WO2017138453A1 - 非水電解液電池用電解液、及びこれを用いた非水電解液電池 - Google Patents

非水電解液電池用電解液、及びこれを用いた非水電解液電池 Download PDF

Info

Publication number
WO2017138453A1
WO2017138453A1 PCT/JP2017/003965 JP2017003965W WO2017138453A1 WO 2017138453 A1 WO2017138453 A1 WO 2017138453A1 JP 2017003965 W JP2017003965 W JP 2017003965W WO 2017138453 A1 WO2017138453 A1 WO 2017138453A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
atom
carbon atoms
substituted
Prior art date
Application number
PCT/JP2017/003965
Other languages
English (en)
French (fr)
Inventor
渉 河端
幹弘 高橋
孝敬 森中
誠 久保
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2017138453A1 publication Critical patent/WO2017138453A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous electrolyte battery containing a specific silane compound and a carbonate having a fluorine atom, and a non-aqueous electrolyte battery using the same.
  • Non-aqueous electrolyte batteries such as lithium ion batteries, lithium batteries, and lithium ion capacitors have been actively developed as candidates for these various power storage systems.
  • a lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode.
  • the negative electrode constituting the lithium secondary battery for example, metal lithium, metal compounds capable of occluding and releasing lithium (for example, simple metals, oxides, alloys with lithium, etc.), carbon materials, etc. are known.
  • Lithium secondary batteries using carbon materials such as coke, artificial graphite, and natural graphite that can occlude and release are widely put into practical use.
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is reduced and decomposed on the negative electrode surface when the nonaqueous solvent in the nonaqueous electrolyte is charged. It has been reported that the degradation characteristics and gas generated impede the original electrochemical reaction of the battery, so that the cycle characteristics deteriorate.
  • lithium secondary batteries that use lithium metal and its alloys, simple metals such as silicon and tin, and oxides as negative electrode materials have a high initial capacity, but the anode material is pulverized during the cycle. As compared with the negative electrode, non-aqueous solvents are more likely to undergo reductive decomposition. As a result, the first cycle charge / discharge efficiency decreases as the initial irreversible capacity of the battery increases, and the battery performance such as the battery capacity and cycle characteristics associated therewith decreases. It is known that it decreases greatly.
  • the negative electrode and the lithium cation, or the negative electrode and the electrolyte solvent react to form a film mainly composed of lithium oxide, lithium carbonate, or lithium alkyl carbonate on the negative electrode surface.
  • the film on the electrode surface is called Solid Electrolyte Interface (SEI), and its properties have a great influence on the battery performance, such as suppressing the reductive decomposition of the solvent and suppressing the deterioration of the battery performance.
  • SEI Solid Electrolyte Interface
  • the positive electrode for example LiCoO 2, LiMn 2 O 4, LiNiO 2, LiFePO 4 , etc. are known.
  • the non-aqueous solvent in the non-aqueous electrolyte solution is partially oxidized and decomposed locally at the interface between the positive electrode material and the non-aqueous electrolyte solution.
  • decomposition products and gases generated thereby inhibit the battery's original electrochemical reaction, resulting in deterioration of battery performance such as cycle characteristics.
  • a film made of an oxidative decomposition product is formed on the surface of the positive electrode as well as the negative electrode, and this also plays important roles such as suppressing the oxidative decomposition of the solvent and reducing the amount of gas generated.
  • SEI with high ion conductivity and low electron conductivity is stable over the long term. It is important to form a compound, and an attempt to positively form a good SEI by adding a small amount of a compound called an additive (usually 0.01% by mass or more and 10% by mass or less) to the electrolytic solution. Widely made
  • Patent Document 1 describes that the cyclic characteristics of a non-aqueous electrolyte battery are improved by adding a cyclic carbonate having a fluorine atom to the non-aqueous electrolyte.
  • Patent Documents 2 to 3 by adding a silicon compound such as a fluorosilane compound to the non-aqueous electrolyte, the cycle characteristics of the non-aqueous electrolyte battery and the increase in internal resistance are suppressed, and the high-temperature storage characteristics and low-temperature characteristics. It is described to improve.
  • a silicon compound such as a fluorosilane compound
  • Patent Document 4 describes that a low temperature characteristic of a nonaqueous electrolyte battery is improved by adding a fluorosilane compound or a difluorophosphate compound.
  • Patent Document 5 bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, tetrafluoro (oxalato) phosphate, tetra A first compound such as fluoro (malonato) phosphate, and a group having a carbon-carbon unsaturated bond such as tetravinylsilane, methyltrivinylsilane, fluorotrivinylsilane, dimethyldivinylsilane, methylfluorodivinylsilane, and difluorodivinylsilane.
  • a first compound such as fluoro (malonato) phosphate
  • a group having a carbon-carbon unsaturated bond such as tetravinylsilane, methyltrivinylsilane, fluorotrivinylsilane, dimethyldivin
  • An electrolyte solution for a non-aqueous electrolyte battery containing a second compound, which is a silicon compound having 2 to 4 silicon compounds, is disclosed.
  • a second compound which is a silicon compound having 2 to 4 silicon compounds.
  • Patent Document 5 when the first compound and the second compound are used in combination, compared with the case where the first compound is added alone, generation of decomposition gas from the electrolytic solution at a high temperature of 60 ° C. or higher. It is described that the amount tends to be smaller (the effect of reducing the amount of cracked gas generated from the electrolytic solution at a high temperature by adding the second compound is described).
  • a non-aqueous electrolyte battery electrolyte containing 4,5-difluoroethylene carbonate or the like as described in Patent Document 1 or a fluorosilane compound having a vinyl group as described in Patent Documents 2 to 4 is included.
  • Even non-aqueous electrolyte battery electrolytes and non-aqueous electrolyte battery electrolytes containing a silane compound having a vinyl group as described in Patent Document 5 exhibit high-temperature storage characteristics at 70 ° C. or higher. It cannot be said that it is sufficient to improve and reduce the amount of gas generated during high-temperature storage in a well-balanced manner, and further improvement is desired.
  • the present invention (I) at least one silane compound represented by the following general formula (1): (II) a carbonate having a fluorine atom, (III) a nonaqueous organic solvent other than the above (II), and (IV) An electrolyte solution for a non-aqueous electrolyte battery containing a solute (hereinafter simply referred to as “non-aqueous electrolyte solution” or “electrolyte solution”).
  • R 1 s each independently represent a group having a carbon-carbon unsaturated bond.
  • R 2 are each independently of one another, fluorine group selected from linear or branched alkyl group having 3 to 10 carbon atoms having 1 to 10 carbon atoms, the alkyl group of the fluorine atom and / or oxygen atom You may have.
  • x is 2-4.
  • both (I) at least one silane compound represented by the general formula (1) and (II) a carbonate having a fluorine atom are included. is there. Only when these compounds are contained together, when the electrolyte is used in a non-aqueous electrolyte battery, the improvement in excellent high-temperature storage characteristics at a high temperature of 70 ° C. or higher, and the amount of gas generated during the high-temperature storage This is because the effect of reducing the above can be exhibited in a balanced manner.
  • the carbonate (II) having a fluorine atom is preferably a compound represented by the following general formula (II-1).
  • O represents an oxygen atom
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, a halogen atom, an alkyl group having a halogen atom, and an aryl having a halogen atom. It is selected from the group consisting of groups and at least one of R 3 to R 6 is a fluorine atom.
  • R 3 to R 6 may contain an ether bond.
  • Carbonates having a fluorine atom represented by the general formula (II-1) are fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and 4,5-difluoro-4,5-dimethyl. It is preferably at least one selected from the group consisting of ethylene carbonate.
  • the carbonate having a fluorine atom represented by the general formula (II-1) is at least one selected from the group consisting of fluoroethylene carbonate and 4,5-difluoroethylene carbonate (trans isomer).
  • R 1 in the general formula (1) is independently selected from the group consisting of a vinyl group, an allyl group, a 1-propenyl group, a 2-propenyl group, an ethynyl group, and a 2-propynyl group. preferable.
  • R 2 s independently of each other are fluorine, methyl, ethyl, propyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoro.
  • Propyl group 1,1,1-trifluoroisopropyl group, 1,1,1,3,3,3-hexafluoroisopropyl group, 2,2,2-trifluoroethoxy group, 2,2,3,3- Tetrafluoropropoxy, 2,2,3,3,3-pentafluoropropoxy, 1,1,1-trifluoroisopropoxy, and 1,1,1,3,3,3-hexafluoroisopropoxy
  • X in the general formula (1) is preferably 3-4.
  • the total amount of (I) is 0.001% by mass or more and 10.0% by mass or less with respect to the total amount of 100% by mass of (I), (II), (III), and (IV).
  • the total amount of (II) is 0.01% by mass or more and 20.0% by mass or less with respect to the total amount of 100% by mass of (I), (II), (III), and (IV).
  • the above (IV) is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), bis (trifluoromethanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) 2 ), bis (fluorosulfonyl) Imidolithium (LiN (FSO 2 ) 2 ), bis (difluorophosphonyl) imide lithium (LiN (POF 2 ) 2 ), (difluorophosphonyl) (fluorosulfonyl) imide lithium ((LiN (POF 2 ) (FSO 2 )) And a solute containing at least one selected from the group consisting of lithium difluorophosphate (LiPO 2 F 2 ).
  • (III) is at least selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, sulfone compounds, sulfoxide compounds, and ionic liquids other than (II) above
  • a non-aqueous organic solvent including one is preferred.
  • O represents an oxygen atom
  • R 7 and R 8 each independently represents a hydrogen atom, an alkyl group, a hydrocarbon group containing an unsaturated bond, an alkoxy group, a halogen atom, or a halogen atom. It is selected from an alkyl group having an aryl group and an aryl group. However, R 7 and R 8 may contain an ether bond.
  • O represents an oxygen atom
  • R 9 represents an alkyl group, a hydrocarbon group containing an unsaturated bond, or an alkoxy group.
  • R 10 is a hydrogen atom, an alkyl group, a hydrocarbon group containing an unsaturated bond, or an alkoxy group. However, at least one of R 9 and R 10 is a hydrocarbon group containing an unsaturated bond. R 9 and R 10 may contain an ether bond.
  • R 11 to R 16 are each independently selected from a halogen element, an alkyl group, an alkoxy group, an aryloxy group, and an amino group, and in the above alkoxy group and aryloxy group, The hydrogen element may be substituted with a halogen element.
  • R in R 11 to R 16 may be linked to other R, and in this case, the two Rs are bonded to each other to form an alkylenedioxy group, an aryleneoxy group or an oxyalkylenearyleneoxy group. May be.
  • n 1 is an integer of 1 to 10, and when n 1 is 2 or more, the plurality of R 15 and R 16 may be the same or different from each other.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 2 is an integer of 1 to 3.
  • R 17 to R 20 are each independently selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 3 is an integer of 0 to 4
  • n 4 is an integer of 0 to 4.
  • R 21 and R 22 are each independently selected from a hydrogen atom, a halogen atom, and a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • R 23 and R 24 are each independently a hydrogen atom.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 5 is an integer of 0-2.
  • R 25 to R 30 are each independently selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 6 is an integer of 0 to 1
  • R 31 to R 34 are each independently a hydrogen atom, substituted or unsubstituted An alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 5 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 5 carbon atoms, and a substituted or unsubstituted 1 to 4 carbon atoms Selected from fluoroalkyl groups.
  • R 31 or R 32 and R 33 or R 34 may form a single bond with each other.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 7 and n 8 are each an integer of 0 to 1
  • R 35 to R 38 are each independently a hydrogen atom, It is selected from a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms.
  • R 39 to R 44 are each independently selected from a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, and a halogen atom, and R 39 to R 44 are bonded to each other. To form a ring.
  • O is an oxygen atom
  • S is a sulfur atom
  • R 45 and R 46 each independently comprises a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms. Selected from the group.
  • n 9 is an integer of 0 to 3.
  • the present invention provides a non-aqueous electrolyte battery (hereinafter simply referred to as “battery”) comprising at least a positive electrode, a negative electrode, and the electrolyte for a non-aqueous electrolyte battery described above. Yes).
  • an electrolytic solution capable of improving the high-temperature storage characteristics at 70 ° C. or higher and reducing the amount of gas generated during high-temperature storage in a well-balanced manner, and a non-aqueous electrolyte battery using the same. be able to.
  • the present invention (I) at least one silane compound represented by the following general formula (1): (II) a carbonate having a fluorine atom, (III) a nonaqueous organic solvent other than the above (II), and (IV) An electrolyte solution for a non-aqueous electrolyte battery containing a solute.
  • R 1 each, independently of one another, carbon - represents a group having a carbon unsaturated bond.
  • R 2 s are each independently selected from a fluorine group, a linear alkyl group having 1 to 10 carbon atoms, or a branched alkyl group having 3 to 10 carbon atoms, and the alkyl group contains a fluorine atom and / or an oxygen atom. You may have. x is 2-4. ]
  • Electrolyte for non-aqueous electrolyte battery (I) is a non-aqueous electrolyte for forming a film having good ion conductivity on the surface of the positive electrode and the negative electrode by decomposing on the positive electrode and the negative electrode. It is a component to be included.
  • This film suppresses direct contact between the non-aqueous solvent or solute and the electrode active material, prevents decomposition of the non-aqueous solvent or solute, and suppresses deterioration of battery performance. As a result, the high temperature cycle characteristics and high temperature storage characteristics of the nonaqueous electrolyte battery are improved.
  • the group having a carbon-carbon unsaturated bond represented by R 1 includes a vinyl group, an allyl group, a 1-propenyl group, a 2-propenyl group, an isopropenyl group, and a 2-butenyl group.
  • the above group may have a fluorine atom and an oxygen atom.
  • a group containing a carbon-carbon unsaturated bond having 6 or less carbon atoms is preferable. When the number of carbon atoms is more than 6, the resistance when a film is formed on the electrode tends to be relatively large.
  • a group selected from the group consisting of a vinyl group, an allyl group, a 1-propenyl group, a 2-propenyl group, an ethynyl group, and a 2-propynyl group is preferable.
  • the alkyl group represented by R 2 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group.
  • an alkyl group having 1 to 12 carbon atoms such as a pentyl group.
  • the above group may have a fluorine atom and an oxygen atom. Examples of the group having an oxygen atom include an alkoxy group derived from the above alkyl group.
  • a group selected from an alkyl group and an alkoxy group tends to have a smaller resistance when a film is formed on the electrode, and as a result, is preferable from the viewpoint of output characteristics.
  • methyl group, ethyl group, propyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, 1,1,1-trifluoroisopropyl group, 1,1,1 , 3,3,3-hexafluoroisopropyl group, 2,2,2-trifluoroethoxy group, 2,2,3,3-tetrafluoropropoxy group, 2,2,3,3,3-pentafluoropropoxy group , 1,1,1-trifluoroisopropoxy group and 1,1,1,3,3,3-hexafluoroisopropoxy group are selected from the group consisting of: This is preferable because a non-aqueous electrolyte battery having better high-temperature cycle characteristics and high-temperature storage characteristics can be obtained.
  • the number of the group having a carbon-carbon unsaturated bond represented by x in the general formula (1) is 2 to 4 in order to form a film on the electrode, and thus to achieve the object of the present invention.
  • 3 to 4 is preferable because the high-temperature cycle characteristics and the high-temperature storage characteristics are easily improved. Although details are unknown, it is thought that it is easy to form a stronger film.
  • examples of the silane compound represented by the general formula (1) include the following compound Nos. 1-1 to 1-25 and the like.
  • the silane compound used in the present invention is not limited by the following examples.
  • the silane compound represented by the general formula (1) includes, for example, a silicon compound having a silanol group or a hydrolyzable group and a carbon-carbon unsaturated bond as described in Patent Document 6, Non-Patent Documents 1 and 2.
  • a silicon compound containing a carbon-carbon unsaturated bond is produced by reacting with an organometallic reagent to replace the OH group or hydrolyzable group of the silanol group in the silicon compound with a carbon-carbon unsaturated bond group. It can be manufactured by a method.
  • the lower limit of the total amount of (I) (hereinafter referred to as “the concentration of (I)”) is 0.001% by mass with respect to the total amount of (I), (II), (III), and (IV) of 100% by mass.
  • it is 0.01% by mass or more, more preferably 0.1% by mass or more
  • the upper limit is preferably 10.0% by mass or less, more preferably 5.0% by mass. % Or less, more preferably 2.0% by mass or less.
  • concentration of (I) is less than 0.001% by mass, it is not preferable because the effect of improving the high-temperature cycle characteristics and the high-temperature storage characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • (II) is a component contained in the non-aqueous electrolyte in order to form a stable film on the positive electrode and negative electrode surfaces. This film suppresses the deterioration of the battery, and as a result, improves the high temperature cycle characteristics and high temperature storage characteristics of the nonaqueous electrolyte battery.
  • the carbonate (II) having a fluorine atom is preferably a compound represented by the general formula (II-1).
  • Examples of the carbonate having a fluorine atom represented by the general formula (II-1) include, for example, fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and 4,5-difluoro-4, At least one selected from the group consisting of 5-dimethylethylene carbonate is preferred. Among these, at least one selected from the group consisting of fluoroethylene carbonate and 4,5-difluoroethylene carbonate is more preferable. As 4,5-difluoroethylene carbonate, a trans isomer is preferable to a cis isomer. This is because 4,5-difluoroethylene carbonate (trans form) gives high ionic conductivity and forms a suitable interface protective film.
  • the total amount of (II) relative to 100% by mass of the total amount of (I), (II), (III), and (IV) has a lower limit of 0.01% by mass.
  • it is 0.05% by mass or more, more preferably 0.1% by mass or more
  • the upper limit is preferably 20.0% by mass or less, more preferably 10.0% by mass. % Or less, more preferably 5.0% by mass or less.
  • the concentration of (II) is less than 0.01% by mass, it is not preferable because the effect of improving the high-temperature cycle characteristics and the high-temperature storage characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • the concentration of (II) exceeds 20.0% by mass, the viscosity of the electrolyte solution is high, so that the movement of cations in the non-aqueous electrolyte battery is easily hindered.
  • the effect of improving the high-temperature cycle characteristics of the nonaqueous electrolyte battery used is not preferable because it is difficult to obtain a sufficient effect.
  • (II) may be used alone as long as it does not exceed 20.0% by mass, or two or more may be used in any combination and ratio according to the application.
  • (I) forms a film with good ion conductivity on the surface of the positive electrode and the negative electrode by decomposing on the positive electrode and the negative electrode.
  • This film suppresses direct contact between the non-aqueous solvent or solute and the electrode active material, prevents decomposition of the non-aqueous solvent or solute, and suppresses deterioration of battery performance.
  • the film component formed on the electrode is not sufficient, and the obtained nonaqueous electrolyte battery has a temperature of 70 ° C. or higher. High temperature storage characteristics at high temperatures may not be sufficient.
  • the above (II) also has an effect of forming a stable film on the surfaces of the positive electrode and the negative electrode and suppressing the deterioration of the battery, but without using the above (I) and (II) in combination, the above (II)
  • the high-temperature storage characteristics at a high temperature of 70 ° C. or higher may not be sufficient. Therefore, it is important to use (I) and (II) together in the electrolyte for a non-aqueous electrolyte battery of the present invention.
  • the non-aqueous electrolyte battery electrolyte is generally called a non-aqueous electrolyte, and if a polymer is used, the electrolyte is called a polymer solid electrolyte.
  • the polymer solid electrolyte includes those containing a non-aqueous solvent as a plasticizer.
  • the non-aqueous organic solvent (III) other than the above (II) is not particularly limited as long as it is an aprotic solvent capable of dissolving (I), (II) and (IV) of the present invention.
  • an aprotic solvent capable of dissolving (I), (II) and (IV) of the present invention for example, carbonates, esters, ethers, lactones, nitriles, imides, sulfones and the like other than the above (II) can be used.
  • ethyl methyl carbonate dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl butyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, Methyl 2-fluoropropionate, ethyl 2-fluoropropionate, diethyl ether, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, furan, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, dibutyl ether, Diisopropyl ether, 1,2-dimethoxyethane, N, N-dimethylformimide, dimethyl sulfoxide, sulfolane, Beauty ⁇ - butyrolactone
  • the polymer used for obtaining the polymer solid electrolyte is not particularly limited as long as it is an aprotic polymer capable of dissolving (I), (II), and (IV).
  • aprotic polymer capable of dissolving (I), (II), and (IV) examples thereof include polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like.
  • a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used.
  • a solute is not specifically limited,
  • the salt which consists of arbitrary cation and anion pairs can be used.
  • Specific examples include alkali metal ions such as lithium ions and sodium ions, alkaline earth metal ions, quaternary ammonium, etc. as cations, and hexafluorophosphoric acid, tetrafluoroboric acid, perchloric acid as anions.
  • solutes may be used alone, or two or more kinds of solutes may be mixed and used in any combination and ratio according to the application.
  • the cation is lithium, sodium, magnesium, quaternary ammonium
  • the anion is hexafluorophosphoric acid, tetrafluoroboric acid, bis (trifluoromethanesulfonyl) imide, Bis (fluorosulfonyl) imide, bis (difluorophosphonyl) imide, (difluorophosphonyl) (fluorosulfonyl) imide, and difluorophosphoric acid are preferred.
  • the total amount of (IV) (hereinafter referred to as “solute concentration”) with respect to the total amount of 100% by mass of (I), (II), (III), and (IV) is not particularly limited, but the lower limit is 0. 5 mol / L or more, preferably 0.7 mol / L or more, more preferably 0.9 mol / L or more, and the upper limit is 5.0 mol / L or less, preferably 4.0 mol / L or less, more preferably 2 The range is 0.0 mol / L or less. When the concentration is less than 0.5 mol / L, the cycle characteristics and output characteristics of the nonaqueous electrolyte battery are deteriorated due to a decrease in ionic conductivity.
  • the concentration exceeds 5.0 mol / L
  • the electrolyte solution for the nonaqueous electrolyte battery is reduced. If the viscosity increases, the ionic conduction may be lowered, and the cycle characteristics and output characteristics of the nonaqueous electrolyte battery may be degraded.
  • O represents an oxygen atom
  • R 7 and R 8 each independently represents a hydrogen atom, an alkyl group, a hydrocarbon group containing an unsaturated bond, an alkoxy group, a halogen atom, or a halogen atom. It is selected from an alkyl group having an aryl group and an aryl group. However, R 7 and R 8 may contain an ether bond.
  • Examples of the carbonate having an unsaturated bond represented by the general formula (V-1) include vinylene carbonate derivatives such as vinylene carbonate, fluorovinylene carbonate, methyl vinylene carbonate, fluoromethyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene.
  • vinylene carbonate is particularly preferred.
  • O represents an oxygen atom
  • R 9 represents an alkyl group, a hydrocarbon group containing an unsaturated bond, or an alkoxy group.
  • R 10 is a hydrogen atom, an alkyl group, a hydrocarbon group containing an unsaturated bond, or an alkoxy group.
  • at least one of R 9 and R 10 is a hydrocarbon group containing an unsaturated bond.
  • R 9 and R 10 may contain an ether bond.
  • the carbonate having an unsaturated bond represented by the general formula (V-2) is preferably at least one selected from the group consisting of vinylethylene carbonate, ethynylethylene carbonate, divinylethylene carbonate, vinyloxyethylene carbonate, and the like. Of these, vinyl ethylene carbonate and ethynyl ethylene carbonate are more preferable.
  • R 11 to R 16 are each independently selected from a halogen element, an alkyl group, an alkoxy group, an aryloxy group, and an amino group.
  • the halogen element include a fluorine element, a chlorine element, and a bromine element.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group.
  • aryloxy group examples include a phenoxy group, a methylphenoxy group, and a methoxyphenoxy group.
  • the hydrogen element in the alkoxy group and aryloxy group may be substituted with a halogen element, and is preferably substituted with a fluorine element. Further, any R of R 11 to R 16 may be linked to other R.
  • n 1 is an integer of 1 to 10, and when n 1 is 2 or more, the plurality of R 15 and R 16 may be the same or different from each other.
  • Examples of the cyclic phosphazene compound represented by the general formula (V-3) include the following compounds. By adding the cyclic phosphazene compound represented by the general formula (V-3), it is possible to impart a battery swelling suppression effect.
  • the cyclic phosphazene compound represented by the general formula (V-3) used in the present invention is not limited by the following examples.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 2 is an integer of 1 to 3.
  • R 17 to R 20 are each independently selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms.
  • Examples of the cyclic sulfonic acid compound represented by the general formula (V-4) include, for example, 1,3-propene sultone, 1,4-butene sultone, 2,4-pentene sultone, 3,5-pentene sultone, 1-fluoro-1,3-propene sultone, 1-trifluoromethyl-1,3-propene sultone, 1,1,1-trifluoro-2,4 -At least one selected from the group consisting of -butene sultone, 1,4-butene sultone and 1,5-pentene sultone is preferred.
  • 1,3-propene sultone (1,3-PRS) or 1,4-butene sultone.
  • 1,3-propene sultone 1,3-PRS
  • 1,4-butene sultone 1,4-butene sultone.
  • the cyclic sulfonic acid ester having an unsaturated bond only one kind may be used alone, or two or more kinds may be used in combination.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 3 is an integer of 0 to 4
  • n 4 is an integer of 0 to 4.
  • R 21 and R 22 are each independently selected from a hydrogen atom, a halogen atom, and a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • R 23 and R 24 are each independently a hydrogen atom.
  • cyclic disulfonic acid ester As the cyclic sulfonic acid compound represented by the general formula (V-5) (hereinafter referred to as “cyclic disulfonic acid ester”), for example, the following compound No. At least one selected from the group consisting of compounds represented by V-5-1 to V-5-29 is preferred. Among these, compound no. More preferred is at least one selected from the group consisting of V-5-1, V-5-2, V-5-10, V-5-15, and V-5-16.
  • the cyclic disulfonic acid ester represented by the general formula (V-5) is compound No. It is not limited to the compounds shown in V-5-1 to V-5-29, and other compounds may be used.
  • R 25 to R 30 are each independently selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms.
  • Examples of the cyclic sulfonic acid compound represented by the general formula (V-6) include 1,3-propane sultone (1,3-PS), ⁇ -trifluoro Methyl- ⁇ -sultone, ⁇ -trifluoromethyl- ⁇ -sultone, ⁇ -trifluoromethyl- ⁇ -sultone, ⁇ -methyl- ⁇ -sultone, ⁇ , ⁇ -di (trifluoromethyl) - ⁇ -sultone, ⁇ , ⁇ -di (trifluoromethyl) - ⁇ -sultone, ⁇ -heptafluoropropyl- ⁇ -sultone, 1,4-butanesultone (1,4-BS), at least selected from the group consisting of 1,5-pentansultone One is preferable, and at least one selected from the group consisting of 1,3-propane sultone (1,3-PS) and 1,4-butane
  • 1,3-propane sultone (1,3-PS) is considered to form a decomposition film on the negative electrode of a non-aqueous electrolyte battery as described in JP-A-2009-070827 and the like. It is.
  • the cyclic sulfonic acid ester only one kind may be used alone, or two or more kinds may be used in combination.
  • O is an oxygen atom
  • S is a sulfur atom
  • n 6 is an integer of 0 to 1
  • R 31 to R 34 are each independently a hydrogen atom, substituted or unsubstituted An alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 5 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 5 carbon atoms, and a substituted or unsubstituted 1 to 4 carbon atoms Selected from fluoroalkyl groups.
  • R 31 or R 32 and R 33 or R 34 may form a single bond with each other.
  • cyclic sulfate [In general formula (V-8), O is an oxygen atom, S is a sulfur atom, n 7 and n 8 are each an integer of 0 to 1, and R 35 to R 38 are each independently a hydrogen atom, It is selected from a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms.
  • Examples of the cyclic sulfate compounds represented by the general formulas (V-7) and (V-8) (hereinafter referred to as “cyclic sulfate”) include, for example, the following compound Nos. V-7-1 to V-7-8, and compound no.
  • V-8-1 at least one selected from the group consisting of V-8-1 to V-8-3.
  • V-7-1, V-7-4, and compound no. V-8-1 is preferred.
  • One of the above cyclic sulfates may be used alone, or two or more thereof may be used in combination. However, some of these have a somewhat low stability in the electrolyte solution. Therefore, when these are used, the above-mentioned stability, improvement of high-temperature storage characteristics at 70 ° C.
  • R 39 to R 44 are each independently selected from a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, and a halogen atom, and R 39 to R 44 are bonded to each other. To form a ring.
  • the aromatic compound represented by the general formula (V-9) more specifically, for example, the following compound No. V-9-1 to V-9-29, etc., among which compound No. V-9-2, and no. It is particularly preferable to contain at least one V-9-12.
  • O is an oxygen atom
  • S is a sulfur atom
  • R 45 and R 46 each independently comprises a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, and a substituted or unsubstituted fluoroalkyl group having 1 to 4 carbon atoms. Selected from the group.
  • n 9 is an integer of 0 to 3.
  • the cyclic sulfonic acid compound represented by the general formula (V-10) hereinafter referred to as “cyclic disulfonic acid ester”
  • the following compound No At least one selected from the group consisting of compounds represented by V-10-1 to V-10-5 is preferred.
  • Compound No. More preferred is at least one selected from the group consisting of V-10-1, V-10-2, and V-10-5.
  • the cyclic disulfonic acid ester represented by the general formula (V-10) is compound No. It is not limited to the compounds shown in V-10-1 to V-10-5, and other compounds may be used.
