WO2017150470A1 - 樹脂多孔質膜及びその製造方法 - Google Patents

樹脂多孔質膜及びその製造方法 Download PDF

Info

Publication number
WO2017150470A1
WO2017150470A1 PCT/JP2017/007552 JP2017007552W WO2017150470A1 WO 2017150470 A1 WO2017150470 A1 WO 2017150470A1 JP 2017007552 W JP2017007552 W JP 2017007552W WO 2017150470 A1 WO2017150470 A1 WO 2017150470A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
porous membrane
conductive
membrane
carbon nanotubes
Prior art date
Application number
PCT/JP2017/007552
Other languages
English (en)
French (fr)
Inventor
健 川岸
中山 喜美男
高橋 淳也
達也 庄司
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2018503305A priority Critical patent/JPWO2017150470A1/ja
Publication of WO2017150470A1 publication Critical patent/WO2017150470A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a resin porous membrane having conductivity, a method for producing the same, and a fuel cell having a gas diffusion layer using the resin porous membrane.
  • the membrane electrode assembly has a basic configuration including a polymer electrolyte membrane that selectively transports hydrogen ions and a pair of electrode layers disposed on both sides of the polymer electrolyte membrane.
  • the electrode layer has a basic structure including a catalyst layer (a layer made of carbonaceous powder carrying a white metal catalyst) disposed on both sides of the polymer electrolyte membrane and a gas diffusion layer.
  • This gas diffusion layer is generally called GDL (Gas Diffusion Layer), and is a thin layer that exhibits current collection and gas permeability.
  • carbon paper has a high manufacturing cost and lacks flexibility, which makes it difficult to mechanically process and concerns about piercing the electrolyte membrane.
  • As a layer material use of a porous polymer resin film filled with conductive particles has also been studied.
  • Patent Document 1 discloses an invention whose title is “gas diffusion layer for fuel cell and manufacturing method thereof, membrane electrode assembly, and fuel cell”. An explanation can be seen. And this patent document 1 has the detailed description about the gas-diffusion layer for fuel cells which consists of a porous polymer resin film filled with electroconductive particle (electroconductive powder), As an example of electroconductive particle, carbon There are descriptions of fiber, graphite, carbon black and activated carbon. Examples of carbon black include acetylene black, furnace black, ketjen black, and vulcan. Examples of graphite include natural graphite and artificial graphite.
  • Patent Document 1 shows an example of a polymer resin that is a material for forming a porous polymer resin film.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene
  • -Hexafluoropropylene copolymer PVDF (polyvinylidene fluoride)
  • ETFE tetrafluoroethylene / ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether
  • Patent Documents 2 and 3 disclose inventions whose title is “conductive continuous porous film and method for producing the same”.
  • a conductive continuous porous film having a porous communication void portion of 10 ⁇ m to 50 ⁇ m formed by removing particulates to be removed from a thermoplastic resin is proposed.
  • As conductive particles An example in which carbon nanotubes having high conductivity and large-diameter carbon particles having a diameter of 5 ⁇ m or more are used in combination is shown.
  • Patent Document 4 discloses a conductive microfilter obtained by mixing olefin resin or fluororesin with carbon black together with diisodecyl phthalate or an oligomer component and extracting.
  • the conductive continuous porous film described in Patent Documents 2 and 3 uses a method of kneading a removed granular material such as starch together with conductive particles, and after forming and processing into a film shape, In order to obtain a porous film having a high porosity, it is necessary to mix a large amount of particulate matter to be removed. For this reason, the viscosity of the molten resin mixture tends to be high and processing tends to be difficult. In addition, since the size and shape of the pores obtained after extraction depend on the to-be-removed particulate matter to be mixed, it has been difficult to control to various structures.
  • the electroconductive continuous porous film described in Patent Documents 2 and 3 has not been sufficient in terms of achieving both air permeability and electrical conductivity.
  • the filter described in Patent Document 4 is a product using ordinary carbon black as the conductive particles, and is not a product that can substantially obtain the high conductivity required for a gas diffusion layer or the like.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, that is, to obtain a resin porous membrane having excellent conductivity, high air permeability and excellent flexibility, and the resin porous membrane.
  • An object of the present invention is to provide a manufacturing method that can be used. Moreover, it is providing the fuel cell which has a gas diffusion layer using the obtained resin porous membrane.
  • the inventors of the present invention have a resin porous membrane that includes a thermoplastic resin and carbon nanotubes and has carbon nanotubes exposed on the inner wall surface of the porous membrane, while the air permeability indicated by the Gurley value is good.
  • the present inventors have found that the conductive resistance value in the thickness direction is low, the conductivity in the thickness direction is excellent, the flexibility is excellent, and the gas diffusion layer of the fuel cell is suitable. Further, the present inventors knead the organic extraction component compatible with the thermoplastic resin by heating, and then, according to the method of extracting and removing the organic extraction component, the extraction component is not added. And the porous structure of the porous film having conductivity can be controlled while taking advantage of the excellent conductivity of the carbon nanotubes, compared with the method of removing the “particles to be removed”. It was found that it can be easily obtained.
  • the present invention is a resin porous membrane having conductivity including at least a thermoplastic resin and a carbon nanotube,
  • the conductive resistance value in the thickness direction is 15 m ⁇ ⁇ cm 2 or less
  • Gurley value is 1000 seconds / (6.42 cm 2 ⁇ 100 cc) or less
  • the present invention provides a resin porous membrane in which carbon nanotubes are exposed on the inner wall surface of the porous membrane.
  • the present invention provides a resin composition containing at least a thermoplastic resin, carbon nanotubes, and an organic extraction component compatible with the thermoplastic resin by heating, the thermoplastic resin and the organic extraction component,
  • the present invention provides a method for producing a porous resin membrane having conductivity, which is melt-kneaded so as to be compatible with each other, then molded and processed, and then an organic extraction component is extracted and removed from the obtained molded product.
  • FIG. 1A is an observation image of the resin porous membrane obtained in Example 1 at a magnification of 2000 using a scanning electron microscope (SEM).
  • FIG. 1B is an observation image of the resin porous membrane obtained in Example 1 at a magnification of 10,000 times by SEM.
  • FIG. 2A is an observation image of the resin porous membrane obtained in Comparative Example 1 at 2000 times by SEM.
  • FIG. 2B is an observation image of the resin porous membrane obtained in Comparative Example 1 at 10,000 times by SEM.
  • the present invention relates to a porous resin porous membrane.
  • the resin porous membrane means a porous membrane containing a resin. Moreover, what has electroconductivity should just have the resistance value of the thickness direction below the upper limit which the resin porous membrane mentions later.
  • the membrane in the resin porous membrane means that the thickness is small with respect to the length and width. For example, the thickness is preferably 1/100 or less with respect to both the length and width. It is more preferable that it is 1 or less.
  • the resin porous membrane of the present invention has a thermoplastic resin.
  • the type of thermoplastic resin is not particularly limited and can be selected according to the heat resistance and water repellency required for the matrix.
  • the acid resistance From the viewpoint of properties, polyolefin resins and fluorine resins are preferably used.
  • a polyolefin resin is particularly preferably used from the viewpoint of material cost.
  • polyolefin resins include, for example, ethylene homopolymers such as high density polyethylene, low density polyethylene, ultrahigh molecular weight polyethylene, propylene homopolymer (also referred to as “homopolypropylene”), ethylene and propylene, 1-butene, -Random copolymer with one or more ⁇ -olefins such as pentene, 1-hexene, 4-methyl-1-pentene, random polyethylene, or block copolymer of the above composition (also referred to as "block polypropylene”) And modified products thereof.
  • the modified body include modified polyethylene and modified polypropylene.
  • Polyester resins and polyamide resins are not used when used as materials for gas diffusion layers for fuel cells because they are likely to deteriorate under the influence of acidic groups such as sulfonic groups of ionomers used in electrolyte membranes and catalyst layers. However, in other applications, it can be used as necessary.
  • the resin porous membrane having conductivity according to the present invention contains at least carbon nanotubes as conductive fibers.
  • the carbon nanotubes contained in the resin porous membrane of the present invention refer to fine carbon fibers having a diameter of 200 nm or less, and specific examples include vapor grown carbon fibers, single-walled carbon nanotubes, and multi-walled carbon nanotubes.
  • a single-walled carbon nanotube is a seamless cylindrical shape having a diameter in the nanometer region, and a graphene sheet (two-dimensional graphite plane) is in a rounded state.
  • a multi-walled carbon nanotube is a graphene sheet. Has a structure in which a plurality of tubes in a seamlessly rounded state are concentrically stacked, and is composed of about 2 to 30 layers.
  • the production method of the carbon nanotube is not particularly limited, and any conventionally known production method such as a thermal decomposition method using a catalyst, an arc discharge method, a laser evaporation method, a CVD method such as a HiPco method or a CoMoCAT method, etc. May be adopted.
  • single-walled carbon nanotubes sold as reagents and commercially available multi-walled carbon nanotubes can also be used. Examples of commercially available single-walled carbon nanotubes include KH SWCNT HP manufactured by KHC Chemicals, SWNT CG100, SG65, SG76, and CG200 manufactured by Sigma-Aldrich.
  • the diameter of the carbon nanotube is preferably 100 nm or more, more preferably 1 nm or more and 50 nm or less, and particularly preferably 5 nm or more and 20 nm or less.
  • the length of the carbon nanotube is preferably 200 nm or more and 10 ⁇ m or less, and the aspect ratio (the ratio of the length to the diameter) of the carbon nanotube is preferably 20 or more and 1000 or less, and is 100 or more and 1000 or less. Is more preferable.
  • conductive fibers having a diameter larger than that of the carbon nanotubes and / or conductive particles having a particle diameter larger than that of the carbon nanotubes can be used in combination with the carbon nanotubes as necessary.
  • the diameter of the conductive fiber having a diameter larger than that of the carbon nanotube and the particle diameter of the conductive particle having a particle diameter larger than that of the carbon nanotube are preferably about 1 ⁇ m to 100 ⁇ m. Examples of the conductive fiber having a diameter larger than that of the carbon nanotube include carbon fiber.
  • Examples of conductive particles having a particle size larger than the diameter of the carbon nanotube include graphite such as scaly graphite, scaly graphite, expanded graphite, expanded graphite, and spherical graphite, carbon beads, ketjen black, and carbon black.
  • graphite such as scaly graphite, scaly graphite, expanded graphite, expanded graphite, and spherical graphite
  • carbon beads ketjen black
  • carbon black carbon black
  • spherical graphite is particularly preferably used from the viewpoint of conductivity in the thickness direction.
  • the conductive fiber refers to a fibrous conductive material
  • the conductive particles refer to a particulate conductive material.
  • the particulate form here includes powder form, scale form, plate form and the like.
  • the diameter of the conductive fiber can be specified by observing the residue after firing the resin porous film and decomposing and removing the thermoplastic resin with a scanning electron microscope and measuring the dimensions based on the observed image.
  • the diameter of the conductive fiber is the diameter of the circle.
  • the diameter of a conductive fiber can be made into the area conversion diameter when this cross-sectional shape is assumed circular.
  • the particle size of the conductive particles can also be measured by the same method as described above. For example, usually, when heated at a temperature of about 450 ° C., the thermoplastic resin is thermally decomposed, leaving conductive fibers and conductive particles.
  • the amount of the thermoplastic resin is, for example, after measuring the weight of the resin porous membrane, and subtracting the remainder after baking the resin porous membrane to decompose and remove the thermoplastic resin. Thus, it can be estimated.
  • the addition amount of the conductive fiber and / or conductive particles is too small, the conductivity is insufficient, and if it is too large, the strength of the film may become brittle.
  • the amount in the above range is particularly preferred when a resin porous membrane is used as a gas diffusion layer for a fuel cell.
  • the amounts of the conductive particles and the conductive fibers can be estimated as, for example, a residue after baking the resin porous membrane and decomposing and removing the thermoplastic resin.
  • additives such as an antioxidant, a heat stabilizer, an antiblocking agent, and a filler may be included in the resin porous membrane as necessary within a range not impairing the effects of the present invention.
  • an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the thermoplastic resin.
  • the porous resin membrane of the present invention has one of the features that carbon nanotubes are exposed on the inner wall surface when the cross section is observed. Specifically, the carbon nanotubes are exposed on the surface of the pores formed inside the resin porous film. For example, in the example shown in FIG. 1B in which the cross section of the porous resin membrane of Example 1 described later is observed with a scanning electron microscope (SEM), the carbon nanotubes are shown as white thread-like shapes present on the surface of the pores.
  • SEM scanning electron microscope
  • the present inventor considers that one of the reasons why the resin porous membrane of the present invention has high conductivity is that carbon nanotubes are exposed on the inner wall surface.
  • the resin porous membrane of the present invention may be produced by the production method described later.
  • the present inventors have formed a conductive path, for example, by a network of carbon nanotubes exposed on the inner wall surface of the porous body. I think it will be higher. The present inventors presume that the exposure of the carbon nanotubes on the inner wall surface indicates segregation of the carbon nanotubes near the inner wall surface.
  • a porous resin membrane produced using starch as an extractant has an inner wall surface as shown in a SEM observation image of Comparative Example 1 described later. Specifically, the present inventors have confirmed that carbon nanotubes are not exposed on the surface of the pores.
  • the carbon nanotubes are exposed in a mesh form on the inner wall surface from the viewpoint of further increasing the conductivity.
  • FIG. 1B when a large number of thin thread-like carbon nanotubes are present near the inner wall surface, a network-like aggregate composed of a plurality of carbon nanotubes exposed on the inner wall surface is observed.
  • a large number of carbon nanotubes exist so as to cling around the inner wall surface.
  • the carbon nanotubes are preferably exposed on the outer wall surface of the resin porous membrane.
  • the inner wall surface of the resin porous membrane is an inner surface of pores formed in the resin porous membrane.
  • the exposure of the carbon nanotubes in the resin porous membrane can be confirmed by observing the cross section of the resin porous membrane with an SEM.
  • the conductive material is usually observed as a white image.
  • Carbon nanotubes have a specifically thin fiber shape.
  • the cross section can be obtained by, for example, freezing and rupturing, or can be obtained by cutting the resin porous membrane using a cryomicrotome or the like.
  • the cross section may be one obtained by cutting the porous resin membrane in the thickness direction, or may be cut along the plane direction, and the cutting direction is arbitrary.
  • the observation magnification is, for example, preferably 2000 times or more and 200000 times or less, and more preferably 5000 times or more and 50000 times or less.
  • the size of the pores of the porous resin membrane can be confirmed, for example, as the maximum length of a black portion or a blackish portion surrounded by a white portion or a gray portion in an SEM observation image observed at the above magnification. it can.
  • the maximum length here refers to the length of the longest line segment among the line segments that pass through one black portion or dark portion.
  • the maximum length is preferably 1 ⁇ m or more and several hundreds ⁇ m or less, and more preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the size of the pores can be determined as an average of any 10 or more, more preferably 20 or more black or blackish portions.
  • the resin porous membrane preferably has an open cell structure in which pores are connected to each other from the viewpoint of improving the air permeability of the resin porous membrane.
  • an open cell structure With such an open cell structure, the air permeability of the resin porous membrane can be increased. Further, in the open cell structure, since the inner wall becomes a continuous space, the carbon nanotubes are likely to be continuously present inside the porous resin membrane, and this is considered to improve the conductivity.
