WO2017138395A1 - 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法 - Google Patents

高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法 Download PDF

Info

Publication number
WO2017138395A1
WO2017138395A1 PCT/JP2017/003248 JP2017003248W WO2017138395A1 WO 2017138395 A1 WO2017138395 A1 WO 2017138395A1 JP 2017003248 W JP2017003248 W JP 2017003248W WO 2017138395 A1 WO2017138395 A1 WO 2017138395A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
group
polymer compound
polyacrylic acid
lithium
Prior art date
Application number
PCT/JP2017/003248
Other languages
English (en)
French (fr)
Inventor
剛司 近藤
佑介 杉山
合田 信弘
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Priority to CN201780010508.1A priority Critical patent/CN108604686B/zh
Priority to US16/076,033 priority patent/US10538625B2/en
Publication of WO2017138395A1 publication Critical patent/WO2017138395A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a polymer compound used as a binder for a negative electrode of a power storage device, an intermediate composition of the polymer compound, a negative electrode, a power storage device, a slurry for a negative electrode, a method for producing a polymer compound, and a method for producing a negative electrode About.
  • Secondary batteries are widely used in mobile devices such as mobile phones and notebook computers. Secondary batteries are also attracting attention as large power sources for electric vehicles.
  • the electrode of the secondary battery is composed of, for example, a current collector formed of a metal material such as copper or aluminum and an active material layer bound on the current collector.
  • the active material layer generally contains an electrode binder (binder) for binding the active material to the current collector.
  • polyacrylic acid which is an inexpensive polymer compound, has been used as a binder for electrodes.
  • Patent Document 1 discloses an electrode binder containing a polyacrylic acid lithium salt or a polyacrylic acid sodium salt.
  • Patent Document 2 discloses an electrode binder containing polyacrylic acid and polyethyleneimine.
  • Patent Document 3 discloses an electrode binder containing polyacrylic acid and an amine compound.
  • An object of the present invention is to provide a polymer compound useful as a negative electrode binder for a power storage device, an intermediate composition for obtaining the polymer compound, a negative electrode using the polymer compound as a negative electrode binder, a power storage device, and a negative electrode Is to provide a slurry.
  • the objective of this invention is providing the manufacturing method of the polymer compound, and the manufacturing method of a negative electrode.
  • a polymer compound used as a negative electrode binder of a power storage device wherein polyacrylic acid in which a part of a carboxyl group is lithium-chlorinated, A chain structure formed by condensation with a polyfunctional amine represented by the general formula (1) and having a polyacrylic acid has a free carboxyl group and a lithium chloride carboxyl group,
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group
  • a polymer compound that is a methoxy group is provided.
  • a polymer compound used as a negative electrode binder of a power storage device wherein a chain structure composed of polyacrylic acid and a chain structure Or a cross-linked structure that connects carboxyl groups between chain structures, and the cross-linked structure is at least one cross-linked structure selected from the following general formulas (2) to (4), and the chain structure is free Having a carboxyl group of lithium and a lithium chloride carboxyl group,
  • PAA represents a chain structure composed of lithium-chlorinated polyacrylic acid
  • X is a structure represented by the following general formula (5)
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently a hydrogen atom, a methyl group, a trifluoromethyl group, or a methoxy group.
  • an intermediate composition of a polymer compound used as a binder for a negative electrode of a power storage device wherein a polyacrylic polymer in which a carboxyl group is partially lithium-chlorinated.
  • An acid, a polyfunctional amine represented by the following general formula (1), a mixed solvent of a non-aqueous solvent and water, and polyacrylic acid and a polyfunctional amine are dissolved in the mixed solvent;
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group
  • an intermediate composition is provided that is a methoxy group.
  • a polyacrylic acid in which a part of a carboxyl group is lithium-chlorinated and a polyfunctional amine represented by the following general formula (1) are mixed with a non-aqueous solvent. And heated at 150-230 ° C in a mixed solvent of water and water,
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group
  • a method for producing a polymer compound that is a methoxy group is provided.
  • the negative electrode binder comprising the above polymer compound and a negative electrode active material, wherein the negative electrode active material can occlude and release lithium.
  • a negative electrode for a power storage device which is at least one selected from a carbon-based material, an element that can be alloyed with lithium, and a compound that has an element that can be alloyed with lithium.
  • a power storage device including the above negative electrode and a nonaqueous electrolyte.
  • a slurry for a negative electrode used in the production of a negative electrode of a power storage device comprising the above intermediate composition and a negative electrode active material.
  • a negative electrode active material layer is formed on a current collector using the above negative electrode slurry, and a method for manufacturing a negative electrode of a power storage device Is provided.
  • the polymer compound of the present embodiment is a compound obtained by condensing (A) polyacrylic acid (lithiated polyacrylic acid) in which a part of the carboxyl group is lithium-chlorinated and (B) a polyfunctional amine.
  • the lithiated polyacrylic acid is a compound in which a part of the carboxyl group of polyacrylic acid, which is a homopolymer made of acrylic acid, is lithium-chlorinated.
  • a commercially available product may be used, or a part of the carboxyl group of the polyacrylic acid may be lithium chloride (medium) using a lithium compound such as lithium hydroxide, lithium carbonate, or organic lithium. You may use what was summed up.
  • the weight average molecular weight of the lithiated polyacrylic acid is not particularly limited, but is preferably in the range of 10,000 to 2,000,000, for example, in terms of lithium converted to a hydrogen atom, and 25,000 to 1 , 800,000 is more preferable, and a range of 50,000 to 1,500,000 is still more preferable.
  • the cycle characteristics of the power storage device tend to decrease as the weight average molecular weight of the polymer compound decreases.
  • the cycle characteristics of the power storage device are maintained even when the weight average molecular weight of the polyacrylic acid constituting the polymer compound is decreased.
  • the (A) lithiated polyacrylic acid for example, a low molecular weight polyacrylic acid of 250,000 or less or 100,000 or less is suitably used.
  • the polyfunctional amine is a compound having a structure represented by the following general formula (1).
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom.
  • the bonding position of Y in each benzene ring may be any of the ortho position, meta position and para position with respect to the amino group.
  • a substituent may be bonded to the carbon atom constituting the structure.
  • substituent bonded to the carbon atom constituting the linear alkyl group include a methyl group, an ethyl group, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, and an oxo group. . Only one of these substituents may be bonded, or two or more may be bonded. Further, the number of substituents bonded to one carbon atom may be one or two.
  • the substituent bonded to the carbon atom constituting the linear alkyl group and the phenylene group may be an amino group or a substituent containing an amino group, and in this case, it has three or more amino groups. It becomes a polyfunctional amine.
  • R1 and R2 are each independently one or more hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group, or a methoxy group.
  • the bonding position of R1 may be any of an ortho position, a meta position, and a para position with respect to the amino group. The same applies to R2.
  • polyfunctional amine (B) The specific example of a polyfunctional amine is described.
  • examples of the polyfunctional amine in which Y is a linear alkyl group include 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-ethylenedianiline, 4 , 4'-diamino-3,3'-dimethyldiphenylmethane, 1,1-bis (4-aminophenyl) cyclohexane, 9,9-bis (4-aminophenyl) fluorene, 2,2'-bis (4-amino) Phenyl) hexafluoropropane, 4,4′-diaminobenzophenone, 4,4′-methylenebis (2-ethyl-6-methylaniline), pararose aniline.
  • Examples of the polyfunctional amine in which Y is a phenylene group include 1,3,5-tris (4-aminophenyl) benzene.
  • Examples of the polyfunctional amine in which Y is an oxygen atom include 4,4'-diaminodiphenyl ether.
  • 1,3,5-tris (4-aminophenyl) benzene and pararose aniline are trifunctional amines having three amino groups. Only one kind of the above polyfunctional amines may be used, or two or more kinds may be used in combination.
  • the blending ratio when condensing lithiated polyacrylic acid and (B) polyfunctional amine is set according to the number of amino groups of (B) polyfunctional amine. That is, the blending ratio is set so that (A) the total number of non-lithiated carboxyl groups derived from lithiated polyacrylic acid is greater than the total number of amino groups derived from (B) polyfunctional amine. . In other words, the blending ratio is set so that (A) one non-lithiated carboxyl group in lithiated polyacrylic acid is 1 equivalent or more with respect to 1 equivalent of amino group in (B) polyfunctional amine.
  • the ratio (carboxyl group / amino group ratio) of (A) the total number of non-lithiated carboxyl groups derived from lithiated polyacrylic acid and (B) the total number of amino groups derived from polyfunctional amine is: A range of 1 to 8 is preferable, and a range of 2 to 6 is more preferable.
  • the polymer compound of the present embodiment includes (A) a mixed step of mixing lithiated polyacrylic acid and (B) a polyfunctional amine in a solvent, and a heating step of heat-treating the intermediate composition obtained in the mixing step. It is obtained by going through.
  • the mixing step is a step of obtaining a liquid intermediate composition in which (A) lithiated polyacrylic acid and (B) a polyfunctional amine are mixed.
  • a mixed solvent of a nonaqueous solvent and water is used.
  • non-aqueous solvent constituting the mixed solvent examples include acetone, tetrahydrofuran, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene carbonate, ⁇ -butyllactone, N-methyl-2-pyrrolidone, and dimethylformamide. , Dimethylacetamide, acetonitrile, dimethyl sulfoxide, ethylene glycol monobutyl ether and the like. Only one of these non-aqueous solvents may be mixed, or two or more of them may be mixed.
  • the mixing ratio in the mass ratio of the nonaqueous solvent and water in the mixed solvent is set to a ratio in which (A) lithiated polyacrylic acid and (B) polyfunctional amine can be dissolved (does not precipitate).
  • the said mixing ratio is set according to the lithiation degree of (A) lithiation polyacrylic acid calculated
  • the heating step is a step of condensing (A) lithiated polyacrylic acid and (B) polyfunctional amine contained in the intermediate composition by heat-treating the intermediate composition.
  • the heating temperature in the heating step is in the range of 150 to 230 ° C. from the viewpoint of efficiently forming an amide bond or imide bond between (A) lithiated polyacrylic acid and (B) a polyfunctional amine.
  • the temperature is preferably in the range of 180 to 200 ° C.
  • this heating temperature is raised, the characteristics (cycle characteristics) of a power storage device such as a secondary battery are enhanced when the polymer compound of the present embodiment is used as a negative electrode binder.
  • a catalyst may be added to the intermediate composition in order to advance a condensation reaction for forming an amide bond and an imide bond, or to increase the reaction rate of the condensation reaction.
  • the catalyst include 1-methylimidazole, 2-methylimidazole, N, N′-dicyclohexylcarbodiimide, N, N′-carbonyldiimidazole, N, N′-diisopropylcarbodiimide, 1- [3- (dimethylamino).
  • Dehydration condensation catalysts such as) propyl] -3-ethylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, diphenyl phosphate azide, BOP reagent and the like can be used effectively. When these catalysts are added, amide bonds and imide bonds can be formed at a lower temperature, so that the production efficiency of the polymer compound can be increased.
  • the intermediate composition is preferably preheated before the heating step.
  • the preheating temperature is preferably in the range of 40 to 140 ° C., more preferably in the range of 60 to 130 ° C.
  • the (A) lithiated polyacrylic acid and (B) polyfunctional amine contained in the intermediate composition are associated to form a state in which the condensation reaction between the carboxyl group and the amino group easily proceeds.
  • the condensation reaction proceeds efficiently in the heating step.
  • the condensation reaction between the carboxyl group and the amino group may partially proceed to form an amide bond portion or an imide bond portion.
  • the heating step is preferably performed in a state in which the solvent contained in the intermediate composition is removed.
  • the condensation reaction between (A) lithiated polyacrylic acid and (B) polyfunctional amine easily proceeds.
  • a polymer compound obtained by condensing (A) lithiated polyacrylic acid and (B) polyfunctional amine is obtained.
