WO2017135688A1 - 발광소자 및 이를 포함하는 발광소자 패키지 - Google Patents

발광소자 및 이를 포함하는 발광소자 패키지 Download PDF

Info

Publication number
WO2017135688A1
WO2017135688A1 PCT/KR2017/001104 KR2017001104W WO2017135688A1 WO 2017135688 A1 WO2017135688 A1 WO 2017135688A1 KR 2017001104 W KR2017001104 W KR 2017001104W WO 2017135688 A1 WO2017135688 A1 WO 2017135688A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive semiconductor
disposed
light emitting
semiconductor layer
Prior art date
Application number
PCT/KR2017/001104
Other languages
English (en)
French (fr)
Inventor
최병연
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to US16/074,697 priority Critical patent/US20190081208A1/en
Priority to CN201780009234.4A priority patent/CN108604622B/zh
Publication of WO2017135688A1 publication Critical patent/WO2017135688A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • Embodiments relate to a light emitting device and a light emitting device package including the same.
  • Group 3-5 compound semiconductors such as GaN and AlGaN, are widely used for optoelectronics and electronic devices due to many advantages, such as having a wide and easy to adjust energy bandgap.
  • light emitting devices such as light emitting diodes or laser diodes using semiconductors of Group 3-5 or 2-6 compound semiconductor materials of semiconductors have been developed through the development of thin film growth technology and device materials such as red, green, blue and ultraviolet light.
  • Various colors can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.
  • Low power consumption, semi-permanent life, fast response speed, safety and environment compared to conventional light sources such as fluorescent and incandescent lamps can be realized. Has the advantage of affinity.
  • a white light emitting device that can replace a fluorescent light bulb or an incandescent bulb that replaces a Cold Cathode Fluorescence Lamp (CCFL) constituting a backlight of a transmission module of an optical communication means and a liquid crystal display (LCD) display device.
  • CCFL Cold Cathode Fluorescence Lamp
  • LCD liquid crystal display
  • the embodiment relates to a light emitting device having a structure having a low operating voltage and a high light output.
  • Embodiments of the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above may be clearly understood by those skilled in the art to which the embodiments belong.
  • One embodiment of the light emitting device the substrate; A first conductive semiconductor layer disposed on the substrate; An active layer disposed on the first conductive semiconductor layer, wherein a plurality of quantum well layers and a plurality of quantum barrier layers are alternately stacked; A second conductive semiconductor layer disposed on the active layer; A contact layer disposed on the second conductive semiconductor layer; A current spreading layer disposed on the contact layer; And a current blocking layer disposed on the second conductive semiconductor layer, wherein the contact layer and / or the current dispersion layer have a maximum X-ray diffraction beam intensity when the Miller surface index is 400, It may be provided to surround at least a portion of the current blocking layer.
  • the reflection layer A substrate disposed on the reflective layer; A first conductive semiconductor layer disposed on the substrate; An active layer disposed on the first conductive semiconductor layer; A second conductive semiconductor layer disposed on the active layer; A contact layer disposed on the second conductive semiconductor layer; And a current spreading layer disposed on the contact layer and formed of ITO material.
  • a passivation layer disposed on the current spreading layer; A first electrode disposed on the first conductive semiconductor layer; A second electrode disposed on the second conductive semiconductor layer; And a current blocking layer disposed between the second conductive semiconductor layer and the second electrode.
  • the body comprising a cavity; A lead frame installed on the body; And the light emitting device electrically connected to the lead frame.
  • the contact layer serves to smoothly inject holes from the second conductive semiconductor layer into the active layer, so that the light emitting device of the embodiment has an effect of lowering operating voltage and increasing light output.
  • the current distribution layer of the ITO material of the non-quantitative structure reduces the current resistance, the current applied from the second electrode is evenly distributed in the current distribution layer, resulting in a lower operating voltage of the light emitting device, The light output is effective.
  • FIG. 1A is a cross-sectional view illustrating a light emitting device according to an embodiment.
  • FIG. 1B is a cross-sectional view illustrating a light emitting device having a passivation layer having a structure different from that of FIG. 1A.
  • FIG. 2 is a schematic plan view of a light emitting device according to an embodiment.
  • FIG. 3 is an enlarged view of portion A of FIGS. 1A and 1B.
  • FIGS. 1A and 1B are enlarged views of part B of FIGS. 1A and 1B.
  • FIG. 5 is an enlarged view of portion C of FIGS. 1A and 1B.
  • 6 and 7 are graphs showing the results of X-ray diffraction experiments for explaining the light emitting device according to one embodiment.
  • FIG. 12 illustrates a light emitting device package according to an embodiment.
  • FIG. 1A is a cross-sectional view illustrating a light emitting device according to an embodiment.
  • FIG. 1B is a cross-sectional view illustrating a light emitting device having a passivation layer 220 having a structure different from that of FIG. 1A.
  • 2 is a schematic plan view of a light emitting device according to an embodiment.
  • the light emitting device of the embodiment may include the substrate 110, the first conductive semiconductor layer 120, the active layer 130, the second conductive semiconductor layer 140, the contact layer 150, the current spreading layer 160, and the first.
  • the electrode 170, the second electrode 180, the current blocking layer 190, the reflective layer 210, and the passivation layer 220 may be included.
  • the first conductive semiconductor layer 120, the active layer 130, and the second conductive semiconductor layer 140 may form a light emitting structure.
  • the substrate 110 may support the light emitting structure.
  • the substrate 110 may be formed of a template in which any one of sapphire substrate, silicon (Si), zinc oxide (ZnO), nitride semiconductor, or at least one of GaN, InGaN, AlGaN, and AlInGaN is stacked. .
  • the light emitting structure may be disposed on the substrate 110 to generate light.
  • stress may occur at the interface between the substrate 110 and the light emitting structure due to a difference in the lattice constant, the thermal expansion coefficient of the light emitting structure, and the like.
  • a buffer layer (not shown) may be interposed between the substrate 110 and the light emitting structure.
  • an undoped semiconductor layer (not shown) may be interposed to improve crystallinity of the first conductive semiconductor layer 120.
  • N-vacancy may be formed in the manufacturing process, and thus, unintentional doping may be performed.
  • the buffer layer may be grown at a low temperature, and the material may be a GaN layer or an AlN layer, but is not limited thereto.
  • the n-type dopant is not doped, compared to the first conductive semiconductor layer 120. It may be the same as the first conductive semiconductor layer 120 except for having a low electrical conductivity.
  • the first electrode 170 may be disposed on an exposed stepped portion of the first conductive semiconductor layer 120, and the second electrode 180 may be disposed on the second conductive layer. It may be disposed on the upper exposed portion of the type semiconductor layer 140.
  • the light emitting device of the embodiment may emit light.
  • FIG. 1A and 1B illustrate a horizontal light emitting device, but may be provided as a vertical light emitting device or a flip chip light emitting device.
  • the light emitting structure may include the first conductive semiconductor layer 120, the active layer 130, and the second conductive semiconductor layer 140.
  • the first conductive semiconductor layer 120 may be disposed on the substrate 110 and formed of, for example, a nitride semiconductor.
  • a semiconductor having a compositional formula of the first conductive semiconductor layer 120 may be In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • the material may be selected from GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like, and n-type dopants such as Si, Ge, Sn, Se, Te, and the like may be doped.
  • the active layer 130 is disposed on the first conductive semiconductor layer 120, and electrons and holes provided from the first conductive semiconductor layer 120 and the second conductive semiconductor layer 140.
  • Light may be generated by energy generated during the recombination process of.
  • the active layer 130 may be a compound compound, for example, a compound semiconductor of Groups 3-5 and 2-6, and may include a single quantum well structure, a multi-quantum well structure, a quantum-wire structure, and a quantum dot. (Quantum Dot) structure and the like.
  • the quantum well structure for example, having a compositional formula of In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • the quantum well layer may be provided to have an energy band gap lower than that of the quantum barrier layer.
  • the active layer 130 may have a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers are alternately arranged.
  • the second conductive semiconductor layer 140 may be disposed on the active layer 130.
  • the second conductive semiconductor layer 140 may be formed of, for example, a nitride semiconductor.
  • the second conductive semiconductor layer 140 has a composition formula of In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the material may be selected from GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like, and p-type dopants such as Mg, Zn, Ca, Sr, and Ba may be doped.
  • the contact layer 150 is disposed on the second conductive semiconductor layer 140 and is in contact between the current spreading layer 160 disposed above and the second conductive semiconductor layer 140 disposed below the contact conductive layer 150.
  • the characteristics may be improved to smoothly inject holes from the second conductive semiconductor layer 140 into the active layer 130.
  • the contact layer 150 is disposed at an interface between the current spreading layer 160 and the first conductive semiconductor layer 120 to provide the current spreading layer 160 and the second conductive semiconductor layer 140.
  • the contact layer 150 is disposed at an interface between the current spreading layer 160 and the first conductive semiconductor layer 120 to provide the current spreading layer 160 and the second conductive semiconductor layer 140.
  • the contact layer 150 serves to smoothly inject holes from the second conductive semiconductor layer 140 into the active layer 130, the light emitting device of the embodiment is lower the operating voltage, light The effect is to increase the output.
  • the contact layer 150 may be formed of at least one material of indium tin oxide (ITO), NiO, and NiAu, and may be appropriately formed in a structure having a small electrical resistance.
  • ITO indium tin oxide
  • NiO nickel oxide
  • NiAu nickel tin oxide
  • the contact layer 150 In order for the contact layer 150 to have a low electrical resistance, for example, it may be appropriate to form a structure having a high porosity of oxygen (O 2 ) component. Oxygen may be included in the components forming the contact layer 150, and oxygen tends to increase electrical resistance of the contact layer 150.
  • Oxygen may be included in the components forming the contact layer 150, and oxygen tends to increase electrical resistance of the contact layer 150.
  • the contact layer 150 may be appropriately formed in a non-stoichiometric structure having a high porosity of oxygen, that is, lacking an oxygen component as compared to a stoichiometric structure.
  • Such a non-quantitative structure that lacks an oxygen component may be implemented using an argon gas that does not mix oxygen with a process gas during deposition of the contact layer 150.
  • the contact layer 150 is the oxygen component. This deficiency can be formed into a quantitative structure.
  • the contact layer 150 may use, for example, a process gas in which oxygen and / or hydrogen (H 2 ) are mixed with argon in order to increase light transmittance.
  • a process gas in which oxygen and / or hydrogen (H 2 ) are mixed with argon in order to increase light transmittance.
  • the Miller surface index is 222 or 400 may be provided with a crystal structure having a maximum diffraction beam intensity.
  • the current spreading layer 160 is disposed on the contact layer 150, is electrically connected to the second electrode 180, and a current applied to the second electrode 180 is applied to the second conductive semiconductor layer. It may serve to distribute evenly to the entire surface of the 140.
  • the current applied to the second conductive semiconductor layer 140 through the second electrode 180 is not evenly distributed, it is concentrated on a specific portion of the second conductive semiconductor layer 140, and thus Holes injected into the active layer 130 in the second conductive semiconductor layer 140 may be intensively injected into a specific portion of the active layer 130.
  • This concentration of hole injection can significantly reduce the light output of the light emitting device of the embodiment. In order to prevent this, it may be appropriate to distribute the current evenly over the entire surface of the second conductive semiconductor layer 140 through the current spreading layer 160.
  • the current spreading layer 160 may be formed of indium tin oxide (ITO). As described above in the contact layer 150, the current spreading layer 160 needs to reduce the electrical resistance.
  • ITO indium tin oxide
  • the current spreading layer 160 since oxygen tends to increase electrical resistance among components constituting the current spreading layer 160, the current spreading layer 160 has a high porosity of oxygen, that is, a quantitative structure in order to reduce the electrical resistance. It may be appropriate to form a non-stoichiometric structure that is deficient in oxygen as compared to. The method of forming the non-quantitative structure lacking such an oxygen component will be described in detail below.
  • the current blocking layer 190 may be disposed on the second conductive semiconductor layer 140, that is, between the second conductive semiconductor layer 140 and the second electrode 180. In this case, an area of the current blocking layer 190 may be larger than that of the second electrode 180.
  • the contact layer 150 and / or the current spreading layer 160 may be provided to surround at least a portion of the current blocking layer 190.
  • the contact layer 150 and / or the current spreading layer 160 may be formed to surround the top and / or side surfaces of the current blocking layer 190.
  • the current blocking layer 190 prevents a current applied to the second electrode 180 from being concentrated at a portion of the second conductive semiconductor layer 140 facing the second electrode 180. can do.
  • the current blocking layer 190 blocks current from flowing directly from the second electrode 180 to the second conductive semiconductor layer 140 at a portion where the current blocking layer 190 is formed.
  • the current blocking layer 190 may be formed of, for example, an electrically insulating material.
  • current blocking layer 190 current is concentrated at a specific portion of the second conductive semiconductor layer 140, whereby holes injected from the second conductive semiconductor layer 140 into the active layer 130 are formed. It is possible to prevent the light output of the light emitting device of the embodiment from being lowered by being concentrated on a specific portion of the active layer 130.
  • the current blocking layer 190 may serve to evenly distribute the current that can be concentrated in a portion of the second electrode 180 that faces the vertical direction.
  • a mesa MESA on which the second electrode 180 is disposed is formed in the light emitting device, and a distance from the mesa MMES of the first electrode 170 is measured.
  • L1 may be provided, for example, from 3 ⁇ m to 10 ⁇ m.
  • the mesa means a protruding portion of the light emitting device
  • the separation distance L1 is a distance from the side of the first conductive semiconductor layer 120 of the mesa to the closest point of the first electrode 170. it means.
  • the second electrode 180 may include a second branch electrode 181 formed on the current spreading layer 160, and the first electrode 170 may be formed of the first electrode 170.
  • the first branch electrode 171 formed on the first conductive semiconductor layer 120 may be included.
  • the first branch electrode 171 in order to prevent the first branch electrode 171 from being electrically connected to the current spreading layer 160, the second conductive semiconductor layer 140, and the active layer 130, the first branch electrode 171.
  • the formed portion may have a structure in which the current spreading layer 160, the second conductive semiconductor layer 140, and the active layer 130 are etched in the vertical direction.
  • the current blocking layer 190 may also be formed at a portion of the second branch electrode 181 facing in the vertical direction. This prevents current from flowing intensively through portions of the second conductive semiconductor layer 140 facing the first branch electrode 171 in the vertical direction through the first branch electrode 171, so that the current flows in the current. This is to uniformly distribute the dispersion layer 160.
  • the separation distance from the mesa of the first branch electrode 171 may be smaller than the separation distance L1 from the mesa of the first electrode 170.
  • the reflective layer 210 may be disposed under the substrate 110 and may serve to improve light efficiency of the light emitting device. That is, a part of the light generated by the active layer 130 may be emitted to the lower portion of the substrate 110, the reflective layer 210 is disposed below the substrate 110 and directed to the lower portion of the substrate 110. By reflecting light to be emitted in the upper direction of the light emitting device, the light efficiency of the light emitting device can be improved.
  • the reflective layer 210 may be a distributed Bragg reflective layer having a multilayer structure in which at least two layers having different refractive indices are alternately stacked one or more times, and reflect light incident from the light emitting structure. .
  • the reflective layer 210 may have a structure in which a first layer having a relatively high refractive index and a second layer having a relatively low refractive index are alternately stacked.
  • the reflectivity of the reflective layer 210 may vary depending on the difference in refractive index, thickness, and the like of each layer.
  • the passivation layer 220 may be disposed on the current spreading layer 160.
  • the passivation layer 220 may be disposed on an upper surface of the current spreading layer 160 and an upper surface of a stepped portion of the first conductive semiconductor layer 120.
  • the passivation layer 220 may be disposed on at least some of side surfaces of the first conductive semiconductor layer 120, the active layer 130, the second conductive semiconductor layer, and the current spreading layer 160. have.
  • the passivation layer 220 having such a structure may serve to protect the respective layers forming the light emitting device, and in particular, the first conductive semiconductor layer 120 and the second conductive semiconductor layer 140. It may serve to prevent the occurrence of electrical short between ().
  • the passivation layer 220 may be formed so as not to cover a part of the side surface of the first conductive semiconductor layer 120, as shown in FIG. 1A. In another embodiment, the passivation layer 220 may be formed to completely cover the side surfaces of the first conductive semiconductor layer 120, as shown in FIG. 1B.
  • the passivation layer 220 may have a thickness of about 100 nm, and a refractive index with the light emitting structure may vary according to the thickness. Therefore, the light efficiency of the light emitting device, that is, the light extraction efficiency may vary according to the change in the thickness of the passivation layer 220.
  • the passivation layer 220 may be provided to expose side surfaces of the first electrode and the second electrode, as shown in FIGS. 1A and 1B. In another embodiment, the passivation layer 220 may be provided to cover side surfaces of the first electrode and the second electrode. In another embodiment, the passivation layer 220 may be provided such that side surfaces thereof are spaced apart from the side surfaces of the first and second electrodes by a predetermined distance. However, the present invention is not limited thereto.
  • FIG. 3 is an enlarged view of portion A of FIGS. 1A and 1B. As shown in FIG. 3, the current spreading layer 160 may be stacked on the contact layer 150.
  • the thickness T1 of the contact layer 150 may be, for example, 1 nm to 5 nm.
  • the thickness T2 of the current spreading layer 160 may be, for example, 20 nm to 70 nm.
  • the contact layer 150 may be formed in a different thickness at a portion where the current blocking layer 190 is disposed.
  • the present invention is not limited thereto.
  • the present invention is not limited thereto.
  • the electrical resistance of the current spreading layer 160 is increased, thereby increasing the operating voltage of the light emitting device, thereby adversely affecting the light emitting device performance. Can be.
  • the thickness T2 of the current spreading layer 160 exceeds 70 nm, the light transmittance of the current spreading layer 160 is reduced, thereby reducing the light output of the light emitting device, thereby reducing the light emitting device performance. May adversely affect
  • the thickness T5 of the passivation layer 220 may be provided as about 100 nm as described above, and may be thicker than the contact layer 150 and / or the current spreading layer 160.
  • the current spreading layer 160 may be formed of an ITO material, and may be formed in a non-quantitative structure that is deficient in oxygen to reduce electrical resistance.
  • the current spreading layer 160 may be formed by stacking, for example, by plasma vacuum deposition.
  • the non-quantitative structure of the current spreading layer 160 may be formed by the following method.
  • the current spreading layer 160 may be formed by depositing in an argon (Ar) gas atmosphere. That is, the source material for forming the current spreading layer 160 on the contact layer 150 may be sprayed on the process gas to be plasma, and the deposition process may be performed at a high temperature. Such plasma vacuum deposition may be performed in a vacuum chamber.
  • Ar argon
  • Sputtering may be performed in such a way that ions included in the plasma-processed process gas impinge on the source material, that is, the target material to release atoms and / or molecules from the target material to form a thin film.
  • Sputtering is good adhesion of the thin film, and because the target material is widely distributed in the vacuum chamber can form a thin film having a uniform thickness, density and the like.
  • the thin film formed by sputtering has a good step coverage, and also has an advantage of easily depositing oxides.
  • the process gas may include an inert gas, for example argon.
  • ITO uses a gas in which argon and oxygen are mixed or a gas in which argon, oxygen, and hydrogen are mixed as a process gas during deposition.
  • the deposited ITO is sufficiently supplied with oxygen, and thus, the stoichiometrically-laden ITO may be stacked.
  • the current distribution layer 160 of the ITO material of the embodiment may use argon as a process gas to reduce electrical resistance.
  • the oxygen porosity of the current spreading layer 160 may increase. Since the oxygen gap serves as an electron carrier in the current spreading layer 160, the electrical resistance of the current spreading layer 160 may decrease.
  • the process gas may be used alone or in combination of several kinds of inert gas containing no oxygen.
  • the stoichiometric current dispersing layer 160 has an oxygen-deficient non-quantitative structure. Can be formed.
  • the current spreading layer 160 may have a maximum diffraction beam intensity.
  • Table 1 is an experimental result showing the resistance value of the current dispersion layer 160 of the ITO material of the embodiment.
  • the comparative sample refers to a case in which the current spreading layer 160 is formed using a process gas mixed with argon and oxygen, and the embodiment sample forms the current spreading layer 160 using a process gas formed only of argon.
  • resistance means sheet resistance, and therefore, the unit of resistance value is (ohm / square).
  • the samples are experimental values measured when the thickness T2 of the current spreading layer 160 is about 40, 50, and 60 nm, respectively. In addition, the experiment was repeated a plurality of times, and the resistance value is the average value of the plurality of experiments.
  • the resistance value is significantly lower in the example sample than the comparison sample. Therefore, the current spreading layer 160 is formed when the current spreading layer 160 is formed using the argon-only process gas rather than the case where the current dispersing layer 160 is made of ITO using the process gas mixed with argon and oxygen. Since the electrical resistance of) is remarkably small, it can be seen that the current applied from the second electrode 180 can be more evenly distributed to the current spreading layer 160 when the current spreading layer 160 is used. .
  • the current spreading layer 160 is formed using a process gas made of only argon, the electrical resistance is reduced and the light transmittance is not reduced. As a result, the light output of the light emitting device can be increased.
  • the current resistance layer 160 of the ITO material having the non-quantitative structure decreases the current resistance
  • the current applied from the second electrode 180 is uniformly dispersed in the current dispersion layer 160, and as a result, The operating voltage of the light emitting device is lowered and the light output is increased.
  • the thickness T3 of the current blocking layer 190 may be, for example, 90 nm to 150 nm.
  • the contact layer 150 and the current spreading layer 160 may be sequentially stacked from the bottom to the top between the current blocking layer 190 and the second electrode 180. .
  • the side thickness of the contact layer 150 and the current dispersing layer 160 that is, the thickness of the side of the current blocking layer 190 may be different. It may be formed thinner compared to the portion.
  • only the current spreading layer 160 may be formed between the current blocking layer 190 and the second electrode 180 to secure a space in which the current blocking layer 190 is disposed. It may be.
  • an area of the current blocking layer 190 may be larger than that of the second electrode 180.
  • the separation distance L2 between the end of the second electrode 180 and the current blocking layer 190 may be provided as about 3 ⁇ m.
  • FIG 5 is an enlarged view of portion C of FIGS. 1A and 1B. That is, in the mesa (MESA) region where the second electrode is formed, a separation distance between the side of the contact layer 150 and / or the current spreading layer 160 and the side of the second conductive semiconductor layer 140. T4 may be provided, for example, in a range of 3 ⁇ m to 10 ⁇ m.
  • the separation distance T4 is less than 3 ⁇ m, electron hopping is performed on the side of the contact layer 150, the current spreading layer 160, and / or the side of the second conductive semiconductor layer 140. This can cause current leakage.
  • the separation distance T4 exceeds 10 ⁇ m, the operating voltage of the light emitting device may increase and the light output may decrease.
  • FIGS. 6 and 7 are graphs showing the results of X-ray diffraction experiments for explaining the light emitting device according to one embodiment.
  • X-ray diffraction experiment is to analyze the shape of the beam is diffracted by irradiating the X-ray beam to the current dispersion layer 160.
  • the horizontal axis represents the diffraction angle (°) of the X-ray beam irradiated and diffracted to the current spreading layer 160
  • the vertical axis represents the X-ray diffraction beam intensity (a.u.).
  • 6 and 7 show the case where the process gas is argon, the case of the mixed gas of argon and oxygen, and the case of the mixture of argon, oxygen and hydrogen. 6 actually shows the diffraction beam intensity in each case.
  • FIG. 7 schematically shows non-peak portions of each diffraction beam intensity in order to compare the diffraction beam intensity peak values in each case.
  • numbers 222, 400, 440, and the like represent Miller surface indices.
  • the Miller surface index represents a specific crystal surface of the current dispersing layer 160 to be tested. Therefore, when the peak value of the diffraction beam intensity is changed where the Miller surface index is the same, this may mean that the crystal structure is different.
  • the current spreading layer 160 formed by depositing in an Ar gas atmosphere may have a plurality of peak values of diffraction beam intensities according to the Miller surface index in the X-ray diffraction experiment.
  • the process gas has the largest peak value when the process gas is a mixture of argon and oxygen.
  • the Miller surface index of 400 has the largest peak value when the process gas is argon. That is, in the embodiment, the current spreading layer 160, when the Miller surface index is 400 in the X-ray diffraction experiment, the diffraction beam intensity may have a maximum peak value.
  • the component of the process gas can be known by examining the distribution of the peak value of the diffraction beam intensity with respect to the Miller surface index in the X-ray diffraction test on the current spreading layer 160.
  • the current dispersion layer 160 when the current dispersion layer 160 is deposited by the sputtering process using the process gas as argon, the current dispersion layer 160 may be formed to have a high porosity of the oxygen component, and thus the current Since the electrical resistance of the dispersion layer 160 is reduced, the current can be smoothly dispersed in the current dispersion layer 160.
  • Tables 2 to 3 show the results of experimenting with the operating voltage and the light output of the light emitting chip using the light emitting device of the embodiment. Each light emitting chip was tested under the condition that the rated output was 95mA.
  • Test 1 includes a current dispersing layer 160 made of a general ITO material, that is, a test using a light emitting device having a structure in which argon and oxygen are mixed as a process gas and the contact layer 150 is not formed. It means that you have progressed.
  • Test 2 includes a current dispersing layer 160 of the ITO material of the embodiment, that is, a test using a light emitting device having an argon gas containing no oxygen as a process gas and having a contact layer 150 formed thereon. I mean.
  • the current dispersing layer 160 of the ITO material having the quantitative structure is used and the contact layer 150 is used. It can be seen that there is an effect that the operating voltage of the light emitting element is lowered and the light output is higher than when this is not formed.
  • FIG. 8 and 9 are graphs showing the experimental results of Table 2.
  • VF3 of FIG. 8 is an operating voltage and a unit is volts (V)
  • Po is an optical output and a unit is milliwatts (mW).
  • the left hemisphere of the ground represents Test 1
  • the right hemisphere of the ground represents Test 2.
  • 8 and 9 show half of the entire area of the light emitting device, and thus are graphs including both the case 1 and the case 2.
  • test 2 has a lower overall operating voltage than test 1. Looking at the light output of Figure 9, it can be seen that the test 2 than the test 1, the light output as a whole.
  • FIG. 10 and 11 are graphs showing the experimental results of Table 3. Like FIG. 8 and FIG. 9, in the circular graph, the left hemisphere represents the test 1, the right hemisphere represents the test 2, and the graph includes both the case 1 and the case 2.
  • FIG. 8 and FIG. 9 in the circular graph, the left hemisphere represents the test 1, the right hemisphere represents the test 2, and the graph includes both the case 1 and the case 2.
  • test 2 has a lower overall operating voltage than test 1.
  • the test 2 has a higher light output than the test 1.
  • FIG. 12 illustrates a light emitting device package 10 according to an embodiment.
  • the light emitting device package 10 includes a body 11 including a cavity, a first lead frame 12 and a second lead frame 13 installed on the body 11, and
  • the light emitting device 20 according to the above-described embodiment installed on the body 11 and electrically connected to the first lead frame 12 and the second lead frame 13, and the molding part 16 formed in the cavity. It includes.
  • the body 11 may be formed of a silicon material, a synthetic resin material, or a metal material.
  • a conductive material such as a metal material, although not shown, an insulating layer is coated on the surface of the body 11 to prevent an electrical short between the first and second lead frames 12 and 13. Can be.
  • a cavity is formed in the package body 11, and the light emitting device 20 may be disposed on the bottom surface of the cavity.
  • the first lead frame 12 and the second lead frame 13 are electrically separated from each other, and supply a current to the light emitting device 20.
  • the first lead frame 12 and the second lead frame 13 may increase light efficiency by reflecting light generated from the light emitting device 20, and discharge heat generated from the light emitting device 20 to the outside. You can also
  • the light emitting device 20 may be according to the above-described embodiment, and may be electrically connected to the first lead frame 12 and the second lead frame 13 through a wire 14.
  • the light emitting device 20 may be fixed to the bottom surface of the package body 11 with a conductive paste (not shown), and the molding part 16 may surround and protect the light emitting device 20, and may be molded.
  • the phosphor 17 may be included in the unit 16 to excite the phosphor 17 by the light in the first wavelength region emitted from the light emitting device 20 to emit light in the second wavelength region.
  • the light emitting device package 10 may include one or a plurality of light emitting devices according to the above embodiments, but is not limited thereto.
  • the above-described light emitting device to light emitting device package may be used as a light source of the lighting system, for example, may be used in light emitting devices such as an image display device and an illumination device of the image display device.
  • When used as a backlight unit of the image display device may be used as an edge type backlight unit or a direct type backlight unit, and when used as a lighting device may be used for a luminaire or a built-in type light source.
  • the contact layer serves to smoothly inject holes from the second conductive semiconductor layer into the active layer, so that the light emitting device of the embodiment has an effect of lowering operating voltage and increasing light output. Therefore, there is industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

발광소자의 일 실시예는, 기판; 상기 기판 상에 배치되는 제1도전형 반도체층; 상기 제1도전형 반도체층 상에 배치되고, 복수의 양자우물층과 복수의 양자장벽층이 교대로 적층되어 구비되는 활성층; 상기 활성층 상에 배치되는 제2도전형 반도체층; 상기 제2도전형 반도체층 상에 배치되는 접촉층; 상기 접촉층 상에 배치되는 전류분산층; 및 상기 제2도전형 반도체층 상에 배치되는 전류차단층을 포함하고, 상기 접촉층 및/또는 전류분산층은, 밀러(Miller) 면지수가 400인 경우 X선 회절빔 강도가 최대가 되고, 상기 전류차단층의 적어도 일부를 감싸도록 구비되는 것일 수 있다.

Description

발광소자 및 이를 포함하는 발광소자 패키지
실시예는, 발광소자 및 이를 포함하는 발광소자 패키지에 관한 것이다.
이 부분에 기술된 내용은 단순히 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
GaN, AlGaN 등의 3-5 족 화합물 반도체는 넓고 조정이 용이한 에너지 밴드갭을 가지는 등의 많은 장점으로 인해 광 전자공학 분야(optoelectronics)와 전자 소자를 위해 등에 널리 사용된다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다.
따라서, 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등에까지 응용이 확대되고 있다.
발광소자는 원활한 작동과 에너지 효율을 증가시키기 위해 지속적인 연구가 진행되고 있는데, 예를 들어 동작전압이 낮고, 광출력이 높은 발광소자의 개발이 요구된다.
따라서, 실시예는, 동작전압이 낮고, 광출력이 높은 구조를 가진 발광소자에 관한 것이다.
실시예가 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 실시예가 속하는 기술분야에서 통상의 지식을 가진자에게 명확하게 이해될 수 있을 것이다.
발광소자의 일 실시예는, 기판; 상기 기판 상에 배치되는 제1도전형 반도체층; 상기 제1도전형 반도체층 상에 배치되고, 복수의 양자우물층과 복수의 양자장벽층이 교대로 적층되어 구비되는 활성층; 상기 활성층 상에 배치되는 제2도전형 반도체층; 상기 제2도전형 반도체층 상에 배치되는 접촉층; 상기 접촉층 상에 배치되는 전류분산층; 및 상기 제2도전형 반도체층 상에 배치되는 전류차단층을 포함하고, 상기 접촉층 및/또는 전류분산층은, 밀러(Miller) 면지수가 400인 경우 X선 회절빔 강도가 최대가 되고, 상기 전류차단층의 적어도 일부를 감싸도록 구비되는 것일 수 있다.
발광소자의 다른 실시예는, 반사층; 상기 반사층 상에 배치되는 기판; 상기 기판 상에 배치되는 제1도전형 반도체층; 상기 제1도전형 반도체층 상에 배치되는 활성층; 상기 활성층 상에 배치되는 제2도전형 반도체층; 상기 제2도전형 반도체층 상에 배치되는 접촉층; 및 상기 접촉층 상에 배치되고, ITO 재질로 형성되는 전류분산층; 상기 전류분산층 상에 배치되는 패시베이션층; 상기 제1도전형 반도체층 상에 배치되는 제1전극; 상기 제2도전형 반도체층 상에 배치되는 제2전극; 및 상기 제2도전형 반도체층과 상기 제2전극 사이에 배치되는 전류차단층을 포함할 수 있다.
발광소자 패키지의 일 실시예는, 캐비티를 포함하는 몸체; 상기 몸체에 설치된 리드 프레임(lead frame); 및 상기 리드 프레임과 전기적으로 연결되는 상기 발광소자를 포함할 수 있다.
실시예에서, 상기 접촉층은 제2도전형 반도체층으로부터 활성층으로의 정공이 원활하게 주입되도록 하는 역할을 하여, 실시예의 발광소자는 동작전압이 낮아지고, 광출력이 높아지는 효과가 있다.
실시예에서, 비정량적 구조의 ITO 재질의 전류분산층은 전류저항이 줄어들기 때문에 상기 제2전극으로부터 인가된 전류가 상기 전류분산층에 고르게 분산되어, 결과적으로 발광소자의 동작전압이 낮아지고, 광출력이 높아지는 효과가 있다.
도 1a는 일 실시예에 따른 발광소자를 나타낸 단면도이다.
도 1b는 도 1a와 다른 구조의 패시베이션층을 가진 발광소자를 나타낸 단면도이다.
도 2는 일 실시예에 따른 발광소자를 나타낸 개략적인 평면도이다.
도 3은 도 1a 및 도 1b의 A부분을 나타낸 확대도이다.
도 4는 1a 및 도 1b의 B부분을 나타낸 확대도이다.
도 5는 1a 및 도 1b의 C부분을 나타낸 확대도이다.
도 6 및 도 7은 일 실시예에 따른 발광소자를 설명하기 위한 X선 회절실험 결과를 나타낸 그래프이다.
도 8 및 도 9는 표 2의 실험결과를 나타낸 그래프이다.
도 10 및 도 11은 표 3의 실험결과를 나타낸 그래프이다.
도 12는 일 실시예에 따른 발광소자 패키지를 나타낸 도면이다.
이하, 첨부된 도면들을 참조하여 실시예를 상세히 설명한다. 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 실시예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 실시예의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
"제1", "제2" 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용된다. 또한, 실시예의 구성 및 작용을 고려하여 특별히 정의된 용어들은 실시예를 설명하기 위한 것일 뿐이고, 실시예의 범위를 한정하는 것이 아니다.
실시예의 설명에 있어서, 각 element의 "상(위)" 또는 "하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위)" 또는 "하(아래)(on or under)”로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
또한, 이하에서 이용되는 "상/상부/위" 및 "하/하부/아래" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서 이용될 수도 있다.
도 1a는 일 실시예에 따른 발광소자를 나타낸 단면도이다. 도 1b는 도 1a와 다른 구조의 패시베이션층(220)을 가진 발광소자를 나타낸 단면도이다. 도 2는 일 실시예에 따른 발광소자를 나타낸 개략적인 평면도이다.
실시예의 발광소자는 기판(110), 제1도전형 반도체층(120), 활성층(130), 제2도전형 반도체층(140), 접촉층(150), 전류분산층(160), 제1전극(170), 제2전극(180), 전류차단층(190), 반사층(210) 및 패시베이션층(220)을 포함할 수 있다.
이때, 상기 제1도전형 반도체층(120), 활성층(130) 및 제2도전형 반도체층(140)은 발광구조물을 형성할 수 있다.
기판(110)은 상기 발광구조물을 지지할 수 있다. 상기 기판(110)은 사파이어 기판, 실리콘(Si), 산화아연(ZnO), 질화물 반도체 중 어느 하나 또는 GaN, InGaN, AlGaN, AlInGaN 중에서 적어도 어느 하나가 적층된 템플레이트(Template)로 형성되는 것일 수 있다.
발광구조물은 상기 기판(110) 상에 배치되고, 빛을 발생시키는 역할을 할 수 있다. 이때, 기판(110)과 발광구조물의 격자상수, 열팽창 계수 등의 차이로 인해 기판(110)과 발광구조물의 경계면 부위에 응력(stress)이 발생할 수 있다.
이러한 응력발생을 완화하기 위해 기판(110)과 발광구조물 사이에는 버퍼층(미도시)이 개재될 수 있다. 또한, 상기 제1도전형 반도체층(120)의 결정성 향상을 위하여 언도프트 반도체층(미도시)이 개재될 수 있다. 다만, 제조과정에서 N-공극(vacancy)이 형성될 수 있고, 이로인해 의도하지 않은 도핑이 이루어질 수 있다.
이때, 버퍼층은 저온 성장될 수 있으며, 그 물질은 GaN층 또는 AlN층일 수 있으나, 이에 한정되는 것은 아니며, 언도프트 반도체층은 n형 도펀트가 도핑되지 않아 제1도전형 반도체층(120)에 비하여 낮은 전기 전도성을 갖는 것을 제외하고는 제1도전형 반도체층(120)과 동일할 수 있다.
한편, 도 1a에 도시된 바와 같이, 제1전극(170)은 상기 제1도전형 반도체층(120)의 노출되는 단차부위 상에 배치될 수 있고, 제2전극(180)은 상기 제2도전형 반도체층(140)의 상측 노출부위 상에 배치될 수 있다. 상기 제1전극(170)과 상기 제2전극(180)을 통해 전류가 인가되면 실시예의 발광소자는 발광할 수 있다.
한편, 도 1a 및 도 1b에서는 수평형 발광소자를 도시하고 있으나, 수직형 발광소자 또는 플립 칩 발광소자의 구조로 구비될 수도 있다.
상기한 바와 같이, 상기 발광구조물은 상기 제1도전형 반도체층(120), 활성층(130) 및 제2도전형 반도체층(140)을 포함할 수 있다.
제1도전형 반도체층(120)은 상기 기판(110) 상에 배치되고, 예를 들어, 질화물 반도체로 형성될 수 있다.
즉, 상기 제1도전형 반도체층(120)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등에서 선택될 수 있으며, Si, Ge, Sn, Se, Te 등의 n형 도펀트가 도핑될 수 있다.
활성층(130)은 상기 제1도전형 반도체층(120) 상에 배치되고, 상기 제1도전형 반도체층(120) 및 상기 제2도전형 반도체층(140)으로부터 제공되는 전자와 정공(hole)의 재결합(recombination) 과정에서 발생하는 에너지에 의해 광을 생성할 수 있다.
상기 활성층(130)은 반도체 화합물, 예컨대, 3족-5족, 2족-6족의 화합물 반도체일 수 있으며, 단일 양자우물 구조, 다중 양자우물 구조, 양자선(Quantum-Wire) 구조, 양자 점(Quantum Dot) 구조 등으로 형성될 수 있다.
활성층(130)이 양자우물 구조인 경우 예를 들어, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 양자우물층과 InaAlbGa1 -a- bN (0≤a≤1, 0≤b≤1, 0≤a+b≤1)의 조성식을 갖는 양자장벽층을 구비하는 단일 또는 다중 양자우물 구조를 가질 수 있다.
이때, 상기 양자우물층은 양자장벽층의 에너지 밴드갭보다 낮은 에너지 밴드갭을 갖도록 구비될 수 있다. 또한, 실시예의 활성층(130)은 다중 양자우물 구조를 가지는 경우, 복수의 양자우물층 및 복수의 양자장벽층이 교대로 배치되는 구조로 구비될 수 있다.
제2도전형 반도체층(140)은 상기 활성층(130) 상에 배치될 수 있다. 이때, 상기 제2도전형 반도체층(140)은 예를 들어, 질화물 반도체로 형성될 수 있다.
즉, 상기 제2도전형 반도체층(140)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등에서 선택될 수 있으며, Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다.
접촉층(150)은 상기 제2도전형 반도체층(140) 상에 배치되고, 그 상측에 배치되는 전류분산층(160)과 그 하측에 배치되는 제2도전형 반도체층(140) 사이의 접촉특성을 향상시켜 제2도전형 반도체층(140)으로부터 활성층(130)으로의 정공이 원활하게 주입되도록 하는 역할을 할 수 있다.
즉, 상기 접촉층(150)은 상기 전류분산층(160)과 상기 제1도전형 반도체층(120) 사이의 경계면에 배치되어 상기 전류분산층(160)과 상기 제2도전형 반도체층(140) 사이의 경계면에서 발생할 수 있는 전기저항을 줄이는 역할을 하여, 상기 전류분산층(160)에 인가되는 전류가 원활하게 상기 제2도전형 반도체층(140)으로 흐를 수 있도록 할 수 있다.
이로써, 상기 제2도전형 반도체층(140)에는 전류가 원활하게 흐를 수 있고, 이에 따라 상기 제2도전형 반도체층(140)에서는 많은 양의 정공이 발생하여 상기 활성층(130)으로 유입될 수 있다.
실시예에서, 상기 접촉층(150)은 제2도전형 반도체층(140)으로부터 활성층(130)으로의 정공이 원활하게 주입되도록 하는 역할을 하여, 실시예의 발광소자는 동작전압이 낮아지고, 광출력이 높아지는 효과가 있다.
상기 접촉층(150)은, 예를 들어, ITO(Indium Tin Oxide), NiO 및 NiAu 중 적어도 하나의 재질로 형성될 수 있으며, 전기저항이 작은 구조로 형성되는 것이 적절할 수 있다.
상기 접촉층(150)이 전기저항이 작은 구조로 형성되려면, 예를 들어, 산소(O2) 성분의 공극율이 높은 구조로 형성되는 것이 적절할 수 있다. 접촉층(150)을 형성하는 성분 중 산소가 포함될 수 있는데, 산소는 접촉층(150)의 전기저항을 높이는 경향이 있다.
따라서, 상기 접촉층(150)은 전기저항을 줄이기 위해, 산소의 공극율이 높은 즉, 정량적(stoichiometric) 구조에 비해 산소 성분이 결핍된 비정량적(non-stoichiometric) 구조로 형성되는 것이 적절할 수 있다.
이러한, 산소 성분이 결핍된 비정량적 구조는 접촉층(150)의 증착 시 공정가스에 산소를 혼합하지 않은 아르곤 가스를 사용하여 구현할 수 있다.
즉, 공정가스에 산소를 포함하지 않음으로써, 소스물질에 포함되는 산소 성분만이 상기 접촉층(150)에 포함되고, 공정가스에 의한 산소의 추가적인 공급이 없으므로, 접촉층(150)은 산소 성분이 결핍된 비정량적 구조로 형성될 수 있다.
다만, 상기 접촉층(150)은 광투과율을 높이기 위해, 예를 들어, 아르곤에 산소 및/또는 수소(H2)가 혼합된 공정가스를 사용할 수 있다. 이때, 상기 접촉층(150)의 X선 회절시험을 수행하는 경우, 밀러 면지수가 222 또는 400인 경우 회절빔 강도가 최대값을 가지는 결정구조로 구비될 수 있다.
전류분산층(160)은 상기 접촉층(150) 상에 배치되고, 상기 제2전극(180)과 전기적으로 연결되며, 상기 제2전극(180)에 인가되는 전류가 상기 제2도전형 반도체층(140)의 전체면에 고르게 분산되도록 하는 역할을 할 수 있다.
제2전극(180)을 통해 상기 제2도전형 반도체층(140)에 인가되는 전류는 고르게 분산되지 않는 경우, 상기 제2도전형 반도체층(140)의 특정부분에 집중적으로 인가되고, 이로인해 상기 제2도전형 반도체층(140)에서 상기 활성층(130)에 주입되는 정공은 상기 활성층(130)의 특정부분에 집중적으로 주입될 수 있다.
이러한 정공주입의 집중은 실시예의 발광소자의 광출력을 현저히 저하시킬 수 있다. 이를 방지하기 위해 상기 전류분산층(160)을 통해 상기 제2도전형 반도체층(140)의 전체면에 전류를 고르게 분산시키는 것이 적절할 수 있다.
상기 전류분산층(160)은, ITO(Indium Tin Oxide) 재질로 형성될 수 있다. 접촉층(150)에서 상기한 바와 마찬가지로, 상기 전류분산층(160)은 전기저항을 줄일 필요가 있다.
따라서, 상기 전류분산층(160)을 구성하는 성분 중 산소가 전기저항을 높이는 경향이 있으므로, 상기 전류분산층(160)은 전기저항을 줄이기 위해, 산소의 공극율이 높은 즉, 정량적(stoichiometric) 구조에 비해 산소 성분이 결핍된 비정량적(non-stoichiometric) 구조로 형성되는 것이 적절할 수 있다. 이러한 산소 성분이 결핍된 비정량적 구조의 형성방법은 하기에 구체적으로 설명한다.
전류차단층(190)은 상기 제2도전형 반도체층(140) 상에 즉, 상기 제2도전형 반도체층(140)과 상기 제2전극(180) 사이에 배치될 수 있다. 이때, 상기 전류차단층(190)의 면적은 상기 제2전극(180)의 면적보다 크게 형성될 수 있다.
또한, 상기 접촉층(150) 및/또는 상기 전류분산층(160)은 상기 전류차단층(190)의 적어도 일부를 감싸도록 구비될 수 있다. 예를 들어, 도 4를 참조하면, 상기 접촉층(150) 및/또는 상기 전류분산층(160)은 상기 전류차단층(190)의 상면 및/또는 측면을 감싸도록 형성될 수 있다.
상기 전류차단층(190)은 상기 제2전극(180)에 인가되는 전류가 상기 제2도전형 반도체층(140) 중 상기 제2전극(180)과 대향되는 부위에 집중되는 것을 방지하는 역할을 할 수 있다.
이는 상기 전류차단층(190)이 형성되는 부위에는 상기 제2전극(180)으로부터 상기 제2도전형 반도체층(140)으로 곧바로 전류가 흘러 들어가는 것을 상기 전류차단층(190)이 차단하기 때문이다. 이를 위해 상기 전류차단층(190)은 예를 들어, 전기 절연성 재질로 형성될 수 있다.
상기 전류차단층(190)은 전류가 상기 제2도전형 반도체층(140)의 특정부위에 집중되고, 이로써 상기 제2도전형 반도체층(140)에서 상기 활성층(130)으로 주입되는 정공이 상기 활성층(130)의 특정부위에 집중되어 실시예의 발광소자의 광출력이 저하되는 것을 방지할 수 있다.
즉, 상기 전류차단층(190)은 상기 제2전극(180)과 상하방향으로 대향되는 부위에 집중될 수 있는 전류를 상기 전류분산층(160)에 고르게 분산되도록 하는 역할을 할 수 있다.
한편, 도 1a 및 도 1b에 도시된 바와 같이, 발광소자에는 상기 제2전극(180)이 배치되는 메사(MESA)가 형성되고, 상기 제1전극(170)의 메사(MESA)로부터 이격거리(L1)는 예를 들어, 3μm 내지 10μm로 구비될 수 있다.
이때, 상기 메사는 발광소자에서 돌출부위을 의미하고, 상기 이격거리(L1)는 상기 메사의 제1도전형 반도체층(120)의 측면에서 상기 제1전극(170)의 가장 가까운 지점까지의 거리를 의미한다.
도 2에 도시된 바와 같이, 상기 제2전극(180)은 상기 전류분산층(160) 상에 형성되는 제2가지전극(181)을 포함할 수 있고, 상기 제1전극(170)은 상기 제1도전형 반도체층(120) 상에 형성되는 제1가지전극(171)을 포함할 수 있다.
다만, 상기 제1가지전극(171)이 상기 전류분산층(160), 제2도전형 반도체층(140) 및 활성층(130)과 전기적으로 연결되지 않도록 하기 위해, 상기 제1가지전극(171)이 형성되는 부위는 상하방향으로 상기 전류분산층(160), 제2도전형 반도체층(140) 및 활성층(130)이 식각된 구조로 형성될 수 있다.
이때, 상기 전류차단층(190)은 상기 제2가지전극(181)과 상하방향으로 대향되는 부위에도 형성될 수 있다. 이는 제1가지전극(171)을 통해 전류가 상기 제1가지전극(171)과 상하방향으로 대향되는 상기 제2도전형 반도체층(140) 부위에 집중적으로 흘러들어가는 것을 방지하여, 전류가 상기 전류분산층(160)에 고르게 분산되도록 하기 위함이다.
또한, 상기 제1가지전극(171)의 메사(MESA)로부터 이격거리는 상기 제1전극(170)의 메사로부터 이격거리(L1)보다 작을 수 있다.
반사층(210)은 상기 기판(110) 하부에 배치될 수 있고, 상기 발광소자의 광효율을 향상시키는 역할을 할 수 있다. 즉, 상기 활성층(130)에서 발생하는 광은 그 일부가 상기 기판(110) 하부로 방출될 수 있는데, 상기 기판(110) 하부에 상기 반사층(210)을 배치하여 상기 기판(110) 하부로 향하는 광을 반사하여 상기 발광소자의 상부방향으로 방출되게 함으로써, 상기 발광소자의 광효율을 향상시킬 수 있다.
상기 반사층(210)은 굴절률이 서로 다른 적어도 두 개의 층을 적어도 1회 이상 교대로 적층한 복층 구조를 가지는 분산 브래그 반사층(Distributed Bragg Reflective layer)일 수 있으며, 상기 발광구조물로부터 입사되는 빛을 반사시킨다.
즉, 상기 반사층(210)은 굴절률이 상대적으로 큰 제1층 및 굴절률이 상대적으로 낮은 제2층이 교대로 적층된 구조일 수 있다. 이때, 상기 반사층(210)은 각 층의 굴절률의 차이, 두께 등에 따라 반사율이 달라질 수 있다.
패시베이션층(220)(passivation layer)은 적어도 일부가 상기 전류분산층(160) 상에 배치될 수 있다. 구체적으로, 도 1a에 도시된 바와 같이, 상기 패시베이션층(220)은 상기 전류분산층(160) 상면, 상기 제1도전형 반도체층(120)의 단차부위 상면에 배치될 수 있다.
또한, 상기 패시베이션층(220)은 상기 제1도전형 반도체층(120), 상기 활성층(130), 상기 제2도전형반도체층 및 상기 전류분산층(160)의 측면 중 적어도 일부에 배치될 수 있다.
이러한 구조를 가진 상기 패시베이션층(220)은, 발광소자를 형성하는 상기 각층을 보호하는 역할을 할 수 있고, 특히, 상기 제1도전형 반도체층(120)과 상기 제2도전형 반도체층(140) 사이의 전기적 쇼트(short) 발생을 방지하는 역할을 할 수 있다.
상기 패시베이션층(220)은, 일 실시예로 도 1a에 도시된 바와 같이, 제1도전형 반도체층(120)의 측면 중 일부를 덮지 않도록 형성될 수 있다. 상기 패시베이션층(220)은, 다른 실시예로 도 1b에 도시된 바와 같이, 제1도전형 반도체층(120)의 측면을 전부 덮도록 형성될 수도 있다.
상기 패시베이션층(220)은 그 두께가 약 100nm로 구비될 수 있고, 그 두께에 따라 상기 발광구조물과의 굴절률이 변할 수 있다. 따라서, 상기 패시베이션층(220)의 두께의 변화에 따라 발광소자의 광효율 즉, 광추출효율이 달리질 수 있다.
또한, 상기 패시베이션층(220)은, 일 실시예로 도 1a 및 도 1b에 도시된 바와 같이, 제1전극과 제2전극의 측면이 노출되도록 구비될 수 있다. 다른 실시예로, 상기 패시베이션층(220)은 상기 제1전극과 제2전극의 측면을 덮도록 구비될 수도 있다. 또 다른 실시예로, 상기 패시베이션층(220)은 그 측면이 상기 제1전극과 제2전극의 측면과 일정거리 이격되도록 구비될 수도 있다. 다만, 이에 한정되는 것은 아니다.
도 3은 1a 및 도 1b의 A부분을 나타낸 확대도이다. 도 3에 도시된 바와 같이, 상기 전류분산층(160)은 상기 접촉층(150) 상에 적층되어 형성될 수 있다.
이때, 상기 접촉층(150)의 두께(T1)는 예를 들어, 1nm 내지 5nm로 형성될 수 있다. 또한, 상기 전류분산층(160)의 두께(T2)는 예를 들어, 20nm 내지 70nm로 형성될 수 있다. 다만, 상기 접촉층(150)은 상기 전류차단층(190)이 배치되는 부위에는 이와 다른 두께로 형성될 수도 있다.
상기 전류차단층(190)의 두께와, 상기 접촉층(150) 및 전류분산층(160)의 총 두께 비율은, 예를 들어, 전류차단층 : (접촉층+ 전류분산층) = 2:1 내지 5:1로 형성될 수 있다. 다만, 이에 한정되지는 않는다.
또한, 상기 전류분산층(160)과 접촉층(150)의 두께비율은, 예를 들어, 전류분산층(160) : 접촉층(150) = 6:1 내지 10:1로 형성될 수 있다. 다만, 이에 한정되지는 않는다.
만약 상기 전류분산층(160)의 두께(T2)가 20nm 미만인 경우, 상기 전류분산층(160)의 전기저항은 상승하게 되고, 이에 따라 발광소자의 동작전압도 상승하여 발광소자 성능에 악영향을 미칠 수 있다.
또한, 만약 상기 전류분산층(160)의 두께(T2)가 70nm를 초과하는 경우, 상기 전류분산층(160)의 광투과율이 감소하게 되고, 이에 따라 발광소자의 광출력이 감소하여 발광소자 성능에 악영향을 미칠 수 있다.
한편, 상기 패시베이션층(220)의 두께(T5)는, 상기한 바와 같이 약 100nm로 구비될 수 있고, 상기 접촉층(150) 및/또는 전류분산층(160)보다 두껍게 형성될 수 있다.
또한, 상기 패시베이션층(220)의 두께(T5)와 상기 전류분산층(160)의 두께(T2)의 비율은 예를 들어, T5 : T2 = 1.4:1 내지 5:1로 구비될 수 있다.
상기한 바와 같이, 상기 전류분산층(160)은 ITO 재질로 형성될 수 있고, 전기저항을 줄이기 위해 산소 성분이 결핍된 비정량적 구조로 형성될 수 있다.
상기 전류분산층(160)은 예를 들어, 플라즈마진공증착 등의 방식으로 적층되어 형성될 수 있는데, 전류분산층(160)의 상기 비정량적 구조는 다음과 같은 방식에 의해 형성될 수 있다.
상기 전류분산층(160)은 아르곤(Ar) 가스 분위기에서 증착되어 형성될 수 있다. 즉 상기 접촉층(150)에 상기 전류분산층(160)을 형성하는 소스물질을 플라즈마화 되는 공정가스에 분사하여 고온의 상태에서 증착공정을 진행할 수 있다. 이러한 플라즈마진공증착은 진공챔버에서 진행될 수 있다.
플라즈마진공증착의 한 방법으로 스퍼터링(sputtering)이 있다. 스퍼터링은 플라즈마화 된 공정가스에 포함되는 이온이 소스물질 즉, 타겟물질에 충격을 가하여 상기 타겟물질에서 원자 및/또는 분자가 방출되어 박막을 형성하는 방식으로 진행될 수 있다.
스퍼터링은 박막의 응착력이 양호하고, 진공챔버 내부에 타겟물질이 넓게 분포하므로 균일한 두께, 밀도 등을 가진 박막을 형성할 수 있다. 또한, 스퍼터링에 의해 형성되는 박막은 스텝커버리지(step coverage)가 좋고, 옥사이드(oxide)류의 증착이 용이한 장점도 있다.
상기 공정가스에는 비활성 가스 예를 들어, 아르곤이 포함될 수 있다. 일반적으로, ITO에는 증착시 공정가스로 아르곤과 산소가 혼합된 가스, 또는 아르곤, 산소 및 수소가 혼합된 가스 등을 사용한다.
그러나, 이러한 산소가 혼합된 가스를 공정가스로 사용하는 경우, 증착된 ITO에는 산소가 충분히 공급되어, 화학양론적으로 볼 때 산소가 정량적으로 함유된 ITO가 적층될 수 있다.
이러한 정량적 구조의 ITO는 함유된 산소로 인해 전기저항이 높은 특성을 가지게 된다. 따라서, 실시예의 ITO 재질의 전류분산층(160)은 전기저항을 줄이기 위해 공정가스는 아르곤을 사용할 수 있다.
아르곤을 사용할 경우, 상기 전류분산층(160)의 산소 공극율이 증가할 수 있다. 산소 공극은 상기 전류분산층(160) 내에서 전자 캐리어(carrier)의 역할을 하게되므로, 상기 전류분산층(160)의 전기저항은 감소할 수 있다.
다만, 다른 실시예로 상기 공정가스는 산소가 포함되지 않은 비활성가스를 단독으로 또는 여러종류의 비활성가스를 혼합하여 사용할 수도 있다.
산소를 포함하지 않은 아르곤으로 구비되는 공정가스를 사용하여 ITO 재질의 전류분산층(160)을 형성하는 경우, 화학양론적으로 볼 때 상기 전류분산층(160)은 산소가 결핍된 비정량적 구조로 형성될 수 있다.
이때, 상기 전류분산층(160)은 X선 회절실험에서 밀러 면지수가 400인 경우 회절빔 강도가 최대값을 가질 수 있다.
표 1은 실시예의 ITO 재질의 전류분산층(160)의 저항값을 나타낸 실험 결과값이다. 표 1에서 비교샘플은 아르곤과 산소가 혼합된 공정가스를 사용하여 전류분산층(160)을 형성한 경우를 말하고, 실시예샘플은 아르곤 만으로 된 공정가스를 사용하여 전류분산층(160)을 형성한 경우를 말한다. 여기서 저항은 시트(sheet)저항을 의미하고, 따라서, 저항값의 단위는 Ω/□가 된다.
샘플들은 각각 전류분산층(160)의 두께(T2)가 약 40, 50, 60nm인 경우에 측정된 실험값임을 의미한다. 또한, 실험은 복수회 반복되었으며, 저항값은 복수회 실험의 평균값이다.
샘플/ITO 두께(nm) 저항값(Ω/□) 광투과율(%)
비교샘플/40 78.32 94.39
실시예샘플/40 50.83 94.92
비교샘플/50 53.25 92.84
실시예샘플/50 32.55 92.39
비교샘플/60 49.03 92.29
실시예샘플/60 24.01 92.24
표 1을 살펴보면, 비교샘플보다 실시예샘플에서 저항값이 현저히 낮은 것을 알 수 있다. 따라서, 아르곤과 산소가 혼합된 공정가스를 사용하여 ITO 재질의 전류분산층(160)을 형성한 경우보다 아르곤 만으로 된 공정가스를 사용하여 전류분산층(160)을 형성한 경우 전류분산층(160)의 전기저항이 현저히 작으므로, 실시예의 전류분산층(160)을 사용하는 경우 상기 전류분산층(160)에 제2전극(180)으로부터 인가되는 전류가 더 고르게 분산될 수 있음을 알 수 있다.
또한, 광투과율을 살펴보면, 두께가 동일한 전류분산층(160)의 경우, 비교샘플과 실시예샘플 사이의 광투과율의 차이는 거의 없다. 따라서, 실시예의 비정량적 구조의 ITO 재질의 전류분산층(160)은 전기저항을 현저히 줄이지만, 광투과율은 거의 변화가 없음을 명확히 알 수 있다.
즉, 아르곤 만으로 된 공정가스를 사용하여 전류분산층(160)을 형성한 경우 전기저항을 줄이고 광투과율은 감소하지 않으므로, 결과적으로 발광소자의 광출력을 높일 수 있다.
실시예에서, 비정량적 구조의 ITO 재질의 전류분산층(160)은 전류저항이 줄어들기 때문에 상기 제2전극(180)으로부터 인가된 전류가 상기 전류분산층(160)에 고르게 분산되어, 결과적으로 발광소자의 동작전압이 낮아지고, 광출력이 높아지는 효과가 있다.
도 4는 1a 및 도 1b의 B부분을 나타낸 확대도이다. 실시예에서 상기 전류차단층(190)의 두께(T3)는 예를 들어, 90nm 내지 150nm로 형성될 수 있다.
도 4에 도시된 바와 같이, 상기 전류차단층(190)과 상기 제2전극(180) 사이에는 상기 접촉층(150)과 상기 전류분산층(160)이 하부에서 상부로 순차적으로 적층될 수 있다.
이때, 상기 전류차단층(190)이 배치되는 공간을 확보하기 위해 상기 접촉층(150)과 상기 전류분산층(160)의 측면 두께 즉, 상기 전류차단층(190)의 측면에서의 두께는 다른 부분과 비교하여 얇게 형성될 수도 있다.
한편, 다른 실시예로, 상기 전류차단층(190)이 배치되는 공간을 확보하기 위해, 상기 전류차단층(190)과 상기 제2전극(180) 사이에는 상기 전류분산층(160)만 형성될 수도 있다.
상기한 바와 같이, 상기 전류차단층(190)의 면적은 상기 제2전극(180)의 면적보다 크게 형성될 수 있다. 이때, 상기 제2전극(180)의 단부와 상기 전류차단층(190) 사이의 이격거리(L2)는 약 3μm로 구비될 수 있다.
도 5는 1a 및 도 1b의 C부분을 나타낸 확대도이다. 즉, 제2전극이 형성되는 메사(MESA) 영역에서, 상기 접촉층(150) 및/또는 상기 전류분산층(160)의 측면과 상기 제2도전형 반도체층(140)의 측면사이의 이격거리(T4)는 예를 들어, 3μm 내지 10μm로 구비될 수 있다.
만약 상기 이격거리(T4)가 3μm 미만인 경우, 상기 접촉층(150), 상기 전류분산층(160)의 측면 및/또는 상기 제2도전형 반도체층(140)의 측면에서 전자 뜀뛰기(electron hopping)이 발생하여 전류 누설(current leakage)이 발생할 수 있다.
또한, 만약 상기 이격거리(T4)가 10μm를 초과하는 경우, 발광소자의 동작전압이 상승하고 광출력이 감소할 수 있다.
도 6 및 도 7은 일 실시예에 따른 발광소자를 설명하기 위한 X선 회절실험 결과를 나타낸 그래프이다. X선 회절실험은 전류분산층(160)에 X선 빔을 조사하여 회절되는 빔의 형태를 분석한 것이다.
그래프에서 가로축은 전류분산층(160)에 조사되어 회절되는 X선 빔의 회절각(°)을 나타내고, 세로축은 X선 회절빔 강도(a.u.)를 나타낸다.
도 6 및 도 7에서, 공정가스가 아르곤인 경우, 아르곤과 산소의 혼합가스인 경우, 아르곤과 산소와 수소의 혼합가스인 경우를 각각 나타내었다. 도 6은 각 경우의 회절빔 강도를 실제로 나타내었다. 도 7은 각 경우의 회절빔 강도 피크값을 비교하기 위해 각 회절빔 강도의 피크값이 아닌 부분을 개략적으로 일치시켜 나타내었다.
도면들에서 222, 400, 440 등의 숫자는 밀러(Miller) 면지수를 나타낸다. 밀러 면지수는 실험대상인 전류분산층(160)의 특정한 결정면을 나타낸다. 따라서, 밀러 면지수가 동일한 곳에서 회절빔 강도의 피크값이 달라지는 경우, 이는 결정구조가 달라짐을 의미할 수 있다.
도 6 및 도 7을 참조하면, Ar 가스 분위기에서 증착되어 형성되는 상기 전류분산층(160)은 X선 회절실험에서 밀러 면지수에 따라 회절빔 강도가 복수의 피크값을 가질 수 있다.
도 7을 참조하면, 밀러 면지수가 222인 경우 공정가스가 아르곤과 산소의 혼합가스일때 가장 큰 피크값을 가진다. 또한, 밀러 면지수가 400인 경우 공정가스가 아르곤인 경우 가장 큰 피크값을 가진다. 즉, 실시예에서, 상기 전류분산층(160)은, X선 회절실험에서 밀러 면지수가 400인 경우 회절빔 강도가 최대 피크값을 가질 수 있다.
따라서, 전류분산층(160)에 대해 X선 회절시험에서 밀러 면지수에 대한 회절빔 강도의 피크값 분포를 조사함으로써, 공정가스의 성분을 알 수 있다.
상기한 바와 같이, 공정가스를 아르곤으로 하여 스퍼터링 공정에 의해 전류분산층(160)을 증착하는 경우, 상기 전류분산층(160) 산소 성분의 공극율이 높은 구조로 형성될 수 있고, 이에 따라 상기 전류분산층(160)의 전기저항이 줄어들어 상기 전류분산층(160)에 전류가 원활하게 분산될 수 있다.
표 2 내지 표 3은 실시예의 발광소자를 사용한 발광칩(chip)의 동작전압과 광출력을 실험한 결과값이다. 각 발광칩은 모두 정격출력이 95mA인 조건에서 실험하였다.
표 2에서 발광칩은 모두 1200x600 크기의 것을 사용하였고, 케이스1은 발광소자의 중앙부에서 측정된 경우이고, 케이스2는 발광소자의 중앙부에서 이격된 특정부위에서 측정된 경우이다. 또한, 모두 두께가 약 40nm인 ITO 재질의 전류분산층(160)을 포함하는 발광소자을 사용하였다.
테스트1은 일반적인 ITO 재질의 전류분산층(160)을 포함한 경우, 즉, 공정가스로 아르곤과 산소가 혼합된 가스를 사용하고 접촉층(150)이 형성되지 않은 구조의 발광소자를 사용하여 테스트를 진행했음을 의미한다.
테스트2는 실시예의 ITO 재질의 전류분산층(160)을 포함한 경우, 즉, 공정가스로 산소가 포함되지 않은 아르곤 가스를 사용하고 접촉층(150)이 형성된 구조의 발광소자를 사용하여 테스트를 진행했음을 의미한다.
케이스 테스트 동작전압(V) 광출력(mW)
케이스1 테스트1 2.96 138.6
테스트2 2.94 140.2
케이스2 테스트1 2.95 138.8
테스트2 2.93 141.1
표 3에서 발광칩은 모두 1200x700 크기의 것을 사용하였고, 나머지는 상기 표 2에서 설명한 바와 동일하다.
케이스 테스트 동작전압(V) 광출력(mW)
케이스1 테스트1 2.92 147.4
테스트2 2.90 149.0
케이스2 테스트1 2.92 148.5
테스트2 2.90 148.8
실험결과를 살펴보면, 테스트1에 비해 테스트2에서 동작전압이 낮아지고, 광출력이 높아짐을 알 수 있다.
이는 비정량적 구조의 ITO 재질의 전류분산층(160)과 접촉층(150)이 형성된 실시예의 발광소자를 사용할 경우, 정량적 구조의 ITO 재질의 전류분산층(160)을 사용하고 접촉층(150)이 형성되지 않은 경우보다 발광소자의 동작전압이 낮아지고, 광출력이 높아지는 효과가 있음을 알 수 있다.
도 8 및 도 9는 표 2의 실험결과를 나타낸 그래프이다. 도 8의 VF3은 동작전압으로 단위는 볼트(V)이고, Po는 광출력으로 단위는 밀리와트(mW)이다. 원형의 그래프에서 지면의 왼쪽 반구는 상기 테스트1을 나타내고, 지면의 오른쪽 반구는 상기 테스트2를 나타낸다. 또한, 도 8 및 도 9에서는 발광소자 전영역의 절반씩을 나타내므로, 상기 케이스1과 케이스2를 모두 포함하는 그래프이다.
도 8의 동작전압을 살펴보면, 테스트1 보다 테스트2가 동작전압이 전체적으로 낮음을 알 수 있다. 도 9의 광출력을 살펴보면, 테스트1 보다 테스트2가 광출력이 전체적으로 높음을 알 수 있다.
도 10 및 도 11은 표 3의 실험결과를 나타낸 그래프이다. 도 8 및 도 9와 마찬가지로, 원형의 그래프에서 지면의 왼쪽 반구는 상기 테스트1을 나타내고, 지면의 오른쪽 반구는 상기 테스트2를 나타내고, 상기 케이스1과 케이스2를 모두 포함하는 그래프이다.
도 10의 동작전압을 살펴보면, 테스트1 보다 테스트2가 동작전압이 전체적으로 낮음을 알 수 있다. 도 11의 광출력을 살펴보면, 테스트1 보다 테스트2가 광출력이 전체적으로 높음을 알 수 있다.
도 12는 일 실시예에 따른 발광소자 패키지(10)를 나타낸 도면이다.
실시예에 따른 발광소자 패키지(10)는 캐비티를 포함하는 몸체(11)와, 상기 몸체(11)에 설치된 제1 리드 프레임(12)(lead frame) 및 제2 리드 프레임(13)과, 상기 몸체(11)에 설치되어 상기 제1 리드 프레임(12) 및 제2 리드 프레임(13)과 전기적으로 연결되는 상술한 실시예에 따른 발광소자(20)와, 상기 캐비티에 형성된 몰딩부(16)를 포함한다.
몸체(11)는 실리콘 재질, 합성수지 재질, 또는 금속 재질을 포함하여 형성될 수 있다. 상기 몸체(11)가 금속 재질 등 도전성 물질로 이루어지면, 도시되지는 않았으나 상기 몸체(11)의 표면에 절연층이 코팅되어 상기 제1,2 리드 프레임(12, 13) 간의 전기적 단락을 방지할 수 있다. 패키지 몸체(11)에는 캐비티가 형성되고, 캐비티의 바닥면에 발광소자(20)가 배치될 수 있다.
제1 리드 프레임(12) 및 제2 리드 프레임(13)은 서로 전기적으로 분리되며, 상기 발광소자(20)에 전류를 공급한다. 또한, 제1 리드 프레임(12) 및 제2 리드 프레임(13)은 발광소자(20)에서 발생된 광을 반사시켜 광효율을 증가시킬 수 있으며, 발광소자(20)에서 발생된 열을 외부로 배출시킬 수도 있다.
발광소자(20)는 상술한 실시예에 따를 수 있으며, 제1 리드 프레임(12)과 제2 리드 프레임(13)에 와이어(14)를 통하여 전기적으로 연결될 수 있다.
발광소자(20)는 패키지 몸체(11)의 바닥면에 도전성 페이스트(미도시) 등으로 고정될 수 있고, 상기 몰딩부(16)는 상기 발광소자(20)를 포위하여 보호할 수 있으며, 몰딩부(16) 내에는 형광체(17)가 포함되어 발광소자(20)에서 방출된 제1 파장 영역의 광에 의하여 형광체(17)가 여기되어 제2 파장 영역의 광을 방출할 수 있다.
발광소자 패키지(10)는 상술한 실시예들에 따른 발광소자 중 하나 또는 복수 개를 탑재할 수 있으며, 이에 대해 한정하지는 않는다.
상술한 발광소자 내지 발광소자 패키지는 조명 시스템의 광원으로 사용될 수 있는데, 예를 들어 영상표시장치의 영상표시장치와 조명 장치 등의 발광 장치에 사용될 수 있다.
영상표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치에 사용될 때 등기구나 빌트인(built-in) 타입의 광원에 사용될 수도 있다.
실시예와 관련하여 전술한 바와 같이 몇 가지만을 기술하였지만, 이외에도 다양한 형태의 실시가 가능하다. 앞서 설명한 실시예들의 기술적 내용들은 서로 양립할 수 없는 기술이 아닌 이상은 다양한 형태로 조합될 수 있으며, 이를 통해 새로운 실시형태로 구현될 수도 있다.
실시예에서, 상기 접촉층은 제2도전형 반도체층으로부터 활성층으로의 정공이 원활하게 주입되도록 하는 역할을 하여, 실시예의 발광소자는 동작전압이 낮아지고, 광출력이 높아지는 효과가 있다. 따라서, 산업상 이용가능성이 있다.

Claims (10)

  1. 기판;
    상기 기판 상에 배치되는 제1도전형 반도체층;
    상기 제1도전형 반도체층 상에 배치되고, 복수의 양자우물층과 복수의 양자장벽층이 교대로 적층되어 구비되는 활성층;
    상기 활성층 상에 배치되는 제2도전형 반도체층;
    상기 제2도전형 반도체층 상에 배치되는 접촉층;
    상기 접촉층 상에 배치되는 전류분산층; 및
    상기 제2도전형 반도체층 상에 배치되는 전류차단층을 포함하고,
    상기 접촉층 및/또는 전류분산층은,
    밀러(Miller) 면지수가 400인 경우 X선 회절빔 강도가 최대가 되고,
    상기 전류차단층의 적어도 일부를 감싸도록 구비되는 발광소자.
  2. 제1항에 있어서,
    상기 전류분산층은,
    Ar 가스 분위기에서 증착되어 형성되고, X선 회절실험에서 밀러 면지수에 따라 회절빔 강도가 복수의 피크값을 가지고, 밀러 면지수가 400인 경우 회절빔 강도가 최대 피크값을 가지는 발광소자.
  3. 제1항에 있어서,
    상기 전류차단층의 두께와, 상기 접촉층 및 전류분산층의 총 두께비율은,
    전류차단층 : (접촉층+ 전류분산층) = 2:1 내지 5:1로 형성되는 발광소자.
  4. 제1항에 있어서,
    상기 접촉층은,
    ITO, NiO 및 NiAu 중 적어도 하나의 재질로 형성되는 발광소자.
  5. 제1항에 있어서,
    상기 제1도전형 반도체층 상에 배치되는 제1전극;
    상기 제2도전형 반도체층 상에 배치되는 제2전극을 더 포함하고,
    상기 전류차단층은,
    상기 제2도전형 반도체층과 상기 제2전극 사이에 배치되고,
    상기 전류차단층과 상기 제2전극 사이에는 상기 전류분산층이 배치되는 발광소자.
  6. 제1항에 있어서,
    상기 기판 하부에 배치되는 반사층; 및
    적어도 일부가 상기 전류분산층 상에 배치되는 패시베이션층(passivation layer)을 더 포함하는 발광소자.
  7. 반사층;
    상기 반사층 상에 배치되는 기판;
    상기 기판 상에 배치되는 제1도전형 반도체층;
    상기 제1도전형 반도체층 상에 배치되는 활성층;
    상기 활성층 상에 배치되는 제2도전형 반도체층;
    상기 제2도전형 반도체층 상에 배치되는 접촉층; 및
    상기 접촉층 상에 배치되고, ITO 재질로 형성되는 전류분산층;
    상기 전류분산층 상에 배치되는 패시베이션층;
    상기 제1도전형 반도체층 상에 배치되는 제1전극;
    상기 제2도전형 반도체층 상에 배치되는 제2전극; 및
    상기 제2도전형 반도체층과 상기 제2전극 사이에 배치되는 전류차단층
    을 포함하는 발광소자.
  8. 제7항에 있어서,
    상기 제2전극이 배치되는 메사(MESA)가 형성되고,
    상기 메사의 상기 제1도전형 반도체층의 측면에서 상기 제1전극의 가장 가까운 지점까지의 이격거리는 3μm 내지 10μm인 발광소자.
  9. 제7항에 있어서,
    상기 전류차단층의 면적은 상기 제2전극의 면적보다 크고,
    상기 전류분산층과 상기 접촉층의 두께비율은,
    분산층 : 접촉층 = 6:1 내지 10:1로 형성되는 발광소자.
  10. 캐비티를 포함하는 몸체;
    상기 몸체에 설치된 리드 프레임(lead frame); 및
    상기 리드 프레임과 전기적으로 연결되는 제1항 내지 제9항 중 어느 한 항의 발광소자
    를 포함하는 발광소자 패키지.
PCT/KR2017/001104 2016-02-02 2017-02-02 발광소자 및 이를 포함하는 발광소자 패키지 WO2017135688A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/074,697 US20190081208A1 (en) 2016-02-02 2017-02-02 Light emitting device and light emitting device package including the same
CN201780009234.4A CN108604622B (zh) 2016-02-02 2017-02-02 发光器件和包括发光器件的发光器件封装

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0012663 2016-02-02
KR1020160012663A KR102506957B1 (ko) 2016-02-02 2016-02-02 발광소자

Publications (1)

Publication Number Publication Date
WO2017135688A1 true WO2017135688A1 (ko) 2017-08-10

Family

ID=59500422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001104 WO2017135688A1 (ko) 2016-02-02 2017-02-02 발광소자 및 이를 포함하는 발광소자 패키지

Country Status (4)

Country Link
US (1) US20190081208A1 (ko)
KR (1) KR102506957B1 (ko)
CN (1) CN108604622B (ko)
WO (1) WO2017135688A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295780B1 (ko) * 2017-08-31 2021-09-01 도시바 마테리알 가부시키가이샤 반도체 발광 소자 및 그의 제조 방법
US11244930B2 (en) * 2018-08-10 2022-02-08 Innolux Corporation Electronic device with light emitting units with reduced power consumption
CN116978999B (zh) * 2023-09-22 2024-01-02 南昌凯捷半导体科技有限公司 一种电流限域Micro-LED芯片及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028042A (ja) * 2006-07-19 2008-02-07 Toshiba Corp 発光装置
JP2008300719A (ja) * 2007-06-01 2008-12-11 Nichia Corp 半導体発光素子およびその製造方法
KR20120053990A (ko) * 2012-03-09 2012-05-29 서울옵토디바이스주식회사 전극 패드를 갖는 발광 다이오드 칩
JP2012136759A (ja) * 2010-12-27 2012-07-19 Sharp Corp Ito膜およびその製造方法、半導体発光素子およびその製造方法
KR20140118654A (ko) * 2013-03-29 2014-10-08 서울바이오시스 주식회사 발광 다이오드 칩

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025610A1 (de) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement mit mehreren Stromaufweitungsschichten und Verfahren zu dessen Herstellung
JP5232970B2 (ja) * 2006-04-13 2013-07-10 豊田合成株式会社 半導体発光素子の製造方法及び半導体発光素子とそれを備えたランプ
CN100438110C (zh) * 2006-12-29 2008-11-26 北京太时芯光科技有限公司 一种具有电流输运增透窗口层结构的发光二极管
JP2009031742A (ja) * 2007-04-10 2009-02-12 Fujifilm Corp 有機電界発光表示装置
US8987772B2 (en) * 2010-11-18 2015-03-24 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
KR20120053571A (ko) * 2010-11-18 2012-05-29 서울옵토디바이스주식회사 복수의 메사 구조체를 갖는 발광 다이오드 칩
KR101537330B1 (ko) * 2012-12-28 2015-07-16 일진엘이디(주) 질화물 반도체 발광 소자 제조 방법
CN105226158A (zh) * 2015-10-10 2016-01-06 厦门乾照光电股份有限公司 一种大尺寸发光二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028042A (ja) * 2006-07-19 2008-02-07 Toshiba Corp 発光装置
JP2008300719A (ja) * 2007-06-01 2008-12-11 Nichia Corp 半導体発光素子およびその製造方法
JP2012136759A (ja) * 2010-12-27 2012-07-19 Sharp Corp Ito膜およびその製造方法、半導体発光素子およびその製造方法
KR20120053990A (ko) * 2012-03-09 2012-05-29 서울옵토디바이스주식회사 전극 패드를 갖는 발광 다이오드 칩
KR20140118654A (ko) * 2013-03-29 2014-10-08 서울바이오시스 주식회사 발광 다이오드 칩

Also Published As

Publication number Publication date
CN108604622B (zh) 2022-04-15
KR20170091863A (ko) 2017-08-10
US20190081208A1 (en) 2019-03-14
KR102506957B1 (ko) 2023-03-08
CN108604622A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2016190664A1 (ko) 발광소자
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2017014512A1 (ko) 발광 소자
WO2018117699A1 (ko) 반도체 소자
WO2013183888A1 (ko) 발광소자
WO2017116048A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2016190665A1 (ko) 발광소자
WO2018212416A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2021210919A1 (ko) 단일칩 복수 대역 발광 다이오드
WO2018097649A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2013162337A1 (en) Light emitting device and light emitting device package
WO2017135688A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2015199388A1 (ko) 발광소자
WO2017052344A1 (ko) 발광소자, 발광소자 패키지 및 발광장치
WO2016104958A1 (ko) 적색 발광소자 및 조명장치
WO2017119730A1 (ko) 발광 소자
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2017034346A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2021256839A1 (ko) 단일칩 복수 대역 발광 다이오드 및 그 응용품
WO2020040449A1 (ko) 반도체 소자
WO2018226049A1 (ko) 반도체 소자
WO2014021651A1 (ko) 발광 소자
WO2016080671A1 (ko) 발광소자 및 조명시스템
WO2016072661A1 (ko) 자외선 발광소자 및 조명시스템
WO2022177306A1 (ko) 단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747733

Country of ref document: EP

Kind code of ref document: A1