  • the presence of carbon nanotubes continuously means that, for example, in the SEM image with an observation magnification of 10,000 times, the length in the same direction of the portion where the carbon nanotubes are observed with respect to the length in the vertical direction or the horizontal direction Is preferably 50% or more, and more preferably 80% or more.
  • the ratio in the vertical direction is close to 100%. To be judged.
  • the carbon nanotubes since the carbon nanotubes were observed at almost all positions in the horizontal direction, it is determined that the above ratio in the horizontal direction is also close to 100%.
  • Each of the above ratios does not have to correspond in the SEM observation image in other places as long as it corresponds in one SEM observation image in the resin porous membrane.
  • the resin porous membrane contains conductive fibers or conductive particles other than carbon nanotubes
  • those conductive fibers or conductive particles are also exposed even if they are exposed on the inner wall surface of the resin porous membrane.
  • Conductive fibers or conductive particles other than carbon nanotubes are usually exposed on the inner wall surface and / or outer surface of the resin porous membrane as a size larger than the pores in the resin porous membrane of the above size. Yes.
  • the porous resin membrane of the present invention is high air permeability.
  • the resin porous membrane has a Gurley value (sometimes referred to as “air permeability”) of 1000 seconds / (6.42 cm 2 ⁇ 100 cc) or less.
  • the Gurley value is preferably 100 seconds / (6.42 cm 2 ⁇ 100 cc) or less, more preferably 50 seconds / (6.42 cm 2 ⁇ 100 cc) or less.
  • Such a porous resin membrane has air permeability in the film thickness direction, and can be suitably used as a gas diffusion layer for a fuel cell that needs to diffuse fuel gas.
  • the Gurley value is preferably low, but it is preferably 0.05 seconds / (6.42 cm 2 ⁇ 100 cc) or more, for example, from the viewpoint of securing the strength of the porous resin membrane and the manufacturing cost.
  • a resin porous membrane having a Gurley value can be obtained by producing a resin porous membrane by a production method described later.
  • the Gurley value can be measured by the method described in Examples described later.
  • the porous resin membrane of the present invention is highly conductive because the carbon nanotubes are exposed on the inner wall surface as described above.
  • the porous resin membrane of the present invention is further characterized in that the conductive resistance value in the thickness direction is as low as 15 m ⁇ ⁇ cm 2 or less. Since it has such a low conductive resistance value, it can be suitably used as a gas diffusion layer (GDL: Gas Diffusion Layer) of the present invention.
  • GDL Gas Diffusion Layer
  • Conductive resistance value is low is preferred, 0.1m ⁇ ⁇ cm 2 or more, it is preferable from the viewpoint of the manufacturing cost is particularly 0.5m ⁇ ⁇ cm 2 or more.
  • Such a resin porous membrane having a conductive resistance value can be obtained by producing a resin porous membrane by a production method described later.
  • the conductive resistance value can be measured by the method described in Examples described later.
  • the conductive resistance value in the thickness direction is a value including bulk resistance and interfacial resistance because measurement is performed in a state of being sandwiched between electrodes and pressurized as described later. For this reason, the value is generally larger than the volume resistance calculated from the surface resistance in the in-plane direction using a general four-terminal method.
  • the film thickness of the resin porous membrane varies depending on the use, it is generally preferably 20 ⁇ m or more from the viewpoint of easily maintaining the strength of the resin porous membrane, and 500 ⁇ m or less is air permeability and conductivity in the thickness direction. From the viewpoint of enhancing the properties.
  • the thickness of the resin porous membrane is preferably 20 ⁇ m or more and 500 ⁇ m or less, and more preferably 30 ⁇ m or more and 300 ⁇ m or less. The film thickness can be measured by the method described in Examples described later.
  • thermoplastic resin a thermoplastic resin
  • carbon nanotube a resin composition containing at least an organic extraction component compatible with the thermoplastic resin by heating.
  • the thermoplastic resin and the organic extraction component are After melt-kneading so as to be compatible, molding is carried out, and then the organic extraction component is extracted and removed from the obtained molded product.
  • other conductive fibers or conductive particles can be added to the resin composition.
  • thermoplastic resin, carbon nanotube, other conductive fiber or conductive particle, and other additives used those mentioned above can be used in the above-mentioned quantitative ratio.
  • the organic extraction component used in the present invention is not particularly limited as long as it is compatible with the thermoplastic resin by heating, and the type of thermoplastic resin used and the required pore size of the porous membrane It can be selected appropriately depending on the shape.
  • the fact that the thermoplastic resin and the extraction component are compatible can be generally confirmed by visual observation because both the thermoplastic resin and the extraction component are apparently uniform in a fluid state.
  • the organic extraction component is compatible with the thermoplastic resin is determined if the thermoplastic resin and the organic extraction component are melt-kneaded without adding conductive particles, the compatible resin composition is transparent or translucent However, when this is cooled, it can also be confirmed from the fact that a cloud point usually associated with phase separation is observed.
  • Judgment that the thermoplastic resin and the extraction component are compatible may be made by either of the above two methods. Usually, the compatibility is performed at a temperature higher than the melting temperature of the thermoplastic resin.
  • organic extraction components that are compatible with the thermoplastic resin at a temperature higher than the melting temperature of the thermoplastic resin include liquid paraffin, solid paraffin (wax), and other carbonized mineral oils.
  • examples include esters and phenyl ethers such as diphenyl ether (DPE).
  • the type of organic extraction component to be used is appropriately selected depending on the compatibility of the polyolefin resin and ease of extraction.
  • the organic extraction component used affects the structure of the resulting porous membrane.
  • a crystalline polymer is used as a thermoplastic resin, and an organic extraction component that is highly compatible with the crystalline polymer and causes solid-liquid phase separation without causing liquid-liquid phase separation with the resin during the cooling process is selected.
  • the resulting porous film has a structure in which spherulites are connected and vacancies exist between lamella stacks or outside the spherulites.
  • the porous structure is similar to a cell structure in which fine pores are uniformly dispersed.
  • a porous membrane similar to an interconnected structure derived from spinodal decomposition is obtained.
  • a liquid-liquid phase separation is induced to promote structure formation, so that a porous film similar to a cell structure or an interconnected structure derived from spinodal decomposition is obtained. It is done.
  • the oligomer component of the fluorine resin to be used is used suitably as an organic extraction component which is substantially compatible at the melting temperature or higher.
  • the amount of the organic extraction component varies depending on the type of thermoplastic resin used, the amount of conductive particles added, and the intended use, it is generally more than 100 parts by weight with respect to 100 parts by weight of the thermoplastic resin. From the viewpoint of easily obtaining a highly porous resin porous membrane. Further, the amount of the organic extraction component is preferably 500 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin from the viewpoint of obtaining a porous resin film having high conductivity and strength. From these viewpoints, the amount of the organic extraction component is more preferably 100 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the method of melt kneading is not particularly limited as long as each component is uniformly mixed.
  • known blenders, kneaders, and twin screw extruders that can be thermally melted are preferably used.
  • the melt-kneading temperature should just be more than the temperature from which a thermoplastic resin and an organic type extraction component become a compatible state.
  • the time for melt kneading is not particularly limited.
  • the kneading conditions are determined by using torque as a barometer under conditions where the thermoplastic resin is uniformly compatible with the organic extraction component and the carbon nanotubes and other conductive particles are uniformly dispersed.
  • the melt-kneaded resin composition is formed into a sheet having an appropriate film thickness as necessary.
  • mold into a sheet form For example, the well-known shaping
  • the formed sheet may be subjected to a rolling process. The rolling treatment is performed for the purpose of further increasing the conductivity of the resin porous film by bringing the carbon nanotubes in the porous film close to each other and making the carbon nanotubes easily exposed on the inner wall surface.
  • the temperature of the roll is preferably room temperature or higher and the melting point of the thermoplastic resin + 20 ° C. or lower, particularly preferably room temperature or higher and below the melting point of the thermoplastic resin.
  • the room temperature is 25 ° C., for example.
  • the thermoplastic resin and the organic extraction component that are compatible with each other induce phase separation with cooling to form domains (regions). At this time, a domain that has become an organic extraction component is extracted in the next step, whereby a porous film is obtained.
  • Cooling conditions are important factors in controlling the size of each other's domains. Generally, when rapidly cooling (quenching), the domains of the thermoplastic resin and the organic extraction component are small and gradually cooled ( When the temperature is gradually cooled, the domains of each other become larger, and a film with higher air permeability is finally obtained when the temperature is gradually cooled.
  • the slow cooling referred to here is, for example, preferably a temperature lowering rate of 100 ° C./min or less, and more preferably 50 ° C./min or less.
  • rapid cooling for example, it is preferable to lower the temperature at a speed faster than the upper limit of these temperature lowering speeds.
  • the molded sheet-shaped resin composition becomes a porous film by extracting and removing the organic extraction component.
  • the method for extracting the organic extraction component is to continuously feed the sheet-shaped resin composition into a tank filled with the extraction solvent and immerse it in the tank for a sufficient time to remove the organic extraction component. Then, it may be carried out by drying the solvent adhering to it, or it may be carried out by a batch method.
  • the extraction solvent is supplied from the reverse direction with respect to the traveling direction of the sheet-shaped resin composition or the multi-stage method of sequentially feeding the sheet-shaped resin composition to each tank having a concentration difference by dividing the inside of the tank into multiple stages.
  • Applying a known means such as a counter-current method for creating a concentration gradient is preferable because it increases the extraction efficiency. It is important to substantially remove the organic extraction component from the sheet-shaped resin composition. Further, it is more preferable to heat the extraction solvent within the range below the boiling point of the solvent, since the diffusion between the organic extraction component and the solvent can be promoted, and the extraction efficiency is increased.
  • the extraction solvent used in the present invention is a poor solvent for thermoplastic resins, and may be a good solvent for organic extraction components. If the boiling point of the solvent is lower than the melting point of the thermoplastic resin, it is preferable because drying after extracting the organic extraction component is easy.
  • the boiling point of the solvent is more preferably 100 ° C. or lower.
  • Such a solvent include hydrocarbons such as n-hexane, cyclohexane and normal heptane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, Examples include ethers such as tetrahydrofuran and diethyl ether, and ketones such as acetone and methyl ethyl ketone.
  • hydrocarbons such as n-hexane, cyclohexane and normal heptane
  • halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane
  • alcohols such as ethanol and isopropanol
  • ethers such as tetrahydrofuran and diethyl ether
  • ketones such as acetone and methyl ethyl ketone.
  • the membrane from which the extracted components have been extracted is dried at an arbitrary temperature to become a conductive porous resin membrane.
  • the drying temperature is not particularly limited as long as it is a temperature at which the thermoplastic resin melts (flows) and the pores are not blocked, but is generally about 50 ° C to 120 ° C.
  • the resin porous membrane of the present invention comprises the above-described production method, that is, a resin composition containing at least the thermoplastic resin, carbon nanotubes, and an organic extraction component compatible with the thermoplastic resin by heating. It is preferably obtained by a method of melt-kneading so that the plastic resin and the organic extraction component are compatible, followed by molding, and then extracting and removing the organic extraction component from the obtained molded product.
  • the inventor of the present invention uses a resin porous membrane produced by this method without using an extraction component, or a resin porous membrane produced using a solid particulate to be removed as an extraction component. It was confirmed that the film was superior in terms of both conductivity and air permeability compared to the film.
  • a method for forming a solid electrolyte membrane-electrode assembly (MEA) by using the porous resin membrane having conductivity of the present invention as a gas diffusion layer (GDL) is not particularly limited.
  • the method or GDE method is preferably used.
  • the CCM method is a method in which an MEA is formed by forming a catalyst layer on both surfaces of an electrolyte membrane in advance (Catalyst Coated Membrane), and then sandwiching with GDL and bonding by hot pressing or the like.
  • the method of forming the catalyst layer on the electrolyte membrane is not particularly limited, and for example, a method of wet coating or spray coating using a catalyst ink, a method of forming a catalyst layer on PTFE and transferring it by hot pressing, etc. can be used. .
  • an MEA can be formed by forming a catalyst layer on the GDL in advance, creating a GDE (Gas Diffusion Electrode), and sandwiching the electrolyte membrane between the two GDEs and bonding them by hot pressing or the like.
  • the method for forming the catalyst layer on the GDL is not particularly limited, and for example, a method such as wet coating or spray coating using a catalyst ink can be used.
  • the catalyst and electrolyte membrane used in the present invention are not particularly limited, and can be suitably selected from known ones according to required performance, fuel type, and the like.
  • the GDL comprising the porous resin membrane of the present invention may be used for only one of the positive electrode and the negative electrode in MEA, or may be used for both.
  • the conductive resin porous membrane of the present invention is used as GDL, it is more preferable to perform water repellent treatment or form a moisture management layer (MPL: Micro Porous Layer) as necessary.
  • MPL moisture management layer
  • the method of water repellent treatment is not particularly limited, and a known method can be used. Specifically, it is achieved by applying or dipping a polytetrafluoroethylene (PTFE) dispersion or a commercially available water repellent (such as Novec (registered trademark) manufactured by 3M).
  • PTFE polytetrafluoroethylene
  • a commercially available water repellent such as Novec (registered trademark) manufactured by 3M.
  • MPL it can be formed by a known method such as application of a mixed ink of PTFE and carbon black.
  • the MEA having the conductive resin porous membrane according to the present invention as a GDL is generally a polymer electrolyte fuel cell (PEFC) or a direct methanol fuel cell (DMFC: Direct Methanol Fuel Cell). It can utilize suitably as a constituent material of a fuel cell called. That is, the fuel cell of the present invention has an MEA.
  • the MEA includes the electrolyte membrane, a pair of catalyst layers laminated on both sides of the electrolyte membrane, and the electrolyte membranes in the pair of catalyst layers, respectively. And a pair of GDLs stacked on opposite surfaces, and at least one of the pair of GDLs is made of the conductive resin porous membrane of the present invention.
  • one of the pair of laminates composed of the catalyst layer and the GDL constitutes a positive electrode, and the other constitutes a negative electrode.
  • the fuel for the positive electrode and the negative electrode is not particularly limited.
  • air or oxygen can be suitably used for the positive electrode, and hydrogen can be suitably used for the negative electrode.
  • the porous resin membrane having conductivity according to the present invention can be manufactured by a simple method and the raw material cost is relatively low, a porous membrane having a large area can be manufactured at a low cost. Therefore, it is possible to reduce the member cost by using it as GDL instead of carbon paper, which is relatively expensive. In addition, since bending resistance is extremely superior compared to carbon paper, it is considered possible to improve yield in actual production and durability in long-term operation. Furthermore, with the recent thinning of the electrolyte membrane, there is a concern that the thick and hard carbon fibers constituting the carbon paper may pierce the electrolyte membrane and cause cross leaks or micro shorts.
  • the conductive resin porous membrane of the present invention Is flexible, so there is little fear of piercing the electrolyte membrane, and there is a possibility that it can contribute to performance improvement by reducing the thickness of the electrolyte membrane.