  • this polymer compound at least one of an amide bond and an imide bond is formed between (A) the carboxyl group of lithiated polyacrylic acid and (B) the amino group of polyfunctional amine. It is considered that acrylic acid has a cross-linked structure.
  • the polymer compound has (A) a chain structure composed of lithiated polyacrylic acid and a cross-linked structure that connects carboxyl groups in the chain structure or between the chain structures.
  • the chain structure composed of (A) lithiated polyacrylic acid there are free carboxyl groups and lithium chloride carboxyl groups, and the crosslinked structures are represented by the following general formulas (2) to (4).
  • the ratio of free carboxyl group to lithium chloride carboxyl group is 95: The range is preferably 5 to 25:75, and more preferably 95: 5 to 45:55.
  • PAA represents a chain structure composed of lithiated polyacrylic acid.
  • X is a structure represented by the following general formula (5).
  • the two carbonyl groups constituting one imide structure may be carbonyl groups bonded to different chain structures, or the same chain It may be a carbonyl group bonded to the structure.
  • a maleimide structure is formed as the imide structure.
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom. Further, the bonding position of Y in each benzene ring may be any of the ortho position, meta position and para position with respect to the amino group.
  • Y in the general formula (5) has a structure according to Y in the general formula (1).
  • R1 and R2 are each independently one or a plurality of hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl group, or a methoxy group.
  • the bonding position of R1 may be any of the ortho, meta, and para positions relative to the amino group.
  • R1 and R2 in the general formula (5) have a structure according to R1 and R2 in the general formula (1).
  • the polymer compound preferably has both an amide bond portion and an imide bond portion in its crosslinked structure. That is, the polymer compound preferably has at least a crosslinked structure represented by general formula (2) and general formula (4) or at least a crosslinked structure represented by general formula (3) as a crosslinked structure.
  • the polymer compound may have an acid anhydride structure (CO—O—CO) formed by dehydration condensation of two carboxyl groups in the molecular structure.
  • the acid anhydride structure may be formed in the same chain structure (PAA) or may be formed between different chain structures (PAA). That is, two carbonyl carbons contained in the acid anhydride structure may be bonded to the same chain structure (PAA), or may be bonded to different chain structures (PAA).
  • the polymer compound of the present embodiment may further have a second crosslinked structure.
  • a polymer compound further having a second crosslinked structure (A) lithiated polyacrylic acid, (B) a polyfunctional amine represented by the general formula (1), and other polyfunctional amines are condensed. It may be a polymer compound.
  • the polymer compound further has a second cross-linked structure derived from other polyfunctional amines in addition to the cross-linked structure derived from the polyfunctional amine represented by the general formula (1). By adding this second crosslinked structure, physical properties such as strength and flexibility of the polymer compound can be adjusted.
  • Examples of other polyfunctional amines include 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, 2-aminoaniline (1,2-phenylenediamine), 3-aminoaniline (1 , 3-phenylenediamine), 4-aminoaniline (1,4-phenylenediamine), 2,4-diaminopyridine, 2,5-diaminopyridine, 2,6-diaminopyridine, 1,3-diiminoisoindoline. Can be mentioned.
  • the blending ratio of the other polyfunctional amine is preferably 1 part by mass or less with respect to 10 parts by mass of the polyfunctional amine represented by (B) the general formula (1). By setting it as the said ratio, it can suppress that physical properties, such as the intensity
  • a negative electrode active material a negative electrode binder, and a solvent are mixed to prepare a slurry. In that case, you may further mix other components, such as a conductive support agent, as needed.
  • the negative electrode active material a known material used as a negative electrode active material for a power storage device such as a secondary battery, for example, a carbon-based material, an element that can be alloyed with lithium, and a compound that has an element that can be alloyed with lithium are used. Can be used.
  • the carbon-based material for example, a carbon-based material capable of occluding and releasing lithium can be used. Specific examples thereof include non-graphitizable carbon, natural graphite, artificial graphite, cokes, graphites, glassy materials. Examples thereof include carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks.
  • elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi are mentioned. Of these, Si is particularly preferable.
  • Examples of the compound having an element that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, and In. , Si, Ge, Sn, Pb, Sb, and a compound having an element selected from Bi.
  • a silicon-based material that is a compound containing Si is particularly preferable.
  • silicon-based material examples include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2, TaSi 2, VSi 2 , WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO V (0 ⁇ V ⁇ 2), include SnSiO 3, LiSiO. Among these, SiO V (0 ⁇ V ⁇ 2) is particularly preferable.
  • a silicon material obtained from CaSi 2 through a decalcification reaction can also be used.
  • the silicon material is obtained, for example, by decalcifying (for example, heat treatment at 300 to 1000 ° C.) a layered polysilane obtained by treating CaSi 2 with an acid (eg, hydrochloric acid or hydrogen fluoride).
  • the polymer compound of this embodiment is particularly preferably used in combination with a silicon-based material that is a negative electrode active material having a large degree of expansion and contraction during charge / discharge.
  • a negative electrode active material only 1 type in said material may be used, and 2 or more types may be used together.
  • the above intermediate composition is used as the negative electrode binder mixed in the slurry. Moreover, you may use together the binder for other negative electrodes as a binder for negative electrodes.
  • examples of other negative electrode binders include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, polyimide, polyamideimide, carboxymethylcellulose, polyvinyl chloride, methacrylic resin, polyacrylonitrile, modified polyphenylene oxide, polyethylene oxide, Examples include polyethylene, polypropylene, polyacrylic acid, and phenol resin.
  • the solid content of the intermediate composition is preferably 1% by mass or more, and preferably 10% by mass or more, based on the total solid content of the negative electrode binder. More preferably.
  • the blending ratio (negative electrode active material: negative electrode binder) in the mass ratio of the negative electrode active material and the negative electrode binder can be appropriately set according to the types of the negative electrode active material and the negative electrode binder.
  • the blending ratio is, for example, preferably in the range of 5: 3 to 99: 1, more preferably in the range of 3: 1 to 97: 3, and in the range of 16: 3 to 95: 5. Is more preferable.
  • a mixed solvent of non-aqueous solvent and water is used as the solvent.
  • the mixing ratio of the non-aqueous solvent and water in the mixed solvent is set to a ratio in which each component constituting the intermediate composition can be dissolved (not precipitated) according to the degree of lithiation.
  • Specific examples of the non-aqueous solvent and the mixing ratio according to the degree of lithiation are the same as the mixed solvent used in the mixing step.
  • a known conductive auxiliary agent used for the negative electrode of a power storage device such as a secondary battery can be used.
  • Specific examples of the conductive assistant include acetylene black, carbon nanotube, and ketjen black. Of these conductive aids, only one kind may be used, or two or more kinds may be used in combination.
  • a conductive support agent when included in the slurry, it is preferable to include a dispersant together with the conductive support agent.
  • the dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl butyral, and a triazine compound. Only 1 type may be used among these dispersing agents, and 2 or more types may be used together.
  • the above slurry is applied to a current collector to form a negative electrode active material layer made of the slurry on the surface of the current collector.
  • the solvent (slurry solvent and solvent contained in the intermediate composition) contained in the negative electrode active material layer is removed, and the negative electrode active material layer is subjected to a drying treatment and a heat treatment to thereby remove the negative electrode active material. Harden the layer.
  • (A) lithiated polyacrylic acid and (B) polyfunctional amine contained in the intermediate composition are condensed to form the polymer compound of the present embodiment in the negative electrode active material layer.
  • the heat treatment can be performed in a state where the negative electrode active material layer contains a solvent, but it is more preferable to perform the heat treatment in a state where the negative electrode active material layer is dried.
  • drying treatment and heat treatment include, for example, a method of heating using a heat source such as hot air, infrared rays, microwaves, and high frequencies under normal pressure or reduced pressure.
  • a heat source such as hot air, infrared rays, microwaves, and high frequencies under normal pressure or reduced pressure.
  • the drying treatment is preferably performed slowly at a low temperature rather than heated quickly at a high temperature, and the heating treatment is preferably performed quickly at a high temperature rather than heated slowly at a low temperature. By such heating, the initial efficiency and cycle characteristics of the power storage device can be improved.
  • a known metal material used as a negative electrode current collector of a power storage device such as a secondary battery can be used.
  • the metal material that can be used for the current collector include silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, molybdenum, and stainless steel. It is done.
  • the negative electrode using the polymer compound of this embodiment as a negative electrode binder can be effectively used for a non-aqueous power storage device including a non-aqueous electrolyte as an electrolyte.
  • the power storage device include a secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • such power storage devices are useful as non-aqueous secondary batteries for driving motors of electric vehicles and hybrid vehicles, and non-aqueous secondary batteries used in personal computers, portable communication devices, home appliances, office equipment, industrial equipment, etc. It is.
  • the polymer compound of this embodiment is a compound formed by condensation of (A) lithiated polyacrylic acid and (B) polyfunctional amine, and is a chain formed of lithiated polyacrylic acid.
  • the structure has a free carboxyl group and a lithium chloride carboxyl group.
  • the polymer compound of the present embodiment has a chain structure composed of polyacrylic acid and a crosslinked structure that connects carboxyl groups in the chain structure or between the chain structures, At least one crosslinked structure selected from the above general formulas (2) to (4).
  • the chain structure has a free carboxyl group and a lithium chloride carboxyl group.
  • the polymer compound of the present embodiment is useful as a negative electrode binder for power storage devices.
  • the characteristics (cycle characteristics) of the power storage device can be improved. In particular, cycle characteristics at low temperatures can be enhanced.
  • the polymer compound of the present embodiment has a structure in which a part of the carboxyl group of the chain structure is lithium-chlorinated. For this reason, the polarity as a high molecular compound becomes large compared with the high molecular compound which consists of polyacrylic acid and a polyacrylic acid derivative. Moreover, the dielectric constant of the polymer compound increases as the polarity increases. Thereby, when used as a negative electrode binder, the barrier when lithium or the like moves inside the polymer compound is relaxed, and lithium or the like easily moves inside the polymer compound. As a result, the cycle characteristics of the power storage device are improved.
  • the following points can be considered as other factors. That is, when a polymer compound composed of polyacrylic acid or a polyacrylic acid derivative is used as a negative electrode binder, the carboxyl groups in the chain structure are dehydrated and condensed by heat treatment performed during the production of the negative electrode. In some cases, a cross-linked structure with an acid anhydride structure may be formed. Since the length of the cross-linked structure due to the acid anhydride structure is small, when the cross-linked structure is excessively formed, the chain structures close closely, the polymer compound becomes rigid, and the polymer compound becomes flexible. Damaged.
  • a part of the carboxyl group in the chain structure is a side chain in which an acid anhydride structure cannot be formed by forming a lithium chloride structure.
  • the flexibility of the polymer compound is ensured by suppressing the excessive formation of the crosslinked structure due to the acid anhydride structure.
  • release of lithium etc. improves.
  • the network structure of the polymer compound is suppressed from becoming excessively dense, and lithium or the like can easily pass through the polymer compound. Become. As a result, the cycle characteristics of the power storage device are improved.
