 49 b of the supercharger 49.
  • the turbocharger 49 coaxially supports a compressor 49b and a turbine 49a that are arranged separately on the left and right, and the compressor 49b rotates based on the rotation of the turbine 49a introduced from the exhaust manifold 44 through the exhaust relay pipe 48.
  • the supercharger 49 includes an intake filter 63 that removes outside air to be introduced, and a fresh air passage pipe 64 that connects the intake filter 63 and the compressor 49b on the left side of the compressor 49b on the fresh air intake side.
  • the compressor 49 b rotates in synchronization with the turbine 49 a, so that outside air (air) sucked by the intake filter 63 is introduced into the compressor 49 b through the supercharger 49.
  • the compressor 49b compresses the air sucked from the left side and discharges the compressed air to the intake relay pipe 52 installed on the rear side.
  • the intake relay pipe 52 is opened at the upper front and is connected to the discharge port at the rear of the compressor 49b via the bellows pipe 65, while the lower side is opened to connect the intake port on the upper surface of the intercooler 51 to the intake port.
  • the intercooler 51 is connected to one end of the air supply bypass pipe 66 (the air supply bypass passage 17) at a branch port provided in the front air passage, and a part of the compressed air cooled by the intercooler 51. Is discharged to the air supply bypass pipe 66.
  • the other end of the supply air bypass pipe 66 is connected to a branch port provided in front of the new air passage pipe 64, and a part of the compressed air cooled by the intercooler 51 passes through the supply air bypass pipe 66. It circulates in the pipe 64 and merges with the outside air from the air supply filter 63. Further, the air supply bypass pipe 66 is provided with an air supply bypass valve V2 in the middle thereof.
  • the intercooler 51 cools the compressed air based on the heat exchange action with the cooling water supplied from the water supply pipe 62 when the compressed air from the compressor 49b flows from the rear left side through the intake relay pipe 52.
  • the compressed air cooled in the left chamber flows through the front ventilation path and is introduced into the right chamber, and then is discharged to the intake manifold 67 through the discharge port provided at the rear of the right chamber.
  • the intake manifold 67 is provided on the right side surface of the cylinder block 25, and extends below and in front of the gas manifold 41 in parallel with the head cover 40 row. Note that the flow rate of the compressed air to be supplied to the intake manifold 67 is set by determining the flow rate of the compressed air to be circulated from the intercooler 51 to the compressor 49b according to the opening degree of the air supply bypass valve V2.
  • the turbine 49 a of the supercharger 49 has a rear suction port connected to the exhaust relay pipe 48 and a right discharge port connected to the exhaust outlet pipe 50.
  • the supercharger 49 introduces exhaust gas from the exhaust manifold 44 into the turbine 49a via the exhaust relay pipe 48, rotates the turbine 49a and simultaneously rotates the compressor 49b, and sends the exhaust gas to the exhaust outlet pipe. 50 is exhausted to the exhaust path 28 (see FIG. 2).
  • the exhaust relay pipe 48 is opened at the rear and connected to the discharge port of the exhaust manifold 44 via the bellows pipe 68, while the front is opened and connected to the suction port at the rear of the turbine 49a. Yes.
  • a branch port is provided on the right side surface at a midway position of the exhaust relay pipe 48, and one end of an exhaust bypass pipe 69 (exhaust bypass flow path 18) is connected to the branch port of the exhaust relay pipe 48. .
  • the other end of the exhaust bypass pipe 69 is connected to a merging port provided at the rear of the exhaust outlet pipe 50, and a part of the exhaust gas discharged from the exhaust manifold 44 is exhausted without passing through the supercharger 49. Bypass to 50.
  • the exhaust bypass pipe 69 is provided with an exhaust bypass valve V3 in the middle thereof, and the flow rate of exhaust gas to be bypassed from the exhaust manifold 44 to the exhaust outlet pipe 50 according to the opening degree of the exhaust bypass valve V3. The exhaust gas flow rate to be set and supplied to the turbine 49a is adjusted.
  • the exhaust bypass pipe 69 has a bellows pipe 70 at a position between the connection portion with the exhaust relay pipe 48 and the exhaust bypass valve V3.
  • a machine-side operation control device 71 that controls starting and stopping of the engine device 21 is fixed to the left side surface of the intercooler 51 via a support stay (support member) 72.
  • the machine-side operation control device 71 includes a switch for accepting start / stop of the engine device 21 by an operator, and a display for displaying the state of each part of the engine device 21.
  • An engine starter 75 that starts the engine device 21 is fixed to the rear end side of the left side surface of the cylinder block 25.
  • an engine control device 73 that controls the operation of each part of the engine device 21 is fixed to the rear end surface of the cylinder block 25 via a support stay (support member) 74.
  • a flywheel 76 that is connected and rotated with the speed reducer 22 is installed, and an engine control device 73 is disposed on the flywheel 76.
  • the engine control device 73 is electrically connected to sensors (pressure sensors and temperature sensors) in each part of the engine device 21 to collect temperature data, pressure data, and the like of each part of the engine device 21, and electromagnetics in each part of the engine device 21.
  • a signal is given to a valve or the like to control various operations of the engine device 21 (fuel oil injection, pilot fuel injection, gas injection, cooling water temperature adjustment, etc.).
  • the cylinder block 25 has a stepped portion on the upper left side, and the same number of fuel injection pumps 89 as the head cover 40 and the cylinder head 26 are installed on the upper surface of the stepped portion 25a of the cylinder block 25.
  • the fuel injection pumps 89 are arranged in a line along the left side surface of the cylinder block 25, the left side surface is connected to the fuel oil pipe (liquid fuel pipe) 42, and the upper end thereof is connected to the fuel discharge pipe 90. And connected to the left side surface of the right front cylinder head 26.
  • One of the upper and lower fuel oil pipes 42 is an oil supply pipe that supplies fuel oil to the fuel injection pump 89, and the other is an oil return pipe that returns the fuel oil from the fuel injection pump 89.
  • the fuel discharge pipe 90 supplies fuel oil from the fuel injection pump 89 to the main fuel injection valve 79 by connecting to the main fuel injection valve 79 via a fuel flow path in the cylinder head 26.
  • the fuel injection pump 89 is arranged on the left side with respect to the head cover 40 row at a position on the left side of the cylinder head 26 connected by the fuel discharge pipe 90 on the step portion of the cylinder block 25.
  • the fuel injection pumps 89 are arranged in a line at a position sandwiched between the cylinder head 26 and the fuel oil pipe 42. As shown in FIGS. 9 to 11, the fuel injection pump 89 is covered with a fuel cover 42 and a side cover 43 installed on the step portion 25a of the cylinder block 25.
  • the fuel injection pump 89 pushes up the plunger by rotating a pump cam on a camshaft (not shown) in the cylinder block 25.
  • the fuel injection pump 89 raises the fuel oil supplied from the fuel oil pipe 42 to a high pressure by pushing up the plunger, and supplies the high-pressure fuel oil to the fuel injection pump 89 in the cylinder head 26 via the fuel discharge pipe 90. Supply.
  • the front end of the common rail 47 is connected to the discharge side of the pilot fuel pump 54 via the pilot fuel relay pipe 96, and the pilot fuel discharged from the pilot fuel pump 54 Is supplied to the common rail 47.
  • the pilot fuel relay pipe 96 extends from the discharge port of the pilot fuel pump 54 to above the left side surface of the cylinder block 25 so as to connect the discharge port of the pilot fuel pump 54 and the front end of the common rail 47 on the front surface of the cylinder block 25.
  • the front end surface of the cylinder head 26 is extended from the left side surface of the cylinder head 26 toward the front end of the common rail 47 after being extended.
  • the gas manifold 41 is a gas that is a part of a gas pipe connected to the gas valve unit 35 (see FIG. 4) in front of the right side surface of the cylinder block 25.
  • the fuel gas is pumped in connection with the inlet pipe 97. That is, the front end of the gas manifold 41 is connected to the gas inlet pipe 97, and the fuel gas from the gas valve unit 35 is supplied to the gas manifold 41.
  • the gas manifold 41 extends along the head cover 40 row at a height position between the exhaust manifold 44 and the intake manifold 67.
  • the gas manifold 41 includes a gas inlet pipe 97 and a gas main pipe 41a that is connected to the front end and extends forward and backward, and a plurality of gas branch pipes 41b branched from the upper surface of the gas main pipe 41a toward the cylinder head 26.
  • the gas main pipe 41a has connection flanges on the upper surface thereof at equal intervals, and is fastened to the inlet side flange of the gas branch pipe 41b.
  • the gas branch pipe 41b connects the end portion on the opposite side to the connecting portion with the gas main pipe 41a to the right side surface of the sleeve into which the gas injector 98 is inserted from above.
  • the gas main pipe 41a and the gas branch pipe 41a constituting the gas manifold 41 are each constituted by a double pipe, and the gas inlet pipe 97 and the sleeve are also constituted by a double pipe. That is, the gas pipe downstream of the gas valve unit 35 has a double pipe structure in which the high-pressure inner pipe is covered with the outer pipe, and the inner pipe (inner space) is directed toward the gas injector 98 via the gas manifold 41. Flow fuel gas. On the other hand, in the gas pipe downstream of the gas valve unit 35, the leaked fuel gas is collected by the gas valve unit 35 through the space between the outer pipe and the inner pipe (outer space).
  • the exhaust manifold 44 connects exhaust main pipes 44a and bellows pipes 44b arranged alternately in a row, and is connected to an exhaust branch pipe 44c (branched from the lower side of the exhaust main pipe 44a). A part of the exhaust port 38) is connected to the right side surface of the cylinder head 26.
  • the exhaust main pipe 44 a and the exhaust branch pipe 44 c are provided in the same number as the cylinder head 26, and the exhaust branch pipe 44 c is connected to the front side of the right side surface of the cylinder head 26. That is, in the front portion of the cylinder head 26 where the exhaust valve 81 is disposed, the exhaust inlet side of the exhaust branch pipe 44 c is connected to the exhaust outlet on the right side surface of the cylinder head 26. Further, the exhaust manifold 44 is supported by the cylinder head 26 by fastening the exhaust inlet side flange of the exhaust branch pipe 44 c to the right side surface of the cylinder head 26.
  • the intake manifold 67 is provided on the upper right side of the cylinder block 25 and extends in the front-rear direction at a position where the height position is lower than the gas manifold 41. Yes. Further, as shown in FIG. 13, the cylinder head 26 has a rear portion of the right side surface protruding toward the gas manifold 41, and an air flow path that connects the protruding portion on the right side surface directly above the intake manifold 67. It becomes an intake branch which has inside. That is, the rear portion of the cylinder head 26 where the intake valve 80 is disposed is connected to the intake manifold 67 via the intake branch portion.
  • the engine device 21 includes an intake valve 80 for sucking air into the main combustion chamber in the cylinder 77, an exhaust valve 81 for exhausting combustion gas from the main combustion chamber, and a main fuel for injecting and burning liquid fuel into the main combustion chamber.
  • An injection valve 79 and a gas injector 98 for mixing gaseous fuel with the air sucked into the main combustion chamber are provided.
  • the engine device 21 includes a gas fuel pipe 41 for supplying the gas fuel to the gas injector 98 and a liquid fuel pipe 42 for supplying the liquid fuel to the main fuel injection valve 79 on both sides of the head cover 40 row arranged in a row. They are arranged.
  • the engine device 21 has an intake manifold 67 for supplying air to the main combustion chamber toward the intake valve 80, extending in parallel to the head cover 40 row in the cylinder block 25, and a gas fuel pipe. 41 and the intake manifold 67 are arranged side by side on the same side of the head cover 40 row.
  • the engine device 21 can arrange the gas fuel pipe 41 and the liquid fuel pipe 42 with respect to the head cover 40 and arrange them around the cylinder head 26 in a space-saving manner, it has a compact pipe configuration. Further, since the gas fuel pipe 41 and the intake manifold 67 are arranged on the same side of the head cover 40 row, the pipe distance between the gas injector 98 and the gas fuel pipe 41 arranged on the intake side can be shortened, and the gas The pressure loss in the fuel pipe 41 can be suppressed.
  • the engine device 21 has exhaust manifolds 44 for exhausting combustion gas from the main combustion chambers extending in parallel to the head cover 40 row, and above and below the gaseous fuel pipe 41 on the same side of the head cover 40 row.
  • the exhaust manifold 44 and the intake manifold 67 are arranged separately.
  • the engine device 21 pipes the gas fuel pipe 41 and the exhaust manifold 44 together on the same side of the cylinder head 26, so that a high-pressure liquid is supplied to the main fuel injection valve 79 on the other side of the cylinder head 26.
  • a fuel injection pump 89 that pumps fuel can be installed together with the liquid fuel pipe 42.
  • the engine device 21 includes a pilot fuel injection valve 82 for injecting an ignition flame into the main combustion chamber, and a pilot fuel pipe 47 for supplying pilot fuel to the pilot fuel injection valve 82 extends in parallel with the head cover 40 row.
  • a cooling water pipe 46 extends in parallel with the head cover 40 row at a position between the head cover 40 row and the exhaust manifold 44 above the cylinder block 25, and the pilot fuel is located above the cooling water pipe 46.
  • the piping 47 is supported. Since the pilot fuel pipe 47 is supported on the cooling water pipe 46, the pilot fuel pipe 47 can suppress heating due to a high exhaust gas temperature. Therefore, the pilot fuel pipe 47 can be arranged on the exhaust manifold 44 side, and the respective pipes can be arranged in a compact manner.
  • the gaseous fuel pipe 41 has a double pipe structure including an inner pipe that supplies gaseous fuel toward the gas injector 98 and an outer pipe into which gaseous fuel flows from the gas injector 98.
  • the leaked gaseous fuel can be returned to the fuel source side such as the gas valve unit 35 and the pressure of the gaseous fuel pipe 41 can be kept constant.
  • the engine device 21 has a supercharger 49 that compresses air by exhaust gas from the exhaust manifold 44 at one upper end thereof, and cools the compressed air compressed by the supercharger 49 and supplies it to the intake manifold 67.
  • An intercooler 51 is disposed below the supercharger 49. Since the engine device 21 is arranged with the supercharger 49 and the intercooler 51 overlapped at one end, the device configuration can be made compact. Further, by arranging the supercharger 49 and the intercooler 51 in the vertical direction corresponding to the arrangement of the exhaust manifold 44 and the intake manifold 67, the exhaust manifold 44 and the intake manifold 67 can be piping without difficulty.
  • the engine device 21 has a lubricating oil cooler 58 and a lubricating oil tension 59 arranged in series on one side surface of the cylinder block 25 on the gas fuel pipe 41 side.
  • a lubricating oil cooling cooling water pipe (first cooling water pipe) 60 for flowing cooling water to be supplied to the lubricating oil cooler 58 at a position between the gaseous fuel pipe 41 and the lubricating oil cooler 58 is connected to the cylinder block 25. It extends along the lubricating oil cooler 58 while being separated from the one side surface.
  • a cylinder head cooling cooling water pipe (second cooling water pipe) 46 connected to the cylinder head 26 is located above the cylinder block 25 and between the head cover 40 and the gas fuel pipe 41 in parallel with the head cover 40 row. Extend.
  • the engine device 21 has a lubricating oil cooler 58 and a lubricating oil coke 59 disposed on the side surface of the engine device 21 on the gas fuel pipe 41 side, and a cooling water piping for cooling the lubricating oil that supplies cooling water to the lubricating oil cooler 58 (
  • the first cooling water pipe 60 is disposed on the same side of the engine device 21.
  • the lubricating oil circulation system in the engine device 21 can be arranged in a compact manner, and the maintenance work can be simplified.
  • the cooling water pipe for cooling the cylinder head (second cooling water pipe) 46 is also arranged on the same side as the cooling water pipe for cooling the lubricating oil (first cooling water pipe) 60 above the engine device 21. Therefore, the cooling water pipes arranged outside the engine device 21 can be collectively piped, and the length thereof can be shortened.
  • the engine device 21 has one end surface of the cylinder block 25 that is perpendicular to the engine output shaft 24, and is disposed on one side surface (right side surface) of the cylinder block 25 on the outer peripheral side of the engine output shaft 24.
  • Side is provided with a lubricating oil pump 55, and the lubricating oil sucked up by the lubricating oil pump 55 is supplied to the lubricating oil cooler 58. Since the lubricating oil pump 55 is installed near the lubricating oil cooler 58, the lubricating oil pump 55 and the lubricating oil cooler 58 can be connected by a short pipe.
  • each unit is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the engine device of the present embodiment can also be applied to configurations other than the propulsion and power generation mechanism described above, such as a power generation device for supplying power to the electrical system in the hull and a drive source in a power generation facility on land. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 過給機を有するエンジン装置において、ガスモードで運転させたときに負荷変動に対して応答性よく空気流量制御を実行できるエンジン装置を提供することを目的とする。本願発明のエンジン装置21は、吸気マニホールド67と、排気マニホールド44と、シリンダ77に液体燃料を噴射して燃焼させるメイン燃料噴射弁79と、吸気マニホールド67から供給される空気に気体燃料を混合させるガスインジェクタ98とを備える。空気を圧縮する過給機49と、過給機49で圧縮された圧縮空気を冷却して吸気マニホールド67に供給するインタークーラ51とを備える。過給機49出口とインタークーラ51入口との接続箇所にメインスロットル弁V1を設けている。排気マニホールド44出口と過給機49の排気出口とを結ぶ排気バイパス流路18を備え、排気バイパス流路18に排気バイパス弁V3を配置する。

Description

エンジン装置
 本願発明は、天然ガス等の気体燃料と重油等の液体燃料のいずれにも対応できる多種燃料採用型のエンジン装置に関するものである。
 従来より、例えばタンカーや輸送船等の船舶や陸上の発電施設においては、その駆動源としてディーゼルエンジンが利用されている。しかしながら、ディーゼルエンジンの排気ガス中には、環境保全の妨げになる有害物質となる、窒素酸化物、硫黄酸化物及び粒子状物質等が多く含まれている。そのため、近年では、ディーゼルエンジンの代替となるエンジンとして、有害物質の発生量を低減できるガスエンジンなどが普及されつつある。
 更には、ディーゼルエンジンの特性とガスエンジンの特性それぞれを組み合わせたエンジンとして、天然ガス等の気体燃料(燃料ガス)を空気と混合させて燃焼室に供給して燃焼させる予混合燃焼方式と、重油等の液体燃料を燃焼室内に噴射して燃焼させる拡散燃焼方式とを併用できるデュアルフューエルエンジンが提供されている(特許文献1及び特許文献2参照)。
特開2002-004899号公報 特開2008-202545号公報
 デュアルフューエルエンジンは、ディーゼルモードとガスモードとでは、空燃比が異なり、同一負荷に対して、ディーゼルモードに比べてガスモードで必要な空気流量が少ない。そのため、過給機をディーゼルモードにおける仕様にあわせる必要がある一方で、ガスモードで動作する際には、ガスモードの空燃比に合わせた空気流量を供給可能にしなければならない。また、従来のデュアルフューエルエンジンは、ガスモードで運転した場合に、空気流量制御における応答性が悪く、負荷変動に対して追従性よく適正な空燃比制御を実行させることが困難であった。
 そこで、本願発明は、上記のような現状を検討して改善を施した多種燃料採用型のエンジン装置を提供することを技術的課題とするものである。
 請求項1の発明は、シリンダ内へ空気を供給させる吸気マニホールドと、前記シリンダからの排気ガスを排気させる排気マニホールドと、前記シリンダに液体燃料を噴射して燃焼させるメイン燃料噴射弁と、前記吸気マニホールドから供給される空気に気体燃料を混合させて前記シリンダに吸気するガスインジェクタとを備えたエンジン装置において、前記排気マニホールドからの排気ガスにより空気を圧縮する過給機と、該過給機で圧縮された圧縮空気を冷却して前記吸気マニホールドに供給するインタークーラとを、更に備え、前記過給機出口と前記インタークーラ入口との接続箇所にメインスロットル弁を設けており、前記排気マニホールド出口と前記過給機の排気出口とを結ぶ排気バイパス流路を備えるとともに、前記排気バイパス流路に排気バイパス弁を配置するというものである。
 請求項2の発明は、請求項1に記載したエンジン装置において、前記過給機のコンプレッサをバイパスする給気バイパス流路を備えるとともに、前記給気バイパス流路に給気バイパス弁を配置するというものである。
 請求項3の発明は、請求項2に記載したエンジン装置において、前記インタークーラ入口と前記メインスロットル弁との間となる位置に、前記給気バイパス流路を接続し、前記給気バイパス流路を介して、前記コンプレッサから吐出された圧縮空気を前記コンプレッサ入口に帰還させるというものである。
 本願発明によると、シリンダ内へ空気を供給させる吸気マニホールドと、前記シリンダからの排気ガスを排気させる排気マニホールドと、前記シリンダに液体燃料を噴射して燃焼させるメイン燃料噴射弁と、前記吸気マニホールドから供給される空気に気体燃料を混合させて前記シリンダに吸気するガスインジェクタとを備えたエンジン装置において、前記排気マニホールドからの排気ガスにより空気を圧縮する過給機と、該過給機で圧縮された圧縮空気を冷却して前記吸気マニホールドに供給するインタークーラとを、更に備え、前記過給機出口と前記インタークーラ入口との接続箇所にメインスロットル弁を設けており、前記排気マニホールド出口と前記過給機の排気出口とを結ぶ排気バイパス流路を備えるとともに、前記排気バイパス流路に排気バイパス弁を配置するというものであるので、過給機を液体燃料による燃焼モード仕様に最適化した場合に、気体燃料による燃焼モード時においても、エンジン負荷の変動に合わせて前記排気バイパス弁の開度を制御することにより、エンジン負荷に最適な空燃比を実現できる。そのため、負荷変動時において、燃焼に必要な空気量の不足を防止でき、ディーゼルモードで最適化した過給機を使用した状態で、ガスモードでも最適に稼働できる。
 また、前記過給機のコンプレッサをバイパスする給気バイパス流路を備えるとともに、前記給気バイパス流路に給気バイパス弁を配置するものとすることで、エンジン負荷の変動に合わせて前記給気バイパス弁の開度を制御することにより、気体燃料の燃焼に必要な空燃比に合わせた空気をエンジンに供給できる。また、応答性の良い前記給気バイパス弁による制御動作を併用することで、ガスモードにおける負荷変動への応答速度を速めることができる。
 また、前記インタークーラ入口と前記メインスロットル弁との間となる位置に、前記給気バイパス流路を接続し、前記給気バイパス流路を介して、前記コンプレッサから吐出された圧縮空気を前記コンプレッサ入口に帰還させるものとすることで、前記排気バイパス弁による流量制御の応答性を前記給気バイパス弁により補うと同時に、前記給気バイパス弁の制御幅を前記排気バイパス弁により補うことができる。従って、舶用用途での負荷変動や運転モードの切換時において、ガスモードにおける空燃比制御の追従性を良好なものとできる。
本発明の実施形態における船舶の全体側面図である。 機関室の側面断面図である。 機関室の平面説明図である。 本発明の実施形態におけるエンジン装置の燃料供給路の構成を示す概略図である。 同エンジン装置における吸排気路の構成を示す概略図である。 同エンジン装置の制御ブロック図である。 同エンジン装置における過給機圧力比と空気流量の関係を示す図である。 本発明の実施形態におけるエンジン装置の右側面図である。 同エンジン装置の左側面図である。 同エンジン装置の平面図である。 同エンジン装置の背面図である。 同エンジン装置の正面図である。 同エンジン装置の排気マニホールド設置側(右側面)を示す斜視図である。 同エンジン装置の燃料噴射ポンプ設置側(左側面)を示す斜視図である。 同エンジン装置の過給機上方(前方上側)から視た斜視図である。
 以下に、本願発明を具体化した実施形態を、2基2軸方式の船舶に搭載される一対の推進兼発電機構に適用した場合の図面に基づいて説明する。
 まず始めに、船舶の概要について説明する。図1~図3に示すように、本実施形態の船舶1は、船体2と、船体2の船尾側に設けられたキャビン3(船橋)と、キャビン3の後方に配置されたファンネル4(煙突)と、船体2の後方下部に設けられた一対のプロペラ5及び舵6とを備えている。この場合、船尾側の船底7に一対のスケグ8が一体形成されている。各スケグ8には、プロペラ5を回転駆動させる推進軸9が軸支される。各スケグ8は、船体2の左右幅方向を分割する船体中心線CL(図3参照)を基準にして左右対称状に形成されている。すなわち、第1実施形態では、船体2の船尾形状としてツインスケグが採用されている。
 船体2内の船首側及び中央部には船倉10が設けられており、船体2内の船尾側には機関室11が設けられている。機関室11には、プロペラ5の駆動源と船舶1の電力供給源とを兼ねる推進兼発電機構12が船体中心線CLを挟んだ左右に振り分けて一対配置されている。各推進兼発電機構12から推進軸9に伝達された回転動力にて、各プロペラ5は回転駆動する。機関室11の内部は、上甲板13、第2甲板14、第3甲板15及び内底板16にて上下に仕切られている。第1実施形態の各推進兼発電機構12は、機関室11最下段の内底板16上に設置されている。なお、詳細は図示していないが、船倉10は複数の区画に分割されている。
 図2及び図3に示すように、各推進兼発電機構12は、プロペラ5の駆動源である中速エンジン装置21(実施形態ではデュアルフューエルエンジン)と、エンジン装置21の動力を推進軸9に伝達する減速機22と、エンジン装置21の動力にて発電する軸駆動発電機23とを組み合わせたものである。ここで、「中速」のエンジンとは、毎分500~1000回転程度の回転速度で駆動するものを意味している。ちなみに、「低速」のエンジンは毎分500回転以下の回転速度で駆動し、「高速」のエンジンは毎分1000回転以上の回転速度で駆動する。実施形態のエンジン装置21は中速の範囲内(毎分700~750回転程度)で定速駆動するように構成されている。
 エンジン装置21は、エンジン出力軸24(クランク軸)を有するシリンダブロック25と、シリンダブロック25上に搭載されたシリンダヘッド26とを備えている。機関室11最下段の内底板16上に、直付け又は防振体(図示省略)を介してベース台27が据え付けられている。ベース台27上にエンジン装置21のシリンダブロック25が搭載されている。エンジン出力軸24は、船体2の前後長さ方向に沿う向きに延びている。すなわち、エンジン装置21は、エンジン出力軸24の向きを船体2の前後長さ方向に沿わせた状態で機関室11内に配置されている。
 減速機22及び軸駆動発電機23がエンジン装置21よりも船尾側に配置されている。エンジン装置21の後面側からエンジン出力軸24の後端側が突出している。エンジン出力軸の後端側に減速機22が動力伝達可能に連結されている。減速機22を挟んでエンジン装置21と反対側に、軸駆動発電機23が配置されている。機関室11内の前方からエンジン装置21、減速機22、軸駆動発電機23の順に並べて配置されている。この場合、船尾側にあるスケグ8内又はその近傍に減速機22及び軸駆動発電機23が配置されている。従って、船舶1のバドックラインの制約に拘らず、エンジン装置21をできるだけ船尾側に寄せて配置することが可能になっていて、機関室11のコンパクト化に寄与している。
 減速機22の動力伝達下流側に推進軸9が設けられている。減速機22の外形は、エンジン装置21及び軸駆動発電機23よりも下側に張り出している。当該張り出し部分の後面側に、推進軸9の前端側が動力伝達可能に連結されている。エンジン出力軸24(軸芯線)と推進軸9とは、平面視で同軸状に位置している。推進軸9は、エンジン出力軸24(軸芯線)に対して鉛直方向に異芯した状態で、船体2の前後長さ方向に延びている。この場合、推進軸9は、側面視で軸駆動発電機23及びエンジン出力軸24(軸芯線)よりも低く内底板16に近い位置に置かれている。すなわち、軸駆動発電機23と推進軸9とが上下に振り分けられ、互いに干渉しない。従って、各推進兼発電機構12のコンパクト化が可能になる。
 エンジン装置21の定速動力は、エンジン出力軸24の後端側から減速機22を介して、軸駆動発電機23と推進軸9とに分岐して伝達される。エンジン装置21の定速動力の一部は、減速機22によって例えば毎分100~120回転前後の回転速度に減速されて、推進軸9に伝達される。減速機22からの減速動力にてプロペラ5が回転駆動する。なお、プロペラ5には、プロペラ羽根の翼角変更によって船速を調節可能な可変ピッチプロペラが採用されている。また、エンジン装置21の定速動力の一部は、減速機22によって例えば毎分1200か1800回転程度の回転速度に増速されて、減速機22に回転可能に軸支されたPTO軸に伝達される。この減速機22のPTO軸の後端側が軸駆動発電機23に動力伝達可能に連結されており、減速機22からの回転動力に基づいて軸駆動発電機23が発電駆動する。軸駆動発電機23の駆動にて生じた発電電力が船体2内の電気系統に供給される。
 エンジン装置21には、空気取り込み用の吸気経路(図示省略)と排気ガス排出用の排気経路28とが接続されている。吸気経路を通じて取り込まれた空気は、エンジン装置21の各気筒36内(吸気行程の気筒内)に送られる。また、エンジン装置21は2基あるため、排気経路28は2本存在する。各排気経路28はそれぞれ延長経路29に接続されている。延長経路29はファンネル4まで延びていて、外部に直接連通するように構成されている。各エンジン装置21からの排気ガスは、各排気経路28及び延長経路29を経由して、船舶1外に放出される。
 以上の説明から明らかなように、エンジン装置21と、船舶推進用のプロペラ5を回転駆動させる推進軸9に前記エンジン装置21の動力を伝達する減速機22と、前記エンジン装置21の動力にて発電する軸駆動発電機23とを組み合わせた推進兼発電機構12を一対備えており、一対の推進兼発電機構12は、船体2内の機関室11に、船体中心線CLを挟んだ左右に振り分けて配置されるから、複数台のエンジン(主機関及び補機関)を機関室内に配置する従来構造に比べて、機関室11のエンジン設置スペースを縮小できる。このため、機関室11の前後長を短縮して機関室11をコンパクトに構成でき、ひいては、船体2における船倉スペース(機関室11以外のスペース)の確保がし易い。2つのプロペラ5の駆動によって、船舶1の推進効率向上も図れる。
 しかも、主機関たるエンジン装置21が2基備わるため、例えば1基のエンジン装置21が故障して駆動不能になったとしても、もう1基のエンジン装置21によって航行可能であり、船舶用原動機装置ひいては船舶1の冗長性を確保できる。その上、前述の通り、エンジン装置21によってプロペラ5の回転駆動と軸駆動発電機23の駆動とを行えるから、通常航行時は、いずれか一方の軸駆動発電機23を予備にできる。従って、例えば1基のエンジン装置21又は軸駆動発電機23の故障によって電力供給が停止した場合、もう1基の軸駆動発電機23を起動させ、周波数及び電圧を確立して給電を復帰させればよい。また、1基のエンジン装置21だけでの航行時にエンジン装置21を停止させた場合は、もう1基の停止中のエンジン装置21、ひいてはこれに対応した軸駆動発電機23を起動させ、周波数及び電圧を確立して給電を復帰させればよい。
 次に、上記船舶1における主機関として用いられるデュアルフューエルエンジン21の概略構成について、図4~図7を参照して説明する。デュアルフューエルエンジン21(以下、単に「エンジン装置21」と呼ぶ)は、天然ガス等の燃料ガスを空気に混合させて燃焼させる予混合燃焼方式と、重油等の液体燃料(燃料油)を拡散させて燃焼させる拡散燃焼方式とを択一的に選択して駆動する。図4は、エンジン装置21に対する燃料系統を示す図であり、図5は、エンジン装置21における吸排気系統を示す図であり、図6は、エンジン装置21における制御ブロック図である。
 エンジン装置21は、図4に示すように、二系統の燃料供給経路30,31から燃料が供給されるものであって、一方の燃料供給経路30にガス燃料タンク32が接続されるとともに、他方の燃料供給経路31に液体燃料タンク33が接続される。即ち、エンジン装置21は、燃料供給経路30から燃料ガスがエンジン装置21に供給される一方、燃料供給経路31から燃料油がエンジン装置21に供給される。燃料供給経路30は、液化状態の気体燃料を貯蔵するガス燃料タンク32と、ガス燃料タンク32の液化燃料(燃料ガス)を気化させる気化装置34と、気化装置34からエンジン装置21への燃料ガスの供給量を調整するガスバルブユニット35とを備える。即ち、燃料供給経路30は、ガス燃料タンク32からエンジン装置21に向かって、気化装置34及びガスバルブユニット35が順番に配置されて構成される。
 エンジン装置21は、図5に示すように、シリンダブロック25に複数の気筒36(本実施形態では6気筒)を直列に並べた構成を有している。各気筒36は、シリンダブロック25内に構成される吸気マニホールド(吸気流路)67(図20参照)と吸気ポート37を介して連通している。各気筒36は、シリンダヘッド26上方に配置される排気マニホールド(排気流路)44と排気ポート38を介して連通している。各気筒36における吸気ポート37に、ガスインジェクタ98を配置する。従って、吸気マニホールド67からの空気が、吸気ポート37を介して各気筒36に供給される一方、各気筒36からの排ガスが、排気ポート38を介して排気マニホールド44に吐出される。また、エンジン装置21をガスモードで運転している場合には、ガスインジェクタ98から燃料ガスを吸気ポート37に供給し、吸気マニホールド67からの空気に燃料ガスを混合して、各気筒35に予混合ガスを供給する。
 排気マニホールド44の排気出口側に、過給機49のタービン49aの排気入口を接続しており、吸気マニホールド67の空気入口側(新気入口側)に、インタークーラ51の空気吐出口(新気出口)を接続している。インタークーラ51の空気吸入口(新気入口)に、過給機49のコンプレッサ49bの空気吐出口(新気出口)を接続している。コンプレッサ49b及びインタークーラ51の間に、メインスロットル弁V1を配置しており、メインスロットル弁V1の弁開度を調節して、吸気マニホールド44に供給する空気流量を調整する。
 コンプレッサ49bをバイパスさせる給気バイパス流路17が、コンプレッサ49bの空気吸入口(新気入口)側とインタークーラ51の空気吸入口側とを連結している。すなわち、給気バイパス流路17は、コンプレッサ49bの空気吸入口よりも上流側で外気に解放される一方で、インタークーラ51とメインスロットル弁V1との接続部分に接続される。この給気バイパス流路17上に、給気バイパス弁V2を配置しており、給気バイパス弁V2の弁開度を調節して、メインスロットル弁V1下流側から給気バイパス流路17を介して外気へ流れる空気流量を調整する。
 タービン49aをバイパスさせる排気バイパス流路18が、タービン49aの排気出口側と排気マニホールド44の排気出口側とを連結している。すなわち、排気バイパス流路18は、タービン49aの排気出口よりも下流側で外気に解放される一方で、タービン49aの排気出口とタービン49aの排気入口との接続部分に接続される。この排気バイパス流路18上に、排気バイパス弁V3を配置しており、排気バイパス弁V3の弁開度を調節することで、タービン49aに流れる排ガス流量を調整して、コンプレッサ49bにおける空気圧縮量を調整する。
 エンジン装置21は、排気マニホールド44からの排気ガスにより空気を圧縮する過給機49と、過給機49で圧縮された圧縮空気を冷却して吸気マニホールド67に供給するインタークーラ51とを有している。エンジン装置21は、過給機49出口とインタークーラ51入口との接続箇所にメインスロットル弁V1を設けている。エンジン装置21は、排気マニホールド44出口と過給機49の排気出口とを結ぶ排気バイパス流路18を備えるとともに、排気バイパス流路18に排気バイパス弁V3を配置する。過給機49をディーゼルモード仕様に最適化した場合に、ガスモード時においても、エンジン負荷の変動に合わせて排気バイパス弁V3の開度を制御することで、エンジン負荷に最適な空燃比を実現できる。そのため、負荷変動時において、燃焼に必要な空気量の過不足を防止でき、エンジン装置21は、ディーゼルモードで最適化した過給機を使用した状態で、ガスモードでも最適に稼働する。
 エンジン装置21は、過給機49をバイパスする給気バイパス流路17を備え、給気バイパス流路17に給気バイパス弁V2を配置する。エンジン負荷の変動に合わせて給気バイパス弁V2の開度を制御することにより、燃料ガスの燃焼に必要な空燃比に合わせた空気をエンジンに供給できる。また、応答性の良い給気バイパス弁V2による制御動作を併用することで、ガスモードにおける負荷変動への応答速度を速めることができる。
 エンジン装置21は、インタークーラ51入口とメインスロットル弁V1との間となる位置に、給気バイパス流路17を接続し、コンプレッサ49bから吐出された圧縮空気をコンプレッサ49b入口に帰還させる。これにより、排気バイパス弁V3による流量制御の応答性を給気バイパス弁V2により補うと同時に、給気バイパス弁V2の制御幅を排気バイパス弁V3により補うことができる。従って、舶用用途での負荷変動や運転モードの切換時において、ガスモードにおける空燃比制御の追従性を良好なものとできる。
 エンジン装置21は、図6に示すように、エンジン装置21の各部を制御するエンジン制御装置73を有している。エンジン装置21は、気筒36毎に、パイロット燃料噴射弁82、燃料噴射ポンプ89、及びガスインジェクタ98を設けている。エンジン制御装置73は、パイロット燃料噴射弁82、燃料噴射ポンプ89、及びガスインジェクタ98それぞれに制御信号を与えて、パイロット燃料噴射弁82によるパイロット燃料噴射、燃料噴射ポンプ89による燃料油供給、及びガスインジェクタ98によるガス燃料供給それぞれを制御する。
 エンジン制御装置73は、メインスロットル弁V1、給気バイパス弁V2、及び排気バイパス弁V3それぞれに制御信号を与えて、それぞれ弁開度を調節し、吸気マニホールド67における空気圧力(吸気マニホールド圧力)を調整する。エンジン制御装置73は、吸気マニホールド65における空気圧力を測定する圧力センサ39より測定信号を受け、吸気マニホールド圧力を検知する。エンジン制御装置73は、ワットトランスデューサやトルクセンサなどの負荷測定器19による測定信号を受け、エンジン装置21にかかる負荷を算出する。エンジン制御装置73は、クランク軸24の回転数を測定するパルスセンサなどのエンジン回転センサ20による測定信号を受け、エンジン装置21のエンジン回転数を検知する。
 ディーゼルモードでエンジン装置21を運転する場合、エンジン制御装置73は、燃料噴射ポンプ89における制御弁を開閉制御して、各気筒36における燃焼を所定タイミングで発生させる。すなわち、各気筒36の噴射タイミングに合わせて、燃料噴射ポンプ89の制御弁を開くことで、メイン燃料噴射弁79を通じて各気筒36内に燃料油を噴射させ、気筒36内で発火させる。また、ディーゼルモードにおいて、エンジン制御装置73は、パイロット燃料及び燃料ガスの供給を停止させている。
 ディーゼルモードにおいて、エンジン制御装置73は、負荷測定器19で測定されたエンジン負荷(エンジン出力)と、エンジン回転センサ20で測定されたエンジン回転数とに基づいて、各気筒36におけるメイン燃料噴射弁79の噴射タイミングをフィードバック制御する。これにより、エンジン21は、推進兼発電機構12で必要とされるエンジン負荷を出力すると同時に、船舶の推進速度に応じたエンジン回転数で回転する。また、エンジン制御装置73は、圧力センサ39で測定された吸気マニホールド圧力に基づいて、メインスロットル弁V1の開度を制御することで、必要なエンジン出力に応じた空気流量となる圧縮空気を過給機49から吸気マニホールド67に供給させる。
 ガスモードでエンジン装置21を運転する場合は、エンジン制御装置73は、ガスインジェクタ98における弁開度を調節して、各気筒36内に供給する燃料ガス流量を設定する。そして、エンジン制御装置73は、パイロット燃料噴射弁82を開閉制御して、各気筒36における燃焼を所定タイミングで発生させる。すなわち、ガスインジェクタ98が、弁開度に応じた流量の燃料ガスを吸気ポート37に供給して、吸気マニホールド67からの空気に混合して、予混合燃料を気筒36に供給させる。そして、各気筒36の噴射タイミングに合わせて、パイロット燃料噴射弁82の制御弁を開くことで、パイロット燃料の噴射による点火源を発生させ、予混合ガスを供給した気筒36内で発火させる。また、ガスモードにおいて、エンジン制御装置73は、燃料油の供給を停止させている。
 ガスモードにおいて、エンジン制御装置73は、負荷測定器19で測定されたエンジン負荷と、エンジン回転センサ20で測定されたエンジン回転数とに基づいて、ガスインジェクタ98による燃料ガス流量と、各気筒36におけるパイロット噴射弁82による噴射タイミングとをフィードバック制御する。また、エンジン制御装置73は、圧力センサ39で測定された吸気マニホールド圧力に基づいて、メインスロットル弁V1、給気バイパス弁V2、及び排気バイパス弁V3それぞれの開度を調節する。これにより、吸気マニホールド圧力を必要なエンジン出力に応じた圧力に調節し、ガスインジェクタ98から供給される燃料ガスとの空燃比をエンジン出力に応じた値に調整できる。
 過給機49は、ディーゼルモード運転時におけるエンジン装置21に対応させた容量を備えている。そのため、エンジン装置21をガスモードで運転する場合、過給機49の容量を擬似的にガスモード運転時におけるエンジン装置21に対応させる必要がある。図7に、過給機49における圧力比(コンプレッサ49bの吐出圧力と吸入圧力の比)と空気流量(コンプレッサ49bの吐出流量又は吸気マニホールド67への給気流量)の関係を示す。図7に示すように、エンジン負荷を同一とした場合、ガスモードでの運転ポイントP2における圧縮比及び空気流量のそれぞれが、ディーゼルモードでの運転ポイントP1よりも低くなる。
 エンジン装置21がディーゼルモードからガスモードに運転を切り換えたとき、排気バイパス弁V3のみを制御して運転ポイントを変更する場合、排気バイパス弁V3を開くことで、タービン49aの回転数を低くして、コンプレッサ49bの圧縮比及び空気流量を下げる。この場合、図7に示すように、ディーゼルモード及びガスモードそれぞれにおける運転ポイントP1,P2のベクトル量が大きく、ガスモードへの運転ポイントへの切換に時間を要する。
 それに対して、給気バイパス弁V2と排気バイパス弁V3を共に制御して運転ポイントを変更する場合、給気バイパス弁V2を開いて、コンプレッサ49bから吐出される圧縮空気を給気バイパス流路17を介してコンプレッサ49bの吸入口にバイパスさせると同時に、排気バイパス弁V3を開いて、タービン49aの回転数を低くする。即ち、給気バイパス流路17によりコンプレッサ49bの吐出口から吸入口へ圧縮空気を期間させることにより、図7に示すように、コンプレッサ49bの圧縮比を下げる。従って、排気バイパス弁V3の制御によるコンプレッサ49bの圧縮比の低下量を少なくすることができ、ガスモードへの運手ポイントへの切換時間を短縮できる。
 次に、上記概略構成を有するデュアルフューエルエンジン21(エンジン装置21)の詳細構成について、図8~図20を参照して説明する。以下の説明において、減速機22との接続側を後側として、エンジン装置21の構成における前後左右の位置関係を指定するものとする。
 エンジン装置21は、図8~図15に示すように、ベース台27(図2参照)上に据置されるシリンダブロック25にエンジン出力軸24を備え、複数のヘッドカバー40が前後一列に配列されたシリンダヘッド26をシリンダブロック25上に搭載している。エンジン装置21は、シリンダヘッド26の右側面に、ヘッドカバー40列と平行にガスマニホールド(気体燃料配管)41を延設する一方、シリンダブロック25の左側面に、ヘッドカバー40列と平行に延設された燃料油管(液体燃料配管)42を覆うサイドカバー43を配置している。また、ガスマニホールド41の上側において、後述の排気マニホールド(排気流路)44がヘッドカバー40列と平行に延設されており、この排気マニホールド44の外周が遮熱カバー45で覆われている。
 ヘッドカバー40列と遮熱カバー45との間には、シリンダヘッド26内の冷却水路と連結するシリンダヘッド上冷却水配管46が、ヘッドカバー40列と平行に延設されている。冷却水配管46の上側には、軽油等によるパイロット燃料を供給するコモンレール(パイロット燃料配管)47が、冷却水配管46と同様、ヘッドカバー40列と平行に延設されている。このとき、冷却水配管46が、シリンダヘッド26と連結して支持されるとともに、コモンレール47が、冷却水配管46と連結して支持される。また、遮熱カバー45は、冷却水配管46及びシリンダブロック25と連結して支持されている。
 排気マニホールド44の前端(排気出口側)は、排気中継管48を介して、過給機49と接続されている。従って、排気マニホールド44を通じて排気される排気ガスが、排気中継管48を介して、過給機49のタービン49aに流入することで、タービン49aが回転して、タービン49aと同軸となるコンプレッサ49bを回転させる。過給機49は、エンジン装置21の前端上側に配置されており、その右側にタービン49aを、その左側にコンプレッサ49bをそれぞれ有する。そして、排気出口管50が、過給機49の右側に配置されるとともに、タービン49aの排気出口と連結し、タービン49aからの排気ガスを排気経路28(図2参照)に排気させる。
 過給機49の下側には、過給機49のコンプレッサ49bからの圧縮空気を冷却させるインタークーラ51が配置されている。即ち、シリンダブロック25の前端側に、インタークーラ51が設置されるとともに、このインタークーラ51の上部に過給機49が載置される。過給機49の左右中層位置には、コンプレッサ49bの空気吐出口が、後方(シリンダブロック25側)に向かって開口するようにして設けられている。一方、インタークーラ51上面には、上方に向かって開口した空気吸入口が設けられており、この空気吸入口を通じて、コンプレッサ49bから吐出される圧縮空気が、インタークーラ51内部に流入する。そして、コンプレッサ49bの空気吐出口とインタークーラ51の空気吸入口とは、一端が接続されている吸気中継管52により連通される。この吸気中継管52は、上述のメインスロットル弁V1(図5参照)を有している。
 エンジン装置21の前端面(正面)には、エンジン出力軸24の外周側に、冷却水ポンプ53、パイロット燃料ポンプ54、潤滑油ポンプ(プライミングポンプ)55、及び燃料油ポンプ56それぞれが設置されている。このとき、冷却水ポンプ53及び燃料油ポンプ56それぞれが左側面寄りの上下に配置され、パイロット燃料ポンプ54及び潤滑油ポンプ55それぞれが右側面寄りの上下に配置される。また、エンジン装置21の前端部分には、エンジン出力軸24の回転動力を伝達する回転伝達機構(図示省略)が設けられている。これにより、エンジン出力軸24からの回転動力が前記回転伝達機構を介して伝達されることで、エンジン出力軸24外周に設けられた冷却水ポンプ53、パイロット燃料ポンプ54、潤滑油ポンプ55、及び燃料油ポンプ56それぞれも回転する。更に、シリンダブロック25内において、冷却水ポンプ53の上側に、前後を軸方向とするカムシャフト(図示省略)が軸支されており、該カムシャフトも前記回転伝達機構を通じてエンジン出力軸24の回転動力が伝達されて回転する。
 シリンダブロック25の下側には、オイルパン57が設けられており、このオイルパン57に、シリンダブロック25を流れる潤滑油が溜まる。潤滑油ポンプ55は、潤滑油配管を介してオイルパン57と下側の吸引口で接続されており、オイルパン57に溜まっている潤滑油を吸引する。また、潤滑油ポンプ55は、上側の吐出口が潤滑油配管を介して潤滑油クーラ58の潤滑油入口と接続することで、オイルパン57から吸引した潤滑油を潤滑油クーラ58に供給する。潤滑油クーラ58は、その前方を潤滑油入口とする一方で後方を潤滑油出口とし、潤滑油出口を潤滑油コシキ59と潤滑油配管を介して連結させる。潤滑油コシキ59は、その前方を潤滑油入口とする一方で後方を潤滑油出口とし、潤滑油出口をシリンダブロック25と接続している。従って、潤滑油ポンプ55から送られてくる潤滑油は、潤滑油クーラ58で冷却された後に、潤滑油コシキ59で浄化される。
 潤滑油クーラ58及び潤滑油コシキ59はそれぞれ、シリンダブロック25の右側面に固定されている。そして、潤滑油クーラ58及び潤滑油コシキ59は、潤滑油クーラ58が前方(潤滑油ポンプ55側)となるように、シリンダブロック25右側面において、前後に直列に配置されている。また、前後方向に延設されるシリンダブロック右冷却水配管60が、ガスマニホールド41と潤滑油クーラ58の間となる位置に、シリンダブロック25の右側面より離間して配置されている。この冷却水配管60は、シリンダブロック25の前方からガスマニホールド41に沿うようにして、潤滑油クーラ58及び潤滑油コシキ59の間となる位置まで延設されている。
 また、ガスマニホールド41に沿うように延設された冷却水配管60は、インタークーラ51から吐出されるインタークーラ吐出側冷却水配管61と連結しており、インタークーラ51から流出した冷却水を潤滑油クーラ58に給水する。なお、インタークーラ51は、その右側面上下に設置された吐出側冷却水配管61及び給水側冷却水配管62それぞれが挿入されており、過給機49のコンプレッサ49bからの圧縮空気を冷却する。
 過給機49は、左右それぞれに振り分けて配置されたコンプレッサ49b及びタービン49aを同軸で軸支し、排気中継管48を通じて排気マニホールド44から導入されるタービン49aの回転に基づき、コンプレッサ49bが回転する。また、過給機49は、新気取り入れ側となるコンプレッサ49bの左側に、導入する外気を除塵する吸気フィルタ63と、吸気フィルタ63とコンプレッサ49bとを接続する新気通路管64とを備える。これにより、タービン49aと同期してコンプレッサ49bが回転することにより、吸気フィルタ63により吸引された外気(空気)は、過給機49を通じてコンプレッサ49bに導入される。そして、コンプレッサ49bは、左側から吸引した空気を圧縮して、後側に設置されている吸気中継管52に圧縮空気を吐出する。
 吸気中継管52は、その上部前方を開口させて、コンプレッサ49b後方の吐出口と蛇腹管65を介して接続している一方で、その下側を開口させて、インタークーラ51上面の吸気口と接続している。また、インタークーラ51は、前面の通気路に設けた分岐口において、給気バイパス管66(給気バイパス流路17)の一端と接続しており、インタークーラ51で冷却した圧縮空気の一部を給気バイパス管66に吐出する。給気バイパス管66の他端が、新気通路管64の前面に設けた分岐口に接続して、インタークーラ51で冷却された圧縮空気の一部が、給気バイパス管66を通じて新気通路管64に環流し、給気フィルタ63からの外気と合流する。また、給気バイパス管66は、その中途部に、給気バイパス弁V2が配置されている。
 インタークーラ51は、吸気中継管52を通じてコンプレッサ49bからの圧縮空気を左側後方から流入させると、給水配管62から給水される冷却水との熱交換作用に基づいて、圧縮空気を冷却させる。インタークーラ51内部において、左室で冷却された圧縮空気は、前方の通気路を流れて右室に導入された後、右室後方に設けられた吐出口を通じて、吸気マニホールド67に吐出される。吸気マニホールド67は、シリンダブロック25の右側面に設けられており、ガスマニホールド41の下側において、ヘッドカバー40列と平行に前後に延設されている。なお、給気バイパス弁V2の開度に応じて、インタークーラ51からコンプレッサ49bに環流させる圧縮空気の流量が決定されることで、吸気マニホールド67へ供給する圧縮空気の流量が設定される。
 また、過給機49のタービン49aは、後方の吸込口を排気中継管48と接続させており、右側の吐出口を排気出口管50と接続させている。これにより、過給機49は、排気中継管48を介して排気マニホールド44から排気ガスをタービン49a内部に導入させて、タービン49aを回転させると同時にコンプレッサ49bを回転させ、排気ガスを排気出口管50から排気経路28(図2参照)に排気する。排気中継管48は、その後方を開口させて、排気マニホールド44の吐出口と蛇腹管68を介して接続している一方で、その前方を開口させて、タービン49a後方の吸込口と接続している。
 また、排気中継管48の中途位置において、右側面側に分岐口が設けられており、この排気中継管48の分岐口に排気バイパス管69(排気バイパス流路18)の一端が接続されている。排気バイパス管69は、その他端が排気出口管50の後方に設けられた合流口と接続され、排気マニホールド44から吐出される排気ガスの一部を、過給機49を介さずに排気出口管50にバイパスさせる。また、排気バイパス管69は、その中途部に、排気バイパス弁V3が配置されており、排気バイパス弁V3の開度に応じて、排気マニホールド44から排気出口管50にバイパスさせる排気ガスの流量を設定し、タービン49aに供給する排ガス流量を調節する。なお、排気バイパス管69は、排気中継管48との接続部と排気バイパス弁V3との間となる位置に、蛇腹管70を有する。
 エンジン装置21の始動・停止等の制御を行う機側操作用制御装置71が、支持ステー(支持部材)72を介してインタークーラ51の左側面に固定されている。機側操作用制御装置71は、作業者によるエンジン装置21の始動・停止を受け付けるスイッチとともに、エンジン装置21各部の状態を表示するディスプレイを具備する。シリンダブロック25の左側面後端側には、エンジン装置21を始動させるエンジン始動装置75が固定されている。
 また、エンジン装置21各部の動作を制御するエンジン制御装置73が、支持ステー(支持部材)74を介して、シリンダブロック25の後端面に固定される。シリンダブロック25の後端側には、減速機22と連結して回転させるフライホイール76が設置されており、フライホイール76の上部に、エンジン制御装置73が配置されている。このエンジン制御装置73は、エンジン装置21各部におけるセンサ(圧力センサや温度センサ)と電気的に接続して、エンジン装置21各部の温度データや圧力データ等を収集するとともに、エンジン装置21各部における電磁弁等に信号を与え、エンジン装置21の各種動作(燃料油噴射、パイロット燃料噴射、ガス噴射、冷却水温度調整など)を制御する。
 シリンダブロック25は、その左側面上側に段差部が設けてあり、このシリンダブロック25の段差部25a上面に、ヘッドカバー40及びシリンダヘッド26と同数の燃料噴射ポンプ89が設置されている。燃料噴射ポンプ89は、シリンダブロック25の左側面に沿って一列に配列されており、その左側面が燃料油管(液体燃料配管)42と連結しているとともに、その上端が燃料吐出管90を介して右前方のシリンダヘッド26の左側面と連結している。上下2本の燃料油管42は、一方が燃料噴射ポンプ89へ燃料油を供給する給油管であり、他方が燃料噴射ポンプ89から燃料油を戻す油戻り管である。また、燃料吐出管90は、シリンダヘッド26内の燃料流路を介してメイン燃料噴射弁79と接続することで、燃料噴射ポンプ89からの燃料油をメイン燃料噴射弁79に供給する。
 燃料噴射ポンプ89は、シリンダブロック25の段差部上において、燃料吐出管90で接続されるシリンダヘッド26の左側後方となる位置に、ヘッドカバー40列に対して左側に並設されている。また、燃料噴射ポンプ89は、シリンダヘッド26と燃料油管42に挟まれた位置で一列に配列されている。この燃料噴射ポンプ89は、図9~図11に示すように、燃料油管42とともに、シリンダブロック25の段差部25a上に設置されたサイドカバー43によって被覆されている。燃料噴射ポンプ89は、シリンダブロック25内のカムシャフト(図示省略)におけるポンプ用カムの回転によりプランジャの押し上げ動作を行う。そして、燃料噴射ポンプ89は、プランジャの押し上げにより燃料油管42から供給される燃料油を高圧に上昇させ、燃料吐出管90を介して、シリンダヘッド26内の燃料噴射ポンプ89に高圧の燃料油を供給する。
 図9及び図12~図15に示すように、コモンレール47の前端が、パイロット燃料ポンプ54の吐出側とパイロット燃料中継管96を介して接続されており、パイロット燃料ポンプ54から吐出されるパイロット燃料がコモンレール47に供給される。パイロット燃料中継管96は、シリンダブロック25の前面において、パイロット燃料ポンプ54の吐出口とコモンレール47の前端とを接続させるべく、パイロット燃料ポンプ54の吐出口からシリンダブロック25の左側面の上方に向かって延ばした後に屈曲させてシリンダヘッド26の前端面をシリンダヘッド26左側面からコモンレール47の前端に向かって伸ばした形状を有する。
 ガスマニホールド41は、図8、図13、及び図15に示すように、シリンダブロック25の右側面の前方において、ガスバルブユニット35(図4参照)と接続されるガス配管路の一部となるガス入口管97と接続されて燃料ガスが圧送される。即ち、ガスマニホールド41の前端がガス入口管97と連結されており、ガスバルブユニット35からの燃料ガスがガスマニホールド41に供給される。ガスマニホールド41は、排気マニホールド44と吸気マニホールド67の間となる高さ位置で、ヘッドカバー40列に沿って延設されている。
 ガスマニホールド41は、ガス入口管97と前端が接続して前後に延びているガス主管41aと、ガス主管41aの上面からシリンダヘッド26に向けて分岐させた複数のガス枝管41bとを備える。ガス主管41aは、その上面に等間隔で接続用フランジを備えており、ガス枝管41bの入口側フランジと締結されている。ガス枝管41bは、ガス主管41aとの連結部分と逆側の端部を、ガスインジェクタ98が上側から挿入されたスリーブの右側面と連結している。
 ガスマニホールド41を構成するガス主管41a及びガス枝管41aそれぞれが二重管で構成されるとともに、ガス入口管97及びスリーブも二重管で構成される。即ち、ガスバルブユニット35よりも下流側のガス配管を、高圧の内側管を外側管で覆う二重管構造とし、その内側管(内側空間)により、ガスマニホールド41を介してガスインジェクタ98に向かって燃料ガスを流す。一方、ガスバルブユニット35よりも下流側のガス配管では、外側管と内側管との空間(外側空間)により、漏れた燃料ガスをガスバルブユニット35に回収させる。
 排気マニホールド44は、図13及び図15に示すように、一列で交互に並べた排気主管44aと蛇腹管44bとを連結させており、排気主管44aの下側から分岐させた排気枝管44c(排気ポート38の一部)をシリンダヘッド26の右側面と連結させている。排気主管44a及び排気枝管44cはそれぞれ、シリンダヘッド26と同数設けられており、シリンダヘッド26の右側面前側に排気枝管44cが連結されている。即ち、排気弁81が配置されているシリンダヘッド26前側部分において、排気枝管44cの排気入口側が、シリンダヘッド26の右側面の排気出口と接続されている。また、排気マニホールド44は、排気枝管44cの排気入口側フランジをシリンダヘッド26の右側面に締結することで、シリンダヘッド26により支持されている。
 吸気マニホールド67は、図8及び図13に示すように、シリンダブロック25の上方右側に設けられており、その高さ位置がガスマニホールド41よりも下側となる位置で前後方向に延設されている。また、シリンダヘッド26は、図13に示すように、右側面のうち後方部分をガスマニホールド41に向かって突起させており、この右側面の突起部分を、吸気マニホールド67直上で連通させる空気流路を内部に有する吸気枝部となる。即ち、吸気弁80が配置さているシリンダヘッド26後側部分が、吸気枝部を介して、吸気マニホールド67と接続されている。
 エンジン装置21は、シリンダ77内の主燃焼室に空気を吸気させる吸気弁80と、主燃焼室から燃焼ガスを排気させる排気弁81と、主燃焼室に液体燃料を噴射して燃焼させるメイン燃料噴射弁79と、主燃焼室に吸気する空気に気体燃料を混合させるガスインジェクタ98とを備えている。そして、エンジン装置21は、気体燃料をガスインジェクタ98に供給する気体燃料配管41と、液体燃料をメイン燃料噴射弁79に供給する液体燃料配管42とを、一列に並んだヘッドカバー40列の両側に振り分けて配置している。また、エンジン装置21は、主燃焼室に吸気する空気を吸気弁80に向けて供給する吸気マニホールド67を、シリンダブロック25内でヘッドカバー40列に対して平行に延設させており、気体燃料配管41と吸気マニホールド67とをヘッドカバー40列の同一側方で並べて配置している。
 エンジン装置21は、気体燃料配管41と液体燃料配管42とを、ヘッドカバー40に対して振り分けて配置して、シリンダヘッド26周辺に省スペースで配管できるため、コンパクトな配管構成となる。また、気体燃料配管41と吸気マニホールド67とをヘッドカバー40列の同一側方に配置しているので、吸気側に配置しているガスインジェクタ98と気体燃料配管41との配管距離を短くでき、気体燃料配管41での圧損を抑制できる。
 エンジン装置21は、主燃焼室からの燃焼ガスを排気させる排気マニホールド44を、ヘッドカバー40列に対して平行に延設させており、ヘッドカバー40列の同一側方において、気体燃料配管41の上下に排気マニホールド44と吸気マニホールド67とを振り分けて配置する。これにより、エンジン装置21は、シリンダヘッド26の同一側方に気体燃料配管41と排気マニホールド44とをまとめて配管するため、シリンダヘッド26の他側方において、メイン燃料噴射弁79に高圧の液体燃料を圧送する燃料噴射ポンプ89を液体燃料配管42とともにまとめて設置できる。
 エンジン装置21は、主燃焼室に着火火炎を噴出させるパイロット燃料噴射弁82を備えるとともに、パイロット燃料噴射弁82にパイロット燃料を供給するパイロット燃料配管47をヘッドカバー40列に対して平行に延設する。そして、シリンダブロック25上方において、ヘッドカバー40列と排気マニホールド44との間の位置に、ヘッドカバー40列に対して平行に冷却水配管46を延設させており、冷却水配管46の上方でパイロット燃料配管47を支持する。パイロット燃料配管47を冷却水配管46上で支持するため、パイロット燃料配管47が高温の排ガス温度による加温を抑制できる。従って、パイロット燃料配管47を、排気マニホールド44側に配置することができ、各配管をコンパクトにまとめて配置できる。
 エンジン装置21は、気体燃料配管41を、ガスインジェクタ98に向かって気体燃料を供給する内側管と、ガスインジェクタ98から気体燃料が流入する外側管とによる二重管構造としている。このように気体燃料配管41を二重管構造とすることで、漏れた気体燃料をガスバルブユニット35等の燃料源側に戻すことができ、気体燃料配管41の圧力を一定に保持できる。
 エンジン装置21は、その一端上部に、排気マニホールド44からの排気ガスにより空気を圧縮する過給機49を配置するとともに、過給機49で圧縮された圧縮空気を冷却して吸気マニホールド67に供給するインタークーラ51を過給機49の下側に配置している。エンジン装置21は、その一端で過給機49及びインタークーラ51を重ねて配置するため、装置構成をコンパクトにできる。また、排気マニホールド44と吸気マニホールド67の配置に対応させて、過給機49とインタークーラ51を上下に配置させることにより、排気マニホールド44と吸気マニホールド67を無理なく最短で配管できる。
 エンジン装置21は、シリンダブロック25の気体燃料配管41側の一側面に、潤滑油クーラ58及び潤滑油コシキ59を直列に並べて配置している。そして、気体燃料配管41と潤滑油クーラ58の間となる位置に、潤滑油クーラ58に供給する冷却水を流す潤滑油冷却用冷却水配管(第1冷却水配管)60を、シリンダブロック25の上記一側面から離間させた状態で、潤滑油クーラ58に沿って延設させている。シリンダヘッド26と接続したシリンダヘッド冷却用冷却水配管(第2冷却水配管)46を、シリンダブロック25上方において、ヘッドカバー40と気体燃料配管41との間となる位置で、ヘッドカバー40列と平行に延設させる。
 エンジン装置21は、気体燃料配管41側となるエンジン装置21の側面に潤滑油クーラ58及び潤滑油コシキ59を配置するとともに、潤滑油クーラ58へ冷却水を供給する潤滑油冷却用冷却水配管(第1冷却水配管)60をエンジン装置21の同一側面に配置する。これにより、エンジン装置21における潤滑油循環系統を、コンパクトにまとめて配置できるとともに、そのメンテナンス作業を簡単化できる。更に、シリンダヘッド冷却用冷却水配管(第2冷却水配管)46をも、エンジン装置21の上方において、潤滑油冷却用冷却水配管(第1冷却水配管)60と同側方に配置されるため、エンジン装置21の外側に配置する冷却水配管をまとめて配管でき、その長さを短縮できる。
 エンジン装置21は、エンジン出力軸24に対して垂直となるシリンダブロック25の一端面において、エンジン出力軸24の外周側であって潤滑油クーラ58が設置されるシリンダブロック25の一側面(右側面)側に潤滑油ポンプ55を配置しており、潤滑油ポンプ55で吸い上げた潤滑油を潤滑油クーラ58に供給する。潤滑油ポンプ55が潤滑油クーラ58の近くに設置されることとなるため、潤滑油ポンプ55と潤滑油クーラ58とを短い配管で結ぶことができる。
 その他、各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。また、本実施形態のエンジン装置は、船体内の電気系統に電力を供給するための発電装置や陸上の発電施設における駆動源として構成するなど、上述の推進兼発電機構以外の構成においても適用可能である。
1 船舶
2 船体
4 ファンネル
5 プロペラ
9 推進軸
11 機関室
12 推進兼発電機構
17 給気バイパス流路
18 排気バイパス流路
19 負荷測定器
20 エンジン回転センサ
21 エンジン装置(デュアルフューエルエンジン)
22 減速機
23 軸駆動発電機
24 出力軸(クランク軸)
25 シリンダブロック
26 シリンダヘッド
36 気筒
37 吸気ポート
38 排気ポート
39 圧力センサ
40 ヘッドカバー
41 ガスマニホールド(気体燃料配管)
42 燃料油管(液体燃料配管)
43 サイドカバー
44 排気マニホールド
45 遮熱カバー
46 冷却水配管
47 コモンレール(パイロット燃料配管)
48 排気中継管
49 過給機
51 インタークーラ
53 冷却水ポンプ
54 パイロット燃料ポンプ
55 潤滑油ポンプ
56 燃料油ポンプ
57 オイルパン
58 潤滑油クーラ
59 潤滑油コシキ
67 吸気マニホールド
79 メイン燃料噴射弁
80 吸気弁
81 排気弁
82 パイロット燃料噴射弁
89 燃料噴射ポンプ
98 ガスインジェクタ

Claims (3)

  1.  シリンダ内へ空気を供給させる吸気マニホールドと、前記シリンダからの排気ガスを排気させる排気マニホールドと、前記シリンダに液体燃料を噴射して燃焼させるメイン燃料噴射弁と、前記吸気マニホールドから供給される空気に気体燃料を混合させるガスインジェクタとを備えたエンジン装置において、
     前記排気マニホールドからの排気ガスにより空気を圧縮する過給機と、該過給機で圧縮された圧縮空気を冷却して前記吸気マニホールドに供給するインタークーラとを、更に備え、
     前記過給機出口と前記インタークーラ入口との接続箇所にメインスロットル弁を設けており、
     前記排気マニホールド出口と前記過給機の排気出口とを結ぶ排気バイパス流路を備えるとともに、前記排気バイパス流路に排気バイパス弁を配置することを特徴とするエンジン装置。
  2.  前記過給機のコンプレッサをバイパスする給気バイパス流路を備えるとともに、前記給気バイパス流路に給気バイパス弁を配置することを特徴とする請求項1に記載のエンジン装置。
  3.  前記インタークーラ入口と前記メインスロットル弁との間となる位置に、前記給気バイパス流路を接続し、前記給気バイパス流路を介して、前記コンプレッサから吐出された圧縮空気を前記コンプレッサ入口に帰還させることを特徴とする請求項2に記載のエンジン装置。
PCT/JP2015/065453 2014-06-06 2015-05-28 エンジン装置 WO2015186608A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014118034A JP6344983B2 (ja) 2014-06-06 2014-06-06 エンジン装置
JP2014-118034 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015186608A1 true WO2015186608A1 (ja) 2015-12-10

Family

ID=54766681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065453 WO2015186608A1 (ja) 2014-06-06 2015-05-28 エンジン装置

Country Status (2)

Country Link
JP (1) JP6344983B2 (ja)
WO (1) WO2015186608A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009474A (ja) * 2016-07-12 2018-01-18 ヤンマー株式会社 エンジン
JP6747762B2 (ja) * 2017-08-31 2020-08-26 ダイハツ工業株式会社 内燃機関
JP7022792B2 (ja) * 2020-08-03 2022-02-18 ヤンマーパワーテクノロジー株式会社 エンジン

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150960A (ja) * 1993-11-29 1995-06-13 Mazda Motor Corp 自動変速機付車両用エンジンの過給圧制御装置
JP2002004899A (ja) * 2000-06-27 2002-01-09 Niigata Eng Co Ltd デュアルフューエルエンジン
WO2013164987A1 (ja) * 2012-05-01 2013-11-07 日産自動車株式会社 過給式エンジンの制御装置及び制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322342U (ja) * 1986-07-30 1988-02-15
US8931463B2 (en) * 2010-06-07 2015-01-13 Alset Ip S A R.L. Bi-fuel engine with increased power
US20140121941A1 (en) * 2012-10-29 2014-05-01 Caterpillar, Inc. Intake Pressure Control In Internal Combustion Engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150960A (ja) * 1993-11-29 1995-06-13 Mazda Motor Corp 自動変速機付車両用エンジンの過給圧制御装置
JP2002004899A (ja) * 2000-06-27 2002-01-09 Niigata Eng Co Ltd デュアルフューエルエンジン
WO2013164987A1 (ja) * 2012-05-01 2013-11-07 日産自動車株式会社 過給式エンジンの制御装置及び制御方法

Also Published As

Publication number Publication date
JP2015229997A (ja) 2015-12-21
JP6344983B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
WO2015186610A1 (ja) エンジン装置
JP6265838B2 (ja) エンジン装置
WO2015064449A1 (ja) エンジン装置
JP6594714B2 (ja) エンジン装置
KR102004663B1 (ko) 엔진 장치
WO2015186609A1 (ja) エンジン装置
JP6450286B2 (ja) エンジン装置
JP6062343B2 (ja) エンジン装置
WO2015186608A1 (ja) エンジン装置
JP6265837B2 (ja) エンジン装置
JP2015229998A (ja) エンジン装置
JP6343232B2 (ja) エンジン装置
JP6062344B2 (ja) エンジン装置
JP6404781B2 (ja) エンジン装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803951

Country of ref document: EP

Kind code of ref document: A1