WO2020031597A1 - 負極の製造方法及び電極用結着剤 - Google Patents

負極の製造方法及び電極用結着剤 Download PDF

Info

Publication number
WO2020031597A1
WO2020031597A1 PCT/JP2019/027253 JP2019027253W WO2020031597A1 WO 2020031597 A1 WO2020031597 A1 WO 2020031597A1 JP 2019027253 W JP2019027253 W JP 2019027253W WO 2020031597 A1 WO2020031597 A1 WO 2020031597A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
polyacrylic acid
polyamine
Prior art date
Application number
PCT/JP2019/027253
Other languages
English (en)
French (fr)
Inventor
剛司 近藤
雄太 中川
智之 田崎
圭吾 小▲柳▼津
友邦 阿部
藤澤 宏樹
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020031597A1 publication Critical patent/WO2020031597A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a negative electrode used for a power storage device such as a secondary battery and a binder for an electrode.
  • a power storage device such as a secondary battery includes a positive electrode, a negative electrode, and an electrolyte as main components.
  • the negative electrode includes a current collector and a negative electrode active material involved in charge and discharge.
  • the industry has been demanding an increase in the capacity of a power storage device, and various technologies are being studied to meet the demand.
  • As one of the specific techniques there is known a technique in which a Si-containing negative electrode active material containing Si having a high ability to absorb a charge carrier such as lithium is used as a negative electrode active material of a power storage device.
  • Patent Literature 1 and Patent Literature 2 describe lithium ion secondary batteries in which the negative electrode active material is silicon.
  • Patent Literature 3 discloses a lithium ion secondary battery in which a negative electrode active material is SiO.
  • Patent Document 4 discloses a silicon obtained by synthesizing a layered silicon compound mainly composed of a layered polysilane from which CaSi 2 is reacted with an acid to remove Ca and heating the layered silicon compound at 300 ° C. or more to release hydrogen. It describes that the material was manufactured, and a lithium ion secondary battery including the silicon material as a negative electrode active material.
  • a negative electrode including the Si-containing negative electrode active material employs a binder such as polyamideimide or polyimide having a strong binding force. It can be said that it is preferable. Actually, polyamideimide or polyimide is employed as a specific binder for the negative electrodes of Patent Documents 1 to 4.
  • Patent Document 5 describes that a compound obtained by condensation of polyacrylic acid and a polyfunctional amine is excellent as a binder for a negative electrode having a Si-containing negative electrode active material.
  • a lithium ion secondary battery using a compound obtained by condensation of polyacrylic acid and 4,4′-diaminodiphenylmethane as a negative electrode binder uses polyamideimide as a negative electrode binder. It is described that the battery characteristics were better than the lithium ion secondary battery, together with specific test results.
  • Patent Document 5 describes that polyacrylic acid and a polyfunctional amine undergo a condensation reaction under a heating condition of 150 ° C. or higher (see Test 9).
  • Patent Literature 5 specifically describes that a negative electrode containing a compound obtained by condensing polyacrylic acid and a polyfunctional amine was obtained by the following production method (see Example 1). .).
  • a solution of an intermediate composition containing polyacrylic acid and a polyfunctional amine is produced.
  • Using the solution of the intermediate composition to produce a slurry-like negative electrode active material layer forming composition ⁇ Apply the negative electrode active material layer forming composition to the negative electrode current collector and remove the solvent ⁇
  • the intermediate composition is subjected to a condensation reaction to form a polymer having a crosslinked structure, thereby producing a negative electrode.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for producing a negative electrode containing, as a binder, a compound obtained by condensing polyacrylic acid and polyamine in a relatively short time. And Furthermore, it aims at providing a new binder for electrodes.
  • the present inventor has considered the technique for activating the carboxyl group and water involved in the above-described nucleophilic dehydration reaction to promote the above-described nucleophilic dehydration reaction. Then, a technique of irradiating the negative electrode precursor with light having a wavelength that is absorbed by the carboxyl group and water was conceived. When such a technique was actually tried, it was found that a suitable negative electrode could be manufactured with only a few minutes of light irradiation. Based on such knowledge, the present inventors have completed the present invention.
  • the method for producing a negative electrode of the present invention comprises: Current collector, and a method for producing a negative electrode comprising a negative electrode active material layer containing a compound obtained by condensation of polyacrylic acid and polyamine and a negative electrode active material on the surface of the current collector, a) A precursor of a compound obtained by condensation of polyacrylic acid and polyamine, a negative electrode active material layer-forming composition containing a negative electrode active material and a solvent, or polyacrylic acid, a polyamine, a negative electrode active material and a solvent Step of preparing a composition for forming a negative electrode active material layer, b) applying the composition for forming a negative electrode active material layer to the current collector to produce a negative electrode precursor; c) irradiating the negative electrode precursor with light having a wavelength of 4 to 8 ⁇ m.
  • the electrode binder of the present invention contains a compound obtained by condensing polyacrylic acid with a polyaminobenzene derivative represented by the following general formula (2) and / or a self-condensate of the polyaminobenzene derivative.
  • R is independently selected from alkyl, alkoxy, halogen, OH, SH, NO 2 , CN, CO 2 H, SO 3 H, and CONH 2 which may be substituted with a substituent. Is done. m is an integer of 2 to 6. n is an integer of 0 to 4, and m + n ⁇ 6.
  • the method for producing a negative electrode of the present invention it is possible to produce a negative electrode using a compound obtained by condensation of polyacrylic acid and polyamine as a binder in a short time.
  • 14 is an infrared absorption spectrum at 30 ° C. in Evaluation Example 6.
  • 14 is an infrared absorption spectrum at 250 ° C. in Evaluation Example 6.
  • 13 is a temperature raising program of Evaluation Example 11.
  • 18 is an infrared absorption spectrum of a sample using the solution of Example 7 in Evaluation Example 11. It is a reaction formula estimated in a dehydration condensation reaction in which a polyacrylic acid chain is crosslinked with p-phenylenediamine.
  • 18 is an infrared absorption spectrum of a sample using the solution of Example 9 in Evaluation Example 11.
  • the numerical range “ab” described in this specification includes the lower limit a and the upper limit b.
  • a numerical range can be formed by arbitrarily combining these upper and lower limits and the numerical values listed in the examples. Further, numerical values arbitrarily selected from within these numerical ranges can be set as new upper and lower numerical values.
  • the method for producing a negative electrode of the present invention comprises: Current collector, and a method for producing a negative electrode comprising a negative electrode active material layer containing a compound obtained by condensation of polyacrylic acid and polyamine and a negative electrode active material on the surface of the current collector, a) A precursor of a compound obtained by condensation of polyacrylic acid and polyamine, a negative electrode active material layer-forming composition containing a negative electrode active material and a solvent, or polyacrylic acid, a polyamine, a negative electrode active material and a solvent Step of preparing a composition for forming a negative electrode active material layer, b) applying the composition for forming a negative electrode active material layer to the current collector to produce a negative electrode precursor; c) irradiating the negative electrode precursor with light having a wavelength of 4 to 8 ⁇ m.
  • the current collector refers to a chemically inert electronic conductor for continuously supplying a current to the electrode during discharging or charging of a secondary battery such as a lithium ion secondary battery.
  • the material of the current collector is not particularly limited as long as the metal can withstand a voltage suitable for the active material to be used.
  • As the material of the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel And other metal materials.
  • the current collector may be covered with a known protective layer. A current collector whose surface is treated by a known method may be used as the current collector.
  • the current collector can be in the form of foil, sheet, film, wire, rod, mesh, and the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • Examples of the thickness of the negative electrode active material layer include 1 to 200 ⁇ m, 5 to 150 ⁇ m, and 10 to 100 ⁇ m.
  • a compound formed by condensation of polyacrylic acid and polyamine functions as a binder.
  • the weight average molecular weight of the polyacrylic acid is preferably in the range of 5,000 to 2,000,000, more preferably in the range of 10,000 to 18,000,000, still more preferably in the range of 50,000 to 15,000,000, and still more preferably in the range of 100,000 to 13,000,000. Particularly preferably, it is in the range of 400,000 to 12,000,000, most preferably in the range of 500000 to 1,000,000.
  • Polyamine is a compound having two or more amino groups in one molecule.
  • polyfunctional amine represented by the following general formula (1) can be exemplified.
  • the polyfunctional amine is a polyfunctional amine described in Patent Document 5, is poorly soluble in water, and soluble in an organic solvent such as N-methyl-2-pyrrolidone.
  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R 1 and R 2 are each independently a single or plural hydrogen atoms, a methyl group.
  • a substituent may be bonded to carbon constituting the structure.
  • substituent bonded to carbon constituting the linear alkyl group include a methyl group, an ethyl group, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, and an oxo group.
  • One of these substituents may be bonded, or two or more of these substituents may be bonded.
  • the number of substituents bonded to one carbon may be one or two.
  • the substituent bonded to the carbon atoms constituting the linear alkyl group and the phenylene group may be an amino group or a substituent containing an amino group.
  • polyfunctional amine represented by the general formula (1) examples include 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4'-ethylenedianiline, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 4,4'-diaminobenzophenone, 4'-methylenebis (2-ethyl-6-methylaniline), pararoseaniline, 1,3,5-tris (4-aminophenyl) benzene.
  • polyaminobenzene derivatives represented by the following general formula (2) examples include polyaminobenzene derivatives represented by the following general formula (2) and self-condensates thereof.
  • the polyaminobenzene derivative of the general formula (2) is soluble in an organic solvent such as N-methyl-2-pyrrolidone.
  • organic solvent such as N-methyl-2-pyrrolidone.
  • polyaminobenzene derivatives of the general formula (2) those which are water-soluble and those which show water solubility in the presence of polyacrylic acid are preferred.
  • R is independently selected from alkyl, alkoxy, halogen, OH, SH, NO 2 , CN, CO 2 H, SO 3 H, and CONH 2 which may be substituted with a substituent. Is done. m is an integer of 2 to 6. n is an integer of 0 to 4, and m + n ⁇ 6.
  • polyaminobenzene derivative represented by the general formula (2) examples include p-phenylenediamine, 2-chloro-1,4-phenylenediamine, 2,5-dichloro-1,4-phenylenediamine, 2,6 -Dibromo-1,4-phenylenediamine, 2,3,5,6-tetrafluoro-1,4-phenylenediamine, 2,5-diaminotoluene, 2,5-dimethyl-1,4-phenylenediamine, 2- Trifluoromethyl-1,4-phenylenediamine, 2-nitro-1,4-phenylenediamine, 1,4-phenylenediamine-2-sulfonic acid, 2-chloro-5-nitro-1,4-phenylenediamine, 2 -Chloro-5-methyl-1,4-phenylenediamine, 2,5-diamino-1,4-benzenedithiol, 2,5-diaminobenzoic acid, -Phen
  • the binder for an electrode of the present invention comprising a compound obtained by condensing a polyaminobenzene derivative and / or a self-condensate of the polyaminobenzene derivative (hereinafter, sometimes referred to as the compound of the present invention). Is formed.
  • the electrode binder of the present invention may be a positive electrode binder or a negative electrode binder.
  • the polyacrylic acid chain is presumed to be crosslinked by a polyaminobenzene derivative and / or a self-condensate of the polyaminobenzene derivative.
  • two carboxyl groups of adjacent acrylic acid monomer units in the first polyacrylic acid and an amino group of a polyaminobenzene derivative and / or an amino group of a self-condensate of the polyaminobenzene derivative undergo a dehydration condensation reaction.
  • a 6-membered ring imide skeleton To form a 6-membered ring imide skeleton.
  • R is independently selected from CO 2 H or SO 3 H
  • m is an integer of 2 to 5
  • n is 1 to 4
  • a self-condensate is formed by a dehydration condensation reaction between an amino group of a polyaminobenzene derivative and CO 2 H or SO 3 H of another polyaminobenzene derivative.
  • a peak having a peak top between 1670 and 1710 cm -1 and a peak having a peak top between 1740 and 1780 cm -1 are observed. Further, in the infrared absorption spectrum of the compound of the present invention, a peak having a peak top between 1785 and 1820 cm -1 is observed. The above three peaks are considered to be derived from the COO bond. Further, among the compounds of the present invention, in a compound in which a self-condensate of a polyaminobenzene derivative having CO 2 H is condensed, a peak having a peak top between 1520 and 1580 cm ⁇ 1 is observed in the infrared absorption spectrum. Is done. This peak is considered to be derived from the CONH structure in the self-condensate of the polyaminobenzene derivative.
  • polyamines include alkylenediamines such as ethylenediamine, propylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, isophoronediamine, bis (4-aminocyclohexyl) methane, 1,1-bis ( Saturated carbocyclic diamines such as 4-aminophenyl) cyclohexane, benzidine, o-tolidine, 9,9-bis (4-aminophenyl) fluorene, bis (4-aminophenyl) sulfone, xylylenediamine, naphthalenediamine, etc. Aromatic diamines are mentioned.
  • polyamine one type of compound may be employed, or a plurality of types of compounds may be used in combination.
  • the molar ratio of acrylic acid monomer to polyamine is preferably 2: 1 to 50: 1, more preferably 4: 1 to 40: 1, and 7: 1 to 30: 1 is more preferable, and 10: 1 to 25: 1 is particularly preferable. If the molar ratio of the polyamine to the acrylic acid monomer is too small, it may be difficult to appropriately maintain the capacity of the power storage device. If the molar ratio of the polyamine to the acrylic acid monomer is too large, the binding property may decrease.
  • the negative electrode active material layer includes a compound obtained by condensation of polyacrylic acid and polyamine, and a negative electrode active material capable of inserting and extracting a charge carrier such as lithium ions, and further, if necessary, other binders and conductive assistants. And other additives.
  • the negative electrode active material layer preferably contains the negative electrode active material in an amount of 60 to 98% by mass, more preferably 70 to 95% by mass, based on the total mass of the negative electrode active material layer. Further, the negative electrode active material layer preferably contains a compound formed by condensation of polyacrylic acid and polyamine in an amount of 1 to 20% by mass, preferably 2 to 15% by mass, based on the total mass of the negative electrode active material layer. More preferably, it is contained in an amount of 3 to 10% by mass.
  • the negative electrode active material a material capable of inserting and extracting a charge carrier can be used. Therefore, there is no particular limitation as long as it is a simple substance, an alloy or a compound capable of inserting and extracting a charge carrier such as lithium ions.
  • a negative electrode active material Li, a group 14 element such as carbon, silicon, germanium and tin; a group 13 element such as aluminum and indium; a group 12 element such as zinc and cadmium; a group 15 element such as antimony and bismuth; And an alkaline earth metal such as calcium, and a group 11 element such as silver and gold may be used alone.
  • alloys or compounds include tin-based materials such as Ag-Sn alloys, Cu-Sn alloys, Co-Sn alloys, carbon-based materials such as various graphites, and SiO x (which is disproportionated to silicon alone and silicon dioxide). 0.3.ltoreq.x.ltoreq.1.6), a simple substance of silicon, or a composite of a combination of a silicon-based material and a carbon-based material.
  • M Co , Ni, Cu
  • preferable negative electrode active materials include graphite, Si-containing materials, and Sn-containing materials.
  • a Si-containing negative electrode active material having a large degree of expansion and contraction during charge and discharge is particularly preferable.
  • SiO x (0.3 ⁇ x ⁇ 1.6) in a disproportionated or undisproportionated state to Si alone or two phases of a Si phase and a silicon oxide phase. ) Can be exemplified.
  • the range of x is more preferably 0.5 ⁇ x ⁇ 1.5, and even more preferably 0.7 ⁇ x ⁇ 1.2.
  • Si-containing negative electrode active material a silicon material (hereinafter, simply referred to as “silicon material”) disclosed in WO 2014/080608 and the like can be given.
  • the silicon material has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction.
  • the silicon material undergoes, for example, a step of reacting CaSi 2 with an acid to synthesize a layered silicon compound containing polysilane as a main component, and a step of heating the layered silicon compound at 300 ° C. or higher to release hydrogen. It is manufactured.
  • the silicon material obtained by heating the layered silicon compound also contains elements derived from oxygen and anions of acids.
  • the silicon material has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction.
  • the plate-like silicon body preferably has a thickness in the range of 10 nm to 100 nm, more preferably 20 nm to 50 nm.
  • the length in the longitudinal direction of the plate-like silicon body is preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the plate-like silicon body preferably has a ratio of (length in the longitudinal direction) / (thickness) in the range of 2 to 1,000.
  • the laminated structure of the plate-like silicon body can be confirmed by observation with a scanning electron microscope or the like. This laminated structure is considered to be a remnant of the Si layer in the raw material CaSi 2 .
  • the silicon material preferably includes amorphous silicon and / or silicon crystallite.
  • amorphous silicon is used as a matrix and silicon crystallites are scattered in the matrix.
  • the size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm.
  • the size of the silicon crystallite is calculated from Scherrer's formula using the half-value width of the diffraction peak of the Si (111) plane in the obtained X-ray diffraction chart by performing X-ray diffraction measurement on the silicon material. .
  • the abundance and size of the plate-like silicon body, amorphous silicon, and silicon crystallite contained in the silicon material mainly depend on the heating temperature and the heating time.
  • the heating temperature is preferably in the range of 400 ° C. to 900 ° C., and more preferably in the range of 500 ° C. to 800 ° C.
  • the Si-containing negative electrode active material is preferably coated with carbon.
  • the carbon coating improves the conductivity of the Si-containing negative electrode active material.
  • the Si-containing negative electrode active material is preferably in the form of a powder, which is an aggregate of particles.
  • the average particle diameter of the Si-containing negative electrode active material is preferably in the range of 1 to 30 ⁇ m, and more preferably in the range of 2 to 20 ⁇ m.
  • the average particle diameter herein means a D 50 in the case of measuring a sample in a conventional laser diffraction particle size distribution analyzer.
  • binders polyvinylidene fluoride, polytetrafluoroethylene, fluorine-containing resins such as fluororubber, thermoplastic resins such as polypropylene and polyethylene, polyimides, imide-based resins such as polyamideimide, alkoxysilyl group-containing resins, Acrylic resins such as poly (meth) acrylic acid, styrene butadiene rubber (SBR), and cellulose derivatives can be exemplified.
  • a cellulose derivative is preferably used because it can interact with polyacrylic acid, and a cellulose derivative having a hydroxyl group is more preferably used. It is considered that such interaction is promoted by irradiation with light having a wavelength of 4 to 8 ⁇ m in step c).
  • the mixing ratio of the cellulose derivative in the negative electrode active material layer is preferably 0.1 to 5% by mass, more preferably 0.3 to 3% by mass, and further preferably 0.5 to 2% by mass.
  • Examples of the cellulose derivative having a hydroxyl group include carboxyalkylcellulose such as carboxymethylcellulose and salts thereof, hydroxyalkylcellulose such as hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose, alkylcellulose such as methylcellulose and ethylcellulose, and hydroxyethylmethylcellulose and hydroxypropyl Examples thereof include hydroxyalkylalkylcellulose such as methylcellulose.
  • the conductive additive is added to increase the conductivity of the negative electrode. Therefore, the conductive assistant may be arbitrarily added when the conductivity of the negative electrode is insufficient, and may not be added when the conductivity of the negative electrode is sufficiently excellent.
  • the conductive additive may be any chemically inert high electron conductor, and examples thereof include carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber (VaporapGrown Carbon Fiber), and various metal particles. You. Examples of the carbon black include acetylene black, Ketjen Black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the negative electrode active material layer alone or in combination of two or more.
  • the mixing ratio of the conductive auxiliary agent in the negative electrode active material layer is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and still more preferably 1 to 5% by mass.
  • the mass ratio between the negative electrode active material and the conductive additive is preferably from 99: 1 to 85:15, more preferably from 98: 2 to 90:10, even more preferably from 97: 3 to 92: 8, and preferably from 94: 6 to 93: 7 is particularly preferred.
  • the step a) is a composition for forming a negative electrode active material layer containing a precursor of a compound obtained by condensation of polyacrylic acid and polyamine, a negative electrode active material and a solvent, or polyacrylic acid, polyamine, a negative electrode active material and a solvent.