  • Multi-walled carbon nanotube (CNT) AMC (registered trademark) manufactured by Ube Industries, Ltd.
  • Liquid paraffin Reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • Wako First Grade Dibutyl Phthalate (DBP) Reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • DPE Wako First Grade Diphenyl Ether
  • Reagent Wako Special Starch Potato Starch ( (Commercially available product): Particle size of about 20-40 ⁇ m
  • the following physical properties of the conductive resin porous membranes obtained in the following examples and comparative examples were measured by the following methods.
  • Measurement of film thickness The thickness of the obtained conductive resin porous membrane was measured using a high precision digital length measuring instrument MINIAX PH-13 manufactured by Tokyo Seimitsu Co., Ltd. and a display unit DH-150 of the same company.
  • the obtained conductive resin porous membrane was cut into a predetermined size, the thickness and weight were measured, and the apparent density and porosity were calculated from the following formulas.
  • the bulk density of the resin kneaded body refers to the density of the resin kneaded body obtained by kneading components other than the organic extraction component in the composition in the corresponding production example.
  • Apparent density (g / cm 3 ) Membrane weight (g) / (Membrane area (cm 2 ) ⁇ Thickness (cm))
  • Porosity (%) (1-density of porous membrane) / bulk density of resin kneaded body ⁇ 100
  • Gurley value air permeability
  • unit: sec / (6.42 cm 2 ⁇ 100 cc) The Gurley value (air permeability, unit: sec / (6.42 cm 2 ⁇ 100 cc)) of the obtained conductive polyimide porous membrane was measured.
  • a Gurley-type densometer PA-301 manufactured by Tester Sangyo Co., Ltd. and a digital auto counter PA-302 manufactured by the same company measurement was performed in accordance with JISP8117.
  • MEA was prepared by CCM method.
  • platinum-supported carbon particles TEC10E60E manufactured by Tanaka Kikinzoku Co., Ltd., platinum-supported amount 60 wt% on carbon
  • TEC10E60E platinum-supported amount 60 wt% on carbon
  • water 1 g in a 50 ml sample bottle
  • 5 wt% Nafion dispersion manufactured by Sigma-Aldrich, USA
  • this catalyst paste is coated on a support (PTFE sheet, thickness 100 ⁇ m), dried in a hot air dryer at 60 ° C. for 1 hour, and further vacuum-dried at 90 ° C. for 30 minutes to carry platinum on the support.
  • a catalyst layer having an amount of 0.27 mg / cm 2 was prepared.
  • Nafion 1135 (manufactured by DuPont, USA, Nafion is a registered trademark) was prepared as a solid polymer film. After the catalyst layers formed on the support were respectively laminated on both sides of the solid polymer membrane, hot pressing was performed for 5 minutes under conditions of a temperature of 135 ° C. and a pressure of 5 MPa to prepare CCM. Furthermore, after the conductive resin porous membrane of the present invention was immersed in a water repellent treatment agent (Novec manufactured by 3M) and dried at 130 ° C. for 30 minutes to perform water repellent treatment, both sides of the CCM prepared earlier were subjected to water repellent treatment. Then, hot pressing was performed for 5 minutes under the conditions of a temperature of 135 ° C. and a pressure of 5 MPa to prepare an MEA having an electrode area of 5 cm 2 .
  • a water repellent treatment agent Novec manufactured by 3M
  • Resin / conductive filler / extractant kneaded product is the same as in Production Example 4 except that homo-PP (E-100GV) and HDPE (5202B) are mixed as a thermoplastic resin in a weight ratio of 1: 1. It was created.
  • Example 1 A commercially available polyimide film (Iupilex 75S) was placed on both surfaces of the kneaded product obtained in Production Example 1, and further hot-pressed at 200 ° C. for 5 minutes while being sandwiched between SUS plates. The sheet was cooled (rapidly cooled) by being sandwiched by a press machine, and the polyimide film on both sides was peeled off to prepare a press sheet. The obtained press sheet is immersed in heptane (40 ° C.), placed in a sharp tabletop ultrasonic cleaning device (100 W) and extracted for 1 minute, and is repeated three times with the heptane changed, and vacuumed at 60 ° C. for 1 hour.
  • heptane 40 ° C.
  • a sharp tabletop ultrasonic cleaning device 100 W
  • Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that the obtained conductive resin porous membrane is excellent in conductivity in the thickness direction and has both high porosity and good air permeability. Moreover, the obtained conductive resin porous membrane was sectioned by freeze-fracturing method in liquid nitrogen, and the section was observed using a scanning electron microscope. The obtained scanning electron microscope images are shown in FIGS. 1A and 1B. As shown in FIGS. 1A and 1B, in the obtained cross section, the inner wall surface of the open cell structure in which fine pores are connected is observed, and some carbon nanotubes are exposed on the inner wall surface. Was confirmed.
  • Example 2 Except for adjusting the spacer and the pressing pressure during hot pressing, the same operation as in Example 1 was performed to obtain a conductive resin porous film having a film thickness of about 165 ⁇ m.
  • Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that the obtained conductive resin porous membrane is excellent in conductivity in the thickness direction and has both high porosity and good air permeability. Further, by SEM observation similar to that in Example 1, it was observed that carbon nanotubes were exposed as a network-like aggregate on the inner wall surface of the resin porous membrane of this example.
  • Example 3 Except for adjusting the spacer and the press pressure during hot pressing, the same operation as in Example 1 was performed to obtain a conductive resin porous film having a film thickness of about 320 ⁇ m.
  • Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that the obtained conductive resin porous membrane is excellent in conductivity in the thickness direction and has both high porosity and good air permeability. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 4 A conductive resin porous membrane having a thickness of about 160 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 2 was used and the spacer and press pressure during hot pressing were adjusted. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that the obtained conductive resin porous membrane is excellent in conductivity in the thickness direction and has both high porosity and good air permeability. It was also shown that the air permeability can be controlled by controlling the amount of the extractant. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 5 Instead of immediately cooling immediately after hot pressing / depressurization, the same operation as in Example 4 was performed except that it was slowly cooled (gradual cooling) over 2 hours while being sandwiched by a press machine, and a conductive film having a film thickness of about 166 ⁇ m was obtained. Porous resin membrane was obtained. Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that the obtained conductive resin porous membrane is excellent in conductivity in the thickness direction and has both high porosity and good air permeability. In addition, it was shown that by slow cooling, the coarsening of the structure of the matrix resin was promoted, and a film having higher air permeability and porosity than that obtained by rapid cooling was obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 6 A conductive resin porous membrane having a film thickness of about 165 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 3 was used and the spacer and press pressure during hot pressing were adjusted. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that the obtained conductive resin porous membrane is excellent in conductivity in the thickness direction and has both high porosity and good air permeability. Moreover, it was shown that air permeability can be controlled by controlling the molecular weight (MFR) of the resin used. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • MFR molecular weight
  • Example 7 Using the kneaded material obtained in Production Example 4 and adjusting the spacer and press pressure during hot pressing, the same operation as in Example 1 was performed to obtain a conductive resin porous film having a film thickness of about 117 ⁇ m. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that the obtained conductive resin porous membrane is excellent in conductivity in the thickness direction and has both high porosity and good air permeability. In addition, it was shown that air permeability can be controlled by controlling the molecular weight (MFR) of the resin used and the amount of the extractant. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • MFR molecular weight
  • Example 8 A conductive resin porous membrane having a thickness of about 120 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 5 was used and the spacer and press pressure during hot pressing were adjusted. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that even when block PP was used as the matrix resin, a film having excellent conductivity in the thickness direction and having both high porosity and good air permeability was obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 9 A conductive resin porous membrane having a thickness of about 118 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 6 was used and the spacer and press pressure were adjusted during hot pressing. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. Even when random PP was used as the matrix resin, it was shown that a film having excellent conductivity in the thickness direction and having a high porosity and good air permeability can be obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 10 A conductive resin porous membrane having a thickness of about 120 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 7 was used and the spacer and the press pressure were adjusted during hot pressing. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. Even when HDPE was used as the matrix resin, it was shown that a film having excellent conductivity in the thickness direction and having both high porosity and good air permeability can be obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 11 A conductive resin porous membrane having a thickness of about 118 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 8 was used and the spacer and press pressure during hot pressing were adjusted. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that even when homo PP and HDPE are used in combination as a matrix resin, a film having excellent conductivity in the thickness direction and having both high porosity and good air permeability can be obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 12 A conductive resin porous membrane having a thickness of about 70 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 9 was used and the spacer and the press pressure were adjusted during hot pressing. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. Even when DBP was used as the extractant, it was shown that a film having excellent conductivity in the thickness direction and having both high porosity and good air permeability can be obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 13 A conductive resin porous membrane having a thickness of about 72 ⁇ m was obtained by performing the same operation as in Example 5 except that the kneaded product obtained in Production Example 9 was used and the spacer and the press pressure were adjusted during hot pressing. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. Even when DBP was used as the extractant, it was shown that a film having excellent conductivity in the thickness direction and having both high porosity and good air permeability can be obtained. In addition, it was shown that by slow cooling, the coarsening of the structure of the matrix resin was promoted, and a film having higher air permeability and porosity than that obtained by rapid cooling was obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Example 14 A conductive resin porous membrane having a thickness of about 124 ⁇ m was obtained by performing the same operation as in Example 1 except that the kneaded product obtained in Production Example 10 was used and the spacer and the press pressure were adjusted during hot pressing. It was. Table 2 shows the physical properties of the obtained conductive resin porous membrane. Even when DPE was used as the extractant, it was shown that a film having excellent conductivity in the thickness direction and having both high porosity and good air permeability can be obtained. Further, by SEM observation similar to that in Example 1, it was observed that the carbon nanotubes were exposed as a network aggregate on the inner wall surface in the porous resin membrane of this example.
  • Comparative Example 1 A commercially available polyimide film (Iupilex 75S) was placed on both sides of the kneaded material obtained in Comparative Production Example 1, and further hot-pressed at 220 ° C. for 5 minutes while being sandwiched between SUS plates. The sheet was cooled (rapidly cooled) by sandwiching it with a pressed machine, and the polyimide film on both sides was peeled off to prepare a press sheet. The obtained press sheet is immersed in a 90 ° C. hot water bath containing 1 wt% ⁇ -amylase for 1 hour, then immersed in an ultrasonic cleaning apparatus (100 W) at 40 ° C. for 5 minutes, and further washed with running water for 1 minute. did.
  • an ultrasonic cleaning apparatus 100 W
  • a conductive resin porous film having a film thickness of about 322 ⁇ m.
  • Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that when the removed granular material (starch) was used as the extractant, the conductivity in the thickness direction was inferior to that of the present invention.
  • the obtained conductive resin porous membrane was sectioned in the same manner as in Example 1 and observed with a scanning electron microscope. Scanning electron microscope images of the cross section are shown in FIGS. 2A and 2B.
  • the obtained film had a porous shape in which large independent vacancies derived from particulates to be removed were partially connected.
  • Comparative Example 2 Except for adjusting the spacer and the pressing pressure during hot pressing, the same operation as in Comparative Example 1 was performed to obtain a conductive resin porous film having a thickness of about 160 ⁇ m. Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that when the removed granular material (starch) was used as the extractant, the conductivity in the thickness direction was inferior to that of the present invention. Moreover, although it was excellent in air permeability, many pinholes were scattered and a porous film having a uniform porous structure could not be obtained.
  • Comparative Example 3 Except for adjusting the spacer and the pressing pressure during hot pressing, the same operation as in Comparative Example 1 was performed to obtain a conductive resin porous membrane having a thickness of about 113 ⁇ m.
  • Table 2 shows the physical properties of the obtained conductive resin porous membrane. It was shown that when the removed granular material (starch) was used as the extractant, the conductivity in the thickness direction was inferior to that of the present invention. Moreover, although it was excellent in air permeability, many pinholes were scattered and a porous film having a uniform porous structure could not be obtained.
  • Example 15 The kneaded product obtained in Production Example 11 was roll-formed at 138 ° C. using a roll press machine (bSA-601 type manufactured by Tester Sangyo Co., Ltd.) and then rolled at 80 ° C. with the roll press machine. .
  • the obtained press sheet is immersed in heptane (40 ° C.), placed in a sharp tabletop ultrasonic cleaning device (100 W) and subjected to extraction treatment for 1 minute, the heptane is changed, and the process is repeated 3 times. Vacuum drying was performed for a time to obtain a conductive resin porous film having a film thickness of about 64 ⁇ m.
  • Table 2 shows the physical properties of the obtained conductive resin porous membrane. Further, by SEM observation similar to that in Example 1, it was observed that carbon nanotubes were exposed as a network-like aggregate on the inner wall surface of the resin porous membrane of this example.
  • the conductive resin porous membrane of the present invention exhibits excellent electrical conductivity, air permeability, and bending resistance, and additionally exhibits excellent mechanical properties and chemical resistance derived from thermoplastic resin (polyolefin). Therefore, it can be suitably used as a gas diffusion layer for a fuel cell that requires particularly high conductivity, gas diffusibility, and acid resistance.
  • thermoplastic resin polyolefin
  • it can be suitably used as a gas diffusion layer for a fuel cell that requires particularly high conductivity, gas diffusibility, and acid resistance.
  • electrode base materials for secondary batteries such as lithium ion batteries, conductive (antistatic) filters, catalyst carriers, electromagnetic wave shields, heat exchangers, hydrogen storage materials, biomaterials, shock absorbers, acoustic parts, etc. It can be suitably used.
  • the porous resin membrane of the present invention is excellent in electrical conductivity, has high air permeability, is highly flexible as compared with conventional carbon paper, etc., is easy to machine, and pierces the electrolyte membrane. There is little concern about it. Moreover, since the resin porous membrane of the present invention can use a general-purpose resin such as polyolefin as a resin component and can be manufactured by a simple manufacturing process, it can be manufactured at a relatively low cost. Moreover, it can be used without concern for corrosion even in an acidic environment. Moreover, the manufacturing method of the resin porous membrane of this invention can manufacture the resin porous membrane which has the electroconductivity of this invention with a simple manufacturing process.
  • the resin porous membrane obtained by the resin porous membrane of the present invention and the above-described production method can be used as a gas diffusion layer for a positive electrode and / or a negative electrode to obtain a fuel cell with excellent characteristics.
  • it can be suitably used for static elimination applications, electromagnetic wave shielding applications, various secondary battery current collectors, and other electrode applications that require air permeability and liquid permeability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本発明の樹脂多孔質膜は、熱可塑性樹脂とカーボンナノチューブとを少なくとも含む導電性を有する樹脂多孔質膜であって、厚み方向の導電抵抗値が15mΩ・cm以下であり、ガーレー値が、1000秒/(6.42cm・100cc)以下であり、多孔質膜の内壁表面にカーボンナノチューブが露出している。多孔質膜の内壁表面にカーボンナノチューブが網目状に露出していることが好ましい。熱可塑性樹脂が、ポリオレフィン系樹脂であることも好ましい。

