CN111653818A - 电芯、电芯制作方法和电池 - Google Patents

电芯、电芯制作方法和电池 Download PDF

Info

Publication number
CN111653818A
CN111653818A CN202010581209.7A CN202010581209A CN111653818A CN 111653818 A CN111653818 A CN 111653818A CN 202010581209 A CN202010581209 A CN 202010581209A CN 111653818 A CN111653818 A CN 111653818A
Authority
CN
China
Prior art keywords
positive
negative
negative electrode
tab
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010581209.7A
Other languages
English (en)
Inventor
江德顺
张五堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Lanjun New Energy Technology Co Ltd
Original Assignee
Shanghai Lanjun New Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Lanjun New Energy Technology Co Ltd filed Critical Shanghai Lanjun New Energy Technology Co Ltd
Priority to CN202010581209.7A priority Critical patent/CN111653818A/zh
Publication of CN111653818A publication Critical patent/CN111653818A/zh
Priority to PCT/CN2020/139887 priority patent/WO2021258694A1/zh
Priority to US18/087,400 priority patent/US20230361355A1/en
Priority to EP20942263.3A priority patent/EP4156354A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明的实施例提供了一种电芯、电芯制作方法和电池,涉及电池生产制造领域。该电芯包括隔离膜、多个正极片和多个负极片,多个正极片和多个负极片交替层叠设置,且相邻的正极片与负极片通过隔离膜隔开。每个正极片包括相对设置的两个第一长边以及相对设置的两个第一短边,其中一个第一长边设置正极集流体,其中一个第一短边设置第一极耳;正极集流体与第一极耳电性连接;和/或每个负极片包括相对设置的两个第二长边以及相对设置的两个第二短边;其中一个第二长边设置负极集流体,其中一个第二短边设置第二极耳;负极集流体与第二极耳电性连接。该电芯组成的电池具有内阻小、电流密度均匀以及散热效果好的特点。

Description

电芯、电芯制作方法和电池
技术领域
本发明涉及电池生产制造领域,具体而言,涉及一种电芯、电芯制作方法和电池。
背景技术
目前的锂离子二次动力电池的尺寸大小没有统一的行业规范,很大程度上是依据电池包的设计来确定动力电池的尺寸型号。对于长宽比较大的长条形的动力电池,传统工艺大多采用在动力电池的短边一侧或者两侧设置极耳,这种设置方式会面临由于电流传输路径过长导致的电芯内阻增大,以及电流密度和温度分布不均等问题。
发明内容
本发明的目的包括,例如,提供了一种电芯、电芯制作方法和电池,其能够增加电流导通路径,减小每层极片电子导通的距离,从而达到降低电池内阻、均分电流密度的效果,并且有利于提高电池工作过程中的散热效果。
本发明的实施例可以这样实现:
第一方面,本发明实施例提供一种电芯,包括隔离膜、多个正极片和多个负极片,多个所述正极片和多个所述负极片交替层叠设置,且相邻的所述正极片与所述负极片通过所述隔离膜隔开;
每个所述正极片包括相对设置的两个第一长边以及相对设置的两个第一短边,其中一个所述第一长边设置正极集流体,其中一个所述第一短边设置第一极耳;所述正极集流体与所述第一极耳电性连接;
和/或每个所述负极片包括相对设置的两个第二长边以及相对设置的两个第二短边;其中一个所述第二长边设置负极集流体,其中一个所述第二短边设置第二极耳;所述负极集流体与所述第二极耳电性连接。
在可选的实施方式中,所述正极片和所述负极片交替层叠设置后,多个所述正极集流体位于同一侧的所述第一长边,多个所述负极集流体位于与所述正极集流体相对的一侧的所述第二长边;
多个所述第一极耳位于同一侧的所述第一短边,多个所述第二极耳位于与所述第一极耳相同侧或相对侧的所述第二短边。
在可选的实施方式中,每个所述正极片分别设有一个所述正极集流体,多个所述正极集流体电性连接。
在可选的实施方式中,所述电芯还包括第一连接基板,所述第一连接基板分别与每个所述正极集流体焊接或铆接,以使多个所述正极集流体电性连接;或者,在多个所述正极集流体之间喷涂金属层,以使多个所述正极集流体电性连接。
在可选的实施方式中,每个所述负极片分别设有一个所述负极集流体,多个所述负极集流体电性连接。
在可选的实施方式中,所述电芯还包括第二连接基板,所述第二连接基板分别与每个所述负极集流体焊接或铆接,以使多个所述负极集流体电性连接;或者,在多个所述负极集流体之间喷涂金属层,以使多个所述负极集流体电性连接。
