WO2022177306A1 - 단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈 - Google Patents

단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈 Download PDF

Info

Publication number
WO2022177306A1
WO2022177306A1 PCT/KR2022/002318 KR2022002318W WO2022177306A1 WO 2022177306 A1 WO2022177306 A1 WO 2022177306A1 KR 2022002318 W KR2022002318 W KR 2022002318W WO 2022177306 A1 WO2022177306 A1 WO 2022177306A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
sub
light emitting
nitride semiconductor
Prior art date
Application number
PCT/KR2022/002318
Other languages
English (en)
French (fr)
Inventor
이정훈
백용현
강지훈
민대홍
조대성
이소라
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Priority to EP22756504.1A priority Critical patent/EP4254522A1/en
Publication of WO2022177306A1 publication Critical patent/WO2022177306A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to a light emitting diode, and more particularly, to a light emitting diode emitting light having a plurality of bands at a single chip level.
  • Nitride semiconductors are used as light sources for display devices, traffic lights, lighting, or optical communication devices, and are mainly used for light emitting diodes or laser diodes that emit blue or green light.
  • the nitride semiconductor may be used in a heterojunction bipolar transistor (HBT), a high electron mobility transistor (HEMT), and the like.
  • a light emitting diode using a nitride semiconductor has a heterojunction structure having a quantum well structure between an N contact layer and a P contact layer.
  • the light emitting diode emits light according to the composition of the well layer in the quantum well structure.
  • light emitting diodes are designed to emit light in a spectrum with a single peak, i.e. monochromatic light.
  • the use of the phosphor is accompanied by problems such as the cost of the phosphor itself and a decrease in efficiency known as Stokes shift. In addition, it is accompanied by problems such as many process problems for applying a phosphor on a light emitting diode and yellowing of a carrier supporting the phosphor.
  • An object of the present disclosure is to provide a light emitting diode having a new structure capable of realizing light of a multi-band spectrum at a single chip level, a light emitting device having the same, and a light emitting module.
  • An object of the present disclosure is to provide a light emitting diode having improved light emitting efficiency, a light emitting device having the same, and a light emitting module.
  • a light emitting diode includes an n-type nitride semiconductor layer; a V-pit generation layer disposed on the n-type nitride semiconductor layer and having V-pits; an active layer disposed on the V-pit generation layer, the active layer including a first well region formed along a flat surface of the V-pit generation layer and a second well region formed in the V-pit of the V-pit generation layer; a p-type nitride semiconductor layer positioned on the active layer; and a sub-emission layer interposed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer and adjacent to the active layer, wherein the sub-emission layer emits light having a peak wavelength shorter than the peak wavelength of the first well region. and the light emitted from the light emitting diode is within the range of 0.205 ⁇ X ⁇ 0.495 and 0.265 ⁇ Y ⁇ 0.450 in CIE color coordinates (X, Y).
  • the active layer may emit light of at least two different peak wavelengths at a single chip level.
  • the first well region may have a greater In content than the second well region.
  • the first well region may emit yellow light having a peak wavelength within a range of 570-590 nm, and the second well region may emit blue light having a peak wavelength within a range of 400-500 nm.
  • the first well region may be thicker than the second well region.
  • the sub-emission layer may include a well layer and a capping layer.
  • the sub-emission layer may have a smaller In content than the first well region.
  • the sub-emission layer is positioned between the active layer and the V-pit generation layer, and may be in contact with the active layer.
  • the sub-emission layer may have a V-pit.
  • the well layer of the sub-emission layer may have a wider energy bandgap than the well layer of the first well region.
  • the lattice constant of the sub-emission layer may have an intermediate value between the lattice constant of the upper lattice of the V-pit generation layer and the lattice constant of the active layer.
  • the sub-emission layer may be in contact with an upper portion of the active layer.
  • the sub-emissive layer may include a lower sub-emissive layer in contact with a lower portion of the active layer; and an upper sub-emission layer in contact with an upper portion of the active layer.
  • the sub-emission layer, the first well region, and the second well region may emit light of at least three different peak wavelengths at a single chip level.
  • the sub-emission layer may emit blue light
  • the second well region may emit blue light having a wavelength shorter or longer than that of the sub-emission layer
  • the first well region may emit yellow light
  • the light emitting diode may further include an electron block layer between the active layer and the p-type nitride semiconductor.
  • a light emitting device includes: a light emitting diode; and a light transmitting layer disposed on the light emitting diode.
  • the light emitting diode may include an n-type nitride semiconductor layer; a V-pit generation layer disposed on the n-type nitride semiconductor layer and having V-pits; an active layer disposed on the V-pit generation layer, the active layer including a first well region formed along a flat surface of the V-pit generation layer and a second well region formed in the V-pit of the V-pit generation layer; a p-type nitride semiconductor layer positioned on the active layer; and a sub-emission layer interposed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer and positioned adjacent to the active layer, wherein the sub-emission layer has a peak wavelength shorter than the peak wavelength of the first well region.
  • the light transmitting layer may be a single layer or a multilayer.
  • the light emitting diode may further include a substrate, and the n-type nitride semiconductor layer may be located on the substrate.
  • the light transmitting layer may include a first light transmitting layer and a second light transmitting layer covering the first light transmitting layer.
  • the second light transmitting layer may cover the side surface of the substrate together with the upper surface of the substrate.
  • a light emitting module includes a circuit board; a light emitting element arranged on the circuit board; and a light transmitting layer covering the light emitting device.
  • the light emitting device may include a light emitting diode, the light emitting diode comprising: an n-type nitride semiconductor layer; a V-pit generation layer disposed on the n-type nitride semiconductor layer and having V-pits; an active layer disposed on the V-pit generation layer, the active layer including a first well region formed along a flat surface of the V-pit generation layer and a second well region formed in the V-pit of the V-pit generation layer; a p-type nitride semiconductor layer positioned on the active layer; and a sub-emission layer interposed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer and positioned adjacent to the active layer, wherein the sub-emission layer has a peak wavelength shorter than the peak wavelength of the first well region.
  • FIG. 1 is a schematic cross-sectional view for explaining a light emitting diode according to an embodiment of the present disclosure.
  • Fig. 2A is a schematic partial cross-sectional view showing an enlarged portion of Fig. 1;
  • FIG. 2B is a diagram illustrating the energy band diagram of FIG. 2A.
  • FIG. 2C is a schematic partial cross-sectional view showing an enlarged view of the sub-emissive layer of FIG. 2A.
  • 3A is a graph showing photoluminescence (PL) intensity of light emitting diodes according to Comparative Example 1 and Example 1.
  • FIG. 3A is a graph showing photoluminescence (PL) intensity of light emitting diodes according to Comparative Example 1 and Example 1.
  • 3B is a graph showing the electroluminescence (EL) intensity of the light emitting diodes according to Comparative Example 1 and Example 1.
  • FIG. 3B is a graph showing the electroluminescence (EL) intensity of the light emitting diodes according to Comparative Example 1 and Example 1.
  • FIG. 4 is a schematic cross-sectional view for explaining a light emitting diode according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view illustrating a light emitting diode according to another embodiment of the present disclosure.
  • 6A is a graph showing PL intensity of light emitting diodes according to Comparative Examples 1 and 2;
  • FIG. 6B is a graph showing the EL intensity of the light emitting diode according to Example 2.
  • FIG. 7 is a schematic cross-sectional view illustrating a horizontal light emitting device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view illustrating a horizontal light emitting device according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view illustrating a flip-type light emitting device according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view for explaining a light emitting module according to an embodiment of the present disclosure.
  • 11A is a perspective view illustrating a light emitting diode package to which a light emitting diode according to an embodiment of the present invention is applied.
  • Fig. 11B is a plan view of Fig. 11A;
  • Fig. 11C is a cross-sectional view taken along line II' of Fig. 11B.
  • FIG. 1 is a schematic cross-sectional view for explaining a light emitting diode according to an embodiment of the present disclosure
  • FIG. 2A is a schematic partial cross-sectional view showing an enlarged part of FIG. 1
  • FIG. 2B is an energy band diagram of FIG. 2A
  • FIG. 2C is an enlarged partial cross-sectional view of the sub-emission layer 121 of FIG. 2A.
  • the light emitting diode includes a substrate 111 , a nuclear layer 113 , a high-temperature buffer layer 115 , an n-type nitride semiconductor layer 117 , and a V-pit generation layer 119 . ), a sub-emission layer 121 , an active layer 123 , an electron block layer 125 , and a p-type nitride semiconductor layer 127 .
  • the substrate 111 is for growing a gallium nitride-based semiconductor layer, and sapphire, SiC, Si, GaN, and spinel substrates may be used.
  • the substrate 111 may have protrusions as shown in FIG. 1 , and may be, for example, a patterned sapphire substrate.
  • the present disclosure is not limited thereto, and the substrate 111 may be, for example, a substrate having a flat top surface or a flat sapphire substrate.
  • a nuclear layer 113 may be formed on the substrate 111 .
  • the nuclear layer 113 may be formed of (Al, Ga)N on the substrate 111 at a low temperature of 400° C. to 600° C., for example, of AlGaN or GaN.
  • the composition of the nuclear layer 113 may be changed depending on the substrate 111 .
  • the nucleus layer 113 may be formed of AlGaN
  • the nucleus layer 113 may be formed of GaN.
  • the nuclear layer 113 may be formed, for example, to a thickness of about 25 nm.
  • a high-temperature buffer layer 115 may be formed on the nuclear layer 113 .
  • the high temperature buffer layer 115 may be grown at a relatively high temperature in order to mitigate the occurrence of defects such as dislocations between the substrate 111 and the n-type nitride semiconductor layer 117 .
  • the high temperature buffer layer 115 may be formed of undoped GaN or GaN doped with n-type impurities. While the high temperature buffer layer 115 is being formed, a real dislocation may be generated due to a lattice mismatch between the substrate 111 and the high temperature buffer layer 115 .
  • the n-type nitride semiconductor layer 117 may be formed on the high temperature buffer layer 115 .
  • the n-type nitride semiconductor layer 117 is a nitride-based semiconductor layer doped with n-type impurities, and may be, for example, a nitride semiconductor layer doped with Si.
  • the Si doping concentration doped into the n-type nitride semiconductor layer 117 may be 5E17/cm 3 to 5E19/cm 3 .
  • the n-type nitride semiconductor layer 117 may be grown under a growth pressure of 150 Torr to 200 Torr at 1000° C. to 1200° C. (eg, 1050° C.
  • the n-type nitride semiconductor layer 117 may be continuously formed on the high-temperature buffer layer 115 , and the actual potential D formed in the high-temperature buffer layer 115 is the n-type nitride semiconductor layer 117 . can be transferred to The n-type nitride semiconductor layer 117 may be formed to be relatively thinner than the high temperature buffer layer 115 , for example, to have a thickness of about 2.5 ⁇ m.
  • the V-pit generation layer 119 may be positioned on the n-type nitride semiconductor layer 117 .
  • the V-pit generation layer 119 may be formed of, for example, a GaN layer.
  • the V-pit generation layer 119 may be grown at a relatively lower temperature than that of the n-type nitride semiconductor layer 117 , for example, about 900° C., and accordingly, the V-pit generation layer 119 in the V-pit generation layer 119 . (119v) may be formed.
  • the V-pit generation layer 119 is grown at a relatively lower temperature than that of the n-type nitride semiconductor layer 117, thereby artificially lowering crystal quality and promoting three-dimensional growth to generate V-pits 119v.
  • the V-pits 119v may have a hexagonal pyramid shape when the growth surface of the nitride semiconductor layer is the C-plane.
  • the V-pits 119v may be formed at the upper end of the actual potential.
  • the V-pit generation layer 119 may be formed to have a thickness smaller than that of the n-type nitride semiconductor layer 117 , for example, to have a thickness of about 450 nm to 600 nm.
  • the size of the V-pits 119v formed in the V-pit generation layer 119 may be controlled through the growth conditions and growth time of the V-pit generation layer 119 .
  • the size of the V-pits 119v formed in the V-pit generation layer 119 may affect generation of multi-band spectrum light.
  • the V-pit generation layer 119 is described as a single layer, but is not limited thereto, and may be a multilayer.
  • the V-pit generation layer 119 may include at least two of GaN, AlGaN, InGaN, or AlGaInN layers.
  • the sub-emission layer 121 is disposed on the V-pit generation layer 119 and is disposed adjacent to the active layer 123 to be described later.
  • the sub-emission layer 121 may emit light having a predetermined energy by recombination of electrons and holes.
  • the sub-emission layer 121 may include three well layers 121w, but is not limited thereto, and may include at least one well layer 121w.
  • the well layer 121w of the sub-emission layer 121 may include a nitride semiconductor layer such as InxAlyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), for example, InGaN. .
  • the sub-emission layer 121 may be grown at a temperature relatively lower than that of the V-pit generation layer 119 , and may be grown at a temperature relatively higher than that of the active layer 123 .
  • the In content of the sub-emissive layer 121 may be less than the In content of the active layer 123 , and the energy bandgap Eg1 of the sub-emissive layer 121 is greater than the energy bandgap Eg2 of the active layer 123 .
  • can be large Energy band gaps Eg1 and Eg2 of the sub-emission layer 121 and the active layer 123 vary depending on the content of In, and as the content of In decreases, the energy band gap may increase.
  • the V-pit generation layer 119 , the sub-emission layer 121 , and the active layer 123 are In content may increase. Accordingly, it is possible to reduce the transfer of stress and strain generated by the lattice mismatch between the nitride semiconductor layer and the substrate 111 to the active layer 123 , and prevent the propagation of defects such as dislocations to the active layer 123 . can do.
  • the lattice constant of the sub-emission layer 121 may have an approximately intermediate value between the lattice constant of the V-pit generation layer 119 and the lattice constant of the active layer 123, and thus, the sub-emission layer ( 121) may alleviate a difference in lattice constant between the V-pit generation layer 119 and the active layer 123 . Accordingly, the crystal quality of the active layer 123 may be improved by the sub-emission layer 121 .
  • the sub-emission layer 121 may serve as a superlattice layer for reducing a lattice constant difference.
  • the light emitting diode may further include a superlattice layer between the V-pit generation layer 119 and the active layer 123 in addition to the sub-emission layer 121 .
  • Light generated by the sub-emission layer 121 and the active layer 123 may have a first emission surface and a second emission surface on the upper and lower portions of the substrate 111 . That is, the light generated by the sub-emission layer 121 and the active layer 123 may be emitted toward the upper side of the substrate 111 through the first emission surface, or the second emission surface opposite the first emission surface. may be emitted in a downward direction of the substrate 111 through the .
  • the light extraction efficiency emitted to the second emission surface may be higher than the light extraction efficiency emitted to the first emission surface. This is related to the energy bandgap of the active layer 123 emitting long-wavelength light and the sub-emissive layer 121 emitting short-wavelength light.
  • the active layer 123 having an energy bandgap Eg2 lower than the energy bandgap Eg1 of the sub-emission layer 121 is disposed adjacent to the p-type nitride semiconductor layer 127, the p-type nitride semiconductor layer Most of the recombination occurs in the active layer 123 due to the high barrier felt by the holes injected from 127 , and the recombination rate in the sub-emission layer 121 decreases, so that luminous efficiency may be lowered.
  • the light emitting diode structure according to the embodiment of the present disclosure may be suitable for a light emitting diode having a vertical structure or a flip chip structure that emits light through the second emission surface under the substrate 111 in order to reduce light loss.
  • the sub-emission layer 121 may be formed along a top surface of the V-pit generation layer 119 . As shown in FIG. 2A , the sub-emission layer 121 includes a first sub-emission region 121a formed on the flat surface of the V-pit generation layer 119 and a first sub-emission region 121a formed in the V-pit 119v. It may include two sub-emission regions 121b.
  • the slope in the V-pit 119v has a relatively low growth rate, and accordingly, the thickness of the second sub-emission region 121b formed on the slope in the V-pit 119v is similar to that of the first sub-emission region 121a. ) may be formed thinner than the thickness of the
  • a thickness of the second sub-emission region 121b in the V-pit 119v may vary according to a size of the V-pit 119v.
  • the size of the V-pits 119v may be adjusted by controlling the deposition time and growth temperature of the V-pit generation layer 119 .
  • the well layer included in the second sub-emission region 121b may be formed of InGaN having a lower In content than the well layer included in the first sub-emission region 121a.
  • the second sub-emission region 121b may not emit light because the content of In is too small, but the present disclosure is not limited thereto, and may emit light according to driving conditions.
  • the active layer 123 may be positioned on the sub-emission layer 121 .
  • the active layer 123 may emit light having a predetermined energy by recombination of electrons and holes.
  • the active layer 123 may have a single quantum well structure or a multi quantum well (MQW) structure in which quantum barrier layers and quantum well layers are alternately stacked.
  • the quantum barrier layer may be formed of a nitride semiconductor layer such as GaN, InGaN, AlGaN, or AlInGaN having a wider bandgap than the quantum well layer.
  • the active layer 123 includes a well layer 123a and a barrier layer 123b and may be in contact with the sub-emission layer 121 , but is not limited thereto.