Description

樹脂多孔質膜及びその製造方法
 本発明は、導電性を有する樹脂多孔質膜及びその製造方法、並びに該樹脂多孔質膜を用いたガス拡散層を有する燃料電池に関する。
 近年、燃料ガスとして水素などの還元性気体を用い、これを空気中の酸素などの酸化性気体で燃焼させて電気を発電させる燃料電池が、環境汚染をもたらす排出ガスが発生しない電池として注目を浴びている。この燃料電池の内では、高分子電解質を有する燃料電池の開発が進んでいる。その高分子電解質を有する燃料電池の単電池は、膜電極接合体(MEA:Membrane-Electrode-Assembly)とその膜電極接合体の両側に配設された一対の導電性セパレータとからなる基本構成を有する。
 上記の膜電極接合体は、水素イオンを選択的に輸送する高分子電解質膜と、この高分子電解質膜の両側に配設された一対の電極層からなる基本構成を有する。そして、この電極層は、高分子電解質膜の両側に配設された触媒層(白金属触媒を坦持した炭素質粉末からなる層)とガス拡散層とからなる基本構成を有する。このガス拡散層は、一般にGDL(Gas Diffusion Layer)と呼ばれ、集電作用とガス透過性とを示す薄層である。
 上記のガス拡散層は、上述のように、集電作用とガス透過性とを示す必要があるところから、これまで、導電性と通気性を示すカーボンペーパー、すなわち炭素繊維をバインダにより結着して不織布とした後、焼成して得たシートの使用が検討されていた。
 しかしながら、カーボンペーパーについては製造コストが高いこと、そして柔軟性が乏しく、このため機械的加工が容易でないことや、電解質膜への突刺しの懸念などの問題があることから、その代わりのガス拡散層の材料として、導電性粒子を充填した多孔質の高分子樹脂膜の使用も検討されている。
 特許文献1には、発明の名称を「燃料電池用ガス拡散層及びその製造方法、膜電極接合体、並びに燃料電池」とする発明が開示されており、上述した燃料電池の基本構成の図示と説明が見られる。そして、この特許文献1には、導電性粒子(導電性粉末)を充填した多孔質の高分子樹脂膜からなる燃料電池用ガス拡散層についての詳しい説明があり、導電性粒子の例として、炭素繊維、グラファイト、カーボンブラック、活性炭の記載がある。カーボンブラックの例として、アセチレンブラック、ファーネスブラック、ケッチェンブラック、バルカンが挙げられている。また、グラファイトの例としては、天然黒鉛と人造黒鉛が挙げられている。
 また、特許文献1には、更に多孔質の高分子樹脂膜の形成材料である高分子樹脂の例が示されており、具体的には、PTFE(ポリテトラフルオロエチレン)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PVDF(ポリビニリデンフロオライド)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などのフッ素系樹脂が挙げられており、なかでも、PTFEが、耐熱性、撥水性、耐薬品性の観点から好ましいと記載されている。
 特許文献2、3には、発明の名称を「導電性連通多孔質フィルム及びその製造方法」とする発明が開示されている。これらの文献では、熱可塑性樹脂に被除去粒状物が除去されて形成された10μm~50μmの多孔質状連通空隙部を有する導電性連通多孔質フィルムが提案されており、導電性粒子としては、導電性の高いカーボンナノチューブと、直径5μm以上の大径炭素粒子を併用された例が示されている。
 一方、特許文献4には、オレフィン樹脂又はフッ素系樹脂にカーボンブラックと共にジイソデシルフタレートやオリゴマー成分を混合し、抽出により得られる導電性ミクロフィルターが開示されている。
米国特許出願公開第2011/207025号明細書 米国特許出願公開第2014/329171号明細書 特開2014-235931号公報 特開昭61-008102号公報
 しかしながら、特許文献1に記載の高分子樹脂膜には、カーボンナノチューブ等の高い導電性が期待出来る導電フィラーは使用されていない。また、特許文献1で示されている膜は、PTFEの水分散体とフィラーを混合後圧延成形し、最終的に乾燥させてシート化したもので、多孔構造を積極的にコントロールしたものではなかった。特許文献1に記載のように抽出成分を用いずに樹脂組成物をシート化すると、導電性及び通気性を十分両立した樹脂多孔質膜が得難い。
 また、特許文献2及び3に記載の導電性連通多孔質フィルムは、導電性粒子と共に澱粉等の被除去粒状物を混練し、フィルム状に成型加工後、抽出する方法を用いたものであり、高い空孔率の多孔質膜を得る為には多量の被除去粒状物を混合する必要がある。その為、溶融樹脂混合物の粘度が高くなりやすく加工が困難となりやすい。また、抽出後に得られる空孔のサイズ、形状は混合する被除去粒状物に依存する為、多様な構造に制御することは困難であった。このため特許文献2及び3に記載の導電性連通多孔質フィルムも、通気性及び導電性を両立する点で十分なものといえなかった。
 更に、特許文献4に記載のフィルターは、導電性粒子として通常のカーボンブラックを用いた物であり、実質的にガス拡散層等に要求される高い導電性が得られる物ではなかった。
 本発明の目的は、上記の従来技術の課題を解決すること、つまり、導電性に優れ、高い通気性を有し、且つ柔軟性に優れた樹脂多孔質膜、および該樹脂多孔質膜を得ることが可能な製造方法を提供することにある。また、得られた樹脂多孔質膜を用いたガス拡散層を有する燃料電池を提供することにある。
 本発明者らは、熱可塑性樹脂とカーボンナノチューブとを含み且つ多孔質膜の内壁表面にカーボンナノチューブが露出している樹脂多孔質膜は、ガーレー値に示される通気性が良好なものでありながら、厚み方向の導電抵抗値が低く厚さ方向の導電性に優れ、柔軟性にも優れ、燃料電池のガス拡散層に好適であることを見出した。
 また本発明者らは、加熱することにより熱可塑性樹脂と相溶可能な有機系抽出成分を混練し、然るのち、有機系抽出成分を抽出除去する方法によれば、抽出成分を加えない場合や「被除去粒状物」を除去する方法と比較して、カーボンナノチューブの優れた導電性を生かしつつ、導電性を有する多孔質膜の多孔構造を制御でき、これにより上記の樹脂多孔質膜が容易に得られることを見出した。
 即ち、本発明は、熱可塑性樹脂とカーボンナノチューブとを少なくとも含む導電性を有する樹脂多孔質膜であって、
 厚み方向の導電抵抗値が15mΩ・cm以下であり、
 ガーレー値が、1000秒/(6.42cm・100cc)以下であり、
 多孔質膜の内壁表面にカーボンナノチューブが露出している、樹脂多孔質膜を提供するものである。
 また本発明は、熱可塑性樹脂と、カーボンナノチューブと、加熱により該熱可塑性樹脂と相溶可能な有機系抽出成分とを少なくとも含有する樹脂組成物を、該熱可塑性樹脂と該有機系抽出成分とが相溶するように溶融混練した後に成形加工し、次いで、得られた成形品から有機系抽出成分を抽出除去する、導電性を有する樹脂多孔質膜の製造方法を提供するものである。
図1Aは、実施例1で得られた樹脂多孔質膜の走査型電子顕微鏡(SEM)による2000倍での観察像である。 図1Bは、実施例1で得られた樹脂多孔質膜のSEMによる10000倍での観察像である。 図2Aは、比較例1で得られた樹脂多孔質膜のSEMによる2000倍での観察像である。 図2Bは、比較例1で得られた樹脂多孔質膜のSEMによる10000倍での観察像である。
 以下、本発明をその好ましい実施形態に基づき詳細に説明する。
 本発明は導電性を有する樹脂多孔質膜に関するものである。樹脂多孔質膜とは、樹脂を含む多孔質膜であることを意味する。また導電性を有するとは、樹脂多孔質膜が後述する上限以下の厚み方向の抵抗値を有していればよい。樹脂多孔質膜における膜とは長さ及び幅に対して厚さが小さなことをいい、例えば、長さ及び幅のいずれに対しても厚さが100分の1以下であることが好ましく、1000分の1以下であることがより好ましい。
<熱可塑性樹脂>
 本発明の樹脂多孔質膜は、熱可塑性樹脂を有する。熱可塑性樹脂の種類は特に限定されず、マトリックスとして要求される耐熱性や撥水性等に応じて選択する事が出来るが、例えば、固体高分子形燃料電池のガス拡散層を想定した場合、耐酸性の観点からポリオレフィン系樹脂やフッ素系樹脂が好ましく用いられる。更に、材料のコスト面からポリオレフィン系樹脂が特に好ましく用いられる。ポリオレフィン系樹脂の例としては、例えば高密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレン等のエチレン単独重合体、プロピレン単独重合体(「ホモポリプロピレン」ともいう)、エチレンとプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン等の1種または2種以上のα-オレフィンとのランダム共重合体、ランダムポリエチレンあるいは前記組成のブロック共重合体(「ブロックポリプロピレン」ともいう)やそれらの変性体が挙げられる。変性体としては、変性ポリエチレン、変性ポリプロピレン等が挙げられる。フッ素系樹脂の例としては、例えばポリクロロトリフルオロエチレン(「三フッ素化樹脂」ともいう)、ポリフッ化ビニリデンポリフッ化ビニル、フッ素化樹脂共重合体パーフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体等の溶融成形可能な樹脂が挙げられる。これらの熱可塑性樹脂は、それぞれ単体で用いてもよいし、二種以上を併用して用いても構わない。ポリエステル樹脂やポリアミド樹脂等は燃料電池用ガス拡散層の材料として用いる場合は電解質膜や触媒層に用いられるアイオノマーのスルホン基等の酸性基の影響を受けて劣化しやすいと考えられる為、使用しない方が好ましいが、その他の用途の場合は必要に応じて用いる事が出来る。
 熱可塑性樹脂の分子量は特に限定されないが、メルトフローレート(MFR)で概ね50g/10min以下が好ましく、より好ましくは10g/10min以下である。MFRが高すぎる場合、後述する製造方法において有機系抽出成分や導電性粒子を多く加えた際に溶融張力が低くなり成形が困難となる。また得られる多孔質膜も脆くなりやすい。MFRが低い分には、有機系抽出成分と相溶する限り、超高分子量ポリエチレン等の溶融流動性を殆ど示さないものであっても有機系抽出成分と相溶する限り使用することが可能であるが、好ましくは0.1g/10min以上であることが熱可塑性樹脂の入手容易性等の観点から好ましい。
 メルトフローレートはJIS K7210(ISO 1133)に準拠し、ポリプロピレンは230℃、2.16kg、ポリエチレンは190℃、2.16kgで測定した値である。
<導電性繊維及び導電性粒子>
 本発明の導電性を有する樹脂多孔質膜は、導電性繊維としてカーボンナノチューブを少なくとも含有する。
<カーボンナノチューブ>
 本発明の樹脂多孔質膜に含まれるカーボンナノチューブは、直径200nm以下の微細炭素繊維を指し、具体的には、気相成長法炭素繊維、単層カーボンナノチューブ、多層カーボンナノチューブ等が挙げられる。本明細書において、単層カーボンナノチューブとは、ナノメートル領域の直径を持つ継ぎ目のない円筒状で、グラフェンシート(2次元のグラファイト平面)が丸まった状態であり、多層カーボンナノチューブとは、グラフェンシートが継ぎ目なく丸まった状態のチューブが同心円状に複数重なった構造をとり、2層~30層程度で構成されるものである。
 カーボンナノチューブの製造方法としては、特に制限されるものではなく、触媒を用いる熱分解法、アーク放電法、レーザー蒸発法、及びHiPco法、CoMoCAT法等のCVD法等、従来公知のいずれの製造方法を採用しても構わない。また、試薬として販売されている単層カーボンナノチューブや市販の多層カーボンナノチューブを用いる事も出来る。市販の単層カーボンナノチューブとしては、KHChemicals社製カーボンナノチューブである、KH SWCNT HP、シグマ-アルドリッチ社製SWNT CG100、SG65、SG76、CG200等を挙げることが出来る。市販の多層カーボンナノチューブの例としては、シグマ-アルドリッチ社製DWNT 755168、BN-1100(ハイペリオン・キャタリシス・インターナショナル社製)、NC7000(ナノシル社製)、C100(アルケマ社製)、VGCF(登録商標)-X(昭和電工社製)、Flotube9000(シーナノテクノロジー社製)、AMC(登録商標)(宇部興産社製)、等を挙げる事が出来る。本発明では材料のコスト面から多層カーボンナノチューブが特に好ましく用いられる。
 コストや取扱容易性、樹脂多孔質膜の導電性等を考慮して、カーボンナノチューブの直径は、100nm以上が好ましく、1nm以上50nm以下がより好ましく、5nm以上20nm以下が特に好ましい。またカーボンナノチューブの長さは、200nm以上10μm以下であることが好ましく、カーボンナノチューブのアスペクト比(直径に対する長さの比率)は、20以上1000以下であることが好ましく、100以上1000以下であることがより好ましい。
<その他の導電性繊維及び導電性粒子>
 本発明では、必要に応じてカーボンナノチューブの直径よりも大きい直径の導電性繊維及び/又はカーボンナノチューブの直径よりも大きい粒径の導電性粒子を、カーボンナノチューブと併用する事が出来る。カーボンナノチューブの直径よりも大きい直径の導電性繊維における直径、及び、カーボンナノチューブの直径よりも大きい粒径の導電性粒子における粒径は、概ね1μm~100μm程度である事が好ましい。カーボンナノチューブの直径よりも大きい直径の導電性繊維の例としては、炭素繊維が挙げられる。また、カーボンナノチューブの直径よりも大きい粒径の導電性粒子の例としては、鱗片状黒鉛、鱗状黒鉛、膨張黒鉛、膨張化黒鉛、球状黒鉛等の黒鉛類、炭素ビーズ、ケッチェンブラック、カーボンブラック等が挙げられ、樹脂多孔質膜を燃料電池用ガス拡散層として用いる場合、厚み方向の導電性の観点から球状黒鉛が特に好適に用いられる。なお、本明細書において、導電性繊維は繊維状の導電材を指し、導電性粒子は粒子状の導電材を指す。ここでいう粒子状とは、粉末状、鱗片状、板状等を含む。
