WO2017147940A1 - 一种双酚芴环氧树脂的制备工艺 - Google Patents

一种双酚芴环氧树脂的制备工艺 Download PDF

Info

Publication number
WO2017147940A1
WO2017147940A1 PCT/CN2016/075808 CN2016075808W WO2017147940A1 WO 2017147940 A1 WO2017147940 A1 WO 2017147940A1 CN 2016075808 W CN2016075808 W CN 2016075808W WO 2017147940 A1 WO2017147940 A1 WO 2017147940A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
epoxy resin
bisphenolphthalein
brine
bisphenol
Prior art date
Application number
PCT/CN2016/075808
Other languages
English (en)
French (fr)
Inventor
林新冠
林仁宗
周冰
湛爱冰
Original Assignee
宏昌电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏昌电子材料股份有限公司 filed Critical 宏昌电子材料股份有限公司
Publication of WO2017147940A1 publication Critical patent/WO2017147940A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols

Definitions

  • the invention relates to the field of epoxy resins, in particular to a preparation process of a bisphenolphthalein epoxy resin.
  • An epoxy resin is generally an organic polymer compound containing two or more epoxy groups in a molecule.
  • the molecular structure is characterized by the presence of an active epoxy group in the molecular chain, and the epoxy group may be located at the end, in the middle or in a ring structure of the molecular chain.
  • Epoxy resin has excellent adhesion, mechanical properties and electrical properties, and is widely used in coatings, electronic components, building materials, and aerospace materials.
  • the epoxy resin on the market is mainly a bisphenol A type epoxy resin, and the preparation method is generally obtained by reacting bisphenol A with epichlorohydrin.
  • Bisphenol A type epoxy resin has the advantages of good fluidity, high mechanical properties and low price, which can meet the needs of most fields.
  • this kind of resin matrix contains a large number of polar groups such as hydroxyl groups formed by reaction, and the water absorption rate is high. After water absorption, the performance is significantly degraded, and there are also problems such as low heat resistance, which limits its application in the high-end field.
  • Epoxy resin has excellent insulation and heat resistance, and is widely used in sealing materials for electronic devices. As semiconductor devices become more highly integrated and package sizes and thicknesses are further reduced, the reliability of epoxy resins needs to be further improved. Hydrogen groups present in trace amounts of epoxy groups in the epoxy resin cause degradation of insulation properties and corrosion of the wires, which is detrimental to the safety performance of electronic devices. Ordinary epoxy resins have a total chlorine content of approximately 1600 ppm to 2500 ppm, limiting their use in high-end packaging applications. According to the international standard IEC61249-2-21 developed by the International Electrotechnical Commission, the total chlorine content of electronic components is less than 900ppm.
  • the bisphenol fluorene epoxy resin obtained by the invention has high refractive index, excellent heat resistance, low water absorption, total chlorine The content is reduced to 900ppm-1200ppm, which can be applied to the packaging of highly integrated electronic components and the preparation of optical components.
  • the preparation process of the bisphenol fluorene epoxy resin of the invention comprises: catalytic grafting reaction, ring closure reaction, purification reaction, desalting, concentration, and brine treatment process;
  • the catalytic grafting reaction step comprises: grafting a bisphenolphthalein and an epichlorohydrin in the presence of a catalyst; the molar ratio of the bisphenolphthalein to the epichlorohydrin is 1:5 to 1:20.
  • the reaction time is 2 to 10 hours, and the reaction temperature is 30 to 90 ° C;
  • the catalyst is at least one of an alkali metal or an alkaline earth metal salt or at least one of a tertiary amine and an ammonium salt;
  • the molar ratio of the bisphenolphthalein to the epichlorohydrin in the graft reaction is 1:8 to 1:15.
  • the catalyst for the graft reaction is at least one of an alkali metal or an alkaline earth metal salt
  • the molar ratio of the catalyst to the bisphenol quinone is 0.01 to 0.5
  • the graft catalyst is a tertiary amine or an ammonium salt.
  • the amount of the catalyst added is 0.03 to 3% of the total mass of the bisphenol quinone.
  • the catalyst for the graft reaction is at least one of an alkali metal or an alkaline earth metal salt
  • the molar ratio of the catalyst to the bisphenol quinone is 0.1 to 0.3
  • the graft catalyst is a tertiary amine or an ammonium salt.
  • the amount of catalyst added is 0.05 to 2% of the total mass of bisphenol quinone.
  • the grafting reaction time is 2 to 8 hours, and the reaction temperature is 50 to 80 °C.
  • the ring closure reaction process comprises: after the graft reaction of bisphenol hydrazine with epichlorohydrin, the chlorine atom is removed by the action of an alkali metal or an alkaline earth metal salt to form an epoxy group; the alkali metal or alkaline earth metal salt is a quantitative pump. Adding or batching multiple times; the molar ratio of the alkali metal or alkaline earth metal salt added to bisphenol hydrazine is 1:1 ⁇ 5:1;
  • the ring closure reaction temperature is 30 to 90 ° C, the reaction time is 2 to 5 hours, and the ring closure reaction is carried out under a vacuum of 100 to 300 torr;
  • the ring closure reaction temperature is 50 to 80 ° C; the ring closure reaction time is 2 to 3 hours; and the ring closure reaction vacuum degree is 150 to 250 torr.
  • the molar ratio of the ring-shaped reverse alkali metal or alkaline earth metal salt added to the bisphenol hydrazine is 1:1 to 3:1.
  • the refining reaction process comprises: recovering excess epichlorohydrin in the system by heating and vacuuming in the refining process, and then adding a non-reactive non-aqueous solvent to the reaction system to reduce the viscosity of the system;
  • An alkali metal or alkaline earth metal salt ;
  • the non-reactive non-aqueous solvent is a non-functional, water-insoluble organic solvent, and the organic solvent is n-hexane, methyl isobutyl ketone, toluene, xylene, dioxane At least one of the rings;
  • the amount of the organic solvent is 30% to 70% of the content of the bisphenolphthalein epoxy resin in the system;
  • the amount of the alkali metal or alkaline earth metal salt added in the purification reaction is chlorine in the bisphenol oxime epoxy resin 1 to 5 times the molar content;
  • the purification reaction temperature is 60 to 110 ° C, and the reaction time is 2 to 15 hours;
  • the amount of the alkali metal or alkaline earth metal salt added to the purification reaction is 1 to 3 times the molar content of chlorine in the bisphenol oxime epoxy resin.
  • the purification reaction temperature is 60 to 100 ° C, and the reaction time is 2 to 10 hours.
  • the desalination process comprises: removing sodium chloride brine, a by-product produced by the reaction, by dissolving, and simultaneously adding protonic acid for neutralization, so that the reaction system is neutral;
  • the protic acid includes at least one of HCl, H 2 SO 4 , CH 3 COOH, and NaH 2 PO 4 ; the amount of water added is based on sodium chloride formed by the dissolution reaction; and the resin layer is allowed to stand by standing after adding water. Layered with brine, and the lower brine is drained;
  • the concentration step includes: concentrating and recovering the organic solvent added in the purification reaction;