第二方面,本发明实施例提供一种电芯制作方法,包括:
制备正极片,其中,所述正极片包括相对设置的两个第一长边以及相对设置的两个第一短边,其中一个所述第一长边设置正极集流体,其中一个所述第一短边设置第一极耳;所述正极集流体与所述第一极耳电性连接;
制备负极片,其中,所述负极片包括相对设置的两个第二长边以及相对设置的两个第二短边;其中一个所述第二长边设置负极集流体,其中一个所述第二短边设置第二极耳;所述负极集流体与所述第二极耳电性连接;
制备隔离膜;
将所述正极片和所述负极片交替层叠设置,且相邻的所述正极片与所述负极片通过所述隔离膜隔开。
在可选的实施方式中,所述制备正极片的步骤包括:
在第一基材上按照方格型涂布涂覆正极浆料,使得所述正极浆料的涂层的四边预留空白基材;
烘干所述第一基材上的正极浆料;
辊压并切割所述第一基材,制得所述正极片,以使所述正极片的所述第一长边上的预留空白基材形成所述正极集流体,所述第一短边上的预留空白基材形成所述第一极耳。
在可选的实施方式中,所述制备负极片的步骤包括:
在第二基材上按照方格型涂布涂覆负极浆料,使得所述负极浆料的涂层的四边预留空白基材;
烘干所述第二基材上的负极浆料;
辊压并切割所述第二基材,制得所述负极片,以使所述负极片的所述第二长边上的预留空白基材形成所述负极集流体,所述第二短边上的预留空白基材形成所述第二极耳。
在可选的实施方式中,所述将所述正极片和所述负极片交替层叠设置的步骤还包括:
将多个所述正极集流体层叠设于同一侧的所述第一长边,将多个所述负极集流体层叠设于与所述正极集流体相对的另一侧的所述第二长边;
将多个所述第一极耳层叠设于同一侧的所述第一短边,将多个所述第二极耳层叠设于与所述第一极耳相同侧或相对侧的所述第二短边。
在可选的实施方式中,所述将所述正极片和所述负极片交替层叠设置的步骤之后还包括:
将多个所述正极集流体电性连接;
将多个所述负极集流体电性连接。
在可选的实施方式中,所述将所述正极片和所述负极片交替层叠设置的步骤包括:
所述正极片、所述隔离膜和所述负极片以单片叠片方式形成半成品裸电芯;
或者,将所述正极片与所述隔离膜热压形成第一复合单元,所述第一复合单元再与所述负极片叠片形成半成品裸电芯;
或者,将所述负极片与所述隔离膜热压形成第二复合单元,所述第二复合单元再与所述正极片叠片形成半成品裸电芯。
第三方面,本发明实施例提供一种电池,包括外壳和前述实施方式中任一项所述的电芯,所述电芯设于所述外壳内。
本发明实施例的有益效果包括,例如:
该电芯的正极片采用在其中一条第一长边设置正极集流体,在其中一条第一短边上设置第一极耳,负极片采用在其中一条第二长边设置负极集流体,在其中一条第二短边上设置第二极耳,通过在长边设置正极集流体和负极集流体可以增加电流传导通道,使得电流分布更加均匀,降低电阻,并且有利于提高散热效果。
该电芯制作方法中,通过在正极片的长边设置正极集流体,在负极片的长边设置负极集流体,正极集流体与第一极耳连接,负极集流体与第二极耳连接,制作工艺简单,能够增加电流导通路径,减小每层极片电子导通的距离,从而达到降低电芯内阻、均分电流密度的目的,并且有利于提高电池工作过程中的散热效果。
该电池包括上述的电芯,组装方便,有利于降低电池内阻、均分电流密度,提高电池工作过程中的散热效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例提供的电芯的一种结构示意图;
图2为本发明实施例提供的电芯的正极片的第一视角的结构示意图;
图3为本发明实施例提供的电芯的正极片的第二视角的结构示意图;
图4为本发明实施例提供的电芯的负极片的第一视角的结构示意图;
图5为本发明实施例提供的电芯的负极片的第二视角的结构示意图;
图6为本发明实施例提供的电芯的第一种叠片方式获得的结构俯视图;
图7为本发明实施例提供的电芯的第二种叠片方式获得的结构俯视图;
图8为本发明实施例提供的电芯的单片叠片结构剖视示意图;
图9为本发明实施例提供的双面正极极片的结构剖视示意图;
图10为本发明实施例提供的单面正极极片的结构剖视示意图;
图11为本发明实施例提供的双面负极极片的结构剖视示意图;
图12为本发明实施例提供的单面负极极片的结构剖视示意图;
图13为本发明实施例提供的第一热复合单元的结构剖视示意图;
图14为本发明实施例提供的第二热复合单元的结构剖视示意图;
图15为本发明实施例提供的第三热复合单元的结构剖视示意图;
图16为本发明实施例提供的一种电芯的第一视角的结构示意图;
图17为本发明实施例提供的一种电芯的第二视角的结构示意图;
图18为本发明实施例提供的另一种电芯的结构剖视示意图。
图标:100-正极片;101-第一长边;103-第一短边;105-第一涂层;107-第一基材;110-正极集流体;130-第一极耳;140-第一连接基板;150-第一留白基材;200-负极片;201-第二长边;203-第二短边;205-第二涂层;207-第二基材;210-负极集流体;230-第二极耳;240-第二连接基板;250-第二留白基材;300-电芯;310-隔离膜;10-双面正极极片;20-双面负极极片;30-单面正极极片;40-单面负极极片;50-第一热复合单元;60-第二热复合单元;70-第三热复合单元。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在不冲突的情况下,本发明的实施例中的特征可以相互结合。
出行电动化、未来能源清洁化是未来汽车工业的发展趋势,我国通过补贴及双积分政策等鼓励电动车行业的发展,挪威、英国、日本、美国等纷纷亮出电动化时间表。近年来电动车销量呈非线性增长,2017年全球电动车销售突破百万台,目前电动车市场开始全面爆发,市场前景可观。作为动力电池的核心动力部件,锂离子电池成为电动车市场化的关键因素。