 導電性繊維の直径は、樹脂多孔質膜を焼成して熱可塑性樹脂を分解除去した後の残渣を走査型電子顕微鏡で観察し、その観察像に基づく寸法の測定により特定することが出来る。導電性繊維の直径は、導電性繊維の長手方向と直交する断面が円形である場合は、その円の直径である。また導電性繊維の直径は、導電性繊維の長手方向と直交する断面が円形でない場合は、該断面形状を円形と仮定したときの面積換算径とすることができる。導電性粒子の粒径も、上記と同等の手法で測定することができる。例えば通常、450℃程度の温度で加熱すると、熱可塑性樹脂が熱分解して、導電性繊維及び導電性粒子は残る。
 カーボンナノチューブと、その直径より大きい直径の導電性繊維及び/又はその直径よりも大きい粒径の導電性粒子とを併用することで、カーボンナノチューブを単独で使用するよりも、より多量の導電性粒子を添加することが可能となり、より高い導電性を付与することが出来る場合がある。また、カーボンナノチューブを単独で用いる場合よりも力学特性が向上する場合があり、更に比較的高価なカーボンナノチューブの使用量を減らすことが可能となる為、材料の低コスト化の面でも好適である。
<熱可塑性樹脂、カーボンナノチューブ、その他の導電性繊維及び導電性粒子の含有量>
 本発明の樹脂多孔質膜中、熱可塑性樹脂の量は10重量%以上であることが膜の強度を高める観点や加工性の観点から好ましい。また樹脂多孔質膜中、熱可塑性樹脂の量は、50重量%以下であることが導電性材料の添加量を確保して導電性を高める観点から好ましい。これらの観点から樹脂多孔質膜中の熱可塑性樹脂の量は、10重量%以上50重量%以下であることがより好ましい。
 本発明の樹脂多孔質膜中、熱可塑性樹脂の量は、例えば、樹脂多孔質膜の重量を測定した後、樹脂多孔質膜を焼成して熱可塑性樹脂を分解除去した後の残分を差し引くことで、推定することができる。
 導電性繊維及び導電性粒子の含有量は、求められる導電性等によって適宜調整されるが、カーボンナノチューブを熱可塑性樹脂100重量部に対して概ね30重量部以上100重量部以下、特に40重量部以上80重量部以下とすることが好ましい。また、導電性繊維及び導電性粒子全体としては、熱可塑性樹脂100重量部に対して概ね100重量部以上800重量部以下、特に150重量部以上700重量部以下とすることが好ましい。この量は、導電性繊維のみを含有する場合は、導電性繊維の量であり、導電性繊維及び導電性粒子の両方を含有する場合はその合計量である。導電性繊維及び/又は導電性粒子の添加量が少なすぎると導電性が不足し、多すぎると膜の強度が脆くなってしまう懸念がある。上記の範囲の量は、特に樹脂多孔質膜を燃料電池用ガス拡散層として用いる場合に好ましい。本発明の樹脂多孔質膜中、導電性粒子及び導電性繊維の量は、例えば、樹脂多孔質膜を焼成して熱可塑性樹脂を分解除去した後の残分として推定することができる。
<その他の添加剤>
 本発明では、本発明の効果を損なわない範囲において、必要に応じて酸化防止剤、熱安定剤、ブロッキング防止剤や充填材等の各種添加剤を樹脂多孔質膜に含有させてもよい。特に、熱可塑性樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。
<カーボンナノチューブの露出>
 本発明の樹脂多孔質膜は、その断面を観察したときに、内壁表面にカーボンナノチューブが露出していることにその特徴の一つを有する。具体的には、カーボンナノチューブは、樹脂多孔質膜の内部に形成された空孔の表面に露出している。例えば後述する実施例1の樹脂多孔質膜断面を走査型電子顕微鏡(SEM)で観察した図1Bに示す例では、カーボンナノチューブは空孔表面に存在する白い糸状のものとして示されている。本発明者は、本発明の樹脂多孔質膜が高い導電性を有する原因の一つは、内壁表面にカーボンナノチューブが露出している点にあるとみている。内壁表面にカーボンナノチューブが露出した樹脂多孔質膜を得る為には、後述する製造方法で本発明の樹脂多孔質膜を製造すればよい。
 内壁表面に露出しているカーボンナノチューブにより樹脂多孔質膜の導電性が高められる理由は明確ではない。本発明は何らの理論や推測に縛られるものではないが、本発明者らは、例えば多孔質体の内壁表面に露出したカーボンナノチューブ同士のネットワークにより、導電パスが形成され、これにより導電性が高くなるものとみている。本発明者らは、内壁表面におけるカーボンナノチューブの露出は、内壁表面付近へのカーボンナノチューブの偏析を示すものと推測している。
 これに対し、例えば、特許文献2及び3に記載されているように抽出剤としてデンプンを用いて製造された樹脂多孔質膜は、後述する比較例1のSEM観察像に示すように、内壁表面、具体的には空孔表面にカーボンナノチューブが露出していないことを本発明者らは確認している。
 本発明の樹脂多孔質膜では、導電性を更に高める観点から、カーボンナノチューブは内壁表面に網目状に露出していることが好ましい。図1Bに示すように、細い糸状のカーボンナノチューブが内壁表面付近に多数存在することにより、該内壁表面に露出した、複数のカーボンナノチューブからなる網目状の集合体が観察される。図1Bに示す例のように、本発明においてカーボンナノチューブは内壁表面付近にまとわりつくように多数存在していることが好ましい。また、樹脂多孔質膜の導電性を更に高める為に、カーボンナノチューブは樹脂多孔質膜の外壁表面にも露出していることが好ましい。樹脂多孔質膜の内壁表面とは、具体的には、樹脂多孔質膜中に形成される空孔の内表面である。
 樹脂多孔質膜におけるカーボンナノチューブの露出は、樹脂多孔質膜の断面をSEMにより観察することにより確認できる。SEMによる観察においては、導電性材料は通常白い像として観察される。また、カーボンナノチューブは特異的に細い繊維形状を有している。これらの理由からSEMによる観察によりカーボンナノチューブを特定することができる。断面は、例えば凍結破断により断面出しを行う事も出来るし、クライオミクロトーム等を用いて樹脂多孔質膜を切断することにより得ることもできる。断面は樹脂多孔質膜を厚み方向に切断したものであっても良く、平面方向に沿って切断したものであってもよく、その切断方向は任意である。観察倍率は、例えば2000倍以上200000倍以下であることが好ましく、5000倍以上50000倍以下であることがより好ましい。
 樹脂多孔質膜の空孔の大きさは、例えば、上記倍率で観察したSEM観察像において、白い部分又は灰色の部分に囲まれた黒い部分又は黒みがかった部分の最大長さとして確認することができる。ここでいう最大長さとは、1つの黒い部分又は黒みがかった部分を通る線分のうち最長の線分の長さをいう。この最大長さは、1μm以上数百μm以下であることが好ましく、1μm以上50μm以下であることがより好ましい。空孔の大きさは、任意の10個の以上、より好ましくは20個以上の黒い部分又は黒みがかった部分の平均として求めることができる。
 樹脂多孔質膜は、空孔同士が連結したオープンセル構造を有していることが、樹脂多孔質膜の通気性を高める点から好ましい。このようなオープンセル構造により、樹脂多孔質膜の通気性を高いものとすることができる。またオープンセル構造であると、内壁が連続した空間となる為、カーボンナノチューブが、樹脂多孔質膜内部において連続的に存在しやすく、これにより導電性も高められると考えられる。
 カーボンナノチューブが連続的に存在していることは、例えば、観察倍率が10000倍のSEM画像において、縦方向又は横方向の長さに対して、カーボンナノチューブが観察される部分の同方向の長さの割合が50%以上であることが好ましく、80%以上であることがより好ましい。例えば後述する実施例1における、図1Bに示す例では、縦12μm横9μmの範囲中、縦方向におけるほぼ全ての位置でカーボンナノチューブが観察された為、縦方向における上記の割合は100%近いと判断される。また図1Bに示す例では、横方向においてもほぼ全ての位置でカーボンナノチューブが観察された為、横方向における上記の割合も100%近いと判断される。上記の各割合は、樹脂多孔質膜における1か所のSEM観察像において該当すれば、その他の箇所のSEM観察像において該当しなくてもよい。
 樹脂多孔質膜がカーボンナノチューブ以外の導電性繊維又は導電性粒子を含有している場合、それらの導電性繊維又は導電性粒子も、樹脂多孔質膜の内壁表面に露出していても露出していなくてもよいが、露出していることが、樹脂多孔質膜の導電性を更に高める観点から好ましい。カーボンナノチューブ以外の導電性繊維又は導電性粒子は、通常、上記の大きさの樹脂多孔質膜中の空孔よりも大きなサイズとして、樹脂多孔質膜の内壁表面又は/及び外表面に露出している。
<ガーレー値>
 本発明の樹脂多孔質膜は、通気性が高いことを別の特徴の一つとしている。具体的には、樹脂多孔質膜はガーレー値(「透気度」と呼ばれることもある)が、1000秒/(6.42cm・100cc)以下である。ガーレー値は好ましくは100秒/(6.42cm・100cc)以下であり、更に好ましくは50秒/(6.42cm・100cc)以下である。このような樹脂多孔質膜は、膜厚方向の通気性を有しており、燃料ガスを拡散させる必要がある燃料電池用ガス拡散層として好適に用いることができる。ガーレー値は低いことが好ましいが、例えば0.05秒/(6.42cm・100cc)以上であることが、樹脂多孔質膜の強度を確保する観点や製造コストの観点から好ましい。このようなガーレー値の樹脂多孔質膜は、後述する製造方法で樹脂多孔質膜を製造することで得ることができる。ガーレー値は後述する実施例に記載の方法にて測定できる。
<厚み方向の導電抵抗>
 本発明の樹脂多孔質膜は、上述したようにカーボンナノチューブが内壁表面に露出していることから、導電性の高いものである。例えば、本発明の樹脂多孔質膜は、厚み方向の導電抵抗値が15mΩ・cm以下と低いことを更に別の特徴としている。このように低い導電抵抗値を有する為、本発明のガス拡散層(GDL:Gas Diffusion Layer)として好適に用いる事が出来る。燃料電池用ガス拡散層として用いる場合、面内方向でなく厚み方向の導電抵抗値が低い事が重要となる。厚み方向の導電抵抗値が高い場合、燃料電池のセル抵抗が高くなってしまう為、実用上使用し難い。導電抵抗値は低いことが好ましいが、0.1mΩ・cm以上、特に0.5mΩ・cm以上であることが製造コストの観点から好ましい。このような導電抵抗値の樹脂多孔質膜は、後述する製造方法で樹脂多孔質膜を製造することで得ることができる。導電抵抗値は後述する実施例に記載の方法にて測定できる。なお、厚み方向の導電抵抗値は、後述のように電極で挟み、加圧した状態で測定する為、バルク抵抗と界面抵抗を内包した値となる。その為、一般的な4端子法を使用した面内方向の表面抵抗から算出される体積抵抗と比較すると大きい値となるのが一般的である。
 樹脂多孔質膜の膜厚は用途により異なるが、一般には、20μm以上であることが、樹脂多孔質膜の強度を保ちやすい観点から好ましく、500μm以下であることが、通気性及び厚み方向の導電性を高める観点から好ましい。この観点から、樹脂多孔質膜の膜厚は20μm以上500μm以下であることが好ましく、30μm以上300μm以下であることがより好ましい。膜厚は後述する実施例に記載方法にて測定できる。
 また製造しやすさや通気性、通液性、膜強度等の点から、本発明の樹脂多孔質膜の密度(「見かけ密度」ともいう)は0.1g/cm以上0.9g/cm以下であることが好ましく、0.3g/cm以上0.8g/cm以下であることがより好ましい。更に製造しやすさや通気性、通液性、膜強度等の点から、空孔率(「推定空孔率」ともいう)が35%以上80%以下であることが好ましく、40%以上70%以下であることがより好ましい。密度及び空孔率は後述する実施例に記載方法にて測定できる。
<導電性を有する樹脂多孔質膜の製造方法>
 次いで、本発明の樹脂多孔質膜の好適な製造方法について説明する。
 本製造方法は、熱可塑性樹脂と、カーボンナノチューブと、加熱により該熱可塑性樹脂と相溶可能な有機系抽出成分とを少なくとも含有する樹脂組成物を該熱可塑性樹脂と該有機系抽出成分とが相溶するように溶融混練した後に成形加工し、次いで、得られた成形品から有機系抽出成分を抽出除去するものである。樹脂組成物には必要に応じて他の導電性繊維又は導電性粒子等を添加することができる。用いる熱可塑性樹脂、カーボンナノチューブ、その他の導電性繊維又は導電性粒子並びにその他の添加剤としては上記で挙げたものを上述する量比にて使用できる。
<有機系抽出成分>
 本発明で用いる有機系抽出成分は、加熱することにより該熱可塑性樹脂と相溶可能な物であれば特に限定されず、用いる熱可塑性樹脂の種類や、求められる多孔質膜の空孔のサイズや形状によって適宜選択する事が出来る。熱可塑性樹脂と抽出成分とが相溶していることは、熱可塑性樹脂と抽出成分とがいずれも流動状態で見かけ上均一になっている為、通常はその目視により確認できる。有機系抽出成分が熱可塑性樹脂と相溶するかどうかは、導電性粒子を入れない状態で熱可塑性樹脂と有機系抽出成分を溶融混練した場合、相溶状態の樹脂組成物は透明又は半透明になっているが、これを冷却すると、通常相分離に伴う曇点が観察されることからも確認できる。熱可塑性樹脂と抽出成分とが相溶していることの判断は、上記の2つの方法のいずれによってもよい。通常、相溶は熱可塑性樹脂の溶融温度以上で行われる。
 例えば熱可塑性樹脂としてポリオレフィン系樹脂を用いる場合、熱可塑性樹脂の溶融温度以上で該熱可塑性樹脂と相溶可能な有機系抽出成分としては、流動パラフィン、固形パラフィン(ワックス)、その他鉱油等の炭化水素類、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジブチル(DBP)のようなフタル酸エステル類、アジピン酸エステルやグリセリン酸エステル等のフタル酸以外の有機酸エステル類、リン酸トリオクチル等のリン酸エステル類、ジフェニルエーテル(DPE)等のフェニルエーテル類等が挙げられる。
