WO2017141674A1 - 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法 - Google Patents

高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法 Download PDF

Info

Publication number
WO2017141674A1
WO2017141674A1 PCT/JP2017/003140 JP2017003140W WO2017141674A1 WO 2017141674 A1 WO2017141674 A1 WO 2017141674A1 JP 2017003140 W JP2017003140 W JP 2017003140W WO 2017141674 A1 WO2017141674 A1 WO 2017141674A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
group
polymer compound
polyacrylic acid
storage device
Prior art date
Application number
PCT/JP2017/003140
Other languages
English (en)
French (fr)
Inventor
雄太 中川
佑介 杉山
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Priority to CN201780011580.6A priority Critical patent/CN108701832B/zh
Priority to US16/075,753 priority patent/US10351672B2/en
Publication of WO2017141674A1 publication Critical patent/WO2017141674A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/34Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids using polymerised unsaturated fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • C08L77/08Polyamides derived from polyamines and polycarboxylic acids from polyamines and polymerised unsaturated fatty acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer compound used as a binder for a negative electrode of a power storage device, an intermediate composition of the polymer compound, a negative electrode, a power storage device, a slurry for a negative electrode, a method for producing a polymer compound, and a method for producing a negative electrode About.
  • Secondary batteries are widely used in mobile devices such as mobile phones and notebook computers. Secondary batteries are also attracting attention as large power sources for electric vehicles.
  • the electrode of the secondary battery is composed of, for example, a current collector formed of a metal material such as copper or aluminum and an active material layer bound on the current collector.
  • the active material layer generally contains an electrode binder (binder) for binding the active material to the current collector.
  • polyacrylic acid which is an inexpensive polymer compound, has been used as a binder for electrodes.
  • Patent Document 1 discloses an electrode binder containing a polyacrylic acid lithium salt or a polyacrylic acid sodium salt.
  • Patent Document 2 discloses an electrode binder containing polyacrylic acid and polyethyleneimine.
  • Patent Document 3 discloses an electrode binder containing polyacrylic acid and an amine compound.
  • An object of the present invention is to provide a polymer compound useful as a negative electrode binder for a power storage device, an intermediate composition for obtaining the polymer compound, a negative electrode using the polymer compound as a negative electrode binder, a power storage device, and a negative electrode It is to provide a slurry for use and a method for producing the polymer compound and a method for producing the negative electrode.
  • a polymer compound used as a negative electrode binder of a power storage device comprising polyacrylic acid and a polyfunctional amine represented by the following general formula (1) And a chain structure constituted by condensation of an aromatic monoamine and composed of polyacrylic acid has a free carboxyl group and a carboxyl group to which an aromatic monoamine is bonded,
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group
  • a polymer compound that is a methoxy group is provided.
  • a polymer compound used as a negative electrode binder of a power storage device wherein a chain structure composed of polyacrylic acid and a chain structure Or a cross-linked structure that connects carboxyl groups between chain structures, and the cross-linked structure is at least one cross-linked structure selected from the following general formulas (2) to (4), and the chain structure is free And a carboxyl group bonded with an aromatic monoamine,
  • PAA represents a chain structure composed of polyacrylic acid
  • X is a structure represented by the following general formula (5)
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently a hydrogen atom, a methyl group, a trifluoromethyl group, or a methoxy group.
  • an intermediate composition of a polymer compound used as a negative electrode binder of a power storage device wherein polyacrylic acid is represented by the following general formula (1): Containing a polyfunctional amine, an aromatic monoamine, and a non-aqueous solvent, forming a liquid,
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group
  • an intermediate composition is provided that is a methoxy group.
  • polyacrylic acid, a polyfunctional amine represented by the following general formula (1), and an aromatic monoamine are heated at 150 to 230 ° C.
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group
  • a method for producing a polymer compound that is a methoxy group is provided.
  • the negative electrode binder comprising the above polymer compound and a negative electrode active material, wherein the negative electrode active material can occlude and release lithium.
  • a negative electrode for a power storage device which is at least one selected from a carbon-based material, an element that can be alloyed with lithium, and a compound that has an element that can be alloyed with lithium.
  • a power storage device including the above negative electrode and a nonaqueous electrolyte.
  • a slurry for a negative electrode used for manufacturing a negative electrode of a power storage device the intermediate composition, a negative electrode active material, a solvent, And a negative electrode active material containing at least one selected from a carbon-based material capable of inserting and extracting lithium, an element capable of being alloyed with lithium, and a compound having an element capable of being alloyed with lithium A slurry is provided.
  • a negative electrode active material layer is formed on a current collector using the above negative electrode slurry, and a method for manufacturing a negative electrode of a power storage device Is provided.
  • the polymer compound of the present embodiment is a compound obtained by condensing (A) polyacrylic acid, (B) a polyfunctional amine, and (C) an aromatic monoamine.
  • Polyacrylic acid is a homopolymer made of acrylic acid.
  • the weight average molecular weight of the polyacrylic acid is not particularly limited, but is preferably in the range of 10,000 to 2,000,000, and more preferably in the range of 25,000 to 1,800,000. More preferably, it is in the range of 50,000 to 1,500,000.
  • the cycle characteristics of the power storage device tend to decrease as the weight average molecular weight of the polymer compound decreases.
  • the polymer compound of this embodiment is used as a negative electrode binder, the cycle characteristics of the power storage device are maintained even when the weight average molecular weight of the polyacrylic acid constituting the polymer compound is decreased.
  • the (A) polyacrylic acid for example, low molecular weight polyacrylic acid of 250,000 or less or 100,000 or less is suitably used.
  • the polyfunctional amine is a compound having a structure represented by the following general formula (1).
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom.
  • the bonding position of Y in each benzene ring may be any of the ortho position, meta position and para position with respect to the amino group.
  • a substituent may be bonded to the carbon atom constituting the structure.
  • substituent bonded to the carbon atom constituting the linear alkyl group include a methyl group, an ethyl group, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, and an oxo group. . Only one of these substituents may be bonded, or two or more may be bonded. Further, the number of substituents bonded to one carbon atom may be one or two.
  • the substituent bonded to the carbon atom constituting the linear alkyl group and the phenylene group may be an amino group or a substituent containing an amino group, and in this case, it has three or more amino groups. It becomes a polyfunctional amine.
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group, or a methoxy group.
  • the bonding position of R1 may be any of an ortho position, a meta position, and a para position with respect to the amino group. The same applies to R2.
  • polyfunctional amine (B) The specific example of a polyfunctional amine is described.
  • examples of the polyfunctional amine in which Y is a linear alkyl group include 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-ethylenedianiline, 4 , 4'-diamino-3,3'-dimethyldiphenylmethane, 1,1-bis (4-aminophenyl) cyclohexane, 9,9-bis (4-aminophenyl) fluorene, 2,2'-bis (4-amino) Phenyl) hexafluoropropane, 4,4′-diaminobenzophenone, 4,4′-methylenebis (2-ethyl-6-methylaniline), pararose aniline.
  • Examples of the polyfunctional amine in which Y is a phenylene group include 1,3,5-tris (4-aminophenyl) benzene.
  • Examples of the polyfunctional amine in which Y is an oxygen atom include 4,4'-diaminodiphenyl ether.
  • 1,3,5-tris (4-aminophenyl) benzene and pararose aniline are trifunctional amines having three amino groups. Only one kind of the above polyfunctional amines may be used, or two or more kinds may be used in combination.
  • An aromatic monoamine is an aromatic compound in which an amino group indicating a weak base is bonded to an aromatic compound having an aromatic ring structure, and (A) an amino group that can be condensed with a carboxyl group of polyacrylic acid. Has only one.
  • the aromatic ring structure examples include a monocyclic structure having 4 to 8 members, and a polycyclic structure in which a plurality of (for example, 2 to 3) 4 to 8 members are combined. Can be mentioned.
  • the aromatic ring structure may be a ring structure made of carbon or a heterocyclic structure containing an element other than carbon.
  • the aromatic monoamine may be a primary amine or a secondary amine.
  • (C) aromatic monoamines include aniline, 1-naphthylamine, 2-naphthylamine, 2-aminoanthracene, 1-aminoanthracene, 9-aminoanthracene, 1-aminopyrene, 2-aminopyrene, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-fluoroaniline, 3-fluoroaniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline, 2-bromoaniline, 3-bromoaniline, 4-bromoaniline, 2-iodoaniline, 3-iodoaniline, 4-iodoaniline, o-toluidine, m-toluidine, p-toluidine, 4-aminotriphenylamine, 2,3-difluoroaniline, 2,4- Difluoroaniline, 2,5-difluoroa Phosphorus,
  • the blending ratio of (A) polyacrylic acid, (B) polyfunctional amine, and (C) aromatic monoamine is (A) total number of carboxyl groups derived from polyacrylic acid “a”, and (B) polyfunctional amine.
  • the total number “b” of amino groups derived from (C) and the total number “c” of amino groups derived from (C) aromatic monoamine are set so as to satisfy the following relational expression 1;
  • the following relational expression 2 and relational expression 3 are set.
  • A Polyacrylic acid
  • B Polyfunctional amine
  • C A polymer compound formed by condensation of an aromatic monoamine satisfies the relational expression 1 so that a free carboxyl group remains.
  • the free carboxyl group and the carboxyl group to which the (C) aromatic monoamine is added are set to exist at a specific ratio.
  • the polymer compound of the present embodiment includes a mixing step of mixing (A) polyacrylic acid, (B) a polyfunctional amine, and (C) an aromatic monoamine in a solvent, and an intermediate composition obtained in the mixing step. It is obtained by going through a heating step of heat-treating.
  • the mixing step is a step of obtaining a liquid intermediate composition obtained by mixing (A) polyacrylic acid, (B) polyfunctional amine, (C) aromatic monoamine, and a solvent.
  • a solvent in which (A) polyacrylic acid, (B) polyfunctional amine, and (C) aromatic monoamine can be appropriately selected can be used.
  • a non-aqueous solvent such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, propylene carbonate, ⁇ -butyrolactone, ethanol, and propanol.
  • the heating step is a step of condensing (A) polyacrylic acid, (B) polyfunctional amine, and (C) aromatic monoamine contained in the intermediate composition by heat-treating the intermediate composition.
  • the heating temperature in the heating step is 150 to 230 from the viewpoint of efficiently forming an amide bond or an imide bond between (A) polyacrylic acid and (B) polyfunctional amine and (C) aromatic monoamine. It is preferably in the range of ° C, more preferably in the range of 180 to 200 ° C.
  • this heating temperature is raised, the characteristics (cycle characteristics) of a power storage device such as a secondary battery are enhanced when the polymer compound of the present embodiment is used as a negative electrode binder.
  • a catalyst may be added to the intermediate composition in order to advance a condensation reaction for forming an amide bond and an imide bond, or to increase the reaction rate of the condensation reaction.
  • the catalyst include 1-methylimidazole, 2-methylimidazole, N, N′-dicyclohexylcarbodiimide, N, N′-carbonyldiimidazole, N, N′-diisopropylcarbodiimide, 1- [3- (dimethylamino).
  • Dehydration condensation catalysts such as) propyl] -3-ethylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, diphenyl phosphate azide, BOP reagent and the like can be used effectively. When these catalysts are added, amide bonds and imide bonds can be formed at a lower temperature, so that the production efficiency of the polymer compound can be increased.
  • the intermediate composition is preferably preheated before the heating step.
  • the preheating temperature is preferably in the range of 40 to 140 ° C., more preferably in the range of 60 to 130 ° C.
  • (A) polyacrylic acid, (B) polyfunctional amine, and (C) aromatic monoamine contained in the intermediate composition are associated with each other, so that the condensation reaction between the carboxyl group and the amino group easily proceeds. A state is formed. As a result, the condensation reaction proceeds efficiently in the heating step.
  • the condensation reaction between the carboxyl group and the amino group may partially proceed to form an amide bond portion or an imide bond portion.
  • the heating step is preferably performed in a state in which the solvent contained in the intermediate composition is removed.
  • the condensation reaction of (A) polyacrylic acid with (B) polyfunctional amine and (C) aromatic monoamine easily proceeds.
  • a polymer compound obtained by condensation of (A) polyacrylic acid, (B) polyfunctional amine, and (C) aromatic monoamine is obtained.
  • this polymer compound (A) at least one of an amide bond and an imide bond is formed between the carboxyl group of polyacrylic acid and the amino group of (B) polyfunctional amine, It is considered to have a crosslinked structure.
  • the aromatic monoamine has a carboxyl group added thereto. Conceivable.
  • the polymer compound has a chain structure composed of polyacrylic acid and a crosslinked structure that connects the carboxyl groups in the chain structure or between the chain structures.
  • the chain structure composed of polyacrylic acid includes a free carboxyl group and a carboxyl group to which an aromatic monoamine is bonded
  • the crosslinked structure is selected from the following general formulas (2) to (4) At least one cross-linked structure.
  • the ratio of the carboxyl group bonded with the aromatic monoamine to the free carboxyl group is 0.001 to 0.15. It is preferable that it is the range of these.
  • PAA represents a chain structure composed of polyacrylic acid.
  • X is a structure represented by the following general formula (5).
  • the two carbonyl groups constituting one imide structure may be carbonyl groups bonded to different chain structures, or the same chain It may be a carbonyl group bonded to the structure.
  • a maleimide structure is formed as the imide structure.
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom. Further, the bonding position of Y in each benzene ring may be any of the ortho position, meta position and para position with respect to the amino group.
  • Y in the general formula (5) has a structure according to Y in the general formula (1).
  • R1 and R2 are each independently one or a plurality of hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group, or a methoxy group.
  • the bonding position of R1 may be any of the ortho, meta, and para positions relative to the amino group.
  • R1 and R2 in the general formula (5) have a structure according to R1 and R2 in the general formula (1).
  • the polymer compound preferably has both an amide bond portion and an imide bond portion in its crosslinked structure. That is, the polymer compound preferably has at least a crosslinked structure represented by general formula (2) and general formula (4) or at least a crosslinked structure represented by general formula (3) as a crosslinked structure.
  • the polymer compound of the present embodiment may further have a second crosslinked structure.
  • a polymer compound further having a second crosslinked structure (A) polyacrylic acid, (B) a polyfunctional amine represented by the general formula (1), and other polyfunctional amines are condensed. A high molecular compound may be sufficient.
  • the polymer compound further has a second cross-linked structure derived from other polyfunctional amines in addition to the cross-linked structure derived from the polyfunctional amine represented by the general formula (1). By adding this second crosslinked structure, physical properties such as strength and flexibility of the polymer compound can be adjusted.
  • Examples of other polyfunctional amines include 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, 2-aminoaniline (1,2-phenylenediamine), 3-aminoaniline (1 , 3-phenylenediamine), 4-aminoaniline (1,4-phenylenediamine), 2,4-diaminopyridine, 2,5-diaminopyridine, 2,6-diaminopyridine, 1,3-diiminoisoindoline. Can be mentioned.
  • the blending ratio of the other polyfunctional amine is preferably 1 part by mass or less with respect to 10 parts by mass of the polyfunctional amine represented by (B) the general formula (1). By setting it as the said ratio, it can suppress that physical properties, such as the intensity
  • a negative electrode active material a negative electrode binder, and a solvent are mixed to prepare a slurry. In that case, you may further mix other components, such as a conductive support agent, as needed.
  • the negative electrode active material a known material used as a negative electrode active material for a power storage device such as a secondary battery, for example, a carbon-based material, an element that can be alloyed with lithium, and a compound that has an element that can be alloyed with lithium are used. Can be used.
  • the carbon-based material for example, a carbon-based material capable of occluding and releasing lithium can be used. Specific examples thereof include non-graphitizable carbon, natural graphite, artificial graphite, cokes, graphites, glassy materials. Examples thereof include carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks.
  • elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi are mentioned. Of these, Si is particularly preferable.
  • Examples of the compound having an element that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, and In. , Si, Ge, Sn, Pb, Sb, and a compound having an element selected from Bi.
  • a silicon-based material that is a compound containing Si is particularly preferable.
  • silicon-based material examples include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2, TaSi 2, VSi 2 , WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO V (0 ⁇ V ⁇ 2), include SnSiO 3, LiSiO. Among these, SiO V (0 ⁇ V ⁇ 2) is particularly preferable.
  • a silicon material obtained from CaSi 2 through a decalcification reaction can also be used.
  • the silicon material is obtained, for example, by decalcifying (for example, heat treatment at 300 to 1000 ° C.) a layered polysilane obtained by treating CaSi 2 with an acid (eg, hydrochloric acid or hydrogen fluoride).
  • the polymer compound of this embodiment is particularly preferably used in combination with a silicon-based material that is a negative electrode active material having a large degree of expansion and contraction during charge / discharge.
  • a negative electrode active material only 1 type in said material may be used, and 2 or more types may be used together.
  • the above intermediate composition is used as the negative electrode binder mixed in the slurry. Moreover, you may use together the binder for other negative electrodes as a binder for negative electrodes.
  • examples of other negative electrode binders include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, polyimide, polyamideimide, carboxymethylcellulose, polyvinyl chloride, methacrylic resin, polyacrylonitrile, modified polyphenylene oxide, polyethylene oxide, Examples include polyethylene, polypropylene, polyacrylic acid, and phenol resin.
  • the solid content of the intermediate composition is preferably 1% by mass or more, and preferably 10% by mass or more, based on the total solid content of the negative electrode binder. More preferably.
  • the blending ratio (negative electrode active material: negative electrode binder) in the mass ratio of the negative electrode active material and the negative electrode binder can be appropriately set according to the types of the negative electrode active material and the negative electrode binder.
  • the blending ratio is, for example, preferably in the range of 5: 3 to 99: 1, more preferably in the range of 3: 1 to 97: 3, and in the range of 16: 3 to 95: 5. Is more preferable.
  • the negative electrode active material is the silicon material disclosed in International Publication No. 2014/080608
  • the blending ratio (negative electrode active material: negative electrode binder) in the mass ratio of the negative electrode active material and the negative electrode binder is: The range is preferably 3: 1 to 7.5: 1, more preferably 4: 1 to 5: 1.
  • the solvent a known solvent used at the time of producing an electrode of a power storage device such as a secondary battery can be appropriately used depending on the types of the negative electrode active material and the negative electrode binder.
  • Specific examples of the solvent include N-methyl-2-pyrrolidone, methanol, and methyl isobutyl ketone.
  • a known conductive auxiliary agent used for the negative electrode of a power storage device such as a secondary battery can be used.
  • Specific examples of the conductive assistant include acetylene black, carbon nanotube, and ketjen black. Of these conductive aids, only one kind may be used, or two or more kinds may be used in combination.
  • a conductive support agent when included in the slurry, it is preferable to include a dispersant together with the conductive support agent.
  • the dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl butyral, and a triazine compound. Only 1 type may be used among these dispersing agents, and 2 or more types may be used together.
  • the above slurry is applied to a current collector to form a negative electrode active material layer made of the slurry on the surface of the current collector.
  • the solvent (slurry solvent and solvent contained in the intermediate composition) contained in the negative electrode active material layer is removed, and the negative electrode active material layer is subjected to a drying treatment and a heat treatment to thereby remove the negative electrode active material. Harden the layer.
  • (A) polyacrylic acid, (B) polyfunctional amine, and (C) aromatic monoamine contained in the intermediate composition are condensed to form the high-performance material of this embodiment in the negative electrode active material layer.
  • a molecular compound is formed. Note that the heat treatment can be performed in a state where the negative electrode active material layer contains a solvent, but it is more preferable to perform the heat treatment in a state where the negative electrode active material layer is dried.
  • drying treatment and heat treatment include, for example, a method of heating using a heat source such as hot air, infrared rays, microwaves, and high frequencies under normal pressure or reduced pressure.
  • a heat source such as hot air, infrared rays, microwaves, and high frequencies under normal pressure or reduced pressure.
  • the drying treatment is preferably performed slowly at a low temperature rather than heated quickly at a high temperature, and the heating treatment is preferably performed quickly at a high temperature rather than heated slowly at a low temperature. By such heating, the initial efficiency and cycle characteristics of the power storage device can be improved.
  • a known metal material used as a negative electrode current collector of a power storage device such as a secondary battery can be used.
  • the metal material that can be used for the current collector include silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, molybdenum, and stainless steel. It is done.
  • the negative electrode using the polymer compound of this embodiment as a negative electrode binder can be effectively used for a non-aqueous power storage device including a non-aqueous electrolyte as an electrolyte.
  • the power storage device include a secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • such power storage devices are useful as non-aqueous secondary batteries for driving motors of electric vehicles and hybrid vehicles, and non-aqueous secondary batteries used in personal computers, portable communication devices, home appliances, office equipment, industrial equipment, etc. It is.
  • the polymer compound of the present embodiment is a compound obtained by condensing (A) polyacrylic acid, (B) polyfunctional amine, and (C) aromatic monoamine, and (A) polyacrylic
  • the chain structure composed of an acid has a free carboxyl group and a carboxyl group to which an aromatic monoamine is bonded.
  • the polymer compound of the present embodiment has a chain structure composed of polyacrylic acid and a crosslinked structure that connects carboxyl groups in the chain structure or between the chain structures, At least one crosslinked structure selected from the above general formulas (2) to (4).
  • the chain structure has a free carboxyl group and a carboxyl group to which an aromatic monoamine is bonded.
  • the polymer compound of the present embodiment is useful as a negative electrode binder for power storage devices.
  • the characteristics (initial efficiency and cycle characteristics) of the power storage device can be improved.
  • the polymer compound of the present embodiment is excellent in the effect of improving the cycle characteristics of the power storage device. That is, when a polymer compound composed of polyacrylic acid or a polyacrylic acid derivative is used as a negative electrode binder, the carboxyl groups in the chain structure are dehydrated and condensed by heat treatment performed during the production of the negative electrode. In some cases, a cross-linked structure with an acid anhydride structure may be formed. Since the length of the cross-linked structure due to the acid anhydride structure is small, when the cross-linked structure is excessively formed, the chain structures close closely, the polymer compound becomes rigid, and the polymer compound becomes flexible. Damaged.
  • a part of the carboxyl group of the chain structure is a structure capped with an aromatic monoamine, so that the acid anhydride structure cannot be formed as a side chain. Yes.
  • the number of carboxyl groups capable of forming an acid anhydride structure is reduced, and excessive formation of a crosslinked structure due to the acid anhydride structure is suppressed.
  • the aromatic ring structure of the aromatic monoamine bonded to the carboxyl group is a great steric hindrance to the close proximity of chain structures. Therefore, the polymer compound of this embodiment has a property that chain structures are difficult to approach. Such properties also suppress excessive formation of a crosslinked structure due to the acid anhydride structure.
  • the flexibility of the polymer compound is ensured by suppressing the excessive formation of the crosslinked structure due to the acid anhydride structure.
  • release of lithium etc. improves.
  • the network structure of the polymer compound is suppressed from becoming excessively dense, and lithium or the like can easily pass through the polymer compound. Become. As a result, the cycle characteristics of the power storage device are improved.
  • the polymer compound of the present embodiment as a negative electrode binder has a property that the cycle characteristics of the power storage device are easily maintained even when the weight average molecular weight of the chain structure made of polyacrylic acid is lowered. . Therefore, the polymer compound of this embodiment can function effectively as a negative electrode binder even when a low molecular weight polymer compound having a short chain structure portion is used.
  • the slurry can be prepared with a smaller amount of solvent. From this, the solid content ratio of the slurry can be set large. Thereby, since the drying time for volatilizing a solvent from a negative electrode active material layer is shortened when producing a negative electrode, productivity of a negative electrode improves. Therefore, when the polymer compound of the present embodiment is used as a negative electrode binder, it is easy to improve the productivity of the negative electrode.
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom.
  • ⁇ Test 1> The battery characteristics of the power storage device were evaluated when a polymer compound obtained by condensing polyacrylic acid, a polyfunctional amine having a specific molecular structure, and an aromatic monoamine was used as a negative electrode binder.
  • the battery characteristics of the power storage device when the polymer compound, the polymer compound obtained by condensing polyacrylic acid and aromatic monoamine, or polyacrylic acid was used as the negative electrode binder were evaluated.
  • PAA polyacrylic acid
  • NMP N-methyl-2-pyrrolidone
  • PAA having a weight average molecular weight of 250,000 is dissolved in NMP to prepare a 15% by mass PAA / NMP solution, and 12.7 g of this PAA / NMP solution (26.5 mmol in terms of monomer of PAA) is added to a flask under a nitrogen atmosphere. Sorted in.
  • Example 1 Into the flask, 1.05 g (2.64 mmol) of a 50 mass% NMP solution of 4,4′-diaminodiphenylmethane and 0.144 g (0.66 mmol) of a 50 mass% NMP solution of 4-aminophenol were added at room temperature. For 30 minutes. Then, the intermediate composition of Example 1 was obtained in the state of NMP solution by heat-processing (preheating process) for 2 hours at 110 degreeC using the Dean-Stark apparatus.
  • PAA + 4,4′-diaminodiphenylmethane + morpholine PAA having a weight average molecular weight of 250,000 is dissolved in NMP to prepare a 15% by mass PAA / NMP solution, and 12.7 g of this PAA / NMP solution (26.5 mmol in terms of monomer of PAA) is added to a flask under a nitrogen atmosphere. Sorted in.
  • PAA + 4,4′-diaminodiphenylmethane + benzylamine PAA having a weight average molecular weight of 250,000 is dissolved in NMP to prepare a 15% by mass PAA / NMP solution, and 12.7 g of this PAA / NMP solution (26.5 mmol in terms of monomer of PAA) is added to a flask under a nitrogen atmosphere. Sorted in.
  • the negative electrode active material layer in a state where NMP is removed and dried is subjected to a heat treatment at 180 ° C. for 2 hours in a vacuum (under reduced pressure), whereby an intermediate composition contained in the negative electrode active material layer And the negative electrode active material layer was cured by heating.
  • the electrode sheet which contains the high molecular compound which has a crosslinked structure as a binder for negative electrodes is subjected to a heat treatment at 180 ° C. for 2 hours in a vacuum (under reduced pressure), whereby an intermediate composition contained in the negative electrode active material layer And the negative electrode active material layer was cured by heating.
  • Example 2 replaced with the NMP solution of Example 1, and produced the same electrode sheet using PAA and the intermediate composition of each reference example.
  • a battery was produced.
  • a lithium ion secondary battery was obtained by housing the electrode body battery in the battery case and injecting a nonaqueous electrolyte, and then sealing the battery case.
  • As the separator Hoechst Celanese glass filter and Celgard celgard 2400 were used.
  • non-aqueous electrolyte a non-aqueous electrolyte was used in which lithium hexafluorophosphate was dissolved to a concentration of 1M in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
  • Cycle characteristics (%) (charge capacity after specified cycle / initial charge capacity) x 100
  • Test Example 1 using a polymer compound condensed with an aromatic monoamine as a binder for a negative electrode has condensed an aromatic monoamine. It was confirmed that the evaluation of the cycle characteristics was higher as compared with Test Example 2 in which no polymer compound was used as the negative electrode binder.
  • Test Example 3 and Test Example 4 using a polymer compound condensed with a non-aromatic monoamine as a negative electrode binder are Test Example 2 using a polymer compound not condensed with an aromatic monoamine as a negative electrode binder. It was confirmed that the evaluation of the cycle characteristics was lower than that of.
  • the aluminum foil and the positive electrode active material layer were firmly bonded to each other by compressing the aluminum foil and the positive electrode active material layer using a roll press so that the thickness of the positive electrode active material layer was 60 ⁇ m.
  • the electrode sheet for positive electrodes was obtained by performing the heat processing for 120 hours at 120 degreeC in the vacuum (under pressure reduction) with respect to the positive electrode active material layer of the state which NMP was removed and dried.
  • a separator made of a porous polyethylene film having a thickness of 20 ⁇ m was sandwiched between the above-described positive electrode sheet and the negative electrode sheet of Example 1 or Reference Example 1 to prepare an electrode plate group.
  • the above electrode plate group was placed inside a bag-shaped film member having one side opened of a laminate film, and a nonaqueous electrolyte was injected.
  • a non-aqueous electrolyte in which lithium hexafluorophosphate was dissolved to a concentration of 1 M in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio of 3: 4: 3 was used.
  • the lithium ion secondary battery by which the electrode group and the nonaqueous electrolyte were sealed in the film member was obtained by sealing the open side of the film member.
  • the obtained lithium ion secondary battery was charged to 4.5 V as SOC 100% at a current corresponding to 0.33 C. After charging, it was allowed to stand for 10 minutes, and discharged to 2.5 V as SOC 0% at a current equivalent to 0.33C. Thereafter, charging was performed at a current corresponding to 1 C up to 4.2 V as SOC 85%, and the electric resistance at that time (electric resistance at charging 85%) was measured. Furthermore, it stood still for 10 minutes, while discharging with the electric current equivalent to 1C, the electrical resistance in that case (electrical resistance at the time of discharge 85%) was measured. Further, the charging voltage was set to SOC 15%, 2.8 V, and the electrical resistance 15% during charging / discharging was measured in the same manner. The results are shown in Table 2.
  • Example 1-1 to 1-4 PAA + 4,4′-diaminodiphenylmethane + 4-aminophenol
  • the intermediate compositions of Examples 1-1 to 1-4 were obtained by varying the amount of 4-aminophenol (aromatic monoamine) contained in the intermediate composition of Example 1.
  • the blending amount of 4-aminophenol in each example is as shown in the column of aromatic monoamine in Table 3.
  • the intermediate compositions of Examples 1-1 to 1-4 were prepared in the same manner as in Example 1 except that the amount of 4-aminophenol was different.
  • the intermediate composition of Example 1-3 is the same as that of Example 1.
  • Electrodes sheets were prepared using the polymer compound obtained from the intermediate composition as a negative electrode binder.
  • the method for producing the electrode sheet is the same as the method in Test 1.
  • the lithium ion secondary battery was produced using the obtained electrode sheet, and the battery characteristic of the lithium ion secondary battery was evaluated. The results are shown in Table 3. Note that the method for producing the lithium ion secondary battery and the method for evaluating the battery characteristics of the lithium ion secondary battery are the same as those in Test 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高分子化合物は、ポリアクリル酸と、下記一般式(1)に示す多官能アミンと、芳香族モノアミンとが縮合してなる化合物であって、ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とを有する。Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。

Description

高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
 本発明は、蓄電装置の負極用バインダーとして用いられる高分子化合物、その高分子化合物の中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法に関する。
 二次電池を用いた製品は、増加の一途を辿っている。二次電池は、携帯電話やノート型パソコン等の携帯機器に多用されている。二次電池は、電気自動車用の大型電源としても注目されている。
 二次電池の電極は、例えば、銅やアルミニウム等の金属材料により形成された集電体と、その集電体上に結着された活物質層とから構成されている。活物質層は活物質を集電体に結着させるための電極用バインダー(結着剤)を含むことが一般的である。近年、電極用バインダーとして、安価な高分子化合物であるポリアクリル酸が利用されている。例えば、特許文献1には、ポリアクリル酸リチウム塩やポリアクリル酸ナトリウム塩を含む電極用バインダーが開示されている。特許文献2には、ポリアクリル酸とポリエチレンイミンとを含む電極用バインダーが開示されている。特許文献3には、ポリアクリル酸とアミン化合物とを含む電極用バインダーが開示されている。
特開2009-080971号公報 特開2009-135103号公報 特開2003-003031号公報
 本研究者らは、鋭意研究の結果、ポリアクリル酸と、特定の分子構造を有する多官能アミンと、芳香族モノアミンとを縮合してなる高分子化合物が二次電池等の蓄電装置の負極用バインダーとして有用であることを見出した。この発明の目的は、蓄電装置の負極用バインダーとして有用な高分子化合物、その高分子化合物を得るための中間組成物、その高分子化合物を負極バインダーとして用いた負極電極、蓄電装置、及び負極電極用スラリーを提供すること、並びにその高分子化合物の製造方法、及び負極電極の製造方法を提供することにある。
 上記課題を解決するため、本発明の第一の態様によれば、蓄電装置の負極用バインダーとして用いられる高分子化合物であって、ポリアクリル酸と、下記一般式(1)に示す多官能アミンと、芳香族モノアミンとが縮合してなり、ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とを有し、
Figure JPOXMLDOC01-appb-C000006
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物が提供される。
 上記課題を解決するため、本発明の第二の態様によれば、蓄電装置の負極用バインダーとして用いられる高分子化合物であって、ポリアクリル酸により構成される鎖状構造と、鎖状構造内又は鎖状構造間におけるカルボキシル基同士を接続する架橋構造とを有し、架橋構造は、下記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造であり、鎖状構造は、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とを有し、
Figure JPOXMLDOC01-appb-C000007
 PAAは、ポリアクリル酸により構成される鎖状構造を示し、Xは、下記一般式(5)に示す構造であり、
Figure JPOXMLDOC01-appb-C000008
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、水素原子、メチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物が提供される。
 上記課題を解決するため、本発明の第三の態様によれば、蓄電装置の負極用バインダーとして用いられる高分子化合物の中間組成物であって、ポリアクリル酸と、下記一般式(1)に示す多官能アミンと、芳香族モノアミンと、非水溶媒とを含有し、液状をなし、
Figure JPOXMLDOC01-appb-C000009
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、中間組成物が提供される。
 上記課題を解決するため、本発明の第四の態様によれば、ポリアクリル酸と、下記一般式(1)に示す多官能アミンと、芳香族モノアミンとを、150~230℃で加熱し、
Figure JPOXMLDOC01-appb-C000010
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物の製造方法が提供される。
 上記課題を解決するため、本発明の第五の態様によれば、上記の高分子化合物を含有する負極用バインダーと、負極活物質とを備え、負極活物質は、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種である、蓄電装置の負極電極が提供される。
 上記課題を解決するため、本発明の第六の態様によれば、上記の負極電極と、非水電解質とを備える、蓄電装置が提供される。
 上記課題を解決するため、本発明の第七の態様によれば、蓄電装置の負極電極の製造に用いられる負極電極用スラリーであって、上記の中間組成物と、負極活物質と、溶剤とを含有し、負極活物質として、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種を含有する、負極電極用スラリーが提供される。
 上記課題を解決するため、本発明の第八の態様によれば、上記の負極電極用スラリーを用いて、集電体に対して負極活物質層を形成する、蓄電装置の負極電極の製造方法が提供される。
 以下、本発明を具体化した実施形態を詳細に説明する。
 本実施形態の高分子化合物は、(A)ポリアクリル酸と、(B)多官能アミンと、(C)芳香族モノアミンとが縮合してなる化合物である。
 (A)ポリアクリル酸は、アクリル酸からなるホモポリマーである。ポリアクリル酸の重量平均分子量は、特に限定されないが、例えば、10,000~2,000,000の範囲であることが好ましく、25,000~1,800,000の範囲であることがより好ましく、50,000~1,500,000の範囲であることが更に好ましい。
 ここで、ポリアミドイミド等の従来の高分子化合物を負極用バインダーとして用いた場合には、高分子化合物の重量平均分子量が低下するにしたがって、蓄電装置のサイクル特性が低下する傾向がある。これに対して、本実施形態の高分子化合物を負極用バインダーとして用いた場合には、高分子化合物を構成するポリアクリル酸の重量平均分子量が低下しても、蓄電装置のサイクル特性が維持される。そのため、(A)ポリアクリル酸として、例えば、250,000以下や100,000以下の低分子量のポリアクリル酸が好適に用いられる。
 (B)多官能アミンは、下記一般式(1)に示す構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000011
 一般式(1)において、Yは炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子である。また、各ベンゼン環におけるYの結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。
 Yが直鎖アルキル基及びフェニレン基である場合において、その構造を構成する炭素原子には置換基が結合されてもよい。例えば、直鎖アルキル基を構成する炭素原子に結合される置換基としては、メチル基、エチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、メトキシ基、エトキシ基、オキソ基が挙げられる。これらの置換基のうちの一種のみが結合されてもよいし、二種以上が結合されてもよい。また、一つの炭素原子に結合される置換基の数は、一つであってもよいし、二つであってもよい。また、直鎖アルキル基及びフェニレン基を構成する炭素原子に結合される置換基は、アミノ基、又はアミノ基を含む置換基であってもよく、この場合には、3以上のアミノ基を有する多官能アミンとなる。
 一般式(1)において、R1,R2は、それぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。R1がメチル基、エチル基、トリフルオロメチル基、又はメトキシ基である場合において、R1の結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。R2についても同様である。
 (B)多官能アミンの具体例について記載する。
 Yが直鎖アルキル基である多官能アミンとしては、例えば、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-エチレンジアニリン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、1,1-ビス(4-アミノフェニル)シクロヘキサン、9、9-ビス(4-アミノフェニル)フルオレン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンゾフェノン、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、パラローズアニリンが挙げられる。
 Yがフェニレン基である多官能アミンとしては、例えば、1,3,5-トリス(4-アミノフェニル)ベンゼンが挙げられる。Yが酸素原子である多官能アミンとしては、例えば、4,4’-ジアミノジフェニルエーテルが挙げられる。1,3,5-トリス(4-アミノフェニル)ベンゼン、及びパラローズアニリンは、3つのアミノ基を有する三官能アミンである。上記の多官能アミンのうちの一種のみを用いてもよいし、二種以上を併用してもよい。
 (C)芳香族モノアミンは、芳香環構造を有する芳香族化合物に、弱塩基を示すアミノ基が結合された芳香族化合物であり、(A)ポリアクリル酸のカルボキシル基と縮合可能なアミノ基を一つのみ有している。
 芳香環構造としては、例えば、4員環~8員環の単環式の構造や、複数(例えば、2~3)の4員環~8員環が組み合わされた多環式の環状構造が挙げられる。芳香環構造は、炭素からなる環構造であってもよいし、炭素以外の元素を含む複素環構造であってもよい。また、(C)芳香族モノアミンは、一級アミンであってもよいし、二級アミンであってもよい。
 (C)芳香族モノアミンの具体例としては、アニリン、1-ナフチルアミン、2-ナフチルアミン、2-アミノアントラセン、1-アミノアントラセン、9-アミノアントラセン、1-アミノピレン、2-アミノピレン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-フルオロアニリン、3-フルオロアニリン、4-フルオロアニリン、2-クロロアニリン、3-クロロアニリン、4-クロロアニリン、2-ブロモアニリン、3-ブロモアニリン、4-ブロモアニリン、2-ヨードアニリン、3-ヨードアニリン、4-ヨードアニリン、o-トルイジン、m-トルイジン、p-トルイジン、4-アミノトリフェニルアミン、2,3-ジフルオロアニリン、2,4-ジフルオロアニリン、2,5-ジフルオロアニリン、2,6-ジフルオロアニリン、3,4-ジフルオロアニリン、3,5-フルオロアニリン、2,3-ジクロロアニリン、2,4-ジクロロアニリン、2,5-ジクロロアニリン、2,6-ジクロロアニリン、3,4-ジクロロアニリン、3,5-ジクロロアニリン、2,3-ジブロモアニリン、2,4-ジブロモアニリン、2,5-ジブロモアニリン、2,6-ジブロモアニリン、3,4-ジブロモアニリン、3,5-ジブロモアニリン、2,3-ジヨードアニリン、2,4-ジヨードアニリン、2,5-ジヨードアニリン、2,6-ジヨードアニリン、3,4-ジヨードアニリン、3,5-ジヨードアニリン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2,4,6-トリフルオロアニリン、2,3,4-トリフルオロアニリン、2,3,5-トリフルオロアニリン、2,3,6-トリフルオロアニリン、2,4,5-トリフルオロアニリン、3,4,5-トルフルオロアニリン、2,4,6-トリクロロアニリン、2,3,4-トリクロロアニリン、2,3,5-トリクロロアニリン、2,3,6-トリクロロアニリン、2,4,5-トリクロロアニリン、3,4,5-トリクロロアニリン、2,4,6-トリブロモアニリン、2,3,4-トリブロモアニリン、2,3,5-トリブロモアニリン、2,3,6-トリブロモアニリン、2,4,5-トリブロモアニリン、3,4,5-トリブロモアニリン、2,4,6-トリヨードアニリン、2,3,4-トリヨードアニリン、2,3,5-トリヨードアニリン、2,3,6-トリヨードアニリン、2,4,5-トリヨードアニリン、3,4,5-トリヨードアニリン、2,4,6-トリメチルアニリン、2,3,4-トリメチルアニリン、2,3,5-トリメチルアニリン、2,3,6-トリメチルアニリン、2,4,5-トリメチルアニリン、3,4,5-トリメチルアニリン、N,N-ジメチル-1,4-フェニレンジアミン、N,N-ジメチル-4,4’-ジアミノジフェニルメタン、2-アニシジン、3-アニシジン、4-アニシジン、2-アミノベンゼンチオール、3-アミノベンゼンチオール、4-アミノベンゼンチオール、2-アミノベンゾニトリル、3-アミノベンゾニトリル、4-アミノベンゾニトリルが挙げられる。上記の芳香族モノアミンのうちの一種のみを用いてもよいし、二種以上を併用してもよい。
 (A)ポリアクリル酸と(B)多官能アミンと(C)芳香族モノアミンとの配合割合は、(A)ポリアクリル酸に由来するカルボキシル基の総数「a」と、(B)多官能アミンに由来するアミノ基の総数「b」と、(C)芳香族モノアミン由来するアミノ基の総数「c」とが以下の関係式1を満たすように設定され、好ましくは、関係式1に加え更に以下の関係式2及び関係式3を満たすように設定される。
 関係式1:a>b+c
 関係式2:a/b=1.5/1~15/1(より好ましくは、2/1~10/1)
 関係式3:c/(a-b-c)=0.001/1~0.15/1(より好ましくは、0.01/1~0.1/1)
 (A)ポリアクリル酸と(B)多官能アミンと(C)芳香族モノアミンとが縮合してなる高分子化合物の上記の配合割合は、関係式1を満たすことにより、フリーのカルボキシル基が残存するように設定され、関係式2及び関係式3を満たすことにより、フリーのカルボキシル基と(C)芳香族モノアミンが付加されたカルボキシル基とが特定の比率で存在するように設定される。
 本実施形態の高分子化合物は、(A)ポリアクリル酸、(B)多官能アミン、及び(C)芳香族モノアミンを溶媒中で混合する混合工程と、混合工程にて得られた中間組成物を加熱処理する加熱工程とを経ることにより得られる。
 混合工程は、(A)ポリアクリル酸と(B)多官能アミンと(C)芳香族モノアミンと溶媒とが混合されてなる液状の中間組成物を得る工程である。混合工程に用いる溶媒としては、(A)ポリアクリル酸、(B)多官能アミン及び(C)芳香族モノアミンが溶解する溶媒を適宜選択して用いることができる。特に、溶解性向上の観点から、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、炭酸プロピレン、γ-ブチロラクトン、エタノール、プロパノール等の非水溶媒を用いることが好ましい。
 加熱工程は、中間組成物を加熱処理することにより、中間組成物に含有される(A)ポリアクリル酸と(B)多官能アミンと(C)芳香族モノアミンとを縮合させる工程である。加熱工程における加熱温度は、(A)ポリアクリル酸と(B)多官能アミン及び(C)芳香族モノアミンとの間にアミド結合部やイミド結合部を効率的に形成する観点から、150~230℃の範囲であることが好ましく、180~200℃の範囲であることがより好ましい。また、この加熱温度を高めると、本実施形態の高分子化合物を負極用バインダーとして用いた場合に、二次電池等の蓄電装置の特性(サイクル特性)が高められる。
 中間組成物を加熱する際に、アミド結合及びイミド結合を形成する縮合反応を進行させるため、又は縮合反応の反応速度を高めるために、中間組成物に触媒を添加してもよい。上記触媒としては、例えば、1-メチルイミダゾール、2-メチルイミダゾール、N,N’-ジシクロヘキシルカルボジイミド、N,N’-カルボニルジイミダゾール、N,N’-ジイソプロピルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、ジフェニルリン酸アジド、BOP試薬等の脱水縮合触媒を有効に用いることができる。これらの触媒を添加した場合には、アミド結合及びイミド結合をより低温で形成できるため、高分子化合物の製造効率が高められる。
 中間組成物は、加熱工程前に、予備加熱処理されることが好ましい。予備加熱の温度は、40~140℃の範囲であることが好ましく、60~130℃の範囲であることがより好ましい。予備加熱処理により、中間組成物に含有される(A)ポリアクリル酸、(B)多官能アミン及び(C)芳香族モノアミンが会合して、カルボキシル基とアミノ基との縮合反応が進行しやすい状態が形成される。その結果、加熱工程において、縮合反応が効率的に進行する。予備加熱処理により、カルボキシル基とアミノ基との縮合反応が部分的に進行して、アミド結合部やイミド結合部が形成されてもよい。
 また、予備加熱処理された中間組成物を用いる場合、加熱工程は、中間組成物に含有される溶媒を除去した状態で行うことが好ましい。この場合には、(A)ポリアクリル酸と(B)多官能アミン及び(C)芳香族モノアミンとの縮合反応が進行しやすくなる。
 そして、加熱工程を経ることにより、(A)ポリアクリル酸と(B)多官能アミンと(C)芳香族モノアミンとが縮合してなる高分子化合物が得られる。この高分子化合物は、(A)ポリアクリル酸のカルボキシル基と(B)多官能アミンのアミノ基との間にアミド結合及びイミド結合の少なくとも一方が形成されて、(A)ポリアクリル酸同士が架橋された構造を有していると考えられる。また、(A)ポリアクリル酸のカルボキシル基と(C)芳香族モノアミンとの間にアミド結合及びイミド結合の少なくとも一方が形成されて、芳香族モノアミンが付加されたカルボキシル基を有していると考えられる。
 つまり、高分子化合物は、ポリアクリル酸により構成される鎖状構造と、その鎖状構造内又は鎖状構造間のカルボキシル基同士を接続する架橋構造とを有する。そして、ポリアクリル酸により構成される鎖状構造には、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とが存在し、架橋構造は、下記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造である。なお、高分子化合物の鎖状構造において、フリーのカルボキシル基に対する芳香族モノアミンが結合したカルボキシル基の割合(芳香族モノアミンが結合したカルボキシル基/フリーのカルボキシル基)は、0.001~0.15の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(2)~(4)において、PAAは、ポリアクリル酸により構成される鎖状構造を示している。また、Xは、下記一般式(5)に示す構造である。イミド構造を有する一般式(3)~(4)において、一つのイミド構造を構成する二つのカルボニル基は、それぞれ異なる鎖状構造に結合されるカルボニル基であってもよいし、同一の鎖状構造に結合されるカルボニル基であってもよい。例えば、イミド構造を構成する二つのカルボキニル基が、同一の鎖状構造における隣接する炭素に結合されるカルボニル基である場合、イミド構造としてマレイミド構造が形成される。
Figure JPOXMLDOC01-appb-C000013
 一般式(5)において、Yは炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子である。また、各ベンゼン環におけるYの結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。一般式(5)におけるYは、一般式(1)におけるYに準じた構造となる。
 一般式(5)において、R1,R2は、それぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。R1がメチル基、トリフルオロメチル基、又はメトキシ基である場合において、R1の結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。R2についても同様である。一般式(5)におけるR1,R2は、一般式(1)におけるR1,R2に準じた構造となる。
 高分子化合物は、その架橋構造において、アミド結合部及びイミド結合部の両方を有していることが好ましい。つまり、高分子化合物は、架橋構造として、少なくとも一般式(2)及び一般式(4)の架橋構造、又は少なくとも一般式(3)の架橋構造を有していることが好ましい。
 また、本実施形態の高分子化合物は、第2の架橋構造を更に有してもよい。
 例えば、第2の架橋構造を更に有する高分子化合物として、(A)ポリアクリル酸と、(B)一般式(1)で示される多官能アミンと、その他の多官能アミンとが縮合してなる高分子化合物であってもよい。この場合、高分子化合物は、一般式(1)で示される多官能アミン由来の架橋構造に加えて、その他の多官能アミン由来の第2の架橋構造を更に有する。この第2の架橋構造を付加することにより、高分子化合物の強度や柔軟性等の物性を調整することができる。
 その他の多官能アミンとしては、例えば、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン、2-アミノアニリン(1,2-フェニレンジアミン)、3-アミノアニリン(1,3-フェニレンジアミン)、4-アミノアニリン(1,4-フェニレンジアミン)、2,4-ジアミノピリジン、2,5-ジアミノピリジン、2,6-ジアミノピリジン、1,3-ジイミノイソインドリンが挙げられる。
 その他の多官能アミンの配合割合は、(B)一般式(1)で示される多官能アミン10質量部に対して1質量部以下であることが好ましい。上記割合とすることにより、高分子化合物の強度や柔軟性等の物性が大きく変化して負極バインダーに適さなくなることを抑制できる。
 次に、本実施形態の高分子化合物を負極用バインダーとして用いた負極電極を製造する方法の一例について記載する。
 まず、負極活物質、負極用バインダー、溶剤を混合してスラリーを調製する。その際、必要に応じて導電助剤等の他の成分を更に混合してもよい。
 負極活物質としては、二次電池等の蓄電装置の負極活物質として用いられる公知の物質、例えば、炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物を用いることができる。
 炭素系材料としては、例えば、リチウムを吸蔵及び放出可能な炭素系材料を用いることができ、その具体例としては、難黒鉛化性炭素、天然黒鉛、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭素、カーボンブラック類が挙げられる。
 リチウムと合金化可能な元素としては、例えば、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが挙げられる。これらのなかでも、Siが特に好ましい。
 リチウムと合金化可能な元素を有する化合物としては、例えば、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biから選ばれる元素を有する化合物が挙げられる。これらのなかでも、Siを有する化合物であるシリコン系材料が特に好ましい。
 シリコン系材料としては、例えば、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<V≦2)、SnSiO、LiSiOが挙げられる。これらのなかでも、SiO(0<V≦2)が特に好ましい。
 また、国際公開2014/080608号に開示されるように、CaSiから脱カルシウム化反応を経て得られるシリコン材料を用いることもできる。上記シリコン材料は、例えば、CaSiを酸(例えば、塩酸やフッ化水素)で処理して得られる層状ポリシランを、脱カルシウム化(例えば、300~1000℃の加熱処理)して得られる。本実施形態の高分子化合物は、充放電時における膨張収縮の度合が大きい負極活物質であるシリコン系材料と組み合わせて用いることが特に好ましい。なお、負極活物質として、上記の物質のうちの一種のみを用いてもよいし、二種以上を併用して用いてもよい。
 スラリーに混合される負極用バインダーとしては、上記中間組成物が用いられる。
 また、負極用バインダーとして、他の負極用バインダーを併用してもよい。他の負極用バインダーとしては、例えば、ポリフッ化ビニリデン、ポリ四フッ化エチレン、スチレン-ブタジエンゴム、ポリイミド、ポリアミドイミド、カルボキシメチルセルロース、ポリ塩化ビニル、メタクリル樹脂、ポリアクリロニトリル、変性ポリフェニレンオキシド、ポリエチレンオキシド、ポリエチレン、ポリプロピレン、ポリアクリル酸、フェノール樹脂が挙げられる。
 これらの他の負極用バインダーのうち一種のみを併用してもよいし、二種以上を併用してもよい。なお、他の負極用バインダーを併用する場合には、負極用バインダーの総固形分に対して、中間組成物の固形分が1質量%以上含まれていることが好ましく、10質量%以上含まれていることがより好ましい。
 負極活物質と負極用バインダーとの質量比における配合割合(負極活物質:負極用バインダー)は、負極活物質及び負極用バインダーの種類に応じて適宜設定することができる。上記配合割合は、例えば、5:3~99:1の範囲であることが好ましく、3:1~97:3の範囲であることがより好ましく、16:3~95:5の範囲であることが更に好ましい。また、負極活物質が国際公開2014/080608号に開示される上記シリコン材料である場合には、負極活物質と負極用バインダーとの質量比における配合割合(負極活物質:負極用バインダー)は、3:1~7.5:1の範囲であることが好ましく、4:1~5:1の範囲であることがより好ましい。
 溶剤としては、二次電池等の蓄電装置の電極の作製時に用いられる公知の溶剤を、負極活物質及び負極用バインダーの種類に応じて適宜用いることができる。溶剤の具体例としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトンが挙げられる。
 導電助剤としては、二次電池等の蓄電装置の負極電極に用いられる公知の導電助剤を用いることができる。導電助剤の具体例としては、アセチレンブラック、カーボンナノチューブ、ケッチェンブラック等が挙げられる。これらの導電助剤のうち一種のみを用いてもよいし、二種以上を併用してもよい。
 なお、スラリー中に導電助剤を含有させる場合には、導電助剤と共に分散剤を含有させることが好ましい。分散剤の具体例としては、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルブチラール、トリアジン化合物等が挙げられる。これらの分散剤のうち一種のみを用いてもよいし、二種以上を併用してもよい。
 次いで、上記のスラリーを集電体に塗布して、集電体の表面にスラリーからなる負極活物質層を形成する。その後、負極活物質層に含有される溶媒(スラリーの溶剤、及び上記中間組成物に含有される溶媒)を除去して、負極活物質層を乾燥処理するとともに、加熱処理することにより負極活物質層を硬化させる。この加熱処理により、上記中間組成物に含有される(A)ポリアクリル酸と(B)多官能アミン及び(C)芳香族モノアミンとが縮合して、負極活物質層中に本実施形態の高分子化合物が形成される。なお、上記加熱処理は、負極活物質層に溶媒が含まれている状態で行うこともできるが、負極活物質層を乾燥させた状態として行うことがより好ましい。
 乾燥処理及び加熱処理の具体的方法としては、例えば、常圧下又は減圧下において、熱風、赤外線、マイクロ波、高周波等の熱源を用いて加熱する方法が挙げられる。加熱処理を行う際には、負極活物質層側から加熱するよりも集電体側から加熱することが好ましい。また、乾燥処理は、高温で素早く加熱するよりも、低温でゆっくりと加熱することが好ましく、加熱処理は、低温でゆっくり加熱するよりも、高温で素早く加熱することが好ましい。このような加熱により、蓄電装置の初期効率やサイクル特性を高めることができる。
 集電体として、二次電池等の蓄電装置の負極用集電体として用いられる公知の金属材料を用いることができる。集電体に利用できる金属材料としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、モリブデン、ステンレスが挙げられる。
 本実施形態の高分子化合物を負極用バインダーとして用いた負極電極は、電解質として非水電解質を備える非水系の蓄電装置に有効に用いることができる。蓄電装置としては、例えば、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタが挙げられる。また、こうした蓄電装置は、電気自動車及びハイブリッド自動車のモータ駆動用の非水系二次電池や、パソコン、携帯通信機器、家電製品、オフィス機器、産業機器等に利用される非水系二次電池として有用である。
 次に、本実施形態の効果について記載する。
 (1)本実施形態の高分子化合物は、(A)ポリアクリル酸と、(B)多官能アミンと、(C)芳香族モノアミンとが縮合してなる化合物であって、(A)ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とを有する。また、本実施形態の高分子化合物は、ポリアクリル酸により構成される鎖状構造と、鎖状構造内又は鎖状構造間におけるカルボキシル基同士を接続する架橋構造とを有し、架橋構造は、上記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造である。鎖状構造は、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とを有する。
 本実施形態の高分子化合物は、蓄電装置の負極用バインダーとして有用である。本実施形態の高分子化合物を負極用バインダーとして用いることにより、蓄電装置の特性(初期効率やサイクル特性)を高めることができる。
 特に、本実施形態の高分子化合物は、蓄電装置のサイクル特性を向上させる効果に優れている。すなわち、ポリアクリル酸やポリアクリル酸の誘導体からなる高分子化合物を負極用バインダーとして用いた場合には、負極電極の作製時に行われる加熱処理等によって、鎖状構造が有するカルボキシル基同士が脱水縮合し、酸無水物構造による架橋構造が形成されることがある。酸無水物構造による架橋構造の長さが小さいことから、架橋構造が過剰に形成されると、鎖状構造同士が密に接近し、高分子化合物が剛直化して、高分子化合物の柔軟性が損なわれる。
 こうした問題に対して、本実施形態の高分子化合物では、鎖状構造が有するカルボキシル基の一部を、芳香族モノアミンによりキャップされた構造とすることで、酸無水物構造を形成できない側鎖としている。これにより、酸無水物構造を形成可能なカルボキシル基の数が少なくなり、酸無水物構造による架橋構造の過剰な形成が抑制される。加えて、カルボキシル基に結合された芳香族モノアミンの芳香環構造は、鎖状構造同士が接近することに対する大きな立体障害となる。そのため、本実施形態の高分子化合物は、鎖状構造同士が接近し難い性質を有している。こうした性質によっても、酸無水物構造による架橋構造の過剰な形成が抑制される。
 このように、酸無水物構造による架橋構造の過剰な形成が抑制されることによって、高分子化合物の柔軟性が確保されている。これにより、負極用バインダーとして用いた場合に、リチウム等の吸蔵及び放出に伴う膨張及び収縮による体積変化に対する追従性が向上する。また、酸無水物構造による架橋構造の過剰な形成が抑制されることによって、高分子化合物の網目構造が過剰に密になることが抑制されて、高分子化合物の内部をリチウム等が通過しやすくなる。これらの結果、蓄電装置のサイクル特性が高められる。
 (2)負極用バインダーとしての本実施形態の高分子化合物は、ポリアクリル酸からなる鎖状構造の重量平均分子量を低くしても、蓄電装置のサイクル特性が維持されやすい性質を有している。そのため、鎖状構造部分の短い低分子量の高分子化合物とした場合にも、本実施形態の高分子化合物は、負極用バインダーとして有効に機能することができる。また、負極用バインダーとして低分子量の高分子化合物を用いた場合には、より少ない量の溶剤でスラリーを調製することができる。このことから、スラリーの固形分比を大きく設定することができる。これにより、負極電極を作製する際に負極活物質層から溶剤を揮発させるための乾燥時間が短縮されるため、負極電極の生産性が向上する。したがって、本実施形態の高分子化合物を負極用バインダーとして用いた場合には、負極電極の生産性の向上が容易である。
 (3)上記一般式(5)に示す、架橋構造の部分構造において、Yは炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子である。
 上記構成によれば、架橋構造内に運動が可能な部分構造を有するため、高分子化合物の伸縮性が向上する。これにより、本実施形態の高分子化合物を用いた負極用バインダーは、リチウム等の吸蔵及び放出に伴う膨張及び収縮による体積変化に対して追従しやすくなる。その結果、蓄電装置の特性が高められる。
 以下に、上記実施形態をさらに具体化した実施例について説明する。
 <試験1>
 ポリアクリル酸と特定の分子構造を有する多官能アミンと芳香族モノアミンとを縮合してなる高分子化合物を負極用バインダーとして用いた場合における蓄電装置の電池特性を評価した。また、比較対象として、ポリアクリル酸と特定の分子構造を有する多官能アミンとを縮合してなる高分子化合物、ポリアクリル酸と特定の分子構造を有する多官能アミンと非芳香族モノアミンとを縮合してなる高分子化合物、ポリアクリル酸と芳香族モノアミンとを縮合してなる高分子化合物、又はポリアクリル酸を負極用バインダーとして用いた場合における蓄電装置の電池特性を評価した。
 なお、以下では、ポリアクリル酸を「PAA」、N-メチル-2-ピロリドンを「NMP」と、それぞれ表記する。
 (実施例1:PAA+4,4’-ジアミノジフェニルメタン+4-アミノフェノール)
 重量平均分子量25万のPAAをNMPに溶解させて、15質量%のPAA/NMP溶液を調製し、このPAA/NMP溶液12.7g(PAAのモノマー換算で26.5mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に4,4’-ジアミノジフェニルメタンの50質量%NMP溶液1.05g(2.64mmol)と、4-アミノフェノールの50質量%NMP溶液0.144g(0.66mmol)とを加えて、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、実施例1の中間組成物をNMP溶液の状態で得た。
 (参考例1:PAA+4,4’-ジアミノジフェニルメタン)
 重量平均分子量25万のPAAをNMPに溶解させて、15質量%のPAA/NMP溶液を調製し、このPAA/NMP溶液12.7g(PAAのモノマー換算で26.5mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に4,4’-ジアミノジフェニルメタンの50質量%NMP溶液1.05g(2.64mmol)を加えて、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、参考例1の中間組成物をNMP溶液の状態で得た。
 (参考例2:PAA+4,4’-ジアミノジフェニルメタン+モルホリン)
 重量平均分子量25万のPAAをNMPに溶解させて、15質量%のPAA/NMP溶液を調製し、このPAA/NMP溶液12.7g(PAAのモノマー換算で26.5mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に4,4’-ジアミノジフェニルメタンの50質量%NMP溶液1.05g(2.64mmol)と、モルホリンの50質量%NMP溶液0.04g(0.66mmol)とを加えて、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、参考例2の中間組成物をNMP溶液の状態で得た。
 (参考例3:PAA+4,4’-ジアミノジフェニルメタン+ベンジルアミン)
 重量平均分子量25万のPAAをNMPに溶解させて、15質量%のPAA/NMP溶液を調製し、このPAA/NMP溶液12.7g(PAAのモノマー換算で26.5mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に4,4’-ジアミノジフェニルメタンの50質量%NMP溶液1.05g(2.64mmol)と、ベンジルアミンの50質量%NMP溶液0.141g(0.66mmol)とを加えて、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、参考例3の中間組成物をNMP溶液の状態で得た。
 (参考例4:PAA+4-アミノフェノール)
 重量平均分子量25万のPAAをNMPに溶解させて、15質量%のPAA/NMP溶液を調製し、このPAA/NMP溶液12.7g(PAAのモノマー換算で26.5mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に4-アミノフェノールの50質量%NMP溶液1.15g(5.28mmol)とを加えて、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、参考例4の中間組成物をNMP溶液の状態で得た。
 (シリコン材料の作製)
 0℃で氷浴したフッ化水素を1質量%の濃度で含有する濃塩酸20mlに、CaSi5gを加えて1時間撹拌した後、水を加えて更に5分間撹拌した。反応液を濾過して得られた黄色粉体を水及びエタノールで洗浄し、これを減圧乾燥することにより、層状ポリシランを得た。得られた層状ポリシランをアルゴン雰囲気下で500℃に加熱することにより、ポリシランから水素が離脱したシリコン材料を得た。
 (電極シートの作製)
 上記シリコン材料72.5質量部、アセチレンブラック13.5質量部、実施例1の中間組成物のNMP溶液14質量部を混合するとともに、この混合物にNMPを加えてスラリーを調製した。集電体としての30μmの電解銅箔の表面に対して、ドクターブレード法を用いてスラリーを膜状に塗布した。そして、スラリー中のNMPを揮発させて除去することにより、電解銅箔上に負極活物質層を形成した。次いで、ロールプレス機を用いて、負極活物質層の厚さが20μmとなるように電解銅箔及び負極活物質層を圧縮することにより、電解銅箔と負極活物質層を強固に密着接合させた。
 その後、NMPが除去されて乾燥した状態の負極活物質層に対して、真空中(減圧下)にて180℃、2時間の加熱処理を行うことにより、負極活物質層に含まれる中間組成物を縮合反応させるとともに、負極活物質層を加熱硬化させた。これにより、架橋構造を有する高分子化合物を負極用バインダーとして含有する電極シートを得た。
 また、実施例1のNMP溶液に代えて、PAA、各参考例の中間組成物を用いて同様の電極シートを作製した。
 (リチウムイオン二次電池の作製)
 電極シートを直径11mmの円形に裁断してなる負極電極(評価極)と、厚さ500μmの金属リチウム箔を直径13mmの円形に裁断してなる正極電極との間にセパレータを配置して電極体電池を作製した。電池ケース内に電極体電池を収容するとともに非水電解質を注入してから、電池ケースを密閉することにより、リチウムイオン二次電池を得た。なお、セパレータとしては、ヘキストセラニーズ社製ガラスフィルター及びセルガード社製celgard2400を用いた。非水電解質としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒に、ヘキサフルオロリン酸リチウムを1Mの濃度となるように溶解させた非水電解質を用いた。
 (電池特性の評価)
 得られたリチウムイオン二次電池について、直流電流0.2mAで負極電極における正極電極に対する電圧が0.01Vになるまで放電を行い、放電が終了してから10分後に、直流電流0.2mAで負極電極における正極電極に対する電圧が1.0Vになるまで充電を行った。このときの放電容量を初期放電容量とするとともに、充電容量を初期充電容量とした。そして、下記式に基づいて初期効率を算出した。その結果を表1に示す。
 初期効率(%)=(初期充電容量/初期放電容量)×100
 また、上記の放電及び充電を1サイクルとして規定サイクルの充放電を行い、下記式に基づいてサイクル特性を算出した。その結果を表1に示す。
 サイクル特性(%)=(規定サイクル後の充電容量/初期充電容量)×100
Figure JPOXMLDOC01-appb-T000014
 表1に示すように、PAAを負極用バインダーとして用いた試験例6、及び多官能アミンを縮合させていない高分子化合物を負極用バインダーとして用いた試験例5と比較して、多官能アミンを縮合させた高分子化合物を負極用バインダーとして用いた試験例1~4においては、サイクル特性の評価が高くなることが確認できた。この結果から、多官能アミンにより形成される架橋構造の存在がサイクル特性に大きな影響を与えていることが示唆される。
 そして、多官能アミンを縮合させて架橋構造を形成した高分子化合物のなかでも、芳香族モノアミンを縮合させた高分子化合物を負極用バインダーとして用いた試験例1は、芳香族モノアミンを縮合させていない高分子化合物を負極用バインダーとして用いた試験例2と比較して、サイクル特性の評価が高くなることが確認できた。一方、非芳香族モノアミンを縮合させた高分子化合物を負極用バインダーとして用いた試験例3及び試験例4は、芳香族モノアミンを縮合させていない高分子化合物を負極用バインダーとして用いた試験例2と比較して、サイクル特性の評価が低くなることが確認できた。
 この結果から、具体的なメカニズムは不明であるが、多官能アミンを縮合させて架橋構造を形成した高分子化合物における、モノアミンの縮合によるサイクル特性の向上効果は、非芳香族モノアミンを縮合させた場合には得られないことと、芳香族モノアミンを縮合させた場合に特有の効果であることが示唆される。
 <試験2>
 実施例1及び参考例1の電極シートについて、特定の充電状態(15%、85%)における充電時及び放電時の各電気抵抗を測定した。
 (リチウムイオン二次電池の作製)
 LiNi5/10Co2/10Mn3/10で表される正極岩塩構造のリチウム含有金属酸化物94質量部、アセチレンブラック3質量部、ポリフッ化ビニリデン3質量部をNMPに分散させ、スラリーを調製した。集電体としての20μmのアルミ箔の表面に対して、ドクターブレード法を用いてスラリーを膜状に塗布した。そして、スラリー中のNMPを揮発させて除去することにより、アルミ箔上に正極活物質層を形成した。次いで、ロールプレス機を用いて、正極活物質層の厚さが60μmとなるようにアルミ箔及び正極活物質層を圧縮することにより、アルミ箔と正極活物質層を強固に密着接合させた。その後、NMPが除去されて乾燥した状態の正極活物質層に対して、真空中(減圧下)にて120℃、6時間の加熱処理を行うことにより、正極用の電極シートを得た。
 次いで、厚み20μmの多孔質ポリエチレンフィルムからなるセパレータを、上記の正極用の電極シートと、実施例1又は参考例1の負極用の電極シートとにより挟持して、極板群を作製した。そして、ラミネートフィルムからなる一辺が開放された袋状のフィルム部材の内部に、上記の極板群を配置するとともに非水電解質を注入した。ここでは、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとを体積比3:4:3で混合した混合溶媒に、ヘキサフルオロリン酸リチウムを1Mの濃度となるように溶解させた非水電解質を用いた。その後、フィルム部材の開放された一辺を封止することにより、フィルム部材内に極板群及び非水電解質が密閉されたリチウムイオン二次電池を得た。
 (電気抵抗の測定)
 得られたリチウムイオン二次電池を0.33C相当の電流でSOC100%として4.5Vまで充電した。充電後、10分間静置し、0.33C相当の電流でSOC0%として2.5Vまで放電した。その後、SOC85%として4.2Vまで1C相当の電流で充電を行うとともに、その際の電気抵抗(充電時の電気抵抗85%)を測定した。さらに、10分間静置し、1C相当の電流で放電を行うとともに、その際の電気抵抗(放電時の電気抵抗85%)を測定した。また、充電電圧をSOC15%、2.8Vとして、充放電時の電気抵抗15%を同様に測定した。それらの結果を表2に示す。
 表2に示すように、芳香族モノアミンを縮合させていない参考例1の高分子化合物を負極用バインダーとして用いた試験例8と比較して、芳香族モノアミンを縮合させた実施例1の高分子化合物を負極用バインダーとして用いた試験例7では、各電圧での充放電時の電気抵抗が減少することが確認できた。この結果から、試験1において確認された、芳香族モノアミンを縮合させた高分子化合物を負極用バインダーとして用いた場合に得られるサイクル特性の向上効果は、電気抵抗が減少することに起因すると考えられる。
 <試験3>
 PAAと特定の分子構造を有する多官能アミンと芳香族モノアミンとを縮合してなる高分子化合物を負極用バインダーとして用いた場合において、芳香族モノアミンの配合割合を異ならせた場合における蓄電装置の電池特性の変化について評価した。
 (実施例1-1~1-4:PAA+4,4’-ジアミノジフェニルメタン+4-アミノフェノール)
 実施例1の中間組成物に含まれる4-アミノフェノール(芳香族モノアミン)の配合量を異ならせて、実施例1-1~1-4の中間組成物を得た。各実施例の4-アミノフェノールの配合量は、表3の芳香族モノアミンの欄に示すとおりである。実施例1-1~1-4の中間組成物は、4-アミノフェノールの配合量が異なる点を除いて、実施例1と同様の方法により調製した。なお、実施例1-3の中間組成物は、実施例1と同一である。
 (電池特性の評価)
 実施例1-1~1-4の中間組成物を用いて、中間組成物から得られる高分子化合物を負極バインダーとする電極シートを作製した。電極シートの作製方法は、試験1の方法と同じである。また、得られた電極シートを用いてリチウムイオン二次電池を作製し、そのリチウムイオン二次電池の電池特性を評価した。その結果を表3に示す。なお、リチウムイオン二次電池の作製方法、及びリチウムイオン二次電池の電池特性の評価方法は、試験1の方法と同じである。
 また、表3において、「a」は、PAAに由来するカルボキシル基の総数(PAAのモノマー換算のモル数)であり、「b」は、多官能アミンに由来するアミノ基の総数(多官能アミンのモル数×多官能アミンのアミノ基の数(2))であり、「c」は、芳香族モノアミン由来するアミノ基の総数(芳香族モノアミンのモル数)である。
Figure JPOXMLDOC01-appb-T000016
 表3に示すように、試験例9~11の結果から、芳香族モノアミンの配合割合が増加するにしたがってサイクル特性が向上する傾向が確認できた。また、試験例11~12の結果から、ある範囲を超えると、芳香族モノアミンの配合割合が増加するにしたがってサイクル特性の向上効果が小さくなる傾向も確認できた。これらの結果から、芳香族モノアミンの配合割合には、サイクル特性の向上効果の観点において、より好適な範囲が存在することが示唆される。

Claims (11)

  1. 蓄電装置の負極用バインダーとして用いられる高分子化合物であって、
     ポリアクリル酸と、下記一般式(1)に示す多官能アミンと、芳香族モノアミンとが縮合してなり、
     前記ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とを有し、
    Figure JPOXMLDOC01-appb-C000001
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物。
  2. 蓄電装置の負極用バインダーとして用いられる高分子化合物であって、
     ポリアクリル酸により構成される鎖状構造と、前記鎖状構造内又は鎖状構造間におけるカルボキシル基同士を接続する架橋構造とを有し、
     前記架橋構造は、下記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造であり、
     前記鎖状構造は、フリーのカルボキシル基と、芳香族モノアミンが結合したカルボキシル基とを有し、
    Figure JPOXMLDOC01-appb-C000002
     PAAは、ポリアクリル酸により構成される鎖状構造を示し、Xは、下記一般式(5)に示す構造であり、
    Figure JPOXMLDOC01-appb-C000003
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、水素原子、メチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物。
  3. 前記フリーのカルボキシル基に対する前記芳香族モノアミンが結合したカルボキシル基の割合が0.001~0.15の範囲である、請求項2に記載の高分子化合物。
  4. 蓄電装置の負極用バインダーとして用いられる高分子化合物の中間組成物であって、
     ポリアクリル酸と、下記一般式(1)に示す多官能アミンと、芳香族モノアミンと、非水溶媒とを含有し、液状をなし、
    Figure JPOXMLDOC01-appb-C000004
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、中間組成物。
  5. 請求項2又は3に記載の高分子化合物の製造方法であって、
     ポリアクリル酸と、下記一般式(1)に示す多官能アミンと、芳香族モノアミンとを、150~230℃で加熱し、
    Figure JPOXMLDOC01-appb-C000005
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物の製造方法。
  6. 蓄電装置の負極電極であって、
     請求項1~3のいずれか一項に記載の高分子化合物を含有する負極用バインダーと、負極活物質とを備え、
     前記負極活物質は、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種である、負極電極。
  7. 前記負極活物質は、CaSiから脱カルシウム化反応を経て得られるシリコン材料、Si、及びSiO(0>v>2)から選ばれる少なくとも一種である、請求項6に記載の負極電極。
  8. 請求項7に記載の負極電極と、非水電解質とを備える、蓄電装置。
  9. 蓄電装置の負極電極の製造に用いられる負極電極用スラリーであって、
     請求項4に記載の中間組成物と、負極活物質と、溶剤とを含有し、
     前記負極活物質として、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種を含有する、負極電極用スラリー。
  10. 蓄電装置の負極電極の製造方法であって、
     請求項9に記載の負極電極用スラリーを用いて、集電体に対して負極活物質層を形成する、負極電極の製造方法。
  11. 前記負極電極用スラリーは、前記負極活物質として、CaSiから脱カルシウム化反応を経て得られるシリコン材料、Si、及びSiO(0>v>2)から選ばれる少なくとも一種を含有する、請求項10に記載の負極電極の製造方法。
PCT/JP2017/003140 2016-02-18 2017-01-30 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法 WO2017141674A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780011580.6A CN108701832B (zh) 2016-02-18 2017-01-30 高分子化合物和负极电极及其制造方法、中间组成物、蓄电装置、负极电极用浆料
US16/075,753 US10351672B2 (en) 2016-02-18 2017-01-30 Polymer compound formed by condensing polyacrylic acid, polyamine and aromatic monoamine, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028984 2016-02-18
JP2016028984A JP6696210B2 (ja) 2016-02-18 2016-02-18 負極用バインダー、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/075,753 Continuation US10351672B2 (en) 2016-02-18 2017-01-30 Polymer compound formed by condensing polyacrylic acid, polyamine and aromatic monoamine, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode

Publications (1)

Publication Number Publication Date
WO2017141674A1 true WO2017141674A1 (ja) 2017-08-24

Family

ID=59625846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003140 WO2017141674A1 (ja) 2016-02-18 2017-01-30 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Country Status (4)

Country Link
US (1) US10351672B2 (ja)
JP (1) JP6696210B2 (ja)
CN (1) CN108701832B (ja)
WO (1) WO2017141674A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148886A (zh) * 2018-08-28 2019-01-04 合肥国轩高科动力能源有限公司 粘结剂及其制备方法、锂离子电池负极片
WO2020031595A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極の製造方法
WO2020031597A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極の製造方法及び電極用結着剤
WO2020031596A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極及び負極の製造方法並びに電極用結着剤
JP2020027791A (ja) * 2018-08-10 2020-02-20 株式会社豊田自動織機 負極及び負極の製造方法並びに電極用結着剤
WO2020066218A1 (ja) * 2018-09-25 2020-04-02 株式会社豊田自動織機 負極用結着剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696200B2 (ja) * 2016-02-12 2020-05-20 株式会社豊田自動織機 負極用バインダー、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
CN116864692B (zh) * 2023-08-31 2023-12-15 江苏正力新能电池技术有限公司 硅负极片及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034379A (ja) * 2006-06-28 2008-02-14 Sanyo Chem Ind Ltd アルカリ電池用増粘剤及びアルカリ電池
JP2009256570A (ja) * 2008-03-17 2009-11-05 Hitachi Chem Co Ltd アクリルポリマー、その合成方法、及びこれを用いた重合性樹脂組成物、ゲル状高分子電解質
JP2014123557A (ja) * 2012-11-20 2014-07-03 Sanyo Chem Ind Ltd アルカリ電池正極用結合剤及びアルカリ電池
US20140312268A1 (en) * 2013-04-23 2014-10-23 E I Du Pont De Nemours And Company Battery binder
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016063882A1 (ja) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2016084548A1 (ja) * 2014-11-25 2016-06-02 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551211A (en) * 1968-12-23 1970-12-29 Union Carbide Corp Anhydrous battery utilizing polymeric electrolyte
JP2003003031A (ja) * 2001-06-25 2003-01-08 Hitachi Chem Co Ltd カルボキシル基含有樹脂組成物およびこれを用いた電池用バインダ樹脂組成物、電極および電池
WO2006052313A1 (en) * 2004-11-08 2006-05-18 3M Innovative Properties Company Polyimide electrode binders
JP5252386B2 (ja) 2007-09-25 2013-07-31 学校法人東京理科大学 リチウムイオン電池用負極
US7931984B2 (en) 2007-11-28 2011-04-26 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
US8034485B2 (en) * 2008-05-29 2011-10-11 3M Innovative Properties Company Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
CN103053048A (zh) * 2010-08-02 2013-04-17 日产自动车株式会社 锂离子二次电池用负极及其制造方法
US9437872B2 (en) * 2012-12-04 2016-09-06 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP6288739B2 (ja) * 2014-03-20 2018-03-07 Necディスプレイソリューションズ株式会社 投写型表示装置および投写型表示装置の投写方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034379A (ja) * 2006-06-28 2008-02-14 Sanyo Chem Ind Ltd アルカリ電池用増粘剤及びアルカリ電池
JP2009256570A (ja) * 2008-03-17 2009-11-05 Hitachi Chem Co Ltd アクリルポリマー、その合成方法、及びこれを用いた重合性樹脂組成物、ゲル状高分子電解質
JP2014123557A (ja) * 2012-11-20 2014-07-03 Sanyo Chem Ind Ltd アルカリ電池正極用結合剤及びアルカリ電池
US20140312268A1 (en) * 2013-04-23 2014-10-23 E I Du Pont De Nemours And Company Battery binder
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016063882A1 (ja) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2016084548A1 (ja) * 2014-11-25 2016-06-02 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031595A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極の製造方法
WO2020031597A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極の製造方法及び電極用結着剤
WO2020031596A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極及び負極の製造方法並びに電極用結着剤
JP2020027791A (ja) * 2018-08-10 2020-02-20 株式会社豊田自動織機 負極及び負極の製造方法並びに電極用結着剤
JP7183707B2 (ja) 2018-08-10 2022-12-06 株式会社豊田自動織機 負極及び負極の製造方法並びに電極用結着剤
CN109148886A (zh) * 2018-08-28 2019-01-04 合肥国轩高科动力能源有限公司 粘结剂及其制备方法、锂离子电池负极片
CN109148886B (zh) * 2018-08-28 2021-06-11 合肥国轩高科动力能源有限公司 粘结剂及其制备方法、锂离子电池负极片
WO2020066218A1 (ja) * 2018-09-25 2020-04-02 株式会社豊田自動織機 負極用結着剤

Also Published As

Publication number Publication date
CN108701832A (zh) 2018-10-23
JP6696210B2 (ja) 2020-05-20
JP2017147144A (ja) 2017-08-24
US20190040199A1 (en) 2019-02-07
US10351672B2 (en) 2019-07-16
CN108701832B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
JP6202217B2 (ja) 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
JP6696210B2 (ja) 負極用バインダー、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
JP6610407B2 (ja) 高分子化合物、中間組成物、負極電極、蓄電装置、及び高分子化合物の製造方法
JP6623808B2 (ja) 負極電極用スラリー及び負極電極の製造方法
WO2017138395A1 (ja) 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
US10707490B2 (en) Polymer compound, intermediate composition, negative electrode, electricity storage device, slurry for negative electrodes, method for producing polymer compound, and method for producing negative electrode
JP6891900B2 (ja) 負極用バインダー、中間組成物、負極電極、蓄電装置、高分子化合物の製造方法、及び蓄電装置の負極電極の製造方法
JP6642081B2 (ja) 高分子化合物、負極用バインダー、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
JP6657758B2 (ja) 中間組成物、負極電極用スラリー、及び負極電極の製造方法
JP2016143556A (ja) 蓄電装置用の負極電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752937

Country of ref document: EP

Kind code of ref document: A1