  • the polymer compound of the present embodiment as a negative electrode binder has a property that the cycle characteristics of the power storage device are easily maintained even when the weight average molecular weight of the chain structure made of polyacrylic acid is lowered. . Therefore, the polymer compound of this embodiment can function effectively as a negative electrode binder even when a low molecular weight polymer compound having a short chain structure portion is used.
  • the slurry can be prepared with a smaller amount of solvent. From this, the solid content ratio of the slurry can be set large. Thereby, since the drying time for volatilizing a solvent from a negative electrode active material layer is shortened when producing a negative electrode, productivity of a negative electrode improves. Therefore, when the polymer compound of the present embodiment is used as a negative electrode binder, it is easy to improve the productivity of the negative electrode.
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom.
  • the intermediate composition of the polymer compound contains (A) lithiated polyacrylic acid, (B) a polyfunctional amine, a mixed solvent of a nonaqueous solvent and water, and (A) lithiated polyacrylic.
  • the acid and (B) polyfunctional amine are dissolved in the mixed solvent.
  • the lithiation degree is in the range of 5 to 50%
  • the mixing ratio of the nonaqueous solvent and water in the mixed solvent is in the range of 2: 1 to 1: 2
  • the lithiation degree is 50 to 75. %
  • the mixing ratio of the nonaqueous solvent and water in the mixed solvent is in the range of 1: 1 to 1: 2.
  • the polymer compound of this embodiment can be obtained efficiently. Further, when a negative electrode is produced from a slurry in which the intermediate composition and the negative electrode active material are mixed, the polymer compound (negative electrode binder) obtained from the intermediate composition is suppressed from being unevenly distributed in the negative electrode. .
  • precipitation of a component constituting the intermediate composition in the mixed solvent means that the component is aggregated.
  • an intermediate composition in which some components are precipitated is condensed by heat treatment to obtain a polymer compound, the condensation reaction does not easily proceed at the portion where the components are aggregated, and the target polymer compound is collected. The rate drops.
  • the negative electrode is produced using the intermediate composition in which a part of the components is deposited, the target polymer compound is not sufficiently formed in the portion where the components are aggregated. For this reason, it becomes easy to produce the part in which the high molecular compound as a binder for negative electrodes does not fully exist in the obtained negative electrode.
  • the components constituting the intermediate composition are suppressed from being precipitated in the mixed solvent, the above-described problem occurs when the polymer compound is obtained and the negative electrode is manufactured. This can be suppressed.
  • PAA polyacrylic acid
  • NMP N-methyl-2-pyrrolidone
  • Lithium hydroxide monohydrate 0.131 mg (3.12 mmol) was added to the flask, and the mixture was stirred at room temperature for 30 minutes, whereby a part of the carboxyl group of PAA contained in the PAA aqueous solution was lithium-chlorinated.
  • 1.04 g (5.19 mmol) of 4,4′-diaminodiphenylmethane was dissolved in 14 g of NMP to prepare a polyfunctional amine / NMP solution.
  • a polyfunctional amine / NMP solution was dropped into the flask and stirred at room temperature for 30 minutes.
  • the degree of lithiation of the intermediate composition of Example 1 can be calculated by the following formula, and the value is 10%.
  • Example 1B PAA + 4,4′-diaminodiphenylmethane, lithiation degree 20%
  • the intermediate composition of Example 1B was obtained in the same manner as in Example 1A except that the amount of lithium hydroxide monohydrate added was changed to 0.262 mg (6.24 mmol). .
  • the lithiation degree of the intermediate composition of Example 1B is 20%.
  • Example 1C PAA + 4,4′-diaminodiphenylmethane, lithiation degree 50%
  • the intermediate composition of Example 1C was obtained in the same manner as in Example 1A, except that the amount of lithium hydroxide monohydrate added was changed to 0.655 mg (15.6 mmol). .
  • the lithiation degree of the intermediate composition of Example 1C is 50%.
  • PAA + 4,4′-diaminodiphenylmethane, lithiation degree 0% PAA having a weight average molecular weight of 50,000 is dissolved in NMP to prepare a 30% by mass PAA / NMP solution. 10 g of this PAA / NMP solution (41.6 mmol in terms of monomer of PAA) is placed in a flask under a nitrogen atmosphere. Sorted into Separately, 1.04 g (5.19 mmol) of 4,4′-diaminodiphenylmethane was dissolved in 14 g of NMP to prepare a polyfunctional amine / NMP solution.
  • PAA + 1,6-diaminohexane, lithiation degree 10% PAA having a weight average molecular weight of 50,000 was dissolved in water to prepare a 30 mass% PAA aqueous solution, and 10 g of this PAA aqueous solution (41.6 mmol in terms of monomer of PAA) was dispensed into a flask under a nitrogen atmosphere. . Lithium hydroxide monohydrate 0.131 mg (3.12 mmol) was added to the flask, and the mixture was stirred at room temperature for 30 minutes, whereby a part of the carboxyl group of PAA contained in the PAA aqueous solution was lithium-chlorinated.
  • the negative electrode active material layer in a state where NMP is removed and dried is subjected to a heat treatment at 200 ° C. for 2 hours in a vacuum (under reduced pressure), whereby the intermediate composition contained in the negative electrode active material layer And the negative electrode active material layer was cured by heating.
  • the electrode sheet which contains the high molecular compound which has a crosslinked structure as a binder for negative electrodes is subjected to a heat treatment at 200 ° C. for 2 hours in a vacuum (under reduced pressure), whereby the intermediate composition contained in the negative electrode active material layer And the negative electrode active material layer was cured by heating.
  • non-aqueous electrolyte a non-aqueous electrolyte was used in which lithium hexafluorophosphate was dissolved to a concentration of 1M in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
  • Cycle characteristics (%) (charge capacity after specified cycle / initial charge capacity) x 100
  • Test Examples 1 to 5 in which a polymer compound in which a polyfunctional amine was condensed to form a crosslinked structure was used as a negative electrode binder. In, it was confirmed that the evaluation of the cycle characteristics at 25 ° C. was enhanced.
  • PAA in which a part of the carboxyl group is lithium chloride and polyfunctional amine having a specific molecular structure were condensed. It turns out that a high molecular compound is useful as a binder for negative electrodes of an electrical storage apparatus.
  • PAA + 4,4'-diaminodiphenyl ether, lithiation degree 10% PAA having a weight average molecular weight of 50,000 was dissolved in water to prepare a 30 mass% PAA aqueous solution, and 10 g of this PAA aqueous solution (41.6 mmol in terms of monomer of PAA) was dispensed into a flask under a nitrogen atmosphere. . Lithium hydroxide monohydrate 0.131 mg (3.12 mmol) was added to the flask, and the mixture was stirred at room temperature for 30 minutes, whereby a part of the carboxyl group of PAA contained in the PAA aqueous solution was lithium-chlorinated.
  • Example 2 1.039 g (5.19 mmol) of 4,4′-diaminodiphenyl ether was dissolved in 14 g of NMP to prepare a polyfunctional amine / NMP solution. A polyfunctional amine / NMP solution was dropped into the flask and stirred at room temperature for 30 minutes. Then, the intermediate composition of Example 2 was obtained in the state of the solution by heat-processing (preheating process) for 2 hours at 110 degreeC using the Dean-Stark apparatus. The degree of lithiation of the intermediate composition of Example 2 is 10%.
  • PAA having a weight average molecular weight of 50,000 was dissolved in water to prepare a 30 mass% PAA aqueous solution, and 10 g of this PAA aqueous solution (41.6 mmol in terms of monomer of PAA) was dispensed into a flask under a nitrogen atmosphere.
  • Lithium hydroxide monohydrate 0.131 mg (3.12 mmol) was added to the flask, and the mixture was stirred at room temperature for 30 minutes, whereby a part of the carboxyl group of PAA contained in the PAA aqueous solution was lithium-chlorinated.
  • PAA + 3,3'-diaminodiphenylmethane, lithiation degree 10% PAA having a weight average molecular weight of 50,000 was dissolved in water to prepare a 30 mass% PAA aqueous solution, and 10 g of this PAA aqueous solution (41.6 mmol in terms of monomer of PAA) was dispensed into a flask under a nitrogen atmosphere. . Lithium hydroxide monohydrate 0.131 mg (3.12 mmol) was added to the flask, and the mixture was stirred at room temperature for 30 minutes, whereby a part of the carboxyl group of PAA contained in the PAA aqueous solution was lithium-chlorinated.
  • Example 4 1.029 g (5.19 mmol) of 3,3′-diaminodiphenylmethane was dissolved in 14 g of NMP to prepare a polyfunctional amine / NMP solution. A polyfunctional amine / NMP solution was dropped into the flask and stirred at room temperature for 30 minutes. Then, the intermediate composition of Example 4 was obtained in the state of the solution by heat-processing (preheating process) for 2 hours at 110 degreeC using the Dean-Stark apparatus. The lithiation degree of the intermediate composition of Example 4 is 10%.
  • PAA + 4,4′-ethylenedianiline, lithiation degree 10% PAA having a weight average molecular weight of 50,000 was dissolved in water to prepare a 30 mass% PAA aqueous solution, and 10 g of this PAA aqueous solution (41.6 mmol in terms of monomer of PAA) was dispensed into a flask under a nitrogen atmosphere. . Lithium hydroxide monohydrate 0.131 mg (3.12 mmol) was added to the flask, and the mixture was stirred at room temperature for 30 minutes, whereby a part of the carboxyl group of PAA contained in the PAA aqueous solution was lithium-chlorinated.
  • Electrodes sheets were prepared using the polymer compound obtained from each intermediate composition as a binder for a negative electrode. Moreover, the lithium ion secondary battery was produced using the obtained electrode sheet, and the battery characteristic of the lithium ion secondary battery was evaluated. The results are shown in Table 2. In addition, the preparation method of an electrode sheet and a lithium ion secondary battery, and the evaluation method of the battery characteristic of a lithium ion secondary battery are the same as the method of Test 1.
  • PAA having a weight average molecular weight of 50,000 is dissolved in water or NMP to prepare a 30% by mass PAA solution, and 10 g of this PAA solution (41.6 mmol in terms of monomer of PAA) is placed in a flask under a nitrogen atmosphere. I took it. A specific amount of lithium hydroxide monohydrate was added to the flask and stirred at room temperature for 30 minutes, whereby a part of the carboxyl group of PAA contained in the PAA solution was lithium chlorided. Separately, 1.03 g (5.19 mmol) of 4,4′-diaminodiphenylmethane was dissolved in a specific amount of NMP or water to prepare a polyfunctional amine solution.
  • the polyfunctional amine solution was dropped into the flask and stirred at room temperature for 30 minutes. Then, the intermediate composition was obtained in the state with the solution with respect to the mixed solvent of NMP and water by heat-processing (preheating process) for 2 hours at 110 degreeC using the Dean-Stark apparatus.
  • the amount of lithium hydroxide monohydrate added was adjusted so that the degree of lithiation was as shown in Table 3.
  • the degree of lithiation is 0%
  • the amount of lithium hydroxide monohydrate added is 0 g.
  • the types of the solvents constituting the PAA solution and the polyfunctional amine solution, and the amount of the solvent used for dissolving 4,4′-diaminodiphenylmethane are determined by the amount of NMP and water in the mixed solvent contained in the obtained intermediate composition. And the mixing ratio (mass ratio) was adjusted to the value shown in Table 3.
  • NMP nonaqueous solvent
  • the mixing ratio needs to be set to a specific range. Specifically, when the degree of lithiation is 50% or less, the mixing ratio of NMP (nonaqueous solvent) and water in the mixed solvent is preferably in the range of 2: 1 to 1: 2. When the degree of conversion is 50% or more, it is considered preferable that the mixing ratio of NMP (nonaqueous solvent) and water in the mixed solvent is in the range of 1: 1 to 1: 2.
  • a disk-shaped substrate having a diameter of 10 mm was formed from calcium fluoride ground in a mortar.
  • about 10 ⁇ l of the solution of the intermediate composition of Example 1B or Reference Example 1 was dropped on one side of the substrate, and this was left to stand for 24 hours to dry, and then in vacuum (under reduced pressure) For 1 hour and further dried.
  • a measurement sample having an intermediate composition layer having a thickness of about 5 ⁇ m on one side of a calcium fluoride substrate was prepared.
  • all preparation of the measurement sample was performed at room temperature. And while heating the obtained measurement sample under helium flow, 30 ° C., 110 ° C., 150 ° C., 180 ° C. (immediately), 180 ° C. (after holding for 30 minutes), 180 ° C. (after holding for 2 hours), Thermal scanning infrared spectroscopic measurement (transmission method) was performed at each temperature of 200 ° C. (immediately) and 200 ° C. (after 2 hours).
  • Measuring apparatus Fourier transform infrared spectrophotometer Cary 670 (manufactured by Agilent Technologies) Measurement temperature: The temperature was raised from room temperature to 180 ° C. at a heating rate of 5 ° C./min, and the state at 180 ° C. was maintained for 2 hours. Thereafter, the temperature was increased from 180 ° C. to 200 ° C. at a temperature rising rate of 5 ° C./min, and the state at 200 ° C. was maintained for 2 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

高分子化合物は、カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、下記一般式(1)に示す多官能アミンとが縮合してなる化合物であって、ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とを有する。Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。

Description

高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
 本発明は、蓄電装置の負極用バインダーとして用いられる高分子化合物、その高分子化合物の中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法に関する。
 二次電池を用いた製品は、増加の一途を辿っている。二次電池は、携帯電話やノート型パソコン等の携帯機器に多用されている。二次電池は、電気自動車用の大型電源としても注目されている。
 二次電池の電極は、例えば、銅やアルミニウム等の金属材料により形成された集電体と、その集電体上に結着された活物質層とから構成されている。活物質層は活物質を集電体に結着させるための電極用バインダー(結着剤)を含むことが一般的である。近年、電極用バインダーとして、安価な高分子化合物であるポリアクリル酸が利用されている。例えば、特許文献1には、ポリアクリル酸リチウム塩やポリアクリル酸ナトリウム塩を含む電極用バインダーが開示されている。特許文献2には、ポリアクリル酸とポリエチレンイミンとを含む電極用バインダーが開示されている。特許文献3には、ポリアクリル酸とアミン化合物とを含む電極用バインダーが開示されている。
特開2009-080971号公報 特開2009-135103号公報 特開2003-003031号公報
 本研究者らは、鋭意研究の結果、カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、特定の分子構造を有する多官能アミンとを縮合してなる高分子化合物が二次電池等の蓄電装置の負極用バインダーとして有用であることを見出した。本発明の目的は、蓄電装置の負極用バインダーとして有用な高分子化合物、その高分子化合物を得るための中間組成物、その高分子化合物を負極バインダーとして用いた負極電極、蓄電装置、及び負極電極用スラリーを提供することにある。また、本発明の目的は、その高分子化合物の製造方法、及び負極電極の製造方法を提供することにある。
 上記課題を解決するため、本発明の第一の態様によれば、蓄電装置の負極用バインダーとして用いられる高分子化合物であって、カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、下記一般式(1)に示す多官能アミンとが縮合してなり、ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とを有し、
Figure JPOXMLDOC01-appb-C000006
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物が提供される。
 上記課題を解決するため、本発明の第二の態様によれば、蓄電装置の負極用バインダーとして用いられる高分子化合物であって、ポリアクリル酸により構成される鎖状構造と、鎖状構造内又は鎖状構造間におけるカルボキシル基同士を接続する架橋構造とを有し、架橋構造は、下記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造であり、鎖状構造は、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とを有し、
Figure JPOXMLDOC01-appb-C000007
 PAAは、リチウム塩化されたポリアクリル酸により構成される鎖状構造を示し、Xは、下記一般式(5)に示す構造であり、
Figure JPOXMLDOC01-appb-C000008
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、水素原子、メチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物が提供される。
 上記課題を解決するため、本発明の第三の態様によれば、蓄電装置の負極用バインダーとして用いられる高分子化合物の中間組成物であって、カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、下記一般式(1)に示す多官能アミンと、非水溶媒と水の混合溶媒とを含有し、ポリアクリル酸及び多官能アミンが混合溶媒中に溶解し、
Figure JPOXMLDOC01-appb-C000009
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、中間組成物が提供される。
 上記課題を解決するため、本発明の第四の態様によれば、カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、下記一般式(1)に示す多官能アミンとを、非水溶媒と水の混合溶媒中にて150~230℃で加熱し、
Figure JPOXMLDOC01-appb-C000010
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物の製造方法が提供される。
 上記課題を解決するため、本発明の第五の態様によれば、上記の高分子化合物を含有する負極用バインダーと、負極活物質とを備え、負極活物質は、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種である、蓄電装置の負極電極が提供される。
 上記課題を解決するため、本発明の第六の態様によれば、上記の負極電極と非水電解質とを備える、蓄電装置が提供される。
 上記課題を解決するため、本発明の第七の態様によれば、蓄電装置の負極電極の製造に用いられる負極電極用スラリーであって、上記の中間組成物と、負極活物質とを含有し、負極活物質として、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種を含有する、負極電極用スラリーが提供される。
 上記課題を解決するため、本発明の第八の態様によれば、上記の負極電極用スラリーを用いて、集電体に対して負極活物質層を形成する、蓄電装置の負極電極の製造方法が提供される。
 本実施形態の高分子化合物は、(A)カルボキシル基の一部がリチウム塩化されたポリアクリル酸(リチウム化ポリアクリル酸)と、(B)多官能アミンとが縮合してなる化合物である。
 (A)リチウム化ポリアクリル酸は、アクリル酸からなるホモポリマーであるポリアクリル酸のカルボキシル基の一部がリチウム塩化された化合物である。(A)リチウム化ポリアクリル酸は、市販品を用いてもよいし、ポリアクリル酸のカルボキシル基の一部を、水酸化リチウム、炭酸リチウム、有機リチウム等のリチウム化合物を用いてリチウム塩化(中和)させたものを用いてもよい。
 リチウム化ポリアクリル酸の重量平均分子量は、特に限定されないが、例えば、リチウムを水素原子に換算した値として、10,000~2,000,000の範囲であることが好ましく、25,000~1,800,000の範囲であることがより好ましく、50,000~1,500,000の範囲であることが更に好ましい。
 ここで、ポリアミドイミド等の従来の高分子化合物を負極用バインダーとして用いた場合には、高分子化合物の重量平均分子量が低下するにしたがって、蓄電装置のサイクル特性が低下する傾向がある。これに対して、本実施形態の高分子化合物を負極用バインダーとして用いた場合には、高分子化合物を構成するポリアクリル酸の重量平均分子量が低下しても、蓄電装置のサイクル特性が維持される。そのため、(A)リチウム化ポリアクリル酸として、例えば、250,000以下や100,000以下の低分子量のポリアクリル酸が好適に用いられる。
 (B)多官能アミンは、下記一般式(1)に示す構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000011
 一般式(1)において、Yは炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子である。また、各ベンゼン環におけるYの結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。
 Yが直鎖アルキル基及びフェニレン基である場合において、その構造を構成する炭素原子には置換基が結合されてもよい。例えば、直鎖アルキル基を構成する炭素原子に結合される置換基としては、メチル基、エチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、メトキシ基、エトキシ基、オキソ基が挙げられる。これらの置換基のうちの一種のみが結合されてもよいし、二種以上が結合されてもよい。また、一つの炭素原子に結合される置換基の数は、一つであってもよいし、二つであってもよい。また、直鎖アルキル基及びフェニレン基を構成する炭素原子に結合される置換基は、アミノ基、又はアミノ基を含む置換基であってもよく、この場合には、3以上のアミノ基を有する多官能アミンとなる。
 一般式(1)において、R1,R2は、それぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。R1がメチル基、エチル基、トリフルオロメチル基、又はメトキシ基である場合において、R1の結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。R2についても同様である。
 (B)多官能アミンの具体例について記載する。
 Yが直鎖アルキル基である多官能アミンとしては、例えば、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-エチレンジアニリン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、1,1-ビス(4-アミノフェニル)シクロヘキサン、9、9-ビス(4-アミノフェニル)フルオレン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンゾフェノン、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、パラローズアニリンが挙げられる。
 Yがフェニレン基である多官能アミンとしては、例えば、1,3,5-トリス(4-アミノフェニル)ベンゼンが挙げられる。Yが酸素原子である多官能アミンとしては、例えば、4,4’-ジアミノジフェニルエーテルが挙げられる。1,3,5-トリス(4-アミノフェニル)ベンゼン、及びパラローズアニリンは、3つのアミノ基を有する三官能アミンである。上記の多官能アミンのうちの一種のみを用いてもよいし、二種以上を併用してもよい。
 (A)リチウム化ポリアクリル酸と(B)多官能アミンとを縮合する際の配合割合は、(B)多官能アミンのアミノ基の数に応じて設定される。すなわち、(A)リチウム化ポリアクリル酸に由来するリチウム塩化されていないカルボキシル基の総数が、(B)多官能アミンに由来するアミノ基の総数よりも多くなるように上記配合割合は設定される。換言すると、(B)多官能アミンにおけるアミノ基1当量に対して、(A)リチウム化ポリアクリル酸におけるリチウム塩化されていないカルボキシル基が1当量以上となるように上記配合割合は設定される。なお、(A)リチウム化ポリアクリル酸に由来するリチウム塩化されていないカルボキシル基の総数と、(B)多官能アミンに由来するアミノ基の総数との比率(カルボキシル基/アミノ基比率)は、1~8の範囲であることが好ましく、2~6の範囲であることがより好ましい。
 本実施形態の高分子化合物は、(A)リチウム化ポリアクリル酸及び(B)多官能アミンを溶媒中で混合する混合工程と、混合工程にて得られた中間組成物を加熱処理する加熱工程とを経ることにより得られる。
 混合工程は、(A)リチウム化ポリアクリル酸と(B)多官能アミンとが混合されてなる液状の中間組成物を得る工程である。混合工程に用いる溶媒としては、非水溶媒と水の混合溶媒が用いられる。
 混合溶媒を構成する非水溶媒としては、例えば、アセトン、テトラヒドロフラン、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、炭酸プロピレン、γ-ブチルラクトン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、ジメチルスルホキシド、エチレングリコールモノブチルエーテル等が挙げられる。これらの非水溶媒のうちの一種のみが混合されてもよいし、二種以上が混合されてもよい。
 混合溶媒における非水溶媒と水との質量比における混合割合は、(A)リチウム化ポリアクリル酸及び(B)多官能アミンが溶解可能な(析出しない)割合に設定される。当該混合割合は、例えば、下記式により求められる(A)リチウム化ポリアクリル酸のリチウム化度に応じて設定される。
 リチウム化度(%)=「LC」/(「C」-「A」)×100
 「C」 :リチウム化ポリアクリル酸に由来するカルボキシル基の総数(リチウム塩化されたカルボキシル基を含む。)
 「LC」:リチウム化ポリアクリル酸に由来するカルボキシル基のうち、リチウム塩化されたカルボキシル基の総数
 「A」 :多官能アミンに由来するアミノ基の総数
 例えば、(A)リチウム化ポリアクリル酸のリチウム化度が5~50%の範囲である場合には、非水溶媒と水との混合割合を2:1~1:2の範囲とすることが好ましい。また、(A)リチウム化ポリアクリル酸のリチウム化度が50~75%の範囲である場合には、非水溶媒と水との混合割合を1:1~1:2の範囲とすることが好ましい。
 加熱工程は、中間組成物を加熱処理することにより、中間組成物に含有される(A)リチウム化ポリアクリル酸と(B)多官能アミンとを縮合させる工程である。加熱工程における加熱温度は、(A)リチウム化ポリアクリル酸と(B)多官能アミンとの間にアミド結合部やイミド結合部を効率的に形成する観点から、150~230℃の範囲であることが好ましく、180~200℃の範囲であることがより好ましい。また、この加熱温度を高めると、本実施形態の高分子化合物を負極用バインダーとして用いた場合に、二次電池等の蓄電装置の特性(サイクル特性)が高められる。
 中間組成物を加熱する際に、アミド結合及びイミド結合を形成する縮合反応を進行させるため、又は縮合反応の反応速度を高めるために、中間組成物に触媒を添加してもよい。上記触媒としては、例えば、1-メチルイミダゾール、2-メチルイミダゾール、N,N’-ジシクロヘキシルカルボジイミド、N,N’-カルボニルジイミダゾール、N,N’-ジイソプロピルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、ジフェニルリン酸アジド、BOP試薬等の脱水縮合触媒を有効に用いることができる。これらの触媒を添加した場合には、アミド結合及びイミド結合をより低温で形成できるため、高分子化合物の製造効率が高められる。
 中間組成物は、加熱工程前に、予備加熱処理されることが好ましい。予備加熱の温度は、40~140℃の範囲であることが好ましく、60~130℃の範囲であることがより好ましい。予備加熱処理により、中間組成物に含有される(A)リチウム化ポリアクリル酸と(B)多官能アミンとが会合して、カルボキシル基とアミノ基との縮合反応が進行しやすい状態が形成される。その結果、加熱工程において、縮合反応が効率的に進行する。予備加熱処理により、カルボキシル基とアミノ基との縮合反応が部分的に進行して、アミド結合部やイミド結合部が形成されてもよい。
 また、予備加熱処理された中間組成物を用いる場合、加熱工程は、中間組成物に含有される溶媒を除去した状態で行うことが好ましい。この場合には、(A)リチウム化ポリアクリル酸と(B)多官能アミンとの縮合反応が進行しやすくなる。
 そして、加熱工程を経ることにより、(A)リチウム化ポリアクリル酸と(B)多官能アミンとが縮合してなる高分子化合物が得られる。この高分子化合物は、(A)リチウム化ポリアクリル酸のカルボキシル基と(B)多官能アミンのアミノ基との間にアミド結合及びイミド結合の少なくとも一方が形成されて、(A)リチウム化ポリアクリル酸同士が架橋された構造を有していると考えられる。
 つまり、高分子化合物は、(A)リチウム化ポリアクリル酸により構成される鎖状構造と、その鎖状構造内又は鎖状構造間におけるカルボキシル基同士を接続する架橋構造とを有する。そして、(A)リチウム化ポリアクリル酸により構成される鎖状構造には、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とが存在し、架橋構造は、下記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造である。
 なお、(A)リチウム化ポリアクリル酸により構成される鎖状構造において、フリーのカルボキシル基とリチウム塩化されたカルボキシル基との比率(フリーのカルボキシル基:リチウム塩化されたカルボキシル基)は、95:5~25:75の範囲であることが好ましく、95:5~45:55の範囲であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(2)~(4)において、PAAは、リチウム化ポリアクリル酸により構成される鎖状構造を示している。また、Xは、下記一般式(5)に示す構造である。イミド構造を有する一般式(3)~(4)において、一つのイミド構造を構成する二つのカルボニル基は、それぞれ異なる鎖状構造に結合されるカルボニル基であってもよいし、同一の鎖状構造に結合されるカルボニル基であってもよい。例えば、イミド構造を構成する二つのカルボキニル基が、同一の鎖状構造における隣接する炭素に結合されるカルボニル基である場合、イミド構造としてマレイミド構造が形成される。
Figure JPOXMLDOC01-appb-C000013
 一般式(5)において、Yは炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子である。また、各ベンゼン環におけるYの結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。一般式(5)におけるYは、一般式(1)におけるYに準じた構造となる。
 一般式(5)において、R1,R2は、それぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。R1がメチル基、トリフルオロメチル基、又はメトキシ基である場合において、R1の結合位置は、アミノ基に対するオルト位、メタ位、パラ位のいずれであってもよい。R2についても同様である。一般式(5)におけるR1,R2は、一般式(1)におけるR1,R2に準じた構造となる。
 高分子化合物は、その架橋構造において、アミド結合部及びイミド結合部の両方を有していることが好ましい。つまり、高分子化合物は、架橋構造として、少なくとも一般式(2)及び一般式(4)の架橋構造、又は少なくとも一般式(3)の架橋構造を有していることが好ましい。
 また、高分子化合物は、二つのカルボキシル基が脱水縮合することにより形成される酸無水物構造(CO-O-CO)を分子構造内に有してもよい。酸無水物構造は、同一の鎖状構造(PAA)内に形成されてもよいし、異なる鎖状構造(PAA)間に形成されてもよい。すなわち、酸無水物構造に含まれる二つのカルボニル炭素が、同一の鎖状構造(PAA)に結合されてもよいし、それぞれ異なる鎖状構造(PAA)に結合されてもよい。
 また、本実施形態の高分子化合物は、第2の架橋構造を更に有してもよい。
 例えば、第2の架橋構造を更に有する高分子化合物として、(A)リチウム化ポリアクリル酸と、(B)一般式(1)で示される多官能アミンと、その他の多官能アミンとが縮合してなる高分子化合物であってもよい。この場合、高分子化合物は、一般式(1)で示される多官能アミン由来の架橋構造に加えて、その他の多官能アミン由来の第2の架橋構造を更に有する。この第2の架橋構造を付加することにより、高分子化合物の強度や柔軟性等の物性を調整することができる。
 その他の多官能アミンとしては、例えば、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン、2-アミノアニリン(1,2-フェニレンジアミン)、3-アミノアニリン(1,3-フェニレンジアミン)、4-アミノアニリン(1,4-フェニレンジアミン)、2,4-ジアミノピリジン、2,5-ジアミノピリジン、2,6-ジアミノピリジン、1,3-ジイミノイソインドリンが挙げられる。
 その他の多官能アミンの配合割合は、(B)一般式(1)で示される多官能アミン10質量部に対して1質量部以下であることが好ましい。上記割合とすることにより、高分子化合物の強度や柔軟性等の物性が大きく変化して負極バインダーに適さなくなることを抑制できる。
 次に、本実施形態の高分子化合物を負極用バインダーとして用いた負極電極を製造する方法の一例について記載する。
 まず、負極活物質、負極用バインダー、溶剤を混合してスラリーを調製する。その際、必要に応じて導電助剤等の他の成分を更に混合してもよい。
 負極活物質としては、二次電池等の蓄電装置の負極活物質として用いられる公知の物質、例えば、炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物を用いることができる。
 炭素系材料としては、例えば、リチウムを吸蔵及び放出可能な炭素系材料を用いることができ、その具体例としては、難黒鉛化性炭素、天然黒鉛、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭素、カーボンブラック類が挙げられる。
 リチウムと合金化可能な元素としては、例えば、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが挙げられる。これらのなかでも、Siが特に好ましい。
 リチウムと合金化可能な元素を有する化合物としては、例えば、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biから選ばれる元素を有する化合物が挙げられる。これらのなかでも、Siを有する化合物であるシリコン系材料が特に好ましい。
 シリコン系材料としては、例えば、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<V≦2)、SnSiO、LiSiOが挙げられる。これらのなかでも、SiO(0<V≦2)が特に好ましい。
 また、国際公開2014/080608号に開示されるように、CaSiから脱カルシウム化反応を経て得られるシリコン材料を用いることもできる。上記シリコン材料は、例えば、CaSiを酸(例えば、塩酸やフッ化水素)で処理して得られる層状ポリシランを、脱カルシウム化(例えば、300~1000℃の加熱処理)して得られる。本実施形態の高分子化合物は、充放電時における膨張収縮の度合が大きい負極活物質であるシリコン系材料と組み合わせて用いることが特に好ましい。なお、負極活物質として、上記の物質のうちの一種のみを用いてもよいし、二種以上を併用して用いてもよい。
 スラリーに混合される負極用バインダーとしては、上記中間組成物が用いられる。
 また、負極用バインダーとして、他の負極用バインダーを併用してもよい。他の負極用バインダーとしては、例えば、ポリフッ化ビニリデン、ポリ四フッ化エチレン、スチレン-ブタジエンゴム、ポリイミド、ポリアミドイミド、カルボキシメチルセルロース、ポリ塩化ビニル、メタクリル樹脂、ポリアクリロニトリル、変性ポリフェニレンオキシド、ポリエチレンオキシド、ポリエチレン、ポリプロピレン、ポリアクリル酸、フェノール樹脂が挙げられる。
 これらの他の負極用バインダーのうち一種のみを併用してもよいし、二種以上を併用してもよい。なお、他の負極用バインダーを併用する場合には、負極用バインダーの総固形分に対して、中間組成物の固形分が1質量%以上含まれていることが好ましく、10質量%以上含まれていることがより好ましい。
 負極活物質と負極用バインダーとの質量比における配合割合(負極活物質:負極用バインダー)は、負極活物質及び負極用バインダーの種類に応じて適宜設定することができる。上記配合割合は、例えば、5:3~99:1の範囲であることが好ましく、3:1~97:3の範囲であることがより好ましく、16:3~95:5の範囲であることが更に好ましい。
 溶剤としては、非水溶媒と水の混合溶媒が用いられる。混合溶媒における非水溶媒と水との混合割合は、上記のリチウム化度に応じて、中間組成物を構成する各成分が溶解可能な(析出しない)割合に設定される。非水溶媒の具体例、及びリチウム化度に応じた混合割合は、上記混合工程にて用いた混合溶媒と同様である。なお、中間組成物中にスラリーとして十分量の混合溶媒が含有されている場合には、スラリーの調整時に溶剤を加えなくてもよい。
 導電助剤としては、二次電池等の蓄電装置の負極電極に用いられる公知の導電助剤を用いることができる。導電助剤の具体例としては、アセチレンブラック、カーボンナノチューブ、ケッチェンブラック等が挙げられる。これらの導電助剤のうち一種のみを用いてもよいし、二種以上を併用してもよい。
 なお、スラリー中に導電助剤を含有させる場合には、導電助剤と共に分散剤を含有させることが好ましい。分散剤の具体例としては、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルブチラール、トリアジン化合物等が挙げられる。これらの分散剤のうち一種のみを用いてもよいし、二種以上を併用してもよい。
 次いで、上記のスラリーを集電体に塗布して、集電体の表面にスラリーからなる負極活物質層を形成する。その後、負極活物質層に含有される溶媒(スラリーの溶剤、及び上記中間組成物に含有される溶媒)を除去して、負極活物質層を乾燥処理するとともに、加熱処理することにより負極活物質層を硬化させる。この加熱処理により、上記中間組成物に含有される(A)リチウム化ポリアクリル酸と(B)多官能アミンとが縮合して、負極活物質層中に本実施形態の高分子化合物が形成される。なお、上記加熱処理は、負極活物質層に溶媒が含まれている状態で行うこともできるが、負極活物質層を乾燥させた状態として行うことがより好ましい。
 乾燥処理及び加熱処理の具体的方法としては、例えば、常圧下又は減圧下において、熱風、赤外線、マイクロ波、高周波等の熱源を用いて加熱する方法が挙げられる。加熱処理を行う際には、負極活物質層側から加熱するよりも集電体側から加熱することが好ましい。また、乾燥処理は、高温で素早く加熱するよりも、低温でゆっくりと加熱することが好ましく、加熱処理は、低温でゆっくり加熱するよりも、高温で素早く加熱することが好ましい。このような加熱により、蓄電装置の初期効率やサイクル特性を高めることができる。
 集電体として、二次電池等の蓄電装置の負極用集電体として用いられる公知の金属材料を用いることができる。集電体に利用できる金属材料としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、モリブデン、ステンレスが挙げられる。
 本実施形態の高分子化合物を負極用バインダーとして用いた負極電極は、電解質として非水電解質を備える非水系の蓄電装置に有効に用いることができる。蓄電装置としては、例えば、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタが挙げられる。また、こうした蓄電装置は、電気自動車及びハイブリッド自動車のモータ駆動用の非水系二次電池や、パソコン、携帯通信機器、家電製品、オフィス機器、産業機器等に利用される非水系二次電池として有用である。
 次に、本実施形態の効果について記載する。
 (1)本実施形態の高分子化合物は、(A)リチウム化ポリアクリル酸と、(B)多官能アミンとが縮合してなる化合物であって、リチウム化ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とを有する。また、本実施形態の高分子化合物は、ポリアクリル酸により構成される鎖状構造と、鎖状構造内又は鎖状構造間におけるカルボキシル基同士を接続する架橋構造とを有し、架橋構造は、上記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造である。鎖状構造は、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とを有する。
 本実施形態の高分子化合物は、蓄電装置の負極用バインダーとして有用である。本実施形態の高分子化合物を負極用バインダーとして用いることにより、蓄電装置の特性(サイクル特性)を高めることができる。特に、低温下におけるサイクル特性を高めることができる。
 本実施形態の高分子化合物を負極用バインダーとして用いることにより蓄電装置の特性が向上する要因としては、以下の点が考えられる。すなわち、本実施形態の高分子化合物は、鎖状構造が有するカルボキシル基の一部がリチウム塩化された構造を有している。このため、ポリアクリル酸やポリアクリル酸誘導体からなる高分子化合物と比較して、高分子化合物としての極性が大きくなる。また、極性が大きくなることによって、高分子化合物の誘電率が大きくなる。これにより、負極用バインダーとして用いた場合に、高分子化合物の内部をリチウム等が移動する際の障壁が緩和されて、高分子化合物の内部をリチウム等が移動しやすくなる。その結果、蓄電装置のサイクル特性が高められる。
 また、その他の要因として、以下の点も考えられる。すなわち、ポリアクリル酸やポリアクリル酸の誘導体からなる高分子化合物を負極用バインダーとして用いた場合には、負極電極の作製時に行われる加熱処理等によって、鎖状構造が有するカルボキシル基同士が脱水縮合し、酸無水物構造による架橋構造が形成されることがある。酸無水物構造による架橋構造の長さが小さいことから、架橋構造が過剰に形成されると、鎖状構造同士が密に接近し、高分子化合物が剛直化して、高分子化合物の柔軟性が損なわれる。
 こうした問題に対して、本実施形態の高分子化合物では、鎖状構造が有するカルボキシル基の一部を、リチウム塩化された構造とすることで、酸無水物構造を形成できない側鎖としている。これにより、酸無水物構造を形成可能なカルボキシル基の数が少なくなり、酸無水物構造による架橋構造の過剰な形成が抑制される。
 そして、酸無水物構造による架橋構造の過剰な形成が抑制されることによって、高分子化合物の柔軟性が確保されている。これにより、負極用バインダーとして用いた場合に、リチウム等の吸蔵及び放出に伴う膨張及び収縮による体積変化に対する追従性が向上する。また、酸無水物構造による架橋構造の過剰な形成が抑制されることによって、高分子化合物の網目構造が過剰に密になることが抑制されて、高分子化合物の内部をリチウム等が通過しやすくなる。これらの結果、蓄電装置のサイクル特性が高められる。
 (2)負極用バインダーとしての本実施形態の高分子化合物は、ポリアクリル酸からなる鎖状構造の重量平均分子量を低くしても、蓄電装置のサイクル特性が維持されやすい性質を有している。そのため、鎖状構造部分の短い低分子量の高分子化合物とした場合にも、本実施形態の高分子化合物は、負極用バインダーとして有効に機能することができる。また、負極用バインダーとして低分子量の高分子化合物を用いた場合には、より少ない量の溶剤でスラリーを調製することができる。このことから、スラリーの固形分比を大きく設定することができる。これにより、負極電極を作成する際に負極活物質層から溶剤を揮発させるための乾燥時間が短縮されるため、負極電極の生産性が向上する。したがって、本実施形態の高分子化合物を負極用バインダーとして用いた場合には、負極電極の生産性の向上が容易である。
 (3)上記一般式(5)に示す、架橋構造の部分構造において、Yは炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子である。
 上記構成によれば、架橋構造内に運動が可能な部分構造を有するため、高分子化合物の伸縮性が向上する。これにより、本実施形態の高分子化合物を用いた負極用バインダーは、リチウム等の吸蔵及び放出に伴う膨張及び収縮による体積変化に対して追従しやすくなる。その結果、蓄電装置の特性が高められる。
 (4)高分子化合物の中間組成物は、(A)リチウム化ポリアクリル酸と、(B)多官能アミンと、非水溶媒及び水の混合溶媒とを含有し、(A)リチウム化ポリアクリル酸及び(B)多官能アミンが混合溶媒中に溶解している。そして、リチウム化度が5~50%の範囲である場合には、混合溶媒における非水溶媒と水との混合割合が2:1~1:2の範囲であり、リチウム化度が50~75%の範囲である場合には、混合溶媒における非水溶媒と水との混合割合が1:1~1:2の範囲である。
 上記構成によれば、混合溶媒中に中間組成物を構成する成分が析出することが抑制される。その結果、本実施形態の高分子化合物を効率的に得ることができる。また、中間組成物と負極活物質とを混合したスラリーから負極電極を製造した際に、中間組成物から得られる高分子化合物(負極用バインダー)が、負極電極内において偏在することが抑制される。
 すなわち、混合溶媒中に中間組成物を構成する成分が析出していることは、その成分が凝集していることを意味する。一部の成分が析出した状態の中間組成物を加熱処理により縮合させて高分子化合物を得ようとした場合、成分が凝集した部分において縮合反応が進行し難くなり、目的の高分子化合物の収率が低下する。また、一部の成分が析出した状態の中間組成物を用いて負極電極を製造した場合、成分が凝集した部分において、目的の高分子化合物が十分に形成されなくなる。このため、得られた負極電極に、負極用バインダーとしての高分子化合物が十分に存在しない部分が生じやすくなる。この点、上記構成によれば、混合溶媒中に中間組成物を構成する成分が析出することが抑制されるため、高分子化合物を得る際、及び負極電極を製造する際、上記の問題が生じることを抑制することができる。
 以下に、上記実施形態をさらに具体化した実施例について説明する。
 <試験1>
 リチウム化ポリアクリル酸と、特定の分子構造を有する多官能アミンとを縮合してなる高分子化合物を負極用バインダーとして用いた場合における蓄電装置の電池特性を評価した。
 なお、以下では、ポリアクリル酸を「PAA」、N-メチル-2-ピロリドンを「NMP」と、それぞれ表記する。
 (実施例1A:PAA+4,4’-ジアミノジフェニルメタン、リチウム化度10%)
 重量平均分子量50,000のPAAを水に溶解させて、30質量%のPAA水溶液を調製し、このPAA水溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に水酸化リチウム1水和物0.131mg(3.12mmol)を加えて、室温にて30分間撹拌することにより、PAA水溶液に含まれるPAAのカルボキシル基の一部をリチウム塩化した。別途、4,4’-ジアミノジフェニルメタン1.03g(5.19mmol)をNMP14gに溶解させて、多官能アミン/NMP溶液を調製した。フラスコ内に多官能アミン/NMP溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、実施例1Aの中間組成物を、NMPと水との混合溶媒(NMP:水=2:1)に対する溶液の状態で得た。実施例1の中間組成物のリチウム化度は、下記式により算出することができ、その値は10%である。
 リチウム化度(%)=水酸化リチウム1水和物のモル数/{(PAAのモノマー換算モル数)-(多官能アミンのモル数)×(多官能アミンのアミノ基の数)}×100
 (実施例1B:PAA+4,4’-ジアミノジフェニルメタン、リチウム化度20%)
 水酸化リチウム1水和物の添加量を0.262mg(6.24mmol)に変更した点を除いて、実施例1Aと同様の方法により、実施例1Bの中間組成物を溶液の状態で得た。実施例1Bの中間組成物のリチウム化度は20%である。
 (実施例1C:PAA+4,4’-ジアミノジフェニルメタン、リチウム化度50%)
 水酸化リチウム1水和物の添加量を0.655mg(15.6mmol)に変更した点を除いて、実施例1Aと同様の方法により、実施例1Cの中間組成物を溶液の状態で得た。実施例1Cの中間組成物のリチウム化度は50%である。
 (参考例1:PAA+4,4’-ジアミノジフェニルメタン、リチウム化度0%)
 重量平均分子量50,000のPAAをNMPに溶解させて、30質量%のPAA/NMP溶液を調製し、このPAA/NMP溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。別途、4,4’-ジアミノジフェニルメタン1.03g(5.19mmol)をNMP14gに溶解させて、多官能アミン/NMP溶液を調製した。フラスコ内に多官能アミン/NMP溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、参考例1の中間組成物を溶液の状態で得た。参考例1の中間組成物のリチウム化度は0%である。
 (参考例2:PAA+1,6-ジアミノヘキサン、リチウム化度10%)
 重量平均分子量50,000のPAAを水に溶解させて、30質量%のPAA水溶液を調製し、このPAA水溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に水酸化リチウム1水和物0.131mg(3.12mmol)を加えて、室温にて30分間撹拌することにより、PAA水溶液に含まれるPAAのカルボキシル基の一部をリチウム塩化した。別途、1,6-ジアミノヘキサン0.603g(5.19mmol)をNMP14gに溶解させて、多官能アミン/NMP溶液を調製した。フラスコ内に多官能アミン/NMP溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、参考例2の中間組成物を溶液の状態で得た。参考例2の中間組成物のリチウム化度は10%である。
 (電極シートの作製)
 得られた実施例の中間組成物を用いて、各中間組成物から得られる高分子化合物を負極用バインダーとする電極シートを作製した。そして、得られた電極シートを用いてリチウムイオン二次電池を作製し、そのリチウムイオン二次電池の電池特性を評価した。
 SiO85質量部、アセチレンブラック5質量部、各中間組成物の溶液10質量部を混合するとともに、この混合物に、NMPと水の任意の混合溶媒を加えてスラリーを調製した。20μmの電解銅箔(集電体)の表面に、ドクターブレード法を用いてスラリーを膜状に塗布した。そして、スラリー中のNMPを揮発させて除去することにより、電解銅箔上に負極活物質層を形成した。次いで、ロールプレス機を用いて、負極活物質層の厚さが20μmとなるように電解銅箔及び負極活物質層を圧縮することにより、電解銅箔と負極活物質層を強固に密着接合させた。
 その後、NMPが除去されて乾燥した状態の負極活物質層に対して、真空中(減圧下)にて200℃、2時間の加熱処理を行うことにより、負極活物質層に含まれる中間組成物を縮合反応させるとともに、負極活物質層を加熱硬化させた。これにより、架橋構造を有する高分子化合物を負極用バインダーとして含有する電極シートを得た。
 また、実施例の中間組成物の水溶液に代えて、各参考例の中間組成物の水溶液又はPAAを用いて同様の電極シートを作製した。
 (リチウムイオン二次電池の作製)
 電極シートを直径11mmの円形に裁断してなる負極電極(評価極)と、厚さ500μmの金属リチウム箔を直径13mmの円形に裁断してなる正極電極との間にセパレータを配置して電極体電池を作製した。電池ケース内に電極体電池を収容するとともに非水電解質を注入してから、電池ケースを密閉することにより、リチウムイオン二次電池を得た。なお、セパレータとしては、ヘキストセラニーズ社製ガラスフィルター及びセルガード社製celgard2400を用いた。非水電解質としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒に、ヘキサフルオロリン酸リチウムを1Mの濃度となるように溶解させた非水電解質を用いた。
 (電池特性の評価)
 得られたリチウムイオン二次電池について、直流電流0.2mAで負極電極における正極電極に対する電圧が0.01Vになるまで放電を行い、放電が終了してから10分後に、直流電流0.2mAで負極電極における正極電極に対する電圧が1.0Vになるまで充電を行った。このときの放電容量を初期放電容量とするとともに、充電容量を初期充電容量とした。そして、下記式に基づいて初期効率を算出した。その結果を表1に示す。
 初期効率(%)=(初期充電容量/初期放電容量)×100
 また、上記の放電及び充電を1サイクルとして、0℃又は25℃において、規定サイクルの充放電を行い、下記式に基づいてサイクル特性を算出した。その結果を表1に示す。
 サイクル特性(%)=(規定サイクル後の充電容量/初期充電容量)×100
Figure JPOXMLDOC01-appb-T000014
 表1に示すように、PAAを負極用バインダーとして用いた試験例6と比較して、多官能アミンを縮合させて架橋構造を形成した高分子化合物を負極用バインダーとして用いた試験例1~5においては、25℃におけるサイクル特性の評価が高くなることが確認できた。
 そして、多官能アミンを縮合させて架橋構造を形成した高分子化合物のなかでも、カルボキシル基の一部がリチウム塩化されたPAAと、特定の分子構造を有する多官能アミンを縮合させた高分子化合物を負極用バインダーとして用いた試験例1~3は、リチウム塩化されていないPAAを用いた試験例4、及び特定の分子構造を有していない多官能アミンを用いた試験例5と比較して、初期効率、サイクル特性の評価が高くなることが確認できた。特に、試験例1~5に関して、低温下(0℃)におけるサイクル特性についても評価したところ、試験例1~3は、低温下(0℃)におけるサイクル特性が大きく向上することが確認できた。
 これらの結果から、多官能アミンを縮合させて架橋構造を形成した高分子化合物のなかでも、カルボキシル基の一部がリチウム塩化されたPAAと、特定の分子構造を有する多官能アミンを縮合させた高分子化合物は、蓄電装置の負極用バインダーとして有用であることが分かる。
 <試験2>
 次に、リチウム化PAAと、特定の分子構造を有する多官能アミンとを縮合してなる高分子化合物を負極用バインダーとして用いた場合において、多官能アミンの種類を異ならせた場合における蓄電装置の電池特性の変化について評価した。
 (実施例2:PAA+4,4’-ジアミノジフェニルエーテル、リチウム化度10%)
 重量平均分子量50,000のPAAを水に溶解させて、30質量%のPAA水溶液を調製し、このPAA水溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に水酸化リチウム1水和物0.131mg(3.12mmol)を加えて、室温にて30分間撹拌することにより、PAA水溶液に含まれるPAAのカルボキシル基の一部をリチウム塩化した。別途、4,4’-ジアミノジフェニルエーテル1.039g(5.19mmol)をNMP14gに溶解させて、多官能アミン/NMP溶液を調製した。フラスコ内に多官能アミン/NMP溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、実施例2の中間組成物を溶液の状態で得た。実施例2の中間組成物のリチウム化度は10%である。
 (実施例3:PAA+1,3,5-トリス(4-アミノフェニル)ベンゼン、リチウム化度10%)
 重量平均分子量50,000のPAAを水に溶解させて、30質量%のPAA水溶液を調製し、このPAA水溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に水酸化リチウム1水和物0.131mg(3.12mmol)を加えて、室温にて30分間撹拌することにより、PAA水溶液に含まれるPAAのカルボキシル基の一部をリチウム塩化した。別途、1,3,5-トリス(4-アミノフェニル)ベンゼン1.824g(5.19mmol)をNMP14gに溶解させて、多官能アミン/NMP溶液を調製した。フラスコ内に多官能アミン/NMP溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、実施例3の中間組成物を溶液の状態で得た。実施例3の中間組成物のリチウム化度は10%である。
 (実施例4:PAA+3,3’-ジアミノジフェニルメタン、リチウム化度10%)
 重量平均分子量50,000のPAAを水に溶解させて、30質量%のPAA水溶液を調製し、このPAA水溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に水酸化リチウム1水和物0.131mg(3.12mmol)を加えて、室温にて30分間撹拌することにより、PAA水溶液に含まれるPAAのカルボキシル基の一部をリチウム塩化した。別途、3,3’-ジアミノジフェニルメタン1.029g(5.19mmol)をNMP14gに溶解させて、多官能アミン/NMP溶液を調製した。フラスコ内に多官能アミン/NMP溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、実施例4の中間組成物を溶液の状態で得た。実施例4の中間組成物のリチウム化度は10%である。
 (実施例5:PAA+4,4’-エチレンジアニリン、リチウム化度10%)
 重量平均分子量50,000のPAAを水に溶解させて、30質量%のPAA水溶液を調製し、このPAA水溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に水酸化リチウム1水和物0.131mg(3.12mmol)を加えて、室温にて30分間撹拌することにより、PAA水溶液に含まれるPAAのカルボキシル基の一部をリチウム塩化した。別途、4,4’-エチレンジアニリン1.101g(5.19mmol)をNMP14gに溶解させて、多官能アミン/NMP溶液を調製した。フラスコ内に多官能アミン/NMP溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、実施例5の中間組成物を溶液の状態で得た。実施例5の中間組成物のリチウム化度は10%である。
 (電池特性の評価)
 得られた実施例2~5の中間組成物を用いて、各中間組成物から得られる高分子化合物を負極用バインダーとする電極シートを作製した。また、得られた電極シートを用いてリチウムイオン二次電池を作製し、そのリチウムイオン二次電池の電池特性を評価した。その結果を表2に示す。なお、電極シート及びリチウムイオン二次電池の作成方法、並びにリチウムイオン二次電池の電池特性の評価方法は、試験1の方法と同じである。
Figure JPOXMLDOC01-appb-T000015
 表2に示すように、多官能アミンの種類を異ならせた場合においても、4,4’-ジアミノジフェニルメタンを用いた試験例1と比較して、同等の電池特性が得られることが確認できた。
 <試験3>
 次に、リチウム化PAAと、特定の分子構造を有する多官能アミンと、非水溶媒と水の混合溶媒とを含有する中間組成物に関して、リチウム化度及び混合溶媒混合溶媒の混合比率を異ならせた場合における溶解性の変化について評価した。
 重量平均分子量50,000のPAAを水又はNMPに溶解させて、30質量%のPAA溶液を調製し、このPAA溶液10g(PAAのモノマー換算で41.6mmol)を窒素雰囲気下のフラスコ内に分取した。フラスコ内に特定量の水酸化リチウム1水和物を加えて、室温にて30分間撹拌することにより、PAA溶液に含まれるPAAのカルボキシル基の一部をリチウム塩化した。別途、4,4’-ジアミノジフェニルメタン1.03g(5.19mmol)を特定量のNMP又は水に溶解させて、多官能アミン溶液を調製した。フラスコ内に多官能アミン溶液を滴下して、室温にて30分間撹拌した。その後、ディーン・スターク装置を用いて、110℃にて2時間、加熱処理(予備加熱処理)することにより、中間組成物をNMPと水との混合溶媒に対する溶液の状態で得た。
 水酸化リチウム1水和物の添加量は、リチウム化度が表3に示す値となるように調整した。なお、リチウム化度が0%の場合における水酸化リチウム1水和物の添加量は0gである。また、PAA溶液及び多官能アミン溶液を構成する溶媒の種類、及び4,4’-ジアミノジフェニルメタンの溶解に用いた溶媒の使用量は、得られた中間組成物に含まれる混合溶媒におけるNMPと水との混合割合(質量比)が表3に示す値となるように調整した。
 そして、得られた各中間組成物の溶液を観察し、中間組成物を構成する各成分が混合溶媒中に溶解しているか否かを評価した。その結果を表3に示す。表3においては、中間組成物を構成する各成分が混合溶媒に完全に溶解し、混合溶媒中に析出物が確認できない場合を「○」で表記し、中間組成物を構成する成分のいずれかが混合溶媒に不溶であり、混合溶媒中に析出物が確認された場合を「×」で表記した。
Figure JPOXMLDOC01-appb-T000016
 表3に示すように、リチウム化度が低くなるにしたがって、水の割合の多い混合溶媒に不溶となり、リチウム化度が高くなるにしたがって、NMPの割合の多い混合溶媒に不溶となる傾向が確認できた。そして、リチウム化度が100%になると、すべての混合割合の混合溶媒に対して不溶であった。
 上記の結果から、中間組成物を構成する成分が混合溶媒中に溶解している中間組成物を得るためには、リチウム化度に応じて、混合溶媒におけるNMP(非水溶媒)と水との混合割合を特定の範囲に設定する必要があることが分かる。具体的には、リチウム化度が50%以下である場合には、混合溶媒におけるNMP(非水溶媒)と水との混合割合を2:1~1:2の範囲にすることが好ましく、リチウム化度が50%以上である場合には、混合溶媒におけるNMP(非水溶媒)と水との混合割合を1:1~1:2の範囲にすることが好ましいと考えられる。
 <試験4>
 次に、実施例1Bの中間組成物(PAA+4,4’-ジアミノジフェニルメタン、リチウム化度20%)、及び参考例1の中間組成物(PAA+4,4’-ジアミノジフェニルメタン、リチウム化度0%)について、加熱処理による分子構造の変化を熱走査赤外分光測定により分析した。
 まず、乳鉢で粉砕したフッ化カルシウムから直径10mmの円盤状の基板を成形した。次に、アルゴン雰囲気下において、基板の片面に実施例1B又は参考例1の中間組成物の溶液を約10μl滴下し、これを24時間、静置して乾燥させ後、真空中(減圧下)にて1時間、静置して更に乾燥させた。これにより、フッ化カルシウムの基板の片面に約5μm厚の中間組成物の層を有する測定サンプルを作製した。なお、測定サンプルの作製は全て室温にて行った。そして、得られた測定サンプルをヘリウム流通下にて加熱しながら、30℃、110℃、150℃、180℃(直後)、180℃(30分保持後)、180℃(2時間保持後)、200℃(直後)、200℃(2時間保持後)の各温度において、熱走査赤外分光測定(透過法)を実施した。
 測定装置:フーリエ変換赤外分光光度計Cary670(Agilent Technologies社製)
 測定温度:昇温速度5℃/分にて室温から180℃まで上昇させ、180℃の状態を2時間保持した。その後、昇温速度5℃/分にて180℃から200℃まで上昇させ、200℃の状態を2時間保持した。
 分解能:4cm-1
 積算回数:512回
 波数範囲:4000~400cm-1(MCT検出器)
 窓材:KBr(赤外透過下限400cm-1
 参考例1の中間組成物について得られたIRスペクトルとの比較から、実施例1Bの中間組成物について得られたIRスペクトルのみに確認することのできる1583cm-1付近のピークがリチウム塩化したカルボキシル基(COO)を示すピークであると考えられる。そして、この1583cm-1付近のピークの強度は、室温から200℃までの各測定温度において略一定であった。これらの結果から、中間組成物を縮合反応させる加熱処理(カルボキシル基とアミノ基の縮合反応)の過程、及び加熱処理の後においても、リチウム塩化したカルボキシル基は、そのままの状態で存在していることが分かる。

Claims (11)

  1. 蓄電装置の負極用バインダーとして用いられる高分子化合物であって、
     カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、下記一般式(1)に示す多官能アミンとが縮合してなり、
     前記ポリアクリル酸により構成される鎖状構造は、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とを有し、
    Figure JPOXMLDOC01-appb-C000001
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物。
  2. 蓄電装置の負極用バインダーとして用いられる高分子化合物であって、
     ポリアクリル酸により構成される鎖状構造と、前記鎖状構造内又は鎖状構造間におけるカルボキシル基同士を接続する架橋構造とを有し、
     前記架橋構造は、下記一般式(2)~(4)から選ばれる少なくとも一種の架橋構造であり、
     前記鎖状構造は、フリーのカルボキシル基と、リチウム塩化されたカルボキシル基とを有し、
    Figure JPOXMLDOC01-appb-C000002
     PAAは、リチウム塩化されたポリアクリル酸により構成される鎖状構造を示し、Xは、下記一般式(5)に示す構造であり、
    Figure JPOXMLDOC01-appb-C000003
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、水素原子、メチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物。
  3. 前記フリーのカルボキシル基と前記リチウム塩化されたカルボキシル基との比率が95:5~25:75の範囲である、請求項1又は2に記載の高分子化合物。
  4. 蓄電装置の負極用バインダーとして用いられる高分子化合物の中間組成物であって、
     カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、下記一般式(1)に示す多官能アミンと、非水溶媒と水の混合溶媒とを含有し、
     前記ポリアクリル酸及び前記多官能アミンが前記混合溶媒中に溶解し、
    Figure JPOXMLDOC01-appb-C000004
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、中間組成物。
  5. 前記ポリアクリル酸に由来するカルボキシル基の総数を「C」、
     前記ポリアクリル酸に由来するカルボキシル基のうち、リチウム塩化されたカルボキシル基の総数を「LC」、
     多官能アミンに由来するアミノ基の総数を「A」としたとき、
     「「LC」/(「C」-「A」)×100」
    により求められるリチウム化度が5~50%の範囲であり、
     前記混合溶媒における非水溶媒と水との混合割合が2:1~1:2の範囲である、請求項4に記載の中間組成物。
  6. 前記ポリアクリル酸に由来するカルボキシル基の総数を「C」、
     前記ポリアクリル酸に由来するカルボキシル基のうち、リチウム塩化されたカルボキシル基の総数を「LC」、
     多官能アミンに由来するアミノ基の総数を「A」としたとき、
     「「LC」/(「C」-「A」)×100」
    により求められるリチウム化度が50~75%の範囲であり、
     前記混合溶媒における非水溶媒と水との混合割合が1:1~1:2の範囲である、請求項4に記載の中間組成物。
  7. 請求項2又は3に記載の高分子化合物の製造方法であって、
     カルボキシル基の一部がリチウム塩化されたポリアクリル酸と、下記一般式(1)に示す多官能アミンとを、非水溶媒と水の混合溶媒中にて150~230℃で加熱し、
    Figure JPOXMLDOC01-appb-C000005
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R1,R2はそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である、高分子化合物の製造方法。
  8. 蓄電装置の負極電極であって、
     請求項1~3のいずれか一項に記載の高分子化合物を含有する負極用バインダーと、負極活物質とを備え、
     前記負極活物質は、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種である、負極電極。
  9. 請求項8に記載の負極電極と、非水電解質とを備える、蓄電装置。
  10. 蓄電装置の負極電極の製造に用いられる負極電極用スラリーであって、
     請求項4~6のいずれか一項に記載の中間組成物と、負極活物質とを含有し、
     前記負極活物質として、リチウムを吸蔵及び放出し得る炭素系材料、リチウムと合金化可能な元素、及びリチウムと合金化可能な元素を有する化合物から選ばれる少なくとも一種を含有する、負極電極用スラリー。
  11. 蓄電装置の負極電極の製造方法であって、
     請求項10に記載の負極電極用スラリーを用いて、集電体に対して負極活物質層を形成する、負極電極の製造方法。
PCT/JP2017/003248 2016-02-12 2017-01-30 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法 WO2017138395A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780010508.1A CN108604686B (zh) 2016-02-12 2017-01-30 高分子化合物和负极电极及其制造方法、中间组成物、蓄电装置、负极电极用浆料
US16/076,033 US10538625B2 (en) 2016-02-12 2017-01-30 Polymer compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-025070 2016-02-12
JP2016025070A JP6696200B2 (ja) 2016-02-12 2016-02-12 負極用バインダー、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Publications (1)

Publication Number Publication Date
WO2017138395A1 true WO2017138395A1 (ja) 2017-08-17

Family

ID=59563098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003248 WO2017138395A1 (ja) 2016-02-12 2017-01-30 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Country Status (4)

Country Link
US (1) US10538625B2 (ja)
JP (1) JP6696200B2 (ja)
CN (1) CN108604686B (ja)
WO (1) WO2017138395A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031595A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極の製造方法
WO2020066218A1 (ja) * 2018-09-25 2020-04-02 株式会社豊田自動織機 負極用結着剤
CN117117077A (zh) * 2023-01-13 2023-11-24 荣耀终端有限公司 一种负极极片、负极极片的制备方法及锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034379A (ja) * 2006-06-28 2008-02-14 Sanyo Chem Ind Ltd アルカリ電池用増粘剤及びアルカリ電池
JP2009256570A (ja) * 2008-03-17 2009-11-05 Hitachi Chem Co Ltd アクリルポリマー、その合成方法、及びこれを用いた重合性樹脂組成物、ゲル状高分子電解質
JP2014123557A (ja) * 2012-11-20 2014-07-03 Sanyo Chem Ind Ltd アルカリ電池正極用結合剤及びアルカリ電池
US20140312268A1 (en) * 2013-04-23 2014-10-23 E I Du Pont De Nemours And Company Battery binder
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016063882A1 (ja) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2016084548A1 (ja) * 2014-11-25 2016-06-02 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003031A (ja) * 2001-06-25 2003-01-08 Hitachi Chem Co Ltd カルボキシル基含有樹脂組成物およびこれを用いた電池用バインダ樹脂組成物、電極および電池
US7972725B2 (en) * 2004-11-08 2011-07-05 3M Innovative Properties Company Polyimide electrode binders
JP5252386B2 (ja) * 2007-09-25 2013-07-31 学校法人東京理科大学 リチウムイオン電池用負極
US7931984B2 (en) 2007-11-28 2011-04-26 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
US8034485B2 (en) * 2008-05-29 2011-10-11 3M Innovative Properties Company Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
US9853292B2 (en) * 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
WO2012017738A1 (ja) * 2010-08-02 2012-02-09 日産自動車株式会社 リチウムイオン二次電池用負極およびその製造方法
EP2766944A4 (en) * 2011-10-10 2015-06-10 3M Innovative Properties Co AMORPHOUS ALLOY NEGATIVE ELECTRODE COMPOSITIONS FOR LITHIUM ION ELECTROCHEMICAL CELLS
KR101744089B1 (ko) * 2013-10-29 2017-06-07 삼성에스디아이 주식회사 리튬 이차 전지용 바인더 조성물, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP6696210B2 (ja) * 2016-02-18 2020-05-20 株式会社豊田自動織機 負極用バインダー、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034379A (ja) * 2006-06-28 2008-02-14 Sanyo Chem Ind Ltd アルカリ電池用増粘剤及びアルカリ電池
JP2009256570A (ja) * 2008-03-17 2009-11-05 Hitachi Chem Co Ltd アクリルポリマー、その合成方法、及びこれを用いた重合性樹脂組成物、ゲル状高分子電解質
JP2014123557A (ja) * 2012-11-20 2014-07-03 Sanyo Chem Ind Ltd アルカリ電池正極用結合剤及びアルカリ電池
US20140312268A1 (en) * 2013-04-23 2014-10-23 E I Du Pont De Nemours And Company Battery binder
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016063882A1 (ja) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2016084548A1 (ja) * 2014-11-25 2016-06-02 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031595A1 (ja) * 2018-08-10 2020-02-13 株式会社豊田自動織機 負極の製造方法
WO2020066218A1 (ja) * 2018-09-25 2020-04-02 株式会社豊田自動織機 負極用結着剤
CN117117077A (zh) * 2023-01-13 2023-11-24 荣耀终端有限公司 一种负极极片、负极极片的制备方法及锂离子电池

Also Published As

Publication number Publication date
US10538625B2 (en) 2020-01-21
CN108604686A (zh) 2018-09-28
US20190338073A1 (en) 2019-11-07
JP2017143043A (ja) 2017-08-17
JP6696200B2 (ja) 2020-05-20
CN108604686B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
US9966607B2 (en) High-molecular compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode method for producing high-molecular compound, and method for producing negative electrode
CN109071709B (zh) 高分子化合物、中间组成物、负极电极、蓄电装置以及高分子化合物的制造方法
CN108701832B (zh) 高分子化合物和负极电极及其制造方法、中间组成物、蓄电装置、负极电极用浆料
JP6623808B2 (ja) 負極電極用スラリー及び負極電極の製造方法
WO2017138395A1 (ja) 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
US10707490B2 (en) Polymer compound, intermediate composition, negative electrode, electricity storage device, slurry for negative electrodes, method for producing polymer compound, and method for producing negative electrode
JP6891900B2 (ja) 負極用バインダー、中間組成物、負極電極、蓄電装置、高分子化合物の製造方法、及び蓄電装置の負極電極の製造方法
JP6642081B2 (ja) 高分子化合物、負極用バインダー、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
JP6657758B2 (ja) 中間組成物、負極電極用スラリー、及び負極電極の製造方法
JP6432371B2 (ja) 蓄電装置用の負極電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750120

Country of ref document: EP

Kind code of ref document: A1