  • the active layer 123 may be formed along the V-pit 119v, and the thickness of the active layer 123 formed in the V-pit 119v is a flat upper surface of the V-pit generation layer 119 . It may be smaller than the thickness of the active layer 123 formed on the .
  • the thickness of the active layer 123 in the V-pit 119v may vary according to the size of the V-pit 119v.
  • the well layer 123a may be formed of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the composition ratio of In, Al, and Ga may be selected according to the required light.
  • the active layer 123 may include a first well region 123c formed on the flat surface of the V-pit generation layer 119 and a second well region 123d formed in the V-pit 119v. can
  • the first well region 123c may have a composition for emitting light of a multi-band long-wavelength band
  • the second well region 123d may have a composition emitting light of a multi-band short-wavelength band.
  • the first well region 123c may be formed of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) so as to emit yellow light of 570 nm to 590 nm. and the second well region 123d may be formed of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) to emit blue-based light of 400 nm to 500 nm,
  • the present disclosure is not limited thereto.
  • Light emitted from the first well region 123c and the second well region 123d has different wavelengths, and is emitted from the first well region 123c and the second well region 123d.
  • White light may be realized by a combination of light.
  • the second well region 123d may be formed on each surface of the V-pit 119v to have the same composition, but is not limited thereto, and may be formed to have a different composition on each surface. Accordingly, the light emitting diode of the present disclosure may implement light having at least two bands at a single chip level using the first well region 123c and the second well region 123d. In addition, short wavelength light with a stronger intensity may be emitted due to the short wavelength light emitted from the sub-emission layer 121 as well as the short wavelength light emitted from the second well region 123d of the active layer 123 . Accordingly, the correlated color temperature (CCT) may implement white light within the range of 3000K to 7000K, and the correlated color temperature (CCT) may be adjusted according to the use.
  • CCT correlated color temperature
  • the active layer 123 may emit light having at least two bands. However, since the first well region 123c and the second well region 123d are formed together in the same process, it is necessary to control the thickness and In composition of the second well region 123d of the active layer 123 that emits light with a short wavelength. can be difficult That is, since the content of In in the second well region 123d is substantially dependent on the content of In in the first well region 123c, the peak wavelength and intensity of light emitted from the second well region 123d in the short wavelength region. can be difficult to control.
  • the sub-emission layer 121 may be grown under conditions different from those of the active layer 123 , the In composition and thickness may be freely adjusted. Accordingly, by disposing the sub-emission layer 121 , it is possible to independently control the peak wavelength of a desired short wavelength region and increase the intensity of light in the corresponding wavelength region. In addition, the light of a short wavelength emitted from the second well region 123d may be reinforced by using the sub-emission layer 121 .
  • the barrier layer 123b may be formed of a nitride semiconductor layer such as GaN, InGaN, AlGaN, or AlInGaN, which has a wider energy bandgap than the well layer 123a.
  • the barrier layer 123b may be formed of InGaN having a lower In content than the well layer 123a.
  • a capping layer (not shown) may be interposed between the well layer 123a and the barrier layer 123b.
  • the capping layer may be formed before depositing the barrier layer 123b to prevent dissociation of In in the well layer 123a while the barrier layer 123b is deposited.
  • the capping layer may include Al, for example, may be formed of AlGaN or AlInGaN.
  • the Al composition contained in the capping layer includes a first capping layer portion, that is, a portion of the capping layer disposed on the flat surface of the V-pit generating layer 119, and a second capping layer portion, that is, in the V-pit 119v.
  • the formed capping layer portions may be different from each other.
  • An Al content in the first capping layer portion may be greater than an Al content in the second capping layer portion.
  • the Al composition in the first capping layer portion may be 10 atomic % or more, further 12 atomic % or more with respect to the total composition in the capping layer, and the Al composition in the second capping layer portion is the total composition in the capping layer. It may be about 5 atomic% or more.
  • the well layers of the sub-emission layer 121 may have a composition that emits light having a shorter wavelength than the first well region 123c of the active layer 123 .
  • a composition that emits light having a shorter wavelength than the first well region 123c of the active layer 123 For example, InxAlyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) so that the first well region 123c of the active layer 123 emits yellow light within a central wavelength range of 570 nm to 590 nm.
  • the well layers of the sub-emission layer 121 have a lower In content than the first well region 123c of the active layer 123, InxAlyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) can be formed with
  • the sub-emission layer 121 may emit blue-based light within a range of 400 nm to 500 nm, which is a shorter central wavelength than the first well region 123c of the active layer 123 .
  • the present disclosure is not limited thereto.
  • the first well region 123c of the active layer 123 and the light emitted from the sub-emission layer 121 realizes white light
  • the first well region 123c of the active layer 123 and the sub-emission layer 121 The wavelength of the light emitted from the light emitting layer 121 is not particularly limited.
  • the second well region 123d of the active layer 123 may emit blue or green light.
  • the sub-emission layer 121 may emit light of the same color as the light emitted from the second well region 123d of the active layer 123 .
  • a peak wavelength of light emitted from the sub-emission layer 121 may be similar to, or may be the same as, a peak wavelength of light generated from the second well region 123d.
  • the sub-emission layer 121 may adjust the wavelength of light emitted from the sub-emission layer 121 by changing a growth temperature when each well layer is grown. For example, the In content of the well layer may be increased by growing the well layer of the sub-emission layer 121 at a relatively low temperature. Accordingly, the sub-emission layer 121 may generate light having a longer wavelength than a peak wavelength of light generated in the second well region 123d of the active layer 123 .
  • the first well region 123c of the active layer 123 may emit yellow light
  • the second well region 123d of the active layer 123 may emit blue light
  • the sub-emission layer Reference numeral 121 may emit blue light having a shorter wavelength than the yellow light of the first well region 123c and having a longer wavelength than the blue light of the second well region 123d.
  • the sub-emission layer 121 may emit light having a shorter wavelength than a peak wavelength of light emitted from the second well region 123d.
  • the light emitting diode emits light having at least two or more, further three or more bands through at least two bands emitted from the active layer 123 and at least one band emitted from the sub-emission layer 121 at a single chip level.
  • the peak wavelength of the blue light emitted from the second well region 123d and the peak wavelength of the blue light emitted from the sub-emission layer 121 may be close to each other and may be substantially the same. Accordingly, the light emitting diode of the present disclosure can emit light of a shorter wavelength region with a stronger intensity than a light emitting diode that emits light of a shorter wavelength by using the second well region 123d alone without the sub light emitting layer 121 . A low cool white light can be realized.
  • the well layers in the sub-emission layer 121 may be grown at the same temperature.
  • the peak wavelength of light emitted from the sub-emission layer 121 may be adjusted by varying the growth temperatures of the plurality of well layers.
  • the sub-emission layer 121 may further include a capping layer 121c, and the capping layer 121c may be disposed on each well layer 121w of the sub-emission layer 121 .
  • the capping layer 121c may be formed of, for example, AlGaN or AlInGaN, and may perform a capping function with a bandgap higher than that of the well layer 121w of the sub-emission layer 121 .
  • the capping layer 121c is formed to prevent dissociation of In in the well layer 121w of the sub-emission layer 121 while the well layer 121w or the active layer 123 of the sub-emission layer 121 is deposited. can be formed.
  • the sub-emission layer 121 may serve as a barrier layer of the active layer 123 , and accordingly, a separate barrier layer may not be included, thereby reducing the thickness of the light emitting diode.
  • the capping layer 121c may include a capping layer formed on the flat surface of the V-pit generation layer 119 and a capping layer formed in the V-pit 119v.
  • the Al composition contained in the capping layer formed on the flat surface of the V-pit generation layer 119 may be different from the Al composition contained in the capping layer formed in the V-pit 119v.
  • the Al content of the capping layer formed on the flat surface of the V-pit generation layer 119 may be greater than the Al content of the capping layer formed in the V-pit 119v.
  • An electron block layer 125 may be positioned on the active layer 123 .
  • the electron block layer 125 may be formed of, for example, P-type AlGaN, but is not limited thereto, and may be formed of AlInGaN or the like. The electron block layer 125 may also be formed in the V-pit 119v.
  • the P-type AlGaN of the electron block layer 125 may be expressed by the general formula Al x Ga 1-x N, where x may be greater than 0 and less than 0.3. Meanwhile, in an embodiment of the present disclosure, the thickness of the electron block layer 125 may be less than about 100 nm.
  • the electron block layer 125 may perform an electron blocking function by adjusting the energy band gap and at the same time effectively prevent leakage current.
  • the electron block layer 125 has a relatively high energy bandgap and prevents electron overflow to increase the electron recombination rate.
  • a p-type nitride semiconductor layer 127 may be formed on the electron block layer 125 .
  • the p-type nitride semiconductor layer 127 may be formed of a semiconductor layer doped with a p-type impurity such as Mg, for example, GaN.
  • the p-type nitride semiconductor layer 127 may be a single layer or a multi-layer, and may include a p-type contact layer.
  • the p-type nitride semiconductor layer 127 may have a concave groove in the V-pit 119v.
  • the p-type nitride semiconductor layer 127 has a concave groove on the V-pit 119v, a path through which light emitted from the second well region 123d passes through the p-type nitride semiconductor layer 127 can be reduced. Accordingly, light loss due to the P-type nitride semiconductor layer 127 may be reduced.
  • light emitted through the n-type nitride semiconductor layer 117 or the p-type nitride semiconductor layer 127 has CIE color coordinates (X, Y) 0.205 ⁇ X ⁇ 0.495, 0.265 ⁇ Y ⁇ 0.450 It may be white light within the range.
  • FIG. 3A is a graph showing the photoluminescence (PL) intensity of the light emitting diodes according to Comparative Examples 1 and 1
  • FIG. 3B is an electroluminescence (EL) of the light emitting diodes according to Comparative Examples 1 and 1. This is a graph showing the intensity.
  • PL photoluminescence
  • EL electroluminescence
  • the light emitting diodes of Comparative Examples 1 and 1 have similar structures except for the presence or absence of the sub light emitting layer 121 , and are manufactured by growing semiconductor layers on a substrate 111 under similar process conditions.
  • Example 1 includes the sub-emission layer 121 positioned adjacent to the active layer 123 , whereas Comparative Example 1 does not include the sub-emission layer 121 .
  • the EL spectrum of Comparative Example 1 is indicated by a dotted line, and the EL spectrum of Example 1 is indicated by a solid line.
  • the EL spectrum of Comparative Example 1 as the current increased from 50 mA to 400 mA, a band of a long wavelength region and a band of a short wavelength region were observed together.
  • the long-wavelength band is formed by the light emitted from the first well region 123c of the active layer 123
  • the short-wavelength band is formed by the light emitted from the second well region 123d formed in the V-pit 119v. is formed by
  • the EL spectrum of Example 1 shows distinct bands in the long wavelength region and the short wavelength region, and the intensity of each band is relatively stronger than that of Comparative Example 1.
  • the band of the short wavelength region of Example 1 is formed by the light emitted from the second well region 123d and the sub-emission layer 121 in the V-pit 119v, and the band of the long wavelength region is the first of the active layer 123 . It is formed by the well region 123c. In particular, light in a short wavelength region has a relatively high energy.
  • a portion of the light generated by the sub-emission layer 121 is absorbed by the first well region 123c to increase the carrier concentration in the first well region 123c, and accordingly, the intensity of light emitted from the first well region 123c to increase
  • the half width of each band of Example 1 is narrower than that of each band of Comparative Example 1.
  • the half widths of the short and long wavelength regions of Example 1 were about 35 nm and 43 nm, respectively, whereas the half widths of the short and long wavelength regions of Comparative Example 1 were about 49 nm and 59 nm, respectively.
  • the full width at half maximum of the band in the short wavelength region may be adjusted within the range of 30 to 40 nm, and the full width at half maximum of the band in the long wavelength region may be adjusted within the range of 40 to 50 nm.
  • the light emitting diode is white light having a high color rendering index can emit. That is, in the region between about 475 nm and 500 nm between the yellow wavelength band, which is a long wavelength region, and the blue wavelength band, which is a short wavelength region, light having a lower emission intensity than the peak of the yellow wavelength band and the peak of the blue wavelength band is emitted, and light is emitted in this region
  • the intensity may be substantially constant. Accordingly, light is emitted over the entire wavelength within the range of 400 nm to 650 nm, and thus, white light having a high CRI can be realized with a nitride semiconductor-based material.
  • the emission intensity of the blue wavelength band together with the yellow wavelength band emitted from the active layer 123 may be increased. Furthermore, by disposing the sub-emission layer 121 , the intensity of the yellow wavelength band emitted from the active layer 123 may be increased. In addition, according to embodiments of the present disclosure, the intensity of a single peak in a blue wavelength band may be increased, so that, for example, a cold white color having a correlated color temperature of about 6500K may be realized.
  • the light emitting diode of the present disclosure has a correlated color temperature (CCT) in the range of 3000K to 7000K using the sub-emission layer 121 and the active layer 123, and CIE color coordinates (X, Y) 0.205 ⁇ X ⁇ 0.495, 0.265 ⁇ White light within the range of Y ⁇ 0.450 can be realized, and it can be appropriately adjusted according to the use.
  • CCT correlated color temperature
  • FIG. 4 is a schematic cross-sectional view for explaining a light emitting diode according to another embodiment of the present disclosure.
  • the light emitting diode according to the present embodiment is the same as the light emitting diode according to the embodiment of FIG. 1 except for the position of the sub light emitting layer 221 .
  • the light emitting diode according to this embodiment has a V-pit generation layer 219 , an active layer 223 , a sub light emitting layer 221 , an electron block layer 225 , and a P-type nitride-based light emitting diode similar to the light emitting diode of the embodiment of FIG. 1 .
  • a semiconductor layer 227 may be included.
  • the light emitting diode may include a substrate, a nuclear layer, a high-temperature buffer layer, and an N-type nitride semiconductor layer.
  • the active layer 223 may include a well layer 223a and a barrier layer 223b.
  • the sub-emission layer 221 may be disposed between the active layer 223 and the electron block layer 225 and may be in contact with an upper portion of the active layer 223 .
  • the sub-emission layer 221 may have three well layers, but is not limited thereto, and may include at least one well layer.
  • the sub-emission layer 221 includes a first sub-emission region 221a formed on the flat surface of the active layer 223 and a second sub-emission region formed along the active layer 223 formed in the V-pit 219v.
  • the region 221b may be included.
  • the slope of the V-pit 219v has a relatively low growth rate, and accordingly, the thickness of the second sub-emission region 221b formed on the slope of the V-pit 219v is equal to the thickness of the first sub-emission region. It may be formed to be thinner than the thickness of the region 221a.
  • a thickness of the sub-emission layer 221 in the V-pit 219v may vary according to a size of the V-pit 219v.
  • the sub-emission layer 221 is disposed on the active layer 223 , the light of the short wavelength region generated by the sub-emission layer 221 is emitted to the lower surface of the substrate 211 , that is, the second emission surface.
  • the extraction efficiency of light emitted to the upper side of the substrate 211, that is, the first exit surface, may be higher than the light extraction efficiency.
  • the active layer 223 emits light having a longer wavelength than that of the sub-emission layer 221 . That is, the well layers of the sub-emission layer 221 have a wider energy bandgap than the well layers 223a of the active layer 223 . Since the sub-emission layer 221 adjacent to the p-type nitride semiconductor layer 227 has a relatively wide bandgap, holes injected into the active layer 223 adjacent to the n-type nitride semiconductor layer are relatively reduced.
  • the active layer 223 having a bandgap lower than that of the sub-emission layer 221 is disposed adjacent to the n-type nitride semiconductor layer 217 , most of the holes injected from the p-type nitride semiconductor layer 227 are in the sub-emission layer. Since recombination may be performed at 221 , the recombination rate in the active layer 223 may be relatively decreased, thereby reducing luminous efficiency. Meanwhile, when light is emitted to the second emission surface, light of a short wavelength region emitted from the sub-emission layer 221 may be at least partially absorbed by the active layer 223 having a narrow bandgap.
  • the light emitting diode according to the present exemplary embodiment is manufactured as a light emitting device having a horizontal structure, so that extraction efficiency of light generated in the sub light emitting layer 221 may be increased.
  • FIG. 5 is a schematic cross-sectional view illustrating a light emitting diode according to another embodiment of the present disclosure.
  • the light emitting diode according to the present embodiment is substantially similar to the light emitting diode according to the embodiment of FIG. 1 , but in that sub light emitting layers 321c and 321f are disposed below and above the active layer 323 , respectively. There is a difference.