  • the concentration temperature is 60 to 200 ° C, the degree of vacuum is 30 to 250 torr, and the concentration time is 1 to 5 hours;
  • the concentration process temperature is 80 to 150 ° C
  • the degree of vacuum is 30 to 160 torr
  • the concentration time is 1 to 3 hours.
  • the brine treatment step comprises: heating the brine obtained in the desalination process to boiling, azeotroping a small amount of the organic solvent and water in the brine, and stopping the heating when the residual amount of the organic solvent in the brine is less than 200-500 ppm by gas chromatography.
  • the boiling water and the organic solvent are recovered; the brine after removing the organic solvent is further distilled by distillation, and the obtained sodium chloride solid can be sold as an industrial salt; the distilled steam is condensed and recovered by a condenser.
  • the transparent epoxy resin used as a sealing material has a refractive index of about 1.5.
  • the bisphenol fluorene epoxy resin obtained by the preparation process of the present invention has a refractive index close to 1.6 due to its unique structural characteristics, which can reduce total reflection light and improve energy efficiency. It has good optical properties; and bisphenol fluorene epoxy resin has excellent formability and can be used for the preparation of optical components.
  • the invention produces a by-product brine produced in the preparation process of bisphenol oxime epoxy resin and a certain concentration of organic solvent in the brine for recycling, and the wastewater is treated to avoid direct discharge to the environment, and the obtained sodium chloride can be used as an industry. Salt is sold, turning waste into treasure, and the water obtained by condensation can be reused, reducing water consumption, saving energy and reducing emissions, and achieving clean production.
  • the preparation process of the bisphenolphthalein epoxy resin of the invention comprises: catalytic grafting reaction, ring closure reaction, purification reaction, desalination, concentration, salt water treatment process; obtaining high performance bisphenol oxime epoxy resin, which is produced in the production process
  • the sodium chloride waste brine is recovered and concentrated to obtain a standard industrial sodium chloride salt, which can be reused for clean production.
  • the catalytic grafting reaction step comprises grafting bisphenol hydrazine and epichlorohydrin in the presence of a catalyst.
  • the molar ratio of bisphenol oxime to epichlorohydrin is 1:5 to 1:20, and for 1 mole of bisphenol hydrazine, when the number of moles of epichlorohydrin is more than 15, the excess amount of epichlorohydrin is recovered.
  • the time and energy are less than 5, and the bisphenol oxime epoxy generated by the reaction is insufficient in solubility, and the bisphenol oxime epoxy resin is precipitated during the reaction, so the bisphenol oxime and epichlorohydrin are preferred in the present invention. More than 1:8 ⁇ 1:15.
  • the amount of the catalyst to be added is 0.01 to 0.5, preferably 0.1 to 0.3, based on the molar ratio of bisphenol oxime; when the catalyst is a tertiary amine or In the case of one or both of the ammonium salts, the amount of the catalyst to be added to the reaction is from 0.03 to 3%, preferably from 0.05 to 2%, based on the total mass of the bisphenolphthalein.
  • the grafting reaction is carried out at a temperature of 30 to 90 ° C, the temperature is too low, the grafting reaction rate is slow, the reaction time is long, and the production efficiency is low.
  • the grafting reaction temperature is preferably 50 to 80 ° C; the grafting reaction time is 2 to 10 hours. If the reaction time is too short, the reaction is incomplete, the conversion rate of the raw material is low, and the reaction time is long.
  • the graft reaction time is preferably 2 to 8 hours.
  • the ring closure reaction process comprises the following steps: after the bisphenol hydrazine is grafted with epichlorohydrin, the chlorine atom is removed by the action of an alkali metal or an alkaline earth metal salt to form an epoxy group.
  • the closed-loop reaction temperature is 30-90 ° C, the closed-loop reaction temperature is too low, the closed-loop is incomplete, and the side reaction is too high, and the epichlorohydrin is hydrolyzed to glycerol, which causes loss of raw materials, and the ring-closing reaction temperature is preferably 50-80 ° C.
  • the closed-loop reaction can be carried out under a vacuum of 100-300 torr. If the degree of vacuum is too high, a large amount of epichlorohydrin will be taken out, which will cause the reaction molar ratio to change and affect the physical properties of the product. If the degree of vacuum is too low, the reaction system will cause alkali.
  • the concentration of the metal or alkaline earth metal salt is lowered, and the ring closure reaction is incomplete.
  • the closed-loop reaction vacuum is preferably 150 to 250 torr.
  • the molar ratio of the alkali metal or alkaline earth metal salt added to the bisphenol hydrazine in the ring closure reaction is 1:1 to 5:1. If the molar ratio is too low, the alkali metal and alkaline earth metal salts are insufficient, the ring closure reaction is incomplete, and the excess reaction may cause side reactions.
  • the molar ratio of the alkali metal or alkaline earth metal salt to the bisphenol hydrazine is from 1:1 to 3:1.
  • the alkali metal or alkaline earth metal salt may be added by a metering pump or may be added in multiple batches.
  • the ring closure reaction time is 2 to 5 hours, preferably 2 to 3 hours.
  • the closed-loop reaction conditions have a great influence on the production efficiency, the yield of the finished product, the physical and chemical properties of the finished product, especially the total chlorine content, and need to be comprehensively investigated, and the optimal conditions are preferably obtained.
  • the purification reaction step comprises: adding an excessive amount of an alkali metal or an alkaline earth metal salt to remove a small amount of chloride ions remaining in the molecular structure of the resin, thereby improving electrical properties of the resin.
  • an excessive amount of alkali metal or alkaline earth metal salt is added to prevent the excessive epichlorohydrin from being lost by hydrolysis of the alkali metal or alkaline earth metal, and heating and vacuuming are performed before adding an excessive amount of alkali metal or alkaline earth metal salt.
  • the way to recover excess epichlorohydrin in the system After the excess epichlorohydrin is recovered, the viscosity of the system becomes large.
  • the non-reactive non-aqueous solvent used refers to a non-functional, water-insoluble organic solvent such as non-polar organic solvent such as n-hexane, methyl isobutyl ketone, toluene, xylene or dioxane.
  • the organic solvents may be used singly or in combination.
  • the amount of the organic solvent added may be adjusted to 30% to 70% of the resin content according to the actual demand in the system. When the resin content is less than 30%, the production efficiency is low, and the organic solvent is preferably added in an amount of 30% to 55% of the resin content. %.
  • the chlorine content in the resin is sampled before the purification reaction, and the amount of the alkali metal or alkaline earth metal salt added in the purification reaction is 1 to 5 times, preferably 1 to 3 times the molar ratio of chlorine in the resin.
  • the purification reaction temperature is 60 to 110 ° C, preferably 60 to 100 ° C.
  • the reaction time is 2 to 15 hours, preferably 2 to 10 hours.
  • the desalination process comprises: the desalination process is mainly to remove the sodium chloride as a by-product produced by the reaction, and simultaneously add the protonic acid for neutralization, so that the reaction system is neutral, and the finished resin system is also neutral.
  • the protonic acid added is an acid which is capable of releasing H + and excess OH - in the system, such as HCl, H 2 SO 4 , CH 3 COOH, NaH 2 PO 4 or the like.
  • the amount of water added is preferably sodium chloride formed by the dissolution reaction. After adding water, the resin layer and the brine layer were layered by standing, and the lower layer of brine was drained.
  • the concentration step includes recovering the organic solvent added in the purification reaction.
  • the concentration temperature is 60-200 ° C. If the temperature is too low, the organic solvent is not completely recovered. The color of the resin is too yellow, which is not suitable for the preparation of optical components.
  • the concentration temperature is preferably 80-150 ° C; the concentrated vacuum is 30-250 torr, preferably. 30 to 160 torr; the concentration time is 1 to 5 hours, preferably 1 to 3 hours.
  • the brine treatment step includes: the waste brine obtained by desalting further contains a small amount of an organic solvent, and needs to be recycled for reducing the loss. Heating the brine obtained in the desalination process to boiling, azeotroping a small amount of organic solvent and water in the brine, and detecting by gas chromatography that the residual amount of the organic solvent in the brine is less than 500 ppm, preferably less than 200 ppm, the heating is stopped, and the azeotropic water and organic are stopped. The solvent is recovered. The brine after removal of the organic solvent is further distilled by distillation, and the obtained sodium chloride solid can be sold as an industrial salt. The distilled water vapor is condensed and recycled through the condenser.
  • the waste brine obtained in the preparation process is heated to boiling.
  • the heating is stopped, and the organic solvent and the water mixture obtained by condensation are recovered.
  • the degree of vacuum was adjusted to 180 torr, and the mixture was heated to boiling to remove water in the brine to obtain a solid sodium chloride salt, and the distilled water was recovered by condensation.
  • the bisphenol oxime epoxy resin was obtained as an epoxy equivalent: 238 g/eq, hydrolyzable chlorine: 38 ppm, total chlorine: 930 ppm, softening point: 86.4 ° C, and Abbe refractive index: 1.65.
  • the waste brine obtained in the preparation process is heated to boiling.
  • the heating is stopped, and the organic solvent and the water mixture obtained by condensation are recovered.
  • the degree of vacuum was adjusted to 200 torr, and the mixture was heated to boiling to remove water from the brine to obtain a solid sodium chloride salt, and the distilled water was recovered by condensation.
  • the bisphenol oxime epoxy resin was obtained as an epoxy equivalent: 240 g/eq, hydrolyzable chlorine: 61 ppm, total chlorine: 956 ppm, softening point: 86.9 ° C, and Abbe refractive index: 1.65.
  • the waste brine obtained in the preparation process is heated to boiling, and the heating is stopped when the organic solvent content in the brine is less than 200 ppm, and the organic solvent and water mixture obtained by condensation are recovered.
  • the degree of vacuum was adjusted to 200 torr, and the mixture was heated to boiling to remove water from the brine to obtain a solid sodium chloride salt, and the distilled water was recovered by condensation.
  • the vacuum was adjusted to 30 torr and heated to 120 ° C to recover excess epichlorohydrin.
  • 35 g of dioxane was added, 10.5 g of 20% sodium hydroxide was added, the temperature was adjusted to 80 ° C, and stirring was continued for 8 hours.
  • the degree of vacuum was adjusted to 30 torr, and the temperature was raised to 145 ° C to remove the dioxane to obtain a bisphenol oxime epoxy resin.
  • the bisphenol oxime epoxy resin was obtained as an epoxy equivalent: 278 g/eq, hydrolyzable chlorine: 363 ppm, total chlorine: 1202 ppm, softening point: 99.9 ° C, and Abbe refractive index: 1.65.
  • the waste brine obtained in the preparation process is heated to boiling.
  • the heating is stopped, and the organic solvent and the water mixture obtained by the condensation are recovered.
  • the degree of vacuum was adjusted to 200 torr, and the mixture was heated to boiling to remove water from the brine to obtain a solid sodium chloride salt, and the distilled water was recovered by condensation.
  • the vacuum was adjusted to 30 torr and heated to 140 ° C to recover excess epichlorohydrin. 29 g of toluene was added, 10.5 g of 20% sodium hydroxide was added, the temperature was adjusted to 85 ° C, and stirring was continued for 8 hours. Add 30 grams of deionized water, 2 grams of 10% sodium dihydrogen phosphate solution, stir and settle for liquid separation, drain the lower layer of brine. After the resin layer was filtered, the degree of vacuum was adjusted to 30 torr, and the temperature was raised to 145 ° C to remove toluene to obtain a bisphenol oxime epoxy resin.
  • the bisphenol oxime epoxy resin was obtained as an epoxy equivalent: 245 g/eq, hydrolyzable chlorine: 291 ppm, total chlorine: 1102 ppm, softening point: 87.7 ° C, and Abbe refractive index: 1.65.
  • the waste brine obtained in the preparation process is heated to boiling.
  • the heating is stopped, and the organic solvent and the water mixture obtained by condensation are recovered.
  • Adjusting vacuum To 200 torr heat to boiling to remove water from the brine to obtain a solid sodium chloride salt, and the distilled water is condensed and recycled.
  • the water absorption test conditions in Table 1 are to make the cured product into a size of 25 mm ⁇ 5 mm ⁇ 2 mm and put it into boiling water to soak:
  • Water absorption rate (%) (quality after boiling - quality before boiling) ⁇ 100 / quality before boiling
  • the refractive index of the bisphenol fluorene epoxy resin obtained by the present invention is higher than that of the bisphenol A epoxy resin, and the performance test of the cured product indicates that the bisphenol fluorene epoxy resin Tg and Td are both lower than the bisphenol A epoxy resin. High, heat resistance is better.
  • the boiling experiment showed that the water absorption rate of the bisphenol oxime epoxy cured product was also lower than that of the bisphenol A type epoxy.
  • the bisphenol fluorene epoxy resin obtained by the present invention has a large improvement in refractive index, total chlorine, heat resistance, and water resistance as compared with the conventional bisphenol A type epoxy resin.
  • the waste brine produced in the production process of the bisphenol oxime epoxy resin of the invention is subjected to recycling treatment, and is concentrated to obtain industrial sodium chloride salt in accordance with the standard, and the recycled water is reused, energy saving and emission reduction are realized, and clean production is realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

提供一种双酚芴环氧树脂的制备工艺,包括:催化接枝反应、闭环反应、精制反应、脱盐、浓缩、盐水处理工序;该制备工艺得到的双酚芴环氧树脂具有吸水率低、总氯含量低、高耐热的性能;制备过程产生的副产物盐水及盐水中含有的一定浓度的有机溶剂可进行回收处理,废水经过处理,避免向环境直接排放,得到的氯化钠可当工业盐出售,变废为宝,冷凝得到的水可重复使用,降低用水量,节能减排。

Description

一种双酚芴环氧树脂的制备工艺 技术领域
本发明涉及环氧树脂领域,尤其涉及一种双酚芴环氧树脂的制备工艺。
背景技术
环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物。分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。环氧树脂具有优异的附着力、机械性能、电气性能,广泛应用于涂料、电子元器件、建筑材料、航天材料等。
目前市面上的环氧树脂主要是双酚A型环氧树脂,其制备方法一般是以双酚A与环氧氯丙烷经过反应得到。双酚A型环氧树脂具有流动性好,力学性能高,价格低等优点性能可以满足大多数领域需求,但该类树脂基体中含有大量反应生成的羟基等极性基团,吸水率高,吸水后性能显著下降,还存在耐热性能不高等问题,限制其在高端领域的应用。
环氧树脂具有优异的绝缘性和耐热性,还被广泛的应用于电子器件的密封材料中。随着半导体器件越来越高度集成,封装尺寸和厚度进一步减少,环氧树脂的可靠性有待进一步提高。环氧树脂中痕量存在的卤素基团会发生水解导致绝缘性能降低和导线腐蚀,不利于电子器件的安全性能。普通的环氧树脂总氯含量大约为1600ppm-2500ppm,限制其在高端封装领域的应用。根据国际电工委员会制订的国际标准IEC61249-2-21,电子元器件总氯含量要求小于900ppm,为达到这一要求,工程师需在配方中添加大量不含卤素的填料、固化剂,限制了配方选择空间。开发低吸水率、低总氯含量、高耐热的环氧树脂是目前电子封装领域亟待解决的问题。
发明内容
有鉴于此,有必要针对上述的问题,提供一种双酚芴环氧树脂的制备工艺。本发明得到的双酚芴环氧树脂具有高折射率、优异的耐热性、低吸水性、总氯 含量降至900ppm-1200ppm,可应用于高度集成电子元器件的封装和光学元器件的制备。
为实现上述目的,本发明采取以下的技术方案:
本发明的双酚芴环氧树脂的制备工艺,包括:催化接枝反应、闭环反应、精制反应、脱盐、浓缩、盐水处理工序;
所述催化接枝反应工序包括:在催化剂存在的条件下使双酚芴和环氧氯丙烷进行接枝反应;所述双酚芴和环氧氯丙烷的摩尔比为1:5~1:20,反应时间为2~10小时,反应温度为30~90℃;所述催化剂为碱金属、碱土金属盐中至少一种或者为叔胺类、铵盐类中至少一种;
进一步的,所述接枝反应的双酚芴和环氧氯丙烷反应摩尔比为1:8~1:15。
进一步的,所述接枝反应的催化剂为碱金属、碱土金属盐中至少一种时,催化剂添加量与双酚芴摩尔比为0.01~0.5;所述接枝催化剂为叔胺类、铵盐类中至少一种时,催化剂添加量为双酚芴总质量的0.03~3%。
进一步的,所述接枝反应的催化剂为碱金属、碱土金属盐中至少一种时,催化剂添加量与双酚芴摩尔比为0.1~0.3;所述接枝催化剂为叔胺类、铵盐类中至少一种时,催化剂添加量为双酚芴总质量的0.05~2%。
进一步的,所述接枝反应时间为2~8小时,反应温度为50~80℃。
所述闭环反应工序包括:双酚芴与环氧氯丙烷接枝反应后,在碱金属或碱土金属盐作用下脱除氯原子,生成环氧基的过程;碱金属或碱土金属盐采用定量泵加入或分批多次加入;所述碱金属或碱土金属盐添加量与双酚芴的摩尔比为1:1~5:1;
闭环反应温度为30~90℃,反应时间为2~5小时,闭环反应在100~300torr真空度下进行;
进一步的,所述闭环反应温度为50~80℃;闭环反应时间为2~3小时;所述闭环反应真空度为150~250torr。
进一步的,所述闭环反的碱金属或碱土金属盐添加量与双酚芴的摩尔比为1:1~3:1。
所述精制反应工序包括:精制过程中先通过加热和抽真空的方式对体系中过量的环氧氯丙烷进行回收,然后向反应体系中加入非反应性非水性溶剂降低体系粘度;再加入过量的碱金属或碱土金属盐;所述的非反应非水性溶剂为无官能基、不溶于水的有机溶剂,所述有机溶剂为正己烷、甲基异丁基酮、甲苯、二甲苯、二氧六环中的至少一种;所述有机溶剂的量为体系中双酚芴环氧树脂含量的30%~70%;精制反应加入碱金属或碱土金属盐的量为双酚芴环氧树脂中氯摩尔含量的1~5倍;精制反应温度为60~110℃,反应时间为2~15小时;
进一步的,所述精制反应加入碱金属或碱土金属盐的量为双酚芴环氧树脂中氯摩尔含量的1~3倍。
进一步的,所述精制反应温度为60~100℃,反应时间为2~10小时。
所述脱盐工序包括:将反应产生的副产物氯化钠盐水通过溶解除去,同时加入质子酸进行中和,使反应体系呈中性;
所述质子酸包括HCl、H2SO4、CH3COOH、NaH2PO4中的至少一种;加入的水量以刚好溶解反应生成的氯化钠为准;加入水后通过静置使树脂层和盐水层分层,下层盐水排掉;
所述浓缩工序包括:将精制反应中加入的有机溶剂进行浓缩回收;
浓缩温度为60~200℃,真空度为30~250torr,浓缩时间为1~5小时;
进一步的,所述浓缩过程温度为80~150℃,真空度为30~160torr,浓缩时间为1~3小时。
所述盐水处理工序包括:将脱盐工序中得到的盐水加热至沸腾,使盐水中少量的有机溶剂和水共沸,通过气相色谱检测盐水中有机溶剂的残留量小于200-500ppm时停止加热,共沸出来的水和有机溶剂进行回收;脱除有机溶剂后的盐水进一步通过减压蒸馏,得到的氯化钠固体可作为工业盐出售;蒸馏出的水蒸汽通过冷凝器冷凝回收利用。
本发明的有益效果为:
(1)光在不同介质间发生折射,折射率差值越大全反射的光越多,能源效率越低。现有用作密封材料的透明环氧树脂的折射率为1.5左右,本发明制备工艺所得的双酚芴环氧树脂因其独特的结构特性,折射率接近1.6,可减少全反射光并提高能源效率,使其具有良好的光学特性;并且双酚芴环氧树脂具有优异的成型性,可用于光学元器件的制备。
(2)本发明的制备工艺得到的双酚芴环氧树脂中有两个苯酚相连的是芴环,芴结构的引入,可以降低树脂固化后的交联密度,提高化学稳定性;苯环数目的增加除可提高分子链的刚性外,还可增加分子的非极性,降低树脂的吸水性,使环氧树脂的耐湿热性能得到很大提高。
(3)本发明对双酚芴环氧树脂制备过程产生的副产物盐水及盐水中含有一定浓度的有机溶剂进行回收处理,废水经过处理,避免向环境直接排放,得到的氯化钠可当工业盐出售,变废为宝,冷凝得到的水可重复使用,降低用水量,节能减排,达到清洁生产的目的。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案作进一步清楚、完整地描述。需要说明的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的双酚芴环氧树脂的制备工艺,包括:催化接枝反应、闭环反应、精制反应、脱盐、浓缩、盐水处理工序;制得高性能的双酚芴环氧树脂,生产过程中产生的氯化钠废盐水经过回收、浓缩处理得到符合标准的工业氯化钠盐,水可重复使用,实现清洁生产。
所述催化接枝反应工序包括:在催化剂存在的条件下使双酚芴和环氧氯丙烷进行接枝反应。
所采用的双酚芴和环氧氯丙烷的摩尔比为1:5~1:20,对于1摩尔的双酚芴,环氧氯丙烷的摩尔数大于15时,过剩环氧氯丙烷回收量大,耗费时间及能源,摩尔数小于5对反应生成的双酚芴环氧溶解力不够,反应过程中会有双酚芴环氧树脂析出,因此本发明优选双酚芴和环氧氯丙烷的摩尔比1:8~1:15。当接枝反应采用的催化剂是碱金属或碱土金属盐中的一种或两种时,反应添加催化剂量为双酚芴摩尔比的0.01~0.5,优选0.1~0.3;当催化剂是叔胺类或铵盐类中的一种或两种时,反应添加催化剂的量为双酚芴总质量的0.03~3%,优选0.05~2%。接枝反应在30~90℃温度下进行,温度过低接枝反应速度慢,反应时间长,生产效率低,本发明优选接枝反应温度50~80℃;接枝反应时间2~10小时,时间过短反应不完全,原料转化率低影响收率,反应时间长影响效率,本发明优选接枝反应时间2~8小时。
所述闭环反应工序包括:双酚芴与环氧氯丙烷接枝后,在碱金属或碱土金属盐作用下脱除氯原子,生成环氧基的过程。
闭环反应温度为30~90℃,闭环反应温度过低闭环不完全,过高产生副反应,也会使环氧氯丙烷水解为甘油,造成原料损失,闭环反应温度优选50~80℃。闭环反应可在真空度为100~300torr下进行,真空度过高会使大量环氧氯丙烷被带出,造成反应摩尔比变动而影响成品物性,真空度过低会造成反应体系碱 金属或碱土金属盐浓度降低,闭环反应不完全,本发明优选闭环反应真空度为150~250torr。闭环反应添加的碱金属或碱土金属盐与双酚芴的摩尔比为1:1~5:1,摩尔比过低导致碱金属及碱土金属盐不足,闭环反应不完全,过量则会引起副反应;优选碱金属或碱土金属盐与双酚芴的摩尔比为1:1~3:1。碱金属或碱土金属盐可采用定量泵加入,也可分批多次加入。闭环反应时间为2~5小时,优选2~3小时。闭环反应条件对生产效率、成品收率、成品理化性质,尤其是总氯含量有很大的影响,需综合考察,优选得到最佳条件。
所述精制反应工序包括:加入过量的碱金属或碱土金属盐,除去树脂分子结构中残留的少量氯离子,提高树脂电气性能。
精制反应需加入过量的碱金属或碱土金属盐,为防止过量的环氧氯丙烷被碱金属或碱土金属水解而损耗,在加入过量的碱金属或是碱土金属盐前,先通过加热和抽真空的方式对体系中过量的环氧氯丙烷进行回收。过量的环氧氯丙烷被回收后体系粘度变大,为使精制反应完全,需向体系中加入非反应性非水性溶剂降低体系粘度。所使用的非反应非水性溶剂是指无官能基、不溶于水的有机溶剂,例如正己烷、甲基异丁基酮、甲苯、二甲苯、二氧六环等非极性有机溶剂,所述有机溶剂可单独使用也可混合使用。有机溶剂的添加量可按体系中实际需求,调节含量为树脂含量的30%~70%,当树脂含量低于30%时生产效率低,优选有机溶剂的添加量为树脂含量的30%~55%。精制反应前取样测试树脂中氯含量,精制反应加入碱金属或碱土金属盐的量为树脂中氯含量摩尔比的1~5倍,优选1~3倍。精制反应温度为60~110℃,优选60~100℃。反应时间为2~15小时,优选2~10小时。
所述脱盐工序包括:脱盐工序主要是将反应产生的副产物氯化钠通过溶解除去,同时加入质子酸进行中和,使反应体系呈中性,保证成品树脂体系也呈 中性。加入的质子酸是为HCl、H2SO4、CH3COOH、NaH2PO4等能释放H+与体系中过量的OH-反应的酸。加入的水量以刚好溶解反应生成的氯化钠为宜。加入水后通过静置使树脂层和盐水层分层,下层盐水排掉处理。
所述浓缩工序包括:将精制反应中加入的有机溶剂进行回收。
浓缩温度为60~200℃,温度过低有机溶剂回收不彻底,太高所得树脂颜色偏黄,不利于光学元器件制备,优选浓缩温度为80~150℃;浓缩真空度为30~250torr,优选30~160torr;浓缩时间为1~5小时,优选1~3小时。
所述盐水处理工序包括:脱盐所得到的废盐水中还含有少量有机溶剂,为降低损耗需进行回收处理。加热脱盐工序中得到的盐水至沸腾,使盐水中少量的有机溶剂和水共沸,通过气相色谱检测盐水中有机溶剂的残留量小于500ppm,优选小于200ppm时停止加热,共沸出来的水和有机溶剂进行回收。脱除有机溶剂后的盐水进一步通过减压蒸馏,得到的氯化钠固体可作为工业盐出售。蒸馏出的水蒸汽通过冷凝器冷凝回收利用。
实施例1
在设置有温度计、搅拌装置、氮气注入管、加热装置的四口玻璃反应槽中,分别投入76.6克环氧氯丙烷、28克双酚芴,搅拌均匀并由常温升至55℃,加入0.7克50%氢氧化钠,维持恒温搅拌2小时。调节真空度为210torr,用定量泵加入12克50%氢氧化钠,维持恒温58℃搅拌2小时。调节真空度至60torr,加热至120℃回收过量的环氧氯丙烷。加入35克甲基异丁基酮,加入4.6克50%氢氧化钠,调节温度至80℃,维持恒温搅拌2小时。加入30克去离子水,5克20%盐酸溶液,搅拌后静置分液,排掉下层盐水。树脂层过滤后调节真空度至60torr,温度升至140℃脱除甲基异丁基酮,得到双酚芴环氧树脂。得到双酚芴环氧树脂 指标为,环氧当量:246g/eq,可水解氯:72ppm,总氯:1088ppm,软化点:90.1℃,阿贝折射率:1.65。
制备过程中得到的废盐水加热至沸腾,气相色谱测试盐水中有机溶剂含量低于500ppm时停止加热,冷凝得到的有机溶剂和水混合物进行回收。调节真空度至180torr,加热至沸腾除去盐水中的水,得到固体氯化钠盐,蒸馏出来的水经过冷凝回收利用。
实施例2
在设置有温度计、搅拌装置、氮气注入管、加热装置的四口玻璃反应槽中,分别投入76.6克环氧氯丙烷、28克双酚芴,搅拌均匀并由常温升至57℃,加入0.7克50%氢氧化钠,维持恒温搅拌3小时。调节真空度为190torr,用定量泵加入12克50%氢氧化钠,维持恒温62℃搅拌2小时。调节真空度至40torr,加热至120℃回收过量的环氧氯丙烷。加入35克甲基异丁基酮,加入13克20%氢氧化钠,调节温度至90℃,维持恒温搅拌2小时。加入30克去离子水,5克20%盐酸溶液,搅拌后静置分液,排掉下层盐水。树脂层过滤后调节真空度至60torr,温度升至140℃脱除甲基异丁基酮,得到双酚芴环氧树脂。得到双酚芴环氧树脂指标为,环氧当量:238g/eq,可水解氯:38ppm,总氯:930ppm,软化点:86.4℃,阿贝折射率:1.65。
制备过程中得到的废盐水加热至沸腾,气相色谱测试盐水中有机溶剂含量低于300ppm时停止加热,冷凝得到的有机溶剂和水混合物进行回收。调节真空度至200torr,加热至沸腾除去盐水中的水,得到固体氯化钠盐,蒸馏出来的水经过冷凝回收利用。
实施例3
在设置有温度计、搅拌装置、氮气注入管、加热装置的四口玻璃反应槽中,分别投入77.7克环氧氯丙烷、24.5克双酚芴,搅拌均匀并由常温升至60℃,加入0.6克50%氢氧化钠,维持恒温搅拌6小时。调节真空度为175torr,用定量泵加入11.2克50%氢氧化钠,维持恒温62℃搅拌2小时。调节真空度至30torr,加热至120℃回收过量的环氧氯丙烷。加入29克甲苯,加入13克20%氢氧化钠,调节温度至80℃,维持恒温搅拌4小时。加入30克去离子水,2克10%磷酸二氢钠溶液,搅拌后静置分液,排掉下层盐水。树脂层过滤后调节真空度至30torr,温度升至120℃脱除甲苯,得到双酚芴环氧树脂。得到双酚芴环氧树脂指标为,环氧当量:240g/eq,可水解氯:61ppm,总氯:956ppm,软化点:86.9℃,阿贝折射率:1.65。
制备过程中得到的废盐水加热至沸腾,气相色谱测试盐水中有机溶剂含量低于200ppm时停止加热,冷凝得到的有机溶剂和水混合物进行回收。调节真空度至200torr,加热至沸腾除去盐水中的水,得到固体氯化钠盐,蒸馏出来的水经过冷凝回收利用。
实施例4
在设置有温度计、搅拌装置、氮气注入管、加热装置的四口玻璃反应槽中,分别投入77.7克环氧氯丙烷、24.5克双酚芴,搅拌均匀并由常温升至65℃,加入0.6克50%氢氧化钠和0.7克十六烷基三甲基溴化铵,维持恒温搅拌6小时。调节真空度为180torr,用定量泵加入11.2克50%氢氧化钠,维持恒温62℃搅拌3小时。调节真空度至30torr,加热至120℃回收过量的环氧氯丙烷。加入35克二氧六环,加入10.5克20%氢氧化钠,调节温度至80℃,维持恒温搅拌8小时。 加入30克去离子水,2克10%磷酸二氢钠溶液溶液,搅拌后静置分液,排掉下层盐水。树脂层过滤后调节真空度至30torr,温度升至145℃脱除二氧六环,得到双酚芴环氧树脂。得到双酚芴环氧树脂指标为,环氧当量:278g/eq,可水解氯:363ppm,总氯:1202ppm,软化点:99.9℃,阿贝折射率:1.65。
制备过程中得到的废盐水加热至沸腾,气相色谱测试盐水中有机溶剂含量低于200ppm时停止加热,冷凝得到的有机溶剂和水混合物回收进行。调节真空度至200torr,加热至沸腾除去盐水中的水,得到固体氯化钠盐,蒸馏出来的水经过冷凝回收利用。
实施例5
在设置有温度计、搅拌装置、氮气注入管、加热装置的四口玻璃反应槽中,分别投入77.7克环氧氯丙烷、24.5克双酚芴,搅拌均匀并由常温升至65℃,加入0.6克50%氢氧化钠和0.7克十六烷基三甲基溴化铵,维持恒温搅拌8小时。调节真空度为170torr,用定量泵加入11.2克50%氢氧化钠,维持恒温60℃搅拌2小时。调节真空度至30torr,加热至140℃回收过量的环氧氯丙烷。加入29克甲苯,加入10.5克20%氢氧化钠,调节温度至85℃,维持恒温搅拌8小时。加入30克去离子水,2克10%磷酸二氢钠溶液,搅拌后静置分液,排掉下层盐水。树脂层过滤后调节真空度至30torr,温度升至145℃脱除甲苯,得到双酚芴环氧树脂。得到双酚芴环氧树脂指标为,环氧当量:245g/eq,可水解氯:291ppm,总氯:1102ppm,软化点:87.7℃,阿贝折射率:1.65。
制备过程中得到的废盐水加热至沸腾,气相色谱测试盐水中有机溶剂含量低于100ppm时停止加热,冷凝得到的有机溶剂和水混合物进行回收。调节真空 度至200torr,加热至沸腾除去盐水中的水,得到固体氯化钠盐,蒸馏出来的水经过冷凝回收利用。
上述实施例得到的双酚芴环氧树脂和普通双酚A环氧树脂基本理化性能及固化物性能对比如表1:
表1
Figure PCTCN2016075808-appb-000001
表1中吸水性测试条件为将固化物制成尺寸25mm×5mm×2mm放入沸水中浸泡:
吸水率(%)=(水煮后质量-水煮前质量)×100/水煮前质量
由表1可知,本发明得到的双酚芴环氧树脂折射率较双酚A型环氧树脂高,固化物性能测试表明双酚芴环氧树脂Tg、Td都较双酚A型环氧树脂高,耐热性更优。水煮实验表明双酚芴环氧固化物吸水率也低于双酚A型环氧。
如上所述本发明得到的双酚芴环氧树脂与普通的双酚A型环氧树脂相比,折射率、总氯、耐热性、耐水性均有很大提高。本发明双酚芴环氧树脂生产过程中产生的废盐水经过回收处理,浓缩得到符合标准的工业氯化钠盐,回收水重复利用,节能减排,实现清洁生产。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种双酚芴环氧树脂的制备工艺,其特征在于,包括:催化接枝反应、闭环反应、精制反应、脱盐、浓缩、盐水处理工序;
    所述催化接枝反应工序包括:在催化剂存在的条件下使双酚芴和环氧氯丙烷进行接枝反应;所述双酚芴和环氧氯丙烷的摩尔比为1:5~1:20,反应时间为2~10小时,反应温度为30~90℃;所述催化剂为碱金属、碱土金属盐中至少一种或者为叔胺类、铵盐类中至少一种;
    所述闭环反应工序包括:双酚芴与环氧氯丙烷接枝反应后,在碱金属或碱土金属盐作用下脱除氯原子,生成环氧基的过程;碱金属或碱土金属盐采用定量泵加入或分批多次加入;所述碱金属或碱土金属盐添加量与双酚芴的摩尔比为1:1~5:1;闭环反应温度为30~90℃,反应时间为2~5小时,闭环反应在100~300torr真空度下进行;
    所述精制反应工序包括:精制过程中先通过加热和抽真空的方式对体系中过量的环氧氯丙烷进行回收,然后向反应体系中加入非反应性非水性溶剂降低体系粘度;再加入过量的碱金属或碱土金属盐;所述的非反应非水性溶剂为无官能基、不溶于水的有机溶剂,所述有机溶剂为正己烷、甲基异丁基酮、甲苯、二甲苯、二氧六环中的至少一种;所述有机溶剂的量为体系中双酚芴环氧树脂含量的30%~70%;精制反应加入碱金属或碱土金属盐的量为双酚芴环氧树脂中氯摩尔含量的1~5倍;精制反应温度为60~110℃,反应时间为2~15小时;
    所述脱盐工序包括:将反应产生的副产物氯化钠盐水通过溶解除去,同时加入质子酸进行中和,使反应体系呈中性;
    所述质子酸包括HCl、H2SO4、CH3COOH、NaH2PO4中的至少一种;加入的水量以刚好溶解反应生成的氯化钠为准;加入水后通过静置使树脂层和盐水层分层,下层盐水排掉;
    所述浓缩工序包括:将精制反应中加入的有机溶剂进行浓缩回收;浓缩温度为60~200℃,真空度为30~250torr,浓缩时间为1~5小时;
    所述盐水处理工序包括:将脱盐工序中得到的盐水加热至沸腾,使盐水中少量的有机溶剂和水共沸,通过气相色谱检测盐水中有机溶剂的残留量小于200-500ppm时停止加热,共沸出来的水和有机溶剂回收使用;脱除有机溶剂后的盐水进一步通过减压蒸馏,得到的氯化钠固体可作为工业盐出售;蒸馏出的水蒸汽通过冷凝器冷凝回收使用。
  2. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述接枝反应的双酚芴和环氧氯丙烷反应摩尔比为1:8~1:15。
  3. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述接枝反应的催化剂为碱金属、碱土金属盐中至少一种时,催化剂添加量与双酚芴摩尔比为0.01~0.5;所述接枝催化剂为叔胺类、铵盐类中至少一种时,催化剂添加量为双酚芴总质量的0.03~3%。
  4. 根据权利要求3所述的双酚芴环氧树脂的制备工艺,其特征在于,所述接枝反应的催化剂为碱金属、碱土金属盐中至少一种时,催化剂添加量与双酚芴摩尔比为0.1~0.3;所述接枝催化剂为叔胺类、铵盐类中至少一种时,催化剂添加量为双酚芴总质量的0.05~2%。
  5. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述接枝反应时间为2~8小时,反应温度为50~80℃。
  6. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述闭环反应温度为50~80℃;闭环反应时间为2~3小时;所述闭环反应真空度为150~250torr。
  7. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述闭环反的碱金属或碱土金属盐添加量与双酚芴的摩尔比为1:1~3:1。
  8. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述精制反应加入碱金属或碱土金属盐的量为双酚芴环氧树脂中氯摩尔含量的1~3倍。
  9. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述精制反应温度为60~100℃,反应时间为2~10小时。
  10. 根据权利要求1所述的双酚芴环氧树脂的制备工艺,其特征在于,所述浓缩过程温度为80~150℃,真空度为30~160torr,浓缩时间为1~3小时。
PCT/CN2016/075808 2016-02-29 2016-03-07 一种双酚芴环氧树脂的制备工艺 WO2017147940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610113410.6A CN105754071A (zh) 2016-02-29 2016-02-29 一种双酚芴环氧树脂的制备工艺
CN201610113410.6 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017147940A1 true WO2017147940A1 (zh) 2017-09-08

Family

ID=56330470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075808 WO2017147940A1 (zh) 2016-02-29 2016-03-07 一种双酚芴环氧树脂的制备工艺

Country Status (2)

Country Link
CN (1) CN105754071A (zh)
WO (1) WO2017147940A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150243A (zh) * 2021-03-26 2021-07-23 中国船舶重工集团公司第七二五研究所 一种动态自愈合防锈环氧树脂及其制备方法
CN114015018A (zh) * 2021-10-20 2022-02-08 甘肃诺尔达工贸有限公司 一种六苯氧基换三磷腈协效阻燃环氧树脂的合成方法
CN116351374A (zh) * 2023-06-01 2023-06-30 山东艾蒙特新材料有限公司 一种双酚f环氧树脂的开闭环连续反应制备装置及方法
CN117487132A (zh) * 2023-11-23 2024-02-02 广州市浩立生物科技有限公司 一种低氯双酚f型环氧树脂的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363481B (zh) * 2019-12-23 2021-08-31 烟台信友新材料有限公司 一种低收缩、低模量、耐热型uv-热双固化胶粘剂及其制备方法
CN111944077B (zh) * 2020-07-01 2022-07-01 安徽富印新材料有限公司 一种高折射率光敏树脂及其制备方法
CN113913098B (zh) * 2021-12-01 2022-04-29 安徽瑞联节能科技股份有限公司 一种聚氨酯隔音涂料及其生产工艺
CN115595089A (zh) * 2022-10-09 2023-01-13 北京康美特科技股份有限公司(Cn) 一种导电银胶及其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995255A (zh) * 2006-12-20 2007-07-11 哈尔滨工程大学 耐高温环氧树脂胶粘剂及其制备方法
CN102040568A (zh) * 2010-11-05 2011-05-04 河北科技大学 一种低分子量环氧树脂的合成方法
CN103173173A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种双组分环氧胶粘剂及其制备方法
CN103173114A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种环氧改性有机硅树脂胶黏剂及其制备方法
CN103173183A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种聚氨酯改性环氧树脂胶黏剂及其制备方法
JP2015101605A (ja) * 2013-11-21 2015-06-04 田岡化学工業株式会社 ビスフェノールフルオレン骨格を有するエポキシ樹脂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399512B2 (ja) * 2008-12-18 2014-01-29 ダウ グローバル テクノロジーズ エルエルシー 固体塩をエポキシ樹脂溶液から分離する方法
CN102199275B (zh) * 2011-03-31 2013-04-03 安徽恒远化工有限公司 一步法合成固体环氧树脂的生产工艺
CN102702478B (zh) * 2012-05-11 2014-07-23 金秀华 一种环氧树脂生产过程中提盐方法
CN202626073U (zh) * 2012-06-15 2012-12-26 安徽恒远化工有限公司 一步法环氧树脂废盐水回收与循环利用系统
CN104130379B (zh) * 2014-07-22 2015-03-25 建滔(番禺南沙)石化有限公司 一种双酚a型环氧树脂的制备方法及其制得的产品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995255A (zh) * 2006-12-20 2007-07-11 哈尔滨工程大学 耐高温环氧树脂胶粘剂及其制备方法
CN102040568A (zh) * 2010-11-05 2011-05-04 河北科技大学 一种低分子量环氧树脂的合成方法
CN103173173A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种双组分环氧胶粘剂及其制备方法
CN103173114A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种环氧改性有机硅树脂胶黏剂及其制备方法
CN103173183A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种聚氨酯改性环氧树脂胶黏剂及其制备方法
JP2015101605A (ja) * 2013-11-21 2015-06-04 田岡化学工業株式会社 ビスフェノールフルオレン骨格を有するエポキシ樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REN, LIUBO: "Study on Synthesis of Bisphenol Epoxy Resin", THERMOSETTING RESIN, vol. 27, no. 3, 31 May 2012 (2012-05-31), pages 23 - 26 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150243A (zh) * 2021-03-26 2021-07-23 中国船舶重工集团公司第七二五研究所 一种动态自愈合防锈环氧树脂及其制备方法
CN113150243B (zh) * 2021-03-26 2023-06-23 中国船舶重工集团公司第七二五研究所 一种动态自愈合防锈环氧树脂及其制备方法
CN114015018A (zh) * 2021-10-20 2022-02-08 甘肃诺尔达工贸有限公司 一种六苯氧基换三磷腈协效阻燃环氧树脂的合成方法
CN116351374A (zh) * 2023-06-01 2023-06-30 山东艾蒙特新材料有限公司 一种双酚f环氧树脂的开闭环连续反应制备装置及方法
CN116351374B (zh) * 2023-06-01 2023-08-22 山东艾蒙特新材料有限公司 一种双酚f环氧树脂的开闭环连续反应制备装置及方法
CN117487132A (zh) * 2023-11-23 2024-02-02 广州市浩立生物科技有限公司 一种低氯双酚f型环氧树脂的制备方法

Also Published As

Publication number Publication date
CN105754071A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2017147940A1 (zh) 一种双酚芴环氧树脂的制备工艺
US20210261736A1 (en) Maleimide resin, curable resin composition, and cured product thereof
JP2012236811A (ja) 精製リグニン及びエポキシ樹脂
CN1220713C (zh) 环氧树脂的制备方法
WO2022001054A1 (zh) 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺
CN111777741B (zh) 四缩水甘油胺类环氧树脂及其制备方法
TW201627393A (zh) 四甲基聯苯酚型環氧樹脂、環氧樹脂組成物、硬化物及半導體密封材
CN106006676B (zh) 一种回收h酸碱熔工艺中氢氧化钠的方法
TW202222755A (zh) 雙酚的製造方法、再生聚碳酸酯樹脂的製造方法、二氧化碳的製造方法、碳酸二酯的製造方法、環氧樹脂的製造方法及環氧樹脂硬化物的製造方法
JPH09328534A (ja) 高純度耐熱性エポキシ樹脂及び電子材料用成形材料
JP4945958B2 (ja) 精製エポキシ樹脂の製造方法
JP4675500B2 (ja) 高純度エポキシ樹脂の製造方法
JPS62235314A (ja) エポキシ樹脂の精製方法
CN109280152A (zh) 一种高纯度双酚a型液态环氧树脂生产工艺
JP2016150950A (ja) エポキシ化セルロースの製造方法、エポキシ樹脂の製造方法、及びセルロースのエポキシ化処理用混合イオン液体
JP2732162B2 (ja) 高純度エポキシ樹脂の製造法
JPH0517463A (ja) 高純度エポキシ樹脂の製造方法
WO2021131768A1 (ja) エポキシ樹脂及びその製造方法
JP2000239346A (ja) エポキシ化合物の精製方法
JP2005314512A (ja) 液状エポキシ樹脂およびその製造方法、エポキシ樹脂組成物およびその硬化体
JP2008285544A (ja) フルオレン環を含むエポキシ化合物およびその製造方法
JP2007277498A (ja) エポキシ樹脂の精製方法
KR100339702B1 (ko) 에폭시수지의정제방법
CN116120540B (zh) 一种低温制备聚醚醚酮的方法
JP4196627B2 (ja) エポキシ樹脂の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892131

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16892131

Country of ref document: EP

Kind code of ref document: A1