WO2018186293A1 - ガス拡散電極基材の製造方法、および燃料電池 - Google Patents

ガス拡散電極基材の製造方法、および燃料電池 Download PDF

Info

Publication number
WO2018186293A1
WO2018186293A1 PCT/JP2018/013610 JP2018013610W WO2018186293A1 WO 2018186293 A1 WO2018186293 A1 WO 2018186293A1 JP 2018013610 W JP2018013610 W JP 2018013610W WO 2018186293 A1 WO2018186293 A1 WO 2018186293A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
treatment step
gas diffusion
diffusion electrode
heating
Prior art date
Application number
PCT/JP2018/013610
Other languages
English (en)
French (fr)
Inventor
勝也 岨手
道生 若田部
悠介 岩崎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP18781433.0A priority Critical patent/EP3609005A4/en
Priority to KR1020197024010A priority patent/KR20190130126A/ko
Priority to US16/494,846 priority patent/US20200287220A1/en
Priority to JP2018521332A priority patent/JP6911847B2/ja
Publication of WO2018186293A1 publication Critical patent/WO2018186293A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a gas diffusion electrode base material suitably used for a fuel cell, particularly a polymer electrolyte fuel cell, and a fuel cell including the gas diffusion electrode base material.
  • the polymer electrolyte fuel cell (1) generally comprises a separator (2), a gas diffusion electrode substrate (3), a catalyst layer (4), an electrolyte membrane (5), a catalyst layer (4), and a gas diffusion electrode.
  • a base material (3) and a separator (2) are laminated in order.
  • the above gas diffusion electrode base material has high gas diffusibility for diffusing the gas supplied from the separator to the catalyst layer, and high drainage for discharging water generated by the electrochemical reaction to the separator. , And high conductivity is necessary to extract the generated current. Therefore, a gas diffusion electrode base material in which a microporous layer is formed on the surface of a conductive porous base material made of carbon fiber or the like is widely used.
  • the microporous layer may be pressed and bonded. In that case, it is desirable that the ratio of the water-repellent material that inhibits adhesion is small on the surface of the microporous layer.
  • a water repellent material is required in the microporous layer to some extent for drainage, which is one purpose of providing the microporous layer.
  • Patent Document 1 proposes a technique for improving the adhesion between the catalyst layer and the microporous layer in order to shorten the heating time.
  • the manufacturing method of the gas diffusion electrode substrate of the present invention for solving the above-mentioned problems is as follows.
  • a method for producing a gas diffusion electrode substrate having a microporous layer on at least one surface of a conductive porous substrate An application step of applying a coating liquid containing conductive particles, a water repellent material, a dispersion medium and a surfactant on the conductive porous substrate, A drying step of heating the coated conductive porous substrate at a temperature lower than the heating temperature of the first heat treatment step; A first heat treatment step of heating at a temperature below the melting point of the water repellent material; And a second heat treatment step of heating at a temperature equal to or higher than the melting point of the water repellent material,
  • the coating liquid contains 0.09 parts by mass or more and 0.27 parts by mass or less of the water repellent material with respect to 1 part by mass of the conductive particles.
  • the heating time of the first heat treatment step is not less than 0.2 minutes and not more than 3.0 minutes
  • the water repellent material is included in an amount of 0.09 parts by mass to 0.27 parts by mass, and the heating time of the first heat treatment step is 0.2 minutes to 3.0 minutes, A method for producing a gas diffusion electrode substrate, wherein the heating time of the heat treatment step is 2.9 minutes or less , It is.
  • the manufacturing method of the gas diffusion electrode base material of this invention is demonstrated in detail.
  • the conductive porous base material used in the production method of the present invention is a conductive base material made of a porous body.
  • a porous porous substrate is used.
  • Such a conductive porous substrate is preferably a porous body having an average pore diameter of 10 ⁇ m to 100 ⁇ m.
  • Specific examples of the conductive porous base material include porous base materials containing carbon fibers such as carbon fiber papermaking bodies, carbon felt, carbon paper, and carbon cloth, foam sintered metal, metal mesh, and expanded metal. It is preferable to use a metal porous substrate such as.
  • a porous substrate such as carbon felt containing carbon fiber, carbon paper, carbon cloth, and moreover, a property of absorbing a dimensional change in the thickness direction of the electrolyte membrane, That is, since it is excellent in “spring property”, it is preferable to use a base material obtained by binding a carbon fiber papermaking body with a carbide, that is, carbon paper.
  • the application amount of the water repellent material during the water repellent processing is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass with respect to 100 parts by mass of the conductive porous substrate.
  • the coating amount of the water repellent material is 1 part by mass or more with respect to 100 parts by mass of the conductive porous substrate, the conductive porous substrate is excellent in drainage.
  • the application amount of the water repellent material is 50 parts by mass or less with respect to 100 parts by mass of the conductive porous substrate, the conductive porous substrate has excellent conductivity.
  • the conductive particles contained in the coating liquid and the microporous layer are carbon powder.
  • Carbon powders include carbon black such as furnace black, acetylene black, lamp black and thermal black, graphite such as flaky graphite, flaky graphite, earthy graphite, artificial graphite, expanded graphite, and flake graphite, carbon nanotube, wire Carbon, milled fiber of carbon fiber, and the like.
  • carbon black is preferably used, and acetylene black is more preferable because of few impurities.
  • the water repellent material contained in the coating liquid and the microporous layer is a fluoropolymer.
  • This water repellent material is contained in order to enhance water drainage with respect to the microporous layer.
  • the water-repellent material is not particularly limited as long as it is a fluorine-based polymer, but polytetrafluoroethylene (PTFE), tetrafluoroethylene hexafluoropropylene copolymer (FEP), perfluoroalkoxy fluororesin (FEP), ethylene Fluorine-based polymers such as tetrafluoroethylene copolymer (ETFA), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF) and the like are mentioned, but PTFE or FEP is preferable in terms of particularly high water repellency, PTFE is more preferable because it has a high melting point and raises the temperature of the first heat treatment step described later, and facilitates the decomposition of the surfactant.
  • the dispersion medium contained in the coating liquid is a liquid that disperses the conductive particles and the water repellent material.
  • the dispersion medium is not particularly limited as long as it is a liquid that can disperse the conductive particles and the water repellent material.
  • water or alcohol is preferable.
  • the surfactant contained in the coating liquid is a chemical species having an affinity site for the conductive particles and an affinity site for the dispersion medium.
  • the surfactant in the coating liquid is used to disperse the conductive particles and the water repellent material in the dispersion medium.
  • the site having affinity with the conductive particles means a hydrophobic chemical structure capable of interacting with the conductive particles, and specifically includes a phenyl group, an alkyl group, and the like.
  • the affinity part with the dispersion medium is a hydrophilic chemical structure capable of interacting with the dispersion medium such as water or alcohol, and specifically includes ester bond, ether bond, amino group, hydroxyl group, carboxyl group, etc. Can do.
  • the surfactant is not particularly limited as long as it is a chemical species having an affinity site with the conductive particles and an affinity site with the dispersion medium.
  • a nonionic system having a low metal ion content Nonionic surfactants are preferred.
  • methyl cellulose ether, polyethylene glycol ether, especially alkylphenol and polyethylene glycol ether (for example, polyoxyethylene alkylphenyl ether), higher aliphatic alcohol and polyethylene glycol ether, polyvinyl alcohol ether and the like are preferable. Used for.
  • a thickener to a coating liquid in order to keep the viscosity of a coating liquid high.
  • the thickener used here those generally well known as thickeners may be used, and for example, methylcellulose, polyethylene glycol, polyvinyl alcohol, and the like are preferably used.
  • the surfactant which has a thickening function as the above-mentioned surfactant.
  • the coating liquid used in the coating process of the production method of the present invention contains 0.09 parts by mass or more and 0.27 parts by mass or less of the water repellent material with respect to 1 part by mass of the conductive particles in the coating liquid.
  • the amount of the water repellent material in the coating liquid is 0.09 parts by mass or more with respect to 1 part by mass of the conductive particles, so that the peeling stress due to the expansion and contraction of the electrolyte membrane after bonding the microporous layer to the catalyst layer On the other hand, peeling in the microporous layer can be suppressed.
  • the amount of the water repellent material in the coating liquid is 0.27 parts by mass or less with respect to 1 part by mass of the conductive particles, so that the catalyst layer can be used even after the water repellent material is melted by the second heating step described later. It is possible to maintain a surface that adheres to the microporous layer and to obtain excellent adhesion to the catalyst layer with respect to the microporous layer.
  • the amount of the water repellent material in the coating liquid is preferably 0.11 part by mass or more and more preferably 0.13 part by mass or more with respect to 1 part by mass of the conductive particles.
  • the amount of the water repellent material in the coating liquid is preferably 0.25 parts by mass or less, and more preferably 0.21 parts by mass or less.
  • the amount of the conductive particles in the coating liquid used in the coating step of the production method of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more in 100% by mass of the entire coating liquid from the viewpoint of productivity. It is. If the viscosity of the coating liquid, the dispersion stability of the conductive particles, and the coating property of the coating liquid are appropriate, there is no upper limit to the concentration of the conductive particles in the coating liquid. A rapid increase in viscosity due to re-aggregation of each other can be suppressed, and the coating property of the coating liquid is improved, which is preferable.
  • the surfactant in the coating solution used in the coating process of the production method of the present invention is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the conductive particles in order to disperse the conductive particles.
  • it is effective to increase the amount of the surfactant in order to stabilize this dispersion for a long time to prevent the increase in the viscosity of the coating liquid and prevent the coating liquid from separating.
  • the amount of the surfactant in the coating liquid is more preferably 50 parts by mass or more, further preferably 100 parts by mass or more, and particularly preferably 200 parts by mass with respect to 100 parts by mass of the conductive particles. More than a part.
  • the method of coating the coating liquid on the conductive porous substrate can be performed using various commercially available coating machines.
  • the coating method screen printing, rotary screen printing, spray spraying, intaglio printing, gravure printing, die coater coating, bar coating, blade coating, etc. can be used, but the surface roughness of the conductive porous substrate
  • die coating is preferred.
  • the coating methods exemplified above are merely examples, and the coating method is not necessarily limited thereto.
  • the thickness of the microporous layer of the present invention is preferably 10 ⁇ m or more in terms of the dry film thickness considering the roughness of the current conductive porous substrate, and if it is too thick, the electric resistance of the gas diffusion electrode itself increases. 60 ⁇ m or less is preferable.
  • the thickness of the microporous layer of the present invention is 10 ⁇ m or more, it is preferable to keep the viscosity of the coating liquid at the time of coating at least 1000 mPa ⁇ s. If the viscosity is lower than this, the coating liquid may flow on the surface of the conductive porous substrate, and the coating liquid may flow into the pores and cause back-through. On the other hand, if the viscosity is too high, the applicability deteriorates, so the upper limit of the viscosity of the coating liquid is preferably about 25 Pa ⁇ s.
  • a more preferable viscosity range is 3000 mPa ⁇ s or more and 20 Pa ⁇ s or less, and further preferably 5000 mPa ⁇ s or more and 15 Pa ⁇ s or less.
  • the gas diffusion electrode substrate obtained by the production method of the present invention has a microporous layer on at least one surface of the conductive porous substrate. That is, you may have a microporous layer only in the single side
  • the coating liquid After passing through the coating process, the coating liquid is dried at a temperature at which the surfactant is not removed in order to remove the dispersion medium (water in the case of water) of the coating liquid applied to the conductive porous substrate.
  • sintering is generally performed for the purpose of removing the surfactant used for dispersing the conductive particles and for the purpose of binding the conductive particles by once melting the water repellent material.
  • heating is performed at a temperature lower than the melting point of the water repellent material.
  • the first heat treatment step and the second heat treatment step of heating at a temperature equal to or higher than the melting point of the water repellent material in order to perform fusion bonding of the water repellent material, so-called sintering, are separately performed at each optimum temperature.
  • the drying step in the production method of the present invention is a step of heating the conductive porous substrate and the coating liquid applied thereon at a temperature lower than the heating temperature of the first heat treatment step.
  • the heating temperature in the drying step is preferably 80 ° C. or higher and 155 ° C. or lower.
  • the heating temperature in the drying step is preferably 80 ° C. or higher and 155 ° C. or lower.
  • the dispersion medium can be efficiently removed.
  • the heating temperature to 155 ° C. or lower the surface of the microporous layer is roughened due to bumping of the dispersion medium. It is preferable because it can be suppressed and deterioration of quality can be suppressed.
  • the heating time in the drying step is preferably as short as possible from the viewpoint of productivity, and is preferably 10.0 minutes or less. On the other hand, if the time is too short, the dispersion medium is not sufficiently removed and the conductive porous substrate is heated in the first heat treatment step or the second heat treatment step, and the dispersion medium bumps. The above is preferable.
  • the first heat treatment step of the present invention is a step performed after the drying step, and is a step of heating the conductive porous substrate and the coating liquid applied thereon at a temperature lower than the melting point of the water repellent material. .
  • the heating temperature in the first heat treatment step is lower than the melting point of the water repellent material and the temperature is optimized while suppressing the melting of the water repellent material, the surfactant is decomposed into a microporous layer by thermal decomposition. Can be removed.
  • the heating temperature in the first heat treatment step is preferably 160 ° C. or higher, more preferably 250 ° C. or higher because the surfactant used in the coating liquid can be removed.
  • the heating time in the first heat treatment step is preferably as short as possible from the viewpoint of productivity, and is 3.0 minutes or less. On the other hand, when the time is too short, the surfactant cannot be sufficiently removed, and thus the heating time in the first heat treatment step is 0.2 minutes or more.
  • the second heat treatment step of the present invention is a step performed after the first heat treatment step, and heats the conductive porous substrate and the coating liquid applied thereon at a temperature equal to or higher than the melting point of the water repellent material. It is a process.
  • the heating temperature in the second heat treatment step is equal to or higher than the melting point of the water repellent material
  • the water repellent material is combined with the conductive particles contained in the microporous layer by melting the water repellent material, By causing the materials to bond to each other, it is possible to effectively suppress peeling in the microporous layer against peeling stress due to expansion and contraction of the electrolyte membrane after bonding.
  • the heating temperature in the second heat treatment step is preferably 300 ° C. or higher, more preferably 330 ° C. or higher, although it depends on the characteristics of the water repellent material used in the coating liquid. However, since it is not preferable that the water repellent material is decomposed by heat, it is preferable to perform the heat treatment at a temperature lower than the decomposition temperature of the water repellent material. Therefore, the heating temperature in the second heat treatment step is preferably 400 degrees or less.
  • the heating time of the second heat treatment step is 2.9 minutes or less because the water repellent material melts and the surface that adheres to the catalyst layer is gradually covered with the water repellent material.
  • a shorter heating time in the second heat treatment step is preferable because productivity is improved, but in order to shorten the heating time in this way, a higher adhesive force is obtained by combining with an appropriate heating temperature. be able to.
  • the heating temperature is 330 ° C. or more and 364 ° C. or less and the heating time is 0.2 minutes or more and 2.7 minutes or less because a gas diffusion electrode substrate can be produced in a short time.
  • the second heat treatment step is preferable because the gas diffusion electrode substrate can be efficiently produced even when the heating temperature is 365 ° C. or more and the heating time is 0.2 minutes or more and 1.5 minutes or less.
  • the heating time of the first heat treatment step is 0.2 minutes to 1.5 minutes. It is preferable that When the heating temperature of the second heat treatment step is 365 ° C. or more and the heating time is 0.2 minutes or more and 1.5 minutes or less, the surfactant is sufficiently removed even if the first heat treatment step is 1.5 minutes or less. Therefore, the gas diffusion electrode substrate can be manufactured particularly efficiently.
  • the heating time is 0.2 for both the first heat treatment step and the second heat treatment step. It is preferable that it is more than minutes.
  • the conductive porous substrate in order to efficiently produce the gas diffusion electrode substrate, is wound in a continuous state until it is unwound and wound up. It is preferable to process. That is, before the coating step, including a winding step of unwinding the conductive porous substrate from a wound body in which a long conductive porous substrate is wound in a roll shape, the coating step, the drying step, the first step After the heat treatment step and the second heat treatment step, a winding step of winding up the gas diffusion electrode substrate obtained through the second heat treatment step is included.
  • the unwinding step a wound body in which a long conductive porous substrate is wound in a roll shape is unwound from an unwinding machine.
  • a water-repellent treatment step for the conductive porous substrate is added between the unwinding step and the coating step, if necessary.
  • the gas diffusion electrode substrate obtained through the second heat treatment step may be cooled as necessary.
  • the first heat treatment step and the second heat treatment step may use the same heat treatment apparatus having two zones that can be controlled at different temperatures. Further, the order of the first heat treatment step and the second heat treatment step may be reversed.
  • the gas diffusion electrode is continuously wound by a winder. When winding up, in order to protect the coated surface, an interleaf may be wound together. Further, the winding may be performed after trimming the edge portion or slitting to the product width immediately before winding.
  • the processing device can be made compact by winding and processing each conductive process such as water repellent treatment of the conductive porous substrate, coating, drying and winding, heat treatment and winding. There is an advantage that can be.
  • a membrane electrode assembly can be formed by bonding the gas diffusion electrode base material described above to at least one surface of a solid polymer electrolyte membrane having catalyst layers on both surfaces. At that time, by arranging the microporous layer of the gas diffusion electrode substrate on the catalyst layer side, the back diffusion of the generated water is more likely to occur, and the contact area between the catalyst layer and the gas diffusion electrode substrate is increased. The contact electrical resistance can be reduced.