  • the light emitting diode according to this embodiment has a V-pit generation layer 319, an active layer 323, a sub light emitting layer 321c, an electron block layer 325, and a P-type nitride-based light emitting diode similar to the light emitting diode of the embodiment of FIG.
  • a semiconductor layer 327 may be included.
  • the light emitting diode may include a substrate, a nuclear layer, a high-temperature buffer layer, and an N-type nitride semiconductor layer.
  • the active layer 323 may include a well layer 323a and a barrier layer 323b.
  • the light emitting diode further includes a sub light emitting layer 321f disposed on the active layer 323 .
  • Each of the lower sub-emissive layer 321c and the upper sub-emissive layer 321f may have at least three well layers, but is not limited thereto.
  • the lower sub light emitting layer 321c and the upper sub light emitting layer 321f may each be formed of at least one well layer, or the number of each well layer of the lower and upper sub light emitting layers 321c and 321f is different. may be
  • the lower and upper sub-emission layers 321c and 321f include first sub-emission regions 321a and 321d disposed below and above the flat surface of the active layer 323 and second sub-emission regions formed in the V-pit 319v. Regions 321b and 321e may be included.
  • the slope in the V-pit 319v has a relatively low growth rate, and accordingly, the thickness of the second sub-emission regions 321b and 321e formed on the slope of the V-pit 319b is the same as the first It may be formed to be thinner than the thickness of the sub-emission regions 321a and 321d.
  • the thickness of the sub-emission layer 321 in the V-pit 319v may vary according to the size of the V-pit 319v.
  • FIG. 6A is a graph showing the photoluminescence (PL) intensity of the light emitting diodes according to Comparative Examples 1 and 2
  • FIG. 6B is a graph showing the electroluminescence (EL) intensity of the light emitting diodes according to Example 2 to be.
  • PL photoluminescence
  • EL electroluminescence
  • EL intensity according to wavelength was measured in a current range of 50 mA to 400 mA, respectively.
  • the EL spectrum of the light emitting diode of Comparative Example 1 is shown in Fig. 3C.
  • the light emitting diodes of Comparative Examples 1 and 2 have similar structures except for the presence or absence of sub light emitting layers 321c and 321f, and are manufactured by growing semiconductor layers on a substrate under similar process conditions.
  • the light emitting diode of Example 2 includes sub light emitting layers 321c and 321f on the lower and upper portions of the active layer 323, respectively, as described with reference to FIG. 5 .
  • the intensity of the light in the yellow wavelength band emitted from the active layer 323 is higher than the intensity of the sub-emission layers 321c and 321f.
  • the intensity of the light in the blue wavelength band is relatively higher.
  • the PL intensity of Example 2 is higher than that of Example 1, which is observed in a short wavelength region.
  • the intensity of light emitted in a short wavelength region is higher than that of light emitted in a long wavelength region.
  • the intensity in each wavelength band also increases, and the bands in the long and short wavelength regions become distinct.
  • the intensity of light emitted in a short wavelength region may be controlled by adjusting the positions of the sub-emissive layers 321c and 321f and the number and composition of the well layers of the sub-emissive layers 321c and 321f.
  • the intensity of light in the short wavelength region emitted to the first emission surface as well as to the second emission surface may be increased.
  • Light in the short wavelength region emitted from the lower sub-emission layer 321c may be at least partially absorbed by the active layer 323 before being emitted to the first emission surface, but light in the short wavelength region emitted from the upper sub-emission layer 321f Light in this short wavelength region can be compensated.
  • the light emitting diode according to an embodiment of the present disclosure may be applied to both a light emitting device having a horizontal structure in which light is emitted to a first emission surface or a light emitting device having a flip-type or vertical structure in which light is emitted to a second emission surface.
  • the light emitted to the second exit surface may be absorbed and scattered by the substrate, so that the light extraction efficiency at the second exit surface may be lower than the light extraction efficiency in the first exit surface. Accordingly, in consideration of light extraction efficiency, the light emitting diode according to the present embodiment may be more suitable for a light emitting device having a horizontal structure.
  • FIG. 7 is a schematic cross-sectional view illustrating a horizontal light emitting device 100 according to an embodiment of the present disclosure.
  • the light emitting device 100 includes a substrate 410 , an n-type semiconductor layer 420 , an active layer 430 , a p-type semiconductor layer 440 , an ohmic electrode 451 , and n It may include a type electrode 453 , a p-type electrode 455 , a light transmitting layer 457 , and a reflective layer 459 .
  • the n-type semiconductor layer 420 may include the nuclear layer, the high-temperature buffer layer, and the n-type nitride semiconductor layer described with reference to FIG. 1 .
  • the active layer 430 may include a sub-emission layer and an active layer as described with reference to FIGS.
  • the p-type semiconductor layer may include the electron block layer and the p-type nitride semiconductor layer described with reference to FIG. 1 . That is, the light emitting device 100 according to the present embodiment includes an ohmic electrode 451 , an n-type electrode 453 , a p-type electrode 455 in addition to the light emitting diode described with reference to FIGS. 1, 4, or 5 , It includes a light transmitting layer 457 and a reflective film 459 .
  • the light emitting device 100 includes a light emitting diode having the above-described multi-band spectrum, and has a horizontal structure.
  • the p-type semiconductor layer 440 and the active layer 430 may be partially removed, the n-type semiconductor layer 420 may be exposed, and the n-type semiconductor layer 420 with the n-type electrode 453 exposed. may be formed on the Meanwhile, the ohmic electrode 451 may be in ohmic contact with the p-type semiconductor layer 440 , and the p-type electrode 455 may be formed on the ohmic electrode 451 .
  • the light transmitting layer 457 may cover upper portions and sides of the n-type semiconductor layer 420 , the active layer 430 , and the p-type semiconductor layer 440 .
  • the light transmitting layer 457 may have openings exposing the n-type electrode 453 and the p-type electrode 455 .
  • the light transmitting layer 457 may be formed as a single layer, but is not limited thereto, and may include multiple layers.
  • the light transmitting layer 457 may include a light transmitting insulating oxide layer such as SiO2, SiNx, Al2O3, Nb2O5, TiO2, or MgF2.
  • the reflective layer 459 may be disposed under the substrate 410 to face the light transmitting layer 457 .
  • the reflective layer 459 may include a distributed Bragg reflector or a metal reflector.
  • FIG. 8 is a schematic cross-sectional view illustrating a horizontal light emitting device 200 according to another embodiment of the present disclosure.
  • the light emitting device 200 has a structure substantially similar to that of the light emitting device 200 described with reference to FIG. 7 , except that it further includes a second light transmitting layer 460 .
  • the horizontal light emitting device of FIG. 8 includes a first light transmitting layer 457 and a second light transmitting layer 460 .
  • the first light transmitting layer 457 may be the same as the light transmitting layer 457 described with reference to FIG. 7
  • the second light transmitting layer 460 may be formed of epoxy molding compound (EMC), polyimide, or It may include a material such as silicone.
  • EMC epoxy molding compound
  • the second light transmitting layer 460 may have a structure different from that of the first light transmitting layer 457 , and may be formed on the substrate 410 , and as shown in FIG. 8 , not only the upper portion of the substrate 410 . Alternatively, the side surface of the substrate 410 may be covered.
  • the light transmitting layer 457 may be formed in multiple layers, or as shown in FIG. 8 , a second light transmitting layer 460 is additionally formed on the first light transmitting layer 457 to form a multi-layered light transmitting layer.
  • the light-transmitting layer may include an anti-reflective coating (AR).
  • the multilayer may comprise, for example, a metal oxide such as SiO2, Al2O3, HfO2, Y2O3, TiO2 or a metal fluoride such as MgF2, CaF2, LaF3, Na3AlF6.
  • the anti-reflection coating layer may be designed in consideration of the peak wavelength of light generated by the active layer 430 .
  • the anti-reflective coating layer may be designed so that the transmittance in the corresponding peak wavelength band is close to 100%.
  • the anti-reflection coating layer may be designed to have high transmittance for light generated by the active layer 430 as well as light of a short wavelength band and a long wavelength band of visible light to improve CRI.
  • FIG. 9 is a schematic cross-sectional view illustrating a flip-type light emitting device 300 according to another embodiment of the present disclosure.
  • the light emitting device 300 is substantially similar to the light emitting device 100 described with reference to FIG. 7 , but an n-type bump electrode 471 and a p-type bump electrode 473 are further added. In addition, there is a difference in the positions of the light transmitting layer 470 and the reflective film 467 .
  • the light transmitting layer 470 is disposed on the substrate 410 to face the n-type semiconductor layer 420 , and the reflective film 467 includes the n-type semiconductor layer 420 , the p-type semiconductor layer 440 , and the ohmic electrode ( 451 , the n-type electrode 453 , and the p-type electrode 455 are covered.
  • the reflective film 467 has openings exposing the n-type electrode 453 and the p-type electrode 455 .
  • the n-type bump electrode 471 is electrically connected to the n-type electrode 453 through the opening of the reflective film 467
  • the p-type bump electrode 473 is connected to the p-type electrode 455 through the opening of the reflective film 467 . electrically connected to
  • the light emitting device 300 may be flip-bonded on a circuit board using the n-type bump electrode 471 and the p-type bump electrode 473 . Meanwhile, light generated in the active layer 430 may be emitted to the outside through the substrate 410 and the light transmitting layer 470 .
  • the light transmitting layer 470 may be formed of the same material as the light transmitting layers 457 and 460 as described with reference to FIG. 7 or 8 .
  • the light transmitting layer 470 may also cover the side surface as well as the top surface of the substrate 410 .
  • FIG. 10 is a schematic cross-sectional view for explaining the light emitting module 1000 according to an embodiment of the present disclosure.
  • the light emitting module 1000 may include a circuit board 1001 , light emitting devices 300 , and a light transmitting layer 570 .
  • the circuit board 1001 has a circuit pattern for supplying power to the light emitting devices 300 .
  • the wirings 1003 may be disposed on the upper surface of the circuit board 1001
  • the pads 1007 may be disposed on the bottom surface of the circuit board 1001
  • the wirings 1003 and the pads 1007 may be vias. It can be connected via (1005).
  • the circuit board 1001 may include multiple layers of circuit patterns.
  • the light emitting devices 300 may be mounted on the circuit board 1001 .
  • the light emitting devices 300 may be flip-type light emitting devices as described with reference to FIG. 9 , but are not limited thereto.
  • the light transmitting layer 470 may be omitted.
  • the light emitting device 300 may be bonded to the wirings 1003 of the circuit board 1001 using the n-type bump electrode 471 and the p-type bump electrode 473 .
  • the plurality of light emitting devices 300 may be arranged in various arrangements on the circuit board 1001 .
  • the light emitting devices 300 may be connected to each other in series or in parallel using the wires 1003 on the circuit board 1001 , and are electrically connected to the wires 1003 on the circuit board 1001 to enable individual driving. can be connected to
  • the light transmitting layer 570 may cover the upper surface and the side surface of the light emitting device 300 . As shown in FIG. 10 , each light emitting device 300 may be individually covered with a light transmitting layer 570 , but the present invention is not limited thereto. ) may be covered.
  • the material of the light transmitting layer 570 is not particularly limited, and may include, for example, an epoxy molding compound (EMC), polyimide, or silicone.
  • the light transmitting layer 570 may contain a red phosphor to improve CRI of white light.
  • the red phosphor may improve CRI of white light by converting a portion of the light generated by the light emitting devices 300 into red light.
  • FIG. 11A is a perspective view for explaining a light emitting device package 2000 to which a light emitting device according to an embodiment of the present invention is applied
  • FIG. 11B is a plan view of FIG. 11A
  • FIG. This is the cross-section taken.
  • the light emitting device package 2000 may include a housing 610 , a light emitting device 620 , a lead frame 630 , and a Zener diode 640 .
  • the housing 610 includes a body 611 , a cover 613 , and a coating 615 in this embodiment.
  • the body portion 611 as shown, has a substantially planar shape and a rectangular shape, and may have a shape surrounding the lead frame 630 to support the lead frame 630 .
  • the housing 610 may have a cavity V having one surface open therein, and the light emitting device 620 may be disposed in the cavity V.
  • the depth of the cavity V may be greater than the height of the light emitting device 620 .
  • the body 611 may be divided into an A region and a B region. Region A may be a region in which the light emitting device 620 is mounted, and region B may be a region in which the Zener diode 640 is mounted.
  • the inclined surface of the cavity V surrounding the light emitting element 620 with respect to the light emitting element 620 may have the same inclined surface.
  • the first body inclined surface 611a formed in the A region may have a curved surface, and may be formed so that the slope of the curved surface becomes steeper toward the upper portion.
  • the first body inclined surface 611a formed in the region A is formed in the cavity V of three surfaces except for one surface of the light emitting device 620 .
  • the inner side of the first body inclined surface 611a may be disposed adjacent to the position where the light emitting device 620 is mounted. Accordingly, the light emitted from the light emitting device 620 may be reflected from the first body inclined surface 611a to be emitted upwardly of the light emitting device package 2000 .
  • the second body inclined surface 611b formed in the B region may have a straight cross-section in the present embodiment.
  • the cross-sectional shape is not limited to a straight line, and may be formed in a curved shape.
  • the width of the region B in the vertical direction may be greater than the width of the region A in the vertical direction. Accordingly, a space in which the cover part 613 is formed to cover the second body inclined surface 611b may be secured. This will be described in detail later.
  • the first body inclined surface 611a and the second body inclined surface 611b of the body portion 611 may be in a linear inclined form, and a flat surface is formed in the middle of the inclined linear form.
  • An edge may be formed at a point where the inclined linear cavity surface and the step part meet.
  • the encapsulant forming the primary contacts the edge and is formed to a height not exceeding the corner due to surface tension, and the secondary encapsulant is formed from the upper portion of the primary encapsulant ( 611) can be formed.
  • the cover part 613 is disposed to cover the second body inclined surface 611b formed in the B region, as shown in FIG. 11C .
  • the cover portion 613 is formed to have a thickness that can cover the Zener diode 640 disposed in the region B, and is formed not to exceed the stepped portion 612 .
  • the cover part 613 may have a cover inclined surface 613b formed as a gentle inclined surface.
  • the cover inclined surface 613b may be formed in a curved surface, and may be formed to have a gentle inclination from the upper part to the lower part.
  • the cover portion 613 is described as being formed so as not to exceed the stepped portion 612, but is not limited thereto. If necessary, a portion of the cover portion 613 may exceed the stepped portion 612 and the light emitting device 620 is formed. A part may be formed up to the mounted position. That is, the cover part 613 may be formed to cover the second body inclined surface 611b and the Zener diode 640 using a viscous material including a reflective material. In this case, the reflective material may be TiO 2 and Al 2 O 3 .
  • the cover inclined surface 613b formed in the cavity V of the light emitting device package 2000 may be formed in a shape similar to that of the first body inclined surface 611a. Accordingly, all surfaces of the reflective surface formed in the cavity V may be formed to be substantially the same with respect to the light emitting device 620 .
  • the coating part 615 is formed to cover the first body inclined surface 611a and the cover inclined surface 613b using a coating material including a reflective material.
  • the reflective material may be TiO 2 and Al 2 O 3 . That is, the coating part 615 may be formed to cover the entire area except for the light emitting device 620 in the cavity V of the light emitting device package 2000 . To this end, the upper portion of the light emitting device 620 is masked, and spraying, dispensing, jetting, film attaching, and thin film on the cavity V of the light emitting device package 2000 is applied. It may be formed on the first body inclined surface 611a and the cover inclined surface 613b using methods such as sputtering and e-beam deposition. Accordingly, the first coating inclined surface 615a may be formed in the A region of the cavity V of the light emitting diode package 2000 and the second coating inclined surface 615b may be formed in the B region.
  • An encapsulant for protecting the light emitting device 620 may be formed in the cavity region of the light emitting device package 2000 .
  • the encapsulant is formed of a light-transmitting material, for example, a material such as silicone may be used.
  • a red phosphor may be included in the encapsulant. Examples of the phosphor emitting light in the red wavelength region include a nitrogen-containing calcium aluminosilicon (CASN or SCASN)-based phosphor (eg (Sr, Ca)AlSiN3:Eu).
  • manganese-activated fluoride-based phosphor (a phosphor represented by the general formula (I) A2[M1-aMnaF6]).
  • A is at least one selected from the group consisting of K, Li, Na, Rb, Cs and NH4
  • M is selected from the group consisting of a group 4 element and a group 14 element. It is at least 1 type of element, and a satisfies 0 ⁇ a ⁇ 0.2) is mentioned.
  • a representative example of this manganese-activated fluoride-based phosphor is a phosphor of manganese-activated potassium silicon fluoride (eg, K2SiF6:Mn).
  • manganese-activated phosphor (a phosphor represented by the general formula (II) (A4-aBa)m/2+n/2X2m[MX4O2]n) based on an oxiodohalide host lattice.
  • A is hydrogen (H) and/or deuterium (D)
  • B is Li, Na, K, Rb, Cs, NH4, ND4, and/or NR4, wherein R is an alkyl or aryl radical
  • X is F and/or Cl
  • M is Cr, Mo, W and/or Re, 0 ⁇ a ⁇ 4, 0 ⁇ m ⁇ 10, and 1 ⁇ n ⁇ 10.
  • the light emitting device 620 may be a flip type light emitting device like the flip type light emitting device 300 of FIG. 9 , but is not limited thereto, and the horizontal light emitting devices 100 and 200 of FIG. 7 or 8 . ) may be a similar light emitting device.
  • the light emitting device 620 may include the light emitting diode described with reference to FIGS. 1, 4, or 5 .

Abstract

본 개시의 일 실시예는, n형 질화물 반도체층; 상기 n형 질화물 반도체층 상에 위치하며 V-피트를 갖는 V-피트 생성층; 상기 V-피트 생성층 상에 위치하며, 상기 V-피트 생성층의 평평한 면을 따라 형성된 제1 우물영역 및 상기 V-피트 생성층의 V-피트 내에 형성된 제2 우물영역을 포함하는 활성층; 상기 활성층 상에 위치하는 p형 질화물 반도체층; 및 상기 n형 질화물 반도체층 및 상기 p형 질화물 반도체층 사이에 개재되어 상기 활성층과 인접하여 위치하는 서브발광층;을 포함하고, 상기 제1 서브발광영역은 상기 제1 우물영역의 피크 파장보다 단파장 영역의 피크 파장을 발광할 수 있으며, 상기 n형 질화물 반도체층 또는 상기 p형 질화물 반도체층을 통과하여 방출되는 광은 CIE 색좌표 (X, Y) 0.205≤X≤0.495, 0.265≤Y≤0.450 범위 내이다.

Description

단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈
본 개시는 발광 다이오드에 관한 것으로, 특히, 단일 칩 레벨에서 복수 대역을 갖는 광을 방출하는 발광 다이오드에 관한 것이다.
질화물 반도체는 디스플레이 장치, 신호등, 조명이나 광통신 장치의 광원으로 이용되며, 청색이나 녹색을 발광하는 발광 다이오드(light emitting diode)나 레이저 다이오드(laser diode)에 주로 사용되고 있다. 또한, 질화물 반도체는 이종 접합 바이폴라 트랜지스터(HBT) 및 고전자 이동도 트랜지스터(HEMT) 등에도 사용될 수 있다.
일반적으로, 질화물 반도체를 이용한 발광 다이오드는 N 컨택층과 P 컨택층 사이에 양자우물구조를 갖는 이종접합 구조를 가진다. 발광 다이오드는 양자우물구조 내의 우물층의 조성에 따라 광을 방출한다. 내부 양자 효율을 증가시키고, 광 흡수에 의한 손실을 줄이기 위해 발광 다이오드는 단일 피크를 갖는 스펙트럼의 광, 즉 단색광을 방출하도록 설계된다.
조명 등에서 방출되는 혼색광, 예컨대 백색광은 단일 피크의 단색광으로는 구현이 어렵다. 따라서, 서로 다른 단색광을 방출하는 복수의 발광다이오드들을 함께 사용하거나 발광다이오드에서 방출된 광을 파장변환하는 형광체를 사용하여 백색광을 구현하는 기술이 일반적으로 사용되고 있다.
형광체의 사용은 형광체 자체의 비용이나 스토크 쉬프트로 알려진 효율 저하 등의 문제를 수반한다. 또한, 형광체를 발광 다이오드 상에 도포하기 위한 많은 공정상의 문제점 및 형광체를 담지하는 담지체의 황변과 같은 문제를 수반한다.
복수의 발광 다이오드들을 혼합하여 사용하는 것은 공정을 복잡하게 하며 서로 다른 재료로 제조된 발광 다이오드들을 준비해야 하는 불편함이 있다.
따라서 단일칩의 발광 다이오드를 이용하여 복수 대역의 스펙트럼을 갖는 광을 구현할 수 있다면, 복수의 발광 다이오드들을 사용할 필요가 없으며, 형광체를 사용할 필요가 없어 기존의 많은 문제를 해결할 수 있다.
종래 양자우물 구조 내의 우물층들의 조성을 다양하게 함으로써 멀티 밴드 스펙트럼의 광을 구현하려는 시도가 있었으나, 전자와 정공의 재결합이 주로 특정 우물층에서 발생되기 때문에 멀티 밴드의 광을 생성하기 어렵다. 또한, 멀티 밴드의 광을 생성하더라도 파장 영역에 따른 독립적인 컨트롤이 어려워 효율이 저하되는 문제가 있다.
본 개시 사항이 해결하고자 하는 과제는, 단일칩 레벨에서 멀티 밴드 스펙트럼의 광을 구현할 수 있는 새로운 구조의 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈을 제공하는 것이다.
본 개시 사항이 해결하고자 하는 과제는, 발광 효율이 개선된 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈을 제공하는 것이다.
본 개시의 일 실시예에 따른 발광 다이오드는, n형 질화물 반도체층; 상기 n형 질화물 반도체층 상에 위치하며 V-피트를 갖는 V-피트 생성층; 상기 V-피트 생성층 상에 위치하며, 상기 V-피트 생성층의 평평한 면을 따라 형성된 제1 우물영역 및 상기 V-피트 생성층의 V-피트 내에 형성된 제2 우물영역을 포함하는 활성층; 상기 활성층 상에 위치하는 p형 질화물 반도체층; 및 상기 n형 질화물 반도체층 및 상기 p형 질화물 반도체층 사이에 개재되고 상기 활성층에 인접한 서브발광층;을 포함하고, 상기 서브발광층은 상기 제1 우물영역의 피크 파장보다 단파장 영역의 피크 파장의 광을 방출할 수 있으며, 상기 발광 다이오드에서 방출되는 광이 CIE 색좌표 (X, Y) 에서 0.205≤X≤0.495, 0.265≤Y≤0.450 범위 내이다.
상기 활성층은 단일 칩 레벨에서 적어도 2개의 서로 다른 피크 파장의 광을 방출할 수 있다.
상기 제1 우물영역은 상기 제2 우물영역에 비해 더 많은 In 함량을 가질 수 있다.
상기 제1 우물영역은 570-590nm 범위 내의 피크 파장을 갖는 황색광을 방출할 수 있고, 상기 제2 우물영역은 400-500nm 범위 내의 피크 파장을 갖는 청색광을 방출할 수 있다.
상기 제1 우물영역은 상기 제2 우물영역에 비해 더 두꺼울 수 있다.
상기 서브발광층은 우물층과 캐핑층을 포함할 수 있다.
상기 서브발광층은 상기 제1 우물영역에 비해 더 적은 In 함량을 가질 수 있다.
상기 서브발광층은 상기 활성층과 V-pit 생성층 사이에 위치하며, 상기 활성층과 접할 수 있다.
상기 서브발광층은 V-pit을 가질 수 있다.
상기 서브발광층의 우물층은 상기 제1 우물영역의 우물층보다 넓은 에너지 밴드갭을 가질 수 있다.
상기 서브발광층의 격자 상수는 상기 V-피트 생성층의 격자 상부 및 상기 활성층의 격자 상수의 중간값을 가질 수 있다.
상기 서브발광층은 상기 활성층의 상부에 접할 수 있다.
상기 서브발광층은 상기 활성층의 하부에 접하는 하부 서브발광층; 및 상기 활성층의 상부에 접하는 상부 서브발광층;을 포함할 수 있다.
상기 서브발광층, 상기 제1 우물영역 및 상기 제2 우물영역은 단일 칩 레벨에서 적어도 3개의 서로 다른 피크 파장의 광을 방출할 수 있다.
상기 서브발광층은 청색광을 방출하고, 상기 제2 우물영역은 상기 서브발광층보다 단파장 영역 또는 장파장 영역의 청색광을 방출하고, 상기 제1 우물영역은 황색광을 방출할 수 있다.
상기 발광 다이오드는 상기 활성층 및 상기 p형 질화물 반도체 사이에 전자블록층을 더 포함할 수 있다.
일 실시예에 따른 발광 소자는, 발광 다이오드; 및 상기 발광 다이오드 상에 배치된 광 투과층을 포함한다. 상기 발광 다이오드는, n형 질화물 반도체층; 상기 n형 질화물 반도체층 상에 위치하며 V-피트를 갖는 V-피트 생성층; 상기 V-피트 생성층 상에 위치하며, 상기 V-피트 생성층의 평평한 면을 따라 형성된 제1 우물영역 및 상기 V-피트 생성층의 V-피트 내에 형성된 제2 우물영역을 포함하는 활성층; 상기 활성층 상에 위치하는 p형 질화물 반도체층; 및 상기 n형 질화물 반도체층 및 상기 p형 질화물 반도체층 사이에 개재되어 상기 활성층과 인접하여 위치하는 서브발광층을 포함하고, 상기 서브발광층은 상기 제1 우물영역의 피크 파장보다 단파장 영역의 피크 파장의 광을 방출한다.
상기 광 투과층은 단일층 또는 다중층일 수 있다.
나아가, 상기 발광 다이오드는 기판을 더 포함할 수 있으며, 상기 n형 질화물 반도체층은 상기 기판 상에 위치할 수 있다. 상기 광 투과층은 제1 광 투과층 및 상기 제1 광 투과층을 덮는 제2 광 투과층을 포함할 수 있다. 나아가, 상기 제2 광 투과층은 상기 기판 상면과 함께 상기 기판의 측면을 덮을 수 있다.
일 실시예에 따른 발광 모듈은, 회로 기판; 상기 회로 기판 상에 배열된 발광 소자; 및 상기 발광 소자를 덮는 광 투과층을 포함할 수 있다. 상기 발광 소자는 발광 다이오드를 포함할 수 있으며, 상기 발광 다이오드는, n형 질화물 반도체층; 상기 n형 질화물 반도체층 상에 위치하며 V-피트를 갖는 V-피트 생성층; 상기 V-피트 생성층 상에 위치하며, 상기 V-피트 생성층의 평평한 면을 따라 형성된 제1 우물영역 및 상기 V-피트 생성층의 V-피트 내에 형성된 제2 우물영역을 포함하는 활성층; 상기 활성층 상에 위치하는 p형 질화물 반도체층; 및 상기 n형 질화물 반도체층 및 상기 p형 질화물 반도체층 사이에 개재되어 상기 활성층과 인접하여 위치하는 서브발광층을 포함하고, 상기 서브발광층은 상기 제1 우물영역의 피크 파장보다 단파장 영역의 피크 파장의 광을 방출한다.
도. 1은 본 개시의 일 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 2A는 도 1의 일부를 확대 도시한 개략적인 부분 단면도이다.
도 2B는 도 2A의 에너지 밴드 다이어그램을 나타낸 도면이다.
도 2C는 도 2A의 서브발광층을 확대 도시한 개략적인 부분 단면도이다.
도 3A는 비교예 1 및 실시예 1에 따른 발광 다이오드의 광 발광(photoluminescence: PL) 강도를 보여주는 그래프이다.
도 3B는 비교예 1 및 실시예 1에 따른 발광 다이오드의 전계 발광(electroluminescence: EL) 강도를 보여주는 그래프이다.
도 4는 본 개시의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 5는 본 개시의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 6A는 비교예 1 및 실시예 2에 따른 발광 다이오드의 PL 강도를 보여주는 그래프이다.
도 6B는 실시예 2에 따른 발광 다이오드의 EL 강도를 보여주는 그래프이다.
도 7은 본 개시의 일 실시예에 따른 수평형 발광 소자를 도시한 개략적인 단면도이다.
도 8은 본 개시의 또 다른 실시예에 따른 수평형 발광 소자를 도시한 개략적인 단면도이다.
도 9는 본 개시의 또 다른 실시예에 따른 플립형 발광 소자를 도시한 개략적인 단면도이다.
도 10은 본 개시의 일 실시예에 따른 발광 모듈을 설명하기 위한 개략적인 단면도이다.
도 11A는 본 발명의 일 실시예에 따른 발광 다이오드를 적용한 발광다이오드 패키지를 설명하기 위한 사시도이다.
도 11B는 도11A의 평면도이다.
도 11C는 도 11B의 절취선 I-I'를 따라 취해진 단면도이다.
이하, 첨부한 도면들을 참조하여 본 개시의 실시예들을 상세히 설명하기로 한다. 다음에 소개되는 실시예들은 본 개시 사항이 속하는 기술분야의 통상의 기술자에게 본 개시의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 개시 사항은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 “상부에” 또는 “상에” 있다고 기재된 경우 각 부분이 다른 부분의 “바로 상부” 또는 “바로 상에” 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 개시의 일 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이고, 도 2A는 도 1의 일부를 확대 도시한 개략적인 부분 단면도이고, 도 2B는 도 2A의 에너지 밴드다이어그램을 나타내고, 도 2C는 도 2A의 서브발광층(121)을 확대 도시한 부분 단면도이다.
도 1, 도 2A, 도 2B 및 도 2C를 참조하면, 발광 다이오드는 기판(111), 핵층(113), 고온 버퍼층(115), n형 질화물 반도체층(117), V-피트 생성층(119), 서브발광층(121), 활성층(123), 전자블록층(125) 및 p형 질화물 반도체층(127)을 포함할 수 있다.
상기 기판(111)은 질화 갈륨계 반도체층을 성장시키기 위한 것으로, 사파이어, SiC, Si, GaN 및 스피넬 기판 등이 이용될 수 있다. 상기 기판(111)은 도 1에 도시한 바와 같이 돌출부들을 가질 수 있으며, 예를 들어, 패터닝된 사파이어 기판일 수 있다. 하지만 본 개시 사항이 이에 한정되는 것은 아니며, 상기 기판(111)은 예를 들어, 평평한 상면을 갖는 기판일 수 있고, 평평한 사파이어 기판일 수 있다.
상기 기판(111) 상에 핵층(113)이 형성될 수 있다. 핵층(113)은 기판(111) 상에 400℃ 내지 600℃ 저온에서 (Al, Ga)N으로 형성될 수 있으며, 예를 들어, AlGaN 또는 GaN으로 형성될 수 있다. 상기 핵층(113)의 조성은 상기 기판(111)에 따라 변경될 수 있다. 예를 들어, 상기 기판(111)이 패터닝된 사파이어 기판인 경우, 상기 핵층(113)은 AlGaN으로 형성될 수 있으며, 상기 기판(111)이 평평한 상면을 갖는 사파이어 기판일 경우, 상기 핵층(113)은 GaN으로 형성될 수 있다. 상기 핵층(113)은 예를 들어 약 25nm두께로 형성될 수 있다.
상기 핵층(113) 상에 고온 버퍼층(115)이 형성될 수 있다. 상기 고온 버퍼층(115)은 상기 기판(111)과 n형 질화물 반도체층(117) 사이에서 전위 등의 결함이 발생하는 것을 완화하기 위해 상대적으로 고온에서 성장될 수 있다. 상기 고온 버퍼층(115)은 언도프 GaN 또는 n형 불순물이 도핑된 GaN으로 형성될 수 있다. 상기 고온 버퍼층(115)이 형성되는 동안 상기 기판(111)과 고온 버퍼층(115) 사이의 격자 부정합에 의해 실전위가 발생할 수 있다.
상기 고온 버퍼층(115) 상에 상기 n형 질화물 반도체층(117)이 형성될 수 있다. 상기 n형 질화물 반도체층(117)은 n형 불순물이 도핑된 질화물계 반도체층으로, 예컨대 Si가 도핑된 질화물 반도체층일 수 있다. 상기 n형 질화물 반도체층(117)에 도핑되는 Si 도핑 농도는 5E17/㎤ 내지 5E19/㎤ 일 수 있다. n형 질화물 반도체층(117)은 MOCVD 기술을 사용하여 챔버 내로 금속 소스 가스를 공급하여 1000℃ 내지 1200℃(예컨대, 1050℃ 내지 1100℃)에서 150Torr 내지 200Torr의 성장 압력 하에서 성장될 수 있다. 이때, 상기 n형 질화물 반도체층(117)은 상기 고온 버퍼층(115) 상에 연속적으로 형성될 수 있으며, 상기 고온 버퍼층(115) 내에 형성된 실전위(D)는 상기 n형 질화물 반도체층(117)으로 전사될 수 있다. 상기 n형 질화물 반도체층(117)은 상기 고온 버퍼층(115)보다 상대적으로 얇게 형성될 수 있으며, 예를 들어, 약 2.5um의 두께로 형성될 수 있다.
상기 V-피트 생성층(119)은 상기 n형 질화물 반도체층(117) 상부에 위치할 수 있다. 본 개시 사항에 있어서, 상기 V-피트 생성층(119)은 예를 들어, GaN층으로 형성될 수 있다. 상기 V-피트 생성층(119)은 상기 n형 질화물 반도체층(117)보다 상대적으로 낮은 온도, 예컨대 약 900℃에서 성장될 수 있으며, 이에 따라 상기 V-피트 생성층(119)에서 V-피트(119v)들이 형성될 수 있다.
상기 V-피트 생성층(119)이 상기 n형 질화물 반도체층(117)보다 상대적으로 낮은 온도에서 성장됨으로써, 결정 품질을 인위적으로 저하시키고 3차원 성장을 촉진하여 V-피트(119v)를 생성할 수 있다. 상기 V-피트(119v)들은 질화물 반도체층의 성장면이 C면인 경우, 육각뿔 형상을 가질 수 있다. 상기 V-피트(119v)들은 실전위의 상단에서 형성될 수 있다.
상기 V-피트 생성층(119)은 상기 n형 질화물 반도체층(117)보다 얇은 두께로 형성될 수 있으며, 예를 들어 약 450nm 내지 600nm의 두께로 형성될 수 있다. 상기 V-피트 생성층(119)내에 형성되는 상기 V-피트(119v)들의 크기는 상기 V-피트 생성층(119)의 성장 조건 및 성장 시간 등을 통해 조절될 수 있다. 본 개시의 실시예에 있어서, 상기 V-피트 생성층(119)에 형성된 상기 V-피트(119v)의 크기는 멀티 밴드 스펙트럼의 광을 생성하는 데 영향을 미칠 수 있다. 본 개시의 실시예에 있어서, 상기 V-피트 생성층(119)이 단일층인 것으로 설명하지만, 이에 한정되는 것은 아니며, 다중층일 수 있다. 예를 들어, 상기 V-피트 생성층(119)은 GaN, AlGaN, InGaN 또는 AlGaInN층들 중 적어도 두 개의 층을 포함할 수 있다.
서브 발광층(121)은 V-피트 생성층(119)상에 위치하며, 후술하는 활성층(123)에 인접하여 배치된다. 상기 서브발광층(121)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출할 수 있다. 본 개시의 실시예에 있어서, 상기 서브발광층(121)은 3개의 우물층(121w)을 가질 수 있으나, 이에 한정되는 것은 아니며, 적어도 하나의 우물층(121w)을 포함할 수 있다. 상기 서브발광층(121)의 우물층(121w)은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1)과 같은 질화물 반도체층을 포함할 수 있고, 예를 들어, InGaN일 수 있다. 상기 서브발광층(121)은 상기 V-피트 생성층(119)보다는 상대적으로 낮은 온도에서 성장될 수 있으며, 상기 활성층(123)보다는 상대적으로 높은 온도에서 성장될 수 있다. 상기 서브발광층(121)의 In 함량은 상기 활성층(123)의 In 함량보다 적을 수 있고, 상기 서브발광층(121)의 에너지 밴드갭(Eg1)은 상기 활성층(123)의 에너지 밴드갭(Eg2)보다 클 수 있다. 상기 서브발광층(121) 및 상기 활성층(123)의 에너지 밴드갭(Eg1, Eg2)은 In의 함량에 따라 달라지며, In의 함량이 적을수록 에너지 밴드갭이 커질 수 있다.
일 실시예에 있어서, 상기 서브발광층(121)이 상기 활성층(123)의 하부에 위치할 경우, 상기 V-피트 생성층(119), 서브발광층(121) 및 상기 활성층(123)의 순서로 In 함량이 증가할 수 있다. 이에 따라, 질화물 반도체층과 기판(111)의 격자 부정합에 의해 발생되는 스트레스 및 스트레인이 상기 활성층(123)으로 전달되는 것을 감소시킬 수 있으며, 전위와 같은 결함이 활성층(123)으로 전파되는 것을 방지할 수 있다. 또한, 상기 서브발광층(121)의 격자 상수는 상기 V-피트 생성층(119)의 격자 상수와 상기 활성층(123)의 격자 상수 사이의 대략 중간값을 가질 수 있고, 이에 따라, 상기 서브 발광층(121)이 상기 V-피트 생성층(119)과 상기 활성층(123)의 격자 상수 차이를 완화할 수 있다. 따라서, 상기 서브발광층(121)에 의해 상기 활성층(123)의 결정 품질이 향상될 수 있다. 상기 서브발광층(121)은 격자 상수 차를 완화시키는 초격자층의 역할을 수행할 수 있다. 일 실시예에 있어서, 상기 발광 다이오드는 상기 서브발광층(121)에 더하여 상기 V-피트 생성층(119)과 상기 활성층(123) 사이에 초격자층을 더 포함 할 수 있다.
상기 서브발광층(121) 및 상기 활성층(123)에서 생성된 광은 기판(111)의 상부 및 하부에 제1 출사면 및 제2 출사면을 가질 수 있다. 즉, 상기 서브발광층(121) 및 상기 활성층(123)에서 생성된 광은 제1 출사면을 통해 기판(111) 상부 방향으로 출사될 수 있고, 또는 상기 제1 출사면에 대향하는 제2 출사면을 통해 상기 기판(111)의 하부 방향으로 출사될 수 있다.
상기 서브발광층(121)에서 발광되는 단파장 영역의 광에 대해서는, 상기 제1 출사면으로 방출되는 광 추출 효율보다 상기 제2 출사면으로 방출되는 광 추출 효율이 더 높을 수 있다. 이는 장파장의 광을 방출하는 활성층(123)과 단파장의 광을 방출하는 서브발광층(121)의 에너지 밴드갭과 관련된다.
상기 서브발광층(121)의 에너지 밴드갭(Eg1)보다 낮은 에너지 밴드갭(Eg2)을 갖는 상기 활성층(123)이 상기 p형 질화물 반도체층(127)에 인접하여 배치되므로, 상기 p형 질화물 반도체층(127)으로부터 주입되는 정공이 느끼는 높은 배리어로 인해 대부분 상기 활성층(123)에서 재결합이 발생되고, 상기 서브발광층(121)에서의 재결합율이 떨어져 발광 효율이 낮아질 수 있다. 또한, 상기 서브발광층(121)의 우물층들이 활성층(123)의 우물층들보다 높은 에너지 밴드갭(Eg1)을 갖기 때문에, 서브 발광층(121)에서 생성된 광의 일부가 활성층(123)에 흡수될 수 있다. 따라서, 본 개시의 실시예에 따른 발광 다이오드 구조는 광 손실을 줄이기 위해 기판(111) 하부의 제2 출사면을 통해 광을 출사하는 플립칩 구조나 수직형 구조의 발광 다이오드에 적합할 수 있다.
상기 서브발광층(121)은 상기 V-피트 생성층(119)의 상면을 따라 형성될 수 있다. 도 2A에 도시된 바와 같이 상기 서브발광층(121)은 상기 V-피트 생성층(119)의 평평한 면 상부에 형성되는 제1 서브발광영역(121a)과 상기 V-피트(119v) 내에 형성되는 제2 서브발광영역(121b)을 포함할 수 있다. 상기 V-피트(119v) 내의 사면은 상대적으로 성장 속도가 작고, 그에 따라 상기 V-피트(119v) 내 사면 상에 형성된 제2 서브발광영역(121b)의 두께는 상기 제1 서브발광영역(121a)의 두께보다 얇게 형성될 수 있다.
상기 V-피트(119v) 내의 상기 제2 서브발광영역(121b)의 두께는 상기 V-피트(119v) 크기에 따라 다를 수 있다. 상기 V-피트(119v)는 상기 V-피트 생성층(119)의 증착 시간 및 성장 온도 등을 조절함으로써 상기 V-피트(119v)의 크기를 조절할 수 있다. 또한, 상기 제2 서브발광영역(121b)에 포함된 우물층은 상기 제1 서브발광영역(121a)에 포함된 우물층보다 In함량이 적은 InGaN으로 형성될 수 있다. 제2 서브발광영역(121b)은 In 함량이 너무 적어 발광하지 않을 수 있으나, 본 개시 사항이 이에 한정되는 것은 아니며, 구동 조건에 따라 발광할 수도 있다.
상기 활성층(123)은 상기 서브발광층(121) 상에 위치할 수 있다. 상기 활성층(123)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출할 수 있다. 그리고 상기 활성층(123)은 단일양자우물구조 또는 양자장벽층과 양자우물층이 교대로 적층된 다중양자우물(MQW: Multi Quantum Well) 구조를 가질 수 있다. 상기 양자장벽층은 양자우물층에 비해 밴드갭이 넓은 GaN, InGaN, AlGaN 또는 AlInGaN 등의 질화물 반도체층으로 형성될 수 있다.
도 2A에 도시된 바와 같이 상기 활성층(123)은 우물층(123a)과 장벽층(123b)을 포함하며, 상기 서브발광층(121)에 접할 수 있으나, 이에 한정되는 것은 아니다. 상기 활성층(123)은 상기 V-피트(119v)를 따라 형성될 수 있고, 상기 V-피트(119v) 내에 형성된 상기 활성층(123)의 두께는 상기 V-피트 생성층(119)의 평평한 상면 상부에 형성된 상기 활성층(123)의 두께보다 작을 수 있다. 상기 V-피트(119v) 내의 상기 활성층(123)의 두께는 상기 V-피트(119v) 크기에 따라 다를 수 있다.
한편, 상기 우물층(123a)은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1)으로 형성될 수 있다. In, Al, Ga의 조성비는 요구되는 광에 따라 선택될 수 있다. 상기 활성층(123)은 상기 V-피트 생성층(119)의 평평한 면 상에 형성되는 제1 우물영역(123c) 및 상기 V-피트(119v)내에 형성되는 제2 우물영역(123d)을 포함할 수 있다. 상기 제1 우물영역(123c)은 멀티 대역의 장파장측 대역의 광을 방출하는 조성을 가질 수 있고, 상기 제2 우물영역(123d)은 멀티 대역의 단파장측 대역의 광을 방출하는 조성을 가질 수 있다. 예를 들어, 상기 제1 우물영역(123c)은 570nm 내지 590nm의 황색 계열의 광을 방출하도록 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1)으로 형성될 수 있으며, 상기 제2 우물영역(123d)은 400nm 내지 500nm의 청색 계열의 광을 방출하도록 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1)으로 형성될 수 있으나, 본 개시 사항이 이에 한정되는 것은 아니다. 상기 제1 우물영역(123c) 및 상기 제2 우물영역(123d)에서 방출되는 광은 서로 다른 영역의 파장을 가지며, 상기 제1 우물영역(123c) 및 상기 제2 우물영역(123d)에서 방출되는 광의 조합으로 백색광이 구현될 수 있다.
상기 제2 우물영역(123d)은 상기 V-피트(119v) 내의 각 면 상에 동일한 조성으로 형성될 수 있으나, 이에 한정되는 것은 아니며, 각 면에 서로 다른 조성으로 형성될 수도 있다. 이에 따라, 본 개시의 발광 다이오드는 상기 제1 우물영역(123c)과 제2 우물영역(123d)을 이용하여 적어도 2개의 밴드를 갖는 광을 단일칩 레벨에서 구현할 수 있다. 또한, 상기 활성층(123)의 제2 우물영역(123d)에서 방출되는 단파장의 광뿐만 아니라 상기 서브발광층(121)에서 방출되는 단파장의 광으로 인해 보다 강한 세기의 단파장 광을 방출할 수 있다. 이에 따라, 상관 색온도(Correlated Color Temperature: CCT)가 3000K 내지 7000K 범위 내의 백색광을 구현할 수 있고, 용도에 따라 상관 색온도(Correlated Color Temperature: CCT)를 조절할 수 있다.
상기 활성층(123)은 적어도 2개의 밴드를 가지는 광을 방출할 수 있다. 다만, 제1 우물 영역(123c) 및 제2 우물 영역(123d)은 동일 공정에서 함께 형성되기 때문에, 단파장을 발광하는 상기 활성층(123)의 제2 우물영역(123d)의 두께 및 In 조성을 제어하기가 어려울 수 있다. 즉, 상기 제2 우물영역(123d) 내의 In 함량은 상기 제1 우물영역(123c)의 In 함량에 실질적으로 종속되므로, 상기 제2 우물영역(123d)에서 방출되는 단파장 영역의 광의 피크 파장 및 강도를 제어하기가 어려울 수 있다.
이에 반해, 상기 서브발광층(121)은 활성층(123)과 다른 조건에서 성장될 수 있으므로, In 조성 및 두께를 자유롭게 조절할 수 있다. 따라서, 서브발광층(121)을 배치함으로써 원하는 단파장 영역의 피크 파장을 독립적으로 제어할 수 있고, 해당 파장 영역의 광의 세기를 증가시킬 수 있다. 또한, 상기 서브 발광층(121)을 이용하여 제2 우물 영역(123d)에서 방출되는 단파장의 광을 보강할 수 있다.
한편, 상기 장벽층(123b)은 상기 우물층(123a)에 비해 에너지 밴드갭이 넓은 GaN, InGaN, AlGaN 또는 AlInGaN 등의 질화물 반도체층으로 형성될 수 있다. 예를 들어, 상기 제1 우물영역(123c)이 황색 계열의 광을 방출하도록 InGaN으로 형성된 경우, 상기 장벽층(123b)은 상기 우물층(123a)보다 In 함량이 적은 InGaN으로 형성될 수 있다.
상기 우물층(123a)과 장벽층(123b) 사이에 캐핑층(미도시)이 개재될 수 있다. 상기 캐핑층은 상기 장벽층(123b)을 증착하는 동안 상기 우물층(123a) 내의 In이 해리되는 것을 방지하기 위해 상기 장벽층(123b) 증착 전에 형성될 수 있다. 상기 캐핑층은 Al을 포함할 수 있으며, 예를 들어 AlGaN 또는 AlInGaN으로 형성될 수 있다. 상기 캐핑층 내에 함유되는 Al 조성은 제1 캐핑층 부분, 즉 V-피트 생성층(119)의 평평한 면 상부에 배치된 캐핑층 부분과, 제2 캐핑층 부분, 즉 V-피트(119v) 내에 형성된 캐핑층 부분이 서로 다를 수 있다. 상기 제1 캐핑층 부분 내의 Al 함량이 상기 제2 캐핑층 부분 내의 Al 함량보다 많을 수 있다. 예를 들어, 상기 제1 캐핑층 부분 내의 Al 조성은 캐핑층 내의 전체 조성에 대해 10 원자% 이상, 나아가 12 원자% 이상일 수 있으며, 상기 제2 캐핑층 부분 내의 Al 조성은 상기 캐핑층 내의 전체 조성에 대해 약 5 원자% 이상일 수 있다.
본 개시의 실시예에 있어서, 상기 서브발광층(121)의 우물층들은 상기 활성층(123)의 제1 우물 영역(123c)보다 단파장의 광을 방출하는 조성을 가질 수 있다. 예를 들어, 상기 활성층(123)의 제1 우물영역(123c)이 중심 파장 570nm 내지 590nm 범위 내의 황색 계열의 광을 방출하도록 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1)으로 형성된 경우, 상기 서브발광층(121)의 우물층들은 상기 활성층(123)의 제1 우물영역(123c) 보다 In 함량이 적은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1)으로 형성될 수 있다. 상기 서브 발광층(121)은 상기 활성층(123)의 제1 우물영역(123c) 보다 짧은 중심 파장인 400nm 내지 500nm 범위 내의 청색 계열의 광을 방출할 수 있다. 하지만 본 개시 사항이 이에 한정되는 것은 아니다. 상기 활성층(123)의 제1 우물영역(123c)과 상기 서브발광층(121)에서 방출되는 광의 조합이 백색의 광을 구현하는 한, 상기 활성층(123)의 제1 우물영역(123c)과 상기 서브발광층(121)에서 방출되는 광의 파장은 특별히 제한되지 않는다. 한편, 상기 활성층(123)의 제2 우물영역(123d)은 청색 또는 녹색 계열의 광을 방출할 수 있다. 일 실시예에 있어서, 상기 서브 발광층(121)은 상기 활성층(123)의 제2 우물영역(123d)에서 방출되는 광과 동일 색상의 광을 방출할 수 있다. 서브 발광층(121)에서 방출되는 광의 피크 파장은 제2 우물영역(123d)에서 생성되는 광의 피크 파장과 유사할 수 있으며, 특정 실시예에서, 동일할 수도 있다.
상기 서브발광층(121)은 각 우물층을 성장할 때 성장 온도를 변경하여 상기 서브발광층(121)에서 방출되는 광의 파장을 조절할 수 있다. 예를 들어, 상기 서브발광층(121)의 우물층을 상대적으로 낮은 온도에서 성장시킴으로써, 상기 우물층의 In 함량을 증가시킬 수 있다. 이에 따라, 상기 서브발광층(121)은 상기 활성층(123)의 제2 우물 영역(123d)에서 생성된 광의 피크 파장보다 더 장파장의 광을 생성할 수 있다. 일 실시예에 있어서, 상기 활성층(123)의 제1 우물영역(123c)은 황색광을 방출하고, 상기 활성층(123)의 제2 우물영역(123d)은 청색광을 방출할 수 있고, 상기 서브발광층(121)은 상기 제 우물 영역(123c)의 황색광보다 단파장이며, 상기 제2 우물영역(123d)의 청색광보다 장파장인 청색광을 방출할 수 있다. 다른 실시예에 있어서, 상기 서브 발광층(121)은 제2 우물 영역(123d)에서 방출되는 광의 피크 파장보다 단파장인 광을 방출할 수도 있다.
상기 발광 다이오드는 상기 활성층(123)에서 방출되는 적어도 2개의 밴드와 상기 서브발광층(121)에서 방출되는 적어도 1개의 밴드를 통해 적어도 2개 이상, 나아가 3개 이상의 밴드를 갖는 광을 단일칩 레벨에서 구현할 수 있다. 또한, 상기 제2 우물영역(123d)에서 방출되는 청색광의 피크 파장과 상기 서브발광층(121)에서 방출되는 청색광의 피크 파장은 서로 근접하며 실질적으로 동일할 수 있다. 따라서, 본 개시의 발광 다이오드는 서브 발광층(121) 없이 제2 우물 영역(123d) 단독으로 단파장의 광을 방출하는 발광 다이오드보다 더 강한 세기의 단파장 영역의 광을 방출할 수 있으며, 이에 따라, 색온도가 낮은 차가운 백색 광을 구현할 수 있다.
일 실시예에 있어서, 상기 서브발광층(121) 내의 우물층들은 서로 동일한 온도에서 성장될 수 있다. 다른 실시예에 있어서, 상기 서브발광층(121)의 우물층이 복수개를 포함할 경우, 복수개의 우물층들의 성장 온도를 달리하여 서브발광층(121)에서 방출되는 광의 피크 파장을 조절할 수 있다.
상기 서브발광층(121)은 캐핑층(121c)을 더 포함할 수 있고, 캐핑층(121c)이 상기 서브발광층(121)의 각 우물층(121w) 상에 위치할 수 있다. 상기 캐핑층(121c)은 예를 들어, AlGaN 또는 AlInGaN으로 형성될 수 있고, 상기 서브발광층(121)의 우물층(121w)보다 높은 밴드갭을 가지고 캐핑 기능을 수행할 수 있다. 상기 캐핑층(121c)은 상기 서브발광층(121)의 우물층(121w) 또는 상기 활성층(123)을 증착하는 동안 상기 서브발광층(121)의 우물층(121w) 내의 In이 해리되는 것을 방지하기 위해 형성될 수 있다. 상기 서브발광층(121)은 활성층(123)의 배리어층 역할을 수행할 수 있으며, 이에 따라 별도의 배리어층을 포함하지 않을 수 있어 상기 발광 다이오드의 두께를 줄일 수 있다.
상기 캐핑층(121c)은 상기 V-피트 생성층(119)의 평평한 면 상부에 형성되는 캐핑층과 상기 V-피트(119v) 내에 형성되는 캐핑층을 포함할 수 있다. 상기 V-피트 생성층(119)의 평평한 면 상부에 형성된 캐핑층에 함유되는 Al 조성은 상기 V-피트(119v) 내에 형성된 캐핑층에 함유되는 Al 조성과 다를 수 있다. 예를 들어, 상기 V-피트 생성층(119)의 평평한 면 상부에 형성되는 캐핑층의 Al 함량이 상기 V-피트(119v) 내에 형성되는 캐핑층의 Al 함량보다 많을 수 있다. 상기 활성층(123) 상에 전자블록층(125)이 위치할 수 있다. 상기 전자블록층(125)은 예를 들어, P형 AlGaN으로 형성될 수 있으나, 이에 한정되는 것은 아니며, AlInGaN 등으로 형성될 수 있다. 상기 전자블록층(125)은 상기 V-피트(119v) 내에도 형성될 수 있다. 상기 전자블록층(125)의 P형 AlGaN은 일반식 AlxGa1-xN으로 표현될 수 있으며, 여기서 x는 0보다 크고 0.3보다 작을 수 있다. 한편, 본 개시의 실시예에 있어서, 상기 전자블록층(125)의 두께는 약 100nm 미만일 수 있다.
상기 전자블록층(125)은 에너지 밴드갭을 조절하여 전자 차단 기능을 수행하고 동시에 누설 전류를 효율적으로 방지할 수 있다. 상기 전자블록층(125)은 상대적으로 높은 에너지 밴드갭을 가지고 전자의 오버플로우를 방지하여 전자의 재결합율을 증가시킨다.
상기 전자블록층(125) 상에 p형 질화물 반도체층(127)이 형성될 수 있다. 상기 p형 질화물 반도체층(127)은 Mg와 같은 p형 불순물이 도핑된 반도체층, 예컨대 GaN으로 형성될 수 있다. 상기 P형 질화물 반도체층(127)은 단일층이나 다중층일 수 있으며, p형 컨택층을 포함할 수 있다. 상기 p형 질화물 반도체층(127)은 상기 V-피트(119v)에 오목한 홈을 가질 수 있다. 상기 p형 질화물 반도체층(127)이 V-피트(119v) 상에 오목한 홈을 갖기 때문에 제2 우물 영역(123d)에서 방출된 광이 P형 질화물 반도체층(127)을 통과하는 경로를 줄일 수 있으며, 이에 따라, P형 질화물 반도체층(127)에 의한 광 손실을 줄일 수 있다.
본 실시예에 따르면, 상기 n형 질화물 반도체층(117) 또는 상기 p형 질화물 반도체층(127)을 통과하여 방출되는 광이 CIE 색좌표 (X, Y) 0.205≤X≤0.495, 0.265≤Y≤0.450 범위 내의 백색광일 수 있다.
도 3A는 비교예 1 및 실시예 1에 따른 발광 다이오드의 광 발광(photoluminescence: PL) 강도를 보여주는 그래프이고, 도 3B는 비교예 1 및 실시예 1에 따른 발광 다이오드의 전계 발광(electroluminescence: EL) 강도를 보여주는 그래프이다. 비교예 1 및 실시예 1의 발광 다이오드에 대해 각각 50mA 내지 400mA의 전류 범위에서 파장에 따른 EL 강도를 측정하였다.
비교예 1 및 실시예 1의 발광 다이오드들은 서브 발광층(121) 유무를 제외하면 유사한 구조를 가지며, 기판(111) 상에 유사한 공정 조건에서 반도체층들을 성장하여 제조된 것이다. 실시예 1은 활성층(123)과 인접하여 위치하는 서브발광층(121)을 포함하는 반면, 비교예 1은 서브발광층(121)을 포함하지 않는다.
도 3A를 참조하면, 비교예 1의 PL 스펙트럼에서 장파장 영역의 밴드가 관찰되지만 단파장 영역의 밴드는 관찰되지 않는다. 도 3B의 EL 스페트럼에서 단파장 영역의 광이 관찰되는 것을 보면 V-피트(119v)의 상대적인 면적이 평평한 부분의 면적에 비해 작기 때문에 PL 스펙트럼에서 관찰되지 않는 것으로 보인다. 한편, 실시예 1의 PL 스펙트럼에서는 장파장 영역 및 단파장 영역에서 각각 뚜렷한 밴드가 관찰된다. 비교예 1과 실시예 1이 서브 발광층(121)의 유무에 차이가 있으므로, 실시예 1의 PL 스펙트럼에서 관찰되는 단파장 영역의 밴드는 서브 발광층(121)에 기인한 것으로 볼 수 있다.
도 3B에서 비교예 1의 EL 스펙트럼은 점선으로 도시도며 실시예 1의 EL 스펙트럼은 실선으로 표시된다. 비교예 1의 EL 스펙트럼에서 전류가 50mA에서 400mA로 증가함에 따라 장파장 영역의 밴드와 함께 단파장 영역의 밴드가 함께 관찰된다. 장파장 영역의 밴드는 활성층(123)의 제1 우물 영역(123c)에서 방출된 광에 의해 형성되고, 단파장 영역의 밴드는 V-피트(119v) 내에 형성된 제2 우물 영역(123d)에서 방출된 광에 의해 형성된다.
한편, 실시예 1의 EL 스펙트럼은 장파장 영역 및 단파장 영역에서 뚜렷한 밴드를 나타내며, 각 밴드의 강도는 비교예 1에 비해 상대적으로 강하다. 실시예 1의 단파장 영역의 밴드는 V-피트(119v) 내의 제2 우물 영역(123d) 및 서브 발광층(121)에서 방출된 광에 의해 형성되며, 장파장 영역의 밴드는 활성층(123)의 제1 우물 영역(123c)에 의해 형성된다. 특히, 단파장 영역의 광은 에너지가 상대적으로 높다. 따라서, 서브 발광층(121)에서 생성된 광의 일부는 제1 우물 영역(123c)에 흡수되어 제1 우물 영역(123c) 내 캐리어 농도를 증가시키며 이에 따라 제1 우물 영역(123c)에서 방출되는 광의 강도를 증가시킨다.
한편, EL 스펙트럼에서 실시예 1의 각 밴드의 반치폭은 비교예 1의 각 밴드의 반치폭보다 좁다. 실시예 1의 단파장 및 장파장 영역의 반치폭은 각각 약 35nm 및 43nm인데 반해, 비교예 1의 단파장 및 장파장 영역의 반치폭은 각각 약 49nm 및 59nm이었다. 본 발명의 실시예들에 따르면, 단파장 영역의 밴드의 반치폭을 30 내지 40nm 범위 내에서 조절할 수 있고, 장파장 영역의 밴드의 반치폭은 40 내지 50 nm 범위 내에서 조절할 수 있다.
또한, 도 3B를 참조하면, 실시예 1의 EL 스펙트럼은 단파장 영역의 밴드와 장파장 영역의 밴드 사이의 파장 영역에서도 유의미한 강도의 광이 관찰되며, 이 에 따라, 상기 발광 다이오드는 연색지수가 높은 백색광을 방출할 수 있다. 즉, 장파장 영역인 황색 파장 대역과 단파장 영역인 청색 파장 대역 사이의 약 475nm~500nm 사이의 영역에서 황색 파장 대역의 피크 및 청색 파장 대역의 피크보다 낮은 발광 강도의 광을 방출하며, 이 영역에서 발광 강도는 대체로 일정할 수 있다. 이에 따라, 400nm~650nm 범위 내의 전체 파장에 걸쳐 광이 방출되며, 따라서, 질화물 반도체 계열의 물질로 CRI가 높은 백색광을 구현할 수 있다.
본 개시의 실시예에 따르면, 서브발광층(121)을 배치함으로써, 상기 활성층(123)에서 방출되는 황색 파장 대역과 함께, 청색 파장 대역의 발광 강도를 증가시킬 수 있다. 더욱이, 서브 발광층(121)을 배치함으로써, 활성층(123)에서 방출되는 황색 파장 대역의 강도를 증가시킬 수 있다. 또한, 본 개시의 실시예들에 따르면, 청색 파장 대역에서의 단일 피크의 세기를 증가시킬 수 있어 예컨대 상관 색온도가 약 6500K인 차가운 백색을 구현할 수 있다. 본 개시의 발광 다이오드는 서브 발광층(121) 및 활성층(123)을 이용하여 상관 색온도(Correlated Color Temperature: CCT) 3000K 내지 7000K 범위 내이며, CIE 색좌표 (X, Y) 0.205≤X≤0.495, 0.265≤Y≤0.450 범위 내의 백색광을 구현할 수 있으며, 용도에 따라 적절히 조절될 수 있다.
이하의 다른 실시예에서는 설명의 중복을 피하기 위해 상술한 실시예와 다른 점을 위주로 설명하며, 동일한 구성부에 대해서는 간략하게 설명하거나 생략하기로 한다.
도 4는 본 개시의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 4를 참조하면, 본 실시예에 따른 발광 다이오드는 서브발광층(221)의 위치를 제외하고, 도 1의 실시예의 발광 다이오드와 동일하다. 본 실시예에 따른 발광 다이오드는 도 1의 실시예의 발광 다이오드와 유사하게 V-피트 생성층(219), 활성층(223), 서브 발광층(221), 전자 블록층(225), 및 P형 질화물계 반도체층(227)을 포함할 수 있다. 또한, 상기 발광 다이오드는 도시를 생략하였지만, 기판, 핵층, 고온 버퍼층, 및 N형 질화물 반도체층을 포함할 수 있다. 활성층(223)은 우물층(223a) 및 장벽층(223b)을 포함할 수 있다.
상기 서브발광층(221)은 활성층(223)과 전자 블록층(225) 사이에 배치될 수 있으며, 활성층(223)의 상부에 접할 수 있다. 본 실시예에 있어서, 상기 서브발광층(221)은 3개의 우물층을 가질 수 있으나, 이에 한정되는 것은 아니며, 적어도 하나의 우물층을 가질 수 있다.
상기 서브발광층(221)은 상기 활성층(223)의 평평한 면 상부에 형성되는 제1 서브발광영역(221a)과 상기 V-피트(219v) 내에 형성된 상기 활성층(223)을 따라 형성되는 제2 서브발광영역(221b)을 포함할 수 있다. 상기 V-피트(219v) 내의 사면은 상대적으로 성장속도가 낮은 특성을 갖고, 그에 따라 상기 V-피트(219v)의 사면 상에 형성된 제2 서브발광영역(221b)의 두께는 상기 제1 서브발광영역(221a)의 두께보다 얇게 형성될 수 있다. 상기 V-피트(219v) 내의 상기 서브발광층(221)의 두께는 상기 V-피트(219v) 크기에 따라 다를 수 있다.
또한, 상기 서브발광층(221)이 상기 활성층(223)의 상부에 배치되므로, 상기 서브발광층(221)에서 생성된 단파장 영역의 광은 상기 기판(211)의 하면측 즉, 제2 출사면으로 방출되는 광 추출 효율보다 상기 기판(211)의 상부 측, 즉 제1 출사면으로 방출되는 광의 추출 효율이 더 높을 수 있다.
활성층(223)은 서브 발광층(221)에 비해 장파장의 광을 방출한다. 즉, 서브 발광층(221)의 우물층들은 활성층(223)의 우물층들(223a)에 비해 넓은 에너지 밴드갭을 갖는다. p형 질화물 반도체층(227)에 인접한 서브발광층(221)이 상대적으로 넓은 밴드갭을 갖기 때문에, n형 질화물 반도체층에 인접한 활성층(223)으로 주입되는 정공이 상대적으로 줄어든다.
서브발광층(221)의 밴드갭보다 낮은 밴드갭을 갖는 활성층(223)이 n형 질화물 반도체층(217)에 인접하여 배치되므로, p형 질화물 반도체층(227)으로부터 주입되는 정공의 대부분은 서브발광층(221)에서 재결합될 수 있어, 상기 활성층(223)에서의 재결합율이 상대적으로 떨어져 발광 효율이 낮아질 수 있다. 한편, 제2 출사면으로 광이 방출되는 경우, 서브발광층(221)에서 방출된 단파장 영역의 광이 밴드갭이 좁은 활성층(223)에서 적어도 부분적으로 흡수될 수 있다.
본 실시예에 따른 발광 다이오드는 수평형 구조의 발광 소자로 제작되어 서브발광층(221)에서 생성된 광의 추출 효율을 높일 수 있다.
도 5는 본 개시의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 5를 참조하면, 본 실시예에 따른 발광 다이오드는 도 1의 실시예에 따른 발광 다이오드와 대체로 유사하나, 활성층(323)의 하부 및 상부에 각각 서브발광층(321c, 321f)이 배치된 점에서 차이가 있다. 본 실시예에 따른 발광 다이오드는 도 1의 실시예의 발광 다이오드와 유사하게 V-피트 생성층(319), 활성층(323), 서브 발광층(321c), 전자 블록층(325), 및 P형 질화물계 반도체층(327)을 포함할 수 있다. 또한, 상기 발광 다이오드는 도시를 생략하였지만, 기판, 핵층, 고온 버퍼층, 및 N형 질화물 반도체층을 포함할 수 있다. 활성층(323)은 우물층(323a) 및 장벽층(323b)을 포함할 수 있다. 나아가, 상기 발광 다이오드은 활성층(323) 상부에 배치된 서브 발광층(321f)을 더 포함한다.
상기 하부 서브발광층(321c) 및 상부 서브발광층(321f)은 각각 적어도 3개의 우물층을 가질 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 하부 서브발광층(321c) 및 상부 서브발광층(321f)은 각각 적어도 하나의 우물층으로 형성될 수 있고, 또는 상기 하부 및 상부 서브발광층(321c, 321f)의 각 우물층의 수가 다를 수도 있다.
상기 하부 및 상부 서브발광층(321c, 321f)은 상기 활성층(323)의 평평한 면 하부 및 상부에 배치된 제1 서브발광영역(321a, 321d)과 상기 V-피트(319v) 내에 형성된 제2 서브발광영역(321b, 321e)을 포함할 수 있다. 상기 V-피트(319v) 내의 사면은 상대적으로 성장속도가 낮은 특성을 갖고, 그에 따라 상기 V-피트(319b)의 사면 상에 형성된 제2 서브발광영역(321b, 321e)의 두께는 상기 제1 서브발광영역(321a, 321d)의 두께보다 얇게 형성될 수 있다. 상기 V-피트(319v) 내의 상기 서브발광층(321)의 두께는 상기 V-피트(319v) 크기에 따라 다를 수 있다.
도 6A는 비교예 1 및 실시예 2에 따른 발광 다이오드의 광 발광(photoluminescence: PL) 강도를 보여주는 그래프이고, 도 6B는 실시예 2에 따른 발광 다이오드의 전계 발광(electroluminescence: EL) 강도를 보여주는 그래프이다. 실시예 2의 발광 다이오드에 대해 각각 50mA 내지 400mA의 전류 범위에서 파장에 따른 EL 강도를 측정하였다. 비교예 1의 발광 다이오드의 EL 스펙트럼은 도 3C에 도시되어 있다.
비교예 1 및 실시예 2의 발광 다이오드들은 서브 발광층(321c, 321f) 유무를 제외하면 유사한 구조를 가지며, 기판 상에 유사한 공정 조건에서 반도체층들을 성장하여 제조된 것이다. 실시예 2의 발광 다이오드는 도 5를 참조하여 설명한 바와 같이 활성층(323)의 하부 및 상부에 각각 서브발광층(321c, 321f)을 포함한다.
우선, 도 6A를 참조하면, 서브발광층(321c, 321f)을 활성층(323)의 하부 및 상부에 배치함으로써, 활성층(323)에서 방출되는 황색 파장 대역의 광의 강도보다, 상기 서브발광층(321c, 321f)에서 방출되는 청색 파장 대역의 광의 강도가 상대적으로 더 높다. 특히, 활성층(323) 상부에 배치된 서브 발광층(321f) 때문에 실시예 2의 PL 강도는 단파장 영역에서 관찰되는 PL 강도가 실시예 1에 비해 더 높다.
도 6B를 참조하면, 실시예 2의 EL 스펙트럼은 단파장 영역에서 방출되는 광의 강도가 장파장 영역에서 방출되는 광의 강도보다 더 높다. 전류가 50mA에서 400mA로 증가함에 따라 각 파장 대역에서의 강도도 증가하며 장파장 및 단파장 영역에서의 밴드가 뚜렷해진다.
상기 서브발광층(321c, 321f)이 배치되는 위치 및 상기 서브발광층(321c, 321f)의 우물층의 개수 및 조성을 조절함으로써 단파장 영역에서 방출되는 광의 강도를 조절할 수 있다. 또한, 상기 서브발광층(321c, 321f)이 상기 활성층(323)의 하부 및 상부에 배치됨에 따라, 제2 출사면 뿐만 아니라 제1 출사면으로 출사되는 단파장 영역의 광의 강도를 증가시킬 수 있다. 상기 하부 서브발광층(321c)에서 방출되는 단파장 영역의 광은 제1 출사면으로 출사되기 전 상기 활성층(323)에 의해 적어도 일부 흡수될 수 있으나, 상부 서브발광층(321f)에서 방출되는 단파장 영역의 광이 단파장 영역의 광을 보완할 수 있다.
본 개시의 실시예에 따른 발광 다이오드는 제1 출사면으로 광이 출사되는 수평형 구조의 발광 소자 또는 제2 출사면으로 출사되는 플립형 또는 수직형 구조의 발광 소자에 모두 적용될 수 있다. 다만, 상기 제2 출사면으로 방출되는 광은 기판에 의해 흡수 및 산란될 수 있어, 제2 출사면에서의 광 추출 효율이 제1 출사면에서의 광 추출 효율보다 낮을 수 있다. 따라서, 광 추출 효율을 고려할 경우, 본 실시예에 따른 발광 다이오드는 수평형 구조의 발광 소자에 더 적합할 수 있다.
도 7은 본 개시의 일 실시예에 따른 수평형 발광 소자(100)를 도시한 개략적인 단면도이다.
도 7을 참조하면, 본 실시예에 따른 발광 소자(100)는 기판(410), n형 반도체층(420), 활성층(430), p형 반도체층(440), 오믹 전극(451), n형 전극(453), p형 전극(455), 광 투과층(457), 및 반사막(459)를 포함할 수 있다. 본 실시예에서, n형 반도체층(420)은 도 1을 참조하여 설명한 핵층, 고온 버퍼층, n형 질화물 반도체층을 포함할 수 있다. 또한, 활성층(430)은 도 1, 도 4, 또는 도 5를 참조하여 설명한 바와 같이 서브 발광층과 활성층을 포함할 수 있다. 또한, 본 실시예에서 p형 반도체층은 도 1을 참조하여 설명한 전자 블록층 및 p형 질화물 반도체층을 포함할 수 있다. 즉, 본 실시예에 따른 발광 소자(100)는 도 1, 도 4, 또는 도 5를 참조하여 설명한 발광 다이오드에 더하여 오믹 전극(451), n형 전극(453), p형 전극(455), 광 투과층(457), 및 반사막(459)을 포함한다.
발광소자(100)는 상기 설명한 복수대역의 스펙트럼을 가지는 발광 다이오드를 포함하며, 수평형 구조를 갖는다. 식각 공정을 통해 p형 반도체층(440) 및 활성층(430)이 부분적으로 제거되고 n형 반도체층(420)이 노출될 수 있으며, n형 전극(453)이 노출된 n형 반도체층(420) 상에 형성될 수 있다. 한편, 오믹 전극(451)이 p형 반도체층(440)에 오믹 콘택하고, 오믹 전극(451) 상에 p형 전극(455)이 형성될 수 있다. 광 투과층(457)은 n형 반도체층(420), 활성층(430) 및 p형 반도체층(440)의 상부 및 측면을 덮을 수 있다. 광 투과층(457)은 n형 전극(453) 및 p형 전극(455)을 노출시키는 개구부들을 가질 수 있다.
광 투과층(457)은 단일층을 형성될 수 있으나, 이에 한정되는 것은 아니며, 다중층을 포함할 수 있다. 광 투과층(457)은 SiO2, SiNx, Al2O3, Nb2O5, TiO2, MgF2 등의 광 투과성 절연 산화막을 포함할 수 있다.
반사막(459)은 광 투과층(457)에 대향하여 기판(410)의 하부에 배치될 수 있다. 반사막(459)은 분포 브래그 반사기 또는 금속 반사기를 포함할 수 있다.
도 8은 본 개시의 또 다른 실시예에 따른 수평형 발광 소자(200)를 도시한 개략적인 단면도이다.
본 실시예에 따른 발광 소자(200)는 도 7을 참조하여 설명한 발광 소자(200)와 대체로 유사한 구조를 가지며, 다만, 제2 광 투과층(460)을 더 포함하는 것에 차이가 있다.
보다 구체적으로 도 8의 수평형 발광 소자는 제1 광 투과층(457)과 제2 광 투과층(460)을 포함한다. 제1 광 투과층(457)은 도 7을 참조하여 설명한 광 투과층(457)과 동일할 수 있으며, 제2 광투과층(460)은 에폭시 몰딩 컴파운드(EMC), 폴리이미드(polymide), 또는 실리콘(silicone) 등의 재료를 포함할 수 있다. 제2 광 투과층(460)은 제1 광 투과층(457)과 다른 구조를 가질 수 있으며, 기판(410) 상부에 형성될 수도 있고, 도 8에 도시한 바와 같이, 기판(410) 상부뿐만 아니라 기판(410)의 측면을 덮을 수도 있다.
도 7에서 광 투과층(457)을 다중층으로 형성할 수도 있고 도 8과 같이 제1 광 투과층(457)에 제2 광 투과층(460)을 추가로 형성하여 다중층의 광 투과층을 형성할 수 있다. 다중층으로 광 투과층을 형성할 경우, 광 투과층은 무반사 코팅층(AR, Anti-reflective coating)을 포함할 수 있다. 다중층은 예를 들어, SiO2, Al2O3, HfO2, Y2O3, TiO2와 같은 금속 산화물 또는 MgF2, CaF2, LaF3, Na3AlF6 와 같은 금속불화물을 포함할 수 있다.
무반사 코팅층은 활성층(430)에서 생성되는 광의 피크 파장을 고려하여 설계될 수 있다. 먼저 활성층(430)에서 생성되는 광의 피크 파장의 추출 효율을 높이기 위해 해당 피크 파장 대역에서의 투과율을 100%에 근접하도록 무반사 코팅층을 설계할 수 있다. 또한 무반사 코팅층은 활성층(430)에서 생성된 광 뿐만 아니라 CRI을 개선하기 위해 가시광의 단파장 대역 및 장파장 대역의 광에 대해 높은 투과율을 갖도록 설계될 수 있다.
도 9는 본 개시의 또 다른 실시예에 따른 플립형 발광 소자(300)를 도시한 개략적인 단면도이다.
도 9를 참조하면, 본 실시예에 따른 발광 소자(300)는 도 7을 참조하여 설명한 발광 소자(100)와 대체로 유사하나, n형 범프 전극(471) 및 p형 범프 전극(473)을 더 포함하며, 광 투과층(470) 및 반사막(467)의 위치에 차이가 있다.
광 투과층(470)은 n형 반도체층(420)에 대향하여 기판(410) 상에 배치되며, 반사막(467)이 n형 반도체층(420), p형 반도체층(440), 오믹 전극(451), n형 전극(453), 및 p형 전극(455)을 덮는다. 또한, 반사막(467)은 n형 전극(453), 및 p형 전극(455)을 노출시키는 개구부들을 갖는다.
n형 범프 전극(471)은 반사막(467)의 개구부를 통해 n형 전극(453)에 전기적으로 접속하고, p형 범프 전극(473)은 반사막(467)의 개구부를 통해 p형 전극(455)에 전기적으로 접속한다.
발광 소자(300)는 n형 범프 전극(471) 및 p형 범프 전극(473)을 이용하여 회로 기판 상에 플립 본딩될 수 있다. 한편, 활성층(430)에서 생성된 광은 기판(410) 및 광 투과층(470)을 통해 외부로 방출될 수 있다.
본 실시예에서, 상기 광 투과층(470)은 도 7 또는 도 8을 참조하여 설명한 바와 같은 광 투과층(457, 460)과 같은 재료로 형성될 수 있다. 광 투과층(470)은 또한 기판(410)의 상면 뿐만 아니라 측면을 덮을 수도 있다.
도 10은 본 개시의 일 실시예에 따른 발광 모듈(1000)을 설명하기 위한 개략적인 단면도이다.
도 10을 참조하면, 발광 모듈(1000)은 회로 기판(1001), 발광 소자들(300) 및 광 투과층(570)을 포함할 수 있다.
회로 기판(1001)은 발광 소자들(300)에 전력을 공급하기 위한 회로 패턴을 갖는다. 예를 들어, 회로 기판(1001)의 상면에 배선들(1003)이 배치될 수 있고, 하면에 패드들(1007)이 배치될 수 있으며, 배선들(1003)과 패드들(1007)은 비아들(1005)을 통해 연결될 수 있다. 회로 기판(1001)은 다중층의 회로 패턴을 포함할 수도 있다.
발광 소자들(300)은 회로 기판(1001) 상에 실장될 수 있다. 발광 소자들(300)은 도 9를 참조하여 설명한 바와 같은 플립형 발광 소자일 수 있으나, 반드시 이에 한정되는 것은 아니다. 예를 들어, 발광 소자(300)에서 광 투과층(470)은 생략될 수도 있다.
발광 소자(300)는 n형 범프 전극(471) 및 p형 범프 전극(473)을 이용하여 회로 기판(1001)의 배선들(1003)에 본딩될 수 있다. 복수개의 발광 소자들(300)이 회로 기판(1001) 상에 다양한 배열로 배치될 수 있다. 발광 소자들(300)은 회로 기판(1001) 상의 배선들(1003)을 이용하여 서로 직렬 또는 병렬로 연결될 수 있으며, 또한, 개별 구동이 가능하도록 회로 기판(1001) 상의 배선들(1003)에 전기적으로 접속될 수 있다.
광 투과층(570)은 발광 소자(300)의 상면 및 측면을 덮을 수 있다. 도 10에 도시한 바와 같이, 각 발광 소자(300)가 개별적으로 광 투과층(570)으로 덮일 수 있으나, 이에 한정되는 것은 아니며, 하나의 광 투과층(570)이 복수의 발광 소자들(300)을 덮을 수도 있다.
광 투과층(570)의 재료는 특별히 한정되지 않으며, 예를 들어, 에폭시 몰딩 컴파운드(EMC), 폴리이미드(polymide), 또는 실리콘(silicone) 등을 포함할 수 있다. 또한, 광 투과층(570)은 백색광의 CRI를 향상시키기 위해 적색 형광체를 함유할 수도 있다. 적색 형광체는 발광 소자들(300)에서 생성된 광의 일부를 적색광으로 파장변환하여 백색광의 CRI를 향상시킬 수 있다.
도 11A는 본 발명의 일 실시예에 따른 발광 소자를 적용한 발광 소자 패키지(2000)를 설명하기 위한 사시도이고, 도 11B는 도 11A의 평면도이며, 도 11C는 도 11B의 절취선 I-I'를 따라 취해진 단면도이다.
도 11A, 도 11B, 및 도 11C를 참조하면, 상기 발광 소자 패키지(2000)는, 하우징(610), 발광 소자(620), 리드프레임(630) 및 제너 다이오드(640)를 포함할 수 있다.
하우징(610)은, 본 실시예에서, 몸체부(611), 커버부(613) 및 코팅부(615)를 포함한다. 몸체부(611)는, 도시된 바와 같이, 대략 평면상의 형상이 사각형 형상을 가지며, 리드프레임(630)을 지지하도록 리드프레임(630)을 감싸는 형상을 가질 수 있다. 하우징(610)은 내부에 일면이 개방된 캐비티(V)를 가질 수 있으며, 캐비티(V)에 발광 소자(620)가 배치될 수 있다.
여기서, 캐비티(V)의 깊이는 발광 소자(620)의 높이보다 클 수 있다. 이때, 도 11B 및 도 11C에 도시된 바와 같이, 몸체부(611)는, A 영역 및 B 영역으로 구분될 수 있다. A 영역은 발광 소자(620)가 실장되는 영역일 수 있고, B 영역은 제너 다이오드(640)가 실장되는 영역일 수 있다.
몸체부(611)의 A 영역을 보면, 발광 소자(620)를 기준으로 발광 소자(620)를 둘러싸는 캐비티(V)의 경사면이 동일한 경사면을 가질 수 있다. 이때, A 영역에 형성된 제1 몸체 경사면(611a)은, 도 11C에 도시된 바와 같이, 곡면으로 형성될 수 있으며, 상부로 갈수록 곡면의 경사가 급해지도록 형성될 수 있다.
A 영역에 형성된 제1 몸체 경사면(611a)은, 발광 소자(620)의 일면을 제외한 3면의 캐비티(V)에 형성된다. 이때, 제1 몸체 경사면(611a)의 내측은 발광 소자(620)가 실장된 위치에 인접하게 배치될 수 있다. 그에 따라 발광 소자(620)에서 방출된 광은 제1 몸체 경사면(611a)에서 반사되어 발광 소자 패키지(2000)의 상부 방향으로 방출될 수 있다.
그리고 B 영역에 형성된 제2 몸체 경사면(611b)은, 도 11C에 도시된 바와 같이, 본 실시예에서, 단면의 형상이 직선으로 형성될 수 있다. 하지만, 제1 몸체 경사면(611a)은 경사면으로 형성될 때, 단면 형상이 직선인 것에 한정되는 것은 아니며, 곡선으로 형성될 수도 있다.
B 영역은 도 11B에서 확인할 수 있듯이, 세로 방향의 폭이 A 영역의 세로 방향 폭보다 클 수 있다. 이에 따라, 제2 몸체 경사면(611b)을 덮도록 커버부(613)가 형성될 수 있는 공간이 확보될 수 있다. 이에 대해서는 뒤에서 상세하게 설명된다.
도시하지 않았지만, 다른 형태의 실시예로 몸체부(611)의 제1 몸체 경사면(611a) 및 제2 몸체 경사면(611b)은 기울어진 선형 형태일 수 있으며, 기울어진 선형 형태의 중간에 평탄면을 갖는 스텝부가 형성될 수 있다. 기울어진 선형 형태의 캐비티 면과 스텝부가 만나는 지점에는 모서리가 형성될 수 있다. 이를 통해 캐비티(V) 내부 경사면 면적이 넓어지므로, 캐비티 (V) 내부를 채우는 봉지재와의 접합 면적이 증가하고 수분침투 경로가 길어져 소자의 신뢰성이 향상 될 수 있다. 또한 이중몰딩의 형태로 봉지재를 형성하는 경우, 1차 형성하는 봉지재가 모서리를 컨택하고 표면장력으로 인하여 모서리를 넘지 않는 높이로 형성되며, 2차 봉지재는 상기 1차 봉지재의 상부에서 몸체부(611)의 높이까지 형성될 수 있다.
커버부(613)는 도 11C에 도시된 바와 같이, B 영역에 형성된 제2 몸체 경사면(611b)을 덮도록 배치된다. 커버부(613)는 B 영역에 배치된 제너 다이오드(640)를 덮을 수 있는 두께로 형성되며, 단턱부(612)를 넘지 않을 정도로 형성된다. 그리고 커버부(613)는 도시된 바와 같이, 완만한 경사면으로 형성된 커버 경사면(613b)을 가지 수 있다. 커버 경사면(613b)은 곡면으로 형성될 수 있으며, 상부에서 하부로 갈수록 경사가 완만해지도록 형성될 수 있다.
커버부(613)는 단턱부(612)를 넘지 않도록 형성된 것에 대해 설명하지만, 이에 한정되는 것은 아니며, 필요에 따라 커버부(613)의 일부는 단턱부(612)를 넘어 발광 소자(620)이 실장된 위치까지 일부가 형성될 수도 있다. 즉, 커버부(613)는 반사 재료가 포함된 점성이 있는 소재를 이용하여 제2 몸체 경사면(611b)과 제너 다이오드(640)를 덮도록 형성될 수 있다. 이때, 반사 재료는 TiO2 및 Al2O3 등일 수 있다.
이렇게 커버부(613)가 B 영역에 형성됨에 따라 발광 소자 패키지(2000)의 캐비티(V)에 형성된 커버 경사면(613b)은 제1 몸체 경사면(611a)과 유사한 형상으로 형성될 수 있다. 그에 따라 캐비티(V) 내에 형성된 반사면은 발광 소자(620)를 기준으로 모든 면이 거의 동일하게 형성될 수 있다.
코팅부(615)는 반사 재료가 포함된 코팅 재료를 이용하여 제1 몸체 경사면(611a) 및 커버 경사면(613b)을 덮도록 형성된다. 이때, 반사 재료는 TiO2 및 Al2O3 등일 수 있다. 즉, 코팅부(615)는 발광 소자 패키지(2000)의 캐비티(V) 내에 발광 소자(620)를 제외한 전 영역을 덮도록 형성될 수 있다. 이를 위해 발광 소자(620)의 상부를 마스킹하고, 발광 소자 패키지(2000)의 캐비티(V) 상부에서 스프레이(spray), 디스펜싱 (dispensing), 제팅(jetting), 필름 부착(film attach), 박막증착(sputtering) 및 전자빔(e-beam) 증착 등의 방법을 이용하여 제1 몸체 경사면(611a) 및 커버 경사면(613b) 상에 형성될 수 있다. 그에 따라 발광 다이오드 패키지(2000)의 캐비티(V)의 A 영역에 제1 코팅 경사면(615a)이 형성되고, B 영역에 제 2 코팅 경사면(615b)이 형성될 수 있다.
발광 소자 패키지(2000)의 캐비티 영역 내에 발광 소자(620)를 보호하기 위한 봉지재가 형성 될 수 있다. 봉지재는 광 투과성 재료로 형성되며, 예를 들어 실리콘과 같은 물질이 사용될 수 있다. CRI가 향상된 백색 광 구현을 위하여, 봉지재에는 적색 형광체가 포함될 수도 있다. 적색 파장 영역을 발광하는 형광체로서는 질소 함유 알루미노실리콘칼슘(CASN 또는 SCASN)계 형광체(예를 들 면 (Sr, Ca)AlSiN3:Eu) 등을 들 수 있다. 이 밖에, 망간 활성 불화물계 형광체(일반식 (I) A2[M1-aMnaF6]로 표현되는 형광체)가 있다. 단, 상기 일반식 (I) 중 A는 K, Li, Na, Rb, Cs 및 NH4로 이루어진 군에서 선택되는 적어도 1종이고, M은 제4족 원소 및 제14족 원소로 이루어지는 군에서 선택되는 적어도 1종의 원소이며, a은 0<a<0.2를 충족)을 들 수 있다. 이 망간 활성 불화물계 형광체의 대표예로서는, 망간 활성 불화실리콘칼륨의 형광체(예를 들면 K2SiF6:Mn)가 있다. 또한, 옥시도할라이드(oxiodohalide) 호스트 격자에 기초한 망간 활성 형광체(일반식 (II) (A4-aBa)m/2+n/2X2m[MX4O2]n로 표현되는 형광체)가 있다. 단, 상기 일반식 (II) 중 A는 수소(H) 및/또는 중수소(D)이고, B는 Li, Na, K, Rb, Cs, NH4, ND4, 및/또는 NR4이며, 여기서, R은 알킬 또는 아릴 라디칼이고, X는 F 및/또는 Cl이고, M은 Cr, Mo, W 및/또는 Re이며, 0 ≤ a ≤ 4, 0 < m ≤ 10, 및 1 ≤ n ≤ 10 이다.
본 실시예에서, 상기 발광 소자(620)는 도 9의 플립형 발광 소자(300)와 같은 플립형 발광 소자일 수 있으나, 이에 한정되는 것은 아니며, 도 7 또는 도 8의 수평형 발광 소자(100, 200)와 유사한 발광 소자일 수도 있다. 상기 발광 소자(620)는 도 1, 도 4, 또는 도 5를 참조하여 설명한 발광 다이오드를 포함할 수 있다.
이상에서, 본 개시의 다양한 실시예들에 대해 설명하였으나, 본 개시 사항은 상기 실시예에만 한정되는 것은 아니다. 또한, 하나의 실시예에 대해서 설명한 사항이나 구성요소는 본 개시의 기술적 사상을 벗어나지 않는 한 다른 실시예에도 적용될 수 있다.

Claims (20)

  1. n형 질화물 반도체층;
    상기 n형 질화물 반도체층 상에 위치하며 V-피트를 갖는 V-피트 생성층;
    상기 V-피트 생성층 상에 위치하며, 상기 V-피트 생성층의 평평한 면을 따라 형성된 제1 우물영역 및 상기 V-피트 생성층의 V-피트 내에 형성된 제2 우물영역을 포함하는 활성층;
    상기 활성층 상에 위치하는 p형 질화물 반도체층; 및
    상기 n형 질화물 반도체층 및 상기 p형 질화물 반도체층 사이에 개재되고 상기 활성층에 인접한 서브발광층을 포함하고,
    상기 서브발광층은 상기 제1 우물영역의 피크 파장보다 단파장 영역의 피크 파장의 광을 방출하며,
    상기 n형 질화물 반도체층 또는 상기 p형 질화물 반도체층을 통과하여 방출되는 광은 CIE 색좌표 (X, Y) 0.205≤X≤0.495, 0.265≤Y≤0.450 범위 내인 발광 다이오드.
  2. 청구항 1에 있어서,
    상기 활성층은 단일 칩 레벨에서 적어도 2개의 서로 다른 피크 파장의 광을 방출하는 발광 다이오드.
  3. 청구항 2에 있어서,
    상기 제1 우물영역은 상기 제2 우물영역에 비해 더 많은 Indium (In) 함량을 갖는 발광 다이오드.
  4. 청구항 3에 있어서,
    상기 제1 우물 영역은 570-590nm 범위 내에 피크 파장을 갖는 황색광을 방출하고,
    상기 제2 우물 영역은 400-500nm 범위 내에 피크 파장을 갖는 청색광을 방출하는 발광 다이오드.
  5. 청구항 2에 있어서,
    상기 제1 우물 영역은 상기 제2 우물 영역에 비해 더 두꺼운 발광 다이오드.
  6. 청구항 1에 있어서,
    상기 서브발광층은 우물층과 캐핑층을 포함하는 발광 다이오드.
  7. 청구항 6에 있어서,
    상기 서브발광층의 우물층은 상기 제1 우물 영역 내의 우물층에 비해 더 적은 Indium (In) 함량을 갖는 발광 다이오드.
  8. 청구항 7에 있어서,
    상기 서브발광층은 상기 활성층과 V-pit 생성층 사이에 위치하며, 상기 활성층과 접하는 발광 다이오드.
  9. 청구항 8에 있어서,
    상기 서브발광층은 V-pit을 가지는 발광 다이오드.
  10. 청구항 8에 있어서,
    상기 서브발광층의 우물층은 상기 제1 우물영역의 우물층보다 더 넓은 에너지 밴드갭을 갖는 발광 다이오드.
  11. 청구항 8에 있어서,
    상기 서브발광층의 격자 상수는 상기 V-피트 생성층의 격자 상수 및 상기 활성층의 격자 상수의 중간값을 갖는 발광 다이오드.
  12. 청구항 7에 있어서,
    상기 서브발광층은 상기 활성층의 상부에 접하는 발광 다이오드.
  13. 청구항 7에 있어서,
    상기 서브발광층은,
    상기 활성층의 하부에 접하는 하부 서브발광층; 및
    상기 활성층의 상부에 접하는 상부 서브발광층을 포함하는 발광 다이오드.
  14. 청구항 1에 있어서,
    상기 서브발광층, 상기 제1 우물 영역 및 상기 제2 우물 영역에 의해 단일 칩 레벨에서 적어도 3개의 서로 다른 피크 파장의 광을 방출하는 발광 다이오드.
  15. 청구항 14에 있어서,
    상기 서브발광층은 청색광을 방출하고,
    상기 제2 우물 영역은 상기 서브발광층보다 단파장 영역 또는 장파장 영역의 청색광을 방출하고,
    상기 제1 우물 영역은 황색광을 방출하는 발광 다이오드.
  16. 청구항 1에 있어서,
    상기 활성층 및 상기 p형 질화물 반도체층 사이에 전자블록층을 더 포함하는 발광 다이오드.
  17. 발광 다이오드; 및
    상기 발광 다이오드 상에 배치된 광 투과층을 포함하며,
    상기 발광 다이오드는,
    n형 질화물 반도체층;
    상기 n형 질화물 반도체층 상에 위치하며 V-피트를 갖는 V-피트 생성층;
    상기 V-피트 생성층 상에 위치하며, 상기 V-피트 생성층의 평평한 면을 따라 형성된 제1 우물영역 및 상기 V-피트 생성층의 V-피트 내에 형성된 제2 우물영역을 포함하는 활성층;
    상기 활성층 상에 위치하는 p형 질화물 반도체층; 및
    상기 n형 질화물 반도체층 및 상기 p형 질화물 반도체층 사이에 개재되어 상기 활성층과 인접하여 위치하는 서브발광층을 포함하고,
    상기 서브발광층은 상기 제1 우물영역의 피크 파장보다 단파장 영역의 피크 파장의 광을 방출하는 발광 소자.
  18. 청구항 17에 있어서,
    상기 광 투과층은 단일층 또는 다중층인 발광 소자.
  19. 청구항 18에 있어서,
    상기 발광 다이오드는 기판을 더 포함하되, 상기 n형 질화물 반도체층은 상기 기판 상에 위치하며,
    상기 광 투과층은 제1 광 투과층 및 상기 제1 광 투과층을 덮는 제2 광 투과층을 포함하고,
    상기 제2 광 투과층은 상기 기판 상면과 함께 상기 기판의 측면을 덮는 발광 소자.
  20. 회로 기판;
    상기 회로 기판 상에 배열된 발광 소자;
    및 상기 발광 소자를 덮는 광 투과층을 포함하되,
    상기 발광 소자는 발광 다이오드를 포함하고,
    상기 발광 다이오드는,
    n형 질화물 반도체층;
    상기 n형 질화물 반도체층 상에 위치하며 V-피트를 갖는 V-피트 생성층;
    상기 V-피트 생성층 상에 위치하며, 상기 V-피트 생성층의 평평한 면을 따라 형성된 제1 우물영역 및 상기 V-피트 생성층의 V-피트 내에 형성된 제2 우물영역을 포함하는 활성층;
    상기 활성층 상에 위치하는 p형 질화물 반도체층; 및
    상기 n형 질화물 반도체층 및 상기 p형 질화물 반도체층 사이에 개재되어 상기 활성층과 인접하여 위치하는 서브발광층을 포함하고,
    상기 서브발광층은 상기 제1 우물영역의 피크 파장보다 단파장 영역의 피크 파장의 광을 방출하는 발광 모듈.
PCT/KR2022/002318 2021-02-17 2022-02-17 단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈 WO2022177306A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22756504.1A EP4254522A1 (en) 2021-02-17 2022-02-17 Single-chip multi-band light-emitting diode, and light-emitting device and light-emitting module having same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163150280P 2021-02-17 2021-02-17
US63/150,280 2021-02-17
US202163153703P 2021-02-25 2021-02-25
US63/153,703 2021-02-25
US17/673,068 2022-02-16
US17/673,068 US20220262983A1 (en) 2021-02-17 2022-02-16 Single chip multi band light emitting diode, light emitting device and light emitting module having the same

Publications (1)

Publication Number Publication Date
WO2022177306A1 true WO2022177306A1 (ko) 2022-08-25

Family

ID=82800589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002318 WO2022177306A1 (ko) 2021-02-17 2022-02-17 단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈

Country Status (3)

Country Link
US (1) US20220262983A1 (ko)
EP (1) EP4254522A1 (ko)
WO (1) WO2022177306A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621370B2 (en) 2020-06-19 2023-04-04 Seoul Viosys Co., Ltd. Single chip multi band led and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073702A (ko) * 2008-12-23 2010-07-01 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR20150112274A (ko) * 2014-03-27 2015-10-07 엘지이노텍 주식회사 발광 소자
KR20160058321A (ko) * 2014-11-14 2016-05-25 삼성전자주식회사 발광 소자 및 그의 제조 방법
KR20170063211A (ko) * 2015-11-30 2017-06-08 엘지이노텍 주식회사 발광소자 및 이를 포함하는 조명장치
KR20180080854A (ko) * 2017-01-05 2018-07-13 엘지이노텍 주식회사 반도체 소자 및 이를 포함하는 반도체 소자 패키지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073702A (ko) * 2008-12-23 2010-07-01 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR20150112274A (ko) * 2014-03-27 2015-10-07 엘지이노텍 주식회사 발광 소자
KR20160058321A (ko) * 2014-11-14 2016-05-25 삼성전자주식회사 발광 소자 및 그의 제조 방법
KR20170063211A (ko) * 2015-11-30 2017-06-08 엘지이노텍 주식회사 발광소자 및 이를 포함하는 조명장치
KR20180080854A (ko) * 2017-01-05 2018-07-13 엘지이노텍 주식회사 반도체 소자 및 이를 포함하는 반도체 소자 패키지

Also Published As

Publication number Publication date
EP4254522A1 (en) 2023-10-04
US20220262983A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2010077082A2 (ko) 발광소자 패키지 및 그 제조방법
WO2017095154A1 (ko) 발광소자 및 이를 포함하는 조명장치
WO2017014512A1 (ko) 발광 소자
WO2021210919A1 (ko) 단일칩 복수 대역 발광 다이오드
WO2016204482A1 (ko) 복수의 파장변환부를 포함하는 발광 소자 및 그 제조 방법
WO2014058224A1 (ko) 발광소자
WO2016153214A1 (ko) 발광 소자 및 발광 소자 패키지
WO2015156504A1 (ko) 발광소자 및 이를 구비하는 조명 시스템
WO2018212416A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2021256839A1 (ko) 단일칩 복수 대역 발광 다이오드 및 그 응용품
WO2016093626A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명장치
WO2020138842A1 (en) Micro light emitting diode and manufacturing method of micro light emitting diode
WO2022177306A1 (ko) 단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈
WO2017119730A1 (ko) 발광 소자
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2017034346A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2023027474A1 (ko) 발광 다이오드 및 그것을 갖는 발광 소자
WO2016032178A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 시스템
WO2017135688A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2016080671A1 (ko) 발광소자 및 조명시스템
WO2023277608A1 (ko) 복수 대역 발광 다이오드
WO2022240179A1 (ko) 복수 대역 발광 다이오드
WO2021158016A1 (ko) 단일칩 복수 대역 발광 다이오드
WO2016072661A1 (ko) 자외선 발광소자 및 조명시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022756504

Country of ref document: EP

Effective date: 20230630

NENP Non-entry into the national phase

Ref country code: DE