  • the total amount of (V) with respect to the total amount of 100% by mass of (I), (II), (III), (IV), (V) is preferably 0.01% by mass or more, more preferably 0.05 mass% or more, more preferably 0.1 mass% or more, and the upper limit is preferably 12.0 mass% or less, more preferably 8.0 mass% or less, and even more preferably 6.0 mass%. % Or less.
  • concentration of (V) is less than 0.01% by mass, it is not preferable because the effect of improving the high-temperature cycle characteristics and the high-temperature storage characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a cross-linked polymer as used in a non-aqueous electrolyte battery called a polymer battery.
  • An electrochemical device using a positive electrode material into which alkali metal ions such as sodium ions and alkaline earth metal ions can be reversibly inserted and removed is called a non-aqueous electrolyte battery.
  • the negative electrode is not particularly limited, but a material in which an alkali metal ion such as lithium ion or sodium ion or an alkaline earth metal ion can be reversibly inserted and removed is used, and the positive electrode is not particularly limited. However, materials in which alkali metal ions such as lithium ions and sodium ions or alkaline earth metal ions can be reversibly inserted and removed are used.
  • the negative electrode material is lithium metal, alloys of lithium and other metals, intermetallic compounds, various carbon materials capable of inserting and extracting lithium, metal oxides, metal nitrides, activated carbon
  • the carbon material include graphitizable carbon, non-graphitizable carbon (also referred to as hard carbon) having a (002) plane spacing of 0.37 nm or more, and a (002) plane spacing of 0.
  • Examples thereof include graphite having a thickness of 34 nm or less, and the latter is made of artificial graphite, natural graphite, or the like.
  • lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 as the positive electrode material, Co, Mn, Ni, etc. of these lithium-containing transition metal composite oxides
  • olivine Transition metal phosphate compounds oxides such as TiO 2 , V 2 O 5 and MoO 3 , sulfides such as TiS 2 and FeS, or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline and polypyrrole, activated carbon , Polymers that generate radicals, carbon materials, and the like are used.
  • acetylene black, ketjen black, carbon fiber, or graphite is added as a conductive material, and polytetrafluoroethylene, polyvinylidene fluoride, or SBR resin is added as a binder.
  • the electrode sheet made can be used.
  • a separator for preventing contact between the positive electrode and the negative electrode a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber or the like is used.
  • an electrochemical device having a coin shape, cylindrical shape, square shape, aluminum laminate sheet shape or the like is assembled.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • 4,5-DFEC 4,5-difluoroethylene carbonate (trans form)
  • II 4,5-difluoroethylene carbonate
  • 1,3-PRS means 1,3-propene sultone
  • 1,3-PS means 1,3-propane sultone
  • comparative electrolyte solution No. In addition, comparative electrolyte solution No. In the preparation of 1-13 to 1-16, the following compound No. 1 was used instead of (I). 1-26 to 1-29 were used.
  • NCM positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) powder and acetylene black (conductive agent) are dry-mixed, and a binder, polyvinylidene fluoride (hereinafter “PVDF”), is used.
  • An NCM mixture paste was prepared by uniformly dispersing in N-methyl-2-pyrrolidone (hereinafter “NMP”) dissolved in advance, mixing, and adding NMP for viscosity adjustment. This paste was applied on an aluminum foil (current collector), dried and pressurized, and then a test NMC positive electrode processed into a predetermined size was obtained.
  • NMP N-methyl-2-pyrrolidone
  • Example 1-1 to 1-46, Comparative Examples 1-1 to 1-30 Evaluation of Nonaqueous Electrolyte Battery ⁇ Evaluation 1> High-temperature storage characteristics (70 ° C.) The following evaluation was performed on each of the nonaqueous electrolyte batteries according to Examples 1-1 to 1-46 and Comparative Examples 1-1 to 1-30. First, conditioning was performed using the fabricated cell at an environmental temperature of 25 ° C. under the following conditions. That is, as the first charge / discharge, the battery is charged at a constant current and constant voltage at a charging upper limit voltage of 4.3 V and a 0.1 C rate (3 mA), and discharged at a 0.2 C rate (6 mA) constant current up to a discharge end voltage of 3.0 V.
  • charging / discharging cycle is performed three times by charging at a constant current / constant voltage at a charging upper limit voltage of 4.3V and a 0.2C rate (6 mA) and discharging at a constant current of 0.2C (6 mA) to a discharge end voltage of 3.0V. Repeated.
  • the battery After carrying out the above conditioning, the battery was charged at a constant current and a constant voltage at an ambient temperature of 25 ° C. at a charging upper limit voltage of 4.3 V and a 0.2 C rate (6 mA), and then stored at an ambient temperature of 70 ° C. for 10 days. Thereafter, the battery was discharged at a constant current of 0.2 C (6 mA) to a final discharge voltage of 3.0 V, and the initial discharge capacity of the discharge capacity at this time (discharge capacity measured before storage at 70 ° C. after performing the above conditioning) ) As the remaining capacity ratio, and the storage characteristics of the cells (discharge capacity retention after storage) were evaluated.
  • Table 2 shows the “discharge capacity maintenance ratio after storage at 70 ° C.”, which is the relative value of the remaining capacity ratio of each of the examples and comparative examples when the remaining capacity ratio of Comparative Example 1-1 is set to 100. did.
  • the numerical value of the gas generation amount shown in Table 2 is a relative value when the gas generation amount of Comparative Example 1-1 is set to 100.
  • Examples 1-40 to 1-46 in which compounds of group (V) were further added as other additives comparative examples using (I) alone by using (I) and (II) in combination Compared with 1-17 to 1-20, 1-25, 1-27, and 1-29, it was confirmed that the high-temperature storage characteristics were improved and the amount of gas generated during high-temperature storage was reduced. Similarly, compared with Comparative Examples 1-21 to 1-24, 1-26, 1-28, and 1-30 using (II) alone, the high temperature storage characteristics are improved, and the amount of gas generated during high temperature storage. was confirmed to be reduced.
  • Examples 2-1 to 2-4, Comparative Examples 2-1 to 2-8 Production and Evaluation of Nonaqueous Electrolyte Batteries
  • Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-8 As shown in Tables 3 and 4, a nonaqueous electrolyte battery was prepared and evaluated in the same manner as in Example 1-1 except that the negative electrode body and the electrolyte were changed.
  • the negative electrode active material is Li 4 Ti 5 O 12
  • the negative electrode body is 90% by mass of Li 4 Ti 5 O 12 powder.
  • the evaluation results in Table 4 are the comparative electrolyte No. in each electrode configuration. It is a relative value when the evaluation result of the comparative example using the electrolytic solution 1-1 is set to 100.
  • Examples 3-1 to 3-6, Comparative Examples 3-1 to 3-12 Production and Evaluation of Nonaqueous Electrolyte Batteries
  • a positive electrode body in which the positive electrode active material was LiCoO 2 was obtained by mixing 85% by mass of LiCoO 2 powder with 10% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive material, and further adding NMP. The paste was applied on an aluminum foil and dried.
  • Example 1-1 in Examples 3-1 to 3-2 and Comparative Examples 3-1 to 3-4 in which the negative electrode active material is graphite, the end-of-charge voltage in the battery evaluation was 4.2 V, the discharge The final voltage was 3.0V.
  • Examples 3-3 to 3-4 and Comparative Examples 3-5 to 3-8 in which the negative electrode active material is Li 4 Ti 5 O 12 as in Example 2-1 the end-of-charge voltage at the time of battery evaluation is The discharge end voltage was set to 2.7 V and 1.5 V.
  • Example 2-3 in Examples 3-5 to 3-6 and Comparative Examples 3-9 to 3-12 in which the negative electrode active material is hard carbon, the end-of-charge voltage during battery evaluation was 4.1 V, The final discharge voltage was 2.2V.
  • Table 5 shows the evaluation results of the high temperature storage characteristics and the amount of gas generated during high temperature storage.
  • the evaluation results in Table 5 are the comparative electrolyte No. in each electrode configuration. It is a relative value when the evaluation result of the comparative example using the electrolytic solution 1-1 is set to 100.
  • Example 4-1 to 4-6 Comparative Examples 4-1 to 4-12
  • Production and Evaluation of Nonaqueous Electrolyte Batteries In Examples 4-1 to 4-6 and Comparative Examples 4-1 to 4-12 As shown in Tables 3 and 6, a nonaqueous electrolyte battery was produced in the same manner as in Example 1-1 except that the positive electrode body and the electrolyte were changed, and the battery was evaluated.
  • the positive electrode active material is LiNi 0.8 Co 0.15 Al 0.05 O 2
  • the positive electrode body is LiNi 0.8 Co 0.15 Al 0.05 O 2 powder.
  • the positive electrode active material is LiFePO 4
  • the positive electrode body is made up of 85% by mass of LiFePO 4 powder coated with amorphous carbon.
  • 10% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive material were mixed, NMP was further added, and the obtained paste was applied on an aluminum foil and dried.
  • the end-of-charge voltage was 4.2 V
  • the end-of-discharge voltage was 2.5 V.
  • Table 6 shows the evaluation results of the high temperature storage characteristics and the amount of gas generated during high temperature storage.
  • the evaluation results in Table 6 are the comparative electrolyte No. in each electrode configuration. It is a relative value when the evaluation result of the comparative example using the electrolytic solution 1-1 is set to 100.
  • electrolyte No. 2-1 to 2-11 were prepared.
  • 30% by mass of total LiPF 6 was added and dissolved in a predetermined amount of EMC, and then all LiPF 6 was dissolved.
  • the EC and EMC were heated and dissolved in advance after the operation of adding 30% by mass and repeating the dissolution twice, and finally adding the remaining 10% by mass of LiPF 6 and dissolving.
  • LiPO 2 F 2 and LiBF 4 are added and dissolved, and the compounds of group (I) and FEC and (V) group of Table 7 are added and dissolved.
  • the procedure was performed by stirring for 1 hour.
  • electrolyte No. 2-12 to 2-22 were prepared.
  • 30% by mass of total LiPF 6 was added and dissolved in a predetermined amount of EMC, and then all LiPF 6 was dissolved.
  • the EC and EMC were heated and dissolved in advance after the operation of adding 30% by mass and repeating the dissolution twice, and finally adding the remaining 10% by mass of LiPF 6 and dissolving.
  • LiPO 2 F 2 and LiBF 4 are added and dissolved, and the compounds of group (I) and FEC and (V) group of Table 7 are added and dissolved. The procedure was performed by stirring for 1 hour.
  • Comparative electrolyte No. 1 was prepared in the same manner as in Examples 2-1 to 2-11, except that (I) or (II) was not added. 2-2 to 2-23 were prepared.
  • Comparative electrolyte No. 1 was prepared in the same manner as in Examples 2-12 to 2-22, except that (I) or (II) was not added. 2-25 to 2-46 were prepared.
  • SiO x negative electrode As silicon oxide powder, silicon oxide powder disproportionated by heat treatment (SiO x (x is 0.3 to 1.6) manufactured by Sigma-Aldrich Japan, average particle size 5 ⁇ m), bulk artificial graphite powder Using a mixed powder of MAG-D (particle size of 20 ⁇ m or less) manufactured by Hitachi Chemical Co., Ltd., uniformly dispersing it in NMP in which PVDF, which is a binder, was previously dissolved, and adding ketjen black (conductive agent) and mixing. Further, NMP for viscosity adjustment was added to prepare a SiO x mixture paste.
  • SiO x silicon oxide powder disproportionated by heat treatment
  • bulk artificial graphite powder Using a mixed powder of MAG-D (particle size of 20 ⁇ m or less) manufactured by Hitachi Chemical Co., Ltd., uniformly dispersing it in NMP
  • This paste was applied onto a copper foil (current collector), dried and pressurized, and then a test SiO x negative electrode processed into a predetermined size was obtained.
  • the amount of the NCA positive electrode active material and the SiO x powder is adjusted so that the charge capacity of the SiO x negative electrode is larger than the charge capacity of the NCA positive electrode, so that lithium metal does not deposit on the SiO x negative electrode during the charge.
  • the coating amount was also adjusted.
  • a positive electrode and a negative electrode were opposed to each other with the polypropylene side of a separator made of a microporous polypropylene-polyethylene two-layer film disposed on the positive electrode side to obtain a nonaqueous electrolyte battery.
  • the battery After carrying out the above conditioning, the battery was charged at a constant current and a constant voltage at an upper limit voltage of 4.2 V and a 0.1 C rate (3 mA) at an environmental temperature of 25 ° C., and then stored at an environmental temperature of 70 ° C. for 10 days. Thereafter, the battery was discharged at a constant current of 0.2 C (6 mA) to a final discharge voltage of 2.5 V, and the initial discharge capacity of the discharge capacity at this time (discharge capacity measured before storage at 70 ° C. after performing the above conditioning) ) As the remaining capacity ratio, and the storage characteristics of the cells (discharge capacity retention after storage) were evaluated.
  • Example 5-1 to 5-11 and Comparative Examples 5-1 to 5-23 shown in Table 9 and Table 10 each example when the remaining capacity ratio of Comparative Example 5-1 is 100 is used. -“Discharge capacity maintenance ratio after storage at 70 ° C.” which is a relative value of the remaining capacity ratio of the comparative example is described. Further, in Examples 5-12 to 5-22 and Comparative Examples 5-24 to 5-46 shown in Table 9 and Table 10, each example when the remaining capacity ratio of Comparative Example 5-24 is 100 is shown. -“Discharge capacity maintenance ratio after storage at 70 ° C.” which is a relative value of the remaining capacity ratio of the comparative example is described.
  • the numerical values of the gas generation amounts described in Examples 5-1 to 5-11 and Comparative Examples 5-1 to 5-23 shown in Table 9 and Table 10 are 100 as the gas generation amount of Comparative Example 5-1. This is the relative value. Further, the numerical values of the gas generation amounts described in Examples 5-12 to 5-22 and Comparative Examples 5-24 to 5-46 shown in Table 9 and Table 10 are 100 as the gas generation amount of Comparative Example 5-24. This is the relative value.
  • the non-aqueous electrolyte battery electrolyte of the present invention Compared to the corresponding comparative example, it was confirmed that the high temperature storage characteristics were improved and the amount of gas generated during high temperature storage was reduced. Therefore, by using the non-aqueous electrolyte battery electrolyte of the present invention, the non-aqueous electrolyte battery exhibits excellent high-temperature storage characteristics and a reduction in the amount of gas generated during high-temperature storage regardless of the type of the negative electrode active material. It was shown that
  • the use of the non-aqueous electrolyte battery electrolyte of the present invention confirms that the high-temperature storage characteristics are improved and the amount of gas generated during high-temperature storage is reduced compared to the corresponding comparative examples. It was.
  • a non-aqueous electrolyte battery of the present invention by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery that exhibits excellent high-temperature storage characteristics and a reduction in the amount of gas generated during high-temperature storage, regardless of the type of positive electrode active material. It was shown that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の非水電解液電池用電解液は、(I)下記一般式(1)で示される少なくとも1種のシラン化合物、(II)フッ素原子を有するカーボネート、(III)上記(II)以外の非水有機溶媒、及び、(IV)溶質とを含む。該電解液は、70℃以上での高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減効果をバランスよく発揮することができる。 [一般式(1)中、R1はそれぞれ互いに独立して、炭素-炭素不飽和結合を有する基を表す。R2はそれぞれ互いに独立して、フッ素基、炭素数が1~10の直鎖あるいは炭素数が3~10の分岐状のアルキル基から選択され、前記アルキル基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]

Description

非水電解液電池用電解液、及びこれを用いた非水電解液電池
 本発明は、特定のシラン化合物と、フッ素原子を有するカーボネートとを含有する非水電解液電池用電解液及びそれを用いた非水電解液電池に関するものである。
 近年、情報関連機器、通信機器、即ちパソコン、ビデオカメラ、デジタルカメラ、携帯電話、スマートフォン等の小型、高エネルギー密度用途向けの蓄電システムに加え、電気自動車、ハイブリッド車、燃料電池車補助電源として搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。また、電力貯蔵等の大型、パワー用途向け蓄電システムでも長期間使用可能な電池の要望が高まっている。これら各種蓄電システムの候補としてリチウムイオン電池、リチウム電池、リチウムイオンキャパシタ等の非水系電解液電池が盛んに開発されている。
 リチウム二次電池は、主に正極、非水系電解液及び負極から構成されている。
 リチウム二次電池を構成する負極としては、例えば金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(例えば金属単体、酸化物、リチウムとの合金等)、炭素材料等が知られており、特にリチウムを吸蔵・放出することが可能な、コークス、人造黒鉛、天然黒鉛等の炭素材料を用いたリチウム二次電池が広く実用化されている。しかし例えば天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水系電解液中の非水系溶媒が充電時に負極表面で還元分解されるため、これにより発生した分解物やガスが電池の本来の電気化学的反応を阻害するため、サイクル特性が低下することが報告されている。
 また、リチウム金属やその合金、ケイ素、スズ等の金属単体や酸化物等を負極材料として用いたリチウム二次電池は、初期容量は高いもののサイクル中に負極材料の微粉化が進むため、炭素材料の負極に比べて非水系溶媒の還元分解が起こりやすいことから、結果として電池の初期不可逆容量の増加に伴う1サイクル目充放電効率の低下、それに伴う電池容量やサイクル特性のような電池性能が大きく低下することが知られている。
 1サイクル目充電時に負極にリチウムカチオンが挿入される際に、負極とリチウムカチオン、又は負極と電解液溶媒が反応し、負極表面上に酸化リチウムや炭酸リチウム、アルキル炭酸リチウムを主成分とする皮膜を形成する。この電極表面上の皮膜はSolid Electrolyte Interface(SEI)と呼ばれ、溶媒の還元分解を抑制し電池性能の劣化を抑える等、その性質が電池性能に大きな影響を与えている。
 上述のように、非水系溶媒の分解物の蓄積やガスの発生、負極材料の微粉化による悪影響等により、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、結果としてサイクル特性等の電池特性の低下が著しいという問題を有している。
 また、正極としては、例えばLiCoO2、LiMn24、LiNiO2、LiFePO4等が知られている。これらを用いたリチウム二次電池は、充電状態で高温になった場合、正極材料と非水系電解液との界面において非水系電解液中の非水系溶媒が局部的に一部酸化分解してしまうため、これにより発生した分解物やガスが電池本来の電気化学的反応を阻害し、結果として、サイクル特性等の電池性能を低下させることが報告されている。負極と同様に正極表面上にも酸化分解物による皮膜が形成され、これも溶媒の酸化分解を抑制し、ガス発生量を抑える等といった重要な役割を果たすことが知られている。
 以上のように、通常のリチウム二次電池は、正極上や負極上で非水系電解液が分解する際に発生する分解物やガスにより、リチウムイオンの移動を阻害したり、電池が膨れたりすることにより電池性能を低下させる原因を有していた。
 これらの課題を克服することに加え、長期耐久性や出力特性を始めとする電池性能を向上させるためには、イオン伝導性が高く、且つ電子伝導性が低く、長期に渡って安定なSEIを形成させることが重要であり、添加剤と称される化合物を電解液中に少量(通常は0.01質量%以上10質量%以下)加えることで、積極的に良好なSEIを形成させる試みが広くなされている
 例えば、特許文献1には、フッ素原子を有する環状カーボネートを非水電解液に添加することにより、非水電解液電池のサイクル特性を向上させることが記載されている。
 特許文献2~3には、フルオロシラン化合物などのケイ素化合物を非水電解液に添加することにより、非水電解液電池のサイクル特性や、内部抵抗の増加を抑制して高温貯蔵特性や低温特性を向上させることが記載されている。
 特許文献4には、フルオロシラン化合物やジフオロリン酸化合物を添加することによって、非水電解液電池の低温特性を向上させることが記載されている。
 また、特許文献5では、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、テトラフルオロ(オキサラト)リン酸塩、テトラフルオロ(マロナト)リン酸塩等の第1の化合物と、テトラビニルシラン、メチルトリビニルシラン、フルオロトリビニルシラン、ジメチルジビニルシラン、メチルフルオロジビニルシランやジフルオロジビニルシラン等の炭素-炭素不飽和結合を有する基を2~4個有するケイ素化合物である第2の化合物を含有する、非水電解液電池用電解液について開示されている。該特許文献5において、第1の化合物を単独で添加した場合に比べて、第1の化合物と第2の化合物を併用した場合は、60℃以上の高温での電解液からの分解ガスの発生量がより少ない傾向があることが記載されている(第2の化合物を添加することで高温での電解液からの分解ガスの発生量低減効果を奏することが記載されている)。
特開平07-240232号公報 特開2004-039510号公報 特開2004-087459号公報 特開2007-149656号公報 国際公開第2016/017404号パンフレット 特開平10-139784号公報
Journal of Organic Chemistry (1957), 22, 1200-2. Chemicke Zvesti (1964), 18, 21-7.
 リチウムイオン電池を主とする非水電解液電池用電解液は既に実用化されているものも多いものの、車載用を始め、より過酷な条件で使用される可能性のある用途においては、より優れた特性を有する電解液が依然として求められている状況である。
 例えば、特許文献1に記載のような4,5-ジフルオロエチレンカーボネート等を含有した非水電解液電池用電解液や、特許文献2~4に記載のようなビニル基を有するフルオロシラン化合物を含有した非水電解液電池用電解液や、特許文献5に記載のようなビニル基を有するシラン化合物を含有した非水電解液電池用電解液であっても、70℃以上での高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減効果をバランスよく発揮することが充分であるとは言えず、更なる改善が望まれている。
 本発明は、
(I)下記一般式(1)で示される少なくとも1種のシラン化合物、
(II)フッ素原子を有するカーボネート、
(III)上記(II)以外の非水有機溶媒、及び、
(IV)溶質
とを含む、非水電解液電池用電解液(以降、単純に「非水電解液」又は「電解液」と記載する場合がある)である。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)中、R1はそれぞれ互いに独立して、炭素-炭素不飽和結合を有する基を表す。R2はそれぞれ互いに独立して、フッ素基、炭素数が1~10の直鎖あるいは炭素数が3~10の分岐状のアルキル基から選択され、上記アルキル基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
 本発明の非水電解液電池用電解液において、上記(I)一般式(1)で示される少なくとも1種のシラン化合物と、上記(II)フッ素原子を有するカーボネートとを共に含むことが重要である。これらの化合物を共に含有することではじめて、該電解液を非水電解液電池に用いた場合に、70℃以上の高温での優れた高温貯蔵特性の向上、及び該高温貯蔵時に発生したガス量の低減効果をバランスよく発揮することができるためである。
 上記(II)のフッ素原子を有するカーボネートが、下記一般式(II-1)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
[一般式(II-1)中、Oは酸素原子、R3~R6は、それぞれ独立して、水素原子、アルキル基、ハロゲン原子、ハロゲン原子を有するアルキル基、及び、ハロゲン原子を有するアリール基からなる群から選択され、かつ、R3~R6のうち少なくとも一つがフッ素原子である。なお、R3~R6はエーテル結合を含んでもよい。]
 上記一般式(II-1)で示されるフッ素原子を有するカーボネートが、フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、及び4,5-ジフルオロ-4,5-ジメチルエチレンカーボネートからなる群から選択される少なくとも1種であることが好ましい。
 上記一般式(II-1)で示されるフッ素原子を有するカーボネートが、フルオロエチレンカーボネート、及び4,5-ジフルオロエチレンカーボネート(トランス体)からなる群から選択される少なくとも1種であることが好ましい。
 上記一般式(1)のR1が、それぞれ互いに独立して、ビニル基、アリル基、1-プロペニル基、2-プロペニル基、エチニル基、及び2-プロピニル基からなる群から選択されることが好ましい。
 上記一般式(1)のR2が、それぞれ互いに独立して、フッ素基、メチル基、エチル基、プロピル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、1,1,1-トリフルオロイソプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基からなる群から選択される基であることが好ましい。
 上記一般式(1)のxが3~4であることが好ましい。
 また、(I)、(II)、(III)、(IV)の総量100質量%に対する、(I)の総量が0.001質量%以上10.0質量%以下であることが好ましい。
 また、(I)、(II)、(III)、(IV)の総量100質量%に対する、(II)の総量が0.01質量%以上20.0質量%以下であることが好ましい。
 上記(IV)が、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO22)、ビス(ジフルオロホスホニル)イミドリチウム(LiN(POF22)、(ジフルオロホスホニル)(フルオロスルホニル)イミドリチウム((LiN(POF2)(FSO2))、及びジフルオロリン酸リチウム(LiPO22)からなる群から選ばれる少なくとも一つを含む溶質であることが好ましい。
 上記(III)が、上記(II)以外の、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つを含む非水有機溶媒であることが好ましい。
 また、(V)その他添加剤として、下記一般式(V-1)~(V-10)で表される化合物を更に含有し、上記(I)に対する(V)の添加比が質量比で(V)/(I)=0.05~60.0を満足することが好ましい。
Figure JPOXMLDOC01-appb-C000006
[一般式(V-1)中、Oは酸素原子、R7及びR8は、それぞれ独立して、水素原子、アルキル基、不飽和結合を含む炭化水素基、アルコキシ基、ハロゲン原子、ハロゲン原子を有するアルキル基、及びアリール基から選択される。但し、R7及びR8はエーテル結合を含んでもよい。]
[一般式(V-2)中、Oは酸素原子、R9は、アルキル基、不飽和結合を含む炭化水素基、又はアルコキシ基である。R10は、水素原子、アルキル基、不飽和結合を含む炭化水素基、又はアルコキシ基である。但し、R9及びR10の少なくとも一方は不飽和結合を含む炭化水素基である。また、R9及びR10はエーテル結合を含んでもよい。]
[一般式(V-3)中、R11~R16は、それぞれ独立に、ハロゲン元素、アルキル基、アルコキシ基、アリールオキシ基、及びアミノ基から選択され、上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよい。R11~R16の任意のRは他のRと連結してもよく、この場合、2つのRは互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成してもよい。n1は1~10の整数であり、n1が2以上の場合、複数のR15及びR16は、それぞれお互い同一であっても、異なっていても良い。]
[一般式(V-4)中、Oは酸素原子、Sは硫黄原子、n2は1~3の整数である。R17~R20は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
[一般式(V-5)中、Oは酸素原子、Sは硫黄原子、n3は0~4の整数であり、n4は0~4の整数である。R21、R22は、それぞれ独立して、水素原子、ハロゲン原子、及び置換若しくは無置換の炭素数1~5のアルキル基から選択され、R23、R24は、それぞれ独立して、水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
[一般式(V-6)中、Oは酸素原子、Sは硫黄原子、n5は0~2の整数である。R25~R30は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~6のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
[一般式(V-7)中、Oは酸素原子、Sは硫黄原子、n6は0~1の整数であり、R31~R34は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数2~5のアルケニル基、置換若しくは無置換の炭素数2~5のアルキニル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。但し、n6が0のとき、R31又はR32とR33又はR34とは互いに単結合を形成してもよい。]
[一般式(V-8)中、Oは酸素原子、Sは硫黄原子、n7、n8はそれぞれ0~1の整数であり、R35~R38は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
[一般式(V-9)中、R39~R44は、それぞれ独立に、水素原子、炭素数1~12の炭化水素基、及びハロゲン原子から選択され、R39~R44は互いに結合して環を形成してもよい。]
[一般式(V-10)中、Oは酸素原子、Sは硫黄原子である。R45、R46は、それぞれ独立して、水素原子、ハロゲン原子、置換又は無置換の炭素数1~5のアルキル基、及び、置換又は無置換の炭素数1~4のフルオロアルキル基からなる群から選択される。n9は0~3の整数である。]
 また、本発明は、少なくとも正極と、負極と、上記のいずれかに記載の非水電解液電池用電解液とを備える、非水電解液電池(以降、単純に「電池」と記載する場合がある)である。
 本発明により、70℃以上での高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減効果をバランスよく発揮することができる電解液、及びこれを用いた非水電解液電池を提供することができる。
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
 本発明は、
(I)下記一般式(1)で示される少なくとも1種のシラン化合物、
(II)フッ素原子を有するカーボネート、
(III)上記(II)以外の非水有機溶媒、及び、
(IV)溶質
とを含む、非水電解液電池用電解液である。
Figure JPOXMLDOC01-appb-C000007
[一般式(1)中、R1はそれぞれ互いに独立して、炭素-炭素不飽和結合を有する基を表す。R2はそれぞれ互いに独立して、フッ素基、炭素数が1~10の直鎖あるいは炭素数が3~10の分岐状のアルキル基から選択され、上記アルキル基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
 1.非水電解液電池用電解液
 (I)について
 (I)は、いずれも正極及び負極上で分解することによりイオン伝導性の良い皮膜を正極及び負極表面に形成するために、非水電解液に含有させる成分である。この皮膜は、非水溶媒や溶質と電極活物質との間の直接の接触を抑制して非水溶媒や溶質の分解を防ぎ、電池性能の劣化を抑制する。その結果、非水電解液電池の高温サイクル特性や高温貯蔵特性の向上効果を奏する。
 上記一般式(1)において、R1で表される炭素-炭素不飽和結合を有する基としては、ビニル基、アリル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブダジエニル基等の炭素原子数2~8のアルケニル基又はこれらの基から誘導されるアルケニルオキシ基、エチニル基、2-プロピニル基、1,1ジメチル-2-プロピニル基等の炭素原子数2~8のアルキニル基又はこれらの基から誘導されるアルキニルオキシ基、フェニル基、トリル基、キシリル基等の炭素原子数6~12のアリール基又はこれらの基から誘導されるアリールオキシ基が挙げられる。また、上記の基はフッ素原子及び酸素原子を有していても良い。それらの中でも、炭素数が6以下の炭素-炭素不飽和結合を含有する基が好ましい。上記炭素数が6より多いと、電極上に皮膜を形成した際の抵抗が比較的大きい傾向がある。具体的には、ビニル基、アリル基、1-プロペニル基、2-プロペニル基、エチニル基、及び2-プロピニル基からなる群から選択される基が好ましい。
 また、上記一般式(1)において、R2で表されるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基等の炭素原子数1~12のアルキル基等が挙げられる。また、上記の基はフッ素原子及び酸素原子を有していても良い。酸素原子を有する基として上記アルキル基から誘導されるアルコキシ基等が挙げられる。アルキル基及びアルコキシ基から選択される基であると電極上に皮膜を形成した際の抵抗がより小さい傾向があり、その結果出力特性の観点で好ましい。特にメチル基、エチル基、プロピル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、1,1,1-トリフルオロイソプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基からなる群から選択される基であると、上記の抵抗を大きくすることなく高温サイクル特性及び高温貯蔵特性に、より優れた非水電解液電池を得られるため好ましい。
 上記一般式(1)のxで表される炭素-炭素不飽和結合を有する基の数は、電極上に皮膜を形成させるために、ひいては本発明の目的を達成するために、2~4である必要があり、3~4であると高温サイクル特性及び高温貯蔵特性をより向上し易いため好ましい。詳細は不明だがより強固な皮膜を形成し易いからと考えられる。
 上記一般式(1)で表されるシラン化合物としては、より具体的には、例えば以下の化合物No.1-1~1-25等が挙げられる。但し、本発明で用いられるシラン化合物は、以下の例示により何ら制限を受けるものではない。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)で示されるシラン化合物は、例えば、特許文献6、非特許文献1、2に記載のように、シラノール基又は加水分解性基を有するケイ素化合物と炭素-炭素不飽和結合含有有機金属試薬とを反応させて、該ケイ素化合物中のシラノール基のOH基又は加水分解性基を炭素-炭素不飽和結合基に置換するような、炭素-炭素不飽和結合含有ケイ素化合物を製造する方法により製造できる。
 (I)、(II)、(III)、(IV)の総量100質量%に対する、(I)の総量(以降、「(I)の濃度」と記載する)は、下限が0.001質量%以上であることが好ましく、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、上限が10.0質量%以下であることが好ましく、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下である。(I)の濃度が0.001質量%を下回ると該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。一方、(I)の濃度が10.0質量%を超えると、該非水電解液の粘度が高いため、該非水電解液を用いた非水電解液電池の高温サイクル特性を向上させる効果が十分に得られ難いため好ましくない。(I)は、10.0質量%を超えない範囲であれば一種類のシラン化合物を単独で用いても良く、二種類以上のシラン化合物を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
 (II)について
 (II)は、正極及び負極表面に安定な皮膜を形成するために、非水電解液に含有させる成分である。この皮膜は電池の劣化を抑制し、その結果、非水電解液電池の高温サイクル特性や高温貯蔵特性の向上効果を奏する。
 上記(II)のフッ素原子を有するカーボネートが、上記一般式(II-1)で示される化合物であることが好ましい。
 上記一般式(II-1)で示されるフッ素原子を有するカーボネートとしては、例えば、フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、及び4,5-ジフルオロ-4,5-ジメチルエチレンカーボネートからなる群から選ばれる少なくとも1種が好ましい。中でもフルオロエチレンカーボネート、及び4,5-ジフルオロエチレンカーボネートからなる群から選ばれる少なくとも1種がより好ましい。4,5-ジフルオロエチレンカーボネートとしては、シス体よりもトランス体が好ましい。4,5-ジフルオロエチレンカーボネート(トランス体)の方が、高イオン伝導性を与え、かつ好適に界面保護皮膜を形成するためである。
 (I)、(II)、(III)、(IV)の総量100質量%に対する、(II)の総量(以降、「(II)の濃度」と記載する)は、下限が0.01質量%以上であることが好ましく、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上であり、上限が20.0質量%以下であることが好ましく、より好ましくは10.0質量%以下、さらに好ましくは5.0質量%以下である。(II)の濃度が0.01質量%を下回ると、該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。一方、(II)の濃度が20.0質量%を超えても、電解液の粘度が高いために非水系電解液電池内でのカチオンの移動が妨げられ易くなることにより、該非水電解液を用いた非水電解液電池の高温サイクル特性を向上させる効果が十分に得られ難いため好ましくない。(II)は、20.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
 上述したように、上記(I)は、いずれも正極及び負極上で分解することによりイオン伝導性の良い皮膜を正極、及び負極表面に形成する。この皮膜は、非水溶媒や溶質と電極活物質との間の直接の接触を抑制して非水溶媒や溶質の分解を防ぎ、電池性能の劣化を抑制する。しかし、上記(I)と上記(II)を併用せずに、上記(I)のみを用いた場合、電極上に形成した皮膜成分が十分でなく、得られる非水電解液電池の70℃以上の高温での高温貯蔵特性は十分ではない場合がある。
 また、上記(II)も、正極及び負極表面に安定な皮膜を形成し、電池の劣化を抑制する効果があるが、上記(I)と上記(II)を併用せずに、上記(II)のみを用いた場合、得られる非水電解液電池の70℃以上の高温での高温貯蔵特性は十分ではない場合がある。
 従って、本発明の非水電解液電池用電解液において、上記(I)と上記(II)を併用することが重要である。上記(I)と上記(II)を併用することにより、(I)又は(II)をそれぞれ単独で添加した場合に比べて、70℃以上の高温での高温貯蔵特性が向上するメカニズムの詳細は明らかでないが、(I)と(II)が共存することで、(I)と(II)の混合組成に由来するより良好な皮膜が形成されることにより、高温での溶媒や溶質の分解が抑制される、あるいは、(I)によって形成された皮膜の表面を、(II)によって形成された皮膜が覆うことにより、(I)が形成する皮膜が高温下にて溶媒や溶質と反応することを抑制するためと推測される。
 また、(I)又は(II)をそれぞれ単独で添加した場合に比べて、(I)と(II)を併用した場合は、70℃以上の高温での電解液からの分解ガスの発生量がより少ない傾向がある。該分解ガス発生量の低減効果は上述のような良好な皮膜がもたらす効果であると考えられる。
 このように(I)と(II)を併用すると、(I)又は(II)をそれぞれ単独で用いる場合に比べて、70℃以上の高温での電池の高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減効果をバランスよく発揮することができる。
 (III)について
 非水電解液電池用電解液は非水系溶媒を用いれば、一般に非水電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水系溶媒を含有するものも含まれる。
 上記(II)以外の非水有機溶媒である(III)としては、本発明の(I)、(II)、(IV)を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、上記(II)以外の、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、イミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。具体例としては、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、2-フルオロプロピオン酸メチル、2-フルオロプロピオン酸エチル、ジエチルエーテル、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、N,N-ジメチルホルムイミド、ジメチルスルホキシド、スルホラン、及びγ-ブチロラクトン、γ-バレロラクトン等を挙げることができる。
 ポリマー固体電解質を得るために用いるポリマーとしては、(I)、(II)、(IV)を溶解できる非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖又は側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマー又はコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。
 (IV)について
 溶質は特に限定されず、任意のカチオンとアニオンの対からなる塩を用いることができる。具体例としては、カチオンとしてリチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、アルカリ土類金属イオン、四級アンモニウム等が挙げられ、アニオンとして、ヘキサフルオロリン酸、テトラフルオロホウ酸、過塩素酸、ヘキサフルオロヒ酸、ヘキサフルオロアンチモン酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミド、(ペンタフルオロエタンスルホニル) (フルオロスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メチド、ビス(ジフルオロホスホニル)イミド、(ジフルオロホスホニル)(フルオロスルホニル)イミド、ジフルオロリン酸等が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えると、カチオンはリチウム、ナトリウム、マグネシウム、四級アンモニウムが、アニオンはヘキサフルオロリン酸、テトラフルオロホウ酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、ビス(ジフルオロホスホニル)イミド、(ジフルオロホスホニル)(フルオロスルホニル)イミド、ジフルオロリン酸が好ましい。
 (I)、(II)、(III)、(IV)の総量100質量%に対する、(IV)の総量(以降、「溶質濃度」と記載する)は、特に制限はないが、下限は0.5mol/L以上、好ましくは0.7mol/L以上、さらに好ましくは0.9mol/L以上であり、また、上限は5.0mol/L以下、好ましくは4.0mol/L以下、さらに好ましくは2.0mol/L以下の範囲である。0.5mol/Lを下回るとイオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下し、一方、5.0mol/Lを超えると非水電解液電池用電解液の粘度が上昇することによりやはりイオン伝導を低下させ、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。
 また、(V)その他の添加剤として、下記一般式(V-1)~(V-10)からなる群から選ばれる化合物を更に少なくとも1種含有することが好ましい。その際、前記(I)に対する(V)の添加比が質量比で(V)/(I)=0.05~60.0を満足すると、70℃以上の高温での高温貯蔵特性が良好となり好ましい。
Figure JPOXMLDOC01-appb-C000009
[一般式(V-1)中、Oは酸素原子、R7及びR8は、それぞれ独立して、水素原子、アルキル基、不飽和結合を含む炭化水素基、アルコキシ基、ハロゲン原子、ハロゲン原子を有するアルキル基、及びアリール基から選択される。但し、R7及びR8はエーテル結合を含んでもよい。]
 上記一般式(V-1)で示される不飽和結合を有するカーボネートとしては、ビニレンカーボネート誘導体が挙げられ、例えばビニレンカーボネート、フルオロビニレンカーボネート、メチルビニレンカーボネート、フルオロメチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ブチルビニレンカーボネート、ジプロピルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、トリフルオロメチルビニレンカーボネート等よりなる群から選ばれる少なくとも1種がより好ましい。中でもビニレンカーボネートが特に好ましい。
Figure JPOXMLDOC01-appb-C000010
[一般式(V-2)中、Oは酸素原子、R9は、アルキル基、不飽和結合を含む炭化水素基、又はアルコキシ基である。R10は、水素原子、アルキル基、不飽和結合を含む炭化水素基、又はアルコキシ基である。但し、R9及びR10の少なくとも一方は不飽和結合を含む炭化水素基である。また、R9及びR10はエーテル結合を含んでもよい。]
 上記一般式(V-2)で示される不飽和結合を有するカーボネートとしては、例えばビニルエチレンカーボネート、エチニルエチレンカーボネート、ジビニルエチレンカーボネート、ビニロキシエチレンカーボネート等よりなる群から選ばれる少なくとも1種が好ましい。中でもビニルエチレンカーボネート、エチニルエチレンカーボネートがより好ましい。
Figure JPOXMLDOC01-appb-C000011
[一般式(V-3)中、R11~R16は、それぞれ独立に、ハロゲン元素、アルキル基、アルコキシ基、アリールオキシ基、及びアミノ基から選択される。ハロゲン元素としては、フッ素元素、塩素元素、臭素元素等が挙げられる。アルキル基としてはメチル基、エチル基、プロピル基、ブチル基等が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等、またはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。アリールオキシ基としては、フェノキシ基、メチルフェノキシ基、メトキシフェノキシ基等が挙げられる。上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素元素で置換されていることが好ましい。また、R11~R16の任意のRは他のRと連結してもよく、この場合、2つのRは互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成し、かかる二価の基としては、エチレンジオキシ基、プロピレンジオキシ基、フェニレンジオキシ基等が挙げられる。n1は1~10の整数であり、n1が2以上の場合、複数のR15及びR16は、それぞれお互い同一であっても、異なっていても良い。]
 上記一般式(V-3)で示される環状ホスファゼン化合物としては、例えば以下の化合物が挙げられる。一般式(V-3)で示される環状ホスファゼン化合物を添加することで、電池の膨れ抑制効果を付与することができる。但し、本発明で用いられる一般式(V-3)で示される環状ホスファゼン化合物は、以下の例示により何ら制限を受けるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[一般式(V-4)中、Oは酸素原子、Sは硫黄原子、n2は1~3の整数である。R17~R20は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
 上記一般式(V-4)で示される環状スルホン酸化合物(以降、「不飽和結合を有する環状スルホン酸エステル」と記載する)として、例えば、1,3-プロペンスルトン、1,4-ブテンスルトン、2,4-ペンテンスルトン、3,5-ペンテンスルトン、1-フルオロ-1,3-プロペンスルトン、1-トリフルオロメチル-1,3-プロペンスルトン、1,1,1-トリフルオロ-2,4-ブテンスルトン、1,4-ブテンスルトン及び1,5-ペンテンスルトンからなる群から選ばれる少なくとも1種が好ましい。中でも電池系内での反応性を考慮すると、1,3-プロペンスルトン(1,3-PRS)や1,4-ブテンスルトンを用いることがより好ましい。不飽和結合を有する環状スルホン酸エステルは、1種のみを単独で用いてもよく、2種以上を組合せて用いても良い。
Figure JPOXMLDOC01-appb-C000017
[一般式(V-5)中、Oは酸素原子、Sは硫黄原子、n3は0~4の整数であり、n4は0~4の整数である。R21、R22は、それぞれ独立して、水素原子、ハロゲン原子、及び置換若しくは無置換の炭素数1~5のアルキル基から選択され、R23、R24は、それぞれ独立して、水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
 上記一般式(V-5)で示される環状スルホン酸化合物(以降、「環状ジスルホン酸エステル」と記載する)として、例えば、以下の化合物No.V-5-1~V-5-29で表される化合物からなる群から選ばれる少なくとも1種が好ましい。中でも、化合物No.V-5-1、V-5-2、V-5-10、V-5-15、及びV-5-16からなる群から選ばれる少なくとも1種がより好ましい。なお、一般式(V-5)で示される環状ジスルホン酸エステルは、化合物No.V-5-1~V-5-29に示した化合物に限定されず、他の化合物でも良い。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
[一般式(V-6)中、Oは酸素原子、Sは硫黄原子、n5は0~2の整数である。R25~R30は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~6のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
 上記一般式(V-6)で示される環状スルホン酸化合物(以降、「環状スルホン酸エステル」と記載する)として、例えば、1,3-プロパンスルトン(1,3-PS)、α-トリフルオロメチル-γ-スルトン、β-トリフルオロメチル-γ-スルトン、γ-トリフルオロメチル-γ-スルトン、α-メチル-γ-スルトン、α,β-ジ(トリフルオロメチル)-γ-スルトン、α,α-ジ(トリフルオロメチル)-γ-スルトン、α-ヘプタフルオロプロピル-γ-スルトン、1,4-ブタンスルトン(1,4-BS)、1,5-ペンタンスルトンからなる群から選ばれる少なくとも1種が好ましく、1,3-プロパンスルトン(1,3-PS)、及び1,4-ブタンスルトン(1,4-BS)からなる群から選ばれる少なくとも1種がより好ましい。中でも1,3-プロパンスルトン(1,3-PS)は、特開2009-070827号等にも記載の通り、非水系電解液電池の負極上で分解皮膜を形成すると考えられており、より好適である。環状スルホン酸エステルは、1種のみを単独で用いてもよく、2種以上を組合せて用いても良い。
Figure JPOXMLDOC01-appb-C000022
[一般式(V-7)中、Oは酸素原子、Sは硫黄原子、n6は0~1の整数であり、R31~R34は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数2~5のアルケニル基、置換若しくは無置換の炭素数2~5のアルキニル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。但し、n6が0のとき、R31又はR32とR33又はR34とは互いに単結合を形成してもよい。]
Figure JPOXMLDOC01-appb-C000023
[一般式(V-8)中、Oは酸素原子、Sは硫黄原子、n7、n8はそれぞれ0~1の整数であり、R35~R38は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
 上記一般式(V-7)及び(V-8)で示される環状硫酸エステル化合物(以降、「環状硫酸エステル」と記載する)として、例えば、以下の化合物No.V-7-1~V-7-8、及び化合物No.V-8-1~V-8-3からなる群から選択される少なくとも1種等が挙げられ、中でも化合物No.V-7-1、V-7-4、及び化合物No.V-8-1が好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記の環状硫酸エステルは1種のみを単独で用いてもよく、2種以上を組合せて用いても良い。ただしこれらの中には電解液中での安定性がやや低いものもあるため、これらを用いる場合、上記安定性と、70℃以上での高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減効果をバランスよく発揮する観点から、上述の一般式(V-4)~(V-6)、及び(V-10)からなる群から選ばれる少なくとも1種と、当該環状硫酸エステルとを併用することが好ましい。
Figure JPOXMLDOC01-appb-C000025
[一般式(V-9)中、R39~R44は、それぞれ独立に、水素原子、炭素数1~12の炭化水素基、及びハロゲン原子から選択され、R39~R44は互いに結合して環を形成してもよい。]
 上記一般式(V-9)で表される芳香族化合物としては、より具体的には、例えば以下の化合物No.V-9-1~V-9-29等が挙げられ、中でも化合物No.V-9-2、及びNo.V-9-12を少なくとも1種含有することが特に好ましい。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[一般式(V-10)中、Oは酸素原子、Sは硫黄原子である。R45、R46は、それぞれ独立して、水素原子、ハロゲン原子、置換又は無置換の炭素数1~5のアルキル基、及び、置換又は無置換の炭素数1~4のフルオロアルキル基からなる群から選択される。n9は0~3の整数である。]
 上記一般式(V-10)で示される環状スルホン酸化合物(以降、「環状ジスルホン酸エステル」と記載する)としては、以下の化合物No.V-10-1~V-10-5で表される化合物からなる群から選ばれる少なくとも1種が好ましい。中でも化合物No.V-10-1、V-10-2、及びV-10-5からなる群から選ばれる少なくとも1種がより好ましい。なお、一般式(V-10)で示される環状ジスルホン酸エステルは、化合物No.V-10-1~V-10-5に示した化合物に限定されず、他の化合物でも良い。
Figure JPOXMLDOC01-appb-C000029
 (I)、(II)、(III)、(IV)、(V)の総量100質量%に対する、(V)の総量は、下限が0.01質量%以上であることが好ましく、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上であり、上限が12.0質量%以下であることが好ましく、より好ましくは8.0質量%以下、さらに好ましくは6.0質量%以下である。(V)の濃度が0.01質量%を下回ると該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。一方、(V)の濃度が12.0質量%を超えると、該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。(V)は、12.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
 また、ポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
 2.非水電解液電池
 非水電解液電池用電解液と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な負極材料と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な正極材料を用いる電気化学ディバイスを非水電解液電池と呼ぶ。
 負極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な材料が用いられ、正極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入-脱離可能な材料が用いられる。
 例えばカチオンがリチウムの場合、負極材料としてリチウム金属、リチウムと他の金属との合金及び金属間化合物やリチウムを吸蔵および放出することが可能な種々の炭素材料、金属酸化物、金属窒化物、活性炭、導電性ポリマー等が用いられる。上記の炭素材料としては、例えば、易黒鉛化性炭素や(002)面の面間隔が0.37nm以上の難黒鉛化性炭素(ハードカーボンとも呼ばれる)や(002)面の面間隔が0.34nm以下の黒鉛などが挙げられ、後者は、人造黒鉛、天然黒鉛などが用いられる。
 例えばカチオンがリチウムの場合、正極材料としてLiCoO2、LiNiO2、LiMnO2、LiMn24等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO4、LiCoPO4、LiMnPO4等の遷移金属のリン酸化合物、TiO2、V25、MoO3等の酸化物、TiS2、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 正極材料や負極材料には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、又は黒鉛、結着剤としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、又はSBR樹脂等が加えられ、さらにシート状に成型された電極シートを用いることができる。
 正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、又はガラス繊維等で作られた不織布や多孔質シートが使用される。
 以上の各要素からコイン状、円筒状、角形、又はアルミラミネートシート型等の形状の電気化学ディバイスが組み立てられる。
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
 <電解液No.1-1~1-39、比較電解液No.1-1~1-16の調製>
 非水溶媒としてエチレンカーボネート(以降「EC」)、プロピレンカーボネート(以降「PC」)、ジメチルカーボネート(以降「DMC」)、エチルメチルカーボネート(以降「EMC」)の体積比2:1:3:4の混合溶媒を用い、該溶媒中に溶質としてヘキサフルオロリン酸リチウム(以降「LiPF6」)を1.0mol/Lの濃度となるように、(I)として上記化合物No.1-2を0.005質量%の濃度となるように、(II)として4,5-ジフルオロエチレンカーボネート(トランス体)(以降「4,5-DFEC」)を2.0質量%の濃度となるように溶解し、電解液No.1-1を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。電解液No.1-1の調製条件を表1に示す。
 また、(I)の種類や濃度、(II)の種類や濃度を表1のように変えて、それ以外は上記と同様の手順で電解液No.1-2~1-39、比較電解液No.1-1~1-16を調製した。なお、電解液No.1-37及び電解液No.1-39の調製では、4,5-DFECの代わりにフルオロエチレンカーボネート(以降「FEC」)を、電解液No.1-38の調製では、4,4-ジフルオロエチレンカーボネート(以降「4,4-DFEC」)を用いた。
 <電解液No.1-40~1-46、比較電解液No.1-17~1-30の調製>
 (I)の種類や濃度、(II)の種類や濃度、(V)群の化合物の種類や濃度を表1のように変えて、それ以外は実施例1-1と同様の手順で電解液No.1-40~1-46、及び比較電解液No.1-17~1-30を調製した。
 なお、表中で「1,3-PRS」は1,3-プロペンスルトンを意味し、「1,3-PS」は1,3-プロパンスルトンを意味する。
 なお、比較電解液No.1-13~1-16の調製では、(I)の代わりに以下の化合物No.1-26~1-29を用いた。
Figure JPOXMLDOC01-appb-C000030
 <NCM正極の作製>
 正極活物質として、LiNi1/3Co1/3Mn1/32(NCM)粉末及びアセチレンブラック(導電剤)を乾式混合し、結着剤であるポリフッ化ビニリデン(以降「PVDF」)を予め溶解させたN-メチル-2-ピロリドン(以降「NMP」)中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、NCM合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用NMC正極を得た。正極中の固形分比率は、NCM:導電剤:PVDF=85:5:10(質量比)とした。
 <黒鉛負極の作製>
 負極活物質として、黒鉛粉末を、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、黒鉛合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用黒鉛負極を得た。負極中の固形分比率は、黒鉛粉末:PVDF=90:10(質量比)とした。
 <非水電解液電池の作製>
 上記の試験用NCM正極と、試験用黒鉛負極と、セルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表1に記載の電解液No.1-1~1-46、及び比較電解液No.1-1~1-30をそれぞれ含浸させ、実施例1-1~1-46、比較例1-1~1-30に係る非水電解液電池を得た。
Figure JPOXMLDOC01-appb-T000031
 [実施例1-1~1-46、比較例1-1~1-30] 非水電解液電池の評価
 <評価1>高温貯蔵特性(70℃)
 実施例1-1~1-46、比較例1-1~1-30に係る非水電解液電池のそれぞれについて、以下の評価を実施した。
 まず、作製したセルを用いて、25℃の環境温度で、以下の条件でコンディショニングを実施した。すなわち、初回充放電として、充電上限電圧4.3V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行い、その後、充電上限電圧4.3V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。
 上記コンディショニングを実施後、25℃の環境温度で充電上限電圧4.3V、0.2Cレート(6mA)で定電流定電圧充電した後、70℃の環境温度で10日間保存した。その後、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電し、このときの放電容量の、初期の放電容量(上記コンディショニングを実施後70℃保存前に測っておいた放電容量)に対する割合を残存容量比とし、セルの貯蔵特性(貯蔵後放電容量維持率)を評価した。
 なお、表2には、比較例1-1の残存容量比を100とした場合の、各実施例・比較例の残存容量比の相対値である「70℃貯蔵後放電容量維持率」を記載した。
 <評価2>高温貯蔵時に発生したガス量(70℃)
 上記コンディショニングを実施後、及び上記70℃10日間保存後に、電池の容積を測定し、その差分をガス発生量とした。
 なお、表2に記載のガス発生量の数値は、比較例1-1のガス発生量を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000032
 以上の結果を比較すると、実施例1-1~1-39において(I)と(II)を併用することで、(I)を単独で用いる比較例1-2~1-9に対し、高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量が低減していることが確認された。また同様に、(II)を単独で用いる比較例1-10~1-12に対し、高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量が低減していることが確認された。
 また、その他添加剤として(V)群の化合物をさらに加えた実施例1-40~1-46においても、(I)と(II)を併用することで、(I)を単独で用いる比較例1-17~1-20、1-25、1-27、及び1-29に対し、高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量が低減していることが確認された。また同様に、(II)を単独で用いる比較例1-21~1-24、1-26、1-28、及び1-30に対し、高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量が低減していることが確認された。
 また、比較例1-13~1-16のように、上記一般式(1)から外れた構造(R2が、フッ素基や炭素数が1~10の直鎖あるいは分岐状のアルキル基でない構造、xが1以下の構造)のケイ素化合物を用いた場合では高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減は確認されなかった。
 [実施例2-1~2-4、比較例2-1~2-8] 非水電解液電池の作製と評価
 実施例2-1~2-4及び比較例2-1~2-8においては、表3、表4に示すように、負極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池を作製し、電池の評価を実施した。なお、負極活物質がLi4Ti512である実施例2-1~2-2及び比較例2-1~2-4において、負極体は、Li4Ti512粉末90質量%に、バインダーとして5質量%のPVDF、導電剤としてアセチレンブラックを5質量%混合し、さらにNMPを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を2.7V、放電終止電圧を1.5Vとした。また、負極活物質がハードカーボンである実施例2-3~2-4及び比較例2-5~2-8において、負極体は、ハードカーボン粉末90質量%に、バインダーとして5質量%のPVDF、導電剤としてアセチレンブラックを5質量%混合し、さらにNMPを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.2Vとした。高温貯蔵特性と高温貯蔵時に発生したガス量の評価結果を表4に示す。
 なお、表4中の評価結果(70℃貯蔵後放電容量維持率の数値、及びガス発生量の数値)は、各電極構成において、比較電解液No.1-1の電解液を用いた比較例の評価結果を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 [実施例3-1~3-6、比較例3-1~3-12] 非水電解液電池の作製と評価
 実施例3-1~3-6及び比較例3-1~3-12においては、表3、表5に示すように、正極体、負極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池を作製し、電池の評価を実施した。なお、正極活物質がLiCoO2である正極体は、LiCoO2粉末85質量%にバインダーとして10質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにNMPを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。実施例1-1と同様に負極活物質が黒鉛である実施例3-1~3-2及び比較例3-1~3-4において、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。実施例2-1と同様に負極活物質がLi4Ti512である実施例3-3~3-4及び比較例3-5~3-8において、電池評価の際の充電終止電圧を2.7V、放電終止電圧を1.5Vとした。実施例2-3と同様に負極活物質がハードカーボンである実施例3-5~3-6及び比較例3-9~3-12において、電池評価の際の充電終止電圧を4.1V、放電終止電圧を2.2Vとした。高温貯蔵特性と高温貯蔵時に発生したガス量の評価結果を表5に示す。
 なお、表5中の評価結果(70℃貯蔵後放電容量維持率の数値、及びガス発生量の数値)は、各電極構成において、比較電解液No.1-1の電解液を用いた比較例の評価結果を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000035
 [実施例4-1~4-6、比較例4-1~4-12] 非水電解液電池の作製と評価
 実施例4-1~4-6及び比較例4-1~4-12においては、表3、表6に示すように、正極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池を作製し、電池の評価を実施した。なお、正極活物質がLiNi0.8Co0.15Al0.052である実施例4-1~4-2及び比較例4-1~4-4において、正極体は、LiNi0.8Co0.15Al0.052粉末85質量%にバインダーとして10質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにNMPを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。また、正極活物質がLiMn24である実施例4-3~4-4及び比較例4-5~4-8において、正極体は、LiMn24粉末85質量%にバインダーとして10質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにNMPを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。また、正極活物質がLiFePO4である実施例4-5~4-6及び比較例4-9~4-12において、正極体は、非晶質炭素で被覆されたLiFePO4粉末85質量%にバインダーとして10質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにNMPを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.5Vとした。高温貯蔵特性と高温貯蔵時に発生したガス量の評価結果を表6に示す。
 なお、表6中の評価結果(70℃貯蔵後放電容量維持率の数値、及びガス発生量の数値)は、各電極構成において、比較電解液No.1-1の電解液を用いた比較例の評価結果を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000036
 <電解液No.2-1~2-11の調製>
 露点が-50℃以下の窒素雰囲気ドライボックス中で、(III)として予め加熱、溶解させたECとEMCの非水有機溶媒(体積比22:78)に、(IV)としてLiPF6、LiPO22、LiBF4をそれぞれ1.2mol/L、0.10mol/L、0.025mol/Lの濃度となるように溶解した後、さらに(I)として化合物No.1-6を0.5質量%の濃度となるように、(II)としてFECを11.5質量%の濃度となるように、(V)として表7に記載した化合物を表7に記載した濃度となるようにそれぞれ溶解することで電解液No.2-1~2-11を調製した。
 なお、これら調製の際には、液温が40℃を超えないように冷却しながら、先ず、所定量のEMC中に全LiPF6の30質量%分を加えて溶解した後、次いで全LiPF6の30質量%分を加えて、溶解する操作を2回繰り返し、最後に残りの10質量%分のLiPF6を加えて溶解するという操作を実施した後、予め加熱、溶解させたECとEMCとを所定量加えて、混合した後、LiPO22、LiBF4を加えて溶解し、表7に記載の(I)群の化合物と、FEC、(V)群の化合物とを加えて溶解し、1時間撹拌するという手順にて行った。
 <電解液No.2-12~2-22の調製>
 露点が-50℃以下の窒素雰囲気ドライボックス中で、(III)として予め加熱、溶解させたECとEMCの非水有機溶媒(体積比18:82)に、(IV)としてLiPF6、LiPO22、LiBF4をそれぞれ1.2mol/L、0.10mol/L、0.025mol/Lの濃度となるように溶解した後、さらに(I)として化合物No.1-6を0.5質量%の濃度となるように、(II)としてFECを18.5質量%の濃度となるように、(V)として表7に記載した化合物を表7に記載した濃度となるようにそれぞれ溶解することで電解液No.2-12~2-22を調製した。
 なお、これら調製の際には、液温が40℃を超えないように冷却しながら、先ず、所定量のEMC中に全LiPF6の30質量%分を加えて溶解した後、次いで全LiPF6の30質量%分を加えて、溶解する操作を2回繰り返し、最後に残りの10質量%分のLiPF6を加えて溶解するという操作を実施した後、予め加熱、溶解させたECとEMCとを所定量加えて、混合した後、LiPO22、LiBF4を加えて溶解し、表7に記載の(I)群の化合物と、FEC、(V)群の化合物とを加えて溶解し、1時間撹拌するという手順にて行った。
 <比較電解液No.2-1の調製>
 表8に示すように、上記(I)、(II)、及び(V)を加えない以外は実施例2-1と同様の手順で比較電解液No.2-1を調製した。
 <比較電解液No.2-2~2-23の調製>
 表8に示すように、上記(I)又は(II)を加えない以外はそれぞれ実施例2-1~2-11と同様の手順で比較電解液No.2-2~2-23を調製した。
 <比較電解液No.2-24の調製>
 表8に示すように、上記(I)、(II)、及び(V)を加えない以外は実施例2-12と同様の手順で比較電解液No.2-24を調製した。
 <比較電解液No.2-25~2-46の調製>
 表8に示すように、上記(I)又は(II)を加えない以外はそれぞれ実施例2-12~2-22と同様の手順で比較電解液No.2-25~2-46を調製した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 <NCA正極の作製>
 LiNi0.85Co0.10Al0.052(NCA)粉末(戸田工業製)およびアセチレンブラック(導電剤)を乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、NCA合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用NCA正極を得た。正極中の固形分比率は、NCA:導電剤:PVDF=85:5:10(質量比)とした。
 <SiOx負極の作製>
 ケイ素酸化物粉末としては、熱処理により不均化されたケイ素酸化物粉末(シグマアルドリッチジャパン株式会社製SiOx(xは0.3~1.6)、平均粒径5μm)、塊状人造黒鉛粉末として日立化成工業製MAG-D(粒径20μm以下)の混合粉末を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、ケッチェンブラック(導電剤)を加えて混合し、さらに粘度調整用NMPを加え、SiOx合剤ペーストを調製した。
 このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用SiOx負極を得た。負極中の固形分比率は、SiOx:MAG-D:導電剤:PVDF=20:62:8:10(質量比)とした。
 なお、SiOx負極の充電容量がNCA正極の充電容量よりも大きくなるように、NCA正極活物質とSiOx粉末との量を調節し、充電の途中でSiOx負極にリチウム金属が析出しないように塗布量も調節した。
 <非水系電解液電池の作製>
 上記の試験用NCA正極と、試験用SiOx負極と、微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表7、表8に記載の種々の電解液、及び種々の比較電解液をそれぞれ含浸させ、実施例2-1~2-22、及び比較例2-1~2-46に係る非水系電解液電池を得た。
 なお、微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータのポリプロピレン側を正極側に配置するように介して、正極、負極を対向させ、非水電解液電池を得た。
 [実施例5-1~5-22、比較例5-1~5-46] 非水電解液電池の評価
 <評価1> 高温貯蔵特性(70℃)
 実施例5-1~5-22、比較例5-1~5-46に係る非水電解液電池のそれぞれについて、以下の評価を実施した。
 まず、以下の条件でコンディショニングを実施した。すなわち、作製したセルを用いて、25℃の環境温度で、初回充放電として、充電上限電圧4.2V、0.05Cレート(1.5mA)で定電流定電圧充電し、放電終止電圧2.5Vまで0.1Cレート(3mA)定電流で放電を行い、その後、充電上限電圧4.2V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧2.5Vまで0.1Cレート(3mA)定電流で放電を行う充放電サイクルを3回繰り返した。
 上記コンディショニングを実施後、25℃の環境温度で充電上限電圧4.2V、0.1Cレート(3mA)で定電流定電圧充電した後、70℃の環境温度で10日間保存した。その後、放電終止電圧2.5Vまで0.2Cレート(6mA)定電流で放電し、このときの放電容量の、初期の放電容量(上記コンディショニングを実施後70℃保存前に測っておいた放電容量)に対する割合を残存容量比とし、セルの貯蔵特性(貯蔵後放電容量維持率)を評価した。
 なお、表9及び表10に示す実施例5-1~5-11及び比較例5-1~5-23には、比較例5-1の残存容量比を100とした場合の、各実施例・比較例の残存容量比の相対値である「70℃貯蔵後放電容量維持率」を記載した。また、表9及び表10に示す実施例5-12~5-22及び比較例5-24~5-46には、比較例5-24の残存容量比を100とした場合の、各実施例・比較例の残存容量比の相対値である「70℃貯蔵後放電容量維持率」を記載した。
 <評価2> 高温貯蔵時に発生したガス量(70℃)
 上記コンディショニングを実施後、及び上記70℃10日間保存後に、電池の容積を測定し、その差分をガス発生量とした。
 なお、表9及び表10に示す実施例5-1~5-11及び比較例5-1~5-23に記載のガス発生量の数値は、比較例5-1のガス発生量を100とした場合の相対値である。また、表9及び表10に示す実施例5-12~5-22及び比較例5-24~5-46に記載のガス発生量の数値は、比較例5-24のガス発生量を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
 上記のように、負極活物質として、Li4Ti512、ハードカーボン、及びSiOxを用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いることによって、それぞれの対応する比較例に比べて、高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量が低減していることが確認された。従って、本発明の非水電解液電池用電解液を用いることで、負極活物質の種類によらず、優れた高温貯蔵特性、及び高温貯蔵時に発生するガス量の低減を示す非水電解液電池を得られることが示された。
 また、上記のように、正極活物質として、LiCoO2、LiNi0.8Co0.15Al0.052、LiNi0.85Co0.10Al0.052、LiMn24、及びLiFePO4を用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いることによって、それぞれの対応する比較例に比べて、高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量が低減していることが確認された。従って、本発明の非水電解液電池用電解液を用いることで、正極活物質の種類によらず、優れた高温貯蔵特性、及び高温貯蔵時に発生するガス量の低減を示す非水電解液電池を得られることが示された。

Claims (13)

  1. 下記成分:
    (I)下記一般式(1)で示される少なくとも1種のシラン化合物;
    (II)フッ素原子を有するカーボネート;
    (III)前記(II)以外の非水有機溶媒;及び
    (IV)溶質
    を含む、非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R1はそれぞれ互いに独立して、炭素-炭素不飽和結合を有する基を表す。R2はそれぞれ互いに独立して、フッ素基、炭素数が1~10の直鎖あるいは炭素数が3~10の分岐状のアルキル基から選択され、前記アルキル基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
  2. 前記(II)のフッ素原子を有するカーボネートが、下記一般式(II-1)で示される化合物である、請求項1に記載の非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(II-1)中、Oは酸素原子、R3~R6は、それぞれ独立して、水素原子、アルキル基、ハロゲン原子、ハロゲン原子を有するアルキル基、及び、ハロゲン原子を有するアリール基からなる群から選択され、かつ、R3~R6のうち少なくとも一つがフッ素原子である。なお、R3~R6はエーテル結合を含んでもよい。]
  3. 前記一般式(II-1)で示されるフッ素原子を有するカーボネートが、フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、及び4,5-ジフルオロ-4,5-ジメチルエチレンカーボネートからなる群から選択される少なくとも1種である、請求項2に記載の非水電解液電池用電解液。
  4. 前記一般式(II-1)で示されるフッ素原子を有するカーボネートが、フルオロエチレンカーボネート、及び4,5-ジフルオロエチレンカーボネート(トランス体)からなる群から選択される少なくとも1種である、請求項2に記載の非水電解液電池用電解液。
  5. 前記一般式(1)のR1が、それぞれ互いに独立して、ビニル基、アリル基、1-プロペニル基、2-プロペニル基、エチニル基、及び2-プロピニル基からなる群から選択される、請求項1~4のいずれかに記載の非水電解液電池用電解液。
  6. 前記一般式(1)のR2が、それぞれ互いに独立して、フッ素基、メチル基、エチル基、プロピル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、1,1,1-トリフルオロイソプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基からなる群から選択される基であることを特徴とする、請求項1~5のいずれかに記載の非水電解液電池用電解液。
  7. 前記一般式(1)のxが3~4である、請求項1~6のいずれかに記載の非水電解液電池用電解液。
  8. (I)、(II)、(III)、(IV)の総量100質量%に対する、(I)の総量が0.001質量%以上10.0質量%以下である、請求項1~7のいずれかに記載の非水電解液電池用電解液。
  9. (I)、(II)、(III)、(IV)の総量100質量%に対する、(II)の総量が0.01質量%以上20.0質量%以下である、請求項1~8のいずれかに記載の非水電解液電池用電解液。
  10. 前記(IV)が、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、ビス(フルオロスルホニル)イミドリチウム、ビス(ジフルオロホスホニル)イミドリチウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドリチウム、及びジフルオロリン酸リチウムからなる群から選ばれる少なくとも一つを含む溶質である、請求項1~9のいずれかに記載の非水電解液電池用電解液。
  11. 前記(III)が、前記(II)以外の、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つを含む非水有機溶媒である、請求項1~10のいずれかに記載の非水電解液電池用電解液。
  12. (V)その他添加剤として、下記一般式(V-1)~(V-10)で表される化合物を更に少なくとも1種含有し、前記(I)に対する(V)の添加比が質量比で(V)/(I)=0.05~60.0を満足する、請求項1~11のいずれかに記載の非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(V-1)中、Oは酸素原子、R7及びR8は、それぞれ独立して、水素原子、アルキル基、不飽和結合を含む炭化水素基、アルコキシ基、ハロゲン原子、ハロゲン原子を有するアルキル基、及びアリール基から選択される。但し、R7及びR8はエーテル結合を含んでもよい。]
    [一般式(V-2)中、Oは酸素原子、R9は、アルキル基、不飽和結合を含む炭化水素基、又はアルコキシ基である。R10は、水素原子、アルキル基、不飽和結合を含む炭化水素基、又はアルコキシ基である。但し、R9及びR10の少なくとも一方は不飽和結合を含む炭化水素基である。また、R9及びR10はエーテル結合を含んでもよい。]
    [一般式(V-3)中、R11~R16は、それぞれ独立に、ハロゲン元素、アルキル基、アルコキシ基、アリールオキシ基、及びアミノ基から選択され、上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよい。R11~R16の任意のRは他のRと連結してもよく、この場合、2つのRは互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成してもよい。n1は1~10の整数であり、n1が2以上の場合、複数のR15及びR16は、それぞれお互い同一であっても、異なっていても良い。]
    [一般式(V-4)中、Oは酸素原子、Sは硫黄原子、n2は1~3の整数である。R17~R20は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
    [一般式(V-5)中、Oは酸素原子、Sは硫黄原子、n3は0~4の整数であり、n4は0~4の整数である。R21、R22は、それぞれ独立して、水素原子、ハロゲン原子、及び置換若しくは無置換の炭素数1~5のアルキル基から選択され、R23、R24は、それぞれ独立して、水素原子、ハロゲン原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
    [一般式(V-6)中、Oは酸素原子、Sは硫黄原子、n5は0~2の整数である。R25~R30は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~6のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
    [一般式(V-7)中、Oは酸素原子、Sは硫黄原子、n6は0~1の整数であり、R31~R34は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数2~5のアルケニル基、置換若しくは無置換の炭素数2~5のアルキニル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。但し、n6が0のとき、R31又はR32とR33又はR34とは互いに単結合を形成してもよい。]
    [一般式(V-8)中、Oは酸素原子、Sは硫黄原子、n7、n8はそれぞれ0~1の整数であり、R35~R38は、それぞれ独立して、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、及び置換若しくは無置換の炭素数1~4のフルオロアルキル基から選択される。]
    [一般式(V-9)中、R39~R44は、それぞれ独立に、水素原子、炭素数1~12の炭化水素基、及びハロゲン原子から選択され、R39~R44は互いに結合して環を形成してもよい。]
    [一般式(V-10)中、Oは酸素原子、Sは硫黄原子である。R45、R46は、それぞれ独立して、水素原子、ハロゲン原子、置換又は無置換の炭素数1~5のアルキル基、及び、置換又は無置換の炭素数1~4のフルオロアルキル基からなる群から選択される。n9は0~3の整数である。]
  13. 少なくとも正極と、負極と、請求項1~12のいずれかに記載の非水電解液電池用電解液とを備える、非水電解液電池。
PCT/JP2017/003965 2016-02-08 2017-02-03 非水電解液電池用電解液、及びこれを用いた非水電解液電池 WO2017138453A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021902A JP2019057356A (ja) 2016-02-08 2016-02-08 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2016-021902 2016-02-08

Publications (1)

Publication Number Publication Date
WO2017138453A1 true WO2017138453A1 (ja) 2017-08-17

Family

ID=59563279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003965 WO2017138453A1 (ja) 2016-02-08 2017-02-03 非水電解液電池用電解液、及びこれを用いた非水電解液電池

Country Status (2)

Country Link
JP (1) JP2019057356A (ja)
WO (1) WO2017138453A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146705A1 (ja) * 2018-01-24 2019-08-01 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN110612632A (zh) * 2017-09-21 2019-12-24 株式会社Lg化学 锂二次电池用非水性电解质溶液和包含其的锂二次电池
JP2020068212A (ja) * 2018-10-26 2020-04-30 三星電子株式会社Samsung Electronics Co., Ltd. リチウム電池
CN111095657A (zh) * 2017-09-12 2020-05-01 中央硝子株式会社 非水电解液用添加剂、非水电解液电池用电解液和非水电解液电池
CN111108642A (zh) * 2017-09-22 2020-05-05 三菱化学株式会社 非水系电解液、非水系电解液二次电池及能源装置
CN111373591A (zh) * 2017-11-21 2020-07-03 大金工业株式会社 电解液、电化学器件、锂离子二次电池和组件
CN111725563A (zh) * 2019-03-18 2020-09-29 诺莱特电池材料(苏州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN112310470A (zh) * 2020-10-27 2021-02-02 宁德新能源科技有限公司 电化学装置及包括其的电子装置
CN112470320A (zh) * 2018-07-26 2021-03-09 三井化学株式会社 电池用非水电解液及锂二次电池
EP3726636A4 (en) * 2017-12-12 2021-04-21 Central Glass Company, Limited ELECTROLYTIC SOLUTION FOR NON-AQUEOUS ELECTROLYTE BATTERIES, AND NON-AQUEOUS ELECTROLYTE BATTERY USING IT
JP2022517285A (ja) * 2019-12-20 2022-03-08 寧徳新能源科技有限公司 電解液及び電気化学デバイス
CN114175345A (zh) * 2019-07-31 2022-03-11 三菱化学株式会社 非水电解液及能量设备
CN114335726A (zh) * 2021-12-30 2022-04-12 远景动力技术(江苏)有限公司 非水电解液及含有其的锂离子电池
US11322778B2 (en) * 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501253B1 (ko) 2019-04-29 2023-02-21 주식회사 엘지에너지솔루션 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
KR20220017921A (ko) * 2019-06-05 2022-02-14 샌트랄 글래스 컴퍼니 리미티드 비수전해액
CN112635835B (zh) * 2020-12-22 2024-03-29 远景动力技术(江苏)有限公司 高低温兼顾的非水电解液及锂离子电池
WO2023163082A1 (ja) * 2022-02-25 2023-08-31 Muアイオニックソリューションズ株式会社 非水系電解液、該非水系電解液を含む非水系電解液電池、及び化合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092748A (ja) * 2008-10-09 2010-04-22 Denso Corp 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
JP2011077029A (ja) * 2009-09-07 2011-04-14 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
CN103367804A (zh) * 2013-06-27 2013-10-23 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及使用该非水电解液的锂离子电池
JP2015156372A (ja) * 2014-01-15 2015-08-27 旭化成株式会社 非水蓄電デバイス用電解液及びリチウムイオン二次電池
WO2016002774A1 (ja) * 2014-07-02 2016-01-07 セントラル硝子株式会社 イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092748A (ja) * 2008-10-09 2010-04-22 Denso Corp 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
JP2011077029A (ja) * 2009-09-07 2011-04-14 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
CN103367804A (zh) * 2013-06-27 2013-10-23 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及使用该非水电解液的锂离子电池
JP2015156372A (ja) * 2014-01-15 2015-08-27 旭化成株式会社 非水蓄電デバイス用電解液及びリチウムイオン二次電池
WO2016002774A1 (ja) * 2014-07-02 2016-01-07 セントラル硝子株式会社 イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095657B (zh) * 2017-09-12 2023-03-28 中央硝子株式会社 非水电解液用添加剂、非水电解液电池用电解液和非水电解液电池
CN111095657A (zh) * 2017-09-12 2020-05-01 中央硝子株式会社 非水电解液用添加剂、非水电解液电池用电解液和非水电解液电池
CN110612632A (zh) * 2017-09-21 2019-12-24 株式会社Lg化学 锂二次电池用非水性电解质溶液和包含其的锂二次电池
CN111108642B (zh) * 2017-09-22 2024-04-02 三菱化学株式会社 非水系电解液、非水系电解液二次电池及能源装置
CN111108642A (zh) * 2017-09-22 2020-05-05 三菱化学株式会社 非水系电解液、非水系电解液二次电池及能源装置
CN111373591B (zh) * 2017-11-21 2023-11-03 大金工业株式会社 电解液、电化学器件、锂离子二次电池和组件
EP3703173A4 (en) * 2017-11-21 2021-08-18 Daikin Industries, Ltd. ELECTROLYTIC SOLUTION, ELECTROCHEMICAL DEVICE, RECHARGEABLE LITHIUM-ION BATTERY AND MODULE
CN111373591A (zh) * 2017-11-21 2020-07-03 大金工业株式会社 电解液、电化学器件、锂离子二次电池和组件
EP4053959A1 (en) * 2017-11-21 2022-09-07 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US11664534B2 (en) 2017-11-21 2023-05-30 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
EP3726636A4 (en) * 2017-12-12 2021-04-21 Central Glass Company, Limited ELECTROLYTIC SOLUTION FOR NON-AQUEOUS ELECTROLYTE BATTERIES, AND NON-AQUEOUS ELECTROLYTE BATTERY USING IT
WO2019146705A1 (ja) * 2018-01-24 2019-08-01 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
US11322778B2 (en) * 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
CN112470320A (zh) * 2018-07-26 2021-03-09 三井化学株式会社 电池用非水电解液及锂二次电池
JP7475836B2 (ja) 2018-10-26 2024-04-30 三星電子株式会社 リチウム電池
JP2020068212A (ja) * 2018-10-26 2020-04-30 三星電子株式会社Samsung Electronics Co., Ltd. リチウム電池
CN111725563A (zh) * 2019-03-18 2020-09-29 诺莱特电池材料(苏州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN111725563B (zh) * 2019-03-18 2023-09-15 诺莱特电池材料(苏州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN114175345A (zh) * 2019-07-31 2022-03-11 三菱化学株式会社 非水电解液及能量设备
CN114175345B (zh) * 2019-07-31 2024-03-08 三菱化学株式会社 非水电解液及能量设备
JP7311497B2 (ja) 2019-12-20 2023-07-19 寧徳新能源科技有限公司 リチウムイオン電池および電子デバイス
JP2022517285A (ja) * 2019-12-20 2022-03-08 寧徳新能源科技有限公司 電解液及び電気化学デバイス
WO2022089280A1 (zh) * 2020-10-27 2022-05-05 宁德新能源科技有限公司 电化学装置及包括其的电子装置
CN112310470B (zh) * 2020-10-27 2021-09-21 宁德新能源科技有限公司 电化学装置及包括其的电子装置
CN112310470A (zh) * 2020-10-27 2021-02-02 宁德新能源科技有限公司 电化学装置及包括其的电子装置
CN114335726A (zh) * 2021-12-30 2022-04-12 远景动力技术(江苏)有限公司 非水电解液及含有其的锂离子电池

Also Published As

Publication number Publication date
JP2019057356A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
US11652238B2 (en) Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
CN108701864B (zh) 非水电解液电池用电解液和使用了其的非水电解液电池
WO2017138453A1 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN108475824B (zh) 非水电解液电池用电解液和使用其的非水电解液电池
JP7116314B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6221365B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2020109760A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6255722B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN111527636A (zh) 非水电解液电池用电解液和使用其的非水电解液电池
WO2019054418A1 (ja) 非水電解液用添加剤、非水電解液、及び非水電解液電池
KR20200044539A (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
KR20200041135A (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
KR20200089638A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN110880619B (zh) 非水电解液电池用电解液和使用其的非水电解液电池
JP7226891B2 (ja) リチウム二次電池用電解質及びこれを含むリチウム二次電池
EP4210142A1 (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery
EP3965205A1 (en) Non-aqueous electrolyte solution
EP3965204A1 (en) Nonaqueous electrolyte solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP