WO2017141889A1 - オリゴシランの製造方法 - Google Patents

オリゴシランの製造方法 Download PDF

Info

Publication number
WO2017141889A1
WO2017141889A1 PCT/JP2017/005240 JP2017005240W WO2017141889A1 WO 2017141889 A1 WO2017141889 A1 WO 2017141889A1 JP 2017005240 W JP2017005240 W JP 2017005240W WO 2017141889 A1 WO2017141889 A1 WO 2017141889A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition
mass
zeolite
catalyst
Prior art date
Application number
PCT/JP2017/005240
Other languages
English (en)
French (fr)
Inventor
清志 埜村
内田 博
吉満 石原
島田 茂
佐藤 一彦
正安 五十嵐
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020177030425A priority Critical patent/KR101945215B1/ko
Priority to US15/998,663 priority patent/US20200283297A1/en
Priority to JP2017534754A priority patent/JP6563019B2/ja
Priority to CN201780001452.3A priority patent/CN107531491B/zh
Publication of WO2017141889A1 publication Critical patent/WO2017141889A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7884TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • B01J35/51
    • B01J35/643
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself

Definitions

  • the present invention relates to a method for producing oligosilane, and more particularly, to a method for producing oligosilane by dehydrogenative condensation of hydrosilane.
  • Disilane which is a typical oligosilane, is a useful compound that can be used as a precursor for forming a silicon film.
  • Methods for producing oligosilane include acid decomposition of magnesium silicide (see Non-Patent Document 1), reduction method of hexachlorodisilane (see Non-Patent Document 2), discharge method of monosilane (see Patent Document 1), and thermal decomposition of silane.
  • a method see Patent Documents 2 to 4
  • a silane dehydrogenative condensation method using a catalyst see Patent Documents 5 to 10
  • An object of this invention is to provide the manufacturing method of the oligosilane using a specific catalyst, ie, the method which can manufacture an oligosilane with a high yield compared with the case where a catalyst is not used.
  • the present inventors have found that in the dehydrogenation condensation reaction of hydrosilane, the periodic table group 3 transition element, group 4 transition element, group 5 transition element, group 6
  • the present inventors have found that oligosilane can be produced efficiently by carrying out in the presence of a catalyst containing at least one kind of transition element selected from the group consisting of Group 7 transition elements and Group 7 transition elements, and completed the present invention. .
  • the present invention is as follows.
  • a method for producing an oligosilane comprising a reaction step of dehydrocondensing hydrosilane to produce an oligosilane,
  • the reaction step is at least one transition element selected from the group consisting of Group 3 transition elements, Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, and Group 7 transition elements of the periodic table
  • a process for producing oligosilane, which is carried out in the presence of a catalyst containing ⁇ 2> The method for producing an oligosilane according to ⁇ 1>, wherein the catalyst is a heterogeneous catalyst including a support, and the transition element is contained on a surface and / or inside of the support.
  • ⁇ 3> The method for producing an oligosilane according to ⁇ 2>, wherein the carrier is at least one selected from the group consisting of silica, alumina, titania, and zeolite.
  • the carrier is at least one selected from the group consisting of silica, alumina, titania, and zeolite.
  • ⁇ 4> The method for producing an oligosilane according to ⁇ 3>, wherein the zeolite has pores having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less.
  • the carrier is a spherical or columnar molded body containing a zeolite having pores having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less, and alumina as a binder.
  • the oligosilane production method according to ⁇ 3>, wherein the content (with respect to 100 parts by mass of the carrier not containing alumina or transition elements) is 10 parts by mass or more and 30 parts by mass or less.
  • ⁇ 6> The transition element according to any one of ⁇ 1> to ⁇ 5>, wherein the transition element is at least one transition element selected from the group consisting of titanium, vanadium, niobium, chromium, molybdenum, tungsten, and manganese.
  • ⁇ 7> The method for producing an oligosilane according to ⁇ 6>, wherein the transition element is at least one transition element selected from the group consisting of molybdenum and tungsten.
  • the catalyst further includes at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements on the surface and / or inside of the zeolite, including zeolite as a support.
  • ⁇ 9> The total content of the transition elements and the total content of the typical elements (relative to the zeolite containing the transition elements and the typical elements) satisfying the following formula (1)
  • AM / Al is an atomic ratio obtained by dividing the total number of atoms of the typical element contained in the zeolite by the number of aluminum atoms contained in the zeolite
  • TM / Al is the zeolite. Represents the atomic ratio obtained by dividing the total number of atoms of transition elements contained in the product by the number of aluminum atoms contained in the zeolite.
  • a method for producing a catalyst containing at least one transition element selected from the group consisting of a Group 6 transition element and a Group 7 transition element, A carrier preparation step of preparing a carrier; The carrier prepared in the carrier preparation step is at least one selected from the group consisting of Group 3 transition elements, Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, and Group 7 transition elements of the periodic table
  • a method for producing a catalyst comprising: a transition element introducing step for containing a seed transition element; and a transition element heating step for heating the precursor that has undergone the transition element introducing step.
  • the catalyst is a catalyst further containing at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements of the periodic table, A typical element introduction step in which the support contains at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements in the periodic table;
  • the method for producing a catalyst according to ⁇ 11> comprising: ⁇ 13> The method for producing a catalyst according to ⁇ 12>, including a typical element heating step of heating the precursor that has undergone the typical element introduction step.
  • ⁇ 14> The method for producing a catalyst according to ⁇ 13>, which is performed in the order of the typical element introduction step, the typical element heating step, the transition element introduction step, and the transition element heating step.
  • ⁇ 15> The method for producing a catalyst according to ⁇ 13>, which is performed in the order of the transition element introduction step, the transition element heating step, the typical element introduction step, and the typical element heating step.
  • ⁇ 16> The method for producing a catalyst according to any one of ⁇ 11> to ⁇ 15>, wherein the carrier is at least one selected from the group consisting of silica, alumina, titania, and zeolite.
  • the zeolite has pores having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less.
  • the carrier is a spherical or cylindrical molded body of a powder containing zeolite having a short diameter of 0.43 nm or more and a long diameter of 0.69 nm or less, and alumina as a binder,
  • transition element according to any one of ⁇ 11> to ⁇ 18>, wherein the transition element is at least one transition element selected from the group consisting of titanium, vanadium, niobium, chromium, molybdenum, tungsten, and manganese.
  • a method for producing a catalyst ⁇ 20> The method for producing a catalyst according to any one of ⁇ 11> to ⁇ 19>, wherein the transition element heating step is a step of heating at 600 ° C. or higher and 1000 ° C. or lower.
  • the typical element heating step is a step of heating at 100 ° C.
  • ⁇ 22> The method for producing a catalyst according to any one of ⁇ 19> to ⁇ 21>, wherein the transition element is at least one transition element selected from the group consisting of molybdenum and tungsten.
  • the transition element is at least one transition element selected from the group consisting of molybdenum and tungsten.
  • the zeolite has pores having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less.
  • the carrier is a spherical or columnar molded body containing a zeolite having pores having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less, and alumina as a binder.
  • the catalyst according to ⁇ 25> wherein the content (with respect to 100 parts by mass of the support containing no alumina or transition element) is 10 parts by mass or more and 30 parts by mass or less.
  • catalyst ⁇ 29> The catalyst according to ⁇ 28>, wherein the transition element is at least one transition element selected from the group consisting of molybdenum and tungsten.
  • Zeolite is included as the carrier, and further contains at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements on the surface and / or inside of the zeolite.
  • the catalyst according to any one of ⁇ 25> to ⁇ 29>.
  • the total content of the transition element and the total content of the typical element is an amount satisfying the condition of the following formula (1).
  • the catalyst according to ⁇ 30> wherein (In the formula (1), AM / Al is an atomic ratio obtained by dividing the total number of atoms of the typical element contained in the zeolite by the number of aluminum atoms contained in the zeolite, and TM / Al is the zeolite. Represents the atomic ratio obtained by dividing the total number of atoms of transition elements contained in the product by the number of aluminum atoms contained in the zeolite.) ⁇ 32> The total content of the typical elements (with respect to the mass of the zeolite containing the transition element and the typical element) is 2.1% by mass or more and 10% by mass or less, ⁇ 30> or The catalyst as described in ⁇ 31>.
  • oligosilane can be produced efficiently.
  • the oligosilane production method is a reaction step (hereinafter referred to as “reaction step”) in which hydrosilane is dehydrogenated to produce oligosilane.
  • the manufacturing method may include abbreviated.
  • the reaction step is at least one transition selected from the group consisting of Group 3 transition elements, Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, and Group 7 transition elements of the periodic table It is characterized by being carried out in the presence of a catalyst containing an element (hereinafter sometimes abbreviated as “transition element”).
  • oligosilane means an oligomer of silane in which a plurality (10 or less) of (mono) silane is polymerized, and specifically includes disilane, trisilane, tetrasilane, and the like. .
  • oligosilane is not limited to a linear oligosilane, and may have a branched structure, a crosslinked structure, a cyclic structure, or the like.
  • hydrosilane means a compound having a silicon-hydrogen (Si—H) bond, and specifically includes tetrahydrosilane (SiH 4 ).
  • dehydrogenation condensation of hydrosilane refers to a reaction in which a silicon-silicon (Si—Si) bond is formed by condensation of hydrosilanes from which hydrogen is eliminated, as shown in the following reaction formula, for example. Shall mean.
  • reaction process “catalyst” and the like will be described in detail.
  • the reaction step includes at least one transition element selected from the group consisting of Group 3 transition elements, Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, and Group 7 transition elements of the periodic table. It is performed in the presence of a contained catalyst (hereinafter sometimes abbreviated as “catalyst”), but it is characterized by “Group 3 transition element”, “Group 4 transition element”, “Group 5 transition”. Specific types such as “element”, “Group 6 transition element”, and “Group 7 transition element” are not particularly limited. Examples of the Group 3 transition element include scandium (Sc), yttrium (Y), lanthanoid (La), and samarium (Sm).
  • Group 4 transition elements include titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • Examples of Group 5 transition elements include vanadium (V), niobium (Nb), and tantalum (Ta).
  • Examples of Group 6 transition elements include chromium (Cr), molybdenum (Mo), and tungsten (W).
  • Group 7 transition elements include manganese (Mn), technetium (Tc), and rhenium (Re). More preferred transition elements for use in the present invention are Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, and Group 7 transition elements.
  • transition elements include titanium (Ti), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo), tungsten (W), and manganese (Mn). More preferable transition elements are Group 5 transition elements and Group 6 transition elements. Specific examples include vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo), and tungsten (W). Among them, particularly preferable transition elements are molybdenum (Mo) and tungsten (W).
  • the catalyst may be a heterogeneous catalyst or a homogeneous catalyst as long as it contains the above-mentioned transition element, but is preferably a heterogeneous catalyst, and a heterogeneous catalyst including a support.
  • a catalyst containing a transition element on the surface and / or inside of the support is particularly preferable.
  • the state and composition of the transition element in the catalyst are not particularly limited. For example, in the case of a heterogeneous catalyst, the state of the metal (single metal or alloy) whose surface may be oxidized, the metal oxide (single metal) Oxide, composite metal oxide).
  • the catalyst when the catalyst is a heterogeneous catalyst including a carrier, the catalyst is supported on the surface of the carrier (outer surface and / or inside the pores) in the form of metal or metal oxide, or the inside of the carrier by ion exchange or composite Examples thereof include those in which a transition element is introduced into (support skeleton).
  • a homogeneous catalyst an organometallic complex having a transition element as a central metal can be mentioned.
  • Examples of the metal whose surface may be oxidized include scandium, yttrium, lanthanoid, samarium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, and rhenium.
  • Examples of metal oxides include scandium oxide, yttrium oxide, lanthanoid oxide, samarium oxide, titanium oxide, zirconium oxide, hafnium oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and technetium oxide. , Rhenium oxide, and complex oxides thereof.
  • the specific type of the carrier when the catalyst is a heterogeneous catalyst including a carrier is not particularly limited, and examples thereof include silica, alumina, titania, zirconia, silica-alumina, zeolite, activated carbon, aluminum phosphate, and the like.
  • Alumina, titania and zeolite are more preferred.
  • silica, alumina, and zeolite are preferable in terms of thermal stability when a transition element is supported, zeolite is more preferable in terms of disilane selectivity, and pores having a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less.
  • a zeolite having The pore space of zeolite is thought to work as a reaction field for dehydrogenative condensation, and the pore size of “minor axis 0.43 nm or more and major axis 0.69 nm or less” suppresses excessive polymerization, and oligosilane It is considered optimal for improving the selectivity.
  • zeolite having pores with a minor axis of 0.43 nm or more and a major axis of 0.69 nm or less actually means only zeolites having “minor pores of 0.43 nm or more and major axis of 0.69 nm or less”.
  • zeolites that satisfy the above-mentioned conditions in which the “minor axis” and “major axis” of the pores calculated theoretically from the crystal structure respectively.
  • the minor axis of the zeolite is 0.43 nm or more, preferably 0.45 nm or more, particularly preferably 0.47 nm or more.
  • the major axis of the zeolite is 0.69 nm or less, preferably 0.65 nm or less, particularly preferably 0.60 nm or less.
  • the pore diameter of zeolite is considered to be “0.43 nm or more and 0.69 nm or less”.
  • the pore diameter of at least one kind of pores may be “0.43 nm or more and 0.69 nm or less”.
  • zeolites are structural codes created by the International Zeolite Association and are AFR, AFY, ATO, BEA, BOG, BPH, CAN, CON, DFO, EON, EZT, and FER. , GON, IMF, ISV, ITH, IWR, IWV, IWW, MEI, MEL, MFI, OBW, MOR, MOZ, MSE, MTT, MTW, NES, OFF, OSI, PON, SFF, SFG, STI, STF, TER , TON, TUN, USI, and zeolite corresponding to VET are preferable.
  • the structure code is ATO, BEA, BOG, CAN, FER, IMF, ITH, IWR, IWW, MEL, MFI, OBW, MOR, MSE, MTW, NES, OSI, PON, SFF, SFG, STF, STI, Zeolite corresponding to TER, TON, TUN and VET is more preferable. Zeolite whose structural code corresponds to BEA, MFI, TON, MOR or FER is particularly preferred.
  • Zeolite whose structural code corresponds to MFI includes: * ZSM-5, [As-Si-O] -MFI, [Fe-Si-O] -MFI, [Ga-Si-O] -MFI, AMS- 1B, AZ-1, Bor-C, Boralite C, Encilite, FZ-1, LZ-105, Monoclinic H-ZSM-5, Mutanite, NU-4, NU-5, Siliconelite, TS-1, TSZ, TSZ- III, TZ-01, USC-4, USI-108, ZBH, ZKQ-1B, ZMQ-TB, organic-free ZSM-5, and the like.
  • Examples of the zeolite whose structural code corresponds to TON include * Theta-1, ISI-1, KZ-2, NU-10, ZSM-22, and the like.
  • Examples of the zeolite whose structural code corresponds to MOR include mordenite.
  • An example of the zeolite whose structural code corresponds to FER is ferrierite.
  • Particularly preferred zeolites are ZSM-5, beta, ZSM-22, MOR, FER.
  • the silica / alumina ratio is preferably 5 to 10000, more preferably 10 to 2000, and particularly preferably 20 to 1000.
  • the total content of transition elements in the catalyst is preferably 0.01% by mass. As mentioned above, More preferably, it is 0.1 mass% or more, More preferably, it is 0.5 mass% or more, Preferably it is 50 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 10 mass% or less. When it is within the above range, oligosilane can be produced more efficiently.
  • the catalyst is a heterogeneous catalyst including a support
  • the catalyst is preferably in the form of a molded body in which the powder is formed into a spherical shape, a cylindrical shape (pellet shape), a ring shape, a honeycomb shape, or the like.
  • binders such as an alumina and a clay compound, in order to shape
  • the alumina content when alumina is used as the binder are preferably 2 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 10 parts by mass or more.
  • it is 50 mass parts or less, More preferably, it is 40 mass parts or less, More preferably, it is 30 mass parts or less.
  • Examples of the method of supporting the transition element on the carrier include an impregnation method using a precursor in a solution state, an ion exchange method, a method of volatilizing the precursor by sublimation or the like, and depositing it on the carrier.
  • the impregnation method is a method in which the carrier is brought into contact with a solution in which the transition element-containing compound is dissolved, and the transition element-containing compound is adsorbed on the surface of the carrier.
  • the solvent pure water is usually used, but an organic solvent such as methanol, ethanol, acetic acid or dimethylformamide can be used as long as it dissolves the transition element-containing compound.
  • the ion exchange method is a method in which a carrier having an acid point such as zeolite is brought into contact with a solution in which ions of the transition element are dissolved, and the ion of the transition element is introduced into the acid point of the carrier.
  • a carrier having an acid point such as zeolite
  • ions of the transition element are dissolved
  • the ion of the transition element is introduced into the acid point of the carrier.
  • pure water is usually used, but organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can also be used as long as they can dissolve the transition element.
  • the vapor deposition method is a method in which the transition element itself or the transition element oxide is heated and volatilized by sublimation or the like and vapor deposited on the carrier.
  • the transition element precursor includes ammonium heptamolybdate, silicomolybdic acid, phosphomolybdic acid, molybdenum chloride, molybdenum oxide, and the like.
  • examples include ammonium paratungstate, phosphotungstic acid, silicotungstic acid, and tungsten chloride.
  • titanium titanium oxysulfate, titanium chloride, tetraethoxy titanium and the like can be mentioned.
  • vanadium vanadium oxysulfate, vanadium oxyoxalate, vanadium chloride, vanadium trichloride, bis (acetylacetonato) oxovanadium (IV) and the like can be mentioned.
  • chromium ammonium chromate, acetylacetone chromium (III), pyridine-2-carboxylic acid chromium (III) and the like can be mentioned.
  • niobium include niobium oxalate and ammonium niobium oxalate.
  • manganese manganese chloride, acetylacetone manganese (II), acetylacetone manganese (III) and the like can be mentioned.
  • the catalyst is a heterogeneous catalyst
  • at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements in the periodic table (hereinafter sometimes abbreviated as “typical elements”). It is preferable to contain.
  • the state and composition of the typical element in the catalyst are not particularly limited, and examples thereof include a metal oxide (single metal oxide, composite metal oxide) and an ion state.
  • the catalyst is a heterogeneous catalyst including a support, the catalyst is supported in the form of a metal oxide or metal salt on the surface of the support (outer surface and / or inside the pores).
  • a material in which a typical element is introduced into (carrier skeleton) can be mentioned.
  • group 1 typical elements include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • Group 2 typical elements include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
  • the catalyst is a heterogeneous catalyst including a support
  • examples of a method for blending a typical element into the catalyst include an impregnation method and an ion exchange method.
  • the impregnation method is a method in which a carrier is brought into contact with a solution in which a compound containing a typical element is dissolved, and the typical element is adsorbed on the surface of the carrier.
  • pure water is usually used, but organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can be used as long as they can dissolve a compound containing a typical element.
  • the ion exchange method is a method in which a carrier having an acid point such as zeolite is brought into contact with a solution in which a compound capable of dissociating into ions when the typical element is dissolved, and ions of the typical element are introduced into the acid point of the carrier. is there.
  • pure water is usually used, but organic solvents such as methanol, ethanol, acetic acid and dimethylformamide can be used as long as they dissolve typical element ions.
  • Examples of the solution containing sodium (Na) include an aqueous solution of sodium chloride (NaCl), an aqueous solution of sodium sulfate (Na 2 SO 4 ), an aqueous solution of sodium nitrate (NaNO 3 ), an aqueous solution of sodium acetate (NaOCOCH 3 ), and the like.
  • Examples of the solution containing potassium (K) include potassium nitrate (KNO 3 ) aqueous solution, potassium chloride (KCl) aqueous solution, potassium sulfate (K 2 SO 4 ) aqueous solution, potassium acetate (KOCOCH 3 ) aqueous solution, and potassium acetate acetic acid.
  • Examples thereof include a solution and an ethanol solution of potassium acetate.
  • Examples of the solution containing rubidium (Rb) include a rubidium chloride (RbCl) aqueous solution and a rubidium nitrate (KNO 3 ) aqueous solution.
  • Examples of the solution for containing cesium (Cs) include cesium chloride (CsCL), cesium nitrate (CsNO 3 ) aqueous solution, cesium sulfate (Cs 2 SO 4 ) aqueous solution, cesium acetate (CsOCOCH 3 ) aqueous solution, and the like.
  • Examples of the solution for containing francium (Fr) include a francium chloride (FrCl) aqueous solution.
  • Examples of the solution containing calcium (Ca) include a calcium chloride (CaCl 2 ) aqueous solution and a calcium nitrate (Ca (NO 3 ) 2 ) aqueous solution.
  • Examples of the solution in the case of containing strontium (Sr) include a strontium nitrate (Sr (NO 3 ) 2 ) aqueous solution.
  • Examples of the solution in the case of containing barium (Ba) include an aqueous solution of barium chloride (BaCl 2 ), an aqueous solution of barium nitrate (Ba (NO 3 ) 2 ), an aqueous solution of barium acetate (Ba (OCOCH 3 ) 2 ), and the like.
  • the total content of typical elements in the catalyst is preferably 0.01% by mass or more, More preferably 0.05% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, more particularly preferably 1.0% by mass or more, and most preferably 2.1% by mass or more.
  • it is 10 mass% or less, More preferably, it is 5 mass% or less, More preferably, it is 4 mass% or less.
  • the catalyst contains zeolite as a support and contains a transition element and a typical element on the surface and / or inside of the zeolite
  • the total content of the transition element and the total content of the typical element is an amount that satisfies the condition of the following formula (1).
  • AM / Al is an atomic ratio obtained by dividing the total number of atoms of the typical element contained in the zeolite by the number of aluminum atoms contained in the zeolite
  • TM / Al is the zeolite.
  • the number of aluminum atoms contained in the zeolite correlates with the amount of acid sites in the zeolite, but the transition depends on the value of “(AM / Al) / (1-TM / Al)” calculated therefrom.
  • the ratio of the acid sites in the zeolite that is not ion-exchanged with ions derived from elements and typical elements can be grasped.
  • the values of “AM”, “TM”, and “Al” are determined by, for example, dissolving the entire amount of the catalyst with a strong acid and analyzing the solution by inductively coupled plasma mass spectrometry (ICP-MASS) or the like. be able to. Further, as a simpler method, it may be determined from the charged amounts of zeolite, typical elements, and transition elements. Transition elements are considered to exhibit catalytic activity by interacting with the acid sites of this zeolite. However, even if it is used in excess of Al, not only the effect of activity is lost, but also the interaction with Al becomes larger, and Al atoms in the zeolite may fall out of the lattice.
  • ICP-MASS inductively coupled plasma mass spectrometry
  • the value of “(AM / Al) / (1-TM / Al)” is preferably 0.1 or more, more preferably 0.2 or more, preferably 0.9 or less, more preferably 0.8. 8 or less. If it is within the above range, the acid sites in the zeolite will remain appropriately, and oligosilane can be produced more efficiently.
  • the catalyst When the catalyst is a heterogeneous catalyst, it may contain a periodic table Group 13 typical element.
  • the state and composition of the periodic table group 13 typical element in the catalyst are not particularly limited, the state of the metal (single metal, alloy) whose surface may be oxidized, metal oxide (single metal oxide, A state of a composite metal oxide).
  • the catalyst when the catalyst is a heterogeneous catalyst including a support, the catalyst is supported in the form of a metal oxide on the surface (outer surface and / or inside the pores), or the inside (support skeleton) by ion exchange or complexation. ) In which a periodic table group 13 typical element is introduced.
  • Group 13 typical element of the periodic table it is possible to suppress the initial silane conversion and suppress excessive consumption and to increase the initial disilane selectivity. It can also be said that the catalyst life can be further extended by suppressing the initial conversion rate of silane.
  • Group 13 typical elements include aluminum (Al), gallium (Ga), indium (In), and thallium (Tl).
  • the method of blending the periodic table group 13 typical element into the catalyst is the same as in the periodic table group 1 typical element.
  • the content of the group 13 typical element of the periodic table in the catalyst (with respect to the mass of the carrier containing the above transition element, the above typical element, and the group 13 typical element of the periodic table) Is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and more particularly preferably 1.0% by mass. It is at least mass%, most preferably at least 2.1 mass%, preferably at most 10 mass%, more preferably at most 5 mass%, still more preferably at most 4 mass%. When it is within the above range, oligosilane can be produced more efficiently.
  • the catalyst preferably satisfies the following condition (i), more preferably satisfies the following conditions (i) and (ii), and all the following conditions (i) to (iii): It is more preferable that the above-mentioned conditions are satisfied, and it is particularly preferable that all the following conditions (i) to (iv) are satisfied. If these conditions are satisfied, oligosilane can be produced more efficiently. Moreover, when it implements industrially, it is preferable to satisfy
  • the total content of the transition elements and the total content of the typical elements are quantities that satisfy the condition of the following formula (1).
  • AM / Al is an atomic ratio obtained by dividing the total number of atoms of the typical element contained in the zeolite by the number of aluminum atoms contained in the zeolite
  • TM / Al is the zeolite. Represents the atomic ratio obtained by dividing the total number of atoms of transition elements contained in the product by the number of aluminum atoms contained in the zeolite.
  • V A powdery carrier is formed into a spherical or cylindrical molded body, and the content of alumina is 10% by mass or more and 30% by mass or less.
  • the reactor, operation procedure, reaction conditions, etc. used in the reaction step are not particularly limited and can be appropriately selected according to the purpose.
  • the reactor is a batch reactor as shown in FIG. 1 (a), a continuous tank reactor as shown in FIG. 1 (b), or a continuous tube reactor as shown in FIG. 1 (c). Any type of reactor may be used.
  • the operation procedure is to install the dried zeolite according to the present invention in the reactor, remove the air in the reactor using a vacuum pump, etc., and then add hydrosilane or the like. And the reaction is started by raising the temperature in the reactor to the reaction temperature.
  • the dried zeolite according to the present invention is installed in the reactor, and the air in the reactor is removed using a vacuum pump or the like. A method of starting the reaction by circulating hydrosilane or the like and raising the temperature in the reactor to the reaction temperature can be mentioned.
  • the reaction temperature is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, further preferably 200 ° C. or higher, preferably 450 ° C. or lower, more preferably 400 ° C. or lower, more preferably 350 ° C. or lower. When it is within the above range, oligosilane can be produced more efficiently.
  • the reaction temperature is set constant during the reaction step as shown in FIG. 2 (a), and the reaction start temperature is set lower as shown in FIGS. 2 (b1) and (b2). Alternatively, the temperature may be raised during the reaction process, or as shown in FIGS. 2 (c1) and (c2), the reaction start temperature may be set higher and the temperature may be lowered during the reaction process (the reaction temperature rises).
  • the temperature may be continuous as shown in Fig. 2 (b1) or stepwise as shown in Fig. 2 (b2). ) Or continuous as shown in FIG. 2 (c2).
  • the reaction start temperature when raising the reaction temperature is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 150 ° C. or higher, preferably 350 ° C. or lower, more preferably 300 ° C. or lower, even more preferably. Is 250 ° C. or lower.
  • hydrosilane and a compound other than the zeolite according to the present invention may be charged or distributed.
  • the compounds other than hydrosilane and the zeolite according to the present invention include hydrogen gas, helium gas, nitrogen gas, argon gas, and other solid substances such as silica, titanium hydride, and the like that are hardly reactive with hydrosilane. Is preferably carried out in the presence of hydrogen gas. In the presence of hydrogen gas, deterioration of zeolite and the like is suppressed, and oligosilane can be produced stably for a long time.
  • disilane Si 2 H 6
  • a part of the generated disilane is shown in the following reaction formula (ii). It is thought that it is decomposed into tetrahydrosilane (SiH 4 ) and dihydrosilylene (SiH 2 ). Further, the produced dihydrosilylene is polymerized to form solid polysilane (Si n H 2n ) as shown in the following reaction formula (iii), and this polysilane is adsorbed on the surface of the zeolite, and dehydrogenative condensation activity of hydrosilane.
  • the reaction pressure is preferably 0.1 MPa or more in absolute pressure, more preferably 0.15 MPa or more, further preferably 0.2 MPa or more, preferably 1000 MPa or less, more preferably 500 MPa or less, and further preferably 100 MPa or less.
  • the partial pressure of hydrosilane is preferably 0.0001 MPa or more, more preferably 0.0005 MPa or more, further preferably 0.001 MPa or more, preferably 100 MPa or less, more preferably 50 MPa or less, more preferably 10 MPa or less. It is. When it is within the above range, oligosilane can be produced more efficiently.
  • the partial pressure of hydrogen gas when the reaction step is performed in the presence of hydrogen gas is preferably 0.01 MPa or more, more preferably 0.03 MPa or more, further preferably 0.05 MPa or more, preferably 10 MPa or less, More preferably, it is 5 MPa or less, More preferably, it is 1 MPa or less.
  • oligosilane can be produced stably for a long time.
  • the flow rate of hydrosilane to be circulated is too low if the contact time with the catalyst is too short, and if it is too long, polysilane is likely to be produced.
  • the time should be between 0.01 seconds and 30 minutes.
  • the flow rate set by gas mass flow is preferably 0.01 mL.
  • oligosilane can be produced more efficiently.
  • the reaction time is 1 minute to 1 hour, More preferably, it should be about 5 to 30 minutes.
  • the flow rate of hydrogen gas to be circulated is the flow rate set by gas mass flow with respect to 1.0 g of zeolite according to the present invention (standard state of tetrahydrosilane gas circulated for 1 minute) (Volume conversion amount at 0 ° C.-1 atm) is preferably 0.01 mL / min or more, more preferably 0.05 mL / min or more, further preferably 0.1 mL / min or more, preferably 100 mL / min or less. More preferably, it is 50 mL / min or less, More preferably, it is 10 mL / min or less. Within the above range, oligosilane can be produced stably for a long time.
  • ⁇ Catalyst> As described above, it is possible to efficiently produce oligosilane by carrying out the dehydrogenation condensation reaction of hydrosilane in the presence of the aforementioned transition element. Containing at least one transition element selected from the group consisting of a Group 3 transition element, a Group 4 transition element, a Group 5 transition element, a Group 6 transition element, and a Group 7 transition element.
  • a catalyst characterized by is also an embodiment of the present invention. The details of the catalyst are the same as those described in ⁇ Method for producing oligosilane>, and detailed description thereof will be omitted.
  • a heterogeneous catalyst including a carrier and a catalyst containing a transition element on the surface and / or inside of the carrier is preferable as a catalyst for dehydrogenation condensation by dehydrocondensing hydrosilane to generate oligosilane.
  • a method for producing a catalyst capable of producing such a catalyst that is, a method for producing a catalyst comprising the following carrier preparation step, transition element introduction step, and transition element heating step, is also an aspect of the present invention (hereinafter referred to as an embodiment of the present invention).
  • catalyst production method sometimes abbreviated as “catalyst production method”.
  • Carrier preparation step Step of preparing carrier Transition element introduction step: Group 3 transition element, Group 4 transition element, Group 5 transition element, Group 6 transition element, and Group 6 of the periodic table are added to the carrier prepared in the carrier preparation step.
  • Transition element heating step Step of heating the precursor through the transition element introduction step
  • the carrier preparation step is not particularly limited as long as the carrier to be used is prepared, and the carrier may be obtained or the carrier may be prepared by itself.
  • Specific examples of the carrier include silica, alumina, titania, zeolite, activated carbon, aluminum phosphate, etc. as described above, but the carrier to be used is not limited to one type, and two or more types are mixed and used. Also good.
  • the carrier may be in the form of a molded body obtained by molding the powder into a spherical shape or a cylindrical shape, and a binder such as alumina or a clay compound may be used for molding the powder.
  • the content of alumina is preferably 2 parts by mass or more, Preferably it is 5 mass parts or more, More preferably, it is 10 mass parts or more, Preferably it is 50 mass parts or less, More preferably, it is 40 mass parts or less, More preferably, it is 30 mass parts or less. Within the above range, it is possible to suppress adverse effects on the catalyst activity while maintaining the carrier strength.
  • the transition element introduction step includes a carrier prepared in the carrier preparation step from the group consisting of Group 3 transition elements, Group 4 transition elements, Group 5 transition elements, Group 6 transition elements, and Group 7 transition elements in the periodic table.
  • the method of containing the transition element is not particularly limited, and a known method such as an impregnation method, an ion exchange method, or a vapor deposition method is appropriately used as described above. can do.
  • a method of bringing a carrier into contact with an aqueous solution in which a precursor compound of a transition element is dissolved may be mentioned.
  • detailed conditions in the method of bringing the carrier into contact with the aqueous solution will be described.
  • Examples of precursor compounds in the case of containing molybdenum (Mo) include hexamolybdate hexaammonium tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O), phosphomolybdic acid, silicomolybdic acid and the like. It is done.
  • Examples of the precursor compound in the case of containing chromium (Cr) include ammonium chromate ((NH 4 ) 2 CrO 4 ), acetylacetone chromium (III), pyridine-2-carboxylic acid chromium (III), and the like.
  • niobium As precursor compounds in the case of containing niobium (Nb), niobium oxalate ammonium salt ((NH 4 ) [Nb (O) (C 2 O 4 ) 2 (H 2 O) 2 ]), pentakis (oxalic acid) Hydrogen) niobium (V) (n hydrate) [Nb (HC 2 O 4 ) 5 ⁇ nH 2 O)] and the like.
  • concentration of the transition element precursor compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.5% by mass or more, and usually 30% by mass or less. More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less.
  • the temperature of the aqueous solution is preferably usually 5 ° C. or higher, more preferably 10 ° C. or higher, further preferably 15 ° C. or higher, preferably 80 ° C. or lower, more preferably 60 ° C. or lower, and further preferably 50 ° C. or lower.
  • the contact (impregnation) time between the support and the aqueous solution is preferably 10 minutes or more, more preferably 30 minutes or more, and even more preferably 1 hour or more. From the viewpoint, it is preferably 2 days or less, more preferably 1 day or less, and further preferably 12 hours or less.
  • the transition element heating step is a step of heating the precursor that has undergone the transition element introduction step, and the conditions such as the heating temperature will be described in detail below.
  • the heating temperature in the transition element heating step can be set in the range of 500 ° C. to 1100 ° C. according to the heat resistance of the carrier used. Preferably it is 600 degreeC or more, More preferably, it is 700 degreeC or more, More preferably, it is 750 degreeC or more, Most preferably, it is 800 degreeC or more, Preferably it is 1100 degrees C or less, More preferably, it is 1000 degrees C or less, More preferably, it is 950 degrees C or less .
  • the heating time is preferably 30 minutes or more and 24 hours or less after reaching a predetermined temperature, and more preferably 1 hour or more and 12 hours or less.
  • a catalyst with higher activity can be manufactured as it is in the said range.
  • the heating temperature in the transition element heating step when the support is zeolite is preferably 500 ° C. or higher, more preferably 600 ° C. or higher, further preferably 700 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C or lower, more preferably 800 ° C or lower.
  • the applicable temperature may vary depending on the type of zeolite.
  • the heating temperature in the transition element heating step is preferably 700 ° C.
  • the heating temperature in the transition element heating step when the carrier is beta is preferably 500 ° C. or higher, more preferably 600 ° C. or higher, further preferably 700 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C or lower, more preferably 800 ° C or lower.
  • the atmosphere in which the transition element heating step is performed is usually an air atmosphere.
  • the method for producing the catalyst is not particularly limited as long as it includes the transition element introduction step and the transition element heating step described above, but the catalyst is selected from the group consisting of Group 1 typical elements and Group 2 typical elements in the periodic table.
  • the catalyst is selected from the group consisting of Group 1 typical elements and Group 2 typical elements in the periodic table.
  • Typical element introduction step a step of allowing the support to contain at least one typical element selected from the group consisting of Group 1 typical elements and Group 2 typical elements in the periodic table
  • Typical element heating step Precursor through typical element introduction step
  • the “typical element introduction step”, the “typical element heating step” and the like will be described in detail.
  • the step of introducing a typical element is a step of incorporating at least one typical element selected from the group consisting of a group 1 typical element and a group 2 typical element in the periodic table into the support. It is not limited, Well-known methods, such as an impregnation method and an ion exchange method, can be utilized suitably. Specifically, a method of bringing a carrier into contact with an aqueous solution in which a precursor compound of a typical element is dissolved may be mentioned. Hereinafter, detailed conditions in the method of bringing the carrier into contact with the aqueous solution will be described.
  • Precursor compounds in the case of containing potassium (K) include potassium nitrate (KNO 3 ), potassium hydroxide (KOH), potassium carbonate (K 2 CO 3 ), potassium sulfate (K 2 SO 4 ), potassium acetate (KOCOCH) 3 ) and the like.
  • potassium nitrate KNO 3
  • potassium hydroxide KOH
  • potassium carbonate K 2 CO 3
  • potassium sulfate K 2 SO 4
  • potassium acetate (KOCOCH) 3 ) and the like As precursor compounds in the case of containing barium (Ba), barium chloride (BaCl 2 ), barium nitrate (Ba (NO 3 ) 2 ), barium hydroxide (Ba (OH) 2 ), barium acetate (Ba (OCOCH) 3 ) 2 ) and the like.
  • Examples of the precursor compound in the case of containing cesium (Cs) include cesium nitrate (CsNO 3 ), cesium hydroxide (CsOH), cesium carbonate (Cs 2 CO 3 ), cesium acetate (CsOCOCH 3 ), and the like.
  • concentration of the precursor compound of the typical element in aqueous solution becomes like this.
  • it is 0.1 mass% or more, More preferably, it is 1 mass% or more, More preferably, it is 3 mass% or more, Preferably it is 50 mass% or less, More preferably, it is 30 It is not more than mass%, more preferably not more than 20 mass%.
  • the temperature of the aqueous solution is preferably 5 ° C.
  • the contact (impregnation) time between the support and the aqueous solution is preferably 10 minutes or more, more preferably 30 minutes or more, and even more preferably 1 hour or more. From the viewpoint, it is preferably 2 days or less, more preferably 1 day or less, and further preferably 12 hours or less.
  • the typical element heating step is a step of heating the precursor that has undergone the typical element introduction step, and the heating temperature, atmosphere, and the like will be described in detail below.
  • the heating temperature of the typical element heating step is usually a temperature at which drying is possible, but is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C. or lower, and even more preferably 700 ° C. Hereinafter, it is particularly preferably 500 ° C. or lower.
  • the heating time is preferably 30 minutes or more and 24 hours or less after reaching a predetermined temperature, and more preferably 1 hour or more and 12 hours or less. A catalyst with higher activity can be manufactured as it is in the said range.
  • the atmosphere in which the typical element heating step is performed is usually an air atmosphere.
  • the manufacturing method of the catalyst is not particularly limited as long as it includes the above-described support preparation step, transition element introduction step, and transition element heating step, but the order of performing the support preparation step and the like is as follows. Examples 1 to 3 may be mentioned.
  • -Embodiment 1 It implements in order of a carrier preparation process, a transition element introduction
  • -Embodiment 2 It implements in order of a carrier preparation process, a transition element introduction
  • -Embodiment 3 It implements in order of a carrier preparation process, a typical element introduction
  • zeolite is fixed to a fixed bed in a reaction tube of the reaction apparatus (conceptual diagram) shown in FIG. 3, and a reaction gas containing tetrahydrosilane diluted with helium gas or the like is circulated. went.
  • the generated gas was analyzed by TCD (thermal conductivity detector) using a gas chromatograph GC-17A manufactured by Shimadzu Corporation. Further, when GC was not detected (below the detection limit), the yield was expressed as 0%.
  • Preparation of silica supported on Group 3 transition elements of the periodic table ⁇ Preparation Example 1: Preparation of tungsten (W) -supported silica> Bi -'s shape Silica: in (Fuji Silysia Product Name Q-10) 10g, (NH 4) 10 W 12 O 41 ⁇ 5H 2 O 0.14g (W corresponding to 1 wt% on at the exchange) with distilled water 10g The aqueous solution dissolved in was added and mixed for 1 hour. Then, after drying in air atmosphere at 110 ° C. for 4 hours, firing was performed in air atmosphere at 900 ° C. for 2 hours to obtain powdery W1 mass% supported silica. In this case, the supported amount is mass% as an external number with respect to 1 part by mass of the raw material zeolite used (if 1% by mass, W1 part by mass with respect to 100 parts by mass of the raw material zeolite).
  • An aqueous solution in which 14 g (corresponding to 1% by mass supported in terms of W) was dissolved in 10 g of heated distilled water was added and mixed for 1 hour while heating. Then, after drying in air atmosphere at 110 ° C. for 4 hours, it was calcined in air atmosphere at 900 ° C. for 2 hours to obtain a powdery W1 mass% supported Y-type zeolite.
  • transition element-free silica Preparation of transition element-free silica> 10 g of bead-like silica (manufactured by Fuji Silysia: product name Q-10) was calcined at 700 ° C. for 2 hours in an air atmosphere to obtain calcined silica.
  • Preparation of zeolite supported on typical elements of group 1 of the periodic table and group 3 transition elements of the periodic table] ⁇ Preparation Example 10: Preparation of K-containing molybdenum (Mo) supported zeolite> 5 g of distilled water 5 g and KNO 3 0.32 g (equivalent to 2.4 mass% supported in K conversion) were added to 5 g of Mo 1 mass% supported ZSM-5 (silica / alumina ratio 23) prepared in Preparation Example 4 For 1 hour. Thereafter, it was dried at 110 ° C. for 4 hours in the air atmosphere, and then calcined at 900 ° C. for 2 hours in the air atmosphere.
  • Mo molybdenum
  • ⁇ Preparation Example 20 Preparation of Ba-containing molybdenum (Mo) -supported pellet-like zeolite> 10 g of distilled water and 0.238 g of Ba (NO 3 ) 2 (corresponding to 2.4% by mass supported in terms of Ba) were added to 5 g of the 0.5% by mass Mo-supported pellet ZSM-5 prepared in Preparation Example 19, For 1 hour. Thereafter, it was dried at 110 ° C. for 4 hours in an air atmosphere and then calcined at 700 ° C. for 2 hours to obtain 0.5% by mass of Mo-supported ZSM-5 (pellet form) containing 2.4% by mass of Ba. It was.
  • Mo molybdenum
  • Preparation Example 25 Preparation of molybdenum (Mo) -supported pellet-like zeolite> A catalyst was prepared in the same manner as in Preparation Example 18 except that the calcination temperature was changed from 700 ° C. to 900 ° C. to obtain ZSM-5 (pellet form) carrying 1% by mass of Mo.
  • the dried support was impregnated with 5.0 ml of an aqueous solution containing 0.261 g of (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O (corresponding to 1% by mass supported in terms of Mo), and then air-dried for 1 hour. , Dried at 110 ° C. for 2 hours in an air atmosphere, and then calcined at 900 ° C. for 2 hours in an air atmosphere.
  • MoSM-supported ZSM-5 containing 2.4% by mass of Ba (pellet-like) )
  • 0. 14 contains 20% of the binder, calculated in consideration of that amount).
  • Example 1 [Generation of oligosilane in the presence of a catalyst containing Group 3 transition elements of the periodic table] ⁇ Example 1> 1.0 g of W1% by mass-supported silica prepared in Preparation Example 1 was placed in a reaction tube, the air in the reaction tube was removed using a vacuum pump, and then replaced with helium gas. Helium gas was circulated at a rate of 20 mL / min, heated to 200 ° C., and then circulated for 1 hour. Then, 2 mL / min of mixed gas of argon and silane (Ar: 20%, SiH 4 : 80% (volume ratio)), 2 mL / min of hydrogen gas, and 16 mL / min of helium gas were mixed and circulated.
  • Example 2 The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W1 mass% supported silica prepared in Preparation Example 1 was changed to 1.0 g of W1 mass% supported Y-type zeolite prepared in Preparation Example 2.
  • Table 3 As shown, the reaction gas composition after each lapse of time was analyzed with a gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, and disilane space time yield (STY) were calculated. Calculated. The results are shown in Table 3.
  • Table 5 the reaction gas composition after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and silane conversion, disilane yield, disilane selectivity, disilane The space time yield (STY) was calculated. The results are shown in Table 5.
  • Table 6 the reaction gas composition after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, disilane The space time yield (STY) was calculated. The results are shown in Table 6.
  • Table 7 the reaction gas composition after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and silane conversion, disilane yield, disilane selectivity, disilane The space time yield (STY) was calculated. The results are shown in Table 7.
  • Table 8 the reaction gas composition after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, disilane The space time yield (STY) was calculated. The results are shown in Table 8.
  • the reaction was carried out under the same conditions as in Example 1, and as shown in Table 10, the composition of the reaction gas after each lapse of time was analyzed with a gas chromatograph in the same manner as in Example 1, and the conversion rate of silane, the yield of disilane, the disilane The space-time yield (STY) of disilane was calculated. The results are shown in Table 10.
  • the reaction was carried out under the same conditions as in Example 1.
  • Table 11 the composition of the reaction gas after each lapse of time was analyzed by gas chromatograph as in Example 1, and the silane conversion, disilane yield, disilane were analyzed.
  • the space-time yield (STY) of disilane was calculated. The results are shown in Table 11.
  • Example 11 1.0 g of W1 wt% supported silica prepared in Preparation Example 1 and 1.0 wt g of ZSM-5 loaded with 1 wt% K containing 4.9 wt% prepared in Preparation Example 14 (“(AM / Al) / (1-TM / The reaction was carried out under the same conditions as in Example 1 except that Al) ”was changed to 1.0).
  • the composition of the reaction gas after the elapse of each time was analyzed by a gas chromatograph as in Example 1. The silane conversion, disilane yield, disilane selectivity, and disilane space time yield (STY) were calculated. The results are shown in Table 14.
  • the reaction was carried out under the same conditions, and as shown in Table 15, the composition of the reaction gas after the elapse of each time was analyzed with a gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, The space time yield (STY) of disilane was calculated. The results are shown in Table 15.
  • the reaction was conducted under the same conditions as in Example 1 except that the amount was changed to 1.0 g.
  • Table 18 the reaction gas composition after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and silane conversion, disilane yield, and disilane selectivity. The space time yield (STY) of disilane was calculated. The results are shown in Table 18.
  • the reaction was conducted under the same conditions as in Example 1 except that the reaction gas was changed to 1.0 g.
  • the composition was analyzed by a gas chromatograph in the same manner as in Example 1, and the conversion rate of silane, the yield of disilane, the selectivity of disilane, and the space time yield (STY) of disilane were calculated. The results are shown in Table 20.
  • Example 18 A reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W 1 mass% supported silica prepared in Preparation Example 1 was changed to 1.0 g of Mo 1 mass% supported beta (pellet) prepared in Preparation Example 21. As shown in FIG. 21, the composition of the reaction gas after the elapse of each time was analyzed by a gas chromatograph in the same manner as in Example 1. The conversion rate of silane, the yield of disilane, the selectivity of disilane, the space-time yield of disilane (STY ) was calculated. The results are shown in Table 21.
  • Example 19 The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W 1% by mass-supported silica prepared in Preparation Example 1 was changed to 1.0 g of Mo 1% by mass-supported mordenite (pellet) prepared in Preparation Example 22. As shown in FIG. 22, the composition of the reaction gas after the passage of each time was analyzed by gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, disilane space time yield (STY ) was calculated. The results are shown in Table 22.
  • Example 20> The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W1% by weight supported silica prepared in Preparation Example 1 was changed to 1.0 g of Mo1% by weight supported ferrierite (pellet) prepared in Preparation Example 23, As shown in Table 23, the composition of the reaction gas after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, disilane space-time yield ( STY) was calculated. The results are shown in Table 23.
  • Example 21 The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W 1 mass% supported silica prepared in Preparation Example 1 was changed to 1.0 g of Mo 1 mass% supported Y (pellet) prepared in Preparation Example 24. As shown in FIG. 24, the composition of the reaction gas after the passage of each time was analyzed with a gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, disilane space time yield (STY ) was calculated. The results are shown in Table 24.
  • Example 22 The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W 1% by mass-supported silica prepared in Preparation Example 1 was changed to 1.0 g of Mo 1% by mass-supported ZSM-5 (pellet) prepared in Preparation Example 25.
  • Table 25 the composition of the reaction gas after each lapse of time was analyzed by gas chromatography as in Example 1, and the silane conversion, disilane yield, disilane selectivity, and disilane space time yield. (STY) was calculated. The results are shown in Table 25.
  • Example 1 is the same as Example 1 except that 1.0 g of silica supported on 1% by mass of W prepared in Preparation Example 1 is changed to 1.0 g of ZSM-5 (pellet) containing 2.4% by mass of Ba prepared in Preparation Example 26.
  • the reaction was carried out under the same conditions, and as shown in Table 26, the composition of the reaction gas after the passage of each time was analyzed by gas chromatograph as in Example 1, and the silane conversion, disilane yield, disilane selectivity, The space time yield (STY) of disilane was calculated. The results are shown in Table 26.
  • Example 24 The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W 1% by weight supported silica prepared in Preparation Example 1 was changed to 1.0 g of 1% by weight Mn supported ZSM-5 (pellet) prepared in Preparation Example 27.
  • Table 27 the composition of the reaction gas after each passage of time was analyzed by gas chromatography as in Example 1, and the silane conversion, disilane yield, disilane selectivity, and disilane space time yield. (STY) was calculated. The results are shown in Table 27.
  • Example 25 Under the same conditions as in Example 1, except that 1.0 g of W 1 mass% supported silica prepared in Preparation Example 1 was changed to 1.0 g of V0.8 mass% supported ZSM-5 (pellet) prepared in Preparation Example 28. As shown in Table 28, the reaction gas composition after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and silane conversion, disilane yield, disilane selectivity, disilane space time were analyzed. Yield (STY) was calculated. The results are shown in Table 28.
  • Example 26 The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W 1 mass% supported silica prepared in Preparation Example 1 was changed to 1.0 g of Nb 1 mass% supported ZSM-5 (pellet) prepared in Preparation Example 29. As shown in Table 29, the composition of the reaction gas after the elapse of each time was analyzed by gas chromatography as in Example 1, and the silane conversion, disilane yield, disilane selectivity, and disilane space time yield. (STY) was calculated. The results are shown in Table 29.
  • Example 27 The same conditions as in Example 1 except that 1.0 g of silica supported on 1% by mass of W prepared in Preparation Example 1 was changed to 1.0 g of ZSM-5 (pellet) using Mo 1% by mass of molybdenum oxide prepared in Preparation Example 30.
  • Table 30 the composition of the reaction gas after each lapse of time was analyzed with a gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, and disilane empty were analyzed. Time yield (STY) was calculated. The results are shown in Table 30.
  • Example 28 The reaction was carried out under the same conditions as in Example 1 except that 1.0 g of W 1% by weight supported silica prepared in Preparation Example 1 was changed to 1.0 g of Cr 1% by weight supported powdery ZSM-22 zeolite prepared in Preparation Example 31.
  • Table 31 the composition of the reaction gas after each lapse of time was analyzed by gas chromatograph in the same manner as in Example 1, and the silane conversion, disilane yield, disilane selectivity, disilane space time yield ( STY) was calculated. The results are shown in Table 31.
  • Example 1 and Comparative Example 1 From comparison of Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3, by using a catalyst containing a Group 3 transition element of the periodic table, etc., a Group 3 transition element of the periodic table, etc. It can be seen that a higher disilane yield can be obtained than when using a catalyst containing no. Further, from the comparison between Example 1 (reaction temperature 200 ° C.) and Comparative Example 4 (reaction temperature 350 ° C.), it is possible to obtain a high yield at a lower temperature than in the case of no catalyst by using a catalyst containing a Group 3 transition element or the like in the periodic table. It can be seen that disilane is obtained at a high rate.
  • Example 1 it can be seen from the comparison between Example 1 and Example 2 that a higher disilane yield can be obtained by using zeolite as the carrier than silica. Furthermore, from comparison between Example 2 and Example 3, it can be seen that a high disilane yield can be obtained by using zeolite having a pore diameter in a specific range among zeolites used as a carrier. In addition, Example 3, Example 4, and Example 5 show that a particularly high disilane yield can be obtained when zeolite containing a Group 5 transition element or a Group 6 transition element is used.
  • Example 7 Example 8, Example 9, Example 10, Example 3, and Example 4
  • a zeolite containing a periodic table group 3 transition element-containing zeolite containing a periodic table group 1 typical element is used.
  • the yield of disilane and the selectivity for disilane after 1 hour are increased, and it is particularly effective to contain a typical element of Group 1 of the periodic table in the initial reaction.
  • a higher disilane yield was obtained when the value of “(AM / Al) / (1-TM / Al)” was 0.49 than 1.0. I understand.
  • Example 12 is an example using ZSM-5 having a silica / alumina ratio of 40
  • Example 28 is an example using ZSM-22 having a silica / alumina ratio of 65-80
  • Examples 13 and 14 are examples of Ba-containing Mo-supported catalysts using ZSM-5 having a silica / alumina ratio of 40 and different preparation steps. From Examples 15 to 27, it can be seen that the reaction can be carried out without problems even if zeolite molded into pellets is used.
  • Disilane obtained by the oligosilane production method of the present invention can be expected to be used as a production gas for silicon for semiconductors.

Abstract

特定の触媒を用いるオリゴシランの製造方法を提供すること、すなわち、触媒を用いない場合に比べてオリゴシランを高い収率で製造することができる方法を提供することを目的とする。ヒドロシランの脱水素縮合反応において、周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒の存在下で行うことにより、効率良くオリゴシランを製造することができる。

Description

オリゴシランの製造方法
 本発明は、オリゴシランの製造方法に関し、より詳しくはヒドロシランを脱水素縮合させてオリゴシランを生成する方法に関する。
 代表的なオリゴシランであるジシランは、シリコン膜を形成するための前駆体等として利用することができる有用な化合物である。
 オリゴシランを製造する方法としては、マグネシウムシリサイドの酸分解法(非特許文献1参照)、ヘキサクロロジシランの還元法(非特許文献2参照)、モノシランの放電法(特許文献1参照)、シランの熱分解法(特許文献2~4参照)、並びに触媒を用いたシランの脱水素縮合法(特許文献5~10参照)等が報告されている。
米国特許第5478453号明細書 特許第4855462号公報 特開平11-260729号公報 特開平03-183614号公報 特開平01-198631号公報 特開平02-184513号公報 特開平05-032785号公報 特開平03-183613号公報 特表2013-506541号公報 国際公開第2015/060189号
Hydrogen Compounds of Silicon. I. The Preparation of Mono- and Disilane, WARREN C. JOHNSON and SAMPSON ISENBERG, J. Am. Chem. Soc., 1935, 57, 1349. The Preparation and Some Properties of Hydrides of Elements of the Fourth Group of the Periodic System and of their Organic Derivatives, A. E. FINHOLT,A. C. BOND,J R., K. E. WILZBACH and H. I. SCHLESINGER, J. Am. Chem. Soc., 1947, 69, 2692.
 オリゴシランの製造方法として報告されているマグネシウムシリサイドの酸分解法、ヘキサクロロジシランの還元法、モノシランの放電法等の方法は、一般的に製造コストが高くなり易い傾向にあり、また、シランの熱分解法や触媒を用いた脱水素縮合法等は、ジシラン等の特定のオリゴシランを選択的に合成するという点において、改善の余地を残すものであった。
 本発明は、特定の触媒を用いるオリゴシランの製造方法を提供すること、すなわち、触媒を用いない場合に比べてオリゴシランを高い収率で製造することができる方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、ヒドロシランの脱水素縮合反応において、周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒の存在下で行うことにより、効率良くオリゴシランを製造できることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
<1> ヒドロシランを脱水素縮合させてオリゴシランを生成する反応工程を含むオリゴシランの製造方法であって、
 前記反応工程が、周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒の存在下で行われることを特徴とする、オリゴシランの製造方法。
<2> 前記触媒が、担体を含む不均一系触媒であり、前記担体の表面及び/又は内部に前記遷移元素を含有する、<1>に記載のオリゴシランの製造方法。
<3> 前記担体が、シリカ、アルミナ、チタニア、及びゼオライトからなる群より選択される少なくとも1種である、<2>に記載のオリゴシランの製造方法。
<4> 前記ゼオライトが、短径0.43nm以上、長径0.69nm以下の細孔を有する、<3>に記載のオリゴシランの製造方法。
<5> 前記担体が、短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライト、及びバインダーとしてのアルミナを含んだ粉体の球状又は円柱状の成型体であり、前記アルミナの含有量(アルミナ、遷移元素を含まない前記担体100質量部に対して)が、10質量部以上30質量部以下である、<3>に記載のオリゴシランの製造方法。
<6> 前記遷移元素が、チタン、バナジウム、ニオブ、クロム、モリブデン、タングステン、マンガンからなる群より選択される少なくとも1種の遷移元素である、<1>~<5>の何れかに記載のオリゴシランの製造方法。
<7> 前記遷移元素が、モリブデン及びタングステンからなる群より選択される少なくとも1種の遷移元素である、<6>に記載のオリゴシランの製造方法。
<8> 前記触媒が、担体としてゼオライトを含み、前記ゼオライトの表面及び/又は内部に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素をさらに含有する、<3>~<7>の何れかに記載のオリゴシランの製造方法。
<9> 前記遷移元素の総含有量及び前記典型元素の総含有量(前記遷移元素及び前記典型元素を含有した状態の前記ゼオライトに対して)が、下記式(1)の条件を満たす量である、<8>に記載のオリゴシランの製造方法。
Figure JPOXMLDOC01-appb-M000002
(式(1)中、AM/Alは前記ゼオライトに含有されている前記典型元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を、TM/Alは前記ゼオライトに含有されている遷移元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を表す。)
<10> 前記典型元素の総含有量(前記遷移元素及び前記典型元素を含有した状態の前記ゼオライトの質量に対して)が、2.1質量%以上10質量%以下である、<8>又は<9>に記載のオリゴシランの製造方法。
<11> ヒドロシランを脱水素縮合させてオリゴシランを生成する脱水素縮合用の触媒であり、担体の表面及び/又は内部に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒の製造方法であって、
 担体を準備する担体準備工程、
 前記担体準備工程で準備した担体に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有させる遷移元素導入工程、及び
 前記遷移元素導入工程を経た前駆体を加熱する遷移元素加熱工程
 を含むことを特徴とする、触媒の製造方法。
<12> 前記触媒が、さらに周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素を含有する触媒であり、
 担体に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素を含有させる典型元素導入工程、
 を含む、<11>に記載の触媒の製造方法。
<13> 前記典型元素導入工程を経た前駆体を加熱する典型元素加熱工程を含む、<12>に記載の触媒の製造方法。
<14> 前記典型元素導入工程、前記典型元素加熱工程、前記遷移元素導入工程、前記遷移元素加熱工程の順番で行われる、<13>に記載の触媒の製造方法。
<15> 前記遷移元素導入工程、前記遷移元素加熱工程、前記典型元素導入工程、前記典型元素加熱工程の順番で行われる、<13>に記載の触媒の製造方法。
<16> 前記担体が、シリカ、アルミナ、チタニア、及びゼオライトからなる群より選択される少なくとも1種である、<11>~<15>の何れかに記載の触媒の製造方法。
<17> 前記ゼオライトが、短径0.43nm以上、長径0.69nm以下の細孔を有する、<16>に記載の触媒の製造方法。
<18> 前記担体が、短径が0.43nm以上、長径が0.69nm以下の細孔を有するゼオライト、及びバインダーとしてのアルミナを含んだ粉体の球状又は円柱状の成型体であり、前記アルミナの含有量(アルミナ、遷移元素を含まない前記担体100質量部に対して)が、10質量部以上30質量部以下である、<16>に記載の触媒の製造方法。
<19> 前記遷移元素が、チタン、バナジウム、ニオブ、クロム、モリブデン、タングステン、マンガンからなる群より選択される少なくとも1種の遷移元素である、<11>~<18>の何れかに記載の触媒の製造方法。
<20> 前記遷移元素加熱工程が、600℃以上1000℃以下で加熱する工程である、<11>~<19>の何れかに記載の触媒の製造方法。
<21> 前記典型元素加熱工程が、100℃以上1000℃以下で加熱する工程である、<13>、<15>~<20>の何れかに記載の触媒の製造方法。
<22> 前記遷移元素が、モリブデン及びタングステンからなる群より選択される少なくとも1種の遷移元素である、<19>~<21>の何れかに記載の触媒の製造方法。
<23> ヒドロシランを脱水素縮合させてオリゴシランを生成する脱水素縮合用の触媒であって、
 周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有することを特徴とする、触媒。
<24> 担体を含む不均一系触媒であり、前記担体の表面及び/又は内部に前記遷移元素を含有する、<23>に記載の触媒。
<25> 前記担体が、シリカ、アルミナ、チタニア、及びゼオライトからなる群より選択される少なくとも1種である、<24>に記載の触媒。
<26> 前記ゼオライトが、短径0.43nm以上、長径0.69nm以下の細孔を有する、<25>に記載の触媒。
<27> 前記担体が、短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライト、及びバインダーとしてのアルミナを含んだ粉体の球状又は円柱状の成型体であり、前記アルミナの含有量(アルミナ、遷移元素を含まない前記担体100質量部に対して)が、10質量部以上30質量部以下である、<25>に記載の触媒。
<28> 前記遷移元素が、チタン、バナジウム、ニオブ、クロム、モリブデン、タングステン、マンガンからなる群より選択される少なくとも1種の遷移元素である、<23>~<27>の何れかに記載の触媒。
<29> 前記遷移元素が、モリブデン及びタングステンからなる群より選択される少なくとも1種の遷移元素である、<28>に記載の触媒。
<30> 前記担体としてゼオライトを含み、前記ゼオライトの表面及び/又は内部に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素をさらに含有する、<25>~<29>の何れかに記載の触媒。
<31> 前記遷移元素の総含有量及び前記典型元素の総含有量(前記遷移元素及び前記典型元素を含有した状態の前記ゼオライトに対して)が、下記式(1)の条件を満たす量である、<30>に記載の触媒。
Figure JPOXMLDOC01-appb-M000003
(式(1)中、AM/Alは前記ゼオライトに含有されている前記典型元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を、TM/Alは前記ゼオライトに含有されている遷移元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を表す。)
<32>前記典型元素の総含有量(前記遷移元素及び前記典型元素を含有した状態の前記ゼオライトの質量に対して)が、2.1質量%以上10質量%以下である、<30>又は<31>に記載の触媒。
 本発明によれば、効率良くオリゴシランを製造することができる。
本発明のオリゴシランの製造方法に使用することができる反応器の概念図である((a):回分反応器、(b):連続槽型反応器、(c):連続管型反応器)。 反応温度のプロファイルを表した概念図である。 実施例及び比較例に使用した反応装置の概念図である。
 本発明のオリゴシランの製造方法の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<オリゴシランの製造方法>
 本発明の一態様であるオリゴシランの製造方法(以下、「オリゴシランの製造方法」と略す場合がある。)は、ヒドロシランを脱水素縮合させてオリゴシランを生成する反応工程(以下、「反応工程」と略す場合がある。)を含む製造方法である。そして、反応工程が、周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素(以下、「遷移元素」と略す場合がある。)を含有する触媒の存在下で行われることを特徴とする。
 本発明者らは、オリゴシランの製造方法について検討を重ねた結果、ヒドロシランの脱水素縮合反応を、前述の遷移元素を含有する触媒の存在下で行うことにより、オリゴシランを効率良く製造できることを見出したのである。かかる反応における遷移元素の効果は十分に明らかとなっていないが、遷移元素がヒドロシランの脱水素縮合を促進して、オリゴシランが効率良く生成するものと考えられる。
 なお、本発明において「オリゴシラン」とは、(モノ)シランが複数個(10個以下)重合したシランのオリゴマーを意味するものとし、具体的にはジシラン、トリシラン、テトラシラン等が含まれるものとする。また、「オリゴシラン」は、直鎖状のオリゴシランのみに限られず、分岐構造、架橋構造、環状構造等を有するものであってもよいものとする。
 また、「ヒドロシラン」とは、ケイ素-水素(Si-H)結合を有する化合物を意味するものとし、具体的にはテトラヒドロシラン(SiH)が含まれるものとする。さらにヒドロシランの「脱水素縮合」とは、式の上では例えば下記反応式に示されるように、水素が脱離するヒドロシラン同士の縮合によって、ケイ素-ケイ素(Si-Si)結合が形成する反応を意味するものとする。
Figure JPOXMLDOC01-appb-C000004
 以下、「反応工程」、「触媒」等について詳細に説明する。
 反応工程は、周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒(以下、「触媒」と略す場合がある。)の存在下で行われることを特徴とするが、「第3族遷移元素」、「第4族遷移元素」、「第5族遷移元素」、「第6族遷移元素」、「第7族遷移元素」等の具体的種類は特に限定されない。
 第3族遷移元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタノイド(La)、サマリウム(Sm)等が挙げられる。
 第4族遷移元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)が挙げられる。
 第5族遷移元素としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)が挙げられる。
 第6族遷移元素としては、クロム(Cr)、モリブデン(Mo)、タングステン(W)が挙げられる。
 第7族遷移元素としては、マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)が挙げられる。
 本発明で使用されるのにより好ましい遷移元素は、第4族遷移元素、第5族遷移元素、第6族遷移元素、第7族遷移元素である。具体的には、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、マンガン(Mn)が挙げられる。
 さらに好ましい遷移元素は、第5族遷移元素、第6族遷移元素である。具体的には、バナジウム(V)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、タングステン(W)が挙げられる。
 中でも特に好ましい遷移元素は、モリブデン(Mo)、タングステン(W)である。
 触媒は、前述の遷移元素を含有するものであれば、不均一系触媒であっても均一系触媒であってもよいが、不均一系触媒であることが好ましく、担体を含む不均一系触媒で、担体の表面及び/又は内部に遷移元素を含有する触媒が特に好ましい。
 なお、触媒における遷移元素の状態や組成も特に限定されないが、例えば不均一系触媒の場合、表面が酸化されていてもよい金属(単体金属、合金)の状態、金属酸化物(単一の金属酸化物、複合金属酸化物)の状態が挙げられる。また、触媒が担体を含む不均一系触媒の場合、担体の表面(外表面及び/又は細孔内)に金属や金属酸化物の状態で担持されているもの、イオン交換や複合化で担体内部(担体骨格)に遷移元素が導入されたものが挙げられる。
 一方、均一系触媒の場合、遷移元素を中心金属とする有機金属錯体が挙げられる。
 表面が酸化されていてもよい金属としては、スカンジウム、イットリウム、ランタノイド、サマリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム等が挙げられる。
 金属酸化物としては、酸化スカンジウム、酸化イットリウム、酸化ランタノイド、酸化サマリウム、酸化チタン、酸化ジルコニム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化テクネチウム、酸化レニウムおよび、これらの複合酸化物等が挙げられる。
 触媒が担体を含む不均一系触媒の場合の担体の具体的種類は、特に限定されないが、シリカ、アルミナ、チタニア、ジルコニア、シリカ-アルミナ、ゼオライト、活性炭、リン酸アルミニウム等が挙げられ、シリカ、アルミナ、チタニア、ゼオライトがより好ましい。これらの中でもシリカ、アルミナ、ゼオライトが遷移元素を担持した場合の熱安定性の点で好ましく、ゼオライトがジシラン選択率の点でより好ましく、短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライトが特に好ましい。ゼオライトの細孔空間は、脱水素縮合の反応場として働くものと考えられ、「短径0.43nm以上、長径0.69nm以下」という細孔サイズが、過度な重合を抑制して、オリゴシランの選択率を向上させるために最適であると考えられる。
 なお、「短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライト」は、実際に「短径0.43nm以上、長径0.69nm以下の細孔」を有するゼオライトのみを意味するものではなく、結晶構造から理論的に計算された細孔の「短径」と「長径」がそれぞれ前述の条件を満たすゼオライトも含まれるものとする。ちなみに細孔の「短径」と「長径」については、「ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch. Baerlocher, L.B.McCusker and D.H. Olson, Sixth Revised Edition 2007,published on behalf of the structure Commission of the international Zeolite Association」を参考にすることができる。
 ゼオライトの短径は、0.43nm以上、好ましくは0.45nm以上、特に好ましくは0.47nm以上である。
 ゼオライトの長径は、0.69nm以下、好ましくは0.65nm以下、特に好ましくは0.60nm以下である。
 なお、細孔の断面構造が円形であること等によってゼオライトの細孔径が一定である場合には、細孔径が「0.43nm以上0.69nm以下」であるものと考える。
 複数種類の細孔径を有するゼオライトの場合は、少なくとも1種類の細孔の細孔径が「0.43nm以上0.69nm以下」であればよい。
 具体的なゼオライトとしては、国際ゼオライト学会(International Zeolite Association)でデータベース化されている構造コ-ドで、AFR、AFY、ATO、BEA、BOG、BPH、CAN、CON、DFO、EON、EZT、FER、GON、IMF、ISV、ITH、IWR、IWV、IWW、MEI、MEL、MFI、OBW、MOR、MOZ、MSE、MTT、MTW、NES、OFF、OSI、PON、SFF、SFG、STI、STF、TER、TON、TUN、USI、VETに該当するゼオライトが好ましい。
 構造コ-ドが、ATO、BEA、BOG、CAN、FER、IMF、ITH、IWR、IWW、MEL、MFI、OBW、MOR、MSE、MTW、NES、OSI、PON、SFF、SFG、STF、STI、TER、TON、TUN、VETに該当するゼオライトがより好ましい。
 構造コ-ドが、BEA、MFI、TON、MOR、FERに該当するゼオライトが特に好ましい。
 構造コ-ドがBEAに該当するゼオライトとしては、*Beta(ベータ)、[B-Si-O]-*BEA、[Ga-Si-O]-*BEA、[Ti-Si-O]-*BEA、Al-rich beta、CIT-6、Tschernichite、pure silica beta等を挙げられる(*は3種類の構造の類似した多型の混晶であることを表す。)。
 構造コ-ドがMFIに該当するゼオライトとしては、*ZSM-5、[As-Si-O]-MFI、[Fe-Si-O]-MFI、[Ga-Si-O]-MFI、AMS-1B、AZ-1、Bor-C、Boralite C、Encilite、FZ-1、LZ-105、Monoclinic H-ZSM-5、Mutinaite、NU-4、NU-5、Silicalite、TS-1、TSZ、TSZ-III、TZ-01、USC-4、USI-108、ZBH、ZKQ-1B、ZMQ-TB、organic-free ZSM-5等が挙げられる。
 構造コ-ドがTONに該当するゼオライトとしては、*Theta-1、ISI-1、KZ-2、NU-10、ZSM-22等が挙げられる。
 構造コ-ドが、MORに該当するゼオライトとしては、モルデナイトが挙げられる。
 構造コ-ドが、FERに該当するゼオライトとしては、フェリエライトが挙げられる。
 特に好ましいゼオライトは、ZSM-5、ベータ、ZSM-22、MOR、FERである。
 シリカ/アルミナ比(モル/モル比)としては、5~10000が好ましく、10~2000がより好ましく、20~1000が特に好ましい。
 触媒が担体を含む不均一系触媒の場合、触媒における遷移元素の総含有量(遷移元素及び後述する典型元素等を含有した状態の担体の質量に対して)は、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 触媒が担体を含む不均一系触媒の場合、触媒は粉体を球状、円柱状(ペレット状)、リング状、ハニカム状等に成型した成形体の形態であることが好ましい。なお、粉体を成形するためにアルミナや粘土化合物等のバインダーを使用してもよい。バインダーの使用量があまりに少ないと成形体の強度を保つことができないし、バインダーの使用量があまりに多いと触媒活性への悪影響を与えるので、バインダーとしてアルミナを使用する場合のアルミナの含有量(アルミナ、遷移元素及び後述する典型元素を含まない(元の粉状の)担体100質量部に対して)は、好ましくは2質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上であり、好ましくは50質量部以下、より好ましくは40質量部以下、さらに好ましくは30質量部以下である。上記範囲内であると、担体強度を保ちながら触媒活性への悪影響を抑えることができる。
 担体に前記遷移元素を担持させる方法としては、溶液状態の前駆体を用いた含浸法、イオン交換法、前駆体を昇華等により揮発させて担体に蒸着させる方法等が挙げられる。なお、含浸法は、遷移元素含有化合物が溶解した溶液に担体を接触させて、遷移元素含有化合物を担体表面に吸着させる方法である。溶媒については通常は純水が用いられるが、遷移元素含有化合物を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、イオン交換法は、遷移元素のイオンが溶解した溶液にゼオライト等酸点を持った担体を接触させて、担体の酸点に遷移元素のイオンを導入する方法である。この場合も溶媒は純水が通常は用いられるが、遷移元素を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。蒸着方法は遷移元素そのものまたは遷移元素酸化物を加熱して、昇華等により揮発させて担体に蒸着させる方法である。なお、含浸法、イオン交換法、蒸着法等の後に、乾燥、還元雰囲気または酸化雰囲気での焼成等の処理を行い、触媒として所望の金属または金属酸化物の状態に調製することができる。
 遷移元素の前駆体としては、モリブデンの場合には七モリブデン酸アンモニウム、ケイモリブデン酸、リンモリブデン酸、塩化モリブデン、酸化モリブデン等が挙げられる。タングステンの場合には、パラタングステン酸アンモニウム、リンタングステン酸、ケイタングステン酸、塩化タングステン等が挙げられる。チタンの場合にはオキシ硫酸チタン、塩化チタン、テトラエトキシチタン等が挙げられる。バナジウムの場合にはオキシ硫酸バナジウム、オキシシュウ酸バナジウム、塩化バナジウム、三塩化酸化バナジウム、ビス(アセチルアセトナト)オキソバナジウム(IV)等が挙げられる。クロムの場合にはクロム酸アンモニウム、アセチルアセトンクロム(III)、ピリジン-2-カルボン酸クロム(III)等が挙げられる。ニオブの場合にはシュウ酸ニオブ、シュウ酸ニオブアンモニウム等が挙げられる。マンガンの場合には塩化マンガン、アセチルアセトンマンガン(II)、アセチルアセトンマンガン(III)等が挙げられる。
 触媒が不均一系触媒の場合、周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素(以下、「典型元素」と略す場合がある。)を含有することが好ましい。なお、触媒における典型元素の状態や組成は特に限定されないが、金属酸化物(単一の金属酸化物、複合金属酸化物)やイオンの状態が挙げられる。また、触媒が担体を含む不均一系触媒の場合、担体の表面(外表面及び/又は細孔内)に金属酸化物、金属塩の状態で担持されているもの、イオン交換や複合化で内部(担体骨格)に典型元素が導入されたものが挙げられる。このような典型元素を含有することによって、初期のシランの転化率を抑えて過剰な消費を抑制するとともに、初期のジシランの選択率を高くすることができる。また、初期のシランの転化率を抑えることで、触媒寿命をより長くすることもできるものと言える。
 第1族典型元素としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)が挙げられる。
 第2族典型元素としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられる。
 この中でも、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)を含有することが好ましい。
 触媒が担体を含む不均一系触媒の場合、触媒への典型元素の配合方法としては、含浸法、イオン交換法等が挙げられる。なお、含浸法は、典型元素を含む化合物が溶解した溶液に担体を接触させて、典型元素を担体表面に吸着させる方法である。溶媒については通常は純水が用いられるが、典型元素を含む化合物を溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、イオン交換法は、典型元素が溶解時にイオンに解離できる化合物が溶解した溶液にゼオライト等の酸点を持った担体を接触させて、担体の酸点に典型元素のイオンを導入する方法である。この場合も溶媒は純水が通常は用いられるが、典型元素イオンを溶解するものであればメタノール、エタノール、酢酸やジメチルホルムアミドのような有機溶媒を用いることもできる。また、含浸法、イオン交換法の後に、乾燥、焼成等の処理を行ってもよい。
 リチウム(Li)を含有させる場合の溶液としては、硝酸リチウム(LiNO)水溶液、塩化リチウム(LiCl)水溶液、硫酸リチウム(LiSO)水溶液、酢酸リチウム(LiOCOCH)の水溶液、酢酸リチウムの酢酸溶液、酢酸リチウムのエタノール溶液等が挙げられる。
 ナトリウム(Na)を含有させる場合の溶液としては、塩化ナトリウム(NaCl)水溶液、硫酸ナトリウム(NaSO)水溶液、硝酸ナトリウム(NaNO)水溶液、酢酸ナトリウム(NaOCOCH)の水溶液等が挙げられる。
 カリウム(K)を含有させる場合の溶液としては、硝酸カリウム(KNO)水溶液、塩化カリウム(KCl)水溶液、硫酸カリウム(KSO)水溶液、酢酸カリウム(KOCOCH)の水溶液、酢酸カリウムの酢酸溶液、酢酸カリウムのエタノール溶液等が挙げられる。
 ルビジウム(Rb)を含有させる場合の溶液としては、塩化ルビジウム(RbCl)水溶液、硝酸ルビジウム(KNO)水溶液等が挙げられる。
 セシウム(Cs)を含有させる場合の溶液としては、塩化セシウム(CsCL)、硝酸セシウム(CsNO)水溶液、硫酸セシウム(CsSO)水溶液、酢酸セシウム(CsOCOCH)の水溶液等が挙げられる。
 フランシウム(Fr)を含有させる場合の溶液としては、塩化フランシウム(FrCl)水溶液等が挙げられる。
 カルシウム(Ca)を含有させる場合の溶液としては、塩化カルシウム(CaCl)水溶液、硝酸カルシウム(Ca(NO)水溶液等が挙げられる。
 ストロンチウム(Sr)を含有させる場合の溶液としては、硝酸ストロンチウム(Sr(NO)水溶液等が挙げられる。
 バリウム(Ba)を含有させる場合の溶液としては、塩化バリウム(BaCl)水溶液、硝酸バリウム(Ba(NO)水溶液、酢酸バリウム(Ba(OCOCH)の水溶液等が挙げられる。
 触媒が担体を含む不均一系触媒の場合、触媒における典型元素の総含有量(遷移元素及び典型元素等を含有した状態の担体の質量に対して)は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.5質量%以上、より特に好ましくは1.0質量%以上、最も好ましくは2.1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 触媒が担体としてゼオライトを含み、ゼオライトの表面及び/又は内部に遷移元素及び典型元素を含有する場合、遷移元素の総含有量及び典型元素の総含有量(遷移元素及び典型元素を含有した状態のゼオライトに対して)が、下記式(1)の条件を満たす量であることが好ましい。
Figure JPOXMLDOC01-appb-M000005
(式(1)中、AM/Alは前記ゼオライトに含有されている前記典型元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を、TM/Alは前記ゼオライトに含有されている遷移元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を表す。)
 ゼオライトに含有されているアルミニウムの原子数は、ゼオライト中の酸点の量と相関性があるが、それから算出される「(AM/Al)/(1-TM/Al)」の値によって、遷移元素及び典型元素等に由来するイオンにイオン交換されていないゼオライト中の酸点の割合を把握することができるのである。なお、「AM」、「TM」、「Al」の値は、例えば触媒を強酸等で全量溶解させて、その溶液を誘導結合プラズマ質量分析法(ICP-MASS)等で分析することで決定することができる。また、より簡易的な方法として、ゼオライト、典型元素、遷移元素の仕込量から決定することも挙げられる。
 遷移元素はこのゼオライトの酸点と相互作用することにより、触媒活性を発現すると考えられる。ただし、Alよりも過剰量使用しても、活性発現の効果がなくなるばかりでなく、Alとの相互作用がより大きくなり、ゼオライト中のAl原子を格子外に脱落させてしまうことがあり、Al原子数を上回らない当量の範囲で使用すべきである(上記式中の分母はマイナスにならないように)。一方、遷移元素と相互使用しないAlは酸点として残っており、この酸点により副反応が生起し、特に反応初期の選択率や触媒寿命に対して悪影響を与える。そのために、この酸点は中和しておくことが望ましい。
 典型元素を用いれば、ほぼゼオライト中の酸点とイオン交換により、酸点を中和できるので、この酸点を反応に影響を与えない程度に、一部を中和しておくことが望ましい。一方で酸点よりも過剰に使用した場合には活性が低下してしまうので、過剰量の使用は避けたほうがよい。
 そこで、「(AM/Al)/(1-TM/Al)」の値は、好ましくは0.1以上、より好ましくは0.2以上であり、好ましくは0.9以下、より好ましくは0.8以下である。上記範囲内であると、ゼオライト中の酸点が適度に残存していることになり、より効率良くオリゴシランを製造することができる。
 触媒が不均一系触媒の場合、周期表第13族典型元素を含有してもよい。なお、触媒における周期表第13族典型元素の状態や組成は特に限定されないが、表面が酸化されていてもよい金属(単体金属、合金)の状態、金属酸化物(単一の金属酸化物、複合金属酸化物)の状態が挙げられる。また、触媒が担体を含む不均一系触媒の場合、担体の表面(外表面及び/又は細孔内)に金属酸化物の状態で担持されているもの、イオン交換や複合化で内部(担体骨格)に周期表第13族典型元素が導入されているものが挙げられる。周期表第13族典型元素を含有することによっても、初期のシランの転化率を抑えて過剰な消費を抑制するとともに、初期のジシランの選択率を高くすることができる。また、初期のシランの転化率を抑えることで、触媒寿命をより長くすることもできるものと言える。
 第13族典型元素としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)が挙げられる。
 触媒への周期表第13族典型元素の配合方法としては、周期表第1族典型元素等の場合と同様である。
 触媒が不均一系触媒の場合、触媒における周期表第13族典型元素の含有量(前述の遷移元素、前述の典型元素、及び周期表第13族典型元素を含有した状態の担体の質量に対して)は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.5質量%以上、より特に好ましくは1.0質量%以上、最も好ましくは2.1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 触媒は、下記(i)の条件を満たすものであることが好ましく、下記(i)及び(ii)の条件を満たすものであることがより好ましく、下記(i)~(iii)の全ての条件を満たすものであることがさらに好ましく、下記(i)~(iv)の全ての条件を満たすものであることが特に好ましい。これらの条件を満たすものであると、より効率良くオリゴシランを製造することができる。また、工業的に実施する上では(v)の条件を満たすことが好ましい。
(i)担体を含む不均一系触媒であり、担体の表面及び/又は内部に遷移元素を含有する。
(ii)担体が短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライトである。
(iii)担体を含む不均一系触媒であり、担体の表面及び/又は内部に典型元素を含有する。
(iv)遷移元素の総含有量及び典型元素の総含有量(遷移元素及び典型元素を含有した状態のゼオライトに対して)が、下記式(1)の条件を満たす量である。
Figure JPOXMLDOC01-appb-M000006
(式(1)中、AM/Alは前記ゼオライトに含有されている前記典型元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を、TM/Alは前記ゼオライトに含有されている遷移元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を表す。)
(v)粉体状担体を球状又は円柱状の成型体にしたものであり、アルミナの含有量が10質量%以上30質量%以下である。
 反応工程に使用する反応器、操作手順、反応条件等は特に限定されず、目的に応じて適宜選択することができる。以下、反応器、操作手順、反応条件等について具体例を挙げて説明するが、これらの内容に限定されるものではない。
 反応器は、図1(a)に示されるような回分反応器、図1(b)に示されるような連続槽型反応器、図1(c)に示されるような連続管型反応器の何れのタイプの反応器を使用してもよい。
 操作手順は、例えば回分反応器を用いる場合、乾燥させた本発明に係るゼオライトを反応器内に設置し、反応器内の空気を減圧ポンプ等を利用して除去した後、ヒドロシラン等を投入して密閉し、反応器内を反応温度まで昇温して反応を開始する方法が挙げられる。
 一方、連続槽型反応器又は連続管型反応器を用いる場合、乾燥させた本発明に係るゼオライトを反応器内に設置し、反応器内の空気を減圧ポンプ等を利用して除去した後、ヒドロシラン等を流通させ、反応器内を反応温度まで昇温して反応を開始する方法が挙げられる。
 反応温度は、好ましくは100℃以上、より好ましくは150℃以上、さらに好ましくは200℃以上であり、好ましくは450℃以下、より好ましくは400℃以下、さらに好ましくは350℃以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。なお、反応温度は、図2(a)に示されるように、反応工程中において一定に設定するほか、図2(b1)、(b2)に示されるように、反応開始温度を低めに設定し、反応工程中において昇温させても、或いは図2(c1)、(c2)に示されるように、反応開始温度を高めに設定し、反応工程中において降温させてもよい(反応温度の昇温は、図2(b1)に示されるように連続的であっても、図2(b2)に示されるように段階的であってもよい。同様に反応温度の降温は、図2(c1)に示されるように連続的であっても、図2(c2)に示されるように段階的であってもよい。)。特に反応開始温度を低めに設定し、反応工程中において反応温度を昇温させることが好ましい。反応開始温度を低めに設定することによって、本発明に係るゼオライト等の劣化が抑制され、より効率良くオリゴシランを製造することができる。反応温度を昇温させる場合の反応開始温度は、好ましくは50℃以上、より好ましくは100℃以上、さらに好ましくは150℃以上であり、好ましくは350℃以下、より好ましくは300℃以下、さらに好ましくは250℃以下である。
 反応器には、ヒドロシラン及び本発明に係るゼオライト以外の化合物を投入又は流通させてもよい。ヒドロシラン及び本発明に係るゼオライト以外の化合物としては、水素ガス、ヘリウムガス、窒素ガス、アルゴンガス等のガスやシリカ、水素化チタンなどのヒドロシランに対してほとんど反応性の無い固形物等が挙げられるが、特に水素ガスの存在下で行われることが好ましい。水素ガスの存在下であると、ゼオライト等の劣化が抑制されて、長時間安定的にオリゴシランを製造することができる。
 ヒドロシランの脱水素縮合によって、下記反応式(i)に示されるようにジシラン(Si)が生成することになるが、生成したジシランの一部は下記反応式(ii)に示されるようにテトラヒドロシラン(SiH)とジヒドロシリレン(SiH)に分解されるものと考えられる。さらに生成したジヒドロシリレンは、下記反応式(iii)に示されるように重合して固体状のポリシラン(Si2n)となり、このポリシランがゼオライトの表面に吸着して、ヒドロシランの脱水素縮合活性が低下するためにジシランを含むオリゴシランの収率が低下するものと考えられる。
 一方、水素ガスが存在すると、下記反応式(iv)に示されるようにジヒドロシリレンからテトラヒドロシランが生成し、ポリシランの生成が抑制されるため、長時間安定的にオリゴシランを製造することができるものと考えられる。
  2SiH → Si + H         (i)
  Si → SiH + SiH        (ii)
  nSiH → Si2n             (iii)
  SiH +H →SiH             (iv)
 なお、反応器内は、水分が極力含まれないことが好ましい。例えば、反応前にゼオライトや反応器を十分に乾燥させたりすることが好ましい。
 反応圧力は、絶対圧力で好ましくは0.1MPa以上、より好ましくは0.15MPa以上、さらに好ましくは0.2MPa以上であり、好ましくは1000MPa以下、より好ましくは500MPa以下、さらに好ましくは100MPa以下である。なお、ヒドロシランの分圧は、好ましくは0.0001MPa以上、より好ましくは0.0005MPa以上、さらに好ましくは0.001MPa以上であり、好ましくは通常100MPa以下、より好ましくは50MPa以下、さらに好ましくは10MPa以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。
 反応工程が水素ガスの存在下で行われる場合の水素ガスの分圧は、好ましくは0.01MPa以上、より好ましくは0.03MPa以上、さらに好ましくは0.05MPa以上であり、好ましくは10MPa以下、より好ましくは5MPa以下、さらに好ましくは1MPa以下である。上記範囲内であると、長時間安定的にオリゴシランを製造することができる。
 連続槽型反応器又は連続管型反応器を用いる場合、流通させるヒドロシランの流量は、触媒との接触時間が短いと転化率が低くなりすぎるし、あまりに長いとポリシランが生成しやすくなるので、接触時間が0.01秒から30分になるようにしたほうがよい。この場合、本発明に係るゼオライト1.0gに対して、ガスマスフローで設定した流量(1分間に流通させるテトラヒドロシランガスの標準状態(0℃-1atm)での体積換算量)は好ましくは0.01mL/分以上、より好ましくは0.05mL/分以上、さらに好ましくは0.1mL/分以上であり、好ましくは1000mL/分以下、より好ましくは500mL/分以下、さらに好ましくは100mL/分以下である。上記範囲内であると、より効率良くオリゴシランを製造することができる。また、オートクレーブ等により回分式で反応を行う場合にも、長時間にわたり反応を行うとポリシランができやすくなるし、あまりに短時間では反応転化率が低くなりすぎるので、反応時間は1分から1時間、より好ましくは5分から30分程度にしたほうがよい。
 反応工程が水素ガスの存在下で行われる場合の流通させる水素ガスの流量は、本発明に係るゼオライト1.0gに対して、ガスマスフローで設定した流量(1分間に流通させるテトラヒドロシランガスの標準状態(0℃-1atm)での体積換算量)は好ましくは0.01mL/分以上、より好ましくは0.05mL/分以上、さらに好ましくは0.1mL/分以上であり、好ましくは100mL/分以下、より好ましくは50mL/分以下、さらに好ましくは10mL/分以下である。上記範囲内であると、長時間安定的にオリゴシランを製造することができる。
<触媒>
 ヒドロシランの脱水素縮合反応を、前述の遷移元素の存在下で行うことにより、オリゴシランを効率良く製造できること前述したが、ヒドロシランを脱水素縮合させてオリゴシランを生成する脱水素縮合用の触媒であって、周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有することを特徴とする触媒も本発明の一態様である。
 なお、触媒の詳細については、<オリゴシランの製造方法>で説明したものと同様であり、詳しい説明は省略するものとする。
<触媒の製造方法>
 ヒドロシランを脱水素縮合させてオリゴシランを生成する脱水素縮合用の触媒として、担体を含む不均一系触媒で、担体の表面及び/又は内部に遷移元素を含有する触媒が好ましいことを前述したが、かかる触媒を製造することができる触媒の製造方法、即ち、下記の担体準備工程、遷移元素導入工程、及び遷移元素加熱工程を含むことを特徴とする触媒の製造方法も本発明の一態様(以下、「触媒の製造方法」と略す場合がある。)である。
 担体準備工程:担体を準備する工程
 遷移元素導入工程:担体準備工程で準備した担体に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有させる工程
 遷移元素加熱工程:遷移元素導入工程を経た前駆体を加熱する工程
 なお、製造される触媒の詳細については、<オリゴシランの製造方法>で説明したものと同様であり、詳しい説明は省略するものとする。
 以下、「担体準備工程」、「遷移元素導入工程」、「遷移元素加熱工程」等について詳細に説明する。
 担体準備工程は、使用する担体を準備するものであれば、具体的な方法は特に限定されず、担体を入手しても、自ら担体を調製してもよい。
 担体の具体的種類は、前述したようにシリカ、アルミナ、チタニア、ゼオライト、活性炭、リン酸アルミニウム等が挙げられるが、使用する担体は1種類に限られず、2種類以上を混ぜ合わせて使用してもよい。
 担体は、粉体を球状又は円柱状に成型した成形体の形態であってもよく、粉体を成形するためにアルミナや粘土化合物等のバインダーを使用してもよい。バインダーとしてアルミナを使用する場合のアルミナの含有量(アルミナ、遷移元素及び後述する典型元素を含まない(元の粉状の)担体100質量部に対して)は、好ましくは2質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上であり、好ましくは50質量部以下、より好ましくは40質量部以下、さらに好ましくは30質量部以下である。上記範囲内であると、担体強度を保ちながら触媒活性への悪影響を抑えることができる。
 遷移元素導入工程は、担体準備工程で準備した担体に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有させる工程であるが、遷移元素を含有させる方法は特に限定されず、前述のように含浸法、イオン交換法、蒸着法等の公知の方法を適宜利用することができる。具体的には、遷移元素の前駆体化合物を溶解させた水溶液に担体を接触させる方法が挙げられる。以下、水溶液に担体を接触させる方法における詳細な条件を説明する。
 タングステン(W)を含有させる場合の前駆体化合物としては、タングステン酸アンモニウム五水和物((NH101241・5HO)、リンタングステン酸、ケイタングステン酸等が挙げられる。
 バナジウム(V)を含有させる場合の前駆体化合物としては、オキシ硫酸バナジウム(VOSO・nHO(n=3~4))、オキシシュウ酸バナジウム(V(C)O・nHO)等が挙げられる。
 モリブデン(Mo)を含有させる場合の前駆体化合物としては、七モリブデン酸六アンモニウム四水和物((NHMo24・4HO)、リンモリブデン酸、ケイモリブデン酸等が挙げられる。
 クロム(Cr)を含有させる場合の前駆体化合物としては、クロム酸アンモニウム((NHCrO)、アセチルアセトンクロム(III)、ピリジン-2-カルボン酸クロム(III)等が挙げられる。
 ニオブ(Nb)を含有させる場合の前駆体化合物としては、シュウ酸ニオブアンモニウム塩((NH)[Nb(O)(C(HO)])、ペンタキス(シュウ酸水素)ニオブ(V)(n水和物)[Nb(HC・nHO)]等が挙げられる。
 水溶液における遷移元素の前駆体化合物の濃度は、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは通常30質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
 水溶液の温度は、好ましくは通常5℃以上、より好ましくは10℃以上、さらに好ましくは15℃以上であり、好ましくは80℃以下、より好ましくは60℃以下、さらに好ましくは50℃以下である。
 担体と水溶液の接触(含浸)時間は、好ましくは10分以上、より好ましくは30分以上、さらに好ましくは1時間以上であり、含浸時間が長くてもそれほど悪影響は与えないが触媒の生産効率の点から好ましくは2日以下、より好ましくは1日以下、さらに好ましくは12時間以下である。
 遷移元素加熱工程は、遷移元素導入工程を経た前駆体を加熱する工程であるが、加熱温度等の条件について、以下詳細に説明する。
 遷移元素加熱工程の加熱温度は、用いる担体の耐熱性に応じて500℃~1100℃の範囲で設定することができる。好ましくは600℃以上、より好ましくは700℃以上、さらに好ましくは750℃以上、特に好ましくは800℃以上であり、好ましくは1100℃以下、より好ましくは1000℃以下、さらに好ましくは950℃以下である。加熱時間としては所定の温度に到達してから、好ましくは30分以上、24時間以内であり、より好ましくは1時間以上、12時間以内である。前記範囲内であると、活性のより高い触媒を製造することができる。
 なお、担体がゼオライトである場合の遷移元素加熱工程の加熱温度は、好ましくは500℃以上、より好ましくは600℃以上、さらに好ましくは700℃以上であり、好ましくは1000℃以下、より好ましくは900℃以下、さらに好ましくは800℃以下である。
 ただし、ゼオライトの種類によっては、適用できる温度が異なることがあり、例えば担体がZSM-5、ZSM-22である場合の遷移元素加熱工程の加熱温度は、好ましくは700℃以上、より好ましくは750℃以上、さらに好ましくは800℃以上であり、好ましくは1050℃以下、より好ましくは1000℃以下、さらに好ましくは950℃以下である。
 また、担体がベータである場合の遷移元素加熱工程の加熱温度は、好ましくは500℃以上、より好ましくは600℃以上、さらに好ましくは700℃以上であり、好ましくは1000℃以下、より好ましくは900℃以下、さらに好ましくは800℃以下である。
 遷移元素加熱工程を実施する雰囲気は、通常大気雰囲気である。
 触媒の製造方法は、前述の遷移元素導入工程及び遷移元素加熱工程を含むものであればその他については特に限定されないが、触媒が周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素を含有する触媒である場合、下記の典型元素導入工程及び典型元素加熱工程を含むことが好ましい。
 典型元素導入工程:担体に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素を含有させる工程
 典型元素加熱工程:典型元素導入工程を経た前駆体を加熱する工程
 以下、「典型元素導入工程」、「典型元素加熱工程」等について詳細に説明する。
 典型元素導入工程は、担体に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素を含有させる工程であるが、典型元素を含有させる方法は特に限定されず、含浸法、イオン交換法等の公知の方法を適宜利用することができる。具体的には、典型元素の前駆体化合物を溶解させた水溶液に担体を接触させる方法が挙げられる。以下、水溶液に担体を接触させる方法における詳細な条件を説明する。
 カリウム(K)を含有させる場合の前駆体化合物としては、硝酸カリウム(KNO)、水酸化カリウム(KOH)、炭酸カリウム(KCO)、硫酸カリウム(KSO)、酢酸カリウム(KOCOCH)等が挙げられる。
 バリウム(Ba)を含有させる場合の前駆体化合物としては、塩化バリウム(BaCl)、硝酸バリウム(Ba(NO)、水酸化バリウム(Ba(OH))、酢酸バリウム(Ba(OCOCH)等が挙げられる。
 セシウム(Cs)を含有させる場合の前駆体化合物としては、硝酸セシウム(CsNO)、水酸化セシウム(CsOH)、炭酸セシウム(CsCO)、酢酸セシウム(CsOCOCH)等が挙げられる。
 水溶液における典型元素の前駆体化合物の濃度は、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは3質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。
 水溶液の温度は、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは15℃以上であり、好ましくは80℃以下、より好ましくは60℃以下、さらに好ましくは50℃以下である。
 担体と水溶液の接触(含浸)時間は、好ましくは10分以上、より好ましくは30分以上、さらに好ましくは1時間以上であり、含浸時間が長くてもそれほど悪影響は与えないが触媒の生産効率の点から好ましくは2日以下、より好ましくは1日以下、さらに好ましくは12時間以下である。
 典型元素加熱工程は、典型元素導入工程を経た前駆体を加熱する工程であるが、加熱温度、雰囲気等について、以下詳細に説明する。
 典型元素加熱工程の加熱温度は、通常乾燥できる温度であるが、好ましくは100℃以上、より好ましくは110℃以上であり、好ましくは1000℃以下、より好ましくは900℃以下、さらに好ましくは700℃以下、特に好ましくは500℃以下である。加熱時間としては所定の温度に到達してから、好ましくは30分以上、24時間以内であり、より好ましくは1時間以上、12時間以内である。前記範囲内であると、活性のより高い触媒を製造することができる。
 典型元素加熱工程を実施する雰囲気は、通常大気雰囲気である。
 触媒の製造方法は、前述の担体準備工程、遷移元素導入工程、及び遷移元素加熱工程を含むものであれば、その他については特に限定されないが、担体準備工程等を行う順番としては、下記の実施形態1~3が挙げられる。
・実施形態1:担体準備工程、遷移元素導入工程、遷移元素加熱工程の順番で実施。
・実施形態2:担体準備工程、遷移元素導入工程、遷移元素加熱工程、典型元素導入工程、典型元素加熱工程の順番で実施。
・実施形態3:担体準備工程、典型元素導入工程、典型元素加熱工程、遷移元素導入工程、遷移元素加熱工程の順番で実施。
 なお、遷移元素導入工程等の実施回数は、それぞれ1回に限られず、2回以上行ってもよい。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、実施例及び比較例は、図3に示される反応装置(概念図)の反応管内の固定床にゼオライトを固定して、ヘリウムガス等で希釈したテトラヒドロシランを含む反応ガスを流通させることにより行った。生成したガスは、株式会社島津製作所社製ガスクロマトグラフGC-17Aを用いて、TCD(熱伝導度検出器)で分析を行った。また、GCで検出できなかった場合(検出限界以下)は、収率は0%と表記した。ジシラン等の定性分析は、MASS(質量分析計)で行った。なお、図3のフィルター10は、反応ガスサンプルリング用ではあるが、実施例では特に冷却等を行いサンプリングするような操作はせず、直接反応ガスをガスクロマトグラフに導入して分析した。本評価に使用した反応装置は試験、研究用であるため、生成物を安全な形で系外に排出するための除外装置13を装備している。
 使用したゼオライトの細孔は、以下の通りである。
 ・Zeolite Y(Y型ゼオライト)(構造コ-ド:FAU H-Y型ゼオライト、Na-Y型ゼオライト等を含む):
  <111>短径0.74nm、長径0.74nm
 ・ZSM-5(構造コ-ド:MFI H-ZSM-5、NH-ZSM-5等を含む。):
  <100>短径0.51nm、長径0.55nm
  <010>短径0.53nm、長径0.56nm
 ・ZSM-22(構造コ-ド:TON):
  <001>短径0.46nm、長径0.57nm
・Beta(ベータ)(構造コ-ド:BEA):
  <100>短径0.66nm、長径0.67nm
  <001>短径0.56nm、長径0.56nm
 ・H-モルデナイト(構造コ-ド:MOR):
  <001>短径0.65nm、長径0.70nm
  <010>短径0.34nm、長径0.48nm
  <001>短径0.26nm、長径0.57nm
 ・H-フェリエライト(構造コ-ド:FER):
  <001>短径0.42nm、長径0.54nm
  <010>短径0.35nm、長径0.48nm
 なお、細孔の短径、長径の数値は、「http://www.jaz-online.org/introduction/qanda.html」、及び「ATLAS OF ZEOLITE FRAMEWORK TYPES, Ch. Baerlocher,L.B. McCusker and D.H. Olson, Sixth Revised Edition 2007,published on behalf of the structure Commission of the international Zeolite Association」に記載されているものである。
[周期表第3族遷移元素等担持シリカの調製]
<調製例1:タングステン(W)担持シリカの調製>
 ビ-ズ状シリカ(富士シリシア製:製品名 Q-10)10gに、(NH101241・5HO 0.14g(W換算で1質量%担持に相当)を蒸留水10gに溶解させた水溶液を加えて、1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のW1質量%担持シリカを得た。なお、この場合の担持量は使用した原料ゼオライト1質量部に対する外数としての質量%(1質量%なら原料ゼオライト100質量部に対してW1質量部の意)である。
[周期表第3族遷移元素等担持ゼオライトの調製]
<調製例2:タングステン(W)担持ゼオライトの調製1>
 H-Y型ゼオライト(シリカ/アルミナ比=5.5、東ソ-製 触媒学会参照触媒:JRC-Z-HY5.5)10gに、(NH101241・5HO 0.14g(W換算で1質量%担持に相当)を加熱した蒸留水10gに溶解させた水溶液を加えて、加熱しながら1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のW1質量%担持Y型ゼオライトを得た。
<調製例3:タングステン(W)担持ゼオライトの調製2>
 NH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名 HSZ-800タイプ820NHA)20gに、(NH101241・5HO 0.28g(W換算で1質量%担持に相当)を加熱した蒸留水20gに溶解させた水溶液を加えて、加熱しながら1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のW1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。
<調製例4:モリブデン(Mo)担持ゼオライトの調製>
 NH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名 HSZ-800タイプ820NHA)20gに、蒸留水20g、(NHMo24・4HO 0.37g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のMo1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。
<調製例5:バナジウム(V)担持ゼオライトの調製>
 NH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名 HSZ-800タイプ820NHA)20gに、VOSO・nHO(n=3~4)0.89g(V換算で1質量%担持に相当)を加熱した蒸留水20gに溶解させた水溶液を加えて、加熱しながら1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のV1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。
<調製例6:チタン(Ti)担持ゼオライトの調製>
 NH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名 HSZ-800タイプ820NHA)20gに、塩化チタン水溶液(Ti16質量%含有)1.2g(Ti換算で1質量%担持に相当)を蒸留水20gで希釈した水溶液を加えて、加熱しながら1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のTi1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。
[遷移元素非含有シリカの調製]
<調製例7:遷移元素非含有シリカの調製>
 ビ-ズ状シリカ(富士シリシア製:製品名 Q-10)10gを700℃で2時間大気雰囲気下で焼成して、焼成シリカを得た。
[遷移元素非含有ゼオライトの調製]
<調製例8:遷移元素非含有ゼオライトの調製1>
 H-Y型ゼオライト(シリカ/アルミナ比=5.5、東ソ-製 触媒学会参照触媒:JRC-Z-HY5.5)10gを110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、焼成したY型ゼオライトを得た。
<調製例9:遷移元素非含有ゼオライトの調製2>
 NH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名 HSZ-800タイプ820NHA)20gを110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状の遷移元素非含有のZSM-5(シリカ/アルミナ比=23)を得た。
[周期表第1族典型元素等及び周期表第3族遷移元素等担持ゼオライトの調製]
<調製例10:K含有モリブデン(Mo)担持ゼオライトの調製>
 調製例4で調製したMo1質量%担持ZSM-5(シリカ/アルミナ比=23)5gに蒸留水5g、KNO 0.32g(K換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Kが2.4質量%含有されたMo1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。なお、得られたK含有モリブデン(Mo)担持ZSM-5について、下記式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.49となった(ZSM-5のシリカ/アルミナ比から「Al」は1.35mol/kgと、Kの含有量から「AM」は0.61mol/kgと、Moの含有量(10g/1.0kg担体)から「TM」は0.10mol/kgと計算した。)。また、Kの総含有量の分析を行ったところ、2.1質量%であった(Kの分析値は内数)。なお、本分析はICP発光分光分析法(装置名:analytikjena PQ9000 (メーカー;アナリティクイエナ))を用いて以下の手順で行った。
 試料をメノウ乳鉢で粉砕後(粉砕操作は工程を一定にするため粉末試料についても実施した。)、0.02gを白金ルツボ内で精秤した。これに過酸化ナトリウム0.50g、メタほう酸リチウム0.50gを加えて溶融した。融成物はHF及びHNOを加えて白金ルツボから剥離させ、超純水を加えて溶解した。これを250mLに定容し、ICP発光法で分析した。一連の分析は各水準に対し、n=2で実施し、各々の分析値と平均値を求めた。
Figure JPOXMLDOC01-appb-M000007
<調製例11:K含有タングステン(W)担持ゼオライトの調製>
 調製例3で調製したW1質量%担持ZSM-5(シリカ/アルミナ比=23)5gに蒸留水5g、KNO 0.32g(K換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Kが2.4質量%含有されたW1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。なお、得られたK含有タングステン(W)担持ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.69となった。同様に、Kの総含有量は2.1質量%であった。
<調製例12:Ba含有モリブデン(Mo)担持ゼオライトの調製>
 調製例4で調製したMo1質量%担持ZSM-5(シリカ/アルミナ比=23)5gに蒸留水5g、BaCl 0.19g(Ba換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Baが2.4質量%含有されたMo1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。なお、得られたBa含有モリブデン(Mo)担持ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.14となった。Baの総含有量は2.3質量%であった。
<調製例13:Cs含有モリブデン(Mo)担持ゼオライトの調製>
 調製例4で調製したMo1質量%担持ZSM-5(シリカ/アルミナ比=23)5gに蒸留水5g、CsNO 0.18g(Cs換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Csが2.4質量%含有されたMo1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。なお、得られたCs含有モリブデン(Mo)担持ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.15となった。Csの総含有量は2.1質量%であった。
<調製例14:K含有モリブデン(Mo)担持ゼオライトの調製>
 調製例4で調製したMo1質量%担持ZSM-5(シリカ/アルミナ比=23)5gに蒸留水5g、KNO 0.64g(K換算で4.9質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Kが4.9質量%含有されたMo1質量%担持ZSM-5(シリカ/アルミナ比=23)を得た。なお、得られたK含有モリブデン(Mo)担持ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、1.0となった。Kの総含有量は4.6質量%であった。
<調製例15:モリブデン(Mo)担持ゼオライトの調製>
 NH-ZSM-5(シリカ/アルミナ比=40、東ソー製:製品名 HSZ-800タイプ840NHA)20gに、蒸留水20g、(NHMo24・4HO 0.185g(Mo換算で0.5質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のMo0.5質量%担持ZSM-5(シリカ/アルミナ比=40)を得た。
<調製例16:Ba含有モリブデン(Mo)担持ゼオライトの調製>
 調製例15で調製したMo0.5質量%担持ZSM-5(シリカ/アルミナ比40)5gに蒸留水10g、Ba(NO0.238g(Ba換算で2.5質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Baが2.4質量%含有されたMo0.5質量%担持ZSM-5(シリカ/アルミナ比=40)を得た。なお、得られたBa含有モリブデン(Mo)担持ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.24となった。Baの総含有量は2.3質量%であった。
<調製例17:Ba含有モリブデン(Mo)担持ゼオライトの調製>
 NH-ZSM-5(シリカ/アルミナ比=40、東ソー製:製品名 HSZ-800タイプ840NHA)5gに、蒸留水10g、Ba(NO0.238g(Ba換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、250℃で2時間大気雰囲気下で乾燥させた。乾燥後、蒸留水5g、(NHMo24・4HO 0.046g(Mo換算で0.5質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、粉体状のBaが2.4質量%含有されたMo0.5質量%担持ZSM-5(シリカ/アルミナ比=40)を得た。なお、得られたBa含有モリブデン(Mo)担持ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.24となった。Baの総含有量は2.3質量%であった。
<調製例18:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))20gに、蒸留水20g、(NHMo24・4HO 0.37g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、700℃で2時間大気雰囲気下で焼成して、Mo1質量%担持ZSM-5(ペレット状)を得た。
<調製例19:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))14.2gに、蒸留水10g、(NHMo24・4HO 0.131g(Mo換算で0.5質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、700℃で2時間大気雰囲気下で焼成して、Mo0.5質量%担持ZSM-5(ペレット状)を得た。
<調製例20:Ba含有モリブデン(Mo)担持ペレット状ゼオライトの調製>
 調製例19で調製したMo0.5質量%担持ペレット状ZSM-5 5gに蒸留水10g、Ba(NO0.238g(Ba換算で2.4質量%担持に相当)を加えて、室温で1時間混合した。その後、110℃で4時間大気雰囲気下で乾燥させた後、700℃で2時間焼成して、Baが2.4質量%含有されたMo0.5質量%担持ZSM-5(ペレット状)を得た。なお、得られた上記Ba含有モリブデン(Mo)担持ペレット状ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.18(バインダーを2割含んでおり、その分を考慮して計算)となった。Baの総含有量は2.3質量%であった。
<調製例21:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-ベータ(シリカ/アルミナ比=17.1、東ソー製:製品名HSZ 品種920HOD1A、アルミナ18~22質量%含有(SDS記載値))20gに、蒸留水20g、(NHMo24・4HO 0.37g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、大気雰囲気下110℃で4時間大気雰囲気下で乾燥させた後、大気雰囲気下600℃で6時間焼成して、Mo1質量%担持ベータ(ペレット状)を得た。
<調製例22:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-モルデナイト(シリカ/アルミナ比=17.8、東ソー製:製品名HSZ 品種640HOD1A、アルミナ18~22質量%含有(SDS記載値))20gに、蒸留水20g、(NHMo24・4HO 0.37g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、大気雰囲気下110℃で4時間大気雰囲気下で乾燥させた後、大気雰囲気下600℃で6時間焼成して、Mo1質量%担持モルデナイト(ペレット状)を得た。
<調製例23:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-フェリエライト(シリカ/アルミナ比=18.7、東ソー製:製品名HSZ 品種722HOD1A、アルミナ18~22質量%含有(SDS記載値))20gに、蒸留水20g、(NHMo24・4HO 0.37g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、大気雰囲気下110℃で4時間大気雰囲気下で乾燥させた後、大雰囲気下600℃で6時間焼成して、Mo1質量%担持フェリエライト(ペレット状)を得た。
<調製例24:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-Y(シリカ/アルミナ比=6.1、東ソー製:製品名HSZ 品種330HOD1A、アルミナ18~22質量%含有(SDS記載値))20gに、蒸留水20g、(NHMo24・4HO 0.37g(Mo換算で1質量%担持に相当)を加えて、室温で1時間混合した。その後、大気雰囲気下110℃で4時間大気雰囲気下で乾燥させた後、大雰囲気下600℃で6時間焼成して、Mo1質量%担持Y(ペレット状)を得た。
<調製例25:モリブデン(Mo)担持ペレット状ゼオライトの調製>
 焼成温度を700℃から900℃に変更した以外は調製例18と同様に触媒を調製し、Mo1質量%担持ZSM-5(ペレット状)を得た。
<調製例26:Ba含有モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))14.2gに、酢酸バリウム40質量%水溶液(大崎工業株式会社製)1.78g(Ba換算で2.4質量%担持に相当)に純水を加え、6.0mlとしたものを含浸し、110℃で2時間乾燥した。この乾燥した担体に(NHMo24・4HO 0.261g(Mo換算で1質量%担持に相当)を含有する水溶液5.0mlを用いて含浸させ、1時間風乾に引き続き、110℃で2時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Baが2.4質量%含有されたMo1.0質量%担持ZSM-5(ペレット状)を得た。なお、得られた上記Ba含有モリブデン(Mo)担持ペレット状ZSM-5について、式(1)中の「(AM/Al)/(1-TM/Al)」の値を計算した結果、0.14(バインダーを2割含んでおり、その分を考慮して計算)となった。
<調製例27:マンガン(Mn)担持ペレット状ゼオライトの調製>
 ペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))20.0gに、塩化マンガン四水和物 MnCl・4HO(和光純薬工業株式会社製)0.72g(Mn換算で1質量%担持に相当)を8.4gの水で溶解した水溶液を含浸させ、1時間風乾に引き続き、110℃で2時間大気雰囲気下で乾燥させた後、700℃で2時間大気雰囲気下で焼成して、Mn1.0質量%担持ZSM-5(ペレット状)を得た。
<調製例28:バナジウム(V)担持ペレット状ゼオライトの調製>
 ペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))20.0gに、オキシシュウ酸バナジウム V(C)O・nHO(シュウ酸を約40質量%含有、和光純薬工業株式会社製、純度分析値58.8質量%)0.88g(V換算で0.84質量%担持に相当)を8.4gの水で溶解した水溶液を含浸させ、1時間風乾に引き続き、110℃で2時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、V0.8質量%担持ZSM-5(ペレット状)を得た。
<調製例29:ニオブ(Nb)担持ペレット状ゼオライトの調製>
 ペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))20.0gに、シュウ酸ニオブアンモニウム塩(NH)[Nb(O)(C(HO)](H.C.Starck社製)0.46g(Nb換算で1質量%担持に相当)を4.2gの熱水で溶解した水溶液を含浸させ、1時間風乾に引き続き、110℃で2時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、Nb1.0質量%担持ZSM-5(ペレット状)を得た。
<調製例30:酸化モリブデン使用モリブデン(Mo)担持ペレット状ゼオライトの調製>
 ペレット状のH-ZSM-5(シリカ/アルミナ比=23、東ソー製:製品名HSZ 品種822HOD3A、アルミナ18~22質量%含有(SDS記載値))20.0gをビーカーに入れた。酸化モリブデン(和光純薬工業株式会社製)0.30g(Mo換算で1質量%担持に相当)に水1g を加えて乳鉢で粉砕後、7.4gの水で洗いながら、ゼオライトペレットの入ったビーカーに移し、出来るだけ均一に混ざるように振り混ぜた(酸化モリブデンは水には溶解せず、乳白色のスラリーの状態で混合)。混合したペレットを110℃で2時間大気雰囲気下で乾燥させた後、900℃で2時間大気雰囲気下で焼成して、酸化モリブデン使用Mo1.0質量%担持ZSM-5(ペレット状)を得た。
<調製例31:クロム(Cr)担持粉末状ゼオライトの調製>
 粉末状のZSM-22(ACS社製 シリカ/アルミナ比=65-80 ホームページ記載値)2.05gに、クロム酸アンモニウム(NHCrO(和光純薬工業株式会社製)0.059g(Cr換算で1質量%担持に相当)を4gの水で溶解した水溶液を含浸させ、1時間風乾に引き続き、110℃で2時間大気雰囲気下で乾燥させた後、700℃で2時間大気雰囲気下で焼成して、Cr1.0質量%担持ZSM-22(粉末状)を得た。
[周期表第3族遷移元素等含有触媒存在下におけるオリゴシランの生成]
<実施例1>
 調製例1で調製したW1質量%担持シリカ 1.0gを反応管に設置し、減圧ポンプを使って反応管内の空気を除去した後、ヘリウムガスで置換した。ヘリウムガスを20mL/分の速度で流通させ、200℃に昇温後、1時間流通させた。その後、アルゴンとシランの混合ガス(Ar:20%、SiH:80%(体積比))2mL/分と水素ガス2mL/分とヘリウムガス16mL/分をガスミキサーで混合して流通させた。5分後にアルゴンとシランの混合ガスを1mL/分に、水素ガスを1mL/分に、ヘリウムガスを8mL/分に変更し、表1に示すようにそれぞれの時間経過後の反応ガスの組成をガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表1に示す。表中、「接触(滞留)時間」は、反応器内を流通するガスの反応器内滞留時間、すなわち、ヒドロシランと触媒の接触時間である。ジシランの空時収率(STY)は以下の式により算出した。
 STY=1時間当たりのジシランの生成質量/触媒の体積
Figure JPOXMLDOC01-appb-T000008
<比較例1>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例7で調製した焼成シリカ1.0gに変更した以外は実施例1と同様の条件で反応させ、表2に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
<実施例2>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例2で調製したW1質量%担持Y型ゼオライト1.0gに変更した以外は実施例1と同様の条件で反応させ、表3に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000010
<比較例2>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例8で調製した焼成Y型ゼオライト1.0gに変更した以外は実施例1と同様の条件で反応させ、表4に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000011
<実施例3>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例3で調製したW1質量%担持ZSM-5(シリカ/アルミナ比=23) 1.0gに変更した以外は実施例1と同様の条件で反応させ、表5に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000012
<実施例4>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例4で調製したMo1質量%担持ZSM-5(シリカ/アルミナ比=23) 1.0gに変更した以外は実施例1と同様の条件で反応させ、表6に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000013
<実施例5>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例5で調製したV1質量%担持ZSM-5(シリカ/アルミナ比=23)1.0gに変更した以外は実施例1と同様の条件で反応させ、表7に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000014
<実施例6>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例6で調製したTi1質量%担持ZSM-5(シリカ/アルミナ比=23)1.0gに変更した以外は実施例1と同様の条件で反応させ、表8に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000015
<比較例3>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例9で調製したZSM-5(シリカ/アルミナ比=23)1.0gに変更した以外は実施例1と同様の条件で反応させ、表9に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000016
<実施例7>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例10で調製したK2.4質量%含有Mo1質量%担持ZSM-5(シリカ/アルミナ比=23)1.0gに変更した以外は実施例1と同様の条件で反応させ、表10に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000017
<実施例8>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例11で調製したK2.4質量%含有W1質量%担持ZSM-5(シリカ/アルミナ比=23)1.0gに変更した以外は実施例1と同様の条件で反応させ、表11に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000018
<実施例9>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例12で調製したBa2.4質量%含有Mo1質量%担持ZSM-5(シリカ/アルミナ比=23)1.0gに変更した以外は実施例1と同様の条件で反応させ、表12に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000019
<実施例10>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例13で調製したCs2.4質量%含有Mo1質量%担持ZSM-5(シリカ/アルミナ比=23)1.0gに変更した以外は実施例1と同様の条件で反応させ、表13に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000020
<実施例11>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例14で調製したK4.9質量%含有Mo1質量%担持ZSM-5 1.0g(「(AM/Al)/(1-TM/Al)」=1.0)に変更した以外は実施例1と同様の条件で反応させ、表14に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000021
<実施例12>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例15で調製したMo0.5質量%担持ZSM-5(シリカ/アルミナ比=40)1.0gに変更した以外は実施例1と同様の条件で反応させ、表15に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000022
<実施例13>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例16で調製したBa2.4質量%含有Mo0.5質量%担持ZSM-5(シリカ/アルミナ比=40)(「(AM/Al)/(1-TM/Al)」=0.24)1.0gに変更した以外は実施例1と同様の条件で反応させ、表16に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000023
<実施例14>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例17で調製したBa2.4質量%含有Mo0.5質量%担持ZSM-5(シリカ/アルミナ比=40)(「(AM/Al)/(1-TM/Al)」=0.24) 1.0gに変更した以外は実施例1と同様の条件で反応させ、表17に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000024
<実施例15>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例18で調製したMo1.0質量%担持ZSM-5(シリカ/アルミナ比=23 ペレット)1.0gに変更した以外は実施例1と同様の条件で反応させ、表18に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表18に示す。
Figure JPOXMLDOC01-appb-T000025
<実施例16>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例19で調製したMo0.5質量%担持ZSM-5(シリカ/アルミナ比=23 ペレット)(「(AM/Al)/(1-TM/Al)」=0.18)1.0gに変更した以外は実施例1と同様の条件で反応させ、表19に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表19に示す。
Figure JPOXMLDOC01-appb-T000026
<実施例17>
 調製例1で調製したW1質量%担持シリカ 1.0gを調製例20で調製したBa2.4質量%含有Mo0.5質量%担持ZSM-5(シリカ/アルミナ比=23 ペレット)(「(AM/Al)/(1-TM/Al)」=0.18)1.0gに変更した以外は実施例1と同様の条件で反応させ、表20に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表20に示す。
Figure JPOXMLDOC01-appb-T000027
<実施例18>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例21で調製したMo1質量%担持ベータ(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表21に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表21に示す。
Figure JPOXMLDOC01-appb-T000028
<実施例19>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例22で調製したMo1質量%担持モルデナイト(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表22に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表22に示す。
Figure JPOXMLDOC01-appb-T000029
<実施例20>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例23で調製したMo1質量%担持フェリエライト(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表23に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表23に示す。
Figure JPOXMLDOC01-appb-T000030
<実施例21>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例24で調製したMo1質量%担持Y(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表24に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表24に示す。
Figure JPOXMLDOC01-appb-T000031
<実施例22>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例25で調製したMo1質量%担持ZSM-5(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表25に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表25に示す。
Figure JPOXMLDOC01-appb-T000032
<実施例23>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例26で調製したBa2.4質量%含有Mo1質量%担持ZSM-5(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表26に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表26に示す。
Figure JPOXMLDOC01-appb-T000033
<実施例24>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例27で調製したMn1質量%担持ZSM-5(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表27に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表27に示す。
Figure JPOXMLDOC01-appb-T000034
<実施例25>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例28で調製したV0.8質量%担持ZSM-5(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表28に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表28に示す。
Figure JPOXMLDOC01-appb-T000035
<実施例26>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例29で調製したNb1質量%担持ZSM-5(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表29に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表29に示す。
Figure JPOXMLDOC01-appb-T000036
<実施例27>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例30で調製した酸化モリブデン使用Mo1質量%担持ZSM-5(ペレット状)1.0gに変更した以外は実施例1と同様の条件で反応させ、表30に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表30に示す。
Figure JPOXMLDOC01-appb-T000037
<実施例28>
 調製例1で調製したW1質量%担持シリカ1.0gを調製例31で調製したCr1質量%担持粉末状ZSM-22ゼオライト1.0gに変更した以外は実施例1と同様の条件で反応させ、表31に示すようにそれぞれの時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表31に示す。
Figure JPOXMLDOC01-appb-T000038
<比較例4>(無触媒)
 反応管に触媒を入れずに、減圧ポンプを使って反応管内の空気を除去した後、ヘリウムガスで置換した。ヘリウムガスを20mL/分の速度で流通させ、350℃に昇温後、1時間流通させた。その後、アルゴンとシランの混合ガス(Ar:20%、SiH:80%(体積比))2mL/分と水素ガス2mL/分とヘリウムガス16mL/分をガスミキサーで混合して流通させた。5分後にアルゴンとシランの混合ガスを1mL/分に、水素ガスを1mL/分に、ヘリウムガスを8mL/分に変更し、表32に示すように1時間経過後の反応ガスの組成を実施例1同様にガスクロマトグラフで分析し、シランの転化率、ジシランの収率、ジシランの選択率、ジシランの空時収率(STY)を算出した。結果を表32に示す。
Figure JPOXMLDOC01-appb-T000039
 実施例1と比較例1、実施例2と比較例2、実施例3と比較例3の比較から、周期表第3族遷移元素等含有触媒を用いることで、周期表第3族遷移元素等を含有しない触媒を用いるよりも高いジシラン収率が得られることがわかる。また、実施例1(反応温度200℃)と比較例4(反応温度350℃)の比較から、周期表第3族遷移元素等含有触媒を用いることで無触媒の場合よりも低い温度で高い収率でジシランが得られることがわかる。
 また、実施例1と実施例2の比較から、担体としてシリカよりもゼオライトを用いることで高いジシラン収率が得られることがわかる。さらに、実施例2と実施例3の比較から、担体として用いるゼオライトの中でも特定の範囲の細孔径を有するゼオライトを用いることで高いジシラン収率が得られることがわかる。
 また、実施例3、実施例4、実施例5から、第5族遷移元素又は第6族遷移元素を含有するゼオライトを用いると特に高いジシラン収率が得られることがわかる。また、実施例7、実施例8、実施例9、実施例10と実施例3、実施例4の比較から、周期表第1族典型元素等含有周期表第3族遷移元素等担持ゼオライトを用いることで、1時間後のジシランの収率とジシランの選択率が高くなり、特に初期の反応において周期表第1族典型元素等を含有させることに効果があることがわかる。
 実施例7と実施例11の比較より、「(AM/Al)/(1-TM/Al)」の値が1.0よりも0.49のほうが、高いジシラン収率が得られていることがわかる。
 実施例12はシリカ/アルミナ比が40であるZSM-5を用いた実施例であり、実施例28はシリカ/アルミナ比が65-80であるZSM-22を用いた実施例である。
 また実施例13および14はシリカ/アルミナ比が40であるZSM-5を用いた調製工程が異なるBa含有Mo担持触媒の実施例である。
 実施例15から27より、ペレット状に成型したゼオライトを用いても問題なく反応が実施できることがわかる。
 本発明は、以上の実施の形態、実施例に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。本出願は、2016年2月16日出願の日本特許出願(特願2016-026827号)及び2016年11月21日出願の日本特許出願(特願2016-225853号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のオリゴシランの製造方法によって得られたジシランは、半導体用シリコンの製造ガスとして利用されることが期待できる。
  1     テトラヒドロシランガス(SiH)ボンベ(Ar20%混合)
  2     水素ガス(H)ボンベ
  3     ヘリウムガス(He)ボンベ
  4     緊急遮断弁(ガス検連動遮断弁)
  5     減圧弁
  6     マスフローコントローラ(MFC)
  7     圧力計
  8     ガスミキサー
  9     反応管
 10     フィルター
 11     ロータリーポンプ
 12     ガスクロマトグラフ
 13     除害装置

Claims (19)

  1.  ヒドロシランを脱水素縮合させてオリゴシランを生成する反応工程を含むオリゴシランの製造方法であって、
     前記反応工程が、周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒の存在下で行われることを特徴とする、オリゴシランの製造方法。
  2.  前記触媒が、担体を含む不均一系触媒であり、前記担体の表面及び/又は内部に前記遷移元素を含有する、請求項1に記載のオリゴシランの製造方法。
  3.  前記担体が、シリカ、アルミナ、チタニア、及びゼオライトからなる群より選択される少なくとも1種である、請求項2に記載のオリゴシランの製造方法。
  4.  前記ゼオライトが、短径0.43nm以上、長径0.69nm以下の細孔を有する、請求項3に記載のオリゴシランの製造方法。
  5.  前記担体が、短径0.43nm以上、長径0.69nm以下の細孔を有するゼオライト、及びバインダーとしてのアルミナを含んだ粉体の球状又は円柱状の成型体であり、前記アルミナの含有量(アルミナ、遷移元素を含まない前記担体100質量部に対して)が、10質量部以上30質量部以下である、請求項3に記載のオリゴシランの製造方法。
  6.  前記遷移元素が、チタン、バナジウム、ニオブ、クロム、モリブデン、タングステン、マンガンからなる群より選択される少なくとも1種の遷移元素である、請求項1~5の何れか1項に記載のオリゴシランの製造方法。
  7.  前記遷移元素が、モリブデン及びタングステンからなる群より選択される少なくとも1種の遷移元素である、請求項6に記載のオリゴシランの製造方法。
  8.  前記触媒が、担体としてゼオライトを含み、前記ゼオライトの表面及び/又は内部に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素をさらに含有する、請求項3~7の何れか1項に記載のオリゴシランの製造方法。
  9.  前記遷移元素の総含有量及び前記典型元素の総含有量(前記遷移元素及び前記典型元素を含有した状態の前記ゼオライトに対して)が、下記式(1)の条件を満たす量である、請求項8に記載のオリゴシランの製造方法。
    Figure JPOXMLDOC01-appb-M000001
    (式(1)中、AM/Alは前記ゼオライトに含有されている前記典型元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を、TM/Alは前記ゼオライトに含有されている遷移元素の総原子数を前記ゼオライトに含有されているアルミニウムの原子数で除した原子比を表す。)
  10.  前記典型元素の総含有量(前記遷移元素及び前記典型元素を含有した状態の前記ゼオライトの質量に対して)が、2.1質量%以上10質量%以下である、請求項8又は9に記載のオリゴシランの製造方法。
  11.  ヒドロシランを脱水素縮合させてオリゴシランを生成する脱水素縮合用の触媒であり、担体の表面及び/又は内部に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有する触媒の製造方法であって、
     担体を準備する担体準備工程、
     前記担体準備工程で準備した担体に周期表第3族遷移元素、第4族遷移元素、第5族遷移元素、第6族遷移元素、及び第7族遷移元素からなる群より選択される少なくとも1種の遷移元素を含有させる遷移元素導入工程、及び
     前記遷移元素導入工程を経た前駆体を加熱する遷移元素加熱工程
     を含むことを特徴とする、触媒の製造方法。
  12.  前記触媒が、さらに周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素を含有する触媒であり、
     担体に周期表第1族典型元素及び第2族典型元素からなる群より選択される少なくとも1種の典型元素を含有させる典型元素導入工程、
     を含む、請求項11に記載の触媒の製造方法。
  13.  前記典型元素導入工程を経た前駆体を加熱する典型元素加熱工程を含む、請求項12に記載の触媒の製造方法。
  14.  前記典型元素導入工程、前記典型元素加熱工程、前記遷移元素導入工程、前記遷移元素加熱工程の順番で行われる、請求項13に記載の触媒の製造方法。
  15.  前記遷移元素導入工程、前記遷移元素加熱工程、前記典型元素導入工程、前記典型元素加熱工程の順番で行われる、請求項13に記載の触媒の製造方法。
  16.  前記担体が、シリカ、アルミナ、チタニア、及びゼオライトからなる群より選択される少なくとも1種である、請求項11~15の何れか1項に記載の触媒の製造方法。
  17.  前記ゼオライトが、短径0.43nm以上、長径0.69nm以下の細孔を有する、請求項16に記載の触媒の製造方法。
  18.  前記担体が、短径が0.43nm以上、長径が0.69nm以下の細孔を有するゼオライト、及びバインダーとしてのアルミナを含んだ粉体の球状又は円柱状の成型体であり、前記アルミナの含有量((アルミナ、遷移元素を含まない前記担体100質量部に対して)が、10質量部以上30質量部以下である、請求項16に記載の触媒の製造方法。
  19.  前記遷移元素が、チタン、バナジウム、ニオブ、クロム、モリブデン、タングステン、マンガンからなる群より選択される少なくとも1種の遷移元素である、請求項11~18の何れか1項に記載の触媒の製造方法。
PCT/JP2017/005240 2016-02-16 2017-02-14 オリゴシランの製造方法 WO2017141889A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177030425A KR101945215B1 (ko) 2016-02-16 2017-02-14 올리고실란의 제조 방법
US15/998,663 US20200283297A1 (en) 2016-02-16 2017-02-14 Method for producing oligosilane
JP2017534754A JP6563019B2 (ja) 2016-02-16 2017-02-14 オリゴシランの製造方法
CN201780001452.3A CN107531491B (zh) 2016-02-16 2017-02-14 低聚硅烷的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016026827 2016-02-16
JP2016-026827 2016-02-16
JP2016-225853 2016-11-21
JP2016225853 2016-11-21

Publications (1)

Publication Number Publication Date
WO2017141889A1 true WO2017141889A1 (ja) 2017-08-24

Family

ID=59625899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005240 WO2017141889A1 (ja) 2016-02-16 2017-02-14 オリゴシランの製造方法

Country Status (6)

Country Link
US (1) US20200283297A1 (ja)
JP (1) JP6563019B2 (ja)
KR (1) KR101945215B1 (ja)
CN (1) CN107531491B (ja)
TW (1) TWI633931B (ja)
WO (1) WO2017141889A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101615A1 (ko) 2016-11-30 2018-06-07 엘에스엠트론 주식회사 복수의 에너지 저장 셀을 고정하기 위한 고정 장치 및 이를 이용한 에너지 저장 모듈
KR102391319B1 (ko) * 2020-12-28 2022-04-27 (주)원익머트리얼즈 디실란의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260659A (ja) * 2006-03-02 2007-10-11 Japan Science & Technology Agency ポリシラン担持遷移金属触媒
JP2010506001A (ja) * 2006-10-06 2010-02-25 コヴィオ インコーポレイテッド シリコンポリマー、シリコン化合物の重合方法、及びそのようなシリコンポリマーから薄膜を形成する方法
JP2013529591A (ja) * 2010-07-02 2013-07-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ 中鎖長ポリシランおよびそれを製造する方法
JP2014529560A (ja) * 2011-07-29 2014-11-13 コヴィオ インコーポレイテッド N−ヘテロ環状カルベン類、n−ヘテロ環状カルベン配位子を有する金属錯体類、及びランタノイド化合物を用いてシラン及びシクロシランをポリマー化する方法、及び、これにより形成されるインク組成物、並びに半導体フィルムを形成する方法
WO2016027743A1 (ja) * 2014-08-20 2016-02-25 国立研究開発法人産業技術総合研究所 オリゴシランの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101342489A (zh) * 2007-07-12 2009-01-14 上海焦化有限公司 一种加氢反应催化剂及其制备方法和应用
CN102205968A (zh) * 2010-03-31 2011-10-05 天津市泰亨气体有限公司 硅化镁制备硅烷方法工艺技术
CN102211034B (zh) * 2011-04-02 2013-08-28 万华实业集团有限公司 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法
CN102515169A (zh) * 2011-12-16 2012-06-27 天津市泰亨气体有限公司 采用硅化镁与氯化铵反应来生产乙硅烷的方法
BR112014008322A2 (pt) * 2012-04-17 2017-04-18 Momentive Performance Mat Inc catalisador de alta atividade para reações de hidrossililação e métodos para a fabricação do mesmo
DE102013207442A1 (de) * 2013-04-24 2014-10-30 Evonik Degussa Gmbh Verfahren und Vorrichtung zur Herstellung von Silanen
JP6161719B2 (ja) * 2013-10-21 2017-07-12 三井化学株式会社 高級シランの製造触媒および高級シランの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260659A (ja) * 2006-03-02 2007-10-11 Japan Science & Technology Agency ポリシラン担持遷移金属触媒
JP2010506001A (ja) * 2006-10-06 2010-02-25 コヴィオ インコーポレイテッド シリコンポリマー、シリコン化合物の重合方法、及びそのようなシリコンポリマーから薄膜を形成する方法
JP2013529591A (ja) * 2010-07-02 2013-07-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ 中鎖長ポリシランおよびそれを製造する方法
JP2014529560A (ja) * 2011-07-29 2014-11-13 コヴィオ インコーポレイテッド N−ヘテロ環状カルベン類、n−ヘテロ環状カルベン配位子を有する金属錯体類、及びランタノイド化合物を用いてシラン及びシクロシランをポリマー化する方法、及び、これにより形成されるインク組成物、並びに半導体フィルムを形成する方法
WO2016027743A1 (ja) * 2014-08-20 2016-02-25 国立研究開発法人産業技術総合研究所 オリゴシランの製造方法

Also Published As

Publication number Publication date
CN107531491B (zh) 2020-12-18
KR20170125105A (ko) 2017-11-13
CN107531491A (zh) 2018-01-02
TW201733672A (zh) 2017-10-01
KR101945215B1 (ko) 2019-02-07
JP6563019B2 (ja) 2019-08-21
JPWO2017141889A1 (ja) 2018-12-13
US20200283297A1 (en) 2020-09-10
TWI633931B (zh) 2018-09-01

Similar Documents

Publication Publication Date Title
KR102290266B1 (ko) 인을 함유하는 aei 형 제올라이트 및 그 제조 방법
CN101657256B (zh) Y-85和改性的lz-210沸石
CN109803921B (zh) 低聚硅烷的制造方法
US11123719B2 (en) Metal-loaded zeolite catalysts for the halogen-free conversion of dimethyl ether to methyl acetate
JP6478248B2 (ja) オリゴシランの製造方法
JP6563019B2 (ja) オリゴシランの製造方法
CN101584991B (zh) 一种用于烯烃催化裂解生产丙烯和乙烯的催化剂及其应用
JP2010042344A (ja) 低級オレフィン製造用触媒、その製造方法及びこれを用いた低級オレフィンの製造方法
JP2010104878A (ja) 低級オレフィン製造用触媒、その製造方法及びこれを用いた低級オレフィンの製造方法
JP5757058B2 (ja) ゼオライト−パラジウム複合体、その複合体の製造方法、その複合体を含む触媒、およびその触媒を用いるカップリング化合物の製造方法
JP5646279B2 (ja) 軽質オレフィンの製造方法
JP2020104058A (ja) オリゴシラン製造用触媒の製造方法
JP2019025409A (ja) 触媒用ゼオライト及びゼオライト触媒の製造方法
CN108928835A (zh) Iwr结构分子筛的合成方法及其合成的分子筛
CN112138724B (zh) 加氢烷基化催化剂及其方法
JP2022101113A (ja) ゼオライト触媒及びその製造方法、並びにオリゴシランの製造方法
JP2019188344A (ja) オリゴシラン製造用再生触媒の製造方法
JP2019042709A (ja) ゼオライト触媒の製造方法
CN103204809A (zh) 一种生产己内酰胺的方法
KR102313138B1 (ko) 실란합성을 위한 촉매 및 이의 제조방법
JP5640193B2 (ja) オレフィン製造触媒およびオレフィンの製造方法
JP2021107063A (ja) オリゴシラン製造用触媒及びオリゴシランの製造方法
KR20210039128A (ko) 실란합성을 위한 촉매 재생 방법 및 이 방법으로 제조된 촉매
JP2023001522A (ja) シクロペンタジエンの製造方法
WO2000032547A1 (fr) Procede de transformation d'un compose aromatique

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017534754

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177030425

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753146

Country of ref document: EP

Kind code of ref document: A1