  • This is a step of preparing a composition for forming a negative electrode active material layer containing
  • a precursor in which the carboxyl group of polyacrylic acid and the amino group of polyamine are in ionic bond means that some carboxyl groups and amino group May be bonded to form an amide bond and / or an imide bond.
  • the solvent is preferably one that can dissolve the precursor of polyacrylic acid, polyamine, or a compound obtained by condensation of polyacrylic acid and polyamine in the composition for forming a negative electrode active material layer.
  • Specific solvents include water, dimethylsulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, tetrahydrofuran, dichloromethane, methanol, ethanol, propanol, isopropanol, acetone, Examples thereof include methyl ethyl ketone and methyl isobutyl ketone.
  • N-methyl-2-pyrrolidone when a polyfunctional amine represented by the general formula (1) is used as the polyamine, it is preferable to use N-methyl-2-pyrrolidone as the solvent.
  • a polyaminobenzene derivative of the general formula (2) when used as the polyamine, it is preferable to use water as the solvent. It can be said that the use of water as the solvent is preferable in consideration of the environment and cost.
  • N-methyl-2-pyrrolidone has been widely used as a solvent for producing a negative electrode because a binder or a precursor thereof or a raw material compound thereof is soluble in N-methyl-2-pyrrolidone. This is probably due to low solubility in water.
  • the amount of the solvent is preferably from 20 to 80% by mass, more preferably from 45 to 75% by mass, based on the whole composition for forming a negative electrode active material layer.
  • the composition for forming a negative electrode active material layer is produced by mixing constituent components. It is preferable to heat during the production of the composition for forming a negative electrode active material layer to form a precursor of a compound obtained by condensation of polyacrylic acid and polyamine. Alternatively, a mixed solution in which polyacrylic acid, a polyamine and a solvent are mixed is heated, and a mixed solution in which a precursor of a compound formed by condensation of polyacrylic acid and polyamine is formed, is used as a negative electrode active material layer-forming composition. It is preferably used for production. Examples of the range of the heating temperature include 50 to 150 ° C., 60 to 130 ° C., 70 to 100 ° C., and 80 to 90 ° C.
  • the composition for forming a negative electrode active material layer may include a conductive additive and other additives.
  • a solid content other than the solvent in the composition for forming a negative electrode active material layer is a component of the negative electrode active material layer.
  • the compounding ratio of each component in the composition for forming a negative electrode active material layer is the compounding ratio in the negative electrode active material layer.
  • the compounding amount and the mixing ratio of the solid component in the composition for forming a negative electrode active material layer may be determined based on a suitable compounding amount and a mixing ratio of each component in the negative electrode active material layer.
  • the step a) may be carried out in the following a-1) to a-3. )) Step.
  • the polyacrylic acid and a polyaminobenzene derivative represented by the general formula (2) are dissolved in an aqueous solvent Step of mixing to produce a mixed aqueous solution a-3) Step of mixing the mixed aqueous solution and the negative electrode active material to produce a composition for forming a negative electrode active material layer
  • Step a-1) is a step of synthesizing polyacrylic acid by reacting a radical polymerization initiator with an aqueous acrylic acid solution.
  • a radical polymerization reaction is allowed to proceed with an aqueous solvent.
  • the reaction vessel in the step a-1) is preferably a reaction vessel capable of refluxing water.
  • the vaporized water vapor is cooled by a cooling mechanism such as a reflux condenser attached to the reaction vessel into liquid water so that water does not disappear from the reaction system, and the water is returned to the reaction system.
  • a cooling mechanism such as a reflux condenser attached to the reaction vessel into liquid water so that water does not disappear from the reaction system, and the water is returned to the reaction system.
  • acrylic acid is vaporized even if the radical polymerization reaction proceeds rapidly and the reaction temperature rises. Things can be avoided.
  • the radical polymerization reaction can be represented by the following reaction formula (references: Kensuke Naka, Yoshiki Nakajo, Synthetic Polymer Chemistry, Maruzen Co., Ltd., 2010, pp. 69-75).
  • Initiation reaction I ⁇ 2R ⁇ R ⁇ + M ⁇ P 1 ⁇ Growth reaction Pn • + M ⁇ Pn + 1 •
  • I is a radical polymerization initiator
  • R is a primary radical
  • M is a monomer
  • P n is a growing radical having a chain length of n
  • P n is a non-propagating radical having a chain length of n.
  • An activated polymer S is a compound such as a solvent that undergoes a chain transfer reaction
  • S ⁇ is a radical generated by the chain transfer reaction.
  • the ratio of the chain transfer reaction rate with respect to growth kinetics (chain transfer constant: k tr / k p) is indicative of the ease of chain transfer reaction.
  • the degree of polymerization of the polymer is also affected by the value of k tr / k p .
  • the present inventor evaluated the relationship between the acrylic acid monomer concentration, the water concentration, the weight average molecular weight, and the degree of polymerization, and found that the value of k tr / k p was almost 0, that is, It was found that water hardly participated in the chain transfer reaction.
  • the blending amount of water in the step a-1) may be determined in a suitable range in terms of workability and safety.
  • the mixing ratio of water to acrylic acid is preferably in the range of 1 to 30, more preferably 1.5 to 20, and even more preferably 2 to 10, in terms of mass ratio.
  • the radical polymerization initiator is not limited as long as it is soluble in water.
  • specific examples of the water-soluble radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, hydrogen persulfide, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, and 2,2′- Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, cumene hydroperoxide And 4,4'-azobis (4-cyanovaleric acid).
  • the molar ratio of the radical polymerization initiator to acrylic acid is preferably in the range of 0.0001 to 0.1, more preferably 0.001 to 0.05, and more preferably 0.003 to 0.01. Within the range is more preferable.
  • the reaction temperature in step (a-1) may be a temperature at which the radical polymerization initiator decomposes. For example, ranges of 60 to 90 ° C. and 60 to 80 ° C. can be exemplified.
  • the reaction time in step a-1) may be the time at which the acrylic acid disappears from the reaction solution. For example, 0.5 to 5 hours and 1 to 3 hours can be exemplified.
  • Step (a-1) is preferably performed in an inert gas atmosphere.
  • the inert gas include nitrogen, helium, and argon.
  • the molecular weight of the polyacrylic acid synthesized in the step a-1) is based on the amount of the acrylic acid used, the mixing ratio of the radical polymerization initiator to the acrylic acid, homogenization in the reaction system by stirring, and It can be controlled by appropriately adjusting the reaction temperature.
  • the weight average molecular weight of the polyacrylic acid synthesized in the step a-1) is preferably in the range of 5,000 to 25,000,000, more preferably in the range of 10,000 to 2,000,000, further preferably in the range of 50,000 to 18,000,000, and more preferably in the range of 100,000 to It is even more preferably in the range of 1600000, particularly preferably in the range of 400000 to 1500000, and most preferably in the range of 500000 to 1400000.
  • the higher the weight average molecular weight of polyacrylic acid the higher the binding strength, but the higher the viscosity when dissolved in water.
  • the viscosity of a solution of polyacrylic acid dissolved in water and the viscosity of a solution of polyacrylic acid dissolved in N-methyl-2-pyrrolidone are lower in the former. Then, when water is used as a solvent, even if polyacrylic acid having a larger average molecular weight is synthesized or an aqueous solution in which polyacrylic acid is dissolved at a higher concentration is obtained, a-1 It can be said that the work in the steps after the step (i) can be easily performed. Also in these respects, the production method using water and water as the solvent is preferable.
  • Step a-2) is a step of mixing the polyacrylic acid synthesized in step a-1) with the polyaminobenzene derivative represented by the general formula (2) in an aqueous solvent to produce a mixed aqueous solution.
  • step a-1) and step a-2) are preferably carried out using the same reaction vessel, that is, one-pot.
  • the amount of the polyaminobenzene derivative represented by the general formula (2) relative to the polyacrylic acid is set so that the molar ratio of the acrylic acid monomer to the polyaminobenzene derivative represented by the general formula (2) is 2 :
  • Particularly preferred is in the range of from 1 to 20: 1. If the molar ratio of the polyaminobenzene derivative represented by the general formula (2) to the acrylic acid monomer is too small, it may be difficult to appropriately maintain the capacity of the power storage device. If the molar ratio of the polyaminobenzene derivative represented by the general formula (2) to the acrylic acid monomer is too large, the binding property may decrease.
  • the polyaminobenzene derivative represented by the general formula (2) is water-soluble or shows water solubility in the presence of polyacrylic acid. However, the compounds of the present invention basically become sparingly soluble in water. As the polyaminobenzene derivative represented by the general formula (2), one type of compound may be employed, or a plurality of types of compounds may be used in combination.
  • Step (a-2) is preferably performed under heating conditions. Heating can promote the formation of a precursor of the compound of the present invention. Examples of the range of the heating temperature include 50 to 100 ° C, 60 to 100 ° C, 70 to 100 ° C, and 80 to 90 ° C.
  • the precursor of the compound of the present invention means that the carboxyl group of polyacrylic acid and the amino group of the polyaminobenzene derivative represented by the general formula (2) and / or the self-condensate of the polyaminobenzene derivative are ion-bonded. In this state, some carboxyl groups and amino groups may be bonded to form an amide bond and / or an imide bond.
  • FIG. 1 One embodiment of the assumed chemical structure of the precursor of the compound of the present invention is shown in FIG.
  • the polyaminobenzene derivative represented by the general formula (2) may be dissolved in water and then added to the polyacrylic acid solution obtained in step a-1). Further, the polyaminobenzene derivative represented by the general formula (2) may be dissolved in an aqueous solvent in step a-1) before the synthesis of polyacrylic acid.
  • a-1-1) A step of synthesizing polyacrylic acid by reacting a radical polymerization initiator with an aqueous solution of acrylic acid a-2-1)
  • the reaction solution after the step a-1-1) is added to the reaction solution obtained by the general formula (2) Step of adding a polyaminobenzene derivative represented by the formula) and heating to produce a mixed aqueous solution containing a precursor of the compound of the present invention.
  • a-1-2 Step of synthesizing polyacrylic acid by allowing a radical polymerization initiator to act on an aqueous solution in which acrylic acid and a polyaminobenzene derivative represented by the general formula (2) are dissolved in water a-2-2) Heating the reaction solution after the step a-1-2) to produce a mixed aqueous solution containing the precursor of the compound of the present invention.
  • Step b) is a step of applying the composition for forming a negative electrode active material layer to a current collector to produce a negative electrode precursor.
  • Examples of the coating method in the step b) include a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method.
  • a heating drying step or a pressing step of pressing the negative electrode to make the density of the negative electrode active material layer appropriate is performed for the purpose of removing the solvent from the negative electrode active material layer forming composition. You may.
  • the heating and drying step and the pressing step may be performed under normal pressure or may be performed under reduced pressure.
  • the heating and drying step is preferably performed in a temperature range of 50 to 150 ° C, more preferably performed in a temperature range of 70 to 140 ° C, and further preferably performed in a temperature range of 80 to 130 ° C. preferable.
  • the time required in the next step c) can be further reduced.
  • setting the temperature of the heating and drying step to a temperature exceeding 150 ° C. is not preferable. The reason is that it is assumed that the step b) is carried out in the atmosphere, and the temperature is set to a temperature exceeding 150 ° C. in the heating / drying step carried out as a part of the step b), so that the current collector and the like are removed. This is because the strength may decrease due to oxidation.
  • the composition for forming a negative electrode active material layer is sequentially or simultaneously applied to both surfaces of the current collector.
  • the negative electrode active material layer is formed only on one surface of the current collector, a difference occurs in the linear expansion coefficient between the front and back surfaces of the current collector.
  • the negative electrode active material layers are formed on both surfaces of the current collector, Means that the difference between the linear expansion coefficients of the front and back surfaces of the current collector has been offset. Therefore, when the negative electrode active material layers are formed on both sides of the current collector, the current collector is prevented from being warped when cooled from a temperature range of 170 to 250 ° C. to room temperature in step c) described below. be able to.
  • Step c) is a step of irradiating the negative electrode precursor with light having a wavelength of 4 to 8 ⁇ m, and is a step of generating a compound formed by condensation of polyacrylic acid and polyamine. It is considered that light having a wavelength of 4 to 8 ⁇ m promotes a nucleophilic dehydration reaction caused by an amino group of a polyamine with respect to a carboxyl group of polyacrylic acid. As a result, it is considered that the cross-linking of polyacrylic acid chains by the polyamine is promoted.
  • polyacrylic acid and polyamine are each soluble in water or an organic solvent, a compound formed by condensation of polyacrylic acid and polyamine is basically insoluble in water and an organic solvent.
  • the light having a wavelength of 4 to 8 ⁇ m is light in a wavelength region where H 2 O or a functional group having a carbon-oxygen double bond specifically absorbs.
  • the wavelength range of light specifically absorbed by H 2 O is approximately 5.5 to 7 ⁇ m
  • the wavelength range of light specifically absorbed by the carbon-oxygen double bond of the carboxyl group is approximately 5.5.
  • the wavelength of light in the step c) is preferably 5.5 to 7 ⁇ m.
  • step c) Because light having a wavelength of 4 to 8 ⁇ m corresponds to infrared light, irradiating the negative electrode precursor with light having a wavelength of 4 to 8 ⁇ m necessarily causes the step c) to be in a heated state.
  • the degree of output of light having a wavelength of 4 to 8 ⁇ m can be grasped by the temperature state in the step c). It can be said that the higher the output of light having a wavelength of 4 to 8 ⁇ m, the higher the temperature in step c), and the desired nucleophilic dehydration reaction proceeds more rapidly.
  • the temperature in step c) is preferably from 170 to 250 ° C, more preferably from 180 to 240 ° C, even more preferably from 190 to 230 ° C.
  • the temperature in the step c) is preferably from 180 to 260 ° C, more preferably from 185 to 250 ° C, even more preferably from 190 to 240 ° C. 195 to 230 ° C is still more preferred, and 200 to 220 ° C is particularly preferred. If the temperature in step c) is too low, the desired reaction may not proceed sufficiently.
  • step c) If the temperature in the step c) is too high, the dehydration reaction between the carboxyl groups of the polyacrylic acid chain proceeds excessively, that is, the structure of the acid anhydride is excessively generated, so that polyacrylic acid and polyamine are condensed. The function of the compound as a binder may be reduced. If the temperature in step c) is excessively high, the compound formed by condensation of polyacrylic acid and polyamine may be decomposed.
  • the intensity of the peak derived from the carbonyl of the amide group or the imide group is the intensity of the peak derived from the carbonyl of the acid anhydride. It can be said that a larger one may be preferable.
  • the time for irradiating an arbitrary portion of the negative electrode precursor with light having a wavelength of 4 to 8 ⁇ m is preferably 0.5 to 10 minutes, more preferably 1 to 5 minutes, and 1.5 to 4 minutes. Particularly preferred. For example, when the temperature in the step c) is 200 ° C., about 3 minutes is sufficient for the light irradiation time in the step c). If the irradiation time in step c) is too short, the desired reaction may not proceed sufficiently. If the irradiation time in the step c) is too long, energy may be wasted and an undesired side reaction may occur.
  • light having a wavelength of 4 to 8 ⁇ m can be transmitted as long as the thickness is about the thickness of the negative electrode active material layer. Therefore, a precursor of a compound obtained by condensation of polyacrylic acid and polyamine existing inside the negative electrode active material layer It is also considered that light having a wavelength of 4 to 8 ⁇ m reaches polyacrylic acid and polyamine. Then, it is considered that a desired reaction can be promoted not only on the surface of the negative electrode active material layer but also on the inside.
  • Step (c) is preferably performed in an inert gas atmosphere to suppress undesired oxidation.
  • the inert gas include nitrogen, helium, and argon.
  • a roll unwinding unit for unwinding the roll-shaped negative electrode precursor, a roll winding unit for winding the rolled negative electrode, and a roll unwinding unit and the roll unwinding unit are disposed between the roll unwinding unit and the roll winding unit.
  • a device having an irradiation unit for irradiating light having a wavelength of 4 to 8 ⁇ m By using the device, the negative electrode can be manufactured under the condition that the manufacturing variation hardly occurs because the flat negative electrode active material layer is present on the flat current collector, and thus the property of the negative electrode after the step c) is made uniform. Is done. Further, light irradiation under uniform conditions is easy, and the setting of the light irradiation time is easy, so that the performance variation of the negative electrode hardly occurs. Further, it can be applied to increase of production capacity and labor saving.
  • the negative electrode manufactured by the method for manufacturing a negative electrode of the present invention can be used as a negative electrode of a power storage device.
  • the power storage device include a primary battery, a secondary battery, and a capacitor.
  • the power storage device of the present invention including the negative electrode of the present invention will be described through the description of a lithium ion secondary battery that is a typical example of the power storage device.
  • a lithium ion secondary battery including the negative electrode of the present invention is referred to as a lithium ion secondary battery of the present invention.
  • One embodiment of the lithium ion secondary battery of the present invention includes the negative electrode, the positive electrode, the separator and the electrolytic solution, or the solid electrolyte of the present invention.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on a surface of the current collector.
  • those described for the negative electrode may be appropriately selected.
  • a collector made of aluminum or an aluminum alloy as the current collector for the positive electrode.
  • aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum.
  • An alloy obtained by adding various elements to pure aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al-Cu, Al-Mn, Al-Fe, Al-Si, Al-Mg, Al-Mg-Si, and Al-Zn-Mg.
  • aluminum or aluminum alloy examples include, for example, A1000 series alloys (pure aluminum series) such as JIS A1085 and A1N30, A3000 series alloys (Al-Mn series) such as JIS A3003 and A3004, and JIS A8079, A8021 and the like. A8000 series alloy (Al-Fe series).
  • the positive electrode active material layer contains a positive electrode active material capable of occluding and releasing charge carriers such as lithium ions, and, if necessary, a binder and a conductive assistant.
  • the positive electrode active material layer preferably contains the positive electrode active material at 60 to 99% by mass, more preferably 70 to 95% by mass, based on the total mass of the positive electrode active material layer.
  • Examples thereof include a lithium composite metal oxide and Li 2 MnO 3 .
  • a metal oxide having a spinel structure such as LiMn 2 O 4 , a solid solution composed of a mixture of a metal oxide having a spinel structure and a layered compound, LiMPO 4 , LiMVO 4, or Li 2 MSiO 4 (wherein M is selected from at least one of Co, Ni, Mn, and Fe).
  • tavorite compound (the M a transition metal) LiMPO 4 F such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal
  • LiMPO 4 F such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal
  • any of the metal oxides used as the positive electrode active material may have the above composition formula as a basic composition, and those obtained by replacing a metal element contained in the basic composition with another metal element can also be used.
  • a material not containing a charge carrier for example, lithium ions contributing to charge and discharge
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, and phenoxyl may be employed as the positive electrode active material.
  • a positive electrode active material containing no charge carrier such as lithium it is necessary to add a charge carrier to the positive electrode and / or the negative electrode in advance by a known method.
  • the charge carrier may be added in an ionic state or in a non-ionic state such as a metal.
  • the charge carrier when the charge carrier is lithium, the charge carrier may be integrated by attaching a lithium foil to the positive electrode and / or the negative electrode.
  • the values of b, c, and d are not particularly limited as long as they satisfy the above conditions, but those satisfying 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, and 0 ⁇ d ⁇ 1.
  • at least one of b, c, and d is in the range of 30/100 ⁇ b ⁇ 90/100, 10/100 ⁇ c ⁇ 90/100, and 1/100 ⁇ d ⁇ 50/100. More preferably, it is more preferably in the range of 40/100 ⁇ b ⁇ 90/100, 10/100 ⁇ c ⁇ 50/100, 2/100 ⁇ d ⁇ 30/100, and more preferably 50/100 ⁇ b ⁇ 90/100. More preferably, the ratio is in the range of 10/100 ⁇ c ⁇ 30/100 and 2/100 ⁇ d ⁇ 10/100.
  • a, e, and f may be numerical values within the range defined by the above general formula, and are preferably 0.5 ⁇ a ⁇ 1.5, 0 ⁇ e ⁇ 0.2, and 1.8 ⁇ f ⁇ 2. 0.5, more preferably 0.8 ⁇ a ⁇ 1.3, 0 ⁇ e ⁇ 0.1, and 1.9 ⁇ f ⁇ 2.1.
  • the Li x Mn 2-y A y O 4 (A spinel structure, Ca, Mg, S, Si , Na, K, Al, P, Ga , Ge, and at least one metal element selected from transition metal elements such as Ni, and 0 ⁇ x ⁇ 2.2, 0 ⁇ y ⁇ 1).
  • the range of the value of x can be exemplified by 0.5 ⁇ x ⁇ 1.8, 0.7 ⁇ x ⁇ 1.5, 0.9 ⁇ x ⁇ 1.2, and the range of the value of y is 0 ⁇ y ⁇ 0.8 and 0 ⁇ y ⁇ 0.6.
  • Specific examples of the compound having a spinel structure include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Specific positive electrode active material can be exemplified by LiFePO 4, Li 2 FeSiO 4, LiCoPO 4, Li 2 CoPO 4, Li 2 MnPO 4, Li 2 MnSiO 4, Li 2 CoPO 4 F.
  • Li 2 MnO 3 —LiCoO 2 can be exemplified.
  • binder examples include polyvinylidene fluoride, polytetrafluoroethylene, fluorine-containing resins such as fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide-based resins such as polyimide and polyamideimide, resins containing an alkoxysilyl group, and carboxymethylcellulose.
  • fluorine-containing resins such as fluororubber
  • thermoplastic resins such as polypropylene and polyethylene
  • imide-based resins such as polyimide and polyamideimide
  • resins containing an alkoxysilyl group and carboxymethylcellulose.
  • a known material such as styrene-butadiene rubber may be used.
  • the conductive additive those described for the negative electrode may be employed.
  • the amounts of the binder and the conductive additive in the positive electrode active material layer may be appropriately set as appropriate.
  • a known method may be appropriately used in order to form the positive electrode active material layer on the surface of the current collector.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass therethrough while preventing a short circuit due to contact between the two electrodes.
  • Known separators may be used as the separator, and synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic @ polyamide), polyester, and polyacrylonitrile; polysaccharides such as cellulose and amylose; and fibroin.
  • Nonwoven fabrics and woven fabrics using one or more of electrically insulating materials such as ceramics and natural polymers such as keratin, lignin and suberin.
  • the separator may have a multilayer structure.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic carbonate As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used.
  • the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, and vinylene carbonate
  • examples of the cyclic ester include gamma-butyrolactone, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, and gamma-valerolactone.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate
  • examples of the chain ester include alkyl propionate, dialkyl malonate, and alkyl acetate.
  • Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • a compound in which part or all of the hydrogen in the specific chemical structure of the solvent is substituted with fluorine may be used as the non-aqueous solvent.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (FSO 2 ) 2 .
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (FSO 2 ) 2 .
  • a lithium salt is added to a non-aqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate in an amount of about 0.5 mol / L to 3 mol / L, preferably 1.5 mol / L to 2 mol / L.
  • a non-aqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate in an amount of about 0.5 mol / L to 3 mol / L, preferably 1.5 mol / L to 2 mol / L.
  • An example is a solution dissolved at a concentration of 0.5 mol / L.
  • a solid electrolyte that can be used as a solid electrolyte of a lithium ion secondary battery may be appropriately adopted.
  • an electrode body is formed by sandwiching a separator between a positive electrode and a negative electrode.
  • the electrode body may be any of a stacked type in which a positive electrode, a separator, and a negative electrode are stacked, or a wound type in which a stacked body of a positive electrode, a separator, and a negative electrode is wound.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, such as an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery.
  • devices equipped with a lithium ion secondary battery include various home electric appliances, office equipment, industrial equipment, and the like, other than vehicles, such as personal computers and portable communication devices, which are driven by batteries.
  • the lithium ion secondary battery of the present invention is a power storage device and a power smoothing device for wind power generation, photovoltaic power generation, hydroelectric power generation and other power systems, power sources for ships and the like and / or power supply sources for auxiliary equipment, aircraft, Power supply for spacecraft and other power supplies and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply,
  • the present invention may be applied to a power storage device that temporarily stores electric power required for charging at a charging station for an electric vehicle or the like.
  • Example 1 Polyacrylic acid having a weight average molecular weight of 100,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 19% by mass of polyacrylic acid. Also, 4,4'-diaminodiphenylmethane was dissolved in N-methyl-2-pyrrolidone to prepare a 4,4'-diaminodiphenylmethane solution. Under stirring conditions, a 4,4′-diaminodiphenylmethane solution was added dropwise to the polyacrylic acid solution, and the resulting mixture was stirred at room temperature for 30 minutes. Thereafter, using a Dean-Stark apparatus, the mixture was stirred at 130 ° C. for 3 hours to produce a solution of Example 1. In the solution of Example 1, the molar ratio of acrylic acid monomer to 4,4'-diaminodiphenylmethane corresponds to 16: 1.
  • Example 1 a) Step The solution of Example 1 in an amount of 72.5 parts by mass of a carbon-coated silicon material as a Si-containing negative electrode active material, 13.5 parts by mass of acetylene black as a conductive additive, and 14 parts by mass of solids as a binder And an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry-like composition for forming a negative electrode active material layer.
  • Step A 30 ⁇ m-thick electrolytic Cu foil wound into a roll was prepared as a negative electrode current collector.
  • An apparatus for producing a negative electrode precursor was prepared.
  • the current collector for a negative electrode and the composition for forming a negative electrode active material layer were supplied to the device, and a negative electrode precursor was produced in the atmosphere. Note that the drying temperature in the drying section was set to 80 ° C.
  • the thickness of the negative electrode active material layer in the negative electrode precursor was 20 ⁇ m.
  • An irradiation unit for irradiating light having a wavelength of 6 ⁇ m was prepared. In this apparatus, the process of irradiating the negative electrode precursor with light was performed under a nitrogen gas atmosphere. The output of the light having a wavelength of 6 ⁇ m was set so that the temperature of the irradiation part was 200 ° C. The roll winding speed was set so that the time for irradiating an arbitrary portion of the negative electrode precursor with light was 3 minutes.
  • the negative electrode precursor of Example 1 was manufactured by disposing the negative electrode precursor obtained in the step b) in the above-described apparatus and operating the above-described apparatus under the above conditions.
  • Example 1 ⁇ Manufacture of lithium ion secondary batteries>
  • the negative electrode of Example 1 was cut into a circle having a diameter of 11 mm, and used as an evaluation electrode.
  • a metal lithium foil having a thickness of 500 ⁇ m was cut into a circle having a diameter of 13 mm to serve as a counter electrode.
  • a separator a glass filter (Hoechst Celanese) and celgard 2400 (Polypore), which is a single-layer polypropylene, were prepared.
  • an electrolyte was prepared by dissolving LiPF 6 at 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 1: 1.
  • Example 2 In the step c), the negative electrode of Example 2 and the lithium ion secondary battery were manufactured in the same manner as in Example 1 except that the output of light having a wavelength of 6 ⁇ m was set so that the temperature of the irradiated portion was 180 ° C. did.
  • Comparative Example 1 A negative electrode and a lithium ion secondary battery of Comparative Example 1 were manufactured in the same manner as in Example 1, except that the following heating step was performed without performing the step. Heating process: The negative electrode precursor wound in a roll was placed in a vacuum heating furnace and heated at 200 ° C. for 2 hours under a reduced pressure atmosphere to produce a negative electrode of Comparative Example 1. Some wrinkles were observed in the negative electrode of Comparative Example 1.
  • Example 2 From the results in Table 1, it can be seen that the reaction between polyacrylic acid and 4,4′-diaminodiphenylmethane was completed under the heating conditions of Example 1 and Comparative Example 1. From the results of Example 2, it can be said that under the heating conditions of Example 2, a part of the reaction between polyacrylic acid and 4,4′-diaminodiphenylmethane was not completed. If the heating condition is 3 minutes, it can be said that heating at about 200 ° C. is necessary, and if the heating temperature is 180 ° C., the heating time needs to be longer than 3 minutes. I can say.
  • Example 1 As a result, in the negative electrode of Example 1, there was almost no change in the intensity of the Si peak on the negative electrode surface as compared with the negative electrode precursor in Example 1. However, in the negative electrode of Comparative Example 1, the intensity of the Si peak on the negative electrode surface was significantly increased as compared with the negative electrode precursor of Example 1.
  • the negative electrode of Example 1 showed a negative electrode containing Si. It can be said that the degree to which the substance is coated with the precursor or the compound hardly changed. However, in the negative electrode of Comparative Example 1, the degree of coating of the Si-containing negative electrode active material with the compound was significantly reduced, and it can be said that the Si-containing negative electrode active material was exposed.
  • This phenomenon occurs in a compound formed by condensation of polyacrylic acid and polyamine, whereby the cross-linking reaction between polyacrylic acid chains due to the progress of dehydration reaction between carboxyl groups of polyacrylic acid progresses, It is considered that the cause is that the volume of the compound formed by condensation of acrylic acid and polyamine shrinks.
  • Example 3 From the solution of Example 1, N-methyl-2-pyrrolidone was distilled off to produce a film. Using a thermomechanical analyzer (Rigaku TMA8310), the shrinkage of the film under the following temperature conditions 1 and 2 under a tensile load of 49 mN and a nitrogen gas atmosphere was measured. Temperature condition 1: The temperature is raised from room temperature to 200 ° C., kept at 200 ° C. for 5 minutes, and cooled to room temperature. Temperature condition 2: The temperature is raised from room temperature to 200 ° C., kept at 200 ° C. for 1 hour, and cooled to room temperature.
  • Temperature condition 1 The temperature is raised from room temperature to 200 ° C., kept at 200 ° C. for 5 minutes, and cooled to room temperature.
  • Temperature condition 2 The temperature is raised from room temperature to 200 ° C., kept at 200 ° C. for 1 hour, and cooled to room temperature.
  • Example 4 The temperature of the negative electrode precursor in Example 1 was raised from room temperature to 200 ° C., and the temperature of 200 ° C. was maintained for 2 hours, and the generated gas was analyzed by EGA-MS in which a temperature raising heater and a mass spectrometer were combined.
  • Example 6 CaF 2 was crushed and pressed to produce CaF 2 tablets. After the solution of Example 1 was dropped on a CaF 2 tablet, N-methyl-2-pyrrolidone was distilled off and dried to obtain a sample for measurement. The measurement sample was subjected to a thermal scanning-infrared spectrometer to analyze a change in IR spectrum under heating conditions. The heating conditions were as follows. 30 ° C ⁇ Heat up to 180 ° C ⁇ Hold at 180 ° C for 2 hours ⁇ Heat up to 250 ° C
  • FIG. 2 shows an infrared absorption spectrum at 30 ° C.
  • a peak derived from the carbonyl of the amide group and / or the imide group was not observed.
  • FIG. 3 shows an infrared absorption spectrum at 250 ° C.
  • a peak derived from the carbonyl of the amide group and / or the imide group was strongly observed. Further, although the peak intensity was small, a peak derived from the carbonyl of the acid anhydride was also observed.
  • the intensity of the peak derived from the amino group decreased with increasing temperature, and after holding at 180 ° C. for 2 hours, the peak derived from the amino group disappeared.
  • the intensity of the peak derived from the amide group and / or the imide group increased with increasing temperature.
  • the negative electrode of Comparative Example 1 subjected to heat treatment at 200 ° C. for 2 hours shows that the acid anhydride in which the carboxyl groups of the polyacrylic acid chain are dehydrated and condensed. It can be said that the peel strength was lowered because the product was generated in a relatively large amount.
  • a compound formed by condensation of polyacrylic acid and polyamine or a precursor thereof is treated for about 3 minutes under irradiation of light having a temperature of 200 ° C. and a wavelength of 4 to 8 ⁇ m, thereby obtaining a dehydration condensation reaction between polyacrylic acid and polyamine. It can be said that a binder exhibiting a suitable binding force can be obtained in which the dehydration-condensation reaction between the carboxyl groups of the polyacrylic acid chain is suppressed while promoting the binding.
  • Capacity maintenance rate (%) 100 ⁇ (discharge capacity at last cycle) / (initial discharge capacity)
  • Example 1 in which the heating time was 3 minutes exhibited a capacity retention ratio equal to or higher than that of Comparative Example 1 which was heated in a heating furnace for 2 hours.
  • Example 3 Polyacrylic acid having a weight average molecular weight of 100,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid. Also, 4,4'-diaminodiphenylmethane was dissolved in N-methyl-2-pyrrolidone to prepare a 4,4'-diaminodiphenylmethane solution. Under stirring conditions, a 4,4′-diaminodiphenylmethane solution was added dropwise to the polyacrylic acid solution, and the resulting mixture was stirred at room temperature for 30 minutes. Thereafter, using a Dean-Stark apparatus, the mixture was stirred at 110 ° C. for 2 hours to prepare a solution of Example 3. In the solution of Example 3, the molar ratio of the acrylic acid monomer to 4,4′-diaminodiphenylmethane corresponds to 16: 1.
  • Example 3 A solution of Example 3 having an amount of 85 parts by mass of SiO coated with carbon as a Si-containing negative electrode active material, 5 parts by mass of acetylene black as a conductive additive, and a solid content of 10 parts by mass as a binder, and An appropriate amount of N-methyl-2-pyrrolidone was mixed to prepare a slurry-like composition for forming a negative electrode active material layer.
  • Example 3 the negative electrode of Example 3 and the lithium ion secondary battery were manufactured in the same manner as in Example 1.
  • Example 4 Polyacrylic acid having a weight average molecular weight of 100,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid. Also, p-phenylenediamine was dissolved in N-methyl-2-pyrrolidone to produce a p-phenylenediamine solution. Under stirring conditions, the p-phenylenediamine solution was added dropwise to the polyacrylic acid solution, and the resulting mixture was stirred at room temperature for 30 minutes. Then, using a Dean-Stark apparatus, the mixture was stirred at 110 ° C. for 2 hours to prepare a solution of Example 4. In the solution of Example 4, the molar ratio between the acrylic acid monomer and p-phenylenediamine corresponds to 16: 1.
  • Example 4 a negative electrode of Example 4 and a lithium ion secondary battery were manufactured in the same manner as in Example 3, except that the solution of Example 4 was used.
  • Example 5 Polyacrylic acid having a weight average molecular weight of 100,000 was dissolved in water to produce a polyacrylic acid aqueous solution containing 10% by mass of polyacrylic acid. Also, p-phenylenediamine was dissolved in water to produce a p-phenylenediamine aqueous solution. Under stirring conditions, the aqueous solution of p-phenylenediamine was added dropwise to the aqueous solution of polyacrylic acid, and the resulting mixture was stirred at room temperature for 30 minutes. Thereafter, the mixture was stirred at 80 ° C. for 2 hours to prepare a solution of Example 5. In the solution of Example 5, the molar ratio between the acrylic acid monomer and p-phenylenediamine corresponds to 16: 1.
  • Example 5 A solution of Example 5 in an amount of 84 parts by mass of carbon-coated SiO as a Si-containing negative electrode active material, 5 parts by mass of acetylene black as a conductive additive, and a solid content of 10 parts by mass as a binder, carboxymethyl cellulose One part by mass and an appropriate amount of water were mixed to produce a slurry negative electrode active material layer forming composition.
  • Example 5 a negative electrode of Example 5 and a lithium ion secondary battery were manufactured in the same manner as in Example 1.
  • Example 6 A solution, a negative electrode and a lithium ion secondary battery of Example 6 were produced in the same manner as in Example 5, except that polyacrylic acid having a weight average molecular weight of 400,000 was used.
  • Example 7 The solution of Example 7 and the negative electrode were prepared in the same manner as in Example 5, except that the step a) was the following steps a-1) to a-3) and polyacrylic acid having a weight average molecular weight of 800,000 was used. And a lithium ion secondary battery.
  • Step a-1 In a flask, 12.6 g (175 mmol) of acrylic acid was dissolved in 29.9 g of water to obtain an aqueous acrylic acid solution. Further, 0.20 g (0.876 mmol) of ammonium persulfate as a radical polymerization initiator was added, and the gas in the flask was replaced with nitrogen gas to obtain a reaction solution. The reaction solution under stirring conditions was heated at 65 ° C. for 1 hour to allow a radical polymerization reaction to proceed, thereby synthesizing polyacrylic acid. Water was added to the reaction solution in which polyacrylic acid was synthesized to obtain a polyacrylic acid aqueous solution containing 20% by mass of polyacrylic acid. When the synthesized polyacrylic acid was analyzed by gel permeation chromatography, the weight average molecular weight (Mw) was 800,000.
  • Step a-2) 1.18 g (10.9 mmol) of p-phenylenediamine was dissolved in 11.8 g of water to obtain an aqueous solution of a polyaminobenzene derivative.
  • An aqueous solution of a polyaminobenzene derivative was added to the aqueous solution of polyacrylic acid in the flask obtained in step a-1) to obtain a mixed aqueous solution.
  • the solution of Example 7 containing a precursor of a compound obtained by condensation of polyacrylic acid and a polyaminobenzene derivative was produced by stirring the mixed aqueous solution under a heating condition of 80 ° C. for 2 hours under a nitrogen gas atmosphere.
  • the molar ratio between the acrylic acid monomer and p-phenylenediamine corresponds to 16: 1.
  • Example 7 A solution of Example 7 in an amount of 84 parts by mass of SiO coated with carbon as a Si-containing negative electrode active material, 5 parts by mass of acetylene black as a conductive additive, and a solid content of 10 parts by mass as a binder, 1 part by mass of carboxymethylcellulose and an appropriate amount of water were mixed to produce a slurry-like composition for forming a negative electrode active material layer.
  • the proportion of solids other than water was 50% by mass.
  • Example 8 A negative electrode of Example 8 and a lithium ion secondary battery were manufactured in the same manner as in Example 7, except that the step a-3) was as follows.
  • Example 7 Step The solution of Example 7 in an amount such that 88 parts by mass of carbon-coated SiO as a Si-containing negative electrode active material, 4 parts by mass of acetylene black as a conductive additive, and 7 parts by mass of solids as a binder, 1 part by mass of carboxymethylcellulose and an appropriate amount of water were mixed to produce a slurry-like composition for forming a negative electrode active material layer.
  • Example 9 A solution, a negative electrode and a lithium ion secondary battery of Example 9 were produced in the same manner as in Example 7, except that 3,5-diaminobenzoic acid was used instead of p-phenylenediamine.
  • Example 10 A solution, a negative electrode and a lithium ion secondary battery of Example 10 were produced in the same manner as in Example 7, except that 2,5-diaminotoluene was used instead of p-phenylenediamine.
  • Example 11 A solution, a negative electrode and a lithium ion secondary battery of Example 11 were produced in the same manner as in Example 7, except that 2-nitro-1,4-phenylenediamine was used instead of p-phenylenediamine.
  • Example 12 A solution, a negative electrode and a lithium ion secondary battery of Example 12 were produced in the same manner as in Example 7, except that m-phenylenediamine was used instead of p-phenylenediamine.
  • Example 13 A solution, a negative electrode and a lithium ion secondary battery of Example 13 were produced in the same manner as in Example 7, except that the molar ratio of acrylic acid monomer and p-phenylenediamine in the solution of Example 7 was changed to 4: 1. did.
  • Example 14 A solution, a negative electrode and a lithium ion secondary battery of Example 14 were produced in the same manner as in Example 7, except that the molar ratio of acrylic acid monomer and p-phenylenediamine in the solution of Example 7 was changed to 1: 1. did.
  • Example 15 A solution, a negative electrode and a lithium ion secondary battery of Example 15 were produced in the same manner as in Example 7, except that the molar ratio between the acrylic acid monomer and p-phenylenediamine in the solution of Example 7 was 1: 2. did.
  • Example 16 In the step c), the negative electrode of Example 16 and the lithium ion secondary battery were manufactured in the same manner as in Example 7, except that the output of light having a wavelength of 6 ⁇ m was set so that the temperature of the irradiated portion was 230 ° C. did.
  • Comparative Example 2 (Comparative Example 2) c) The negative electrode and the lithium ion secondary battery of Comparative Example 2 were manufactured in the same manner as in Example 7, except that the following heating step was performed without performing the step. Heating process: The negative electrode precursor wound in a roll was placed in a vacuum heating furnace and heated at 120 ° C. for 8 hours in a reduced-pressure atmosphere to produce a negative electrode of Comparative Example 2.
  • Comparative Example 4 A negative electrode of Comparative Example 4 and a lithium ion secondary battery were manufactured in the same manner as in Example 3, except that a solution of polyamideimide in N-methyl-2-pyrrolidone was used instead of the solution of Example 3.
  • Comparative Example 5 The negative electrode of Comparative Example 5 and the lithium ion were prepared in the same manner as in Example 3 except that an N-methyl-2-pyrrolidone solution of polyacrylic acid having a weight average molecular weight of 100,000 was used instead of the solution of Example 3. A secondary battery was manufactured.
  • Table 4 shows a list of the negative electrodes of Examples 3 to 16 and Comparative Examples 2 to 5.
  • the composition is the mass ratio of negative electrode active material / conductive auxiliary agent / compound of polyacrylic acid and polyamine / carboxymethyl cellulose.
  • the composition of Comparative Example 4 is the mass ratio of the negative electrode active material / conductive additive / polyamide imide / carboxymethyl cellulose.
  • the composition of Comparative Example 5 is the mass ratio of the negative electrode active material / conductive additive / polyacrylic acid / carboxymethyl cellulose.
  • PAA is an abbreviation for polyacrylic acid.
  • the molar ratio is a molar ratio of an acrylic acid monomer to a polyamine in a compound obtained by condensation of polyacrylic acid and polyamine.
  • NMP is an abbreviation for N-methyl-2-pyrrolidone.
  • the weight average molecular weight of the polyacrylic acid used was 100,000
  • the molar ratio of the acrylic acid monomer to the polyamine was 16: 1
  • the same step c) was carried out. It was manufactured under the conditions. It can be seen that the peel strength changes slightly depending on the composition of the negative electrode active material layer and the type of polyamine.
  • the negative electrode of Example 5 using water as a solvent for the composition for forming a negative electrode active material layer and containing carboxymethyl cellulose, using N-methyl-2-pyrrolidone as a solvent for the composition for forming a negative electrode active material layer, It can be said that it exhibits a peel strength equal to or higher than that of the negative electrodes of Examples 3 and 4 containing no carboxymethyl cellulose.
  • the negative electrodes of Examples 5 to 7 differ in the weight average molecular weight of the polyacrylic acid used. When polyacrylic acid having a large weight average molecular weight is used, it can be said that peel strength is increased.
  • the weight average molecular weight of the polyacrylic acid used was 800,000
  • the molar ratio of the acrylic acid monomer to the polyamine was 16: 1
  • the c) step was the same. It was manufactured under the conditions. It can be seen that the peel strength changes depending on the compounding ratio of the compound formed by condensation of polyacrylic acid and polyamine and the type of polyamine.
  • the negative electrodes of Examples 7 and 13 to 15 have different molar ratios of acrylic acid monomer and polyamine.
  • peeling was observed immediately after the measurement was started, so that the peel strength could not be measured. From the viewpoint of peel strength, it can be said that the molar ratio between the acrylic acid monomer and the polyamine is preferably such that the value of the acrylic acid monomer is large.
  • Example 7 Example 16, Comparative Example 2, and Comparative Example 3 are different in the presence or absence of the step c) and the heating conditions.
  • the carboxyl group of the polyacrylic acid chain was It is presumed that the dehydration-condensation reaction between the two has slightly advanced. Therefore, it can be said that the output: temperature in step c) is preferably about 200 ° C.
  • the negative electrodes of Comparative Examples 2 and 3 were heated at a relatively low temperature for a long time in a heating method that did not employ the step c), in order to suppress the excessive dehydration condensation reaction between the carboxyl groups of the polyacrylic acid chain. It is manufactured by heating. It can be seen that the negative electrodes of Comparative Examples 2 and 3 have low peel strength. It is considered that the heating at about 150 ° C. does not sufficiently promote the dehydration-condensation reaction between polyacrylic acid and polyamine.
  • the value of the lithium ion secondary battery of Comparative Example 4 using the polyamideimide was the lowest. All of the initial efficiencies of the lithium ion secondary batteries of the examples in which the step c) was performed are superior to the initial efficiencies of the lithium ion secondary batteries of the comparative examples 2 and 3 in which the step c) was not performed.
  • the capacity retention rates of the lithium ion secondary batteries of the examples in which the step c) was performed are all the capacity retention rates of the lithium ion secondary batteries of the comparative examples 2 and 3 in which the step c) is not performed.
  • the capacity retention ratio of the lithium ion secondary battery of Comparative Example 5 using no polyamine was superior. It can be said that the method for producing a negative electrode of the present invention is also excellent in the performance of the negative electrode.
  • Example 17 In the step c), the negative electrode of Example 17 and the lithium ion secondary battery were manufactured in the same manner as in Example 9, except that the output of light having a wavelength of 6 ⁇ m was set so that the temperature of the irradiated portion was 230 ° C. did.
  • Comparative Example 6 A negative electrode and a lithium ion secondary battery of Comparative Example 6 were manufactured in the same manner as in Example 9, except that the following heating step was performed without performing the step. Heating process: The negative electrode precursor wound in a roll was placed in a vacuum heating furnace and heated at 120 ° C. for 8 hours in a reduced-pressure atmosphere to produce a negative electrode of Comparative Example 6.
  • Comparative Example 7 (Comparative Example 7) c) The negative electrode and the lithium ion secondary battery of Comparative Example 7 were manufactured in the same manner as in Example 9 except that the following heating step was performed without performing the step. Heating process: The negative electrode precursor wound in a roll was placed in a vacuum heating furnace, and heated at 150 ° C. for 8 hours under a reduced pressure atmosphere to produce a negative electrode of Comparative Example 7.
  • Table 12 shows a list of the negative electrodes of Example 9, Example 17, Comparative Example 6, and Comparative Example 7.
  • CaF 2 was pulverized in a mortar and pressed to a diameter of 10 mm to obtain CaF 2 pellets.
  • the solution of Example 7 or the solution of Example 9 was dropped on the CaF 2 pellet in a glove box purged with argon, dried in the glove box, and then analyzed by a thermal scanning-infrared spectrometer. Provided. The measurement conditions were as shown in the following paragraph. Using the infrared absorption spectrum of the CaF 2 pellet obtained in the same procedure as a control, the absorbance of the infrared absorption spectrum of the sample was calculated.
  • FIG. 5 shows an infrared absorption spectrum of a sample using the solution of Example 7. From the infrared absorption spectrum of the sample using the solution of Example 7, the following knowledge was obtained.
  • a peak (around 1805 cm ⁇ 1 ) considered to be derived from a C O bond of an acid anhydride formed by dehydration condensation between carboxyl groups, and a peak considered to be derived from a C—O bond of an acid anhydride.
  • the peak (around 1030 cm ⁇ 1 ) is not observed below 150 ° C., but is observed under heating above 150 ° C. or under heating above 180 ° C., and the peak intensity increases with increasing heating temperature.
  • the dehydration-condensation reaction for crosslinking the polyacrylic acid chain with p-phenylenediamine in the solution of Example 7 proceeds by the mechanism shown in FIG. First, the carboxyl group of polyacrylic acid is dehydrated and condensed to form a six-membered acid anhydride structure (see Scheme 1). Then, p-phenylenediamine is added to the six-membered acid anhydride structure. Is a nucleophilic attack to form a 6-membered imide skeleton (see Scheme 2). In the chemical structure in FIG. 6, the PAA-chain means the remaining part of the polyacrylic acid chain.
  • FIG. 7 shows an infrared absorption spectrum of a sample using the solution of Example 9. From the infrared absorption spectrum of the sample using the solution of Example 9, the following knowledge was obtained.
  • a peak (around 1803 cm ⁇ 1 ) considered to be derived from a C O bond of an acid anhydride formed by dehydration condensation between carboxyl groups, and a peak considered to be derived from a C—O bond of an acid anhydride.
  • the peak (around 1040 cm ⁇ 1 ) is not observed below 150 ° C., but is observed under heating above 150 ° C. or under heating above 180 ° C., and the peak intensity increases as the heating temperature rises.
  • Example 9 using 3,5-diaminobenzoic acid
  • the dehydration condensation reaction for crosslinking the polyacrylic acid chain proceeds by the mechanism shown in FIG.
  • 3,5-diaminobenzoic acid self-condenses with each other (see Scheme III).
  • the self-condensate of 3,5-diaminobenzoic acids has a CONH structure.
  • the carboxyl group of the polyacrylic acid is dehydrated and condensed to form a six-membered acid anhydride structure (see Scheme IV).
  • the mechanism is that the amino group of the self-condensate of diaminobenzoic acid performs nucleophilic attack to form a 6-membered imide skeleton (see Scheme No. 5).
  • Example 12 In a glove box purged with argon, the solution of Example 9 using 3,5-diaminobenzoic acid was dropped into a Petri dish, dried to obtain a dried product, and then heated under the following conditions to obtain a film.
  • ⁇ Condition 3> Pressure reducing condition using a vacuum heating furnace ⁇ 180 ° C., 30 minutes> ⁇ Condition4>
  • the dried product before heating at 230 ° C. for 30 minutes under reduced pressure using a vacuum heating furnace and the films of ⁇ Condition 1> to ⁇ Condition 4> were subjected to infrared spectroscopy. It was subjected to analysis with a photometer.
  • FIG. 9 shows the infrared absorption spectra of the dried product before heating and the films of ⁇ condition 2> to ⁇ condition 4>.
  • Evaluation Examples 1 to 5 in which the negative electrode of the present invention produced using one of the polyfunctional amines represented by the general formula (1) as the polyamine and N-methyl-2-pyrrolidone as the solvent were evaluated. 4.
  • the results of Evaluation Example 6 and Evaluation Examples 11 and Evaluation in which the negative electrode of the present invention produced using one kind of the polyaminobenzene derivative represented by the general formula (2) as a polyamine and water as a solvent was evaluated.
  • the results of Example 12 suggest that the optimum temperature for the condensation reaction differs depending on the type of polyamine and the type of solvent.
  • the polyamine represented by the general formula (1) is used as the polyamine. It is considered that a higher temperature is required than when the negative electrode of the present invention is produced using one kind of amine and N-methyl-2-pyrrolidone as a solvent.
  • the viscosity of the composition for forming a negative electrode active material layer used in the production of the negative electrode is too high, the production may be hindered. Then, the viscosity of the composition for forming a negative electrode active material layer used for manufacturing the negative electrode needs to be within a certain range.
  • the viscosity of the polyacrylic acid solution can be suppressed to a relatively low level, so that polyacrylic acid having a larger average molecular weight is used. Or a polyacrylic acid solution in which the polyacrylic acid is dissolved at a higher concentration. From these points, it can be said that the method for producing a negative electrode using water as a solvent in the step a) is excellent.
  • FIG. 10 is a graph showing the relationship between the reciprocal of the degree of polymerization Pn of polyacrylic acid and [S] / [M].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

比較的短時間で、ポリアクリル酸とポリアミンが縮合してなる化合物を結着剤として含有する負極を製造する方法を提供する。 集電体、並びに、前記集電体の表面に、ポリアクリル酸とポリアミンが縮合してなる化合物及び負極活物質を含有する負極活物質層を備える負極の製造方法であって、 a)ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体、負極活物質及び溶剤を含有する負極活物質層形成用組成物、又は、ポリアクリル酸、ポリアミン、負極活物質及び溶剤を含有する負極活物質層形成用組成物を準備する工程、 b)前記負極活物質層形成用組成物を前記集電体に塗布して、負極前駆体を製造する工程、 c)前記負極前駆体に、波長4~8μmの光を照射する工程、を含むことを特徴とする負極の製造方法。

Description

負極の製造方法及び電極用結着剤
 本発明は、二次電池などの蓄電装置に用いられる負極の製造方法及び電極用結着剤に関するものである。
 一般に、二次電池等の蓄電装置は、主な構成要素として、正極、負極及び電解液を備える。そして、負極には、集電体と、充放電に関与する負極活物質が具備されている。産業界からは蓄電装置の高容量化が求められており、その対応として、各種の技術が検討されている。その具体的な技術の一つとしては、蓄電装置の負極活物質として、リチウムなどの電荷担体の吸蔵能力が高いSiを含有するSi含有負極活物質を採用する技術が知られている。
 例えば、特許文献1及び特許文献2には、負極活物質がシリコンであるリチウムイオン二次電池が記載されている。特許文献3には、負極活物質がSiOであるリチウムイオン二次電池が記載されている。
 特許文献4には、CaSiを酸と反応させてCaを除去した層状ポリシランを主成分とする層状シリコン化合物を合成し、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させたシリコン材料を製造したこと、及び、当該シリコン材料を負極活物質として具備するリチウムイオン二次電池が記載されている。
 Si含有負極活物質は、充放電時に膨張及び収縮することが知られているため、Si含有負極活物質を具備する負極においては、結着力の強いポリアミドイミドやポリイミドなどの結着剤を採用するのが好ましいといえる。実際に、特許文献1~4の負極の具体的な結着剤としては、ポリアミドイミドやポリイミドが採用されている。
 また、特許文献5には、ポリアクリル酸と多官能アミンが縮合してなる化合物が、Si含有負極活物質を具備する負極用結着剤として優れていることが記載されている。同文献には、ポリアクリル酸と4,4’-ジアミノジフェニルメタンなどが縮合してなる化合物を負極用結着剤として用いたリチウムイオン二次電池が、ポリアミドイミドを負極用結着剤として用いたリチウムイオン二次電池よりも、電池特性に優れていたことが、具体的な試験結果と共に記載されている。
 さらに、特許文献5には、ポリアクリル酸と多官能アミンは、150℃以上の加熱条件下で、縮合反応することが記載されている(試験9を参照。)。
 そして、特許文献5には、ポリアクリル酸と多官能アミンが縮合してなる化合物を含有する負極が、以下の製造方法で得られたことが具体的に記載されている(実施例1を参照。)。
 130℃の条件下、ポリアクリル酸と多官能アミンを含有する中間組成物の溶液を製造する
 ↓
 中間組成物の溶液を用いてスラリー状の負極活物質層形成用組成物を製造する
 ↓
 負極集電体に負極活物質層形成用組成物を塗布し、溶剤を除去する
 ↓
 160℃、3時間加熱処理することで、中間組成物を縮合反応させて架橋構造を有する高分子を形成し、負極を製造する
特開2014-203595号公報 特開2015-57767号公報 特開2015-179625号公報 国際公開第2014/080608号 国際公開第2016/063882号
 特許文献5に記載されているとおり、ポリアクリル酸とポリアミンが縮合してなる化合物を結着剤として含有する負極の製造においては、ポリアクリル酸とポリアミンを反応させてポリアクリル酸の鎖がポリアミンで架橋された化合物を製造するために、比較的長時間の加熱を要する。しかしながら、作業効率や費用の点からみて、負極の製造時間は短時間の方が好ましい。
 本発明はかかる事情に鑑みて為されたものであり、比較的短時間で、ポリアクリル酸とポリアミンが縮合してなる化合物を結着剤として含有する負極を製造する方法を提供することを目的とする。さらには、新たな電極用結着剤を提供することを目的とする。
 特許文献5に記載される比較的長時間の加熱は、ポリアクリル酸とポリアミンが脱水縮合して成るアミド結合及び/又はイミド結合の形成を促進させる目的で為されるといえる。ここで、アミド結合及び/又はイミド結合の形成は、ポリアミンのアミノ基によるポリアクリル酸のカルボキシル基への求核脱水反応が生じることで、進行する。
 ここで、本発明者は、上述の求核脱水反応に関与するカルボキシル基及び水を活性化させて上述の求核脱水反応を促進させるための技術について、熟慮を重ねた。そして、カルボキシル基及び水が吸収する波長の光を、負極前駆体に照射させる技術を想起した。
 かかる技術を実際に試みたところ、わずか数分の光照射で、好適な負極が製造できることを見出した。
 かかる知見に基づき、本発明者は本発明を完成させた。
 本発明の負極の製造方法は、
 集電体、並びに、前記集電体の表面に、ポリアクリル酸とポリアミンが縮合してなる化合物及び負極活物質を含有する負極活物質層を備える負極の製造方法であって、
 a)ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体、負極活物質及び溶剤を含有する負極活物質層形成用組成物、又は、ポリアクリル酸、ポリアミン、負極活物質及び溶剤を含有する負極活物質層形成用組成物を準備する工程、
 b)前記負極活物質層形成用組成物を前記集電体に塗布して、負極前駆体を製造する工程、
 c)前記負極前駆体に、波長4~8μmの光を照射する工程、を含むことを特徴とする。
 本発明の電極用結着剤は、ポリアクリル酸と下記一般式(2)で表されるポリアミノベンゼン誘導体及び/又は前記ポリアミノベンゼン誘導体の自己縮合体とが縮合してなる化合物を含有することを特徴とする。 
Figure JPOXMLDOC01-appb-C000003
 一般式(2)において、Rは、それぞれ独立に、置換基で置換されていてもよいアルキル、アルコキシ、ハロゲン、OH、SH、NO、CN、COH、SOH、CONHから選択される。mは2~6の整数である。nは0~4の整数であって、m+n≦6である。
 本発明の負極の製造方法においては、ポリアクリル酸とポリアミンが縮合してなる化合物を結着剤として用いる負極の製造を、短時間で行うことが可能である。
ポリアクリル酸と一般式(2)で表されるポリアミノベンゼン誘導体とが縮合してなる化合物の前駆体の、想定される化学構造の一態様である。 評価例6における、30℃の時点での赤外吸収スペクトルである。 評価例6における、250℃の時点での赤外吸収スペクトルである。 評価例11の昇温プログラムである。 評価例11における、実施例7の溶液を用いた試料の赤外吸収スペクトルである。 ポリアクリル酸の鎖をp-フェニレンジアミンで架橋する脱水縮合反応において推定される反応式である。 評価例11における、実施例9の溶液を用いた試料の赤外吸収スペクトルである。 ポリアクリル酸の鎖を3,5-ジアミノ安息香酸の自己縮合体で架橋する脱水縮合反応において推定される反応式である。 評価例12における、加熱前の乾燥体、及び、<条件2>~<条件4>のフィルムの赤外吸収スペクトルである。 ポリアクリル酸の重合度Pの逆数と、 [S]/[M]の関係を示すグラフである。
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに、これらの数値範囲内から任意に選択した数値を、新たな上限や下限の数値とすることができる。
 本発明の負極の製造方法は、
 集電体、並びに、前記集電体の表面に、ポリアクリル酸とポリアミンが縮合してなる化合物及び負極活物質を含有する負極活物質層を備える負極の製造方法であって、
 a)ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体、負極活物質及び溶剤を含有する負極活物質層形成用組成物、又は、ポリアクリル酸、ポリアミン、負極活物質及び溶剤を含有する負極活物質層形成用組成物を準備する工程、
 b)前記負極活物質層形成用組成物を前記集電体に塗布して、負極前駆体を製造する工程、
 c)前記負極前駆体に、波長4~8μmの光を照射する工程、を含むことを特徴とする。
 集電体は、リチウムイオン二次電池などの二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体の材料は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体の材料としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 負極活物質層の厚みとしては、1~200μm、5~150μm、10~100μmを例示できる。
 負極活物質層において、ポリアクリル酸とポリアミンが縮合してなる化合物は結着剤として機能する。
 ポリアクリル酸の重量平均分子量としては、5000~2000000の範囲内が好ましく、10000~1800000の範囲内がより好ましく、50000~1500000の範囲内がさらに好ましく、100000~1300000の範囲内がさらにより好ましく、400000~1200000の範囲内が特に好ましく、500000~1000000の範囲内が最も好ましい。
 使用するポリアクリル酸の重量平均分子量が高いほど、結着力が高くなる傾向にあるが、溶剤に溶解した場合の粘度が高くなる。
 ポリアミンとは、一分子内に2以上のアミノ基を有する化合物である。
 ポリアミンとしては、下記一般式(1)で表される多官能アミンを例示できる。当該多官能アミンは、特許文献5に記載された多官能アミンであり、水に難溶性であって、N-メチル-2-ピロリドンなどの有機溶剤に可溶性である。 
Figure JPOXMLDOC01-appb-C000004
 一般式(1)において、Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R,Rはそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。
 Yが直鎖アルキル基及びフェニレン基である場合において、その構造を構成する炭素には置換基が結合されてもよい。例えば、直鎖アルキル基を構成する炭素に結合される置換基としては、メチル基、エチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、メトキシ基、エトキシ基、オキソ基が挙げられる。これらの置換基は、一種のみが結合されてもよいし、二種以上が結合されてもよい。一つの炭素に結合される置換基の数は、一つであってもよいし、二つであってもよい。また、直鎖アルキル基及びフェニレン基を構成する炭素原子に結合される置換基は、アミノ基、又はアミノ基を含む置換基であってもよい。
 一般式(1)で表される多官能アミンの具体例としては、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-エチレンジアニリン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンゾフェノン、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、パラローズアニリン、1,3,5-トリス(4-アミノフェニル)ベンゼンが挙げられる。
 他のポリアミンとして、下記一般式(2)のポリアミノベンゼン誘導体及びその自己縮合体を例示できる。一般式(2)のポリアミノベンゼン誘導体は、N-メチル-2-ピロリドンなどの有機溶剤に可溶性である。一般式(2)のポリアミノベンゼン誘導体のうち、水溶性のものや、ポリアクリル酸の存在下で水溶性を示すものが好ましい。 
Figure JPOXMLDOC01-appb-C000005
 一般式(2)において、Rは、それぞれ独立に、置換基で置換されていてもよいアルキル、アルコキシ、ハロゲン、OH、SH、NO、CN、COH、SOH、CONHから選択される。mは2~6の整数である。nは0~4の整数であって、m+n≦6である。
 一般式(2)で表されるポリアミノベンゼン誘導体の具体例としては、p-フェニレンジアミン、2-クロロ-1,4-フェニレンジアミン、2,5-ジクロロ-1,4-フェニレンジアミン、2,6-ジブロモ-1,4-フェニレンジアミン、2,3,5,6-テトラフルオロ-1,4-フェニレンジアミン、2,5-ジアミノトルエン、2,5-ジメチル-1,4-フェニレンジアミン、2-トリフルオロメチル-1,4-フェニレンジアミン、2-ニトロ-1,4-フェニレンジアミン、1,4-フェニレンジアミン-2-スルホン酸、2-クロロ-5-ニトロ-1,4-フェニレンジアミン、2-クロロ-5-メチル-1,4-フェニレンジアミン、2,5-ジアミノ-1,4-ベンゼンジチオール、2,5-ジアミノ安息香酸、m-フェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、1,3-フェニレンジアミン-4-スルホン酸、4-クロロ-1,3-フェニレンジアミン、4-フルオロ-1,3-フェニレンジアミン、2,4,5-トリフルオロ-1,3-フェニレンジアミン、2,4,5,6-テトラフルオロ-1,3-フェニレンジアミン、5-トリフルオロメチル-1,3-フェニレンジアミン、4-メトキシ-1,3-フェニレンジアミン、4,6-ジヒドロキシ-1,3-フェニレンジアミン、3,5-ジアミノ安息香酸、3,5-ジアミノ-2,4,6-トリメチルベンゼンスルホン酸、4-ニトロ-1,3-フェニレンジアミン、2,4-ジアミノフェノール、4-ニトロ-1,2-フェニレンジアミン、1,2,4-トリアミノベンゼンが挙げられる。
 ポリアミンとして、一般式(2)のポリアミノベンゼン誘導体及びその自己縮合体を採用した場合には、本発明の負極の製造方法のc)工程において、ポリアクリル酸と一般式(2)で表されるポリアミノベンゼン誘導体及び/又はポリアミノベンゼン誘導体の自己縮合体とが縮合してなる化合物(以下、本発明の化合物ということがある。)を含有することを特徴とする、本発明の電極用結着剤が形成される。
 本発明の電極用結着剤は、正極用結着剤であってもよいし、負極用結着剤であってもよい。
 本発明の化合物においては、ポリアクリル酸の鎖が、ポリアミノベンゼン誘導体及び/又はポリアミノベンゼン誘導体の自己縮合体で、架橋されていると推定される。
 詳細には、第一のポリアクリル酸において隣接するアクリル酸モノマー単位の2つのカルボキシル基と、ポリアミノベンゼン誘導体のアミノ基及び/又はポリアミノベンゼン誘導体の自己縮合体のアミノ基とが、脱水縮合反応して、6員環イミド骨格を形成する。次に、第一のポリアクリル酸と結合した上記のポリアミノベンゼン誘導体の他のアミノ基及び/又はポリアミノベンゼン誘導体の自己縮合体の他のアミノ基が、第二のポリアクリル酸の2つのカルボキシル基と、脱水縮合反応して、6員環イミド骨格を形成することで、第一及び第二のポリアクリル酸の鎖同士が架橋された状態となっていると考えられる。
 なお、ポリアミノベンゼン誘導体の自己縮合体は、前記一般式(2)において、Rがそれぞれ独立にCOH又はSOHから選択され、mは2~5の整数であり、nは1~4の整数であって、m+n≦6であるポリアミノベンゼン誘導体を用いた場合に形成され得る。詳細には、ポリアミノベンゼン誘導体のアミノ基と、他のポリアミノベンゼン誘導体のCOH又はSOHが、脱水縮合反応することで、自己縮合体が形成される。
 本発明の化合物の赤外吸収スペクトルにおいて、1670~1710cm-1の間にピークトップが存在するピークと、1740~1780cm-1の間にピークトップが存在するピークが観察される。さらに、本発明の化合物の赤外吸収スペクトルにおいて、1785~1820cm-1の間にピークトップが存在するピークが観察される。以上の3ピークは、C=O結合に由来すると考えられる。
 また、本発明の化合物のうち、COHを備えるポリアミノベンゼン誘導体の自己縮合体が縮合した化合物においては、赤外吸収スペクトルにおいて、1520~1580cm-1の間にピークトップが存在するピークが観察される。このピークは、ポリアミノベンゼン誘導体の自己縮合体におけるCONH構造に由来すると考えられる。
 他のポリアミンとして、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等のアルキレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、イソホロンジアミン、ビス(4-アミノシクロヘキシル)メタン、1,1-ビス(4-アミノフェニル)シクロヘキサン等の含飽和炭素環ジアミン、ベンジジン、o-トリジン、9,9-ビス(4-アミノフェニル)フルオレン、ビス(4-アミノフェニル)スルホン、キシリレンジアミン、ナフタレンジアミン等の芳香族ジアミンが挙げられる。
 ポリアミンとしては、1種類の化合物を採用してもよいし、複数種類の化合物を併用してもよい。
 ポリアクリル酸とポリアミンが縮合してなる化合物において、アクリル酸モノマーとポリアミンのモル比は、2:1~50:1が好ましく、4:1~40:1がより好ましく、7:1~30:1がさらに好ましく、10:1~25:1が特に好ましい。
 アクリル酸モノマーに対するポリアミンのモル比が過小であれば、蓄電装置の容量を好適に維持することが困難になる場合がある。アクリル酸モノマーに対するポリアミンのモル比が過大であれば、結着性が低下する場合がある。
 負極活物質層は、ポリアクリル酸とポリアミンが縮合してなる化合物、並びに、リチウムイオンなどの電荷担体を吸蔵及び放出し得る負極活物質、さらに必要に応じて他の結着剤及び導電助剤などの添加剤を含む。負極活物質層には、負極活物質が負極活物質層全体の質量に対して、60~98質量%で含まれるのが好ましく、70~95質量%で含まれるのがより好ましい。また、負極活物質層には、ポリアクリル酸とポリアミンが縮合してなる化合物が負極活物質層全体の質量に対して、1~20質量%で含まれるのが好ましく、2~15質量%で含まれるのがより好ましく、3~10質量%で含まれるのがより好ましい。
 負極活物質としては、電荷担体を吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンなどの電荷担体を吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。合金又は化合物の具体例としては、Ag-Sn合金、Cu-Sn合金、Co-Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質として、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3-xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。
 高容量化の可能性の点から、好ましい負極活物質として、黒鉛、Si含有材料、Sn含有材料を挙げることができる。また、ポリアクリル酸とポリアミンが縮合してなる化合物の結着剤としての好適な特性を鑑みると、充放電時に膨張及び収縮の程度が大きいSi含有負極活物質が特に好ましい。
 Si含有負極活物質の具体例として、Si単体や、Si相とケイ素酸化物相との2相に不均化された又は未不均化状態のSiO(0.3≦x≦1.6)を例示できる。xの範囲は0.5≦x≦1.5であるのがより好ましく、0.7≦x≦1.2であるのがさらに好ましい。
 Si含有負極活物質の具体例として、国際公開第2014/080608号などに開示されるシリコン材料(以下、単に「シリコン材料」という。)を挙げることができる。
 シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するものである。シリコン材料は、例えば、CaSiと酸とを反応させてポリシランを主成分とする層状シリコン化合物を合成する工程、さらに、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させる工程を経て製造されるものである。
 シリコン材料の製造方法を、酸として塩化水素を用いた場合の理想的な反応式で示すと以下のとおりとなる。
 3CaSi+6HCl → Si+3CaCl
 Si → 6Si+3H
 ただし、ポリシランであるSiを合成する上段の反応では、副生物や不純物除去の観点から、通常、反応溶媒として水が用いられる。そして、Siは水と反応し得るため、上段の反応を含む層状シリコン化合物を合成する工程において、層状シリコン化合物がSiのみを含むものとして製造されることはほとんどなく、層状シリコン化合物はSi(OH)(Xは酸のアニオン由来の元素若しくは基、s+t+u=6、0<s<6、0<t<6、0<u<6)で表されるものとして製造される。なお、上記の化学式においては、残存し得るCaなどの不可避不純物については、考慮していない。そして、当該層状シリコン化合物を加熱して得られるシリコン材料も、酸素や酸のアニオン由来の元素を含む。
 既述のとおり、シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する。リチウムイオン等の電荷担体が効率的に吸蔵及び放出されるためには、板状シリコン体は厚さが10nm~100nmの範囲内のものが好ましく、20nm~50nmの範囲内のものがより好ましい。板状シリコン体の長手方向の長さは、0.1μm~50μmの範囲内が好ましい。また、板状シリコン体は、(長手方向の長さ)/(厚さ)が2~1000の範囲内であるのが好ましい。板状シリコン体の積層構造は走査型電子顕微鏡などによる観察で確認できる。また、この積層構造は、原料のCaSiにおけるSi層の名残りであると考えられる。