目前的锂离子二次动力电池,尤其是长宽比较大的长条形动力电池,传统工艺大多采用在动力电池的短边一侧或者两侧设置极耳,这种设置方式由于电流传输路径过长,容易导致的电芯内阻增大,以及电流密度和温度分布不均等问题。因此,如何在保证能量密度等其他电池性能的同时,尽可能的降低大长宽比动力电池的内阻、均分电流密度以及均匀温度分布、提高动力电池的功率性能就是一个比较棘手的问题。
为了克服现有技术中的缺陷,本申请提出了一种电芯300、电芯300制作方法以及包括该电芯300的电池,尤其适用于长宽比较大的长条形动力电池,能够在尽量保证能量密度等其他电池性能的同时,尽可能的降低大长宽比动力电池的内阻、均分电流密度,均匀温度分布,提高散热效果。
请参考图1,本实施例提供了一种电芯300,适用于大长宽比的长条形动力电池。该电芯300包括正极片100、负极片200和隔离膜310,多个正极片100和多个负极片200交替层叠设置,且相邻的正极片100与负极片200通过隔离膜310隔开,隔离膜310起到绝缘隔离作用。
请参考图2和图3,正极片100呈矩形片状,包括相对设置的两个第一长边101以及相对设置的两个第一短边103,其中一个第一长边101设置正极集流体110,其中一个第一短边103设置第一极耳130,正极集流体110与第一极耳130电性连接;即正极片100的一个长边设置正极集流体110,一个短边设置第一极耳130。可选地,正极片100采用铝箔作为第一基材107(见图10),正极片100的至少一侧表面设有第一涂层105,且在正极片100的其中一条第一长边101上留空基材,留空基材即留空部分不设置第一涂层105,为空白基材,该空白基材作为正极片100的正极集流体110。正极片100的其中一条第一短边103设置第一极耳130,第一极耳130与正极集流体110电性连接。本实施例中,第一极耳130设于其中一条第一短边103的中部,第一短边103设有一段第一留白基材150,第一留白基材150位于第一极耳130与正极集流体110之间,用于实现第一极耳130和正极集流体110的电性连接。本实施例中在正极片100的一条第一长边101和一条第一短边103上分别预留空白基材,第一长边101上的空白基材作为正极集流体110,第一短边103上的空白基材作为第一极耳130与正极集流体110的电性导通体。同一正极片100上的两段空白基材(即一条第一长边101上的空白基材和一条第一短边103上的第一留白基材150)可以一次预留成型,生产工艺更加简单,并且预留的空白基材有利于增加电流传导通道,减小每层极片电子导通的距离,从而达到降低内阻、均分电流密度的目的,也有利于均分温度,提高散热效果。当然,在其他可选的实施方式中,第一极耳130和正极集流体110也可以采用其他方式实现电连接,这里不作具体限定。
类似地,请参考图4和图5,负极片200呈矩形片状,包括相对设置的两个第二长边201以及相对设置的两个第二短边203;其中一个第二长边201设置负极集流体210,其中一个第二短边203设置第二极耳230;负极集流体210与第二极耳230电性连接。可选地,负极片200采用铜箔作为第二基材207(见图11),负极片200的至少一侧表面设有第二涂层205,且在负极片200的其中一条第二长边201上留空基材,留空基材即留空部分不设置第二涂层205,为空白基材,该空白基材作为负极片200的负极集流体210。负极片200的其中一条第二短边203设置第二极耳230,第二极耳230与负极集流体210电性连接。本实施例中,第二极耳230设于其中一条第二短边203的中部,第二短边203设有一段第二留白基材250,第二留白基材250位于第二极耳230与负极集流体210之间,用于实现第二极耳230和负极集流体210的电性连接。本实施例中在负极片200的一条第二长边201和一条第二短边203上分别预留空白基材,第二长边201上的空白基材作为负极集流体210,第二短边203上的空白基材作为第二极耳230与负极集流体210的电性导通体。同一负极片200上的两段空白基材可以一次预留成型,生产工艺更加简单,并且预留的空白基材有利于增加电流传导通道,减小每层极片电子导通的距离,从而达到降低电池内阻、均分电流密度的目的,也有利于提高散热效果。当然,在其他可选的实施方式中,第二极耳230和负极集流体210也可以采用其他方式实现电连接,这里不作具体限定。
多个正极片100和多个负极片200交替层叠设置后,多个正极集流体110相互连接,实现电性导通。多个负极集流体210相互连接,实现电性导通。这样设置,增加了正极片100、负极片200的电流传导通道,有利于电流分布均匀,降低电芯300的内阻,改善电芯300发热不均的问题。
需要说明的是,正极片100中仅在一条第一长边101和一条第一短边103设置空白基材,另一条第一长边101和另一条第一短边103上并没有设置空白基材。负极片200中仅在一条第二长边201和一条第二短边203设置空白基材,另一条第二长边201和另一条第二短边203上并没有设置空白基材。容易理解,第一长边101的长度大于第一短边103的长度,第二长边201的长度大于第二短边203的长度,本实施例中,第一长边101的长度和第二长边201的长度大致相等,第一短边103的长度和第二短边203的长度大致相等。此外,值得注意的是,为了降低电芯300内阻,使电流密度分布更加均匀,也可以仅对正极片100进行改进,即在正极片100的一个长边预留空白基材形成正极集流体110,在一个短边设置第一极耳130,且第一极耳130与正极集流体110电性连接。或者,仅对负极片200进行改进,即在负极片200的一个长边预留空白基材形成负极集流体210,在一个短边设置第二极耳230,且第二极耳230与负极集流体210电性连接。本实施例中,为了实现结构的对称,以及进一步降低内阻、提高电流密度均分性能和散热效果,该电芯300结构是同时对正极片100和负极片200进行改进。
可选地,多个正极片100和多个负极片200交替层叠设置后,多个正极集流体110位于同一侧的第一长边101,多个负极集流体210位于与正极集流体110相对的一侧的第二长边201。多个第一极耳130位于同一侧的第一短边103,多个第二极耳230位于与第一极耳130相同侧或相对侧的第二短边203。即多个负极集流体210与多个正极集流体110分别位于两个长边的相对侧,第一极耳130和第二极耳230既可以分别位于两个短边的相对侧,如图6所示,也可以位于同一侧的短边上,如图7所示。
请参考图8,多个正极集流体110相互连接实现电性导通。可选地,在多个正极集流体110一侧设置第一连接基板140,第一连接基板140为导电材料,包括但不限于金属、石墨等。第一连接基板140分别与每个正极集流体110焊接或铆接,以使多个正极集流体110实现电性连接。或者,在多个正极集流体110之间喷涂、涂敷金属层,以使多个正极集流体110电性连接,这里不作具体限定。在保证所有正极集流体110电性连通的情况下,可以将正极集流体110多余的部分去掉,以减少正极集流体110占用的空间。
类似地,多个负极集流体210相互连接实现电性导通。可选地,在多个负极集流体210一侧设置第二连接基板240,第二连接基板240为导电材料,包括但不限于金属、石墨等。第二连接基板240分别与每个负极集流体210焊接或铆接,以使多个负极集流体210实现电性连接。或者,在多个负极集流体210之间喷涂、涂敷金属层,以使多个负极集流体210电性连接,这里不作具体限定。在保证所有负极集流体210电性连通的情况下,可以将负极集流体210多余的部分去掉,以减少负极集流体210占用的空间。
本实施例中,所有正极集流体110与所述负极集流体210无任何部位接触,完全绝缘断开。多个第一极耳130可以采用焊接方式连接起来,并与外部的正极极耳引线焊接;多个第二极耳230可以采用焊接方式连接起来,并与外部的负极极耳引线焊接。
本发明实施例提供的电芯300,其主要装配过程如下:
正极片100的一条第一长边101预留空白基材,作为正极集流体110,一条第一短边103上设置第一极耳130,并且在第一短边103上预留一段空白基材,作为第一极耳130和正极集流体110的电性导通体;负极片200的一条第二长边201预留空白基材,作为负极集流体210,一条第二短边203上设置第二极耳230,并且在第二短边203上预留一段空白基材,作为第二极耳230和正极集流体110的电性导通体。
多个正极片100和多个负极片200交替层叠设置,且每个相邻的正极片100和负极片200之间均设有隔膜,以使正极片100和负极片200绝缘断开。层叠设置后,多个正极集流体110位于同一侧,多个负极集流体210位于同一侧,且多个正极集流体110和多个负极集流体210分别位于相对的两侧长边。层叠设置后,多个第一极耳130位于同一侧,多个第二极耳230位于同一侧,且第一极耳130和第二极耳230可以分别位于相对的两侧短边上,也可以位于同时位于同一侧的短边上。
多个正极集流体110通过焊接或喷金等方式实现电连接,多个负极集流体210通过焊接或喷金等方式实现电连接,所有正极集流体110和所有负极集流体210完全绝缘断开,没有任何部位接触。将所有第一极耳130预焊在一起,所有第二极耳230预焊在一起;将电芯300装入外壳内,外壳与正极集流体110之间设有绝缘件,外壳与负极集流体210之间设有绝缘件,防止正极片100或负极片200与外壳接触短路。
本实施例提供的电芯300,通过在正极片100的一侧长边设置正极集流体110,一侧短边设置第一极耳130,第一极耳130与正极集流体110电性连接;在负极片200的一侧长边设置负极集流体210,一侧短边设置第二极耳230,第二极耳230与负极集流体210电性连接,增加电流导通路径,减小每层极片电子导通的距离,从而达到降低电池内阻、均分电流密度的目的,并且有利于提高电池工作过程中的散热效果。
本发明实施例还提供了一种电芯300制作方法,主要包括以下步骤:
S10:制备正极片100,其中,所述正极片100包括相对设置的两个第一长边101以及相对设置的两个第一短边103,其中一个所述第一长边101设置正极集流体110,其中一个所述第一短边103设置第一极耳130;所述正极集流体110与所述第一极耳130电性连接。可选地,在第一基材107上按照方格型涂布涂覆正极浆料,使得正极浆料的涂层的四边预留空白基材,第一基材107可选为铝箔;烘干第一基材107上的正极浆料;辊压并切割第一基材107,制得正极片100,以使正极片100的第一长边101上的预留空白基材形成正极集流体110,第一短边103上的预留空白基材形成第一极耳130。正极片100上的一侧长边预留空白基材以及一侧短边预留空白基材,在制作过程中可以一次性完成,工艺简单,制作效率高。
S20:制备负极片200,其中,负极片200包括相对设置的两个第二长边201以及相对设置的两个第二短边203;其中一个第二长边201设置负极集流体210,其中一个第二短边203设置第二极耳230;负极集流体210与第二极耳230电性连接。可选地,在第二基材207上按照方格型涂布涂覆负极浆料,使得负极浆料的涂层的四边预留空白基材;烘干第二基材207上的负极浆料;辊压并切割第二基材207,制得负极片200,以使负极片200的第二长边201上的预留空白基材形成负极集流体210,第二短边203上的预留空白基材形成第二极耳230。该工艺简单,制备效率高。
S30:制备隔离膜310。选取聚乙烯多孔膜作为基膜,并在其双侧表面涂敷陶瓷涂层和PVDF粘性涂层,制成隔离膜310,按照设计尺寸分切成相应的宽度待用。
S40:将所述正极片100和所述负极片200交替层叠设置,且相邻的所述正极片100与所述负极片200通过所述隔离膜310隔开。可选地,叠片工艺可以采用Z形叠片方式,也可以采用单片叠片方式,也可以采用隔离膜310与正极片100预先热复合,再与负极片200进行叠片;或者也可以采用隔离膜310与负极片200预先热复合,再与正极片100进行叠片。
S50:将多个所述正极集流体110电性连接;将多个所述负极集流体210电性连接。可选地,实现电性连接可采用焊接或喷金方式,这里不作具体限定。
S60:入壳封装。将裸电芯装入外壳内,完成正负极Tab与外壳极柱焊接后,进行顶盖激光焊接,然后完成密封性检测和水分烘烤。
可以理解,根据实际使用情况或叠片工艺的选择不同,正极片100可以是双面正极极片10,如图9所示,在第一基材107的两个表面均设有第一涂层105;也可以是单面正极极片30,如图10所示,仅在第一基材107的一个表面设置第一涂层105。负极片200可以是双面负极极片20,如图11所示,在第二基材207的两个表面均设有第二涂层205;也可以是单面负极极片40,如图12所示,仅在第二基材207的一个表面设置第二涂层205。
当采用单片叠片方式时,如图8所示,可选地,采用双面正极极片10和双面负极极片20交替层叠设置,详细地,最外层(底层和顶层)分别设一层隔离膜310,底层隔离膜310上方设置单面负极极片40,顶层隔离膜310下方设置单面正极极片30,在单面负极极片40和单面正极极片30之间交替设置双面正极极片10和双面负极极片20,且相邻正极片100和负极片200之间隔一层隔离膜310。最后将位于一侧长边的正极集流体110焊接或喷金实现电连接,将位于另一侧长边的负极集流体210焊接或喷金实现电连接,形成半成品裸电芯。
或者,也可以将正极片100或负极片200与隔离膜310预先热复合形成复合单元,再进行叠片。将正极片100与隔离膜310热压形成第一复合单元,再与负极片200进行叠片。或将负极片200与隔离膜310热压形成第二复合单元,再与正极片100进行叠片。可选地,图13为双层隔离膜310与双面负极极片20的第一热复合单元50剖面结构示意图,图14为双层隔离膜310与单面正极极片30的第二热复合单元60剖面结构示意图,图15为双层隔离膜310与单面负极极片40的第三热复合单元70剖面结构示意图。
如图16和图17所示,以Z形叠片方式获得的叠片电芯300示意图,其中,叠片后,双面正极极片10和双面负极极片20交替层叠设置,每相邻正极片100和负极片200之间均间隔设有隔离膜310。最后将一侧长边的正极集流体110焊接或喷金实现电性导通,将另一侧长边的负极集流体210焊接或喷金实现电性导通。
如图18所示,采用双层隔离膜310与双面负极极片20形成的第一热复合单元50,再与双面正极极片10叠片后形成的叠片电芯300,其中,叠片后,双面正极极片10和双面负极极片20交替层叠设置,且通过复合单元本身的双层隔离膜310隔开,起到绝缘作用。
下面结合具体的制作实施例进行说明:
实施例1
(1)制备正极片100。将正极活性物质材料NMC(811)、导电剂炭黑SP(TIMCAL)、粘结剂PVDF(Arkema)按照质量比96:2:2进行混合,加入容积NMP,用搅拌机搅拌成均匀稳定的正极浆料;将正极浆料按照方格型涂布均匀的涂覆在铝箔上,涂覆时,在涂层四边预留空白基材,不设置涂层;烘干正极浆料后经过辊压、分切、膜切得到如图2、图3所示的正极片100。
(2)制备负极片200。将负极活性物质材料石墨、导电剂乙炔黑、增稠剂CMC、粘结剂SBR按照质量比96.5:0.5:1.5:1.5混合后,加入溶剂去离子水,在搅拌机中搅拌至均匀稳定的负极浆料;将负极浆料按照方格型涂布均匀涂覆在铜箔上,涂覆时,在涂层四边预留空白基材,不设置涂层;烘干负极浆料后经过辊压、分切、膜切得到如图4、图5所示的负极片200。
(3)制备隔离膜310。选取聚乙烯多孔膜作为基膜,并在其双侧表面涂敷陶瓷涂层和PVDF粘性涂层,制成隔离膜310,按照设计尺寸分切成相应的宽度待用。
(4)制备电解液。将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照体积比1:1:1进行混合得到有机溶剂,接着将充分干燥的锂盐LiPF6溶解于混合后的溶剂中,配制成浓度为1mol/L的电解液。
(5)锂离子电池裸电芯的制备。将上述正极片100、隔离膜310、负极片200按照图6所示的结构以Z字型叠片的方式层叠起来,使隔离膜310处于相邻正极片100和负极片200之间,起到隔离作用,最外层采用隔离膜310包裹的单面正极极片30和单面负极极片40,经过热压形成半成品裸电芯。
(6)裸电芯极耳焊接。将半成品裸电芯的所有层长侧边的正极集流体110以最靠近极片侧边缘的位置进行焊接,将第一极耳130边的留白铝箔以最靠近极片边缘的位置进行焊接,使所有层铝箔焊接在一起,并将焊接后焊印外侧多余的铝箔裁切掉,并用绝缘胶带将弯折后的空白铝箔粘贴到电芯300侧面,尽量避免侧边和极耳边的空白铝箔占用空间。同样的,将所有层另一长侧边的负极集流体210和第二极耳230边的留白铜箔按照上述相同方法处理。最后,将所有层第一极耳130(铝箔极耳)预焊在一起,再与正极Tab焊接;将所有层第二极耳230(铜箔极耳)预焊在一起,再与负极Tab焊接;得到如图16、图17所示的裸电芯。
(7)裸电芯入壳封装。将裸电芯装入铝壳外包装内,完成正、负极Tab与外壳极柱焊接后,进行顶盖激光焊接,然后完成密封性检测和水分烘烤。
(8)电芯300注液、化成及测试。电芯300经过灌注电解液、高温浸润后,完成化成、封口及电芯300测试,即得成品锂离子电池。
实施例2
按照实施例1的方法制备正极片100、负极片200、隔离膜310以及电解液,先将双面负极极片20与两层隔离膜310进行热复合,得到如图13所示的第一热复合单元50;将单面正极极片30与两层隔离膜310进行热复合,得到如图14所示的第二热复合单元60;将单面负极极片40与两层隔离膜310进行热复合,得到如图15所示的第三热复合单元70,然后按照图7示意的结构进行叠片,使第一极耳130和第二极耳230位于同一短侧边,形成半成品裸电芯。
然后将半成品裸电芯的所有层长侧边的正极集流体110通过刷涂导电浆料并烘干的方式,使所有层铝箔导电连接在一起;将第一极耳130边的留白铝箔(电性导通体)通过刷涂导电浆料并烘干的方式,使所有层铝箔导电连接在一起;再用绝缘胶带将导电层覆盖并粘贴到电芯300侧面,避免导电层与外壳直接接触短路。同样的,将所有层另一长侧边的负极集流体210、第二极耳230边的留白铜箔按照上述相同方法处理。最后,将所有层第一极耳130(铝箔极耳)预焊在一起,再焊接上正极Tab。将所有层第二极耳230(铜箔极耳)预焊在一起,再焊接上负极Tab,得到如图18所示的裸电芯。
将裸电芯装入铝塑复合膜外包装内,完成正、负极Tab与外壳侧边封装及顶部顶封装后,完成密封性检测和水分烘烤。然后进行电芯300注液、化成及测试,即得成品锂离子电池。
实施例3
按照实施例1的方法制备正极极片、负极极片、隔离膜310以及电解液,然后按照图6示意的结构进行单片叠片,形成半成品裸电芯。
然后将半成品裸电芯的所有层长侧边的正极集流体110(侧边留白铝箔)和正极片100上的电性导通体(第一极耳130边留白铝箔)以最靠近极片侧边缘的位置进行焊接,使所有层铝箔焊接在一起,并将焊接后焊印外侧多余的铝箔裁切掉,并用绝缘胶带将弯折后的空白铝箔粘贴到电芯300侧面,尽量避免侧边和极耳边的空白铝箔占用空间。同样的,将所有层另一侧边的负极集流体210和第二极耳230边留白铜箔按照相同方法处理。最后,将所有层第一极耳130(铝箔极耳)预焊在一起,再焊接上正极Tab。将所有层第二极耳230(铜箔极耳)预焊在一起,再焊接上负极Tab,得到如图8所示的裸电芯。
将裸电芯装入铝塑复合膜外包装内,完成正、负极Tab与外壳侧边封装及顶部封装后,完成密封性检测和水分烘烤。然后进行电芯300注液、化成及测试,即得成品锂离子电池。
本发明实施例提供的电芯300制作方法,通过在正极片100的一侧长边和一侧短边分别进行基材留白设计,即预留空白基材,留白设计的短边一侧设置第一极耳130,长侧边的空白基材作为正极片100的正极集流体110,短边的空白基材作为正极集流体110与第一极耳130的电性导通体;负极片200的一侧长边和一侧短边分别进行基材留白设计,即预留空白基材,留白设计的短边一侧设置第二极耳230,长侧边的空白基材作为负极片200的负极集流体210,短边的空白基材作为负极集流体210与第二极耳230的电性导通体。最后将正极片100和负极片200交替层叠设置,将所有层的正极片100的长侧边、短侧边的空白基材通过焊接或喷金实现电连接,将所有层的负极片200的长侧边、短侧边的空白基材通过焊接或喷金实现电连接,形成裸电芯。该工艺简单,生产效率高,组装方便,并且能够增加电流导通路径,减小每层极片电子导通的距离,从而达到降低电芯300内阻、均分电流密度的目的,并且有利于提高电池工作过程中的散热效果。
本实施例还提供一种电池,包括外壳和上述的电芯300,电芯300采用上述的制作方法制成。外壳尺寸与折叠后的电芯300尺寸相适应,电芯300设于外壳内。可选地,外壳采用铝壳,所有连接起来的正极集流体110与外壳之间设有绝缘件,所有连接起来的负极集流体210与外壳之间设有绝缘件,防止正极集流体110或负极集流体210与外壳接触短路。
综上所述,本发明实施例提供了一种电芯300、电芯300制作方法和电池,具有以下几个方面的有益效果:
该电芯300制作方法通过在正极片100的一侧长边和一侧短边预留空白基材,长侧边的空白基材作为正极片100的正极集流体110,短边的空白基材用于连接短边的第一极耳130和正极集流体110。负极片200的一侧长边和一侧短边预留空白基材,长侧边的空白基材作为负极片200的负极集流体210,短边的空白基材用于连接短边的第二极耳230和负极集流体210。该制作工艺简单,生产效率高,通过该制作方法制得的电芯300,可降低内阻、均分电流密度和温度,散热效果好。
该电池包括上述的电芯300,结构简单,组装方便,尤其适用于长宽比较大的电池领域,通过增加电流导通路径,减小每层极片电子导通的距离,在尽量保证能量密度等其他电池性能的同时,尽可能的降低大长宽比动力电池的内阻、均分电流密度和温度,提高散热效果。并且该电池尽量避免电芯300的内部空间浪费,不用改变模组和Pack的设计,可以保证在满足输出要求的同时,降低成本,提高效益。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

1.一种电芯,其特征在于,包括隔离膜、多个正极片和多个负极片,多个所述正极片和多个所述负极片交替层叠设置,且相邻的所述正极片与所述负极片通过所述隔离膜隔开;
每个所述正极片包括相对设置的两个第一长边以及相对设置的两个第一短边,其中一个所述第一长边设置正极集流体,其中一个所述第一短边设置第一极耳;所述正极集流体与所述第一极耳电性连接;
和/或每个所述负极片包括相对设置的两个第二长边以及相对设置的两个第二短边;其中一个所述第二长边设置负极集流体,其中一个所述第二短边设置第二极耳;所述负极集流体与所述第二极耳电性连接。
2.根据权利要求1所述的电芯,其特征在于,所述正极片和所述负极片交替层叠设置后,多个所述正极集流体位于同一侧的所述第一长边,多个所述负极集流体位于与所述正极集流体相对的一侧的所述第二长边;
多个所述第一极耳位于同一侧的所述第一短边,多个所述第二极耳位于与所述第一极耳相同侧或相对侧的所述第二短边。
3.根据权利要求1所述的电芯,其特征在于,每个所述正极片分别设有一个所述正极集流体,多个所述正极集流体电性连接。
4.根据权利要求3所述的电芯,其特征在于,所述电芯还包括第一连接基板,所述第一连接基板分别与每个所述正极集流体焊接或铆接,以使多个所述正极集流体电性连接;或者,在多个所述正极集流体之间喷涂金属层,以使多个所述正极集流体电性连接。
5.根据权利要求1所述的电芯,其特征在于,每个所述负极片分别设有一个所述负极集流体,多个所述负极集流体电性连接。
6.根据权利要求5所述的电芯,其特征在于,所述电芯还包括第二连接基板,所述第二连接基板分别与每个所述负极集流体焊接或铆接,以使多个所述负极集流体电性连接;或者,在多个所述负极集流体之间喷涂金属层,以使多个所述负极集流体电性连接。
7.一种电芯制作方法,其特征在于,包括:
制备正极片,其中,所述正极片包括相对设置的两个第一长边以及相对设置的两个第一短边,其中一个所述第一长边设置正极集流体,其中一个所述第一短边设置第一极耳;所述正极集流体与所述第一极耳电性连接;
制备负极片,其中,所述负极片包括相对设置的两个第二长边以及相对设置的两个第二短边;其中一个所述第二长边设置负极集流体,其中一个所述第二短边设置第二极耳;所述负极集流体与所述第二极耳电性连接;
制备隔离膜;
将所述正极片和所述负极片交替层叠设置,且相邻的所述正极片与所述负极片通过所述隔离膜隔开。
8.根据权利要求7所述的电芯制作方法,其特征在于,所述制备正极片的步骤包括:
在第一基材上按照方格型涂布涂覆正极浆料,使得所述正极浆料的涂层的四边预留空白基材;
烘干所述第一基材;
辊压并切割所述第一基材,制得所述正极片,以使所述正极片的所述第一长边上的预留空白基材形成所述正极集流体,所述第一短边上的预留空白基材形成所述第一极耳。
9.根据权利要求7所述的电芯制作方法,其特征在于,所述制备负极片的步骤包括:
在第二基材上按照方格型涂布涂覆负极浆料,使得所述负极浆料的涂层的四边预留空白基材;
烘干所述第二基材;
辊压并切割所述第二基材,制得所述负极片,以使所述负极片的所述第二长边上的预留空白基材形成所述负极集流体,所述第二短边上的预留空白基材形成所述第二极耳。
10.根据权利要求7所述的电芯制作方法,其特征在于,所述将所述正极片和所述负极片交替层叠设置的步骤还包括:
将多个所述正极集流体层叠设于同一侧的所述第一长边,将多个所述负极集流体层叠设于与所述正极集流体相对的另一侧的所述第二长边;
将多个所述第一极耳层叠设于同一侧的所述第一短边,将多个所述第二极耳层叠设于与所述第一极耳相同侧或相对侧的所述第二短边。
11.根据权利要求7所述的电芯制作方法,其特征在于,所述将所述正极片和所述负极片交替层叠设置的步骤之后还包括:
将多个所述正极集流体电性连接;
将多个所述负极集流体电性连接。
12.根据权利要求7所述的电芯制作方法,其特征在于,所述将所述正极片和所述负极片交替层叠设置的步骤包括:
所述正极片、所述隔离膜和所述负极片以单片叠片方式形成半成品裸电芯;
或者,将所述正极片与所述隔离膜热压形成第一复合单元,所述第一复合单元再与所述负极片叠片形成半成品裸电芯;
或者,将所述负极片与所述隔离膜热压形成第二复合单元,所述第二复合单元再与所述正极片叠片形成半成品裸电芯。
13.一种电池,其特征在于,包括外壳和权利要求1至6中任一项所述的电芯,所述电芯设于所述外壳内。
CN202010581209.7A 2020-06-22 2020-06-22 电芯、电芯制作方法和电池 Pending CN111653818A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010581209.7A CN111653818A (zh) 2020-06-22 2020-06-22 电芯、电芯制作方法和电池
PCT/CN2020/139887 WO2021258694A1 (zh) 2020-06-22 2020-12-28 电芯、电芯制作方法和电池
US18/087,400 US20230361355A1 (en) 2020-06-22 2020-12-28 Cell, Method for Manufacturing Cell, and Battery
EP20942263.3A EP4156354A1 (en) 2020-06-22 2020-12-28 Cell, method for manufacturing cell, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010581209.7A CN111653818A (zh) 2020-06-22 2020-06-22 电芯、电芯制作方法和电池

Publications (1)

Publication Number Publication Date
CN111653818A true CN111653818A (zh) 2020-09-11

Family

ID=72348993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010581209.7A Pending CN111653818A (zh) 2020-06-22 2020-06-22 电芯、电芯制作方法和电池

Country Status (4)

Country Link
US (1) US20230361355A1 (zh)
EP (1) EP4156354A1 (zh)
CN (1) CN111653818A (zh)
WO (1) WO2021258694A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151851A (zh) * 2020-10-30 2020-12-29 珠海冠宇电池股份有限公司 一种能够降低内部温升的叠片式锂离子电池用叠芯
WO2021258694A1 (zh) * 2020-06-22 2021-12-30 上海兰钧新能源科技有限公司 电芯、电芯制作方法和电池
WO2024037442A1 (zh) * 2022-08-19 2024-02-22 比亚迪股份有限公司 单体电池、电池包和车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557417B2 (en) * 2009-12-07 2013-10-15 Samsung Sdi Co., Ltd. Secondary battery
CN108432025B (zh) * 2016-03-07 2021-03-30 株式会社东芝 非水电解质电池及电池包
CN107425198B (zh) * 2017-07-28 2020-01-10 海口博澳国兴新能源科技有限公司 单体超大容量的聚合物锂离子电池及其制造方法
CN109273658A (zh) * 2018-09-21 2019-01-25 珠海格力电器股份有限公司 电池及动力电池
CN110635162A (zh) * 2019-09-23 2019-12-31 深圳市泽塔电源系统有限公司 电化学储能装置及制造方法
CN212113913U (zh) * 2020-06-22 2020-12-08 上海兰钧新能源科技有限公司 电芯和电池
CN111653818A (zh) * 2020-06-22 2020-09-11 上海兰钧新能源科技有限公司 电芯、电芯制作方法和电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021258694A1 (zh) * 2020-06-22 2021-12-30 上海兰钧新能源科技有限公司 电芯、电芯制作方法和电池
CN112151851A (zh) * 2020-10-30 2020-12-29 珠海冠宇电池股份有限公司 一种能够降低内部温升的叠片式锂离子电池用叠芯
CN112151851B (zh) * 2020-10-30 2022-03-29 珠海冠宇电池股份有限公司 一种能够降低内部温升的叠片式锂离子电池用叠芯
WO2024037442A1 (zh) * 2022-08-19 2024-02-22 比亚迪股份有限公司 单体电池、电池包和车辆

Also Published As

Publication number Publication date
EP4156354A1 (en) 2023-03-29
WO2021258694A1 (zh) 2021-12-30
US20230361355A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2021258694A1 (zh) 电芯、电芯制作方法和电池
CN106601960A (zh) 一种纽扣电池及其制造方法
US8232004B2 (en) Power storage device, and method for manufacturing power storage device
KR102158246B1 (ko) 전고체 전지
CN102428600B (zh) 层叠二次电池及其制造方法
WO2021253797A1 (zh) 电动汽车、锂离子电池及其制造方法
TWI643385B (zh) 具有形成在電極接頭的部的凹部的電池
JP5733915B2 (ja) リチウムイオン二次電池
CN115000648A (zh) 电池、电极组件及其制备方法
CN212113913U (zh) 电芯和电池
CN114335407A (zh) 一种极片及电池
WO2022133710A1 (zh) 电化学装置和用电装置
CN109888162A (zh) 具备内嵌式极耳的胶黏结构电芯及其制备方法与锂电池
WO2016067851A1 (ja) 蓄電デバイス及び蓄電デバイスの製造方法
JP2011129446A (ja) ラミネート形電池
CN212380471U (zh) 硬壳纽扣电池
US20160028048A1 (en) Lithium battery and method of manufacturing the same
US20180076474A1 (en) Electrode including an increased active material content
CN204991877U (zh) 一种多极耳锂离子动力电池
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
CN217740753U (zh) 电池及电极组件
CN217062239U (zh) 电芯结构和电池
CN112514106A (zh) 固体电池用正极、固体电池用正极的制造方法、及固体电池
JP5181422B2 (ja) 双極型二次電池
CN214848743U (zh) 一种无集流体的电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination