WO2017154908A1 - 非水電解質電池及び電池パック - Google Patents

非水電解質電池及び電池パック Download PDF

Info

Publication number
WO2017154908A1
WO2017154908A1 PCT/JP2017/009015 JP2017009015W WO2017154908A1 WO 2017154908 A1 WO2017154908 A1 WO 2017154908A1 JP 2017009015 W JP2017009015 W JP 2017009015W WO 2017154908 A1 WO2017154908 A1 WO 2017154908A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
nonaqueous electrolyte
battery
positive electrode
electrolyte battery
Prior art date
Application number
PCT/JP2017/009015
Other languages
English (en)
French (fr)
Inventor
明日菜 萩原
秀郷 猿渡
大 山本
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201780005382.9A priority Critical patent/CN108432025B/zh
Priority to JP2018504515A priority patent/JP6666427B2/ja
Priority to EP17763248.6A priority patent/EP3429019B1/en
Publication of WO2017154908A1 publication Critical patent/WO2017154908A1/ja
Priority to US16/124,880 priority patent/US10559814B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a nonaqueous electrolyte battery and a battery pack.
  • Lithium ion secondary batteries are widely used in portable devices, automobiles and storage batteries.
  • a lithium ion secondary battery containing carbon as the negative electrode active material lithium dendrite is formed on the negative electrode when the charge / discharge cycle is repeated. Therefore, in a lithium ion secondary battery using a carbon-based negative electrode active material, there is a concern about battery performance deterioration such as an increase in resistance and a decrease in cycle performance.
  • examination of the metal oxide which replaces the above-mentioned negative electrode carbon-type material is made
  • An object of the present invention is to provide a nonaqueous electrolyte battery capable of achieving both suppression of gas generation and suppression of increase in battery resistance, and a battery pack including the nonaqueous electrolyte battery.
  • a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the negative electrode includes a negative electrode active material and a binder.
  • the negative electrode active material includes monoclinic titanium dioxide or Li 4 + a Ti 5 O 12 (where ⁇ 0.5 ⁇ a ⁇ 3), and the negative electrode binder is a polyfluoride having a molecular weight of 400,000 or more and 1,000,000 or less. Contains vinylidene.
  • the negative electrode satisfies the following formula (I).
  • the nonaqueous electrolyte contains at least one of difluorophosphate and monofluorophosphate.
  • P1 is the intensity of the peak appearing in the range of 689 to 685 eV in the spectrum obtained by photoelectron spectroscopy measurement on the negative electrode surface
  • P2 is in the spectrum It is the intensity of the peak that appears in the range of 684 to 680 eV.
  • the battery pack includes the nonaqueous electrolyte battery according to the first embodiment.
  • the expanded sectional view of the A section of FIG. The partial notch perspective view of the nonaqueous electrolyte battery of the 2nd example which concerns on 1st Embodiment.
  • a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the negative electrode includes monoclinic titanium dioxide or Li 4 + a Ti 5 O 12 (where ⁇ 0.5 ⁇ a ⁇ 3) as an active material, and a polyvinylidene fluoride having a molecular weight of 400,000 or more and 1,000,000 or less as a binder.
  • the nonaqueous electrolyte contains at least one of difluorophosphate and monofluorophosphate.
  • the negative electrode satisfies the following formula (I).
  • P1 is the intensity of the peak appearing in the range of 689 to 685 eV in the spectrum obtained by photoelectron spectroscopy measurement on the surface of the negative electrode
  • P2 is the intensity of the peak appearing in the range of 684 to 680 eV in the spectrum.
  • nonaqueous electrolyte battery according to the embodiment has the above-described configuration, gas generation is suppressed and battery resistance is low.
  • a negative electrode active material with a different element or increase the specific surface area of the negative electrode.
  • the specific surface area of the negative electrode is increased, the negative electrode reaction area is increased, so that performance improvement can be expected.
  • the specific surface area of the negative electrode is increased, the amount of moisture adsorbed on the negative electrode increases.
  • the water adhering to the negative electrode is electrolyzed by an electrode reaction during battery operation to generate hydrogen and oxygen. Therefore, if a large amount of moisture remains in the negative electrode, the amount of gas generated (hydrogen or oxygen) derived from the negative electrode adhering moisture increases during battery operation. When a large amount of gas is generated in the battery, the battery swells. In addition, when gas is present on the surface of the electrode active material, the portion does not come into contact with the non-aqueous electrolyte, so that the electrode reaction field decreases. As a result, the current load at the remaining electrode interface increases, and the battery resistance increases.
  • the moisture contained in the nonaqueous electrolyte battery can react with the lithium compound contained in the nonaqueous electrolyte to produce lithium fluoride (LiF).
  • LiF lithium fluoride
  • the presence of LiF on the electrode is not preferable because it prevents the insertion of lithium into the electrode active material.
  • LiF is an electrical resistance component, the presence of LiF on the electrode is not preferable from the viewpoint of increasing electrical resistance.
  • the moisture adsorbed on the negative electrode can be removed by drying the negative electrode during production.
  • the drying temperature is as low as 70 ° C., for example, a large amount of moisture remains without being completely removed.
  • the negative electrode is dried at about 100 ° C., the amount of moisture remaining in the electrode is reduced, so that the amount of gas generation is reduced, but the increase in battery resistance is significant. This is presumably due to the fact that polyvinylidene fluoride, which is a negative electrode binder, is decomposed by high heat when the battery is dried.
  • a decomposition product such as a copolymer or a derivative of tetrafluoroethylene is produced.
  • This pyrolysis product reacts very easily with moisture, and even if most of the moisture is removed by high-temperature drying, it reacts with the remaining moisture, resulting in a large amount of LiF. That is, even if moisture can be reduced by drying at high temperature, a small amount of residual moisture and a thermal decomposition product of polyvinylidene fluoride cause a reaction to generate LiF. As a result, the resistance of the battery increases despite the removal of moisture.
  • the drying when the drying is performed at a higher temperature such as 120 ° C., the decomposition further proceeds and the function of polyvinylidene fluoride as a binder is impaired.
  • the binding between the negative electrode active materials is weakened, and the conductivity of the negative electrode is lowered, so that the resistance of the battery is increased.
  • Decomposition of polyvinylidene fluoride as a binder at a high temperature is performed when a negative electrode containing titanium oxide such as monoclinic titanium dioxide or Li 4 + a Ti 5 O 12 ( ⁇ 0.5 ⁇ a ⁇ 3) is used as an active material. Especially noticeable. This is presumably because such titanium oxide exhibits a catalytic action for the thermal decomposition reaction of polyvinylidene fluoride. Further, when the molecular weight of polyvinylidene fluoride is 1 million or less, the catalytic action of the thermal decomposition reaction by titanium oxide is promoted, and the thermal decomposition is promoted.
  • a non-aqueous electrolyte battery obtained by using an electrode with excessive moisture due to insufficient drying and a non-aqueous electrolyte battery having a high drying temperature and a thermal decomposition product of polyvinylidene fluoride generated.
  • an excessive amount of lithium fluoride (LiF) is generated on the negative electrode surface.
  • the drying temperature is too high, the binder itself does not function, and the binding of the negative electrode active material is weakened and the resistance is increased.
  • the negative electrode included in the non-aqueous electrolyte battery according to the embodiment includes monoclinic titanium dioxide or spinel-type lithium titanate represented by the general formula Li 4 + a Ti 5 O 12 as an active material (here, ⁇ 0. 5 ⁇ a ⁇ 3).
  • the negative electrode contains polyvinylidene fluoride having a molecular weight of 400,000 or more and 1,000,000 or less as a binder.
  • the electrolyte contains difluorophosphoric acid or monofluorophosphate.
  • the LiF production reaction is in a suppressed state.
  • the peak appearing in the range of 689 to 685 eV is attributed to the CF bond
  • the peak appearing in the range of 684 to 680 eV is attributed to the Li—F bond.
  • the C—F bond observed on the negative electrode surface is derived from polyvinylidene fluoride as a binder.
  • the Li—F bond observed on the negative electrode surface can be judged to be derived from LiF generated by the reaction between residual moisture and a non-aqueous electrolyte or the reaction between residual moisture and a decomposition product of polyvinylidene fluoride. . That is, when the peak intensity P2 is higher than the above-described peak intensity P1, it can be confirmed that the moisture remains excessively or that the decomposition product of polyvinylidene fluoride and the moisture react.
  • F that may be present on the surface of the negative electrode includes, for example, F derived from polyvinylidene fluoride as a binder in addition to those derived from LiF. Therefore, it is preferable that the proportion of fluorine (F) contained in LiF on the negative electrode surface is 20% or less.
  • the nonaqueous electrolyte battery according to the embodiment includes difluorophosphate or monofluorophosphate as an additive in the nonaqueous electrolyte.
  • Difluorophosphate or monofluorophosphate reacts with water to produce a stable phosphate. Therefore, by adding an appropriate amount of difluorophosphate or monofluorophosphate to the non-aqueous electrolyte, residual water that could not be dried can be converted to phosphate. Therefore, even if the thermal decomposition product of polyvinylidene fluoride exists, the production
  • the negative electrode contains polyvinylidene fluoride (PVdF) having a molecular weight of 400,000 or more and 1,000,000 or less as a binder.
  • PVdF polyvinylidene fluoride
  • the molecular weight is less than 400,000, the binding property is weak, and the binder is decomposed significantly because it is weak against heat during drying. Those having a molecular weight exceeding 1,000,000 are resistant to thermal decomposition and have a high binding effect as a binder. However, since the molecular weight is high, the binder itself becomes a resistance component.
  • the molecular weight of polyvinylidene fluoride (PVdF) as the binder is more preferably 700,000 or less.
  • the mixing ratio of polyvinylidene fluoride (PVdF) contained as a binder in the negative electrode is preferably 5 parts by weight or less.
  • the electrical resistance of the negative electrode can be increased.
  • PVdF polyvinylidene fluoride
  • lithium difluorophosphate LiPO 2 F 2
  • lithium phosphate Li 3 PO, which is a stable compound
  • Li 3 PO lithium phosphate
  • Li 3 PO 4 lithium phosphate
  • difluorophosphate, monofluorophosphate, or both salts may be added to the nonaqueous electrolyte in a mass ratio of 1000 ppm to 30000 ppm. desirable. If the addition amount is less than 1000 ppm, the ratio of the additive to the moisture remaining after drying is small, and there is a possibility that gas generation cannot be suppressed. On the other hand, even if an amount exceeding 30000 ppm is added, the effect cannot be expected. Since difluorophosphate is a solid, it needs to be dissolved in the non-aqueous electrolyte and cannot be added in a large amount.
  • the drying temperature of the negative electrode is preferably 90 ° C. or higher and 110 ° C. or lower. If the drying temperature is less than 90 ° C., the residual water adhering to the electrode increases, resulting in an increase in the amount of gas generated. In addition, when the amount of difluorophosphate or monofluorophosphate added to the nonaqueous electrolyte was increased in order to cope with the increased residual water, it could not be completely dissolved in the nonaqueous electrolyte in the battery. Difluorophosphate and monofluorophosphate are present in the non-aqueous electrolyte, so that the solution resistance increases and the battery resistance increases. On the other hand, when the drying temperature of the negative electrode exceeds 110 ° C., polyvinylidene fluoride as a binder is thermally decomposed, resulting in an increase in battery resistance.
  • the drying time is preferably 24 hours or more and 70 hours or less. If the drying time is less than 24 hours, reel drying becomes insufficient and the amount of gas generated increases. When the drying time exceeds 70 hours, the polyvinylidene fluoride as the binder is thermally decomposed, resulting in an increase in resistance.
  • the negative electrode can be dried, for example, under an inert gas atmosphere such as argon (Ar) or nitrogen (N 2 ), or under vacuum conditions. It is more preferable to dry under vacuum conditions.
  • an inert gas atmosphere such as argon (Ar) or nitrogen (N 2 ), or under vacuum conditions. It is more preferable to dry under vacuum conditions.
  • the amount of gas generated due to moisture adhering to the electrode is suppressed, and the thermal decomposition of polyvinylidene fluoride as the negative electrode binder is suppressed. Furthermore, the reaction between the decomposition product of polyvinylidene fluoride and residual moisture is suppressed. Therefore, in such a nonaqueous electrolyte battery, it is possible to achieve both a suppressed gas generation amount and low resistance.
  • the nonaqueous electrolyte battery according to the first embodiment includes a negative electrode, a positive electrode, and a nonaqueous electrolyte.
  • the negative electrode can include a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector.
  • the negative electrode current collector can include a portion that does not carry the negative electrode mixture layer on the surface. This part can serve as a negative electrode tab. Alternatively, the negative electrode can further include a negative electrode tab separate from the negative electrode current collector.
  • the negative electrode mixture layer includes the above-described titanium oxide as a negative electrode active material. Moreover, the negative electrode mixture layer contains the binder described above. The negative electrode mixture layer can further contain a conductive agent as necessary.
  • the positive electrode can include a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector.
  • the positive electrode current collector can include a portion that does not carry the positive electrode mixture layer on the surface. This part can serve as a positive electrode tab. Alternatively, the positive electrode may further include a positive electrode tab separate from the positive electrode current collector.
  • the positive electrode mixture layer includes a positive electrode active material.
  • the positive electrode mixture layer can further contain a conductive agent and a binder as necessary.
  • the positive electrode and the negative electrode can constitute an electrode group.
  • the positive electrode mixture layer and the negative electrode mixture layer can face each other via a separator.
  • the structure of the electrode group is not particularly limited, and various structures can be employed.
  • the electrode group can have a stacked structure.
  • the electrode group having a stack structure is obtained, for example, by laminating a plurality of positive electrodes and negative electrodes with a separator interposed between a positive electrode mixture layer and a negative electrode mixture layer.
  • the electrode group can have a wound structure, for example.
  • the wound electrode group is formed by laminating one separator, one positive electrode, another separator, and one negative electrode in this order, and the outermost layer is a negative electrode. It is obtained by winding this laminate so that
  • the nonaqueous electrolyte battery can further include a negative electrode terminal and a positive electrode terminal.
  • the negative electrode terminal can function as a conductor for electrons to move between the negative electrode and the external terminal by being partly connected to a part of the negative electrode.
  • the negative electrode terminal can be connected to, for example, a negative electrode current collector, particularly a negative electrode tab.
  • the positive electrode terminal can function as a conductor for electrons to move between the positive electrode and an external circuit by being electrically connected to a part of the positive electrode.
  • the positive electrode terminal can be connected to, for example, a positive electrode current collector, particularly a positive electrode tab.
  • the nonaqueous electrolyte battery according to the first embodiment can further include an exterior material.
  • the exterior material can accommodate the electrode group and the nonaqueous electrolyte.
  • the electrode group can be impregnated with the non-aqueous electrolyte in the exterior material.
  • a part of each of the positive electrode terminal and the negative electrode terminal can be extended from the exterior material.
  • the negative electrode, the positive electrode, the nonaqueous electrolyte, the separator, the positive electrode terminal, the negative electrode terminal, and the exterior material will be described in more detail.
  • Negative electrode As the negative electrode current collector, a sheet containing a material having high electrical conductivity can be used.
  • an aluminum foil or an aluminum alloy foil can be used as the negative electrode current collector.
  • the thickness is preferably 20 ⁇ m or less.
  • the aluminum alloy foil can contain magnesium, zinc, silicon and the like.
  • content of transition metals, such as iron, copper, nickel, and chromium contained in aluminum alloy foil is 1% or less.
  • the titanium oxide contained in the negative electrode is a lithium titanium composite oxide having a spinel structure (Li 4 + a Ti 5 O 12 (subscript a varies between 0 and 3 depending on the charge / discharge state)) and monoclinic crystal type At least one of titanium dioxide (Li x TiO 2 (B) (subscript x varies between 0 and 1 depending on the charge / discharge state)) is included.
  • the titanium oxide is more preferably a lithium titanium composite oxide having a spinel structure.
  • titanium oxides include lithium titanate having a ramsdellite structure (Li 2 + x Ti 3 O 7 (subscript x varies between 0 and 2 depending on charge / discharge state)) and monoclinic niobium titanium.
  • a composite oxide for example, Li x Nb 2 TiO 7 (subscript x varies between 0 and 4 depending on the charge / discharge state)) can be further included.
  • Titanium oxide can be contained in the negative electrode mixture layer as negative electrode active material particles containing titanium oxide.
  • the average primary particle diameter of the negative electrode active material particles is preferably 5 ⁇ m or less. When the average primary particle size is 5 ⁇ m or less, an effective area contributing to the electrode reaction can be sufficiently secured, and good large current discharge performance can be obtained in the nonaqueous electrolyte battery.
  • the pore volume of the negative electrode is preferably from 0.1 mL / g to 0.4 mL / g.
  • the effective area contributing to the electrode reaction is sufficient, and good large current discharge performance can be obtained in the nonaqueous electrolyte battery.
  • the pore volume exceeds 0.4 mL / g the amount of moisture attached to the negative electrode increases.
  • reaction with a nonaqueous electrolyte is suppressed. Therefore, by setting the pore volume to 0.4 mL / g or less, it is possible to suppress gas generation during storage and a decrease in charge / discharge efficiency.
  • the pore volume of the negative electrode can be determined by a mercury intrusion method (mercury porosimetry).
  • the negative electrode conductive agent is used as necessary to enhance the current collecting performance.
  • the negative electrode conductive agent is, for example, a carbon material.
  • the carbon material preferably has high alkali metal occlusion and conductivity. Examples of the carbon material include acetylene black, carbon black, and graphite.
  • the binder contained in the negative electrode is used to bind the negative electrode active material particles and the negative electrode current collector.
  • the binder is, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (of different molecular weight), fluorine-based rubber, styrene-butadiene rubber (SBR), polypropylene (PP), polyethylene (PE), or carboxymethylcellulose (CMC).
  • the proportions of the negative electrode active material, negative electrode conductive agent and binder contained in the negative electrode mixture layer are preferably 70 to 95% by weight, 0 to 25% by weight and 2 to 10% by weight, respectively.
  • the negative electrode can be produced, for example, by the following procedure. First, a negative electrode active material, a conductive agent, and a binder are put into a suitable solvent such as N-methylpyrrolidone to prepare a slurry. This slurry is applied to the surface of the negative electrode current collector, and the coating film is dried. The slurry may be applied only to one surface of the negative electrode current collector. Alternatively, the slurry may be applied to both sides of one surface of the negative electrode current collector and the opposite surface. A negative electrode is completed by pressing the dried coating film into a negative electrode mixture layer having a desired density.
  • a suitable solvent such as N-methylpyrrolidone
  • a sheet containing a material having high electrical conductivity can be used.
  • an aluminum foil or an aluminum alloy foil can be used as the positive electrode current collector.
  • the thickness is preferably 20 ⁇ m or less.
  • the aluminum alloy foil can contain magnesium, zinc, silicon and the like.
  • content of transition metals, such as iron, copper, nickel, and chromium contained in aluminum alloy foil is 1% or less.
  • the positive electrode mixture layer has a capacity per active material weight of 10 mAh / g or more and 150 mAh / g or less in the range of 3.0 V or more and 3.9 V or less (vs. Li / Li + ) with respect to the redox potential of the metal Li. At least one kind of positive electrode active material.
  • Such positive electrode active materials include, for example, lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt composite oxide (LiCoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-x Co x O 2 , 0 ⁇ x ⁇ 1), lithium-nickel-cobalt-manganese composite oxide (e.g., LiNi 1-x-y Co x Mn y O 2, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x + y ⁇ 1) a lithium-manganese-cobalt composite oxide (For example, LiMn x Co 1-x O 2 , 0 ⁇ x ⁇ 1) and lithium iron phosphate (LiFePO 4 ).
  • lithium nickel composite oxide for example, LiNiO 2
  • LiCoO 2 lithium cobalt composite oxide
  • LiNi 1-x Co x O 2 , 0 ⁇ x ⁇ 1 lithium-nickel-cobalt-manganese composite oxide
  • the positive electrode conductive agent is used as necessary to enhance the current collecting performance.
  • Examples of the positive electrode conductive agent include acetylene black, carbon black, and graphite.
  • the binder contained in the positive electrode is used to bind the positive electrode active material and the positive electrode current collector.
  • binders that can be included in the positive electrode are polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene-butadiene rubber (SBR), polypropylene (PP), polyethylene (PE), and carboxymethylcellulose. (CMC).
  • the proportions of the positive electrode active material, the positive electrode conductive agent and the binder contained in the positive electrode mixture layer are preferably 80 to 95% by weight, 3 to 20% by weight and 2 to 7% by weight, respectively.
  • the positive electrode can be produced, for example, by the following procedure. First, a positive electrode active material, a conductive agent, and a binder are put into a suitable solvent such as N-methylpyrrolidone to prepare a slurry. This slurry is applied to the surface of the positive electrode current collector, and the coating film is dried. The slurry may be applied only to one surface of the positive electrode current collector. Alternatively, the slurry may be applied to both sides of one surface of the negative electrode current collector and the opposite surface. A positive electrode is completed by pressing the dried coating film into a positive electrode mixture layer having a desired density.
  • a suitable solvent such as N-methylpyrrolidone
  • the separator is made of an insulating material and can prevent electrical contact between the positive electrode and the negative electrode.
  • the separator is made of a material through which the non-aqueous electrolyte can pass, or has a shape through which the non-aqueous electrolyte can pass.
  • the separator is, for example, a synthetic resin nonwoven fabric, a polyethylene porous film or a polyolefin porous film, for example, a polypropylene porous film, and a cellulose separator.
  • the separator which compounded these materials for example, the separator which consists of a porous film made from polyolefin, and a cellulose can be used.
  • the separator preferably contains pores having a diameter of 10 ⁇ m or more and 100 ⁇ m or less. Moreover, it is preferable that the thickness of a separator is 2 micrometers or more and 30 micrometers or less.
  • Non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte and an additive dissolved in the non-aqueous solvent.
  • the non-aqueous solvent may be a known non-aqueous solvent used for non-aqueous electrolyte batteries.
  • a first example of a non-aqueous solvent is a cyclic carbonate such as ethylene carbonate (EC) and propylene carbonate (PC).
  • Non-aqueous solvents are linear carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC) and diethyl carbonate (DEC); ⁇ -butyrolactone ( ⁇ -BL), acetonitrile, methyl propionate, Ethyl propionate; cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran; and chain ethers such as dimethoxyethane and diethoxyethane.
  • the solvent of the second example generally has a lower viscosity than the solvent of the first example.
  • the non-aqueous solvent may be a solvent obtained by mixing the solvent of the first example and the solvent of the second example.
  • the electrolyte is, for example, an alkali salt, preferably a lithium salt.
  • the electrolyte preferably contains at least one lithium salt having an van der Waals ionic radius of an anion of 0.25 nm to 0.4 nm.
  • Such lithium salts are, for example, lithium hexafluorophosphate (LiPF 6 ), lithium arsenic hexafluoride (LiAsF 6 ), and lithium trifluoromethanesulfonate (LiCF 3 SO 3 ).
  • the electrolyte is lithium hexafluorophosphate (LiPF 6 ).
  • the concentration of the electrolyte in the nonaqueous electrolyte is preferably 0.5 to 2 mol / L.
  • the additive contained in the nonaqueous electrolyte contains at least one of difluorophosphate and monofluorophosphate.
  • the difluorophosphate include lithium difluorophosphate, sodium difluorophosphate, and potassium difluorophosphate.
  • Monofluorophosphates include, for example, lithium monofluorophosphate, sodium monofluorophosphate, and potassium monofluorophosphate.
  • the additive may also contain lithium fluorosulfonate, lithium bisborate, lithium nitrate, lithium acetate, or lithium propionate instead of difluorophosphate or monofluorophosphate.
  • Negative electrode terminal and positive electrode terminal are preferably formed of a material having high electrical conductivity. When connecting to the current collector, these terminals are preferably made of the same material as the current collector in order to reduce contact resistance.
  • Exterior Material for example, a metal container or a laminate film container can be used, but it is not particularly limited.
  • a nonaqueous electrolyte battery excellent in impact resistance and long-term reliability can be realized.
  • a laminate film container as the exterior material it is possible to realize a non-aqueous electrolyte battery excellent in corrosion resistance and to reduce the weight of the non-aqueous electrolyte battery.
  • a metal container having a thickness in the range of 0.2 to 5 mm can be used. More preferably, the metal container has a thickness of 0.5 mm or less.
  • the metal container preferably contains at least one metal element selected from the group consisting of Fe, Ni, Cu, Sn, and Al.
  • the metal container can be made of, for example, aluminum or an aluminum alloy.
  • the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon.
  • the alloy contains a transition metal such as iron, copper, nickel, or chromium, the content is preferably 1% by weight or less.
  • a laminate film container having a thickness in the range of 0.1 to 2 mm can be used.
  • the thickness of the laminate film is more preferably 0.2 mm or less.
  • the laminate film is composed of, for example, a multilayer film including a metal layer and a resin layer sandwiching the metal layer.
  • the metal layer preferably contains a metal including at least one selected from the group consisting of Fe, Ni, Cu, Sn, and Al.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • the laminate film can be molded into the shape of an exterior material by sealing by heat sealing.
  • Examples of the shape of the exterior material include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • An exterior material can take various dimensions according to a use. For example, when the nonaqueous electrolyte battery according to the first embodiment is used for a portable electronic device, the exterior material can be made small according to the size of the electronic device to be mounted. Alternatively, in the case of a non-aqueous electrolyte battery mounted on a two-wheel or four-wheel automobile, the container may be a large battery container.
  • FIG. 1 is a partially cutaway perspective view of a first example nonaqueous electrolyte battery according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view of part A of the nonaqueous electrolyte battery shown in FIG.
  • the nonaqueous electrolyte battery 100 shown in FIGS. 1 and 2 includes a flat electrode group 1.
  • the flat electrode group 1 includes a negative electrode 2, a positive electrode 3, and a separator 4.
  • the negative electrode 2 includes a negative electrode current collector 2a and a negative electrode mixture layer 2b supported on the negative electrode current collector 2a.
  • the positive electrode 3 includes a positive electrode current collector 3a and a positive electrode mixture layer 3b supported on the positive electrode current collector 3a.
  • the electrode group 1 has a structure in which a negative electrode 2 and a positive electrode 3 are wound in a spiral shape so as to have a flat shape with a separator 4 interposed therebetween.
  • a strip-like negative electrode terminal 5 is electrically connected to the negative electrode 2. More specifically, the negative electrode terminal 5 is connected to the negative electrode current collector 2a.
  • a strip-like positive electrode terminal 6 is electrically connected to the positive electrode 3. More specifically, the positive electrode terminal 6 is connected to the positive electrode current collector 3a.
  • the nonaqueous electrolyte battery 100 further includes an outer packaging container 7 made of a laminate film as a container. That is, the nonaqueous electrolyte battery 100 includes an exterior material made of an exterior container 7 made of a laminate film.
  • the electrode group 1 is accommodated in an outer packaging container 7 made of a laminate film. However, the end portions of the negative electrode terminal 5 and the positive electrode terminal 6 extend from the outer container 7.
  • a non-aqueous electrolyte (not shown) is accommodated in the outer packaging container 7 made of a laminate film. The nonaqueous electrolyte is impregnated in the electrode group 1.
  • the outer casing 7 is heat-sealed at the peripheral edge, thereby sealing the electrode group 1 and the non-aqueous electrolyte.
  • FIG. 3 is a partially cutaway perspective view of the non-aqueous electrolyte battery of the second example according to the first embodiment.
  • the nonaqueous electrolyte battery 200 shown in FIG. 3 differs from the nonaqueous electrolyte battery 100 of the first example in that the exterior material is composed of a metal container 17a and a sealing plate 17b.
  • the flat electrode group 11 includes a negative electrode 2, a positive electrode 3, and a separator 4, similarly to the electrode group 1 in the nonaqueous electrolyte battery 100 of the first example.
  • the electrode group 11 has the same structure as the electrode group 1. However, in the electrode group 11, a negative electrode tab 15 and a positive electrode tab 16 are connected to the negative electrode 2 and the positive electrode 3 in place of the negative electrode terminal 5 and the positive electrode terminal 6 as described later.
  • such an electrode group 11 is housed in a metal container 17a.
  • the metal container 17a further stores a nonaqueous electrolyte.
  • the metal container 17a is sealed with a metal sealing plate 17b.
  • the metal container 17a and the sealing plate 17b constitute an exterior can as an exterior material, for example.
  • the negative electrode tab 15 a has one end electrically connected to the negative electrode current collector 2 a and the other end electrically connected to the negative electrode terminal 15.
  • One end of the positive electrode tab 16a is electrically connected to the positive electrode current collector 3a, and the other end is electrically connected to the positive electrode terminal 16 fixed to the sealing plate 17b.
  • the positive terminal 16 is fixed to the sealing plate 17b via an insulating member 17c.
  • the positive electrode terminal 16 and the sealing plate 17b are electrically insulated by an insulating member 17c.
  • the ratio of the above-described P2 / P1, F present on the negative electrode surface, and those belonging to LiF can be determined by X-ray photoelectron spectroscopy (XPS) measurement.
  • XPS X-ray photoelectron spectroscopy
  • the measurement sample used for XPS measurement is prepared as follows.
  • the battery cell containing the negative electrode to be measured is discharged and disassembled in a glove box under an inert gas atmosphere such as argon (Ar).
  • an inert gas atmosphere such as argon (Ar).
  • the constant voltage discharge is performed until the current value becomes 0.2C so that the charging rate of the cell becomes 0%.
  • the lower limit value of the operating voltage is, for example, 1.5V.
  • ⁇ Mount the measurement sample on the XPS stage under inert atmosphere For example, disassembly of the battery cell, removal of the negative electrode, cleaning and drying of the negative electrode, and mounting on the XPS stage are all performed in the glove box.
  • the measurement sample mounted on the XPS stage is introduced into the XPS measurement apparatus while maintaining an inert atmosphere.
  • the XPS measuring apparatus is not particularly limited, but for example, a VG Theta Probe manufactured by Thermo Fisher Scientific can be used.
  • An example of measurement conditions is as follows: irradiation X-ray: single crystal spectrum AlK ⁇ , X-ray spot diameter: 800 ⁇ 400 ⁇ m, information depth: 6 to 7 nm.
  • the fitting is performed appropriately so that two peaks appear in the XPS spectrum obtained by measuring in this way.
  • the peak appearing in the range of 689 to 685 eV is attributed to the C—F bond
  • the peak appearing in the range of 684 to 680 eV is attributed to the Li—F bond.
  • P1 / P1 is obtained by setting the former peak intensity as P1 and the latter peak intensity as P2.
  • the amount of LiF on the negative electrode surface is estimated by calculating the area of each peak and determining the ratio of the peak area attributed to the Li—F bond. Specifically, the sum of the two peak areas corresponds to all F existing on the negative electrode surface, and the peak area attributed to the Li—F bond corresponds to LiF existing on the negative electrode surface. Therefore, from the ratio of the peak area attributed to the Li—F bond to the total area of the two peaks, the proportion of F contained in LiF out of F on the negative electrode surface can be obtained.
  • the amount of difluorophosphate or monofluorophosphate contained in the nonaqueous electrolyte battery cell can be determined using capillary electrophoresis.
  • a nonaqueous electrolyte collected from a battery cell discharged in the same manner as described above and disassembled in a glove box under an inert gas atmosphere is used.
  • Difluorophosphate or monofluorophosphate contained in non-aqueous electrolyte battery by detecting difluorophosphate or monofluorophosphate or both salts contained in measurement sample by electrophoresis Alternatively, the amount of both salts can be determined.
  • the inorganic anion analysis buffer manufactured by Agilent Technologies is composed of water, sodium hydroxide, 1,2,4,5-benzenetetracarboxylic acid, triethanolamine, and hexamethonium bromide.
  • the nonaqueous electrolyte battery according to the first embodiment includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the negative electrode includes monoclinic titanium dioxide or Li 4 + a Ti 5 O 12 (where ⁇ 0.5 ⁇ a ⁇ 3) as an active material, and a polyvinylidene fluoride having a molecular weight of 400,000 or more and 1,000,000 or less as a binder. including.
  • the nonaqueous electrolyte contains at least one of difluorophosphate and monofluorophosphate.
  • the negative electrode is 0 1 ⁇ (P2 / P1) ⁇ 0.4 is satisfied.
  • a battery pack is provided.
  • This battery pack includes the nonaqueous electrolyte battery according to the first embodiment.
  • the battery pack according to the second embodiment can also include a plurality of nonaqueous electrolyte batteries.
  • the plurality of nonaqueous electrolyte batteries can be electrically connected in series, or can be electrically connected in parallel.
  • a plurality of nonaqueous electrolyte batteries can be connected in a combination of series and parallel.
  • the battery pack according to the second embodiment can include five first nonaqueous electrolyte batteries. These non-aqueous electrolyte batteries can be connected in series. Moreover, the non-aqueous electrolyte battery connected in series can comprise an assembled battery. That is, the battery pack according to the second embodiment can include an assembled battery.
  • the battery pack according to the second embodiment can include a plurality of assembled batteries.
  • the plurality of assembled batteries can be connected in series, parallel, or a combination of series and parallel.
  • FIG. 4 is an exploded perspective view of an example battery pack according to the second embodiment.
  • FIG. 5 is a block diagram showing an electric circuit of the battery pack of FIG.
  • the battery pack 20 shown in FIGS. 4 and 5 includes a plurality of unit cells 21.
  • the unit cell 21 may be the flat nonaqueous electrolyte battery 100 of an example according to the first embodiment described with reference to FIG.
  • the plurality of single cells 21 are stacked such that the negative electrode terminal 5 and the positive electrode terminal 6 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 22 to constitute an assembled battery 23. These unit cells 21 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 24 is disposed so as to face the side surface from which the negative electrode terminal 5 and the positive electrode terminal 6 of the unit cell 21 extend. As shown in FIG. 5, the printed wiring board 24 is mounted with a thermistor 25, a protection circuit 26, and an energizing terminal 27 as an external terminal for energizing.
  • the printed wiring board 24 is provided with an insulating plate (not shown) on the surface facing the assembled battery 23 in order to avoid unnecessary wiring and wiring of the assembled battery 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 6 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected thereto.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 5 located in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and electrically connected thereto.
  • These connectors 29 and 31 are connected to the protection circuit 26 through wirings 32 and 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wiring 34a and the minus side wiring 34b between the protection circuit 26 and the energization terminal 27 to the external device under a predetermined condition.
  • An example of the predetermined condition is, for example, when the temperature detected by the thermistor 25 is equal to or higher than a predetermined temperature.
  • Another example of the predetermined condition is when, for example, overcharge, overdischarge, overcurrent, or the like of the cell 21 is detected. This detection of overcharge or the like is performed for each individual cell 21 or the entire assembled battery 23. When detecting each single cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each unit cell 21.
  • a wiring 35 for voltage detection is connected to each unit cell 21. A detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are disposed on the three side surfaces of the assembled battery 23 excluding the side surfaces from which the positive electrode terminal 6 and the negative electrode terminal 5 protrude.
  • the assembled battery 23 is stored in a storage container 37 together with each protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat shrink tape may be used for fixing the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tape is circulated, and then the heat shrinkable tape is heat shrunk to bind the assembled battery.
  • 4 and 5 show a configuration in which the unit cells 21 are connected in series, but they may be connected in parallel in order to increase the battery capacity. Further, the assembled battery packs can be connected in series and / or in parallel.
  • the aspect of the battery pack according to the second embodiment is appropriately changed depending on the application.
  • a battery pack in which cycle performance with high current performance is desired is preferable.
  • Specific applications include power supplies for digital cameras, and in-vehicle applications such as two-wheel to four-wheel hybrid electric vehicles, two-wheel to four-wheel electric vehicles, and assist bicycles.
  • the battery pack according to the second embodiment is particularly suitable for in-vehicle use.
  • the battery pack according to the second embodiment includes the nonaqueous electrolyte battery according to the first embodiment, it has low resistance.
  • Example 1 the nonaqueous electrolyte battery of Example 1 was produced by the following procedure.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 as a positive electrode active material, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were prepared. These were mixed at a weight ratio of 90: 5: 5 to obtain a mixture.
  • the obtained mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.
  • NMP n-methylpyrrolidone
  • the obtained slurry was applied to an aluminum foil having a thickness of 20 ⁇ m and dried.
  • the dried coating film was pressed to obtain a positive electrode.
  • Li 4 Ti 5 O 12 as a negative electrode active material, carbon black as a conductive agent, and polyvinylidene fluoride having a molecular weight of 550,000 as a binder were prepared. These were mixed at a weight ratio of 90: 5: 5 to obtain a mixture. The mixing ratio of polyvinylidene fluoride when the negative electrode mixture layer was 100 parts by weight was 5 parts by weight.
  • the obtained mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.
  • NMP n-methylpyrrolidone
  • the obtained slurry was applied to an aluminum foil having a thickness of 20 ⁇ m and dried.
  • the dried coating film was pressed. Thereafter, drying was performed at 100 ° C. to obtain a negative electrode.
  • a flat nonaqueous electrolyte secondary battery having a thickness of 5 mm, a width of 30 mm, a height of 25 mm, and a weight of 10 g was produced.
  • the rated capacity of the battery was 250 mAh.
  • Ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2 to prepare a mixed solvent.
  • EC Ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • 10000 ppm of lithium difluorophosphate (LiPO 2 F 2 ) was added as an additive to the mixed solvent to prepare a nonaqueous electrolyte.
  • a nonaqueous electrolyte was injected into the outer can containing the electrode group obtained as described above from a liquid injection port provided on the surface of the outer can. Subsequently, the non-aqueous electrolyte battery was produced by sealing the liquid injection port.
  • the obtained battery was charged at a constant current until the battery voltage reached 2.8 V at 20 mA in a 25 ° C. environment, and then charged at a constant voltage until the charging current reached 5 mA. Subsequently, the battery was discharged at 20 mA until the battery voltage became 1.5V. When the battery capacity at this time was confirmed, the obtained battery capacity was 250 mAh.
  • Table 1 summarizes the production conditions of Examples and Comparative Examples, and the ratio of P2 / P1 obtained by XPS measurement and LiF on the negative electrode surface.
  • Example 2 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the amount of lithium difluorophosphate added to the nonaqueous electrolyte was 1000 ppm.
  • Example 3 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the amount of lithium difluorophosphate added to the nonaqueous electrolyte was 5000 ppm.
  • Example 4 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the amount of lithium difluorophosphate added to the nonaqueous electrolyte was 20000 ppm.
  • Example 5 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the amount of lithium difluorophosphate added to the nonaqueous electrolyte was 30000 ppm.
  • Example 6 Except that the anode active material and monoclinic TiO 2 was used to fabricate a non-aqueous electrolyte battery in the same manner as in Example 1.
  • Example 7 A nonaqueous electrolyte battery was produced in the same manner as in Example 6 except that the amount of lithium difluorophosphate added to the nonaqueous electrolyte was 1000 ppm.
  • Example 8 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that polyvinylidene fluoride having a molecular weight of 400,000 was used as a binder in the negative electrode.
  • Example 9 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that polyvinylidene fluoride having a molecular weight of 700,000 was used as the binder in the negative electrode.
  • Example 10 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the additive to the nonaqueous electrolyte was lithium monofluorophosphate having an addition amount of 10,000 ppm.
  • Example 11 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the additive to the nonaqueous electrolyte was potassium difluorophosphate having an addition amount of 10,000 ppm.
  • Example 12 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that sodium difluorophosphate having an addition amount of 10,000 ppm was used as the additive to the nonaqueous electrolyte.
  • Example 1 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the negative electrode drying temperature was 130 ° C.
  • Example 2 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that polyvinylidene fluoride having a molecular weight of 2 million was used as a binder in the negative electrode.
  • Example 3 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that neither difluorophosphate nor monofluorophosphate was added.
  • Comparative Example 4 A nonaqueous electrolyte battery was produced in the same manner as in Comparative Example 3 except that polyvinylidene fluoride having a molecular weight of 2 million was used as the binder in the negative electrode.
  • Example 5 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the drying temperature in the negative electrode drying was 70 ° C.
  • Comparative Example 6 A nonaqueous electrolyte battery was produced in the same manner as in Comparative Example 5 except that polyvinylidene fluoride having a molecular weight of 2 million was used as the binder in the negative electrode.
  • Comparative Example 7 A nonaqueous electrolyte battery was produced in the same manner as in Comparative Example 5 except that neither difluorophosphate nor monofluorophosphate was added.
  • Comparative Example 8 A nonaqueous electrolyte battery was produced in the same manner as in Comparative Example 7 except that polyvinylidene fluoride having a molecular weight of 2 million was used as the binder in the negative electrode.
  • each nonaqueous electrolyte battery was charged at a constant current of 20 mA in a 25 ° C. environment until the battery voltage reached 2.8V.
  • constant voltage charging was performed until the charge capacity reached 5 mAh.
  • the battery was discharged at 20 mA until the battery voltage reached 1.5V.
  • constant current charging was performed until the battery SOC reached 50%, and constant voltage charging was performed until the charge capacity reached 5 mAh.
  • the resistance of the battery at this time was measured and used as the resistance value of each nonaqueous electrolyte battery.
  • each nonaqueous electrolyte battery was charged at a constant current of 20 mA in a 25 ° C. environment until the battery voltage reached 2.8V.
  • constant voltage charging was performed until the charge capacity reached 5 mAh.
  • the state of charge (SOC) was adjusted to 50% by appropriately charging and discharging each battery.
  • the caliper was applied to the center part of the battery cell in 25 degreeC environment, and thickness was measured.
  • the battery cell size after storage was calculated based on the measured thickness.
  • the difference between the calculated battery cell size after storage and the size of the battery cell immediately after production was compared to determine the amount of cell swelling.
  • the cell thickness immediately after fabrication was defined as 100%, and the cell thickness after storage compared with this was expressed as the amount of cell swelling.
  • the size of the battery cell immediately after fabrication is 5 mm in thickness, 30 mm in width, and 25 mm in height.
  • Table 2 below shows the resistance values and gas generation amounts obtained for the nonaqueous electrolyte batteries of Examples 1 to 12 and the nonaqueous electrolyte batteries of Comparative Examples 1 to 8.
  • the value of P2 / P1 obtained by XPS measurement on the negative electrode surface was in the range of 0.1 to 0.4 It was inside. In all cases, the proportion of F contained in LiF out of F on the negative electrode surface was 20% or less.
  • the value of battery resistance was as low as 100 mOhm or less, and the amount of cell swelling after storage was suppressed to 150% or less.
  • the value of P2 / P1 exceeded 0.4 and the ratio of LiF on the negative electrode surface also exceeded 20%.
  • the resistance value was high, and the amount of cell swelling was large.
  • the nonaqueous electrolyte battery of Comparative Example 2 had a high resistance value although the proportion of LiF on the negative electrode surface and the amount of cell swelling were similar to those in Examples 1-12.
  • the non-aqueous electrolyte battery of Comparative Example 1 had a higher resistance value than Examples 1 to 12, and the amount of cell swelling after storage was as high as 165%.
  • Comparative Example 1 it was considered that most of the moisture in the negative electrode could be removed by increasing the drying temperature of the negative electrode, but the thermal decomposition of PVdF was more advanced.
  • the moisture that could not be removed even by high-temperature drying and the PVdF decomposition product reacted to generate excess LiF, thereby increasing the resistance.
  • the value of P2 / P1 on the negative electrode surface and the ratio of F on the negative electrode surface that was LiF were comparable to those in Examples 1-12. This is because PVdF having a molecular weight of 2,000,000 is used, so that thermal decomposition is suppressed and the amount of decomposition products generated is small, so that the production of LiF is suppressed.
  • the resistance value was as high as 130 mOhm. This is probably because PVdF having a large molecular weight itself becomes a resistance component, and thus the resistance value of the cell in Comparative Example 2 was increased.
  • the resistance was high, and the cell increase after storage was as large as 300%. Like the nonaqueous electrolyte battery of Comparative Example 7, this is probably because the drying temperature of the negative electrode was low in Comparative Example 8 and no difluorophosphate was added to the nonaqueous electrolyte. Furthermore, in Comparative Example 8, since the high molecular weight PVdF was used, it is considered that the resistance value became higher.
  • Example 13 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the additive to the nonaqueous electrolyte was lithium monofluorophosphate having an addition amount of 1000 ppm.
  • Example 14 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the additive to the nonaqueous electrolyte was lithium monofluorophosphate having an addition amount of 30000 ppm.
  • Example 15 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the additive to the nonaqueous electrolyte was sodium difluorophosphate having an addition amount of 1000 ppm.
  • Example 16 A nonaqueous electrolyte battery was produced in the same manner as in Example 5 except that the drying temperature of the negative electrode was 110 ° C.
  • Example 17 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the additive to the nonaqueous electrolyte was lithium monofluorophosphate having an addition amount of 5000 ppm and lithium difluorophosphate having an addition amount of 5000 ppm.
  • XPS measurement, battery resistance measurement, and gas generation amount measurement were performed under the same conditions as in Examples 1 to 12, and the results are shown in Table 3. And in Table 4.
  • the nonaqueous electrolyte battery includes a positive electrode and monoclinic titanium dioxide or Li 4 + a Ti 5 O 12 ( ⁇ 0.5 ⁇ a ⁇ 3) as an active material. And a polyvinylidene fluoride having a molecular weight of 400,000 or more and 1,000,000 or less as a binder, satisfying a relationship of 0.1 ⁇ (P2 / P1) ⁇ 0.4, and difluorophosphate or monofluorophosphoric acid A non-aqueous electrolyte containing at least one of salts.
  • the intensity of the peak appearing in the range of 689 to 685 eV is P1
  • the intensity of the peak appearing in the range of 684 to 680 eV is P2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

実施形態によれば、非水電解質電池は、正極と、負極と、非水電解質とを具備する。負極は、活物質とバインダーとを含む。負極の含む活物質は、単斜晶型二酸化チタンまたはLi4+aTi12(ここで、-0.5≦a≦3)を含み、負極の含むバインダーは、分子量が40万以上100万以下であるポリフッ化ビニリデンを含む。そして、負極は、下記式(I)を満たす。非水電解質は、ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくともいずれか一方を含む。 0.1≦(P2/P1)≦0.4 (I)ここで、P1は負極の表面に対する光電子分光測定によって得られるスペクトルにおいて689~685eVの範囲内に現れるピークの強度、P2は該スペクトルにおいて684~680eVの範囲内に現れるピークの強度である。

Description

非水電解質電池及び電池パック
 本発明の実施形態は、非水電解質電池および電池パックに関する。
 リチウムイオン二次電池は、携帯機器、自動車や蓄電池などに広く用いられている。負極活物質としてのカーボンを含むリチウムイオン二次電池では、充放電サイクルを繰り返すと負極上にリチウムデンドライトが形成される。そのため、カーボン系の負極活物質を用いたリチウムイオン二次電池では、抵抗上昇、サイクル性能低下などの電池性能の劣化が懸念される。これに対して、前述の負極カーボン系材料に代わる金属酸化物の検討がなされている。
 負極にスピネル型チタン酸リチウム(LiTi12)を用いると、リチウムデンドライトの析出を抑制できる。その結果、短絡、自己放電及び発火などの危険性を回避することができ、寿命性能に優れた電池を作製することが可能になることが知られている。また、比表面積を大きくすることで高出力化が可能になることが知られている。
特開2005-317512号公報 特開2009-054480号公報
 ガス発生を抑制することと電池抵抗の増加を抑制することとを両立できる非水電解質電池、及びこの非水電解質電池を具備する電池パックを提供することを目的とする。
 第1の実施形態によれば、非水電解質電池が提供される。非水電解質電池は、正極と、負極と、非水電解質とを具備する。負極は、負極活物質とバインダーとを含む。負極活物質は、単斜晶型二酸化チタンまたはLi4+aTi12(ここで、-0.5≦a≦3)を含み、負極バインダーは、分子量が40万以上100万以下であるポリフッ化ビニリデンを含む。そして、負極は、下記式(I)を満たす。非水電解質は、ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくとも何れか一方を含む。
   0.1≦(P2/P1)≦0.4   (I)ここで、P1は負極の表面に対する光電子分光測定によって得られるスペクトルにおいて689~685eVの範囲内に現れるピークの強度、P2は該スペクトルにおいて684~680eVの範囲内に現れるピークの強度である。
 第2の実施形態によれば、電池パックが提供される。電池パックは、第1の実施形態の非水電解質電池を具備する。
第1の実施形態に係る第1の例の非水電解質電池の一部切欠き斜視図。 図1のA部の拡大断面図。 第1の実施形態に係る第2の例の非水電解質電池の一部切欠き斜視図。 第2の実施形態に係る一例の電池パックの分解斜視図。 図4に示す電池パックの電気回路を示すブロック図。
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 (第1の実施形態)
 第1の実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と負極と非水電解質とを含む。負極は、活物質として単斜晶型二酸化チタンまたはLi4+aTi12(ここで、-0.5≦a≦3)を含み、バインダーとして分子量が40万以上100万以下であるポリフッ化ビニリデンを含む。非水電解質は、ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくとも何れか一方を含む。
 また、負極は、下記式(I)を満たす。
   0.1≦(P2/P1)≦0.4   (I)
 式(I)中、P1は負極の表面に対する光電子分光測定によって得られるスペクトルにおいて689~685eVの範囲内に現れるピークの強度、P2は該スペクトルにおいて684~680eVの範囲内に現れるピークの強度である。
 実施形態に係る非水電解質電池は、上述した構成を有するため、ガス発生が抑制されているとともに、電池抵抗が低い。
 チタン酸リチウムなどのチタン含有化合物を負極に用いた電池において電池性能を向上させるためには、負極活物質に異種元素をドープすることや負極の比表面積を大きくすることが有効である。とくに、負極の比表面積を大きくすると、負極反応面積が大きくなるので性能改善が見込める。しかし、負極の比表面積を増加させると、負極に吸着する水分量が増える。
 負極に付着した水分は、電池作動中、電極反応によって電気分解されて水素および酸素を生成する。そのため、負極に多量に水分が残留すると、電池作動中において、負極付着水分に由来するガス発生量(水素や酸素)が多くなる。電池内に多量のガスが発生すると、電池膨れが生じる。また、電極活物質の表面にガスが存在すると、その部分が非水電解質と接触しなくなるため、電極反応場が減少する。その結果、残った電極界面の電流負荷が大きくなり、電池抵抗が増加する。
 また、非水電解質電池内に含まれる水分は、非水電解質に含まれているリチウム化合物と反応してフッ化リチウム(LiF)を生成し得る。LiFが電極上に存在すると、電極活物質へのリチウムの挿入を妨げるため、好ましくない。さらに、LiFは電気抵抗成分であるため、電極上にLiFが存在することは、電気抵抗が増加するという面からも好ましくない。
 負極に吸着した水分は、製造の際に負極を乾燥することで除去することができる。しかし、乾燥温度が例えば70℃といった低温の場合では、除去しきれずに多量の水分が残留する。一方、例えば100℃程度での負極乾燥では、電極残留水分量は減少するので、ガス発生量は低減するものの、電池抵抗の増加が顕著となる。これは、負極バインダーであるポリフッ化ビニリデンが電池乾燥時に高熱により分解していることに起因していると推察される。ポリフッ化ビニリデンが高熱により分解すると、例えばテトラフルオロエチレンの共重合体や誘導体のような分解生成物を生じる。この熱分解生成物は水分と非常に反応し易く、たとえ高温乾燥により大部分の水分を除去したとしても、残留した水分と反応し、結果としてLiFを多量に生成してしまう。つまり、たとえ高温の乾燥により水分を低減できたとしても、少量の残留水分とポリフッ化ビニリデンの熱分解生成物とがLiFを生成する反応を引き起こしてしまう。結果として、水分を除去したにも拘らず電池の抵抗が上昇してしまう。
 さらに、例えば120℃というようなより高温の乾燥では、分解が更に進み、ポリフッ化ビニリデンのバインダーとしての機能が損なわれる。この場合、負極活物質同士の結着が弱まり、負極の導電性が低下するため電池の抵抗が増加する。
 高温によるバインダーとしてのポリフッ化ビニリデンの分解は、活物質として単斜晶型二酸化チタンまたはLi4+aTi12(-0.5≦a≦3)といったチタン酸化物を含んだ負極を用いた場合に特に顕著になる。これは、こういったチタン酸化物がポリフッ化ビニリデンの熱分解反応に対する触媒作用を示すためと考えられる。また、ポリフッ化ビニリデンの分子量が100万以下であるときに、チタン酸化物による熱分解反応の触媒作用が促進され、熱分解が促進してしまう
 以上のとおり、乾燥が不十分なため水分が過剰に付着した電極を用いて得られた非水電解質電池と、乾燥温度が高くポリフッ化ビニリデンの熱分解生成物が発生した非水電解質電池とのいずれについても、負極表面上に過剰量のフッ化リチウム(LiF)が生成する。また、乾燥温度が高すぎると、バインダー自身が機能せず負極活物質の結着が弱まり抵抗が増加する。
 実施形態に係る非水電解質電池の備える負極は、活物質としての単斜晶型二酸化チタンまたは一般式Li4+aTi12で表されるスピネル型チタン酸リチウムを含む(ここで、-0.5≦a≦3)。また、負極は、バインダーとして分子量が40万以上100万以下であるポリフッ化ビニリデンを含む。電解質にジフルオロリン酸またはモノフルオロリン酸塩を含む。さらに、負極の表面に対する光電子分光測定(XPS;X-ray Photoelectron Spectrometry)によって得られるスペクトルでは、689~685eVの範囲内に現れるピークの強度P1と、684~680eVの範囲内に現れるピークの強度P2とが、0.1≦(P2/P1)≦0.4との関係を示す(式(I))。
 このような負極では、LiF生成反応が抑制されている状態にある。
 上述したXPSスペクトルにおいて、689~685eVの範囲内に現れるピークはC-F結合に帰属され、684~680eVの範囲内に現れるピークはLi-F結合に帰属される。負極表面上に観測されるC-F結合は、バインダーとしてのポリフッ化ビニリデンに由来するものと判断できる。一方、負極表面上に観測されるLi-F結合は、残留水分と非水電解質との反応、または残留水分とポリフッ化ビニリデンの分解生成物との反応により生じたLiFに由来するものと判断できる。つまり、上述したピーク強度P1と比較してピーク強度P2が高い場合は、水分が過剰に残留していた、或いはポリフッ化ビニリデンの分解生成物と水分が反応していることが確認できる。
 負極においてP2/P1が0.1以上0.4以下の範囲内にあるということは(上記式(I))、負極に過剰量のLiFが含まれていないことを示す。そしてこのことは、電極から十分に水分が除去されており、且つポリフッ化ビニリデンの分解生成物が水分と反応していないことを示す。
 また、負極の表面に存在し得るFは、LiFに由来するもの以外に、例えばバインダーとしてのポリフッ化ビニリデンに由来するFを含む。そこで、負極表面上におけるフッ素(F)のうち、LiFに含まれているものの割合が20%以下であることが好ましい。
 実施形態に係る非水電解質電池は、添加物としてのジフルオロリン酸塩またはモノフルオロリン酸塩を非水電解質に含む。ジフルオロリン酸塩またはモノフルオロリン酸塩は、水と反応して安定なリン酸塩を生成する。そのため、非水電解質に適量のジフルオロリン酸塩またはモノフルオロリン酸塩を添加することで、乾燥しきれなかった残留水をリン酸塩に転換することができる。そのため、ポリフッ化ビニリデンの熱分解生成物が存在したとしても、水分との反応によるLiFの生成を抑制することができる。
 つまり、高温により負極に吸着した水分を除去した時に、ポリフッ化ビニリデンから分解生成物が生じたとしても、ジフルオロリン酸塩またはモノフルオロリン酸塩の共存化では、LiFの生成を防ぐことができる。
 ジフルオロリン酸塩またはモノフルオロリン酸塩を添加したとしても、乾燥温度が低すぎると、多量の水分が残ってしまい、リン酸塩への転換量を超えてしまう。この場合、ガス発生などを生じるため好ましくない。一方で、乾燥温度が高すぎると、熱分解によりバインダー自身の機能が損なわれるため好ましくない。
 実施形態において、負極はバインダーとして分子量が40万以上100万以下であるポリフッ化ビニリデン(PVdF)を含む。分子量が40万未満であると、結着性が弱く、乾燥時の熱に弱いためバインダーの分解が顕著になる。分子量が100万を超えるものは、熱分解には強くバインダーとしての結着効果が高いが、分子量が高いためバインダー自身が抵抗成分となる。バインダーとしてのポリフッ化ビニリデン(PVdF)の分子量は、70万以下であることがより好ましい。
 また、負極合材層の重量を100重量部としたときに、負極中にバインダーとして含むポリフッ化ビニリデン(PVdF)の混合比率が5重量部以下であることが好ましい。ポリフッ化ビニリデン(PVdF)の混合比率が5重量部を超えると、負極の電気抵抗が増加し得る。
 例えば分子量が40万以上100万以下であるポリフッ化ビニリデン(PVdF)を100℃で乾燥すると、水分の低減と共に分解生成物を発生し得るが、ジフルオロリン酸塩またはモノフルオロリン酸塩を含むことで、LiFの生成を防ぐことができる。
 非水電解質に、例えばジフルオロリン酸リチウム(LiPO)を添加した場合、1分子のジフルオロリン酸リチウムが2分子の水と反応して、安定な化合物であるリン酸リチウム(LiPO)を1分子生成する。例えばモノフルオロリン酸リチウム(LiPOF)を添加した場合、1分子のモノフルオロリン酸リチウムが1分子の水と反応して、安定な化合物であるリン酸リチウム(LiPO)を1分子生成する。
 ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくともいずれか一方を含む場合、ジフルオロリン酸塩、モノフルオロリン酸塩または双方の塩は、非水電解質に質量比で1000ppm以上30000ppm以下添加することが望ましい。添加量が1000ppm未満では、乾燥後に残留した水分に対する添加物の割合が少なく、ガス発生を抑制できない虞がある。一方で、30000ppmを超える量を添加しても、効果の向上が期待できない。なお、ジフルオロリン酸塩は固体であるため、非水電解質中に溶解させる必要があり、多量に加えることができない。
 負極の乾燥温度は、90℃以上110℃以下であることが好ましい。乾燥温度が90℃未満であると、電極に付着した残留水が多くなってしまい、その結果ガス発生量が増加する。なお、多くなった残留水に対処するために、非水電解質へのジフルオロリン酸塩やモノフルオロリン酸塩の添加量を多くした場合には、電池内の非水電解質に溶解しきれなかったジフルオロリン酸塩及びモノフルオロリン酸塩が非水電解質中に存在することとなり、溶液抵抗が上昇し、電池抵抗が増加する。一方で、負極乾燥温度が110℃を超えると、バインダーとしてのポリフッ化ビニリデンが熱分解してしまい、その結果電池抵抗が増加する。
 また、乾燥時間は、24時間以上70時間以下であることが好ましい。乾燥時間が24時間未満であると、リール乾燥が不十分となり、ガス発生量が増加する。乾燥時間が70時間を超えると、バインダーとしてのポリフッ化ビニリデンが熱分解してしまい、その結果抵抗が増加する。
 負極の乾燥は、例えばアルゴン(Ar)や窒素(N)などの不活性ガス雰囲気下、または真空条件下で行うことができる。真空条件下で乾燥することがより好ましい。
 実施形態に係る非水電解質電池では、電極上に付着した水分に由来するガス発生量が抑制されており、且つ負極バインダーとしてのポリフッ化ビニリデンの熱分解が抑制されている。さらに、ポリフッ化ビニリデンの分解生成物と残留水分との反応を抑制されている。そのため、このような非水電解質電池では、抑制されたガス発生量と低抵抗とを両立することができる。
 次に、第1の実施形態に係る非水電解質電池をより詳細に説明する。
 第1の実施形態に係る非水電解質電池は、負極と、正極と、非水電解質とを具備する。
 負極は、負極集電体と、負極集電体上に形成された負極合材層とを含むことができる。
 負極集電体は、表面に負極合材層を担持していない部分を含むことができる。この部分は、負極タブとして働くことができる。或いは、負極は、負極集電体とは別体の負極タブをさらに具備することもできる。
 負極合材層は、負極活物質として上述したチタン酸化物を含む。また、負極合剤層は、上述したバインダーを含む。負極合材層は、必要に応じて、導電剤をさらに含むことができる。
 正極は、正極集電体と、正極集電体上に形成された正極合材層とを含むことができる。
 正極集電体は、表面に正極合材層を担持していない部分を含むことができる。この部分は、正極タブとして働くことができる。或いは、正極は、正極集電体とは別体の正極タブをさらに具備することもできる。
 正極合材層は、正極活物質を含む。正極合材層は、必要に応じて、導電剤及びバインダーをさらに含むことができる。
 正極と負極とは、電極群を構成することができる。例えば、電極群において、正極合材層と負極合材層とが、セパレータを介して対向することができる。電極群の構造は特に限定されず、様々な構造とすることができる。例えば、電極群は、スタック型の構造を有することができる。スタック型構造の電極群は、例えば、複数の正極及び負極を、正極合材層と負極合材層との間にセパレータを挟んで積層することによって得られる。或いは、電極群は、例えば巻回型の構造を有することができる。巻回型の電極群は、例えば、一枚のセパレータと、一枚の正極と、もう一枚のセパレータと、一枚の負極とをこの順で積層させて積層体を作り、最外層が負極となるようにこの積層体を巻回することによって得られる。
 非水電解質電池は、負極端子及び正極端子を更に含むことができる。負極端子は、その一部が負極の一部に電気的に接続されることによって、負極と外部端子との間で電子が移動するための導体として働くことができる。負極端子は、例えば、負極集電体、特に負極タブに接続することができる。同様に、正極端子は、その一部が正極の一部に電気的に接続されることによって、正極と外部回路との間で電子が移動するための導体として働くことができる。正極端子は、例えば、正極集電体、特に正極タブに接続することができる。
 第1の実施形態に係る非水電解質電池は、外装材を更に具備することができる。外装材は、電極群及び非水電解質を収容することができる。非水電解質は、外装材内で、電極群に含浸され得る。正極端子及び負極端子のそれぞれの一部は、外装材から延出させることができる。
 以下、負極、正極、非水電解質、セパレータ、正極端子、負極端子及び外装材について、より詳細に説明する。
 (1)負極
 負極集電体としては、電気伝導性の高い材料を含むシートを使用することができる。例えば、負極集電体として、アルミニウム箔またはアルミニウム合金箔を使用することができる。アルミニウム箔又はアルミニウム合金箔を使用する場合、その厚さは、好ましくは20μm以下である。アルミニウム合金箔は、マグネシウム、亜鉛、ケイ素等を含むことができる。また、アルミニウム合金箔に含まれる、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下であることが好ましい。
 負極に含まれるチタン酸化物は、スピネル型構造を有するリチウムチタン複合酸化物(Li4+aTi12(添字aは充放電状態により0以上3以下の間で変化する))及び単斜晶型二酸化チタン(LiTiO(B)(添字xは充放電状態により0以上1以下の間で変化する))の少なくとも1種を含む。チタン酸化物は、スピネル型構造を有するリチウムチタン複合酸化物であることがより好ましい。これらに加えてチタン酸化物は、ラムスデライト型構造を有するチタン酸リチウム(Li2+xTi(添字xは充放電状態により0以上2以下の間で変化する))及び単斜晶型ニオブチタン複合酸化物(例えば、LiNbTiO(添字xは充放電状態により0以上4以下の間で変化する))などをさらに含むことができる。
 チタン酸化物は、チタン酸化物を含んだ負極活物質粒子として、負極合材層に含まれ得る。負極活物質粒子の平均一次粒子径は、5μm以下であることが好ましい。平均一次粒子径が5μm以下であると、電極反応に寄与する有効面積を十分に確保することができ、非水電解質電池において良好な大電流放電性能を得ることができる。
 負極電極の細孔体積は、0.1mL/gから0.4mL/gであることが好ましい。細孔体積が0.1mL/g以上であると、電極反応に寄与する有効面積が十分であり、非水電解質電池において良好な大電流放電性能を得ることができる。一方、細孔体積が0.4mL/gを超えると、負極へ付着する水分量が増える。また、0.4mL/g以下の場合には、非水電解質との反応が抑制される。そのため、細孔体積を0.4mL/g以下とすることで、貯蔵時のガス発生や充放電効率の低下を抑制することができる。なお、負極電極の細孔体積は水銀圧入法(水銀ポロシメトリー)により求めることができる。
 負極導電剤は、集電性能を高めるために必要に応じて用いられる。負極導電剤は、例えば炭素材料である。炭素材料は、アルカリ金属の吸蔵性及び導電性が高いことが好ましい。炭素材料は、例えばアセチレンブラックおよびカーボンブラック及び黒鉛などである。
 負極の含むバインダーは、負極活物質粒子と負極集電体とを結合するために用いられる。上述した分子量が40万以上100万以下のポリフッ化ビニリデン(PVdF)に加え、バインダーは、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(異なる分子量のもの)、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、ポリプロピレン(PP)、ポリエチレン(PE)、またはカルボキシメチルセルロース(CMC)を含むことができる。
 負極合材層に含まれる負極活物質、負極導電剤及びバインダーの割合は、それぞれ、70~95重量%、0~25重量%および2~10重量%であることが好ましい。
 負極は、例えば、以下の手順で作製することができる。まず、負極活物質、導電剤及びバインダーを、適切な溶媒、例えばN-メチルピロリドンに投入してスラリーを調製する。このスラリーを負極集電体の表面に塗布し、塗膜を乾燥させる。スラリーは、負極集電体の一つの面にのみ塗布してもよい。或いは、スラリーは、負極集電体の一つの面とそれとは反対の面との両面に塗布してもよい。乾燥させた塗膜をプレスして所望の密度を有する負極合材層とすることにより、負極が完成する。
 (2)正極
 正極集電体としては、電気伝導性の高い材料を含むシートを使用することができる。例えば、正極集電体としては、アルミニウム箔またはアルミニウム合金箔を使用することができる。アルミニウム箔又はアルミニウム合金箔を使用する場合、その厚さは、好ましくは20μm以下である。アルミニウム合金箔は、マグネシウム、亜鉛、ケイ素等を含むことができる。また、アルミニウム合金箔に含まれる、鉄、銅、ニッケル、クロムといった遷移金属の含有量は1%以下であることが好ましい。
 正極合材層は、金属Liの酸化還元電位に対して3.0V以上3.9V以下(vs.Li/Li)の範囲において、活物質重量あたりの容量が10mAh/g以上150mAh/g以下となる少なくとも1種類の正極活物質を含むことができる。このような正極活物質は、例えばリチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-xCo、0<x<1)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1-x-yCoMn、0<x<1、0<y<1、0<x+y<1)リチウムマンガンコバルト複合酸化物(例えばLiMnCo1-x、0<x<1)及びリチウムリン酸鉄(LiFePO)などである。
 正極導電剤は、集電性能を高めるために必要に応じて用いられる。正極導電剤は、例えばアセチレンブラック、カーボンブラック及び黒鉛などである。
 正極の含むバインダーは、正極活物質と正極集電体とを結合するために用いられる。正極の含むことのできるバインダーの例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、ポリプロピレン(PP)、ポリエチレン(PE)及びカルボキシメチルセルロース(CMC)である。
 正極合材層に含まれる正極活物質、正極導電剤及びバインダーの割合は、それぞれ、80~95重量%、3~20重量%及び2~7重量%であることが好ましい。
 正極は、例えば、以下の手順で作製することができる。まず、正極活物質、導電剤及びバインダーを、適当な溶媒、例えばN-メチルピロリドンに投入し、スラリーを調製する。このスラリーを正極集電体の表面に塗布し、塗膜を乾燥させる。スラリーは、正極集電体の一つの面にのみ塗布してもよい。或いは、スラリーは、負極集電体の一つの面とそれとは反対の面との両面に塗布してもよい。乾燥させた塗膜をプレスして所望の密度を有する正極合材層とすることにより、正極が完成する。
 (3)セパレータ
 セパレータは、絶縁性材料からなり、正極と負極との電気的な接触を防止することができる。好ましくは、セパレータは、非水電解質が通過できる材料からなるか、または非水電解質が通過できる形状を有する。セパレータは、例えば合成樹脂製不織布、ポリエチレン製多孔質フィルムやポリプロピレン製多孔質フィルムを一例とするポリオレフィン製多孔質フィルム、およびセルロース系のセパレータである。また、これらの材料を複合したセパレータ、たとえばポリオレフィン製多孔質フィルムとセルロースとからなるセパレータを用いることができる。
 セパレータは、10μm以上100μm以下の直径を有する空孔を含んでいることが好ましい。また、セパレータの厚さが2μm以上30μm以下であることが好ましい。
 (4)非水電解質
 非水電解質は、例えば、非水溶媒と、この非水溶媒に溶解された電解質及び添加剤とを含む。
 非水溶媒は、非水電解質電池に用いられる公知の非水溶媒であってよい。非水溶媒の第1例は、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)などといった環状カーボネートである。非水溶媒の第2例は、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)及びジエチルカーボネート(DEC)となどいった鎖状カーボネート;γ-ブチロラクトン(γ-BL)、アセトニトリル、プロピオン酸メチル、プロピオン酸エチル;テトラヒドロフラン(THF)及び2-メチルテトラヒドロフランといった環状エーテル;並びに、ジメトキシエタン及びジエトキシエタンなどといった鎖状エーテルである。第2例の溶媒は、第1例の溶媒と比較して一般に低粘度である。また、非水溶媒は、上記の第1例の溶媒と、第2例の溶媒とを混合した溶媒であってよい。
 電解質は、例えばアルカリ塩であり、好ましくはリチウム塩である。電解質は、アニオンのファンデルワールスイオン半径が0.25nm以上0.4nm以下である少なくとも1種類のリチウム塩を含むことが好ましい。このようなリチウム塩は、例えば六フッ化リン酸リチウム(LiPF)、六フッ化ヒ素リチウム(LiAsF)、およびトリフルオロメタンスルホン酸リチウム(LiCFSO)である。好ましくは、電解質は、六フッ化リン酸リチウム(LiPF)である。非水電解質中の電解質の濃度は、好ましくは0.5~2モル/Lである。
 非水電解質の含む添加剤は、ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくともいずれか一方を含む。ジフルオロリン酸塩は、例えばジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウムを含む。モノフルオロリン酸塩は、例えばモノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウムを含む。また、添加剤は、ジフルオロリン酸塩またはモノフルオロリン酸塩の代わりに、フルオロスルホン酸リチウム、リチウムビスボレート、硝酸リチウム、酢酸リチウム、またはプロピオン酸リチウムを含んでもよい。これらの添加物を非水電解質に添加した場合も、ジフルオロリン酸塩と同様に、電池内に残留する水分を安定な化合物へと転換することができる。
 (5)負極端子及び正極端子
 負極端子及び正極端子は、電気伝導性の高い材料から形成されていることが好ましい。集電体に接続する場合、接触抵抗を低減させるために、これらの端子は、集電体と同様の材料からなることが好ましい。
 (6)外装材
 外装材としては、例えば金属製容器又はラミネートフィルム製容器を用いることができるが、特に限定されない。
 外装材として金属製容器を用いることにより、耐衝撃性及び長期信頼性に優れた非水電解質電池を実現することができる。外装材としてラミネートフィルム製容器を用いることにより、耐腐食性に優れた非水電解質電池を実現することができると共に、非水電解質電池の軽量化を図ることができる。
 金属製容器は、例えば、厚さが0.2~5mmの範囲内にあるものを用いることができる。金属製容器は、厚さが0.5mm以下であることがより好ましい。
 金属製容器は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種の金属元素を含んでいることが好ましい。金属製容器は、例えば、アルミニウム又はアルミニウム合金等から作ることができる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属を含む場合、その含有量は1重量%以下にすることが好ましい。これにより、高温環境下での長期信頼性及び耐衝撃性を飛躍的に向上させることができる。
 ラミネートフィルム製容器は、例えば、厚さが0.1~2mmの範囲内にあるものを用いることができる。ラミネートフィルムの厚さは0.2mm以下であることがより好ましい。
 ラミネートフィルムは、例えば金属層と、この金属層を挟み込んだ樹脂層を含む多層フィルムからなる。金属層は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種を含む金属を含むことが好ましい。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装材の形状に成形することができる。
 外装材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。外装材は、用途に応じて様々な寸法を採ることができる。例えば、第1の実施形態に係る非水電解質電池が携帯用電子機器の用途に用いられる場合は、外装材は搭載する電子機器の大きさに合わせて小型のものにすることができる。或いは、二輪乃至四輪の自動車等に積載される非水電解質電池である場合、容器は大型電池用容器であり得る。
 次に、実施形態に係る非水電解質電池の例を、図面を参照しながら更に詳細に説明する。
 図1は、実施形態に係る第1の例の非水電解質電池の一部切欠斜視図である。図2は、図1に示す非水電解質電池のA部の拡大断面図である。
 図1及び図2に示す非水電解質電池100は、扁平型の電極群1を具備する。
 扁平型の電極群1は、負極2と、正極3と、セパレータ4とを含む。
 負極2は、図2に示すように、負極集電体2aと、負極集電体2a上に担持された負極合材層2bとを具備する。正極3は、図2に示すように、正極集電体3aと、正極集電体3a上に担持された正極合材層3bとを具備する。
 図1に示すように、電極群1は、負極2及び正極3をその間にセパレータ4を介在させて偏平形状となるように渦巻き状に捲回した構造を有する。
 図1に示すように、非水電解質電池100において、負極2には帯状の負極端子5が電気的に接続されている。より具体的には、負極端子5が負極集電体2aに接続されている。また、正極3には帯状の正極端子6が電気的に接続されている。より具体的には、正極端子6が正極集電体3aに接続されている。
 また、非水電解質電池100は、容器としてのラミネートフィルム製の外装容器7を更に具備している。すなわち、非水電解質電池100は、ラミネートフィルム製の外装容器7からなる外装材を具備する。
 電極群1は、ラミネートフィルム製の外装容器7内に収容されている。ただし、負極端子5及び正極端子6の端部が外装容器7から延出している。ラミネートフィルム製の外装容器7内には、図示しない非水電解質が収容されている。非水電解質は、電極群1に含浸されている。外装容器7は、周縁部がヒートシールされており、それにより、電極群1及び非水電解質が封止されている。
 次に、第1の実施形態に係る非水電解質電池の第2の例を、図3を参照しながら詳細に説明する。
 図3は、第1の実施形態に係る第2の例の非水電解質電池の一部切欠き斜視図である。
 図3に示す非水電解質電池200は、外装材が金属製容器17a及び封口板17bから構成されている点で、第1の例の非水電解質電池100と異なる。
 扁平型の電極群11は、第1の例の非水電解質電池100における電極群1と同様に、負極2と、正極3と、セパレータ4とを含む。また、電極群11は、電極群1と同様な構造を有している。ただし、電極群11では、後述するとおり負極端子5および正極端子6に代わって、負極タブ15および正極タブ16が負極2および正極3に接続されている。
 図3に示す非水電解質電池200では、このような電極群11が、金属製容器17aの中に収容されている。金属製容器17aは、非水電解質をさらに収納している。金属製容器17aは、金属製の封口板17bにより封止されている。金属製容器17aと封口板17bとは、例えば外装材としての外装缶を構成する。
 負極タブ15aは、その一端が負極集電体2aに電気的に接続され、他端が負極端子15に電気的に接続されている。正極タブ16aは、その一端が正極集電体3aに電気的に接続され、他端が封口板17bに固定された正極端子16に電気的に接続されている。正極端子16は、封口板17bに絶縁部材17cを介して固定されている。正極端子16と封口板17bとは、絶縁部材17cにより電気的に絶縁されている。
 (光電子分光測定)
 負極について、上述したP2/P1、および負極表面上に存在するF並びにそのうちのLiFに帰属されるものの割合は、X線光電子分光(XPS;X-ray Photoelectron Spectrometry)測定により求めることができる。
 XPS測定に用いる測定試料は、次のように準備する。
 先ず、測定対象の負極が含まれている電池セルを放電状態にし、アルゴン(Ar)などの不活性ガス雰囲気下のグローブボックス内で解体する。ここで、セルの充電率が0%になるよう、作動電圧範囲の下限に至るまで1Cで定電流放電した後、さらに電流値が0.2Cになるまで定電圧放電することで実施する。作動電圧の下限値は、例えば1.5Vである。
 グローブボックス内で、電池セルから負極を取り出す。取り出した負極をエチルメチルカーボネートで洗浄する。エチルメチルカーボネートでの洗浄時に、負極上のLiFが洗い流されるのを防ぐため、洗浄は5秒以内に完了させる。その後、負極を自然乾燥し、測定試料を得る。
 測定試料は、不活性雰囲気下でXPSステージにマウントする。例えば、電池セルの解体、負極の取り出し、負極の洗浄および乾燥、並びにXPSステージへのマウントをすべてグローブボックス内で行う。XPSステージにマウントした測定試料は、不活性雰囲気を保ったままXPS測定装置へと導入する。
 XPS測定装置は特に限定されないが、例えばThermo Fisher Scientific社製のVG Theta Probeを用いることができる。測定条件の一例を以下に示す:照射X線:単結晶分光AlKα、X線スポット径:800×400μm、情報深さ:6~7nmである。
 XPS測定装置へと導入した測定試料について、電極表面に対しサーベイスキャン測定(定性分析)および着目元素のナローススキャン測定(状態測定)を実施する。ここで、負極表面上のLiFの詳細を求める場合には、ナローススキャン測定において着目する元素をFとする。
 このように測定して得られたXPSスペクトルについて、二つのピークが現れるように適切にフィッティングを実施する。二つのピークのうち、689~685eVの範囲内に現れるピークはC-F結合に帰属され、684~680eVの範囲内に現れるピークはLi-F結合に帰属される。前者のピーク強度をP1とし、後者のピーク強度をP2として、P2/P1を求める。
 また、それぞれのピークの面積を算出し、Li-F結合に帰属されるピークの面積の割合を求めることで、負極表面上のLiF量を見積もる。具体的には、二つのピーク面積の合計が負極表面上に存在するすべてのFに対応し、Li-F結合に帰属されるピークの面積が負極表面上に存在するLiFに対応する。そのため、二つのピークの合計面積に対するLi-F結合に帰属されるピークの面積の比から、負極表面上のFのうち、LiFに含まれているものの割合を求めることができる。
 (キャピラリー電気泳動)
 非水電解質電池のセル内に含まれているジフルオロリン酸塩やモノフルオロリン酸塩の量は、キャピラリー電気泳動法を用いて求めることができる。
 測定試料には、上述と同様に放電し不活性ガス雰囲気下のグローブボックス内で解体した電池セルから採取した非水電解質を用いる。電気泳動法により測定試料に含まれているジフルオロリン酸塩またはモノフルオロリン酸塩あるいは両方の塩を検出することで、非水電解質電池に含まれているジフルオロリン酸塩またはモノフルオロリン酸塩あるいは両方の塩の量を求めることができる。
 電気泳動の条件の一例を以下に示す:キャピラリー:内径50μm、長さ72cm、印加電圧:-30kV、温度:15℃、泳動液:Agilent Technologies製無機陰イオン分析用バッファ、検出波長:Signal=350(±80)nm、ref=245(±10)nm(間接吸光度法)、測定時間:15min。
 なお、上記Agilent Technologies製無機陰イオン分析用バッファは、水、水酸化ナトリウム、1,2,4,5-ベンゼンテトラカルボン酸、トリエタノールアミン、臭化ヘキサメトニウムからなる。
 第1の実施形態に係る非水電解質電池は、正極と負極と非水電解質とを含む。負極は、活物質として単斜晶型二酸化チタンまたはLi4+aTi12(ここで、-0.5≦a≦3)を含み、バインダーとして分子量が40万以上100万以下であるポリフッ化ビニリデンを含む。非水電解質は、ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくとも何れか一方を含む。また、負極の表面に対する光電子分光測定によって得られるスペクトルにおいて689~685eVの範囲内に現れるピークの強度をP1とし、684~680eVの範囲内に現れるピークの強度をP2としたとき、負極は、0.1≦(P2/P1)≦0.4の関係を満たす。
 このような構成を有するため、第1の実施形態に係る非水電解質電池では、ガス発生が抑制されており、低抵抗を示す。
 (第2の実施形態)
 第2の実施形態によると、電池パックが提供される。この電池パックは、第1の実施形態に係る非水電解質電池を含む。
 第2の実施形態に係る電池パックは、複数の非水電解質電池を備えることもできる。複数の非水電解質電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の非水電解質電池を、直列及び並列の組み合わせで接続することもできる。
 例えば、第2の実施形態に係る電池パックは、第1の非水電解質電池を5つ具備することもできる。これらの非水電解質電池は、直列に接続されることができる。また、直列に接続された非水電解質電池は、組電池を構成することができる。すなわち、第2の実施形態に係る電池パックは、組電池を具備することもできる。
 第2の実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。
 以下に、第2の実施形態に係る電池パックの一例を、図4及び図5を参照しながら説明する。
 図4は、第2の実施形態に係る一例の電池パックの分解斜視図である。図5は、図4の電池パックの電気回路を示すブロック図である。
 図4及び図5に示す電池パック20は、複数個の単電池21を備える。単電池21は、図3を参照しながら説明した第1の実施形態に係る一例の扁平型非水電解質電池100であり得る。
 複数の単電池21は、外部に延出した負極端子5及び正極端子6が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図5に示すように互いに電気的に直列に接続されている。
 プリント配線基板24は、単電池21の負極端子5及び正極端子6が延出する側面に対向して配置されている。プリント配線基板24には、図5に示すようにサーミスタ25、保護回路26及び通電用の外部端子として外部機器への通電用端子27が搭載されている。なお、プリント配線基板24には、組電池23と対向する面に組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード28は、組電池23の最下層に位置する正極端子6に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子5に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33を通して保護回路26に接続されている。
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断できる。所定の条件の一例とは、例えば、サーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件の他の例とは、例えば、単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21もしくは組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図4及び図5の電池パック20の場合、単電池21それぞれに電圧検出のための配線35が接続されている。これら配線35を通して検出信号が保護回路26に送信される。
 正極端子6及び負極端子5が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36及びプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36及びプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
 図4及び図5では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。さらに、組み上がった電池パックを直列及び/又は並列に接続することもできる。
 また、第2の実施形態に係る電池パックの態様は用途により適宜変更される。第2の実施形態に係る電池パックの用途としては、大電流性能でのサイクル性能が望まれるものが好ましい。具体的な用途としては、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。第2の実施形態に係る電池パックは、特に、車載用が好適である。
 第2の実施形態に係る電池パックは、第1の実施形態に係る非水電解質電池を備えているので、低抵抗である。
[実施例]
 以下、実施例に基づいて上記実施形態をさらに詳細に説明する。
 (実施例1)
 実施例1では、以下の手順により、実施例1の非水電解質電池を作製した。
 <正極の作製>
 正極活物質としてLiNi0.33Co0.33Mn0.33、導電剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデンを用意した。これらを、90:5:5の重量比で混合して混合物を得た。
 次に、得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、スラリーを調製した。得られたスラリーを、厚さ20μmのアルミニウム箔に塗布し、乾燥させた。次いで、乾燥させた塗膜をプレスして正極を得た。
 <負極の作製>
 負極活物質としてLiTi12、導電剤としてカーボンブラック、バインダーとして分子量が55万であるポリフッ化ビニリデンを用意した。これらを、90:5:5の重量比で混合して混合物を得た。負極合材層を100重量部としたときのポリフッ化ビニリデンの混合比率は5重量部であった。
 次に、得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、スラリーを調製した。得られたスラリーを、厚さ20μmのアルミニウム箔に塗布し、乾燥させた。次いで、乾燥させた塗膜をプレスした。その後100℃で乾燥を実施し、負極とした。
 <セルの組み立て>
 上記のようにして作製した正極と、厚さ20μmのポリエチレン製多孔質フィルムからなるセパレータと、上記のようにして作製した負極と、もう一枚のセパレータとを、この順序で積層した。得られた積層体を、負極が最外周に位置するように渦巻き状に捲回して電極群を作製した。これをプレスすることにより、偏平状電極群を得た。この扁平状電極群を、厚さ0.3mmのアルミニウムからなる缶形状の容器に挿入して、蓋体(封口板)で封止した。このようにして、厚さ5mm、幅30mm、高さ25mm、重量10gの扁平型非水電解質二次電池を作製した。電池の定格容量は250mAhとした。
 <非水電解質の調製>
 エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)とを体積比で1:2になるように混合して混合溶媒を調製した。この混合溶媒に六フッ化リン酸リチウム(LiPF)を1モル/Lの濃度で溶解した。また、添加剤としてジフルオロリン酸リチウム(LiPO)を混合溶媒に対して10000ppm添加して、非水電解質を調製した。
 <電池の作製>上述のとおりに得られた電極群を収容した外装缶内に、外装缶の表面に設けられた注液口より非水電解質を注入した。次いで、注液口を封止することで非水電解質電池を作製した。
 <電池容量の測定>
 得られた電池を25℃環境下で20mAで電池電圧が2.8Vに達するまで定電流で充電したのちに充電電流が5mAとなるまで定電圧で充電を行った。つづいて20mAで電池電圧が1.5Vになるまで放電した。この際の電池容量を確認したところ得られた電池容量は250mAhであった。
 <光電子分光測定>
 以上のようにして得られた非水電解質電池を用いて、上述したとおりにXPS測定を実施した。測定したXPSスペクトルをフィッティングして得られたピークから、P2/P1を求めた。実施例1の非水電解質電池では、P2/P1は、0.2だった。
 また、二つのピークの面積より求めた負極表面上のFのうち、LiFに含まれているものの割合は、10%だった。
 実施例および比較例の製造条件、並びにXPS測定により得られたP2/P1および負極表面上のLiFの割合を下記表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 非水電解質へのジフルオロリン酸リチウムの添加量を1000ppmとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例3)
 非水電解質へのジフルオロリン酸リチウムの添加量を5000ppmとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例4)
 非水電解質に添加したジフルオロリン酸リチウムの添加量を20000ppmとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例5)
 非水電解質へのジフルオロリン酸リチウムの添加量を30000ppmとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例6)
 負極活物質を単斜晶型TiOとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例7)
 非水電解質へのジフルオロリン酸リチウムの添加量を1000ppmとした以外は、実施例6と同様にして非水電解質電池を作製した。
 (実施例8)
 負極におけるバインダーとして分子量が40万であるポリフッ化ビニリデンを用いた以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例9)
 負極におけるバインダーとして分子量が70万であるポリフッ化ビニリデンを用いた以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例10)
 非水電解質への添加剤を、添加量10000ppmのモノフルオロリン酸リチウムとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例11)
 非水電解質への添加剤を、添加量10000ppmのジフルオロリン酸カリウムとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (実施例12)
 非水電解質への添加剤を、添加量10000ppmのジフルオロリン酸ナトリウムとした以外は、実施例1と同様にして非水電解質電池を作製した。
 (比較例1)
 負極乾燥温度を130℃にした以外は、実施例1と同様にして非水電解質電池を作製した。
 (比較例2)
 負極におけるバインダーとして分子量が200万であるポリフッ化ビニリデンを用いた以外は、実施例1と同様にして非水電解質電池を作製した。
 (比較例3)
 ジフルオロリン酸塩またはモノフルオロリン酸塩のいずれも添加しなかった以外は、実施例1と同様にして非水電解質電池を作製した。
 (比較例4)
 負極におけるバインダーとして分子量が200万であるポリフッ化ビニリデンを用いた以外は、比較例3と同様にして非水電解質電池を作製した。
 (比較例5)
 負極乾燥における乾燥温度を70℃とした以外は、実施例1と同様にして非水電解質電池を作製した。
 (比較例6)
 負極におけるバインダーとして分子量が200万であるポリフッ化ビニリデンを用いた以外は、比較例5と同様にして非水電解質電池を作製した。
 (比較例7)
 ジフルオロリン酸塩またはモノフルオロリン酸塩のいずれも添加しなかった以外は、比較例5と同様にして非水電解質電池を作製した。
 (比較例8)
 負極におけるバインダーとして分子量が200万であるポリフッ化ビニリデンを用いた以外は、比較例7と同様にして非水電解質電池を作製した。
 <電池抵抗の測定>
 実施例1~12の非水電解質電池、並びに比較例1~8の非水電解質電池について、以下のようにして電池抵抗を評価した。
 まず、非水電解質電池のそれぞれを25℃環境下で、電池電圧が2.8Vに達するまで20mAで定電流充電した。次に、充電容量が5mAhとなるまで定電圧充電した。続いて電池電圧が1.5Vに達するまで20mAで放電した。その後電池SOCが50%になるまで定電流充電し、充電容量が5mAhとなるまで定電圧充電した。この際の電池の抵抗を測定し、それぞれの非水電解質電池の抵抗値とした。
 <ガス発生量の評価>
 実施例1~12の非水電解質電池、並びに比較例1~8の非水電解質電池について、以下のようにしてガス発生量を評価した。
 まず、非水電解質電池のそれぞれを25℃環境下で、電池電圧が2.8Vに達するまで20mAで定電流充電した。次に、充電容量が5mAhとなるまで定電圧充電した。
 このように充電したそれぞれの電池を、55℃の環境下で48時間貯蔵した。
 貯蔵後、それぞれの電池について、適宜充放電することにより充電状態(SOC)が50%となるように調整した。50%の充電状態に調整した電池について、25℃環境下で電池セルの中央部にノギスをあて、厚みを計測した。
 計測した厚みに基づいて、貯蔵後の電池セルサイズを算出した。算出した貯蔵後の電池セルサイズと作製直後の電池セルのサイズとの差を比較し、セル膨れ量を求めた。具体的には、作製直後のセル厚さを100%とし、これと比較した貯蔵後セル厚さをセル膨れ量として表した。なお、上述したとおり、作製直後の電池セルのサイズは(外装缶の寸法)、厚さ5mm、幅30mm、高さ25mmである。
 実施例1~12の非水電解質電池、並びに比較例1~8の非水電解質電池について求めた抵抗値およびガス発生量を下記表2にまとめる。
Figure JPOXMLDOC01-appb-T000002
 表1に示すとおり、実施例1~12の非水電解質電池のいずれについても、負極表面に対しXPS測定をして得られたP2/P1の値は、0.1以上0.4以下の範囲内だった。また、いずれについても、負極表面上のFのうち、LiFに含まれているFの割合は20%以下であった。表2に示すとおり、実施例1~12の非水電解質電池のいずれについても、電池抵抗の値が100mOhm以下と低く、また貯蔵後のセル膨れ量も150%以下に抑えられていた。
 一方で、比較例1、3~8の非水電解質電池では、P2/P1の値が0.4を超えており、負極表面上のLiFの割合も20%を超えていた。これらの非水電解質電池では、表2に示すように抵抗値が高く、セル膨れ量が多い結果となった。また、比較例2の非水電解質電池では、負極表面上のLiFの割合およびセル膨れ量が実施例1~12と同程度だったものの、抵抗値が高かった。
 具体的には、比較例1の非水電解質電池では、実施例1~12と比較して抵抗値が高く、貯蔵後のセル膨れ量も165%と多かった。比較例1では、負極の乾燥温度を高くすることで、負極における水分の大部分を取り除くことができたが、PVdFの熱分解がより進行したと考えられる。また、高温乾燥でも取り除けなかった水分とPVdF分解生成物とが反応して過剰なLiFが生成され、それにより抵抗が増加したと考えられる。
 比較例2の非水電解質二次電池では、負極表面におけるP2/P1の値と負極表面上のFのうちLiFであるものの割合とが実施例1~12と同程度だった。これは、分子量200万のPVdFを使用しているため、熱分解が抑制されて、分解生成物の生成量が少なかった結果、LiFの生成が抑えられたものと考えられる。一方で、抵抗値は130mOhmと高かった。これは、分子量が大きいPVdFはそれ自身が抵抗成分となるため、比較例2ではセルの抵抗値が高くなったためと考えられる。
 比較例3の非水電解質二次電池では、抵抗値が高く、貯蔵後のセル膨れ量が230%と多かった。比較例3では、ジフルオロリン酸塩を添加しなかったため、負極における残留水分に起因してLiFの生成量が増加したため、電池抵抗が上昇したと考えられる。また、残留水分の電気分解によりガス発生が促進されたため、ガス発生量が多くなり、その結果セル膨れ量が多くなったと考えられる。
 比較例4の非水電解質二次電池では、抵抗値が高く、貯蔵後のセル増加量が200%と多かった。比較例3と同様に、ジフルオロリン塩を添加しなかったものの、比較例4における抵抗値は比較例3より幾分か低かった。これは、比較例4において分子量200万のPVdFを用いたため、熱分解生成物の生成量が少なく、その結果LiFの生成量が比較的少なかったためと考えられる。それでも、比較例2と同様に高分子量のPVdF自身が抵抗成分となるため、比較例4における抵抗値は、実施例1~12における抵抗値より高かったものと考えられる。
 比較例5の非水電解質二次電池では、抵抗値が高く、貯蔵後のセル膨れ量が250%と多かった。比較例5では、負極の乾燥温度が低かったため、PVdFの熱分解量が少なかったと思われる。その一方で、乾燥が不十分となって残留水分量が多くなり、ジフルオロリン酸リチウムを添加していたにも関わらず残留水分に起因してLiFの生成量が増加した結果、電池抵抗が増加したと考えられる。また、残留水分の電気分解によりガス発生が促進されたためガス発生量が多く、その結果セル膨れ量が多かったと考えられる。
 比較例6の非水電解質二次電池では、抵抗値が高く、貯蔵後のセル膨れ量が230%と多かった。これは、比較例5の非水電解質電池と同様に、比較例6では負極の乾燥温度が低かった結果、PVdFの熱分解量が少なかったものの、残留水分が多かったためと考えられる。さらに、比較例6では高分子量のPVdFを用いていたため、抵抗値がより高くなったと考えられる。
 比較例7の非水電解質二次電池では、抵抗が高く、貯蔵後のセル膨れ量が320%と多かった。比較例7では、負極の乾燥温度が低いことに加え非水電解質にジフルオロリン酸塩を添加しなかったため、負極における残留水分が著しく多かったと考えられる。多量の残留水分に起因して、LiFの生成量が増加しガス発生量が多くなってしまった結果、電池抵抗が高くなるとともにセル膨れ量が多くなったと考えられる。
 比較例8の非水電解質二次電池では、抵抗が高く、貯蔵後セル増加量が300%と多かった。これは、比較例7の非水電解質電池と同様に、比較例8では負極の乾燥温度が低く、且つ非水電解質にジフルオロリン酸塩を添加しなかったためと考えられる。さらに、比較例8では、高分子量のPVdFを用いていたため、抵抗値がより高くなったと考えられる。
(実施例13)
 非水電解質への添加剤を、添加量1000ppmのモノフルオロリン酸リチウムとした以外は、実施例1と同様にして非水電解質電池を作製した。
(実施例14)
 非水電解質への添加剤を、添加量30000ppmのモノフルオロリン酸リチウムとした以外は、実施例1と同様にして非水電解質電池を作製した。
(実施例15)
 非水電解質への添加剤を、添加量1000ppmのジフルオロリン酸ナトリウムとした以外は、実施例1と同様にして非水電解質電池を作製した。
(実施例16)
 負極の乾燥温度を110℃とした以外は、実施例5と同様にして非水電解質電池を作製した。
(実施例17)
 非水電解質への添加剤を、添加量5000ppmのモノフルオロリン酸リチウムと、添加量5000ppmのジフルオロリン酸リチウムとした以外は、実施例1と同様にして非水電解質電池を作製した。
 実施例13~17の非水電解質電池に対し、XPS測定、電池抵抗測定、及びガス発生量測定を実施例1~12に対して行ったのと同様な条件で測定し、その結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3に示すとおり、実施例13~17の非水電解質電池のいずれについても、負極表面に対しXPS測定をして得られたP2/P1の値は、0.1以上0.4以下の範囲内だった。また、いずれについても、負極表面上のFのうち、LiFに含まれているFの割合は20%以下であった。表4に示すとおり、実施例13~17の非水電解質電池のいずれについても、電池抵抗の値が100mOhm以下と低く、また貯蔵後のセル膨れ量も150%以下に抑えられていた。
 以上に説明した少なくとも一つの実施形態及び実施例に係る非水電解質電池は、正極と、活物質としての単斜晶型二酸化チタンまたはLi4+aTi12(-0.5≦a≦3)とバインダーとしての分子量が40万以上100万以下であるポリフッ化ビニリデンとを含み、0.1≦(P2/P1)≦0.4の関係を満たす負極と、ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくともいずれか一方を含む非水電解質とを具備する。ここで、負極の表面に対する光電子分光測定によって得られるスペクトルにおいて、689~685eVの範囲内に現れるピークの強度がP1、684~680eVの範囲内に現れるピークの強度がP2である。このような非水電解質電池では、ガス発生の抑制と低抵抗とが両立されている。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (7)

  1.  正極と、
     活物質としての単斜晶型二酸化チタンまたはLi4+aTi12(-0.5≦a≦3)とバインダーとしての分子量が40万以上100万以下であるポリフッ化ビニリデンとを含み、下記式(I)を満たす負極と、
     ジフルオロリン酸塩またはモノフルオロリン酸塩の少なくともいずれか一方を含む非水電解質とを含む非水電解質電池。
       0.1≦(P2/P1)≦0.4   (I)
     ここで、P1は前記負極の表面に対する光電子分光測定によって得られるスペクトルにおいて689~685eVの範囲内に現れるピークの強度、P2は前記スペクトルにおいて684~680eVの範囲内に現れるピークの強度である。
  2.  前記非水電解質の質量に対する前記ジフルオロリン酸塩またはモノフルオロリン酸塩の質量濃度は、1000ppm以上30000ppm以下である請求項1に記載の非水電解質電池。
  3.  前記負極表面上のFのうち、LiFに含まれているものの割合が20%以下である請求項1又は2に記載の非水電解質電池。
  4.  前記ポリフッ化ビニリデンの分子量が40万以上70万以下である請求項1~3のいずれか1項に記載の非水電解質電池。
  5.  前記負極を100重量部としたとき、前記ポリフッ化ビニリデンの混合比率が5重量部以下である請求項1~3のいずれか1項に記載の非水電解質電池。
  6.  請求項1~5の何れか1項に記載の非水電解質電池を1以上含む電池パック。
  7.  通電用の外部端子をさらに含む、請求項6に記載の電池パック。
PCT/JP2017/009015 2016-03-07 2017-03-07 非水電解質電池及び電池パック WO2017154908A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780005382.9A CN108432025B (zh) 2016-03-07 2017-03-07 非水电解质电池及电池包
JP2018504515A JP6666427B2 (ja) 2016-03-07 2017-03-07 非水電解質電池及び電池パック
EP17763248.6A EP3429019B1 (en) 2016-03-07 2017-03-07 Non-aqueous electrolyte cell and cell pack
US16/124,880 US10559814B2 (en) 2016-03-07 2018-09-07 Nonaqueous electrolyte battery and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-043724 2016-03-07
JP2016043724 2016-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/124,880 Continuation US10559814B2 (en) 2016-03-07 2018-09-07 Nonaqueous electrolyte battery and battery pack

Publications (1)

Publication Number Publication Date
WO2017154908A1 true WO2017154908A1 (ja) 2017-09-14

Family

ID=59789373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009015 WO2017154908A1 (ja) 2016-03-07 2017-03-07 非水電解質電池及び電池パック

Country Status (5)

Country Link
US (1) US10559814B2 (ja)
EP (1) EP3429019B1 (ja)
JP (1) JP6666427B2 (ja)
CN (1) CN108432025B (ja)
WO (1) WO2017154908A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193388A1 (ja) 2020-03-25 2021-09-30 三井化学株式会社 リチウム二次電池
JP7345418B2 (ja) 2020-03-27 2023-09-15 三井化学株式会社 リチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
EP4111522A1 (en) * 2020-02-26 2023-01-04 Tesla, Inc. Difluorophosphate additive compounds and methods thereof for use in energy storage devices
CN111653818A (zh) * 2020-06-22 2020-09-11 上海兰钧新能源科技有限公司 电芯、电芯制作方法和电池
CN117133859A (zh) * 2023-10-23 2023-11-28 宁德时代新能源科技股份有限公司 负极极片、电池单体、电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100771A (ja) * 2003-09-24 2005-04-14 Toshiba Corp 非水電解質電池
JP2007214120A (ja) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2010231960A (ja) * 2009-03-26 2010-10-14 Toshiba Corp 非水電解質電池
JP2013058402A (ja) * 2011-09-08 2013-03-28 Sony Corp 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2014029849A (ja) * 2012-07-04 2014-02-13 Toshiba Corp 非水電解質二次電池及びその製造方法
JP2015187926A (ja) * 2014-03-26 2015-10-29 三井化学株式会社 リチウム二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769291B2 (ja) 2004-03-31 2006-04-19 株式会社東芝 非水電解質電池
KR20220156102A (ko) 2005-10-20 2022-11-24 미쯔비시 케미컬 주식회사 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액
CN107069091A (zh) * 2005-10-20 2017-08-18 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
JP2009054480A (ja) 2007-08-28 2009-03-12 Toshiba Corp 非水電解質電池および電池パック
EP2827431A4 (en) * 2012-03-15 2015-11-18 Toshiba Kk NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND BATTERY ELEMENT BLOCK
JP6319089B2 (ja) * 2012-10-30 2018-05-09 日本電気株式会社 リチウム二次電池
KR102188220B1 (ko) * 2013-04-01 2020-12-08 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스
WO2016017092A1 (ja) * 2014-07-30 2016-02-04 三洋電機株式会社 非水電解質二次電池
JP5807730B1 (ja) * 2015-03-04 2015-11-10 宇部興産株式会社 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
CN111769329B (zh) * 2015-07-31 2022-07-12 宁德新能源科技有限公司 锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100771A (ja) * 2003-09-24 2005-04-14 Toshiba Corp 非水電解質電池
JP2007214120A (ja) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2010231960A (ja) * 2009-03-26 2010-10-14 Toshiba Corp 非水電解質電池
JP2013058402A (ja) * 2011-09-08 2013-03-28 Sony Corp 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2014029849A (ja) * 2012-07-04 2014-02-13 Toshiba Corp 非水電解質二次電池及びその製造方法
JP2015187926A (ja) * 2014-03-26 2015-10-29 三井化学株式会社 リチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193388A1 (ja) 2020-03-25 2021-09-30 三井化学株式会社 リチウム二次電池
JP7345418B2 (ja) 2020-03-27 2023-09-15 三井化学株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
US20190006659A1 (en) 2019-01-03
CN108432025A (zh) 2018-08-21
EP3429019B1 (en) 2020-11-11
JP6666427B2 (ja) 2020-03-13
CN108432025B (zh) 2021-03-30
EP3429019A4 (en) 2019-08-14
US10559814B2 (en) 2020-02-11
EP3429019A1 (en) 2019-01-16
JPWO2017154908A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP5049680B2 (ja) 非水電解質電池及び電池パック
JP6633283B2 (ja) 非水電解質電池、非水電解質電池の製造方法及び電池パック
JP6555506B2 (ja) 非水電解質電池及び電池パック
EP2980894B1 (en) Nonaqueous electrolyte battery and battery pack
JP6666427B2 (ja) 非水電解質電池及び電池パック
JP6151431B1 (ja) 非水電解質電池および電池パック
JP6305263B2 (ja) 非水電解質電池、組電池、電池パック及び車
JP6570843B2 (ja) 非水電解質電池及び電池パック
JPWO2011125180A1 (ja) 非水電解質電池
JP2017168265A (ja) 非水電解質電池、電池パック及び車両
JP6629110B2 (ja) 非水電解質電池、電池パックおよび車両
JP5865951B2 (ja) 非水電解質電池及び電池パック
WO2013145110A1 (ja) 非水電解質二次電池用電極、非水電解質二次電池と電池パック
JP4836612B2 (ja) 非水電解質電池および電池パック
JP6903683B2 (ja) 非水電解質電池及び電池パック
JPWO2018062202A1 (ja) 非水電解質電池及び電池パック
JP7024083B2 (ja) 正極、非水電解質電池、及び電池パック
JP6951555B2 (ja) 電極、非水電解質電池及び電池パック
JP5558498B2 (ja) 非水電解質電池及び電池パック
JP5361940B2 (ja) 非水電解質電池および電池パック
JP5361939B2 (ja) 非水電解質電池および電池パック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763248

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763248

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763248

Country of ref document: EP

Kind code of ref document: A1