 用いる有機系抽出成分の種類は、ポリオレフィン系樹脂の相溶性や抽出のし易さ等により適宜選択される。用いる有機系抽出成分によって、得られる多孔質膜の構造に影響を及ぼす。例えば、熱可塑性樹脂として結晶性ポリマーを用い、該結晶性ポリマーと相溶性が高く、冷却過程で樹脂と液-液相分離を生じずに固-液相分離を起こす有機系抽出成分を選択した場合、得られる多孔質膜の構造は球晶が連なり、ラメラスタック間や球晶外部に空孔が存在した形となる。一方、該結晶性ポリマーと比較的相溶性が低く、冷却過程で樹脂と液-液相分離を起こす有機系抽出成分を選択した場合、一様に微細細孔が分散したセル構造に類似した多孔質膜や、スピノーダル分解由来の相互連結構造に類似した多孔質膜が得られる。非晶性ポリマーを用いた場合も、液-液相分離が誘起されて構造形成を促す為、セル構造に類似した多孔質膜や、スピノーダル分解由来の相互連結構造に類似した多孔質膜が得られる。
 なお、フッ素系樹脂等を用いる場合は、用いるフッ素系樹脂のオリゴマー成分等が溶融温度以上で実質的に相溶する有機系抽出成分として好適に用いられる。
 有機系抽出成分の量は、用いる熱可塑性樹脂の種類や導電性粒子の添加量、求める用途により異なるものの一般に、熱可塑性樹脂100重量部に対して、100重量部以上であることが、より通気性の高い樹脂多孔質膜を得やすい観点から好ましい。また、有機系抽出成分の量は、熱可塑性樹脂100重量部に対して、500重量部以下であることが、導電性及び強度の高い樹脂多孔質膜を得る観点から好ましい。これらの観点から、有機系抽出成分の量は、熱可塑性樹脂100重量部に対して、100重量部以上500重量部以下であることがより好ましい。
 溶融混練の方法としては、各成分が均一に混合される限り、特に限定されないが、例えば熱溶融可能な公知のブレンダー、ニーダー、二軸押出機が好適に用いられる。溶融混練温度は熱可塑性樹脂と有機系抽出成分とが相溶状態となる温度以上であればよい。また溶融混錬の時間は特に限定されない。熱可塑性樹脂が有機系抽出成分に均一に相溶し、カーボンナノチューブ及び他の導電性粒子が均一に分散する条件で、トルク等をバロメータとして混練条件を決定する。
 次に、溶融混練された樹脂組成物は、必要に応じて適当な膜厚のシート状に成形される。シート状に成形する方法としては、特に限定されないが、例えば押出成形、プレス成形、冷間静水圧プレス(CIP)、テープキャスティング法等の適宜樹脂加工分野の公知成形手法が採用される。より具体的には、Tダイ法、インフレーション法、チューブラー法、カレンダー法等である。また成形したシートに圧延処理を行っても良い。圧延処理は、多孔質膜におけるカーボンナノチューブ同士を近接させ、また内壁表面にカーボンナノチューブを露出させやすくして樹脂多孔質膜の導電性を更に高める目的の為に行われる。
 圧延処理では、例えばロールプレス機を用いてシートを圧延することが好ましい。ロール速度は目的とするロールのギャップ間距離や圧延物の形状や粘度により適宜調整される。多孔質膜の内壁表面にカーボンナノチューブを露出させやすくする目的から、ロールの温度は、室温以上熱可塑性樹脂の融点+20℃以下が好ましく、特に室温以上熱可塑性樹脂の融点以下であることが好ましい。ここで室温は例えば25℃である。
 溶融混練された樹脂組成物が成形される際、互いに相溶していた熱可塑性樹脂と有機系抽出成分が冷却に伴い相分離を誘起して互いにドメイン(領域)を形成する。この際に有機系抽出成分となったドメインが、次の工程で抽出されることにより、多孔質膜が得られる。冷却時の条件は互いのドメインのサイズを制御する上で重要な因子であり、一般的に急速に冷却(急冷)すると熱可塑性樹脂及び有機系抽出成分の互いのドメインが小さく、徐々に冷却(徐冷)すると互いのドメインが大きくなり、徐冷した方が最終的に通気性の高い膜が得られる。この観点からここでいう徐冷とは、例えば、降温速度が100℃/分以下であることが好ましく、50℃/分以下であることがより好ましい。一方で、急冷とは例えば、これらの降温速度の上限よりも速い速度で降温することが好ましい。
 次に成形されたシート状樹脂組成物は、有機系抽出成分が抽出除去される事で多孔質膜となる。有機系抽出成分を抽出する方法は、抽出溶剤で満たされた槽の中に連続的にシート状樹脂組成物を送り込み、有機系抽出成分を除去するのに充分な時間をかけて槽中に浸漬し、然るのちに付着した溶剤を乾燥させることにより行っても良いし、バッチ法で行っても良い。この際、槽内部を多段分割することにより濃度差がついた各槽に順次シート状樹脂組成物を送り込む多段法や、シート状樹脂組成物の走行方向に対し逆方向から抽出溶剤を供給して濃度勾配をつける為の向流法のような公知の手段を適用すると、抽出効率が高められ好ましい。有機系抽出成分をシート状樹脂組成物から実質的に除去することが肝要である。また、抽出溶剤の温度を、溶剤の沸点未満の範囲内で加温すると、有機系抽出成分と溶剤との拡散を促進することができるので抽出効率を高められ更に好ましい。
 本発明で使用する抽出溶剤は、熱可塑性樹脂に対しては貧溶媒であり、有機系抽出成分に対しては良溶媒であれば良い。溶剤の沸点は、熱可塑性樹脂の融点より低ければ、有機系抽出成分を抽出した後の乾燥が容易であり好ましい。溶剤の沸点は、より好ましくは100℃以下である。このような溶剤の具体例としては、n-ヘキサンやシクロヘキサン、ノルマルヘプタン等の炭化水素類、塩化メチレンや1,1,1-トリクロロエタン等のハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、テトラヒドロフランやジエチルエーテル等のエーテル類、アセトンやメチルエチルケトン等のケトン類が挙げられる。
 本製造方法により、内壁表面にカーボンナノチューブが露出し、且つ通気率及び導電性に優れた樹脂多孔質膜が得られる理由として、本発明者らは次のように考えている。
 実質的に熱可塑性樹脂と相溶する有機系抽出成分を用いた場合、均一な一相状態では、熱可塑性樹脂と有機系抽出成分からなる相の中にカーボンナノチューブが均一に分散している状態と考えられる。この状態から各ドメインに分かれる過程で、熱可塑性樹脂のドメインと、抽出成分の界面に一部のカーボンナノチューブが取り残される。そして、その界面に取り残されたカーボンナノチューブがネットワークを形成する事が、高い導電性を示す要因であると推察される。なお、有機系抽出成分を抽出する際、抽出溶剤は通常黒くならない事からカーボンナノチューブは熱可塑性樹脂のドメイン及びその界面付近に存在し、有機系抽出成分側には存在していないと考えられる。
これに対し、抽出成分を用いない場合や、元々固形である被除去粒状物を抽出成分として用いた場合、カーボンナノチューブはマトリックスである熱可塑性樹脂の内部に均一に分散しているが、内壁表面にカーボンナノチューブが露出しない。
 抽出成分を抽出した膜は、任意の温度で乾燥され、導電性を有する樹脂多孔質膜となる。乾燥温度は熱可塑性樹脂が溶融(流動)して空孔が閉塞しない温度であれば特に限定されないが、概ね50℃~120℃程度である。
 本発明の樹脂多孔質膜は、上記の製造方法、つまり熱可塑性樹脂と、カーボンナノチューブと、加熱により該熱可塑性樹脂と相溶可能な有機系抽出成分とを少なくとも含有する樹脂組成物を該熱可塑性樹脂と該有機系抽出成分とが相溶するように溶融混練した後に成形加工し、次いで、得られた成形品から有機系抽出成分を抽出除去する方法により得られるものであることが好ましい。本発明者はこの方法により製造された樹脂多孔質膜が、抽出成分を用いずに製造された樹脂多孔質膜や、元々固形である被除去粒状物を抽出成分として用いて製造した樹脂多孔質膜に比べて、導電性及び通気性の両立の点で優れたものとなることを確認した。本明細書には、上記製造方法による樹脂多孔質膜の構造や特性について可能な限りのことを記載しているが、更にそれ以上の樹脂多孔質膜の構造や特性を規定する為には、著しく過大な経済的支出及び時間を要し、不可能であるという事情が存在する。特許出願の性質上、迅速性等を必要とすることに鑑みて、出願人は、本発明の樹脂多孔質膜の好ましい特徴を上記の通り本明細書に記載した上で、更に、上記の製造方法により得られた樹脂多孔質膜であることも記載した。
<燃料電池用ガス拡散層及び燃料電池>
 本発明の導電性を有する樹脂多孔質膜をガス拡散層(GDL:Gas Diffusion Layer)として用いて固体電解質膜―電極接合体(MEA:Membrane Electrode Assembly)を形成する方法は特に限定されないが、CCM法又はGDE法等が好適に利用される。CCM法では、予め電解質膜両面上に触媒層を形成(Catalyst Coated Membrane)し、その後GDLで挟んでホットプレス等により接合することでMEAを形成する方法である。電解質膜上に触媒層を形成する方法は特に限定されず、例えば触媒インクを用いてウェットコーティングやスプレー塗布する方法、PTFE上に触媒層を形成後にホットプレスにより転写する方法等を用いることが出来る。
 GDE法では、予めGDL上に触媒層を形成し、GDE(Gas Diffusion Electrode)を作成後、2枚のGDE間に電解質膜を挟んでホットプレス等により接合することでMEAを形成することが出来る。GDL上に触媒層を形成する方法は特に限定されず、例えば触媒インクを用いてウェットコーティングやスプレー塗布等の方法を用いることが出来る。なお、本発明で用いる触媒及び電解質膜は特に限定されず、求められる性能や燃料種等により公知のものから好適に選択できる。本発明の樹脂多孔質膜からなるGDLは、MEAにおける正極及び負極のうちいずれか一方のみに用いられてもよく、両方に用いられてもよい。
 本発明の導電性を有する樹脂多孔質膜をGDLとして用いる場合、必要に応じて撥水処理を行ったり、水分管理層(MPL:Micro Porous Layer)を形成したりすることがより好ましい。撥水処理を行うことや、MPLを形成することで、加湿した燃料内の水分及び発電によって正極側で酸素の還元により発生する水を好適に排出し、フラッディングによる性能低下を抑制することが可能となる。撥水処理の方法は特に限定されず、公知の手法を用いることが出来る。具体的にはポリテトラフルオロエチレン(PTFE)ディスパージョンや、市販の撥水剤(3M社製ノベック(登録商標)等)の塗布又は浸漬等により達成される。MPLを形成する場合もPTFEとカーボンブラックの混合インク等の塗布等、公知の手法により形成することが出来る。
 本発明に係る導電性の樹脂多孔質膜を、GDLとして有するMEAは、一般的に固体高分子形燃料電池(PEFC:Polymer Elecrolyte Fuel Cell)又は直接メタノール形燃料電池(DMFC:Direct Methanol Fuel Cell)と呼ばれる燃料電池の構成材料として好適に利用できる。つまり、本発明の燃料電池はMEAを有し、このMEAは、前記の電解質膜と、当該電解質膜両面それぞれに積層された一対の触媒層と、且つ該一対の触媒層それぞれにおける該電解質膜とは反対側の面に積層された一対のGDLと、を有するものであり、該一対のGDLの内の少なくとも一方が、本発明の導電性樹脂多孔質膜からなるものである。MEAにおける、触媒層及びGDLからなる一対の積層体のうち一方が正極を構成し、他方が負極を構成する。正極及び負極の燃料は特に限定されず、例えば正極には空気又は酸素、負極には水素等を好適に用いることが出来る。
 本発明の導電性を有する樹脂多孔質膜は、簡便な方法で製造可能であり、かつ原料コストも比較的安価である為、安価に大面積の多孔質膜を製造出来る。そのため、価格が比較的高いカーボンペーパーの代わりにGDLとして用いることで、部材コストの低減が可能となる。また、カーボンペーパーと比較して耐折曲性が非常に優れる為、実製造上の歩留まり向上や長期運転時の耐久性向上を図ることも可能と考えられる。更に近年の電解質膜の薄膜化に伴い、カーボンペーパーを構成する太く硬い炭素繊維が電解質膜を突き刺し、クロスリークや微小短絡を生じることが懸念されているが、本発明の導電性樹脂多孔質膜は柔軟である為電解質膜を突き刺す懸念が小さく、電解質膜の薄膜化による性能向上にも寄与することが出来る可能性がある。
 以下、実施例により本発明を更に詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 以下の例で用いた熱可塑性樹脂、導電性粒子、抽出成分は以下のとおりである。
〔熱可塑性樹脂〕
ホモポリプロピレン(ホモPP)
 住友化学株式会社製:WF464(MFR=2.0g/10min)
 株式会社プライムポリマー製:J105G(MFR=9.0g/10min)
 株式会社プライムポリマー製:E-100GV(MFR=0.5g/10min)
 株式会社プライムポリマー製:H-100M(MFR=0.5g/10min)
ブロックポリプロピレン(ブロックPP)
 株式会社プライムポリマー製:B-150M(MFR=0.5g/10min)
ランダムポリプロピレン(ランダムPP)
 株式会社プライムポリマー製:B241(MFR=0.5g/10min)
高密度ポリエチレン(HDPE)
 株式会社プライムポリマー製:5202B(MFR=0.32g/10min)
〔導電性粒子又は導電性繊維〕
多層カーボンナノチューブ(CNT):宇部興産株式会社製 AMC(登録商標)
多層カーボンナノチューブ(CNT):ナノシル社製 NC7000
炭素繊維:三菱レイヨン株式会社製 ダイアリードミルドファイバーK223HM
球状黒鉛:日本カーボン株式会社製 ニカビーズP15B-ZG(平均粒径17μm)
〔抽出成分(「抽出剤」ともいう)〕
流動パラフィン:和光純薬工業株式会社製 試薬 和光一級
フタル酸ジブチル(DBP):和光純薬工業株式会社製 試薬 和光一級
ジフェニルエーテル(DPE):和光純薬工業株式会社製 試薬 和光特級
澱粉:馬鈴薯澱粉(市販品):粒子径約20~40μm
 下記の各実施例及び各比較例で得られた導電性樹脂多孔質膜の下記の物性を、下記の方法により測定した。
〔膜厚の測定〕
 得られた導電性樹脂多孔質膜の厚みは東京精密社製 高精度デジタル測長器MINIAX PH-13及び同社表示ユニットDH-150を用いて測定した。
〔密度及び推定空孔率の算出〕
 得られた導電性樹脂多孔質膜を所定の大きさに切り取り、膜厚及び重量を測定し、以下の式から見かけ密度及び空孔率を算出した。なお、樹脂混練体のバルク密度とは、対応する製造例における組成のうち有機系抽出成分以外の成分を混練して得られた樹脂混練体の密度をいう。
 
 見かけ密度(g/cm
  =膜の重量(g)/(膜の面積(cm)×厚さ(cm))
 
 空孔率(%)
  =(1-多孔質膜の密度)/樹脂混練体のバルクの密度×100
 
〔厚み方向の導電抵抗値〕
 得られた導電性樹脂多孔質膜の厚み方向の導電抵抗値は、下記の手法で求めた。直径19mmに打ち抜いた試験片を直径20mmの金メッキした電極で挟み、面圧10MPaに加圧した状態で4端子法を用いて厚み方向の電気抵抗を測定した。測定にはケースレー2400型汎用ソースメータを用いた。厚み方向の導電抵抗値は、下記式により算出した。
厚み方向の導電抵抗値(mΩ・cm
=厚み方向の電気抵抗(mΩ)×試験片の断面積(cm
〔通気性測定(ガーレー値(透気度))〕
 得られた導電性ポリイミド多孔質膜のガーレー値(透気度、単位:sec/(6.42cm・100cc))を測定した。テスター産業社製ガーレー式デンソメーターPA-301及び同社デジタルオートカウンターPA-302を用いて、JISP8117に準拠して計測した。
〔MEAの形成〕
 得られた導電性樹脂多孔質膜をGDLとして用いて、CCM法によってMEAを作成した。50mlサンプル瓶中で市販の白金担持炭素粒子(田中貴金属株式会社製TEC10E60E、炭素に対する白金担持量60wt%)0.4gと水1g、市販の5wt%ナフィオン分散液(米国シグマ・アルドリッチ社製)2.68gを加え、超音波処理及び撹拌処理により分散させ、触媒ペーストを調製した。
 次いで、この触媒ペーストを支持体(PTFEシート、厚さ100μm)上に塗布し、熱風乾燥機中で60℃1時間乾燥し、更に90℃で30分真空乾燥を行い、支持体上に白金担持量が0.27mg/cmの触媒層を作成した。
 他方、固体高分子膜として、Nafion1135(米国デュポン社製、Nafionは登録商標)を用意した。この固体高分子膜の両面に、前記支持体上に形成した触媒層を夫々積層した後、温度135℃、圧力5MPaの条件下で5分間ホットプレスを施し、CCMを作成した。更に、本発明の導電性樹脂多孔質膜を撥水処理剤(3M社製ノベック)に浸漬して130℃で30分乾燥させて撥水処理を行った後、先に作成したCCMの両面に配して温度135℃、圧力5MPaの条件下で5分間ホットプレスを施し、電極面積5cmのMEAを作成した。
〔発電試験〕
 作成したMEAを締め付け圧2N・mで固体高分子形燃料電池評価セル(エレクトロケム社製サーペンタインフロー)に組み込み、東陽テクニカ製燃料電池評価システム(GFT)により発電性能を評価した。発電は、負極側(燃料極側)に純水素ガスを、正極側に純酸素ガスを用い、常圧、ガス流量500ml/minで供給し、セル温度80℃、バブラー温度80℃のフル加湿条件で発電を行った。
〔製造例1〕
 熱可塑性樹脂としてホモPP(WF464)10.5gと、炭素繊維1.5gと、球状黒鉛12.5gと、CNT(AMC)6gと、抽出剤として流動パラフィン19.5gとを混合し、ラボプラストミル(バンバリミキサB75):株式会社東洋精機製作所製を用いて175℃で溶融混練を行いながら上記混合物をミキサに投入し、全ての混合物をミキサに投入後、更に5分間混練し、ミキサから取り出して樹脂/導電フィラー/抽出剤混練物を作成した。用いた材料及びその組成比を表1に示す。
〔製造例2〕
 用いる材料の組成比を表1に示すように変更した他は、製造例1と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例3〕
 熱可塑性樹脂として別のホモPP(J105G)を用いた他は、製造例1と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例4〕
 熱可塑性樹脂として別のホモPP(E-100GV)を用い、用いる材料の組成比を表1に示すように変更した他は、製造例1と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例5〕
 熱可塑性樹脂としてブロックPP(B-150M)を用いた他は、製造例4と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例6〕
 熱可塑性樹脂としてランダムPP(B241)を用いた他は、製造例4と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例7〕
 熱可塑性樹脂としてHDPE(5202B)を用いた他は、製造例4と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例8〕
 熱可塑性樹脂としてホモPP(E-100GV)とHDPE(5202B)を重量比1:1で混合して用いた他は、製造例4と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例9〕
 抽出剤として流動パラフィンの代わりにDBPを用いた他は、製造例4と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例10〕
 抽出剤として流動パラフィンの代わりにDPEを用いた他は、製造例4と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔比較製造例1〕
 抽出剤として流動パラフィンの代わりに澱粉を用いた他は、製造例3と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔比較製造例2〕
 抽出剤を用いず、用いる材料の組成比を表1に示すように変更した他は製造例3と同様の操作を行い、樹脂/導電フィラー/抽出剤混練物を作成した。
〔製造例11〕
 熱可塑性樹脂としてホモPP(H-100M)11.4gと、球状黒鉛26.9gと、CNT(NC7000)13.1gと、抽出剤として流動パラフィン48.6gとを混合し、ラボプラストミル(バンバリミキサB75):株式会社東洋精機製作所製を用いて180℃で溶融混練を行いながら上記混合物をミキサに投入し、全ての混合物をミキサに投入後、更に5分間混練し、ミキサから取り出して樹脂/導電フィラー/抽出剤混練物を作成した。用いた材料及びその組成比を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
〔実施例1〕
 製造例1で得られた混練物の両面に市販のポリイミドフィルム(ユーピレックス75S)を配し、更にSUS板で挟んだ状態で200℃、5分間熱プレスを行い、除圧後直ちに常温に設定したプレス機で挟んで冷却(急冷)し、両面のポリイミドフィルムを剥がしてプレスシートを作成した。得られたプレスシートをヘプタン(40℃)に浸漬し、シャープ製卓上超音波洗浄装置(100W)に入れて1分間抽出処理することをヘプタンを交換して3回繰り返し、60℃で1時間真空乾燥を行い、膜厚約58μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。得られた導電性樹脂多孔質膜は、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つことが示された。また、得られた導電性樹脂多孔質膜を液体窒素中で凍結破断法にて断面出しを行い、断面を走査型電子顕微鏡を用いて観察した。得られた走査型電子顕微鏡像を図1A、図1Bに示す。図1A及び図1Bに示すように、得られた断面においては、微細な空孔が連結したオープンセル構造の内壁表面が観察され、この内壁表面において、一部のカーボンナノチューブが露出していることが確認された。具体的には、内壁表面にカーボンナノチューブの網目状の集合体が確認された。また図1Bに示すように、上述した連続的なカーボンナノチューブの露出も観察された。このようなカーボンナノチューブの存在により、カーボンナノチューブが、樹脂多孔質膜の内壁表面に偏析し、導電パスを形成しているものと推定された。なお、SEM画像は示していないが、樹脂多孔質膜の外表面にも内壁表面と同様のカーボンナノチューブの露出が観察された。
〔実施例2〕
 熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約165μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。得られた導電性樹脂多孔質膜は、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つことが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜の内壁表面においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例3〕
 熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約320μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。得られた導電性樹脂多孔質膜は、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つことが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例4〕
 製造例2で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約160μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。得られた導電性樹脂多孔質膜は、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つことが示された。また、抽出剤量を制御することで、通気性をコントロール出来ることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例5〕
 熱プレス/除圧後、直ちに急冷する代わりに、プレス機で挟んだまま2時間かけてゆっくりと冷却(徐冷)した他は、実施例4と同様の操作を行い、膜厚約166μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。得られた導電性樹脂多孔質膜は、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つことが示された。また、徐冷することでマトリックス樹脂の構造粗大化を促進し、急冷した場合よりも通気性、空孔率の高い膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例6〕
 製造例3で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約165μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。得られた導電性樹脂多孔質膜は、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つことが示された。また、用いる樹脂の分子量(MFR)を制御することで、通気性をコントロール出来ることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例7〕
 製造例4で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約117μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。得られた導電性樹脂多孔質膜は、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つことが示された。また、用いる樹脂の分子量(MFR)及び抽出剤の量を制御することで、通気性をコントロール出来ることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例8〕
 製造例5で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約120μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。マトリックス樹脂としてブロックPPを用いた場合も、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つ膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例9〕
 製造例6で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約118μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。マトリックス樹脂としてランダムPPを用いた場合も、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つ膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例10〕
 製造例7で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約120μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。マトリックス樹脂としてHDPEを用いた場合も、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つ膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例11〕
 製造例8で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約118μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。マトリックス樹脂としてホモPPとHDPEを併用した場合も、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つ膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例12〕
 製造例9で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約70μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。抽出剤としてDBPを用いた場合も、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つ膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例13〕
 製造例9で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例5と同様の操作を行い、膜厚約72μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。抽出剤としてDBPを用いた場合も、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つ膜が得られることが示された。また、徐冷することでマトリックス樹脂の構造粗大化を促進し、急冷した場合よりも通気性、空孔率の高い膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔実施例14〕
 製造例10で得られた混練物を用い、熱プレスの際のスペーサー及びプレス圧を調整した他は、実施例1と同様の操作を行い、膜厚約124μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。抽出剤としてDPEを用いた場合も、厚み方向の導電性に優れ、且つ高い空孔率と良好な通気性を併せ持つ膜が得られることが示された。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
〔比較例1〕
 比較製造例1で得られた混練物の両面に市販のポリイミドフィルム(ユーピレックス75S)を配し、更にSUS板で挟んだ状態で220℃、5分間熱プレスを行い、除圧後直ちに常温に設定したプレス機で挟んで冷却(急冷)し、両面のポリイミドフィルムを剥がしてプレスシートを作成した。得られたプレスシートをα-アミラーゼ1wt%を含む90℃の熱水浴中に1時間浸漬した後、40℃の超音波洗浄装置(100W)中に5分間浸漬し、更に1分間流水で洗浄した。水洗を終えた後、80℃で24時間真空乾燥を行い、膜厚約322μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。抽出剤として被除去粒状物(澱粉)を用いた場合、厚み方向の導電性は本発明と比較して劣ることが示された。また、得られた導電性樹脂多孔質膜を実施例1と同様の方法で断面出しを行い、走査型電子顕微鏡で観察した。断面の走査型電子顕微鏡像を図2A、図2Bに示す。得られた膜は被除去粒状物由来の大きな独立空孔が部分的に連結した多孔形状であり、300μm以上の厚膜の場合、通気性が低い物しか得られなかった。さらに、図2A及び図2Bに示すように、膜の破断面にはカーボンナノチューブの存在が確認出来るものの、樹脂多孔質膜の内壁表面、つまり抽出剤であるデンプンが存在していた孔部においては、カーボンナノチューブが表面に存在することは確認出来なかった。また本比較例に用いた製造例12の混練物は、多量の被除去粒状物を含有する為、溶融樹脂混合物の粘度が非常に高く、プレス加工にも非常に高い圧力を必要としたことから、加工性も比較的悪いことが示された。
〔比較例2〕
 熱プレスの際のスペーサー及びプレス圧を調整した他は、比較例1と同様の操作を行い、膜厚約160μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。抽出剤として被除去粒状物(澱粉)を用いた場合、厚み方向の導電性は本発明と比較して劣ることが示された。また、通気性には優れるものの、ピンホールが多数散見され、均一な多孔構造を有する多孔質膜を得ることは出来なかった。
〔比較例3〕
 熱プレスの際のスペーサー及びプレス圧を調整した他は、比較例1と同様の操作を行い、約113μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。抽出剤として被除去粒状物(澱粉)を用いた場合、厚み方向の導電性は本発明と比較して劣ることが示された。また、通気性には優れるものの、ピンホールが多数散見され、均一な多孔構造を有する多孔質膜を得ることは出来なかった。
〔比較例4〕
 比較製造例2で得られた混練物の両面に市販のポリイミドフィルム(ユーピレックス75S)を配し、更にSUS板で挟んだ状態で220℃、5分間熱プレスを行い、除圧後直ちに常温に設定したプレス機で挟んで冷却(急冷)し、両面のポリイミドフィルムを剥がして抽出剤を含まないバルクの樹脂/導電フィラー複合シートを作成した。得られたバルクの複合シートの物性を表2に示す。バルクの膜にも関わらず、厚み方向の導電性は、本発明の導電性樹脂多孔質膜よりも劣ることが示された。
〔実施例15〕
 製造例11で得られた混練物をロールプレス機(テスター産業(株)製bSA-601型)を用いて、138℃にてロール成形後、該ロールプレス機で80℃で圧延処理を行った。得られたプレスシートをヘプタン(40℃)に浸漬し、シャープ製卓上超音波洗浄装置(100W)に入れて1分間抽出処理することを行い、ヘプタンを交換して3回繰り返し、60℃で1時間真空乾燥を行い、膜厚約64μmの導電性樹脂多孔質膜を得た。得られた導電性樹脂多孔質膜の物性を表2に示す。また実施例1と同様のSEM観察により、本実施例の樹脂多孔質膜の内壁表面においても内壁表面にカーボンナノチューブが網目状の集合体として露出していることが観察された。
Figure JPOXMLDOC01-appb-T000002
〔導電性樹脂多孔質膜の柔軟性の評価〕
 実施例1~15で得られた導電性樹脂多孔質膜を、180°に折り曲げ、上から1kgの重りを載せて柔軟性を確認したところ、膜が破断すること無く、柔軟性が高いことが示された。一方、市販のカーボンペーパー(東レ株式会社製TGP-H-060)を同様の手法で柔軟性を評価したところ、180°に折り曲げる前に破断してしまい、高い柔軟性は示さないことが示された。
〔発電試験〕
 実施例で得られた導電性樹脂多孔質膜を用いて上記の方法でMEAを作成し、発電試験を行った。実施例で得られた全ての膜において発電が可能であることが確認され、本発明で得られた導電性樹脂多孔質膜は燃料電池用GDLとして好適に利用できることが示された。
 以上の通り、本発明の導電性樹脂多孔質膜は、優れた導電性、通気性、耐屈曲性を示し、加えて熱可塑性樹脂(ポリオレフィン)由来の優れた力学特性、耐薬品性を示すことから、特に高い導電性、ガス拡散性及び耐酸性が求められる燃料電池用ガス拡散層として好適に利用できる。その他、リチウムイオン電池等の二次電池用電極基材、導電(帯電防止)フィルター、触媒担体、電磁波シールド、熱交換機、水素吸蔵材料、生体材料、衝撃吸収体、音響部品等の各種用途にも好適に利用できる。
 本発明の樹脂多孔質膜は、導電性に優れ、高い通気性を有しており且つ従来のカーボンペーパー等と比較して柔軟性が高く、機械的加工が容易であり、電解質膜への突刺しの懸念が低い。また、本発明の樹脂多孔質膜は、樹脂成分としてポリオレフィン等の汎用樹脂を使用可能で、且つ簡便な製造プロセスで製造できる為、比較的安価に製造することが可能である。また、酸性環境下等においても腐食の懸念無く利用可能である。
 また、本発明の樹脂多孔質膜の製造方法は、本発明の導電性を有する樹脂多孔質膜を簡便な製造プロセスで製造できる。
 本発明の樹脂多孔質膜及び上記製造方法で得られた樹脂多孔質膜は、これを正極及び又は負極のガス拡散層として用いることで優れた特性の燃料電池を得ることが可能である。その他、特に通気性や通液性の求められる除電用途、電磁波シールド用途、各種二次電池用集電体、その他電極用途等に好適に利用できる。
 

Claims (8)

  1.  熱可塑性樹脂とカーボンナノチューブとを少なくとも含む導電性を有する樹脂多孔質膜であって、
     厚み方向の導電抵抗値が15mΩ・cm以下であり、
     ガーレー値が、1000秒/(6.42cm・100cc)以下であり、
     多孔質膜の内壁表面にカーボンナノチューブが露出している、樹脂多孔質膜。
  2.  多孔質膜の内壁表面に、複数のカーボンナノチューブからなる網目状の集合体が観察される、請求項1に記載の樹脂多孔質膜。
  3.  熱可塑性樹脂が、ポリオレフィン系樹脂である、請求項1又は2に記載の樹脂多孔質膜。
  4.  カーボンナノチューブの直径よりも大きい直径の導電性繊維、及び/又は、カーボンナノチューブの直径よりも大きい粒径の導電性粒子を更に含有する、請求項1~3のいずれか1項に記載の樹脂多孔質膜。
  5.  請求項1~4のいずれか1項に記載の樹脂多孔質膜からなる燃料電池用ガス拡散層。
  6.  請求項5に記載のガス拡散層を正極及び/又は負極に有する、燃料電池。
  7.  固体高分子形燃料電池又は直接メタノール形燃料電池である、請求項6に記載の燃料電池。
  8.  熱可塑性樹脂と、カーボンナノチューブと、加熱により該熱可塑性樹脂と相溶可能な有機系抽出成分とを少なくとも含有する樹脂組成物を、該熱可塑性樹脂と該有機系抽出成分とが相溶するように溶融混練した後に成形加工し、次いで、得られた成形品から有機系抽出成分を抽出除去する、導電性を有する樹脂多孔質膜の製造方法。
PCT/JP2017/007552 2016-03-04 2017-02-27 樹脂多孔質膜及びその製造方法 WO2017150470A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018503305A JPWO2017150470A1 (ja) 2016-03-04 2017-02-27 樹脂多孔質膜及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016042669 2016-03-04
JP2016-042669 2016-03-04
JP2016-226349 2016-11-21
JP2016226349 2016-11-21

Publications (1)

Publication Number Publication Date
WO2017150470A1 true WO2017150470A1 (ja) 2017-09-08

Family

ID=59743975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007552 WO2017150470A1 (ja) 2016-03-04 2017-02-27 樹脂多孔質膜及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2017150470A1 (ja)
WO (1) WO2017150470A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171790A (ja) * 2018-03-29 2019-10-10 日本ゼオン株式会社 複合シート及びその製造方法
KR20200062808A (ko) * 2018-11-27 2020-06-04 롯데케미칼 주식회사 폴리에틸렌 다공성 분리막 및 그 제조방법
JP2023034785A (ja) * 2021-08-31 2023-03-13 東洋インキScホールディングス株式会社 電気電子包装材用熱可塑性樹脂組成物及び成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297133A (en) * 1976-02-12 1977-08-15 Toray Industries Gas diffusion electrode
JP2009059524A (ja) * 2007-08-30 2009-03-19 Panasonic Corp 燃料電池用ガス拡散層、その製造方法および燃料電池
JP2013139550A (ja) * 2011-12-07 2013-07-18 Futamura Chemical Co Ltd 導電性連通多孔質フィルム及びその製造方法
JP2015072899A (ja) * 2013-09-06 2015-04-16 宇部興産株式会社 導電性ポリイミド多孔質膜及びその製造方法
WO2016143002A1 (ja) * 2015-03-06 2016-09-15 宇部興産株式会社 導電性芳香族ポリイミド多孔質膜及びその製造方法
JP2016191014A (ja) * 2015-03-31 2016-11-10 国立大学法人北海道大学 カーボンナノチューブを含有する機能性多孔体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297133A (en) * 1976-02-12 1977-08-15 Toray Industries Gas diffusion electrode
JP2009059524A (ja) * 2007-08-30 2009-03-19 Panasonic Corp 燃料電池用ガス拡散層、その製造方法および燃料電池
JP2013139550A (ja) * 2011-12-07 2013-07-18 Futamura Chemical Co Ltd 導電性連通多孔質フィルム及びその製造方法
JP2015072899A (ja) * 2013-09-06 2015-04-16 宇部興産株式会社 導電性ポリイミド多孔質膜及びその製造方法
WO2016143002A1 (ja) * 2015-03-06 2016-09-15 宇部興産株式会社 導電性芳香族ポリイミド多孔質膜及びその製造方法
JP2016191014A (ja) * 2015-03-31 2016-11-10 国立大学法人北海道大学 カーボンナノチューブを含有する機能性多孔体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171790A (ja) * 2018-03-29 2019-10-10 日本ゼオン株式会社 複合シート及びその製造方法
JP7214971B2 (ja) 2018-03-29 2023-01-31 日本ゼオン株式会社 複合シート及びその製造方法
KR20200062808A (ko) * 2018-11-27 2020-06-04 롯데케미칼 주식회사 폴리에틸렌 다공성 분리막 및 그 제조방법
KR102256444B1 (ko) * 2018-11-27 2021-05-26 롯데케미칼 주식회사 폴리에틸렌 다공성 분리막 및 그 제조방법
JP2023034785A (ja) * 2021-08-31 2023-03-13 東洋インキScホールディングス株式会社 電気電子包装材用熱可塑性樹脂組成物及び成形体
JP7274083B2 (ja) 2021-08-31 2023-05-16 東洋インキScホールディングス株式会社 電気電子包装材用熱可塑性樹脂組成物及び成形体

Also Published As

Publication number Publication date
JPWO2017150470A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
KR101652572B1 (ko) 전지용 도전성 다공질층 및 그 제조 방법
TWI648162B (zh) 氣體擴散電極基材以及具備其之膜電極接合體及燃料電池
JP5486549B2 (ja) 膜電極接合体の製造方法及び燃料電池の製造方法
JP6053251B2 (ja) 固体高分子形燃料電池ガス拡散層
EP3113265B1 (en) Gas diffusion electrode substrate, as well as membrane electrode assembly and fuel cell provided therewith
KR101582018B1 (ko) 연료 전지용 막-전극 접합체 및 그의 제조 방법과 상기 막-전극 접합체를 사용한 고체 고분자형 연료 전지
EP3113264B1 (en) Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with the same
JP5500300B1 (ja) シート、電極及び燃料電池
JP2008276949A (ja) 固体高分子形燃料電池用膜電極接合体
WO2017150470A1 (ja) 樹脂多孔質膜及びその製造方法
JP2007128671A (ja) ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP5068014B2 (ja) 燃料電池用ガス拡散層とその製造方法ならびにそれを用いた燃料電池
JP2006339018A (ja) 燃料電池用ガス拡散層、およびこの製造方法
WO2018186293A1 (ja) ガス拡散電極基材の製造方法、および燃料電池
KR102175009B1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
WO2013161971A1 (ja) 積層体及びその製造方法
JP2007012424A (ja) ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP6094386B2 (ja) 電池用導電性多孔質層及びその製造方法
JP4985737B2 (ja) 燃料電池用のマイクロポーラス層付きガス拡散電極、マイクロポーラス層付き触媒層、触媒層付きガス拡散電極、膜−電極接合体及び固体高分子形燃料電池
JP2009140657A (ja) 燃料電池用電極触媒
JP5674703B2 (ja) 電池用導電性多孔質層及びその製造方法
JP2006318790A (ja) 固体高分子型燃料電池用ガス拡散電極とその製造方法、および固体高分子型燃料電池
JP4930643B1 (ja) 燃料電池用膜−電極接合体及びその製造方法、並びに該膜−電極接合体を用いた固体高分子形燃料電池
JP5401860B2 (ja) 撥水層形成用ペースト組成物及びガス拡散層の製造方法
WO2020067283A1 (ja) ガス拡散電極基材およびその製造方法、固体高分子形燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759936

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759936

Country of ref document: EP

Kind code of ref document: A1