  • the fuel cell of the present invention includes a gas diffusion electrode substrate produced by the production method of the present invention. That is, it has a separator on both sides of the above-mentioned membrane electrode assembly. That is, a fuel cell is configured by arranging separators on both sides of the membrane electrode assembly.
  • a polymer electrolyte fuel cell is constructed by laminating a plurality of such membrane electrode assemblies on both sides sandwiched by separators via gaskets.
  • the catalyst layer is composed of a layer containing a solid polymer electrolyte and catalyst-supporting carbon. As the catalyst, platinum is usually used.
  • a fuel cell in which a reformed gas containing carbon monoxide is supplied to the anode side it is preferable to use platinum and ruthenium as the catalyst on the anode side.
  • the solid polymer electrolyte it is preferable to use a perfluorosulfonic acid polymer material having high proton conductivity, oxidation resistance, and heat resistance.
  • the basis weight of the conductive porous substrate and the gas diffusion electrode substrate was determined by dividing the mass of the sample cut in 10 cm square by the area of the sample (0.01 m 2 ).
  • the basis weight of the microporous layer was measured by subtracting the basis weight of the conductive porous substrate from the basis weight of the gas diffusion electrode substrate.
  • ⁇ Measurement of thickness ( ⁇ m)> When there is a measurement object (conductive porous substrate or gas diffusion electrode substrate) in a state where the conductive porous substrate and the gas diffusion electrode substrate are put on a smooth surface plate and a pressure of 0.15 MPa is applied. The height difference when not present was measured. Ten locations were sampled at different locations, and the average of the measured height differences was taken as the thickness. The thickness of the microporous layer was measured by subtracting the thickness of the conductive porous substrate from the thickness of the gas diffusion electrode substrate.
  • ⁇ Viscosity measurement> In the viscosity measurement mode of the Spectris Borin rotary rheometer, the stress is measured using a circular cone plate having a diameter of 40 mm and an inclination of 2 ° while increasing the number of rotations of the plate (increase the share rate). At this time, the value of the viscosity at a rate of 0.17 / sec was taken as the viscosity of the coating liquid.
  • An integrated electrolyte membrane / catalyst layer obtained by cutting a gas diffusion electrode substrate cut out in a size of 2 cm ⁇ 2 cm into a size of 1.5 cm ⁇ 1.5 cm (an electrolyte membrane “GOA SELECT (registered trademark)” manufactured by Japan Gore)
  • the catalyst layer of the catalyst layer “PRIMEA (registered trademark)” manufactured by Nippon Gore was overlapped so that the microporous layer was in contact with each other, and hot pressing was performed by applying a pressure of 1 MPa at 100 ° C.
  • the sample After affixing a double-sided tape cut out in a size of 1.5 cm ⁇ 1.5 cm to the part of the sample integrated with the electrolyte membrane / catalyst layer, the sample is placed on the sample mounting jig attached to the lower side of the testing machine.
  • the tester is set to the compression mode, and is pressed for 30 seconds with a surface pressure of 1 MPa with the other upper sample mounting jig. Thereafter, the tester is set to the tensile test mode, and the upper sample mounting jig is raised at a speed of 0.5 mm / second.
  • the maximum stress applied at that time was measured 5 times, and a value obtained by dividing the average value by the area was defined as an adhesive force (N / cm 2 ).
  • Example 1 A raw paper in which carbon paper (TGP-R-060 manufactured by Toray Industries, Inc.), which is a conductive porous substrate having a width of about 400 mm, was rolled into a 400 m roll was set in an unwinding machine. The raw material was conveyed by drive rolls installed at the unwinding unit, the winding unit, and the coater unit.
  • carbon paper TGP-R-060 manufactured by Toray Industries, Inc.
  • a water-repellent material dispersion (Daikin Industries PTFE dispersion D-210C diluted with purified water 5 times) Filled and conveyed so that the raw material is immersed, squeezed excess liquid with a squeeze roll, passed through a dryer set at 60 ° C. and dried for 2 minutes, and then used a die coating device
  • the first heat treatment is performed for 2.4 minutes in a heat treatment furnace where the moisture is dried at 100 ° C. and the temperature is set at 320 ° C.
  • a second heat treatment step for 2.4 minutes was performed in a heat treatment furnace set at 340 ° C. and wound up.
  • the microporous layer coating solution was prepared as follows.
  • Acetylene black (“Denka Black” (registered trademark), manufactured by Denki Kagaku Kogyo Co., Ltd.), 7.7 parts by mass, PTFE dispersion (Daikin Industries, Ltd., Polyflon D-210C, PTFE content: 60% by mass, melting point: 330 ° C) 3.2 parts by mass, surfactant polyoxyethylene alkylphenyl ether (manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition temperature 200 ° C. to 270 ° C.) 14 parts by mass, purification 75.1 parts by mass of water was kneaded with a planetary mixer to prepare a coating solution. The coating liquid viscosity at this time was 9.5 Pa ⁇ s.
  • Example 2 a gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the microporous layer coating solution was changed and prepared as follows.
  • Acetylene black (“DENKA BLACK” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass
  • PTFE dispersion (Daikin Kogyo Co., Ltd., Polyflon D-210C) 1.2 parts by mass
  • surfactant polyoxy 14 parts by mass of ethylene alkylphenyl ether manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100: decomposition temperature 200 ° C. to 270 ° C.) and 77.1 parts by mass of purified water were kneaded with a planetary mixer.
  • a coating solution was prepared. The coating liquid viscosity at this time was 9.4 Pa ⁇ s.
  • Example 3 In Example 1, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 1, and a gas diffusion electrode substrate was obtained.
  • Example 4 In Example 1, the heating time of the first heat treatment step, the heating temperature of the second heat treatment step, and the heating time were changed as shown in the table to obtain a gas diffusion electrode substrate.
  • Example 5 a gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the microporous layer coating liquid was changed as follows. Acetylene black (“DENKA BLACK” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass, PTFE dispersion (Daikin Industries, Ltd., Polyflon D-210C) 2.1 parts by mass, surfactant polyoxy 14 parts by mass of ethylene alkyl phenyl ether (manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition temperature 200 ° C. to 270 ° C.) and 76.2 parts by mass of purified water were kneaded with a planetary mixer. A coating solution was prepared. The coating liquid viscosity at this time was 9.0 Pa ⁇ s.
  • Example 6 In Example 5, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 1, and a gas diffusion electrode substrate was obtained.
  • Example 7 In Example 6, the heating time of the first heat treatment step was changed as shown in Table 2, and a gas diffusion electrode substrate was obtained.
  • Example 8 In Example 7, the heating time of the second heat treatment step was changed as shown in Table 2 to obtain a gas diffusion electrode substrate.
  • Example 9 In Example 7, the heating time of the first heat treatment step and the heating time of the second heat treatment step were changed as shown in Table 2 to obtain a gas diffusion electrode substrate.
  • Example 10 (Example 10) In Example 7, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 2, and a gas diffusion electrode substrate was obtained.
  • Example 1 a gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the microporous layer coating solution was changed and prepared as follows.
  • Acetylene black (“DENKA BLACK” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass
  • PTFE dispersion (Daikin Industries, Ltd., Polyflon D-210C) 0.4 parts by mass
  • surfactant polyoxy 14 parts by mass of ethylene alkylphenyl ether manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100: decomposition temperature 200 ° C. to 270 ° C.) and 77.9 parts by mass of purified water were kneaded with a planetary mixer.
  • a coating solution was prepared. The coating liquid viscosity at this time was 9.6 Pa ⁇ s.
  • Example 5 (Comparative Example 2) In Example 5, the heating time of the second heat treatment step was changed as shown in Table 2, and a gas diffusion electrode substrate was obtained.
  • Example 3 (Comparative Example 3) In Example 5, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 3, and a gas diffusion electrode substrate was obtained. In order to obtain adhesive strength, it is necessary to lengthen the second heat treatment time, and it is impossible to efficiently produce a gas diffusion electrode substrate having excellent adhesiveness.
  • Example 5 (Comparative Example 4) In Example 5, the heating time of the first heat treatment step, the heating temperature of the second heat treatment step, and the heating time were changed as shown in Table 3 to obtain a gas diffusion electrode substrate.
  • Example 5 (Comparative Example 5) In Example 5, the heating time of the second heat treatment step was changed as shown in Table 3 to obtain a gas diffusion electrode substrate.
  • Example 6 a gas diffusion electrode substrate was obtained in the same manner as in Example 5 except that the microporous layer coating liquid was changed and prepared as follows. Acetylene black (“Denka Black” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass, FEP dispersion (“Neoflon” (registered trademark) FEP dispersion ND-110 (manufactured by Daikin Industries, Ltd.)) , FEP content 54 mass%, melting point 240 ° C.) 2.3 mass parts, surfactant polyoxyethylene alkylphenyl ether (manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition 14 parts by mass of a temperature of 200 ° C. to 270 ° C. and 76.0 parts by mass of purified water were kneaded with a planetary mixer to prepare a coating solution. The coating liquid viscosity at this
  • Example 6 the microporous layer coating liquid was changed as follows, and the heating time of the second heat treatment step was changed as shown in Table 3, to obtain a gas diffusion electrode substrate.
  • Acetylene black (“Denka Black” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass
  • PTFE dispersion (Daikin Kogyo Co., Ltd., Polyflon D-210C) 1.0 part by mass
  • surfactant polyoxy 14 parts by mass of ethylene alkyl phenyl ether manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition temperature 200 ° C. to 270 ° C.) and 77.3 parts by mass of purified water were kneaded with a planetary mixer.
  • a coating solution was prepared.
  • the coating liquid viscosity at this time was 9.0 Pa ⁇ s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、接着性に優れたガス拡散電極基材を効率的に製造する方法を提供する。導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極基材の製造方法であって、前記導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程、第1の熱処理工程の加熱温度よりも低い温度で加熱する、乾燥工程、前記撥水材の融点未満の温度で加熱する第1の熱処理工程、および、前記撥水材の融点以上の温度で加熱する第2の熱処理工程を有し、前記塗液は、前記導電性粒子1質量部に対して、前記撥水材を0.09質量部以上0.27質量部以下含み、前記第1の熱処理工程の加熱時間が0.2分以上3.0分以下であって、前記第2の熱処理工程の加熱時間が2.9分以下であることを特徴とする。

Description

ガス拡散電極基材の製造方法、および燃料電池
 本発明は、燃料電池、特に固体高分子型燃料電池に好適に用いられるガス拡散電極基材の製造方法、該ガス拡散電極基材を含む燃料電池に関するものである。
 水素を含む燃料ガスをアノードに供給し、酸素を含む酸化ガスをカソードに供給して、両極で起こる電気化学反応によって起電力を得る固体高分子型燃料電池の構造について、図1を用い以下説明する。固体高分子型燃料電池(1)は、一般的に、セパレータ(2)、ガス拡散電極基材(3)、触媒層(4)、電解質膜(5)、触媒層(4)、ガス拡散電極基材(3)、およびセパレータ(2)を順に積層して構成されている。上記のガス拡散電極基材には、セパレータから供給されるガスを触媒層へと拡散するための高いガス拡散性と、電気化学反応に伴って生成する水をセパレータへ排出するための高い排水性、および発生した電流を取り出すための高い導電性が必要である。そのため、炭素繊維などからなる導電性多孔質基材を基材としてその表面に微多孔質層を形成したガス拡散電極基材が広く用いられている。
 しかしながら、このようなガス拡散電極基材の課題として、燃料電池発電時に起こる電解質膜の膨潤収縮による厚み変化にガス拡散電極基材を追従させ、性能と耐久性を両立させるために、触媒層と微多孔層を圧着し接着することがある。その場合、接着を阻害する撥水材の割合が、微多孔層表面において少ないほうが望ましい。一方、微多孔層を設ける目的の一つである排水性のためには、微多孔層中に撥水材がある程度必要である。
 触媒層と微多孔質層の接着性向上のための技術としては、たとえば特許文献1において、微多孔層表面が撥水材の融点より低いとなる加熱方法で熱処理することで、表面の撥水材割合が低いガス拡散電極基材の製造方法が提案されている。
 また特許文献2では、加熱時間を短縮するために、分散剤の分解を促進するための添加剤を微多孔質層に添加したガス拡散電極基材が提案されている。
 また特許文献3では、ガス拡散電極基材を安全で効率的に製造する方法として、分散剤が熱分解する第1の加熱する工程と、撥水材の融点以上の温度で加熱する工程とを含むガス拡散電極基材の製造方法が提案されている。
日本国特開2014-11108号公報 日本国特開2016-225271号公報 日本国特開2015-185217号公報
 しかしながら、特許文献1に記載の発明においては、多孔質層表面温度を撥水材の融点より低くするため、分散材の分解に時間がかかり接着性を有すガス拡散電極基材を効率的に得ることができないという問題が残されており、特許文献2に記載の発明を用いても特許文献1の場合と同様の問題が残されており、さらにコストアップする問題も生じている。また、特許文献3に記載の発明においては、接着性を有すガス拡散電極基材を得る方法に関する記載はない。
 そこで本発明の目的は、上記従来技術の背景に鑑み、従来困難であった接着性に優れたガス拡散電極基材を効率的に製造する方法を提供することにある。
 さらに本発明の他の目的は、上記方法で製造されたガス拡散電極基材を含む燃料電池を提供することにある。
 前記の課題を解決するための本発明のガス拡散電極基材の製造方法は、以下である。
 導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極基材の製造方法であって、
 前記導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程、
 第1の熱処理工程の加熱温度よりも低い温度で、塗布処理された導電性多孔質基材を加熱する、乾燥工程、
 前記撥水材の融点未満の温度で加熱する第1の熱処理工程、
 および、前記撥水材の融点以上の温度で加熱する第2の熱処理工程を有し、
 前記塗液は、前記導電性粒子1質量部に対して、前記撥水材を0.09質量部以上0.27質量部以下含み、
 前記第1の熱処理工程の加熱時間が0.2分以上3.0分以下であって、
 前記第2の熱処理工程の加熱時間が2.9分以下であることを特徴とする。
 本発明の燃料電池は、上記の方法により製造されたガス拡散電極基材を用いる。
 本発明の実施形態によれば、従来困難であった接着性に優れたガス拡散電極基材を、効率的に製造する方法を提供することができる。
図1は、燃料電池の実施形態を例示する断面図である。
 本発明は、導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極基材の製造方法であって、前記導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程、第1の熱処理工程の加熱温度よりも低い温度で、塗布処理された導電性多孔質基材を加熱する乾燥工程、前記撥水材の融点未満の温度で加熱する第1の熱処理工程、および、前記撥水材の融点以上の温度で加熱する第2の熱処理工程を有し、前記塗液は、前記導電性粒子1質量部に対して、前記撥水材を0.09質量部以上0.27質量部以下含み、前記第1の熱処理工程の加熱時間が0.2分以上3.0分以下であって、前記第2の熱処理工程の加熱時間が2.9分以下であることを特徴とする、ガス拡散電極基材の製造方法、である。
 以下、本発明のガス拡散電極基材の製造方法について、詳細に説明する。
 [導電性多孔質基材]
 ガス拡散電極基材は、高い導電性を有し、多孔質であることが重要であるため、本発明の製造方法に用いる導電性多孔質基材としては、多孔体からなる基材である導電性多孔質基材を用いる。このような導電性多孔質基材は、平均細孔径が10μm以上100μm以下の多孔体であることが好ましい。導電性多孔質基材としては、具体的には、例えば、炭素繊維抄紙体、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどの多孔質基材を用いることが好ましく、さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材、すなわちカーボンペーパーを用いることが好適である。
 本発明では、排水性を向上させる目的で、後述する撥水材を用いて導電性多孔質基材に対して撥水加工を施してもよい。撥水加工は、導電性多孔質基材に撥水材を塗布し熱処理することにより行うことができる。
 撥水加工の際の撥水材の塗布量は、導電性多孔質基材100質量部に対して1~50質量部であることが好ましく、より好ましくは2~40質量部である。撥水材の塗布量が、導電性多孔質基材100質量部に対して1質量部以上であると、導電性多孔質基材が排水性に優れたものとなる。一方、撥水材の塗布量が、導電性多孔質基材100質量部に対して50質量部以下であると、導電性多孔質基材が導電性の優れたものとなる。
 <塗布工程>
 本発明で製造するガス拡散電極基材は、導電性多孔質基材の少なくとも片面に微多孔層を有する。
 本発明の製造方法は、導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程を有する。なお、本発明でいう微多孔質層は、塗布工程、乾燥工程、第1の熱処理工程、及び第2の熱処理工程を経ることで形成される層であり、導電性粒子及び撥水材を含む層である。
 塗液および微多孔層に含まれる導電性粒子とは、炭素粉末である。炭素粉末としては、ファーネスブラック、アセチレンブラック、ランプブラックおよびサーマルブラックなどのカーボンブラックや、鱗片状黒鉛、鱗状黒鉛、土状黒鉛、人造黒鉛、膨張黒鉛、および薄片グラファイトなどのグラファイト、カーボンナノチューブ、線状カーボン、炭素繊維のミルドファイバーなどが挙げられる。それらの中でもカーボンブラックが好ましく用いられ、不純物が少ないことからアセチレンブラックがより好ましい。
 また本発明において、塗液および微多孔層に含まれる撥水材とはフッ素系のポリマーである。この撥水材は、微多孔層に対して水の排水性を高めるために含有される。撥水材は、フッ素系のポリマーであれば特に限定されないが、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン六フッ化プロピレン共重合体(FEP)、ペルフルオロアルコキシフッ化樹脂(FEP)、エチレン四フッ化エチレン共重合体(ETFA)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等のフッ素系のポリマーが挙げられるが、撥水性が特に高いという点でPTFE、あるいはFEPが好ましく、融点が高く後述の第一の熱処理工程の温度を高くし、界面活性剤の分解を促進し易いことからPTFEがより好ましい。また、撥水材は一種類を用いても良いし、複数種類を混合して用いても良い。撥水材を複数種類混合して用いることで、排水性と接着性を所望の特性に調整することが容易となる。
 塗液に含まれる分散媒とは、導電性粒子および撥水材を分散する液体である。分散媒としては、導電性粒子および撥水材を分散することが可能な液体であれば特に限定されないが、例えば、水やアルコールが好ましい。
 塗液に含まれる界面活性剤とは、導電性粒子との親和性部位と分散媒との親和性部位を有す化学種である。塗液中の界面活性剤は、導電性粒子および撥水材を分散媒に分散するために用いられる。導電性粒子との親和性部位とは、導電性粒子に相互作用可能な疎水性化学構造を意味し、具体的にはフェニル基、アルキル基などをあげることができる。分散媒との親和性部位とは、水やアルコールなどの分散媒と相互作用可能な親水性化学構造であり、具体的にはエステル結合、エーテル結合、アミノ基、水酸基、カルボキシル基などをあげることができる。界面活性剤は、導電性粒子との親和性部位と分散媒との親和性部位を有す化学種であれば特に限定されないが、界面活性剤としては、金属イオンの含有量が少ないノニオン系(非イオン系)の界面活性剤が好ましい。この点から、メチルセルロースエーテル、ポリエチレングリコール系のエーテル、なかでもアルキルフェノールとポリエチレングリコールのエーテル(例えば、ポリオキシエチレンアルキルフェニルエーテル)、高級脂肪族アルコールとポリエチレングリコールのエーテル、ポリビニルアルコール系のエーテルなどが好適に用いられる。
 また、導電性多孔質基材への塗液の塗工性を向上するため、塗液の粘度を高粘度に保つ目的で、塗液に増粘剤を添加してもよい。ここで用いる増粘剤としては、増粘剤として一般的に良く知られたもので良く、例えば、メチルセルロース系、ポリエチレングリコール系、ポリビニルアルコール系などが好適に用いられる。
 なお、塗液の粘度を高粘度に保つためには、増粘剤を用いる方法に限定されるものではなく、前述の界面活性剤として、増粘機能を有する界面活性剤を用いることも好ましい。
 本発明の製造方法の塗布工程で用いる塗液は、塗液中の導電性粒子1質量部に対して、撥水材を0.09質量部以上0.27質量部以下含む。塗液中の撥水材の量が、導電性粒子1質量部に対して0.09質量部以上であることで、微多孔層を触媒層と接着した後の電解質膜の膨張収縮による剥離応力に対して、微多孔質層内での剥離を抑制することができる。また塗液中の撥水材の量が、導電性粒子1質量部に対して0.27質量部以下であることで、後述の第2の加熱工程により撥水材が溶融した後も触媒層と接着する表面を維持することができ、微多孔層に対して優れた触媒層との接着性を得ることができる。塗液中の撥水材の量は、導電性粒子1質量部に対し0.11質量部以上が好ましく、0.13質量部以上がより好ましい。また塗液中の撥水材の量は、0.25質量部以下が好ましく、0.21質量部以下がより好ましい。
 また、本発明の製造方法の塗布工程で用いる塗液中の導電性粒子の量は、生産性の点から塗液全体100質量%中に好ましくは5質量%以上、より好ましくは10質量%以上である。塗液の粘度、導電性粒子の分散安定性、塗液の塗布性などが適性であれば塗液中の導電性粒子の濃度に上限はないが、50質量%を以下であると導電性粒子同士の再凝集による急激な粘度増加を抑制でき、塗液の塗布性が良好となり好ましい。
 本発明の製造方法の塗布工程で用いる塗液中の界面活性剤は、導電性粒子を分散させるために、導電性粒子100質量部に対して0.1質量部以上が好ましい。しかし、この分散を長時間安定させて塗液粘度の上昇を防ぎ、塗液が分離したりしないようにするために、界面活性剤の量を増量することが有効である。この様な観点から、塗液中の界面活性剤の量は、導電性粒子100質量部に対して、より好ましくは50質量部以上であり、更に好ましくは100質量部以上、特に好ましくは200質量部以上である。界面活性剤の添加量の上限としては、導電性粒子100質量部に対して500質量部以下が好ましく、後の加熱工程において多量の蒸気や分解ガスが発生し、生産性を低下することを避けることができる。
 塗布工程において、塗液を導電性多孔質基材へ塗布する方法は、市販されている各種の塗工機を用いて行うことができる。塗工方式としては、スクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、グラビア印刷、ダイコーター塗工、バー塗工、ブレード塗工などが使用できるが、導電性多孔質基材の表面粗さによらず塗工量の定量化を図ることができるため、ダイコーター塗工が好ましい。以上例示した塗工方法はあくまでも例示であり、塗布方法は必ずしもこれらに限定されるものではない。
 本発明の微多孔層の厚みについては、現状の導電性多孔質基材の粗さを考慮すれば、乾燥膜厚で10μm以上が好ましく、厚すぎるとガス拡散電極自体の電気抵抗が高くなるため、60μm以下が好ましい。
 本発明の微多孔層の厚みを10μm以上にする場合、塗布するときの塗液の粘度を少なくとも1000mPa・s以上に保つことが好ましい。粘度がこれより低いと塗液が導電性多孔質基材表面上で流れてしまい、また細孔に塗液が流入して裏抜けを起こしてしまうことがある。逆にあまり高粘度になると塗布性が悪くなるため、塗液の粘度の上限は25Pa・s程度であることが好ましい。より好ましい粘度の範囲としては、3000mPa・s以上、20Pa・s以下、さらに好ましくは5000mPa・s以上、15Pa・s以下である。
 本発明の製造方法により得られるガス拡散電極基材は、導電性多孔質基材の少なくとも片面に微多孔層を有する。つまり、導電性多孔質基材の片面のみに微多孔層を有しても、両面に微多孔層を有しても構わない。そのため塗液は、導電性多孔質基材の片面のみに塗布しても、両面に塗布しても、いずれでも良い。塗液を導電性多孔質記載の両面に塗布する場合、導電性多孔質基材の片面に塗布した後に、後述の乾燥工程を経て、もう一方の面に塗布しても、乾燥工程を経ずに両面に塗布しても良い。
 <乾燥工程>
 塗布工程を経た後、導電性多孔質基材に塗布された塗液の分散媒(水系の場合は水)を除去するために、界面活性剤が除去されない温度で塗液を乾燥する塗液乾燥工程に供する後、導電性粒子の分散に用いた界面活性剤を除去する目的および撥水材を一度溶融して導電性粒子を結着させる目的で、焼結を行なうことが一般的である。しかし本発明においては、第1の熱処理工程の加熱温度よりも低い温度で、塗布処理された導電性多孔質基材を加熱する乾燥工程を経た後、撥水材の融点未満の温度で加熱する第1の熱処理工程と、撥水材の溶融結着、いわゆる焼結を行うために撥水材の融点以上の温度で加熱する第2の熱処理工程を、それぞれの最適温度で別個に行なう。
 本発明の製造方法における乾燥工程は、第1の熱処理工程の加熱温度よりも低い温度で、導電性多孔質基材及びその上に塗布された塗液を加熱する工程である。
 乾燥工程の加熱温度は、80℃以上155℃以下であることが好ましい。乾燥工程の加熱温度を80℃以上とすることで、分散媒を効率的に除去することが可能とあり、155℃以下とすることで、分散媒の突沸によって微多孔質層の表面が荒れたものとなり品位が悪化することを抑制できるために好ましい。乾燥工程における加熱時間は、生産性の点から、できるかぎり短時間であることが好ましく、10.0分以下が好ましい。一方で、あまりに短時間になると分散媒が十分除去されずに第1の熱処理工程または第2の熱処理工程で導電性多孔質基材が加熱され、分散媒の突沸が生じるため、0.05分以上であることが好ましい。
 <第1の熱処理工程>
 本発明の第1の熱処理工程は、乾燥工程の後に行われる工程であり、撥水材の融点未満の温度で導電性多孔質基材及びその上に塗布された塗液を加熱する工程である。第1の熱処理工程の加熱温度が撥水材の融点未満の温度であることで、撥水材の溶融を抑制しつつ、温度を最適化した場合には界面活性剤を熱分解により微多孔層から除去することができる。
 第1の熱処理工程の加熱温度は、塗液に用いる界面活性剤を除去できることから、160℃以上であることが好ましく、より好ましくは250℃以上である。
 第1の熱処理工程における加熱時間は、生産性の点から、できるかぎり短時間であることが好ましく、3.0分以下である。一方で、あまりに短時間になると界面活性剤が十分に除去できないため、第1の熱処理工程における加熱時間は0.2分以上である。
 <第2の熱処理工程>
 本発明の第2の熱処理工程は、第1の熱処理工程の後に行われる工程であり、撥水材の融点以上の温度で導電性多孔質基材及びその上に塗布された塗液を加熱する工程である。第2の熱処理工程の加熱温度が撥水材の融点以上の温度であることで、撥水材の溶融により撥水材が微多孔質層中に含まれる導電性粒子と結合したり、撥水材同士が結合を生じることで、接着後の電解質膜の膨張収縮による剥離応力に対して、微多孔質層内での剥離を有効に抑制することができる。
 第2の熱処理工程の加熱温度は、塗液に用いる撥水材の特性にもよるが、300℃以上であることが好ましく、より好ましくは330℃以上である。ただし、撥水材が熱により分解してしまうのは好ましくないため、撥水材の分解温度以下で熱処理を行なうことが好ましく、そのため第2の熱処理工程の加熱温度は400度以下が好ましい。
 第2の熱処理工程の加熱時間は、撥水材が溶融し触媒層と接着する表面が次第に撥水材で被覆されていくため、2.9分以下である。第2の熱処理工程における加熱時間は短時間であるほど生産性が向上するため好ましいが、このように短時間とするためには、適切な加熱温度と組合せることで、より高い接着力を得ることができる。
 第2の熱処理工程は、加熱温度が330℃以上364℃以下であり、加熱時間が0.2分以上2.7分以下であると、短時間でガス拡散電極基材が製造できるため好ましい。
 また第2の熱処理工程は、加熱温度が365℃以上であり加熱時間が0.2分以上1.5分以下である場合も、効率的にガス拡散電極基材が製造できるために好ましい。第2の熱処理工程において、加熱温度を365℃以上、加熱時間を0.2分以上1.5分以下とする場合、第1の熱処理工程の加熱時間が0.2分以上1.5分以下であることが好ましい。第2の熱処理工程の加熱温度を365℃以上として加熱時間を0.2分以上1.5分以下とする場合、第1の熱処理工程を1.5分以下としても十分に界面活性剤を除去できるため、特に効率的にガス拡散電極基材が製造できる。なお、あまりに短時間となると、撥水材の溶融による微多孔質層内での剥離が有効に抑制されなくなるため、第1の熱処理工程及び第2の熱処理工程ともに、その加熱時間は0.2分以上であることが好ましい。
 本発明において、ガス拡散電極基材を効率よく製造するためには、導電性多孔質基材を長尺に巻いた状態のものを巻きだして、巻き取るまでの間に連続的に一貫して加工することが好ましい。すなわち、塗布工程の前に、長尺の導電性多孔質基材をロール状に巻いた巻回体から導電性多孔質基材を巻き出す巻き出し工程を含み、塗布工程、乾燥工程、第1の熱処理工程、及び第2の熱処理工程の後に、第2の熱処理工程を経て得たガス拡散電極基材を巻き取る巻き取り工程を含むようにする。巻き出し工程では、長尺の導電性多孔質基材をロール状に巻いた巻回体を巻き出し機から巻きだす。巻き出し工程と塗布工程の間に、必要に応じて、導電性多孔質基材に対する撥水処理工程を加える。第2の熱処理工程の後で、巻き取り工程の前に、必要に応じて、第2の熱処理工程を経て得たガス拡散電極基材を冷却しても良い。また、第1の熱処理工程と第2の熱処理工程は、異なる温度に制御可能な2ゾーンを有する同一の熱処理装置を用いても良い。また、第1の熱処理工程と第2の熱処理工程の順番は逆であっても良い。巻き取り工程では、ガス拡散電極を連続的に巻き取り機にて巻き取る。巻き取る際、塗布面を保護するため、合い紙を共巻きにしても良い。また、巻き取り直前にエッジ部分をトリミングあるいは製品幅にスリットした後巻き取っても良い。また、導電性多孔質基材の撥水加工をして巻き取る、塗布、乾燥して巻き取る、熱処理して巻き取るなど、いくつかの加工工程ごとに巻き取って加工すると、加工装置をコンパクトにできるという利点がある。
 [膜電極接合体]
 本発明において、前記したガス拡散電極基材を、両面に触媒層を有する固体高分子電解質膜の少なくとも片面に接合することにより、膜電極接合体を形成することができる。その際、触媒層側にガス拡散電極基材の微多孔層を配置することにより、より生成水の逆拡散が起こりやすくなることに加え、触媒層とガス拡散電極基材の接触面積が増大し、接触電気抵抗を低減させることができる。
 [燃料電池]
 本発明の燃料電池は、本発明の製造方法で製造されたガス拡散電極基材を含むものである。つまり、上述の膜電極接合体の両側にセパレータを有するものである。すなわち、上述の膜電極接合体の両側にセパレータを配することにより燃料電池を構成する。通常、このような膜電極接合体の両側にガスケットを介してセパレータで挟んだものを複数個積層することによって固体高分子型燃料電池を構成する。触媒層は、固体高分子電解質と触媒担持炭素を含む層からなる。触媒としては、通常、白金が用いられる。アノード側に一酸化炭素を含む改質ガスが供給される燃料電池にあっては、アノード側の触媒としては白金およびルテニウムを用いることが好ましい。固体高分子電解質は、プロトン伝導性、耐酸化性および耐熱性の高い、パーフルオロスルホン酸系の高分子材料を用いることが好ましい。このような燃料電池ユニットや燃料電池の構成自体は、よく知られているところであり、本発明の製造方法で製造されたガス拡散電極基材をアノードまたはカソード側いずれかにのみ用いても、両側に用いてもよい。
 以下、実施例によって本発明をより具体的に説明する。
 <目付(g/m2)の測定>
 導電性多孔質基材、ガス拡散電極基材の目付は、10cm四方に切り取ったサンプルの質量を、サンプルの面積(0.01m2)で除して求めた。微多孔層の目付については、ガス拡散電極基材の目付から導電性多孔質基材の目付を差し引いて測定した。
 <厚さ(μm)の測定>
 導電性多孔質基材およびガス拡散電極基材を平滑な定盤にのせ、圧力0.15MPaをかけた状態での測定物(導電性多孔質基材又はガス拡散電極基材)がある場合からない場合の高さの差を測定した。異なる部位にて10箇所サンプリングを行い、高さの差の測定値を平均したものを厚さとした。微多孔層の厚さについては、ガス拡散電極基材の厚さから導電性多孔質基材の厚さを差し引いて測定した。
 <粘度測定>
 スペクトリス社製ボーリン回転型レオメーターの粘度測定モードにおいて、直径40mm、傾き2°の円形コーンプレートを用いプレートの回転数を増加させながら(シェアレートを上昇)応力を測定していく。このとき、シェレート0.17/秒における粘度の値を塗液の粘度とした。
 <ガス拡散電極基材の接着力(N/cm2)の測定>
 (株)島津製作所製“オートグラフ”(登録商標)AGS-Xの引張試験モードを用い、ガス拡散電極基材と触媒層との接着力を測定した。引張試験機に取り付けられた、上下2つの試料取り付け冶具の内、下側の治具の試料接地面(2.0cm×2.0cm)に両面テープ(ニチバン製ナイスタック(登録商標)一般タイプNW-20)を貼付する。2cm×2cmのサイズで切り抜いたガス拡散電極基材を、1.5cm×1.5cmのサイズで切り抜いた電解質膜・触媒層一体化品(日本ゴア製の電解質膜“ゴアセレクト(登録商標)”に、日本ゴア製触媒層“PRIMEA(登録商標)”を両面に形成したもの)の触媒層と微多孔層が接するように重ね、100℃で1MPaの圧力をかけてホットプレスを行った。試料の電解質膜・触媒層一体化品の部分に1.5cm×1.5cmのサイズで切り抜いた両面テープを貼り付けた後、試験機下側に取り付けた試料取り付け冶具の上に試料を載せる。試験機を圧縮モードにして、上方のもう一方の試料取り付け冶具で、面圧1MPaで30秒間押し付ける。その後、試験機を引張試験モードにして、0.5mm/秒の速度で上側の試料取り付け冶具を上昇させる。その時にかかる最大応力を5回測定し、その平均値を面積で割った値を接着力(N/cm2)とした。
 (実施例1)
 幅約400mmの導電性多孔質基材であるカーボンペーパー(東レ(株)製 TGP-R-060)を400mロール状に巻いた原反を巻き出し機にセットした。
 巻き出し部、巻き取り部、コーター部に設置された駆動ロールにより原反を搬送した。コーター部にディッピング用のステンレス製の槽を装着した撥水処理装置を用い、該槽に撥水材ディスパージョン(ダイキン工業製PTFEディスパージョンD-210Cを精製水で5倍に薄めたもの)で満たし、その中を原反が浸漬されるように搬送し、絞りロールで余分な液を搾り取り、さらに60℃に温度設定した乾燥機を通過させ2分間乾燥させた後、ダイコーティング装置を用い、上記撥水処理した導電性多孔質基材に微多孔層塗液を塗布したのち、100℃で水分を乾燥、さらに温度を320℃に設定した熱処理炉において2.4分間の第1の熱処理工程を行なった後、340℃に設定した熱処理炉において2.4分間の第2の熱処理工程を行い、巻き取った。
 なお、微多孔層塗液は以下のように調製した。
 アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C、PTFEの含有量が60質量%、融点330℃)3.2質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 75.1質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.5Pa・sであった。
 (実施例2)
 実施例1において、微多孔層塗液を以下のように変更し調製した以外は、実施例1と同様にして、ガス拡散電極基材を得た。
 アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)1.2質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 77.1質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.4Pa・sであった。
 (実施例3)
 実施例1において、第2の熱処理工程の加熱温度、加熱時間を表1の通り変更し、ガス拡散電極基材を得た。
 (実施例4)
 実施例1において、第1の熱処理工程の加熱時間、第2の熱処理工程の加熱温度、加熱時間を表の通り変更し、ガス拡散電極基材を得た。
 (実施例5)
 実施例1において、微多孔層塗液を以下のように変更した以外は、実施例1と同様にして、ガス拡散電極基材を得た。
 アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)2.1質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 76.2質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.0Pa・sであった。
 (実施例6)
 実施例5において、第2の熱処理工程の加熱温度、加熱時間を表1の通り変更し、ガス拡散電極基材を得た。
 (実施例7)
 実施例6において、第1の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
 (実施例8)
 実施例7において、第2の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
 (実施例9)
 実施例7において、第1の熱処理工程の加熱時間、第2の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
 (実施例10)
 実施例7において、第2の熱処理工程の加熱温度、加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
 (比較例1)
 実施例1において、微多孔層塗液を以下のように変更し調製した以外は、実施例1と同様にして、ガス拡散電極基材を得た。
 アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)0.4質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 77.9質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.6Pa・sであった。
 (比較例2)
 実施例5において、第2の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
 (比較例3)
 実施例5において、第2の熱処理工程の加熱温度、加熱時間を表3の通り変更し、ガス拡散電極基材を得た。接着力を得るためには、第2の熱処理時間を長くする必要があり、接着性に優れたガス拡散電極基材を効率的に製造することはできないものであった。
 (比較例4)
 実施例5において、第1の熱処理工程の加熱時間、第2の熱処理工程の加熱温度、加熱時間を表3の通り変更し、ガス拡散電極基材を得た。
 (比較例5)
 実施例5において、第2の熱処理工程の加熱時間を表3の通り変更し、ガス拡散電極基材を得た。
 (比較例6)
 実施例5において、微多孔層塗液を以下のように変更し調製した以外は、実施例5と同様にして、ガス拡散電極基材を得た。
 アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、FEPディスパージョン(“ネオフロン”(登録商標)FEPディスパージョンND-110(ダイキン工業(株)製)、FEPの含有量が54質量%、融点240℃)2.3質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 76.0質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.8Pa・sであった。
 (比較例7)
 実施例6において、微多孔層塗液を以下のように変更し、第2の熱処理工程の加熱時間を表3の通り変更し、ガス拡散電極基材を得た。
 アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)1.0質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 77.3質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.0Pa・sであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1  固体高分子型燃料電池
2  セパレータ
3  ガス拡散電極基材
4  触媒層
5  電解質膜

Claims (5)

  1.  導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極基材の製造方法であって、
     前記導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程、
     第1の熱処理工程の加熱温度よりも低い温度で、塗布処理された導電性多孔質基材を加熱する、乾燥工程、
     前記撥水材の融点未満の温度で加熱する第1の熱処理工程、
     および、前記撥水材の融点以上の温度で加熱する第2の熱処理工程を有し、
     前記塗液は、前記導電性粒子1質量部に対して、前記撥水材を0.09質量部以上0.27質量部以下含み、
     前記第1の熱処理工程の加熱時間が0.2分以上3.0分以下であって、
     前記第2の熱処理工程の加熱時間が2.9分以下であることを特徴とする、ガス拡散電極基材の製造方法。
  2.  前記第2の熱処理工程は、加熱温度が330℃以上364℃以下であって、加熱時間が0.2分以上2.7分以下であることを特徴とする、請求項1に記載のガス拡散電極基材の製造方法。
  3.  前記第1の熱処理工程は、加熱時間が0.2分以上1.5分以下であって、
     前記第2の熱処理工程は、加熱温度が365℃以上であり、加熱時間が0.2分以上1.5分以下であることを特徴とする、請求項1に記載のガス拡散電極基材の製造方法。
  4.  前記撥水材がポリテトラフルオロエチレン(PTFE)であることを特徴とする、請求項1~3のいずれかに記載のガス拡散電極基材の製造方法。
  5.  請求項1~3のいずれかに記載の方法により製造されたガス拡散電極基材を用いた、燃料電池。
PCT/JP2018/013610 2017-04-03 2018-03-30 ガス拡散電極基材の製造方法、および燃料電池 WO2018186293A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18781433.0A EP3609005A4 (en) 2017-04-03 2018-03-30 METHOD OF MANUFACTURING A GAS DIFFUSION ELECTRODE SUBSTRATE AND FUEL CELL
KR1020197024010A KR20190130126A (ko) 2017-04-03 2018-03-30 가스 확산 전극 기재의 제조 방법, 및 연료 전지
US16/494,846 US20200287220A1 (en) 2017-04-03 2018-03-30 Method for producing gas diffusion electrode substrate and fuel cell
JP2018521332A JP6911847B2 (ja) 2017-04-03 2018-03-30 ガス拡散電極基材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-073450 2017-04-03
JP2017073450 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186293A1 true WO2018186293A1 (ja) 2018-10-11

Family

ID=63712952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013610 WO2018186293A1 (ja) 2017-04-03 2018-03-30 ガス拡散電極基材の製造方法、および燃料電池

Country Status (6)

Country Link
US (1) US20200287220A1 (ja)
EP (1) EP3609005A4 (ja)
JP (1) JP6911847B2 (ja)
KR (1) KR20190130126A (ja)
TW (1) TW201842703A (ja)
WO (1) WO2018186293A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162285A (zh) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 一种燃料电池导电气体扩散层及其制备方法
JP2022145150A (ja) * 2021-03-19 2022-10-03 株式会社Screenホールディングス ガス拡散層付膜電極接合体およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181404B2 (ja) * 2018-12-26 2022-11-30 コーロン インダストリーズ インク 触媒、その製造方法、それを含む電極、それを含む膜-電極アセンブリー、及びそれを含む燃料電池
CN114081499B (zh) * 2021-11-23 2024-01-12 吉林大学 一种具有二梯度孔的柔性透气表面肌电电极及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017071A (ja) * 2001-07-02 2003-01-17 Honda Motor Co Ltd 燃料電池用電極およびその製造方法とそれを備える燃料電池
JP2005100679A (ja) * 2003-09-22 2005-04-14 Tomoegawa Paper Co Ltd ガス拡散電極、その作製方法及びこれを用いた固体高分子型燃料電池
JP2011258395A (ja) * 2010-06-09 2011-12-22 Toyota Motor Corp 燃料電池に用いられるガス拡散層の製造方法、および、製造装置
JP2012226844A (ja) * 2011-04-15 2012-11-15 Toyota Motor Corp 燃料電池用ガス拡散層の製造方法
JP2014011108A (ja) 2012-07-02 2014-01-20 Toyota Motor Corp 燃料電池用ガス拡散層及びその形成方法
JP2015185217A (ja) 2014-03-20 2015-10-22 東レ株式会社 ガス拡散電極の製造方法および製造装置
JP2016225271A (ja) 2015-05-29 2016-12-28 トヨタ自動車株式会社 拡散層形成ペースト、ガス拡散層の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824298B2 (ja) * 2003-12-04 2011-11-30 パナソニック株式会社 燃料電池用ガス拡散層、電極及び膜電極接合体及びその製造方法
EP2736107A4 (en) * 2011-07-19 2014-12-03 Panasonic Corp METHOD FOR PRODUCING A MEMBRANE ELECTRODE ARRANGEMENT AND METHOD FOR PRODUCING A GAS DIFFUSION LAYER

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017071A (ja) * 2001-07-02 2003-01-17 Honda Motor Co Ltd 燃料電池用電極およびその製造方法とそれを備える燃料電池
JP2005100679A (ja) * 2003-09-22 2005-04-14 Tomoegawa Paper Co Ltd ガス拡散電極、その作製方法及びこれを用いた固体高分子型燃料電池
JP2011258395A (ja) * 2010-06-09 2011-12-22 Toyota Motor Corp 燃料電池に用いられるガス拡散層の製造方法、および、製造装置
JP2012226844A (ja) * 2011-04-15 2012-11-15 Toyota Motor Corp 燃料電池用ガス拡散層の製造方法
JP2014011108A (ja) 2012-07-02 2014-01-20 Toyota Motor Corp 燃料電池用ガス拡散層及びその形成方法
JP2015185217A (ja) 2014-03-20 2015-10-22 東レ株式会社 ガス拡散電極の製造方法および製造装置
JP2016225271A (ja) 2015-05-29 2016-12-28 トヨタ自動車株式会社 拡散層形成ペースト、ガス拡散層の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609005A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162285A (zh) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 一种燃料电池导电气体扩散层及其制备方法
JP2022145150A (ja) * 2021-03-19 2022-10-03 株式会社Screenホールディングス ガス拡散層付膜電極接合体およびその製造方法
JP7307109B2 (ja) 2021-03-19 2023-07-11 株式会社Screenホールディングス ガス拡散層付膜電極接合体およびその製造方法

Also Published As

Publication number Publication date
JPWO2018186293A1 (ja) 2020-02-13
EP3609005A4 (en) 2020-12-30
TW201842703A (zh) 2018-12-01
KR20190130126A (ko) 2019-11-21
JP6911847B2 (ja) 2021-07-28
EP3609005A1 (en) 2020-02-12
US20200287220A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
TWI644478B (zh) Gas diffusion electrode substrate, manufacturing method and application thereof
WO2018186293A1 (ja) ガス拡散電極基材の製造方法、および燃料電池
TWI648162B (zh) 氣體擴散電極基材以及具備其之膜電極接合體及燃料電池
TWI671941B (zh) 碳薄片、氣體擴散電極基材及燃料電池
TWI574453B (zh) 燃料電池用氣體擴散電極基材
TWI644477B (zh) 氣體擴散電極基材以及具備其之膜電極接合體及燃料電池
TW201806739A (zh) 氣體擴散電極基材、積層體及燃料電池
JP5328407B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP5311538B2 (ja) 多孔質炭素電極基材の製造方法
JP7355143B2 (ja) 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
JP2006351492A (ja) 燃料電池用ガス拡散層とその製造方法ならびにそれを用いた燃料電池
KR102591887B1 (ko) 탄소 시트, 가스 확산 전극 기재, 권회체 및 연료 전지
JP4985737B2 (ja) 燃料電池用のマイクロポーラス層付きガス拡散電極、マイクロポーラス層付き触媒層、触媒層付きガス拡散電極、膜−電極接合体及び固体高分子形燃料電池
CN117063315A (zh) 电极基材和其制造方法
JP2012074319A (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP5426830B2 (ja) 固体高分子型燃料電池用ガス拡散電極、それを用いた膜−電極接合体およびその製造方法、ならびにそれを用いた固体高分子型燃料電池
JP2022042074A (ja) ガス拡散電極
JP2008181834A (ja) 燃料電池拡散層の製造方法、燃料電池拡散層および燃料電池
JP2005166473A (ja) 燃料電池用電極
JP2009064723A (ja) 燃料電池用触媒層及び/又は拡散層の製造方法、製造された燃料電池用触媒層及び/又は拡散層、並びに燃料電池用膜電極接合体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521332

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024010

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018781433

Country of ref document: EP

Effective date: 20191104