 シリコン材料には、アモルファスシリコン及び/又はシリコン結晶子が含まれるのが好ましい。特に、上記板状シリコン体において、アモルファスシリコンをマトリックスとし、シリコン結晶子が当該マトリックス中に点在している状態が好ましい。シリコン結晶子のサイズは、0.5nm~300nmの範囲内が好ましく、1nm~100nmの範囲内がより好ましく、1nm~50nmの範囲内がさらに好ましく、1nm~10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料に対してX線回折測定を行い、得られたX線回折チャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。
 シリコン材料に含まれる板状シリコン体、アモルファスシリコン及びシリコン結晶子の存在量や大きさは、主に加熱温度や加熱時間に左右される。加熱温度は、400℃~900℃の範囲内が好ましく、500℃~800℃の範囲内がより好ましい。
 Si含有負極活物質は、炭素で被覆されたものが好ましい。炭素被覆により、Si含有負極活物質の導電性が向上する。
 Si含有負極活物質は、粒子の集合体である粉末状のものが好ましい。Si含有負極活物質の平均粒子径は、1~30μmの範囲内が好ましく、2~20μmの範囲内がより好ましい。なお、本明細書における平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で試料を測定した場合におけるD50を意味する。
 他の結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレンブタジエンゴム(SBR)、セルロース誘導体を例示することができる。
 特に、ポリアクリル酸と相互作用し得る点で、セルロース誘導体を用いるのが好ましく、特に水酸基を有するセルロース誘導体を用いるのがより好ましい。かかる相互作用は、c)工程での波長4~8μmの光照射にて促進されると考えられる。
 負極活物質層における、セルロース誘導体の配合割合は、0.1~5質量%が好ましく、0.3~3質量%がより好ましく、0.5~2質量%がさらに好ましい。
 水酸基を有するセルロース誘導体としては、カルボキシメチルセルロースなどのカルボキシアルキルセルロース及びその塩、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース及びヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース、メチルセルロース及びエチルセルロースなどのアルキルセルロース、並びに、ヒドロキシエチルメチルセルロース及びヒドロキシプロピルメチルセルロースなどのヒドロキシアルキルアルキルセルロースを例示できる。
 導電助剤は、負極の導電性を高めるために添加される。そのため、導電助剤は、負極の導電性が不足する場合に任意に加えればよく、負極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独又は二種以上組み合わせて負極活物質層に添加することができる。
 負極活物質層中の導電助剤の配合割合は、0.1~20質量%が好ましく、0.5~10質量%がより好ましく、1~5質量%がさらに好ましい。また、負極活物質及び導電助剤の質量比は、99:1~85:15が好ましく、98:2~90:10がより好ましく、97:3~92:8がさらに好ましく、94:6~93:7が特に好ましい。
 a)工程について説明する。
 a)工程は、ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体、負極活物質及び溶剤を含有する負極活物質層形成用組成物、又は、ポリアクリル酸、ポリアミン、負極活物質及び溶剤を含有する負極活物質層形成用組成物を準備する工程である。
 ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体としては、ポリアクリル酸のカルボキシル基とポリアミンのアミノ基がイオン結合している状態のものを意味するが、一部のカルボキシル基とアミノ基が結合してアミド結合及び/又はイミド結合を形成していてもよい。
 溶剤としては、負極活物質層形成用組成物において、ポリアクリル酸、ポリアミン、ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体を溶解可能なものが好ましい。
 具体的な溶剤としては、水、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン、ジクロロメタン、メタノール、エタノール、プロパノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトンを例示できる。
 例えば、ポリアミンとして、一般式(1)で表される多官能アミンを用いる場合は、溶剤としてN-メチル-2-ピロリドンを採用するのが好ましい。ポリアミンとして、一般式(2)のポリアミノベンゼン誘導体を用いる場合は、溶剤として水を採用するのが好ましい。溶剤として水を採用することは、環境への配慮や費用の点から好ましいといえる。
 なお、従来、負極を製造する際の溶剤として、N-メチル-2-ピロリドンが汎用されていたのは、結着剤若しくはその前駆体又はその原料化合物がN-メチル-2-ピロリドンに可溶性であり、水に対する溶解性が低いためと考えられる。
 負極活物質層形成用組成物の全体に対して、溶剤の量は、20~80質量%が好ましく、45~75質量%がより好ましい。
 負極活物質層形成用組成物は、構成成分を混合することで製造される。負極活物質層形成用組成物の製造時に加熱して、ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体を形成させるのが好ましい。または、ポリアクリル酸、ポリアミン及び溶剤を混合した混合溶液を加熱して、ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体が形成された混合溶液を、負極活物質層形成用組成物の製造に用いるのが好ましい。加熱温度の範囲としては、50~150℃、60~130℃、70~100℃、80~90℃を例示できる。
 負極活物質層形成用組成物には、導電助剤やその他の添加剤を配合してもよい。
 基本的に、負極活物質層形成用組成物における溶剤以外の固形分が、負極活物質層の構成成分となる。そして、負極活物質層形成用組成物における各構成成分の配合比が、負極活物質層における配合比となる。負極活物質層形成用組成物における固形分の配合量や配合比は、負極活物質層における各構成成分の好適な配合量や配合比に基づいて、決定すればよい。
 前記ポリアミンが、水溶性の一般式(2)で表されるポリアミノベンゼン誘導体及び/又は前記ポリアミノベンゼン誘導体の自己縮合体である場合には、a)工程が、下記a-1)~a-3)工程であるのが好ましい。
 a-1)アクリル酸水溶液にラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
 a-2)前記ポリアクリル酸と一般式(2)で表されるポリアミノベンゼン誘導体を水溶媒中で混合して、混合水溶液を製造する工程
 a-3)前記混合水溶液と負極活物質を混合して、負極活物質層形成用組成物を製造する工程
 a-1)工程について説明する。
 a-1)工程は、アクリル酸水溶液にラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程である。a-1)工程では、水溶媒でラジカル重合反応を進行させる。a-1)工程における反応容器としては、水を還流可能なものが好ましい。
 一般的にラジカル重合反応を行う際には、反応が急激に進行して、反応温度が想定以上に上昇する場合があるとの懸念があり、さらには、モノマーが気化するとの懸念がある。
 しかしながら、水溶媒であれば、反応温度が上昇したとしても、100℃の時点で水が気化する。すなわち、急激な反応の進行に伴い発生するエネルギーは、水の気化に消費される。そして、水の気化熱で系内の温度が冷却されるため、系内に水が存在する以上、反応温度が100℃を超えることは想定されない。なお、水が反応系内から無くならないように、反応容器に付属したリフラックスコンデンサー等の冷却機構で気化した水蒸気を冷却して液体の水とし、反応系内に水を戻すことが好ましい。
 ここで、アクリル酸の沸点は141℃であるため、水を溶媒とするa-1)工程であれば、ラジカル重合反応が急激に進行して反応温度が上昇したとしても、アクリル酸が気化する事態は避けることができる。
 ラジカル重合反応は以下の反応式で表わすことができる(参考文献:中 健介、中條 善樹、高分子化学 合成編、丸善株式会社、2010年、69頁~75頁)。
 開始反応   I → 2R・
        R・ + M → P
 生長反応   P・ + M → Pn+1
 停止反応   P・ + P・ → Pn+m
        P・ + P・ → P + P
 連鎖移動反応 P・ + S → P + S・
 再開始反応  S・ + M → P
 上記の反応式において、Iはラジカル重合開始剤であり、R・は一次ラジカルであり、Mはモノマーであり、P・は鎖長nの生長ラジカルであり、Pは鎖長nの不活性化された高分子であり、Sは連鎖移動反応を受ける溶媒などの化合物であり、S・は連鎖移動反応で生成したラジカルである。
 ここで、Mayoの式によると、生長反応速度に対する連鎖移動反応速度の比(連鎖移動定数:ktr/k)が、連鎖移動反応のしやすさの指標となる。そして、高分子の重合度は、ktr/kの値によっても左右される。
 後述する評価例14で示すとおり、本発明者が、アクリル酸モノマー濃度と水濃度と重量平均分子量及び重合度の関係を評価したところ、ktr/kの値がほぼ0であること、すなわち、水が連鎖移動反応に関与することはほとんど無いことが判明した。
 したがって、a-1)工程における水の配合量については、ポリアクリル酸の分子量を左右する可能性について懸念する必要性に乏しいといえる。よって、a-1)工程における水の配合量は、作業性や安全性の点で好適な範囲を決定すればよいといえる。
 アクリル酸に対する水の配合比としては、質量比で1~30の範囲内が好ましく、1.5~20の範囲内がより好ましく、2~10の範囲内がさらに好ましい。
 ラジカル重合開始剤は、水に溶解可能なものであれば限定されない。
 具体的な水溶性ラジカル重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、過硫化水素、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、クメンヒドロペルオキシド、4,4’-アゾビス(4-シアノ吉草酸)を挙げることができる。
 アクリル酸に対するラジカル重合開始剤の配合比は、モル比で0.0001~0.1の範囲内が好ましく、0.001~0.05の範囲内がより好ましく、0.003~0.01の範囲内がさらに好ましい。
 a-1)工程の反応温度としては、ラジカル重合開始剤が分解する温度であればよい。例えば、60~90℃、60~80℃の範囲を例示できる。a-1)工程の反応時間としては、反応溶液からアクリル酸が消失した時点の時間とすればよい。例えば、0.5~5時間、1~3時間を例示できる。
 a-1)工程は、不活性ガス雰囲気下で実施するのが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンを例示できる。
 a-1)工程で合成されるポリアクリル酸の分子量は、アクリル酸の使用量、アクリル酸に対するラジカル重合開始剤の配合比、撹拌による反応系内の均一化、及び、a-1)工程の反応温度を適切に調整することで制御できる。
 a-1)工程で合成されるポリアクリル酸の重量平均分子量としては、5000~2500000の範囲内が好ましく、10000~2000000の範囲内がより好ましく、50000~1800000の範囲内がさらに好ましく、100000~1600000の範囲内がさらにより好ましく、400000~1500000の範囲内が特に好ましく、500000~1400000の範囲内が最も好ましい。
 ポリアクリル酸の重量平均分子量が高いほど、結着力が高くなる傾向にあるが、水に溶解した場合の粘度が高くなる。
 なお、ポリアクリル酸を水に溶解した溶液の粘度と、ポリアクリル酸をN-メチル-2-ピロリドンに溶解した溶液の粘度では、前者の方が低い。そうすると、溶媒として水を用いた場合には、平均分子量のより大きなポリアクリル酸を合成した場合や、ポリアクリル酸をより高濃度で溶解させた水溶液を得た場合であっても、a-1)工程以降の工程での作業を容易に行うことができるといえる。これらの点でも、溶媒及び溶剤として水を用いる製造方法が好ましいといえる。
 次に、a-2)工程について説明する。a-2)工程は、a-1)工程で合成されたポリアクリル酸と一般式(2)で表されるポリアミノベンゼン誘導体を水溶媒中で混合して、混合水溶液を製造する工程である。
 ここで、a-1)工程及びa-2)工程は、同じ反応容器を用いて、すなわちOne-Potで実施されるのが好ましい。a-1)工程及びa-2)工程をOne-Potで実施することで製造工程が短縮される。
 a-2)工程における、ポリアクリル酸に対する一般式(2)で表されるポリアミノベンゼン誘導体の添加量としては、アクリル酸モノマーと一般式(2)で表されるポリアミノベンゼン誘導体のモル比が2:1~50:1の範囲内であるのが好ましく、4:1~30:1の範囲内であるのがより好ましく、7:1~25:1の範囲内であるのがさらに好ましく、10:1~20:1の範囲内であるのが特に好ましい。
 アクリル酸モノマーに対する一般式(2)で表されるポリアミノベンゼン誘導体のモル比が過小であれば、蓄電装置の容量を好適に維持することが困難になる場合がある。アクリル酸モノマーに対する一般式(2)で表されるポリアミノベンゼン誘導体のモル比が過大であれば、結着性が低下する場合がある。
 一般式(2)で表されるポリアミノベンゼン誘導体は水溶性であるか、又は、ポリアクリル酸の存在下で水溶性を示す。ただし、本発明の化合物は、基本的に、水に難溶性となる。
 一般式(2)で表されるポリアミノベンゼン誘導体としては、1種類の化合物を採用してもよいし、複数種類の化合物を併用してもよい。
 a-2)工程は、加熱条件で実施するのが好ましい。加熱に因り、本発明の化合物の前駆体の形成を促進できる。加熱温度の範囲としては、50~100℃、60~100℃、70~100℃、80~90℃を例示できる。
 ここで、本発明の化合物の前駆体とは、ポリアクリル酸のカルボキシル基と一般式(2)で表されるポリアミノベンゼン誘導体及び/又は前記ポリアミノベンゼン誘導体の自己縮合体のアミノ基がイオン結合している状態のものを意味するが、一部のカルボキシル基とアミノ基が結合してアミド結合及び/又はイミド結合を形成していてもよい。
 本発明の化合物の前駆体の、想定される化学構造の一態様を図1に示す。
 一般式(2)で表されるポリアミノベンゼン誘導体は、水に溶解した上でa-1)工程で得られたポリアクリル酸溶液に添加されてもよい。また、一般式(2)で表されるポリアミノベンゼン誘導体は、ポリアクリル酸合成前のa-1)工程における水溶媒にあらかじめ溶解しておいてもよい。
 加熱条件を加えた好適なa-1)工程及びa-2)工程として、下記a-1-1)工程及び下記a-2-1)工程、又は、下記a-1-2)工程及び下記a-2-2)を例示できる。
 a-1-1)アクリル酸水溶液にラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
 a-2-1)前記a-1-1)工程後の反応溶液に、一般式(2)で表されるポリアミノベンゼン誘導体を添加して加熱し、本発明の化合物の前駆体を含有する混合水溶液を製造する工程
 a-1-2)アクリル酸及び一般式(2)で表されるポリアミノベンゼン誘導体を水に溶解した水溶液にラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
 a-2-2)前記a-1-2)工程後の反応溶液を加熱して、本発明の化合物の前駆体を含有する混合水溶液を製造する工程
 b)工程について説明する。
 b)工程は、負極活物質層形成用組成物を集電体に塗布して、負極前駆体を製造する工程である。
 b)工程における塗布方法としては、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法を例示できる。
 塗布後には、負極活物質層形成用組成物から溶剤を除去することを目的とする、加熱乾燥工程や、負極をプレスして負極活物質層の密度を適切なものとするプレス工程を実施してもよい。加熱乾燥工程及びプレス工程は、常圧下で実施されてもよいし、減圧下で実施されてもよい。
 加熱乾燥工程は、50~150℃の温度範囲内で行われるのが好ましく、70~140℃の温度範囲内で行われるのがより好ましく、80~130℃の温度範囲内で行われるのがさらに好ましい。加熱乾燥工程で溶剤を十分に留去しておくことで、次のc)工程における所要時間をさらに短縮可能となる。ただし、加熱乾燥工程の温度を、150℃を超える温度とすることは、好ましいとはいえない。その理由は、b)工程は大気下で実施されることが想定されており、b)工程の一部として実施される加熱乾燥工程で150℃を超える温度とすることで、集電体などが酸化して、その強度が低下するおそれがあるためである。
 また、負極活物質層形成用組成物は集電体の両面に順次もしくは同時に塗布されることが好ましい。集電体の片面のみに負極活物質層が形成される場合には集電体の表裏面の線膨張係数に差異が生じるが、集電体の両面に負極活物質層が形成される場合には集電体の表裏面の線膨張係数の差異が相殺された状態になる。そのため、集電体の両面に負極活物質層が形成される場合には、以下で説明するc)工程において170~250℃の温度域から室温へ冷却する際の集電体の反りを抑制することができる。
 c)工程について説明する。
 c)工程は、負極前駆体に、波長4~8μmの光を照射する工程であり、ポリアクリル酸とポリアミンが縮合してなる化合物が生成される工程である。波長4~8μmの光が、ポリアクリル酸のカルボキシル基に対するポリアミンのアミノ基に因る求核脱水反応を促進させると考えられる。そして、その結果、ポリアミンによるポリアクリル酸の鎖の架橋形成が促進されると考えられる。
 なお、ポリアクリル酸やポリアミンは、それぞれ、水又は有機溶剤に可溶であるが、ポリアクリル酸とポリアミンが縮合してなる化合物は、基本的に、水及び有機溶剤に難溶性となる。
 波長4~8μmの光は、HOや炭素-酸素二重結合を有する官能基が特異的に吸収する波長領域の光である。HOが特異的に吸収する光の波長領域が概ね5.5~7μmであること、及び、カルボキシル基の炭素-酸素二重結合が特異的に吸収する光の波長領域が概ね5.5~7μmであることを鑑みると、c)工程の光の波長は5.5~7μmが好ましいといえる。
 波長4~8μmの光は赤外線に該当するため、負極前駆体に波長4~8μmの光を照射することで、必然的に、c)工程は加熱状態となる。波長4~8μmの光の出力の程度は、c)工程における温度状態で把握することができる。波長4~8μmの光の出力が高いほど、c)工程における温度は高くなるし、所望の求核脱水反応が迅速に進行するといえる。
 c)工程における温度としては、170~250℃が好ましく、180~240℃がより好ましく、190~230℃がさらに好ましい。
 ただし、本発明の化合物を含有する本発明の負極を製造する場合には、c)工程における温度としては、180~260℃が好ましく、185~250℃がより好ましく、190~240℃がさらに好ましく、195~230℃がさらにより好ましく、200~220℃が特に好ましい。
 c)工程における温度が低すぎると、所望の反応が十分に進行しないおそれがある。c)工程における温度が高すぎると、ポリアクリル酸の鎖のカルボキシル基同士の脱水反応が過剰に進行すること、すなわち酸無水物の構造が過剰に生じることで、ポリアクリル酸とポリアミンが縮合してなる化合物の結着剤としての機能が低下するおそれがある。また、c)工程における温度が過剰に高すぎると、ポリアクリル酸とポリアミンが縮合してなる化合物が分解するおそれもある。
 ポリアクリル酸とポリアミンが縮合してなる化合物においては、赤外分光法で測定した際に、アミド基又はイミド基のカルボニルに由来するピークの強度が、酸無水物のカルボニルに由来するピークの強度よりも大きいものが好ましい場合があるといえる。
 c)工程において、負極前駆体の任意の箇所に波長4~8μmの光を照射する時間としては、0.5~10分が好ましく、1~5分がより好ましく、1.5~4分が特に好ましい。例えば、c)工程における温度が200℃の場合、c)工程における光照射時間は3分程度で十分である。
 c)工程における照射時間が短すぎると、所望の反応が十分に進行しないおそれがある。c)工程における照射時間が長すぎると、エネルギーの無駄になるとともに、不都合な副反応が生じるおそれがある。
 また、波長4~8μmの光は、負極活物質層の厚み程度であれば、透過し得るので、負極活物質層の内部側に存在するポリアクリル酸とポリアミンが縮合してなる化合物の前駆体、又は、ポリアクリル酸及びポリアミンに対しても、波長4~8μmの光が届くと考えられる。そうすると、負極活物質層の表面だけではなく、内部でも、所望の反応を促進させることが可能と考えられる。
 c)工程は、不都合な酸化を抑制するために、不活性ガス雰囲気下で実施されるのが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンを例示できる。また、光照射後に、負極をプレスして負極活物質層の密度を適切なものとするプレス工程を実施してもよい。
 c)工程においては、ロール状の負極前駆体を搬出するロール巻出し部と、ロール状の負極が巻取られるロール巻取り部と、前記ロール巻出し部及び前記ロール巻取り部の間に配置されている波長4~8μmの光を照射する照射部と、を具備する装置を用いるのが、負極の大量生産に好都合である。
 当該装置を用いることで、平坦な集電体上に平坦な負極活物質層が存在するとの、製造バラツキが生じ難い条件下で負極を製造できるため、c)工程後の負極の性状は均一化される。また、均一な条件での光照射が容易であり、光照射時間の設定も容易であることから、負極の性能バラツキが生じ難い。さらに、生産能力の増大や、省人化にも適応可能である。
 本発明の負極の製造方法で製造された負極(以下、本発明の負極ということがある。)は、蓄電装置の負極として使用することができる。
 蓄電装置としては、一次電池、二次電池、キャパシタを例示できる。以下、蓄電装置の代表例であるリチウムイオン二次電池についての説明を通じて、本発明の負極を備える本発明の蓄電装置の説明をする。
 以下、本発明の負極を備えるリチウムイオン二次電池を、本発明のリチウムイオン二次電池という。
 本発明のリチウムイオン二次電池の一態様は、本発明の負極、正極、並びに、セパレータ及び電解液、又は、固体電解質を具備する。
 正極は、集電体と集電体の表面に形成された正極活物質層とを具備する。
 正極の集電体としては、負極で説明したものを適宜適切に選択すればよい。
 正極の電位をリチウム基準で4V以上とする場合には、正極用集電体としてアルミニウムを採用するのが好ましい。
 具体的には、正極用集電体として、アルミニウム又はアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al-Cu系、Al-Mn系、Al-Fe系、Al-Si系、Al-Mg系、Al-Mg-Si系、Al-Zn-Mg系が挙げられる。
 また、アルミニウム又はアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al-Mn系)、JIS A8079、A8021等のA8000系合金(Al-Fe系)が挙げられる。
 正極活物質層は、リチウムイオンなどの電荷担体を吸蔵及び放出し得る正極活物質、並びに必要に応じて結着剤及び導電助剤を含む。正極活物質層には、正極活物質が正極活物質層全体の質量に対して、60~99質量%で含まれるのが好ましく、70~95質量%で含まれるのがより好ましい。
 正極活物質としては、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)、又は、LiNiCoAl(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)、で表されるリチウム複合金属酸化物、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル構造の金属酸化物、スピネル構造の金属酸化物と層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極及び/又は負極に貼り付けるなどして一体化しても良い。
 高容量及び耐久性などに優れる点から、正極活物質として、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3) 、又は、LiNiCoAl(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物を採用することが好ましい。
 上記一般式において、b、c、dの値は、上記条件を満足するものであれば特に制限はないが、0<b<1、0<c<1、0<d<1であるものが良く、また、b、c、dの少なくともいずれか一つが30/100<b<90/100、10/100<c<90/100、1/100<d<50/100の範囲であることが好ましく、40/100<b<90/100、10/100<c<50/100、2/100<d<30/100の範囲であることがより好ましく、50/100<b<90/100、10/100<c<30/100、2/100<d<10/100の範囲であることがさらに好ましい。
 a、e、fについては、上記一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e<0.2、1.8≦f≦2.5、より好ましくは0.8≦a≦1.3、0≦e<0.1、1.9≦f≦2.1をそれぞれ例示することができる。
 高容量及び耐久性などに優れる点から、正極活物質として、スピネル構造のLiMn2―y(Aは、Ca、Mg、S、Si、Na、K、Al、P、Ga、Geから選ばれる少なくとも1の元素、及び、Niなどの遷移金属元素から選ばれる少なくとも1種の金属元素から選択される。0<x≦2.2、0≦y≦1)を例示できる。xの値の範囲としては、0.5≦x≦1.8、0.7≦x≦1.5、0.9≦x≦1.2を例示でき、yの値の範囲としては、0≦y≦0.8、0≦y≦0.6を例示できる。具体的なスピネル構造の化合物として、LiMn、LiMn1.5Ni0.5を例示できる。
 具体的な正極活物質として、LiFePO、LiFeSiO、LiCoPO、LiCoPO、LiMnPO、LiMnSiO、LiCoPOFを例示できる。他の具体的な正極活物質として、LiMnO-LiCoOを例示できる。
 結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、カルボキシメチルセルロース、スチレンブタジエンゴムなどの公知のものを採用すればよい。
 導電助剤としては、負極で説明したものを採用すればよい。
 正極活物質層における、結着剤及び導電助剤の配合量は、適宜適切な量とすればよい。また、集電体の表面に正極活物質層を形成させるには、公知の方法を適宜適切に採用すればよい。
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子及びセラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布及び織布などを挙げることができる。また、セパレータは多層構造としてもよい。
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。
 非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(FSO等のリチウム塩を例示できる。
 電解液としては、フルオロエチレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの非水溶媒にリチウム塩を0.5mol/Lから3mol/L程度、好ましくは1.5mol/Lから2.5mol/Lの濃度で溶解させた溶液を例示できる。
 固体電解質としては、リチウムイオン二次電池の固体電解質として使用可能なものを適宜採用すればよい。
 本発明のリチウムイオン二次電池の具体的な製造方法の一態様について述べる。
 例えば、正極と負極とでセパレータを挟持して電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、実施例及び比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
 (実施例1)
 重量平均分子量10万のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸が19質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’-ジアミノジフェニルメタンをN-メチル-2-ピロリドンに溶解して、4,4’-ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液に、4,4’-ジアミノジフェニルメタン溶液を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して、実施例1の溶液を製造した。
 なお、実施例1の溶液においては、アクリル酸モノマーと4,4’-ジアミノジフェニルメタンのモル比は16:1に該当する。
 a)工程
 Si含有負極活物質として炭素被覆シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の実施例1の溶液、及び、適量のN-メチル-2-ピロリドンを混合して、スラリー状の負極活物質層形成用組成物を製造した。
 b)工程
 負極用集電体として、厚み30μmの電解Cu箔を、ロール状に巻き取ったものを準備した。
 集電体を搬出するロール巻出し部と、ロール状の負極前駆体が巻取られるロール巻取り部と、ロール巻出し部及びロール巻取り部の間に配置されている、負極活物質層形成用組成物を膜状に塗布する塗布部と、塗布部及びロール巻取り部の間に配置されている乾燥部と、乾燥部及びロール巻取り部の間に配置されているプレス部とを具備する、負極前駆体製造用装置を準備した。
 当該装置に負極用集電体及び負極活物質層形成用組成物を供給して、大気下で、負極前駆体を製造した。なお、乾燥部における乾燥温度は80℃とした。また、負極前駆体における負極活物質層の厚みは20μmであった。
 c)工程
 ロール状の負極前駆体を搬出するロール巻出し部と、ロール状の負極が巻取られるロール巻取り部と、前記ロール巻出し部及び前記ロール巻取り部の間に配置されている波長6μmの光を照射する照射部と、を具備する装置を準備した。当該装置において、負極前駆体が光照射される道程は、窒素ガス雰囲気下とした。
 波長6μmの光の出力を、照射部の温度が200℃となるように設定した。また、負極前駆体の任意の箇所に光照射される時間が3分となるように、ロール巻取り速度を設定した。
 b)工程で得た負極前駆体を上記の装置に配置して、以上の条件で上記の装置を作動させて、実施例1の負極を製造した。
 <リチウムイオン二次電池の製造>
 実施例1の負極を径11mmの円形に裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmの円形に裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒に、LiPFを1mol/Lで溶解した電解液を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを実施例1のリチウムイオン二次電池とした。
 (実施例2)
 c)工程において、波長6μmの光の出力を照射部の温度が180℃となるように設定した以外は、実施例1と同様の方法で、実施例2の負極及びリチウムイオン二次電池を製造した。
 (比較例1)
 c)工程を実施せず、以下の加熱工程を実施した以外は、実施例1と同様の方法で、比較例1の負極及びリチウムイオン二次電池を製造した。
 加熱工程:
 ロール状に捲回した負極前駆体を真空加熱炉に配置し、減圧雰囲気下、200℃で2時間加熱して、比較例1の負極を製造した。比較例1の負極には、若干のシワが観察された。
 (評価例1)
 実施例1における負極前駆体、実施例1の負極、実施例2の負極及び比較例1の負極を、クロロホルムに浸漬させて、4,4’-ジアミノジフェニルメタンを抽出させた。得られた4,4’-ジアミノジフェニルメタンのクロロホルム溶液をGC-MSで分析した。結果を表1に示す。 
Figure JPOXMLDOC01-appb-T000006
 表1の結果から、実施例1及び比較例1の加熱条件においては、ポリアクリル酸と4,4’-ジアミノジフェニルメタンとの反応が完了していることがわかる。
 実施例2の結果から、実施例2の加熱条件においては、ポリアクリル酸と4,4’-ジアミノジフェニルメタンの反応の一部が完了していないといえる。加熱条件を3分間とするのであれば、200℃程度の加熱が必要であるといえるし、また、加熱温度を180℃とするのであれば、加熱時間を3分間よりも長くすることが必要といえる。
 (評価例2)
 実施例1における負極前駆体、実施例1の負極及び比較例1の負極の表面を、X線光電子分光法(XPS)でSiを対象とした分析を行った。
 その結果、実施例1の負極においては、実施例1における負極前駆体と比較して、負極表面のSiピークの強度にほとんど変化が無かった。しかし、比較例1の負極においては、実施例1における負極前駆体と比較して、負極表面のSiピークの強度が著しく増加した。
 以上の結果から、ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体が、ポリアクリル酸とポリアミンが縮合してなる化合物に変化した際に、実施例1の負極においては、Si含有負極活物質が当該前駆体又は当該化合物で被覆されている度合いは、ほとんど変化が無かったといえる。
 しかしながら、比較例1の負極においては、Si含有負極活物質が当該化合物で被覆されている度合いが著しく減少して、Si含有負極活物質が露出されたといえる。この現象は、ポリアクリル酸とポリアミンが縮合してなる化合物において、ポリアクリル酸のカルボキシル基同士の脱水反応が進行することに因るポリアクリル酸の鎖同士の架橋反応が過剰に進行し、ポリアクリル酸とポリアミンが縮合してなる化合物の体積が収縮したことに原因があると考えられる。
 (評価例3)
 実施例1の溶液から、N-メチル-2-ピロリドンを留去して、フィルムを製造した。熱機械分析装置(株式会社リガク TMA8310)を用いて、引張荷重49mN、窒素ガス雰囲気下における、下記温度条件1及び温度条件2での当該フィルムの収縮量を測定した。
 温度条件1: 室温から200℃へ昇温して、200℃で5分間保持し、室温へ冷却する。
 温度条件2: 室温から200℃へ昇温して、200℃で1時間保持し、室温へ冷却する。
 温度条件1でのフィルムの収縮量は1%程度であり、温度条件2でのフィルムの収縮量は2%程度であった。この結果から、高温での保持時間が長いほど、ポリアクリル酸とポリアミンが縮合してなる化合物におけるポリアクリル酸の鎖同士の架橋反応が進行して、当該化合物の体積が収縮することが示唆される。
 (評価例4)
 昇温加熱装置及び質量分析計を組み合わせたEGA-MSにて、実施例1における負極前駆体を室温から200℃へ昇温し、200℃を2時間保持して、発生する気体を分析した。
 その結果、付着水と推定される水、N-メチル-2-ピロリドン、脱水反応に由来すると推定される水の順に検出された。脱水反応に由来すると推定される水は、200℃に到達してから7分までに検出された。c)工程での加熱温度が200℃の場合、加熱時間は7分以下で足りるといえる。
 (評価例5)
 引張試験機を用いて、実施例1における負極前駆体、実施例1の負極、実施例2の負極及び比較例1の負極の剥離強度を測定した。試験方法はJIS  Z  0237に準拠した。試験方法について詳細に述べると、負極活物質層側を下向きにして台座に粘着テープで接着し、そして、負極を上向きに90度の方向に引っ張ることにより剥離強度を測定した。剥離強度の結果を、それぞれの負極の加熱温度とともに、表2に示す。 
Figure JPOXMLDOC01-appb-T000007
 表2から、高温での加熱が長時間為された比較例1の負極においては、ポリアクリル酸とポリアミンが縮合してなる化合物は、結着剤としての能力が低下しているといえる。
 他方、実施例1における負極前駆体、実施例1の負極及び実施例2の負極の結果から、c)工程での加熱の有無に因らず、ポリアクリル酸とポリアミンが縮合してなる化合物又はその前駆体は、好適な結着力を示すといえる。
 (評価例6)
 CaFを粉砕して加圧し、CaF錠剤を製造した。実施例1の溶液をCaF錠剤に滴下した後に、N-メチル-2-ピロリドンを留去して乾燥し、測定用サンプルとした。当該測定用サンプルを、熱走査-赤外分光測定装置に供して、加熱条件下でのIRスペクトルの変化を分析した。加熱条件は、以下のとおりとした。
 30℃ → 180℃まで昇温 → 180℃で2時間保持 → 250℃まで昇温
 図2に30℃の時点での赤外吸収スペクトルを示す。図2においては、アミド基及び/又はイミド基のカルボニルに由来するピークが観測されなかった。
 図3に250℃の時点での赤外吸収スペクトルを示す。図3においては、アミド基及び/又はイミド基のカルボニルに由来するピークが強く観測された。また、ピーク強度は小さいものの、酸無水物のカルボニルに由来するピークも観測された。
 加熱条件の推移に伴う、赤外吸収スペクトルのピーク挙動の推移を以下に示す。
 アミノ基に由来するピークの強度は昇温に伴い減少し、180℃で2時間保持後には、アミノ基に由来するピークは消失した。アミノ基に由来するピーク挙動と連動して、アミド基及び/又はイミド基に由来するピークの強度は昇温に伴い増加した。
 180℃で2時間保持中に、カルボキシル基同士が脱水縮合した酸無水物に由来するピークが観察され始めた。酸無水物に由来するピークの強度は、250℃までの昇温で、増加した。カルボキシル基に由来するピークの強度は昇温に伴い減少したものの、250℃の時点においても、カルボキシル基に由来するピークは観測された。
 評価例1~評価例6の結果を総合して考察すると、200℃、2時間の加熱処理を行った比較例1の負極においては、ポリアクリル酸の鎖のカルボキシル基同士が脱水縮合した酸無水物が、比較的多く生成したために、剥離強度が低下したといえる。
 他方、ポリアクリル酸とポリアミンが縮合してなる化合物又はその前駆体を、200℃となる波長4~8μmの光照射下で3分間程度処理することで、ポリアクリル酸とポリアミンとの脱水縮合反応が促進されつつ、ポリアクリル酸の鎖のカルボキシル基同士の脱水縮合反応は抑制された、好適な結着力を示す結着剤が得られるといえる。
 (評価例7)
 実施例1及び比較例1のリチウムイオン二次電池につき、0.05Cで0.01Vまで充電した後に、1Vまで放電するとの初回充放電を行った。
 また、初回充放電に引き続き、0.15Cで0.01Vまで充電した後に、1Vまで放電するとの充放電サイクルを499回繰り返し行った。
 以下の式に従い、容量維持率を算出した。結果を表3に示す。
 容量維持率(%)=100×(最終サイクル時の放電容量)/(初回放電容量) 
Figure JPOXMLDOC01-appb-T000008
 表3の結果から、加熱時間が3分である実施例1は、加熱炉にて2時間加熱した比較例1と同等以上の容量維持率を示したことがわかる。
 (実施例3)
 重量平均分子量10万のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’-ジアミノジフェニルメタンをN-メチル-2-ピロリドンに溶解して、4,4’-ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液に、4,4’-ジアミノジフェニルメタン溶液を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を110℃で2時間撹拌して、実施例3の溶液を製造した。
 なお、実施例3の溶液においては、アクリル酸モノマーと4,4’-ジアミノジフェニルメタンのモル比は16:1に該当する。
 a)工程
 Si含有負極活物質として炭素で被覆されたSiO85質量部、導電助剤としてアセチレンブラック5質量部、結着剤として固形分が10質量部となる量の実施例3の溶液、及び、適量のN-メチル-2-ピロリドンを混合して、スラリー状の負極活物質層形成用組成物を製造した。
 以下、実施例1と同様の方法で、実施例3の負極及びリチウムイオン二次電池を製造した。
 (実施例4)
 重量平均分子量10万のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、p-フェニレンジアミンをN-メチル-2-ピロリドンに溶解して、p-フェニレンジアミン溶液を製造した。撹拌条件下、ポリアクリル酸溶液に、p-フェニレンジアミン溶液を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を110℃で2時間撹拌して、実施例4の溶液を製造した。
 なお、実施例4の溶液においては、アクリル酸モノマーとp-フェニレンジアミンのモル比は16:1に該当する。
 以下、実施例4の溶液を用いた以外は、実施例3と同様の方法で、実施例4の負極及びリチウムイオン二次電池を製造した。
 (実施例5)
 重量平均分子量10万のポリアクリル酸を水に溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸水溶液を製造した。また、p-フェニレンジアミンを水に溶解して、p-フェニレンジアミン水溶液を製造した。撹拌条件下、ポリアクリル酸水溶液に、p-フェニレンジアミン水溶液を滴下して、得られた混合物を室温で30分間撹拌した。その後、混合物を80℃で2時間撹拌して、実施例5の溶液を製造した。
 なお、実施例5の溶液においては、アクリル酸モノマーとp-フェニレンジアミンのモル比は16:1に該当する。
 a)工程
 Si含有負極活物質として炭素で被覆されたSiO84質量部、導電助剤としてアセチレンブラック5質量部、結着剤として固形分が10質量部となる量の実施例5の溶液、カルボキシメチルセルロース1質量部、及び、適量の水を混合して、スラリー状の負極活物質層形成用組成物を製造した。
 以下、実施例1と同様の方法で、実施例5の負極及びリチウムイオン二次電池を製造した。
 (実施例6)
 重量平均分子量40万のポリアクリル酸を用いた以外は、実施例5と同様の方法で、実施例6の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例7)
 a)工程を、以下のa-1)~a-3)工程とし、重量平均分子量80万のポリアクリル酸を用いた以外は、実施例5と同様の方法で、実施例7の溶液、負極及びリチウムイオン二次電池を製造した。
 a-1)工程
 フラスコ内で、アクリル酸12.6g(175mmol)を29.9gの水に溶解して、アクリル酸水溶液とした。さらに、ラジカル重合開始剤である過硫酸アンモニウム0.20g(0.876mmol)を添加して、フラスコ内の気体を窒素ガスで置換し、反応溶液とした。
 撹拌条件下の反応溶液を65℃で1時間加熱してラジカル重合反応を進行させて、ポリアクリル酸を合成した。ポリアクリル酸が合成された反応溶液に水を追加して、ポリアクリル酸が20質量%で含有されるポリアクリル酸水溶液とした。
 合成されたポリアクリル酸を、ゲル浸透クロマトグラフィーで分析したところ、重量平均分子量(Mw)は80万であった。
 a-2)工程
 p-フェニレンジアミン1.18g(10.9mmol)を11.8gの水に溶解して、ポリアミノベンゼン誘導体水溶液とした。
 a-1)工程で得られたフラスコ内のポリアクリル酸水溶液に対して、ポリアミノベンゼン誘導体水溶液を添加して、混合水溶液とした。窒素ガス雰囲気下、混合水溶液を80℃の加熱条件下で2時間撹拌することで、ポリアクリル酸及びポリアミノベンゼン誘導体が縮合してなる化合物の前駆体を含有する実施例7の溶液を製造した。
 なお、実施例7の溶液においては、アクリル酸モノマーとp-フェニレンジアミンのモル比は16:1に該当する。
 a-3)工程
 Si含有負極活物質として炭素で被覆されたSiO84質量部、導電助剤としてアセチレンブラック5質量部、結着剤として固形分が10質量部となる量の実施例7の溶液、カルボキシメチルセルロース1質量部、及び、適量の水を混合して、スラリー状の負極活物質層形成用組成物を製造した。負極活物質層形成用組成物において、水以外の固形分の割合は、50質量%であった。
 (実施例8)
 a-3)工程を以下のとおりとした以外は、実施例7と同様の方法で、実施例8の負極及びリチウムイオン二次電池を製造した。
 a-3)工程
 Si含有負極活物質として炭素で被覆されたSiO88質量部、導電助剤としてアセチレンブラック4質量部、結着剤として固形分が7質量部となる量の実施例7の溶液、カルボキシメチルセルロース1質量部、及び、適量の水を混合して、スラリー状の負極活物質層形成用組成物を製造した。
 (実施例9)
 p-フェニレンジアミンに替えて、3,5-ジアミノ安息香酸を用いた以外は、実施例7と同様の方法で、実施例9の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例10)
 p-フェニレンジアミンに替えて、2,5-ジアミノトルエンを用いた以外は、実施例7と同様の方法で、実施例10の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例11)
 p-フェニレンジアミンに替えて、2-ニトロ-1,4-フェニレンジアミンを用いた以外は、実施例7と同様の方法で、実施例11の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例12)
 p-フェニレンジアミンに替えて、m-フェニレンジアミンを用いた以外は、実施例7と同様の方法で、実施例12の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例13)
 実施例7の溶液におけるアクリル酸モノマーとp-フェニレンジアミンのモル比を4:1とした以外は、実施例7と同様の方法で、実施例13の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例14)
 実施例7の溶液におけるアクリル酸モノマーとp-フェニレンジアミンのモル比を1:1とした以外は、実施例7と同様の方法で、実施例14の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例15)
 実施例7の溶液におけるアクリル酸モノマーとp-フェニレンジアミンのモル比を1:2とした以外は、実施例7と同様の方法で、実施例15の溶液、負極及びリチウムイオン二次電池を製造した。
 (実施例16)
 c)工程において、波長6μmの光の出力を照射部の温度が230℃となるように設定した以外は、実施例7と同様の方法で、実施例16の負極及びリチウムイオン二次電池を製造した。
 (比較例2)
 c)工程を実施せず、以下の加熱工程を実施した以外は、実施例7と同様の方法で、比較例2の負極及びリチウムイオン二次電池を製造した。
 加熱工程:
 ロール状に捲回した負極前駆体を真空加熱炉に配置し、減圧雰囲気下、120℃で8時間加熱して、比較例2の負極を製造した。
 (比較例3)
 c)工程を実施せず、以下の加熱工程を実施した以外は、実施例7と同様の方法で、比較例3の負極及びリチウムイオン二次電池を製造した。
 加熱工程:
 ロール状に捲回した負極前駆体を真空加熱炉に配置し、減圧雰囲気下、150℃で8時間加熱して、比較例3の負極を製造した。
 (比較例4)
 実施例3の溶液に替えてポリアミドイミドのN-メチル-2-ピロリドン溶液を用いた以外は、実施例3と同様の方法で、比較例4の負極及びリチウムイオン二次電池を製造した。
 (比較例5)
 実施例3の溶液に替えて、重量平均分子量10万のポリアクリル酸のN-メチル-2-ピロリドン溶液を用いた以外は、実施例3と同様の方法で、比較例5の負極及びリチウムイオン二次電池を製造した。
 実施例3~実施例16、比較例2~比較例5の負極の一覧を表4に示す。
 表4において、組成とは、負極活物質/導電助剤/ポリアクリル酸とポリアミンが縮合してなる化合物/カルボキシメチルセルロースの質量比である。ただし、比較例4の組成とは、負極活物質/導電助剤/ポリアミドイミド/カルボキシメチルセルロースの質量比である。比較例5の組成とは、負極活物質/導電助剤/ポリアクリル酸/カルボキシメチルセルロースの質量比である。
 PAAとはポリアクリル酸の略称である。モル比とは、ポリアクリル酸とポリアミンが縮合してなる化合物における、アクリル酸モノマーとポリアミンのモル比である。 
Figure JPOXMLDOC01-appb-T000009
 (評価例8)
 引張試験機を用いて、実施例3~実施例16、比較例2~比較例5の負極の剥離強度を測定した。試験方法はJIS  Z  0237に準拠した。試験方法について詳細に述べると、負極活物質層側を下向きにして台座に粘着テープで接着し、そして、負極を上向きに90度の方向に引っ張ることにより剥離強度を測定した。剥離強度の結果を、それぞれの負極の組成や製造方法とともに、表5~表10に示す。 
Figure JPOXMLDOC01-appb-T000010
 表5において、NMPとはN-メチル-2-ピロリドンの略称である。
 実施例3~実施例5の負極は、いずれも、使用したポリアクリル酸の重量平均分子量が10万であり、アクリル酸モノマーとポリアミンのモル比が16:1であり、c)工程を同一の条件下で実施して製造されたものである。
 負極活物質層の組成やポリアミンの種類に因り、剥離強度は若干変化することがわかる。
 負極活物質層形成用組成物の溶剤として水を使用し、カルボキシメチルセルロースを含有する実施例5の負極は、負極活物質層形成用組成物の溶剤としてN-メチル-2-ピロリドンを使用し、カルボキシメチルセルロースを含有しない実施例3及び実施例4の負極と同等以上の剥離強度を示すといえる。
Figure JPOXMLDOC01-appb-T000011
 実施例5~実施例7の負極は、使用したポリアクリル酸の重量平均分子量が異なる。ポリアクリル酸として重量平均分子量の大きいものを使用すると、剥離強度が高くなるといえる。 
Figure JPOXMLDOC01-appb-T000012
 実施例7~実施例12の負極は、いずれも、使用したポリアクリル酸の重量平均分子量が80万であり、アクリル酸モノマーとポリアミンのモル比が16:1であり、c)工程を同一の条件下で実施して製造されたものである。
 ポリアクリル酸とポリアミンが縮合してなる化合物の配合比やポリアミンの種類に因り、剥離強度が変化することがわかる。 
Figure JPOXMLDOC01-appb-T000013
 実施例7、実施例13~実施例15の負極は、アクリル酸モノマーとポリアミンのモル比が異なる。
 実施例14及び実施例15の負極は、測定を開始して直ちに剥離が観察されたため、剥離強度の値が測定できなかった。剥離強度の点からは、アクリル酸モノマーとポリアミンのモル比は、アクリル酸モノマーの値が大きい方が好ましいといえる。 
Figure JPOXMLDOC01-appb-T000014
 実施例7、実施例16、比較例2、比較例3の負極は、c)工程の有無及び加熱条件が異なる。
 実施例7及び実施例16の結果、並びに、評価例1~評価例6の結果を鑑みると、実施例16での230℃、3分間との光照射条件では、ポリアクリル酸の鎖のカルボキシル基同士の脱水縮合反応がやや過剰に進行していると推定される。よって、c)工程の出力:温度は、200℃程度が好ましいといえる。
 また、比較例2及び比較例3の負極は、c)工程を採用しない加熱方法において、ポリアクリル酸の鎖のカルボキシル基同士の過剰な脱水縮合反応を抑制するために、比較的低温かつ長時間加熱して製造されたものである。
 比較例2及び比較例3の負極においては、剥離強度が小さいことがわかる。150℃程度の加熱では、ポリアクリル酸とポリアミンとの脱水縮合反応が十分に進行しないと考えられる。
 比較例4及び比較例5の負極の剥離強度は、表10のとおりであった。 
Figure JPOXMLDOC01-appb-T000015
 (評価例9)
 実施例3~実施例13、実施例16、比較例2~比較例5のリチウムイオン二次電池につき、0.05Cで0.01Vまで充電した後に、1Vまで放電するとの初回充放電を行った。
 また、初回充放電に引き続き、0.15Cで0.01Vまで充電した後に、1Vまで放電するとの充放電サイクルを19回繰り返し行った。
 以下の式に従い、初期効率及び容量維持率を算出した。結果を表11に示す。
 初期効率(%)=100×(初回放電容量)/(初回充電容量)
 容量維持率(%)=100×(最終サイクル時の放電容量)/(初回放電容量) 
Figure JPOXMLDOC01-appb-T000016
 初期効率の点では、ポリアミドイミドを使用した比較例4のリチウムイオン二次電池の値が、最も低かった。c)工程を実施した実施例のリチウムイオン二次電池の初期効率は、いずれも、c)工程を実施していない比較例2及び比較例3のリチウムイオン二次電池の初期効率よりも優れていた。
 また、c)工程を実施した実施例のリチウムイオン二次電池の容量維持率は、いずれも、c)工程を実施していない比較例2及び比較例3のリチウムイオン二次電池の容量維持率や、ポリアミンを使用していない比較例5のリチウムイオン二次電池の容量維持率よりも優れていた。
 本発明の負極の製造方法が、負極の性能の面でも優れていることが裏付けられたといえる。
 (実施例17)
 c)工程において、波長6μmの光の出力を照射部の温度が230℃となるように設定した以外は、実施例9と同様の方法で、実施例17の負極及びリチウムイオン二次電池を製造した。
 (比較例6)
 c)工程を実施せず、以下の加熱工程を実施した以外は、実施例9と同様の方法で、比較例6の負極及びリチウムイオン二次電池を製造した。
 加熱工程:
 ロール状に捲回した負極前駆体を真空加熱炉に配置し、減圧雰囲気下、120℃で8時間加熱して、比較例6の負極を製造した。
 (比較例7)
 c)工程を実施せず、以下の加熱工程を実施した以外は、実施例9と同様の方法で、比較例7の負極及びリチウムイオン二次電池を製造した。
 加熱工程:
 ロール状に捲回した負極前駆体を真空加熱炉に配置し、減圧雰囲気下、150℃で8時間加熱して、比較例7の負極を製造した。
 実施例9、実施例17、比較例6及び比較例7の負極の一覧を表12に示す。 
Figure JPOXMLDOC01-appb-T000017
 (評価例10)
 実施例17、比較例6及び比較例7のリチウムイオン二次電池につき、評価例9と同様の方法で試験を行った。試験結果を、実施例9の結果と共に、表13に示す。 
Figure JPOXMLDOC01-appb-T000018
 表13から、本発明の負極の製造方法における加熱温度が、負極の特性を左右するといえる。
 (評価例11)
 p-フェニレンジアミンを用いた実施例7、実施例16、比較例2及び比較例3の負極に対する試験結果、並びに、3,5-ジアミノ安息香酸を用いた実施例9、実施例17、比較例6及び比較例7の負極に対する試験結果を鑑み、本発明の負極の製造方法における加熱温度と化学構造の変化との関係を、以下のとおり分析した。
 CaFを乳鉢で粉砕し、径10mmに加圧成形して、CaFペレットとした。アルゴン置換したグローブボックス内にて、CaFペレットの上に実施例7の溶液又は実施例9の溶液を滴下し、グローブボックス中で乾燥した後に、熱走査-赤外分光測定装置での分析に供した。
 測定条件は次段落のとおりとした。
 同じ手順で取得したCaFペレットの赤外吸収スペクトルを対照として、試料の赤外吸収スペクトルの吸光度を算出した。
 <使用装置>フーリエ変換赤外分光光度計 Avatar360 (Nicolet社製) マルチモードセル (エス・ティ・ジャパン製) 
 <測定条件>ヘリウム流通下、分 解 能:4cm-1、積算回数:512 回、波数範囲:4000~400cm-1(検出器:MCT)、窓材:KBr(赤外透過下限:450cm-1)、測定温度:室温(30℃)、100℃、150℃、180℃、200℃、2時間後の200℃、260℃
 昇温プログラムは、図4に記載のとおりである。
 図5に、実施例7の溶液を用いた試料の赤外吸収スペクトルを示す。
 実施例7の溶液を用いた試料の赤外吸収スペクトルから、以下の知見が得られた。
 (1)カルボキシル基同士が脱水縮合して形成される酸無水物のC=O結合に由来すると考えらえるピーク(1805cm-1付近)及び酸無水物のC-O結合に由来すると考えらえるピーク(1030cm-1付近)は、150℃以下では観察されず、150℃を超える加熱下又は180℃以上の加熱下にて観察され、加熱温度の上昇に伴い、ピーク強度が増加する。
 (2)アミノ基とポリアクリル酸の2つのカルボキシル基とが脱水縮合して形成される6員環イミド骨格のC=O結合に由来すると考えらえるピーク(1685cm-1付近)は、180℃以下では観察されず、180℃を超える加熱下又は200℃以上の加熱下にて観察され、加熱温度の上昇に伴い、ピーク強度が増加する。
 (3)C=O結合に由来すると考えらえる3つのピーク(1805cm-1付近、1757cm-1付近、1685cm-1付近)が、180℃を超える加熱下又は200℃以上の加熱下にて、明確に観察される。
 以上の知見から、実施例7の溶液において、ポリアクリル酸の鎖をp-フェニレンジアミンで架橋する脱水縮合反応は、図6に示すメカニズムで進行していると考えられる。まず、ポリアクリル酸のカルボキシル基が脱水縮合して、6員環の酸無水物構造を形成し(Scheme 1を参照)、次に、6員環の酸無水物構造に対してp-フェニレンジアミンのアミノ基が求核攻撃を行い、6員環イミド骨格を形成する(Scheme 2を参照)とのメカニズムである。
 なお、図6における化学構造のうち、PAA-chainとは、ポリアクリル酸の鎖の残りの部分を意味する。
 図7に、実施例9の溶液を用いた試料の赤外吸収スペクトルを示す。
 実施例9の溶液を用いた試料の赤外吸収スペクトルから、以下の知見が得られた。
 (1)カルボキシル基同士が脱水縮合して形成される酸無水物のC=O結合に由来すると考えらえるピーク(1803cm-1付近)及び酸無水物のC-O結合に由来すると考えらえるピーク(1040cm-1付近)は、150℃以下では観察されず、150℃を超える加熱下又は180℃以上の加熱下にて観察され、加熱温度の上昇に伴い、ピーク強度が増加する。
 (2)アミノ基とポリアクリル酸の2つのカルボキシル基とが脱水縮合して形成される6員環イミド骨格のC=O結合に由来すると考えらえるピーク(1689cm-1付近)は、180℃以下では観察されず、180℃を超える加熱下又は200℃以上の加熱下にて観察され、加熱温度の上昇に伴い、ピーク強度が増加する。
 (3)C=O結合に由来すると考えらえる3つのピーク(1803cm-1付近、1759cm-1付近、1689cm-1付近)が、200℃以上の加熱下にて、明確に観察される。
 (4)CONH構造に由来すると考えらえるピーク(1547cm-1付近)が、30℃を超える加熱下又は100℃以上の加熱下にて、明確に観察され、180℃に到る加熱温度の上昇に伴い、そのピーク強度は増加し、200℃以上での加熱温度の上昇に伴い、相対的なピーク強度は減少傾向になる。
 3,5-ジアミノ安息香酸を用いた実施例9の溶液についての上記の知見のうち、(1)~(3)は、p-フェニレンジアミンを用いた実施例7の溶液についての知見と同様であった。しかし、実施例9の溶液については(4)の知見が存在する。
 以上の知見から、3,5-ジアミノ安息香酸を用いた実施例9の溶液においては、ポリアクリル酸の鎖を架橋する脱水縮合反応は、図8に示すメカニズムで進行していると考えられる。まず、3,5-ジアミノ安息香酸同士が自己縮合する(Scheme 3を参照)。ここで、3,5-ジアミノ安息香酸同士の自己縮合体には、CONH構造が存在する。次に、ポリアクリル酸のカルボキシル基が脱水縮合して、6員環の酸無水物構造を形成し(Scheme 4を参照)、そして、6員環の酸無水物構造に対して、3,5-ジアミノ安息香酸の自己縮合体のアミノ基が求核攻撃を行い、6員環イミド骨格を形成する(Scheme 5を参照)とのメカニズムである。
 (評価例12)
 アルゴン置換したグローブボックス中で、3,5-ジアミノ安息香酸を用いた実施例9の溶液をシャーレに滴下し、乾燥して、乾燥体とした後に、以下の各条件でそれぞれ加熱して、フィルムを形成した。
 <条件1>真空加熱炉を用いた減圧条件下、150℃、30分間
 <条件2>真空加熱炉を用いた減圧条件下、150℃、6時間
 <条件3>真空加熱炉を用いた減圧条件下、180℃、30分間
 <条件4>真空加熱炉を用いた減圧条件下、230℃、30分間
 加熱前の乾燥体、及び、<条件1>~<条件4>のフィルムを、赤外分光光度計での分析に供した。
 <条件1>のフィルムの赤外吸収スペクトルと、<条件2>のフィルムの赤外吸収スペクトルは、同等であった。加熱前の乾燥体、及び、<条件2>~<条件4>のフィルムの赤外吸収スペクトルを図9に示す。
 図9から、加熱温度の上昇に伴い、酸無水物のC=O結合に由来すると考えらえる、1785~1820cm-1の間にピークトップが存在するピークの強度が増加することがわかる。
 また、C=O結合に由来すると考えらえる、1670~1710cm-1の間にピークトップが存在するピークと、1740~1780cm-1の間にピークトップが存在するピークが、<条件4>のフィルムに明確に観察された。これらの2ピークは<条件3>のフィルムでは明確に観察されていないことから、これらの2ピークは180℃を超える加熱条件下で生成するといえる。すなわち、180℃以下の加熱温度で製造されたフィルムの化学構造と、180℃を超える加熱温度で製造されたフィルムの化学構造は、明らかに異なるといえる。
 また、ポリアミンとして一般式(1)で表される多官能アミンの1種を用い、溶剤としてN-メチル-2-ピロリドンを用いて製造された本発明の負極を評価した評価例1~評価例4、評価例6の結果と、ポリアミンとして一般式(2)で表されるポリアミノベンゼン誘導体の1種を用い、溶剤として水を用いて製造された本発明の負極を評価した評価例11及び評価例12の結果からみて、ポリアミンの種類と溶剤の種類に因り、縮合反応に最適な温度が異なることが示唆される。
 ポリアミンとして一般式(2)で表されるポリアミノベンゼン誘導体の1種を用い、溶剤として水を用いて本発明の負極を製造する場合には、ポリアミンとして一般式(1)で表される多官能アミンの1種を用い、溶剤としてN-メチル-2-ピロリドンを用いて本発明の負極を製造する場合よりも、高い温度が必要であると考えられる。
 (評価例13)
 種々の重量平均分子量のポリアクリル酸をN-メチル-2-ピロリドン又は水に溶解したポリアクリル酸溶液の粘度を粘度計で測定した。結果を表14に示す。 
Figure JPOXMLDOC01-appb-T000019
 溶液における高分子の濃度が高くなれば、その溶液の粘度も大きくなることは技術常識である。同一濃度の高分子溶液であれば、高分子の平均分子量が大きいほど、その溶液の粘度も大きくなることも技術常識である。
 かかる技術常識を踏まえて、表14の結果をみると、ポリアクリル酸を水に溶解した溶液の粘度と、ポリアクリル酸をN-メチル-2-ピロリドンに溶解した溶液の粘度では、前者の方が低いことが明らかである。
 負極の製造に用いる負極活物質層形成用組成物の粘度が高すぎると、製造に支障が生じ得ることは、自明といえる。そうすると、負極の製造に用いる負極活物質層形成用組成物の粘度は、一定程度の範囲内とすることが必要となる。
 以上のような制約があるものの、負極活物質層形成用組成物の溶剤として水を用いた場合には、ポリアクリル酸溶液の粘度を比較的低く抑制できるため、平均分子量のより大きなポリアクリル酸を採用することや、当該ポリアクリル酸をより高濃度で溶解させたポリアクリル酸溶液を採用することが可能となる。これらの点で、a)工程で溶剤として水を用いる負極の製造方法は、優れているといえる。
 (評価例14)
 実施例7のa-1)工程に準じて、アクリル酸の濃度[M]と溶媒である水の濃度[S]の関係を以下の表15のとおりとして、ラジカル重合反応を進行させて、ポリアクリル酸を合成した。また、水の替わりに溶媒としてN-メチル-2-ピロリドンを用い、かつ、ラジカル重合開始剤としてアゾビスイソブチロニトリルを用いて、アクリル酸の濃度[M]と溶媒であるN-メチル-2-ピロリドンの濃度[S]の関係を以下の表15のとおりとして、ラジカル重合反応を進行させて、ポリアクリル酸を合成した。
 各合成において、アクリル酸モノマーが90%以上残存している重合反応の初期段階に、反応溶液をサンプリングして、合成されているポリアクリル酸の重量平均分子量を測定した。結果を表15に示す。また、ポリアクリル酸の重合度Pの逆数と [S]/[M]の関係をグラフにして、図10に示す。
Figure JPOXMLDOC01-appb-T000020
 溶媒がN-メチル-2-ピロリドンの場合には、アクリル酸モノマーに対するN-メチル-2-ピロリドンの割合が増加すると、重量平均分子量が小さくなることがわかる。かかる現象は、ポリアクリル酸の連鎖移動反応がN-メチル-2-ピロリドンに対して生じていることが反映された結果であると推定される。
 他方、溶媒が水の場合には、アクリル酸モノマーに対する水の割合が変動しても、重量平均分子量に影響が生じないことがわかる。ポリアクリル酸の連鎖移動反応が水に対しては生じない又は生じ難いといえる。すなわち、モノマーがアクリル酸であり溶媒が水の場合には、Mayoの式における、生長反応速度に対する連鎖移動反応速度の値(連鎖移動定数:ktr/k)は0又は0付近であるといえる。

Claims (14)

  1.  集電体、並びに、前記集電体の表面に、ポリアクリル酸とポリアミンが縮合してなる化合物及び負極活物質を含有する負極活物質層を備える負極の製造方法であって、
     a)ポリアクリル酸とポリアミンが縮合してなる化合物の前駆体、負極活物質及び溶剤を含有する負極活物質層形成用組成物、又は、ポリアクリル酸、ポリアミン、負極活物質及び溶剤を含有する負極活物質層形成用組成物を準備する工程、
     b)前記負極活物質層形成用組成物を前記集電体に塗布して、負極前駆体を製造する工程、
     c)前記負極前駆体に、波長4~8μmの光を照射する工程、を含むことを特徴とする負極の製造方法。
  2.  前記負極活物質がSi含有負極活物質である請求項1に記載の負極の製造方法。
  3.  前記b)工程が、前記負極活物質層形成用組成物を前記集電体に塗布し、塗布後の前記負極活物質層形成用組成物から前記溶剤を留去して、前記負極前駆体を製造する工程である、請求項1又は2に記載の負極の製造方法。
  4.  前記c)工程が、ロール状の前記負極前駆体を搬出するロール巻出し部と、ロール状の負極が巻取られるロール巻取り部と、前記ロール巻出し部及び前記ロール巻取り部の間に配置されている波長4~8μmの光を照射する照射部と、を具備する装置を用いる工程である、請求項1~3のいずれか1項に記載の負極の製造方法。
  5.  前記負極活物質層に含有される前記化合物を赤外分光法で測定した際に、アミド基又はイミド基のカルボニルに由来するピークの強度が、酸無水物のカルボニルに由来するピークの強度よりも大きい、請求項1~4のいずれか1項に記載の負極の製造方法。
  6.  前記ポリアミンが、下記一般式(2)で表されるポリアミノベンゼン誘導体及び/又は前記ポリアミノベンゼン誘導体の自己縮合体であり、
     前記a)工程が、下記a-1)~a-3)工程であり、
     a-1)アクリル酸水溶液にラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程、
     a-2)前記ポリアクリル酸と下記一般式(2)で表されるポリアミノベンゼン誘導体を水溶媒中で混合して、混合水溶液を製造する工程、
     a-3)前記混合水溶液と負極活物質を混合して、負極活物質層形成用組成物を製造する工程、
     前記a-1)工程及び前記a-2)工程を同じ反応容器で行うことを特徴とする請求項1~5のいずれか1項に記載の負極の製造方法。  
    Figure JPOXMLDOC01-appb-C000001
     一般式(2)において、Rは、それぞれ独立に、置換基で置換されていてもよいアルキル、アルコキシ、ハロゲン、OH、SH、NO、CN、COH、SOH、CONHから選択される。
     mは2~6の整数であり、nは0~4の整数であって、m+n≦6である。
  7.  前記a-1)工程及び前記a-2)工程が、下記a-1-1)工程及び下記a-2-1)工程、又は、下記a-1-2)工程及び下記a-2-2)である請求項6に記載の負極の製造方法。
     a-1-1)アクリル酸水溶液にラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
     a-2-1)前記a-1-1)工程後の反応溶液に、前記ポリアミノベンゼン誘導体を添加して加熱し、前記化合物の前駆体を含有する混合水溶液を製造する工程
     a-1-2)アクリル酸及び前記ポリアミノベンゼン誘導体を水に溶解した水溶液にラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
     a-2-2)前記a-1-2)工程後の反応溶液を加熱して、前記化合物の前駆体を含有する混合水溶液を製造する工程
  8.  請求項1~7のいずれか1項に記載の負極の製造方法で負極を製造する工程、を含む蓄電装置の製造方法。
  9.  ポリアクリル酸と下記一般式(2)で表されるポリアミノベンゼン誘導体及び/又は前記ポリアミノベンゼン誘導体の自己縮合体とが縮合してなる化合物を含有することを特徴とする電極用結着剤。  
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)において、Rは、それぞれ独立に、置換基で置換されていてもよいアルキル、アルコキシ、ハロゲン、OH、SH、NO、CN、COH、SOH、CONHから選択される。
     mは2~6の整数であり、nは0~4の整数であって、m+n≦6である。
  10.  前記化合物が6員環イミド骨格を含有する請求項9に記載の電極用結着剤。
  11.  前記化合物は、その赤外吸収スペクトルにおいて、1670~1710cm-1の間にピークトップが存在するピークと、1740~1780cm-1の間にピークトップが存在するピークが観察される、請求項9又は10に記載の電極用結着剤。
  12.  前記ポリアミノベンゼン誘導体の自己縮合体における前記ポリアミノベンゼン誘導体は、前記一般式(2)において、Rはそれぞれ独立にCOH又はSOHから選択され、mは2~5の整数であり、nは1~4の整数であって、m+n≦6である請求項9~11のいずれか1項に記載の電極用結着剤。
  13.  請求項9~12のいずれか1項に記載の電極用結着剤を具備する電極。
  14.  請求項13に記載の電極を備える蓄電装置。
PCT/JP2019/027253 2018-08-10 2019-07-10 負極の製造方法及び電極用結着剤 WO2020031597A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018152103 2018-08-10
JP2018-152103 2018-08-10
JP2018-152076 2018-08-10
JP2018152076 2018-08-10
JP2018-205566 2018-10-31
JP2018-205663 2018-10-31
JP2018205663 2018-10-31
JP2018205566 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020031597A1 true WO2020031597A1 (ja) 2020-02-13

Family

ID=69415472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027253 WO2020031597A1 (ja) 2018-08-10 2019-07-10 負極の製造方法及び電極用結着剤

Country Status (1)

Country Link
WO (1) WO2020031597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096268A (zh) * 2023-10-18 2023-11-21 瑞浦兰钧能源股份有限公司 一种钠离子电池负极、负极浆料及负极浆料制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110234A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用バインダ、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
WO2016063882A1 (ja) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2017141674A1 (ja) * 2016-02-18 2017-08-24 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2017183398A1 (ja) * 2016-04-21 2017-10-26 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、及び高分子化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110234A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用バインダ、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
WO2016063882A1 (ja) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2017141674A1 (ja) * 2016-02-18 2017-08-24 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、負極電極用スラリー、高分子化合物の製造方法、及び負極電極の製造方法
WO2017183398A1 (ja) * 2016-04-21 2017-10-26 株式会社 豊田自動織機 高分子化合物、中間組成物、負極電極、蓄電装置、及び高分子化合物の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096268A (zh) * 2023-10-18 2023-11-21 瑞浦兰钧能源股份有限公司 一种钠离子电池负极、负极浆料及负极浆料制备方法
CN117096268B (zh) * 2023-10-18 2024-02-06 瑞浦兰钧能源股份有限公司 一种钠离子电池负极、负极浆料及负极浆料制备方法

Similar Documents

Publication Publication Date Title
JP7107195B2 (ja) 電解液及び蓄電装置
JP2019145402A (ja) リチウムイオン二次電池
US11688852B2 (en) Negative electrode active material including Al- and O-containing silicon material
WO2020031597A1 (ja) 負極の製造方法及び電極用結着剤
JP2021015778A (ja) 結着剤
JP7183707B2 (ja) 負極及び負極の製造方法並びに電極用結着剤
CN107835789B (zh) 含有CaSi2的组合物及硅材料的制造方法
JP2020030937A (ja) 電解液
JP6555520B2 (ja) 炭素被覆シリコン材料の製造方法
JPWO2018056204A1 (ja) Si粒子結合体及びその製造方法
JP2021077487A (ja) Si含有負極活物質を含有する負極材料
JP2020123542A (ja) 負極の製造方法
JP2020202011A (ja) Si含有負極活物質と黒鉛を併用する負極
JP2018026259A (ja) 負極及びリチウムイオン二次電池
WO2020031595A1 (ja) 負極の製造方法
JP6855922B2 (ja) ポリマー層で被覆されている二次電池用電極
WO2020031596A1 (ja) 負極及び負極の製造方法並びに電極用結着剤
WO2020066218A1 (ja) 負極用結着剤
JP2020027745A (ja) 負極の製造方法
JP2020181806A (ja) 電解液及びリチウムイオン二次電池
JP7247852B2 (ja) 電解液及びリチウムイオン二次電池
JP2020053314A (ja) 複合粒子の製造方法
JP2020043000A (ja) 電解液及びリチウムイオン二次電池
JP2020043047A (ja) 電解液及びリチウムイオン二次電池
JP2020053308A (ja) 複合粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP