WO2017116048A1 - 발광소자 및 이를 포함하는 발광소자 패키지 - Google Patents

발광소자 및 이를 포함하는 발광소자 패키지 Download PDF

Info

Publication number
WO2017116048A1
WO2017116048A1 PCT/KR2016/014693 KR2016014693W WO2017116048A1 WO 2017116048 A1 WO2017116048 A1 WO 2017116048A1 KR 2016014693 W KR2016014693 W KR 2016014693W WO 2017116048 A1 WO2017116048 A1 WO 2017116048A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pit
light emitting
conductive semiconductor
emitting device
Prior art date
Application number
PCT/KR2016/014693
Other languages
English (en)
French (fr)
Inventor
한영훈
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to US16/066,975 priority Critical patent/US10770622B2/en
Publication of WO2017116048A1 publication Critical patent/WO2017116048A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • Embodiments relate to a light emitting device and a light emitting device package including the same.
  • Group 3-5 compound semiconductors such as GaN and AlGaN, are widely used for optoelectronics and electronic devices due to many advantages, such as having a wide and easy to adjust energy bandgap.
  • light emitting devices such as light emitting diodes or laser diodes using semiconductors of Group 3-5 or 2-6 compound semiconductor materials of semiconductors have been developed through the development of thin film growth technology and device materials such as red, green, blue and ultraviolet light.
  • Various colors can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.
  • Low power consumption, semi-permanent life, fast response speed, safety and environment compared to conventional light sources such as fluorescent and incandescent lamps can be realized. Has the advantage of affinity.
  • a white light emitting device that can replace a fluorescent light bulb or an incandescent bulb that replaces a Cold Cathode Fluorescence Lamp (CCFL) constituting a backlight of a transmission module of an optical communication means and a liquid crystal display (LCD) display device.
  • CCFL Cold Cathode Fluorescence Lamp
  • LCD liquid crystal display
  • Such a light emitting device may generate an electro-static discharge (ESD) when a current is applied, and may cause a product defect of the light emitting device when the amount of the electrostatic discharge is excessive, and the luminous efficiency and light output of the light emitting device may be increased. It can also reduce.
  • ESD electro-static discharge
  • the embodiment relates to a light emitting device capable of effectively blocking or reducing electrostatic discharge or improving the luminous efficiency and light output of the light emitting device.
  • Embodiments of the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above may be clearly understood by those skilled in the art to which the embodiments belong.
  • One embodiment of the light emitting device the substrate; A first conductive semiconductor layer disposed on the substrate and including at least one pit; A superlattice layer disposed on the first conductive semiconductor layer and including at least one pit; An active layer disposed on the superlattice layer and including at least one pit; An electron blocking layer disposed on the active layer and including at least one pit; A pit layer disposed on the electron blocking layer and including at least one pit; And a second conductive semiconductor layer disposed on the pit layer, wherein the pit layer may be doped with at least a portion of Mg.
  • the substrate A first conductive semiconductor layer disposed on the substrate and including at least one pit; A superlattice layer disposed on the first conductive semiconductor layer and including at least one pit; An active layer disposed on the superlattice layer and including at least one pit; An electron blocking layer disposed on the active layer and including at least one pit; A pit layer disposed on the electron blocking layer and including at least one pit; A second conductive semiconductor layer disposed on the pit layer, wherein the pit layer includes a first layer including MgN and a second layer including GaN, wherein the first layer and the second layer This may be provided in plurality, and may be stacked alternately with each other.
  • the body comprising a cavity; A lead frame installed on the body; And the light emitting device electrically connected to the lead frame.
  • the pit layer doped with Mg in the light emitting device of the embodiment, it is possible to effectively block or reduce the electrostatic discharge and to improve the luminous efficiency and light output of the light emitting device.
  • the annealing process may be performed after the lamination of the first layer and the second layer to form GaN having a good structure, the hole injection efficiency into the active layer may be improved.
  • FIG. 1 is a cross-sectional view showing a light emitting device according to an embodiment.
  • FIG. 2 is an enlarged view of portion A of FIG. 1.
  • FIG. 3 is an enlarged view illustrating an example of part B of FIG. 2.
  • FIG. 4 is an enlarged view illustrating another embodiment of part B of FIG. 2.
  • FIG. 5 is a view showing a light emitting device package according to an embodiment.
  • the light emitting device of the embodiment includes a substrate 100, a first conductive semiconductor layer 200, a superlattice layer 300, an active layer 400, an electron blocking layer 500, and a pit layer ( A pit layer 600, a second conductive semiconductor layer 700, a first electrode 810, and a second electrode 820 may be included.
  • the first conductive semiconductor layer 200, the superlattice layer 300, the active layer 400, the electron blocking layer 500, the pit layer 600, and the second conductive semiconductor layer 700 are light emitting structures. Can be formed.
  • the substrate 100 may support the light emitting structure.
  • the substrate 100 is formed of a template in which any one of sapphire substrate 100, silicon (Si), zinc oxide (ZnO), a nitride semiconductor, or at least one of GaN, InGaN, AlGaN, and AlInGaN is stacked. It may be.
  • the light emitting structure may be disposed on the substrate 100 to generate light.
  • stress may occur at the interface between the substrate 100 and the light emitting structure due to a difference in the lattice constant, the thermal expansion coefficient of the light emitting structure, and the like.
  • a buffer layer (not shown) may be interposed between the substrate 100 and the light emitting structure.
  • an undoped semiconductor layer (not shown) may be interposed to improve crystallinity of the first conductive semiconductor layer 200.
  • a small amount of unintended impurities may be doped in the manufacturing process.
  • the buffer layer may be grown at a low temperature, and the material may be a GaN layer or an AlN layer, but is not limited thereto.
  • the n-type dopant is not doped, compared to the first conductive semiconductor layer 200. It may be the same as the first conductive semiconductor layer 200 except for having low electrical conductivity.
  • the first electrode 810 may be disposed on an exposed stepped portion of the first conductive semiconductor layer 200, and the second electrode 820 may be disposed on the second conductive layer. It may be disposed on the upper exposed portion of the type semiconductor layer 700.
  • the light emitting device of the embodiment may emit light.
  • the horizontal type light emitting device may be provided as a vertical light emitting device or a flip chip light emitting device.
  • the light emitting structure includes the first conductive semiconductor layer 200, the superlattice layer 300, the active layer 400, the electron blocking layer 500, the pit layer 600, and the second conductive semiconductor.
  • Layer 700 may be included.
  • the first conductive semiconductor layer 200 may be disposed on the substrate 100 and may include at least one pit P.
  • the first conductive semiconductor layer 200 may be formed of, for example, a nitride semiconductor.
  • a semiconductor having a compositional formula of the first conductive semiconductor layer 200 is In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • the material may be selected from GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like, and n-type dopants such as Si, Ge, Sn, Se, Te, and the like may be doped.
  • the first conductive semiconductor layer 200 may include a third layer 230 and a fourth layer 240.
  • the third layer 230 may have a pit P formed thereon, and may be disposed below the superlattice layer 300.
  • the fourth layer 240 may be disposed under the third layer 230 and may be disposed on the substrate 100.
  • the fourth layer 240 may have a higher doping concentration of the n-type dopant than the third layer 230. As the doping concentration of the n-type dopant increases, more electrons, which are carriers, may be generated. In addition, electrons need to move smoothly from the first conductive semiconductor layer 200 toward the second conductive semiconductor layer 700.
  • the first conductive semiconductor layer 200 sequentially forms the fourth layer 240 and the third layer 230 in the direction of the second conductive semiconductor layer 700 and the doping concentration of the n-type dopant.
  • the fourth layer 240 may be higher than the third layer 230.
  • the fourth layer 240 with many electrons and the third layer 230 with few electrons are disposed to face each other, and thus the fourth layer 240 is directed from the fourth layer 240 to the third layer 230 due to the concentration difference of electrons. Electrons can be moved.
  • electrons may smoothly move from the first conductive semiconductor layer 100 toward the second conductive semiconductor layer 700.
  • the superlattice layer 300 (superlattice) is disposed on the first conductive semiconductor layer 200 and may include at least one pit (P).
  • the superlattice layer 300 may be formed, for example, in a structure in which a plurality of pairs of unit superlattice layers 300 are stacked, and the pair of unit superlattice layers 300 may be, for example, It may be formed of InGaN / GaN, InGaN / InGaN, or the like.
  • the superlattice layer 300 may be disposed between the first conductive semiconductor layer 200 and the active layer 400 to serve as a buffer layer.
  • first conductive semiconductor layer 200 and the active layer 400 are directly bonded to each other, due to differences in lattice constants and thermal expansion coefficients of the first conductive semiconductor layer 200 and the active layer 400.
  • stress may occur at an interface between the first conductive semiconductor layer 200 and the active layer 400.
  • the superlattice layer 300 may serve to mitigate such stress generation.
  • the superlattice layer 300 since the superlattice layer 300 has a higher electrical resistance than other portions, the superlattice layer 300 protects the light emitting device of the embodiment from electrostatic discharge (ESD) and disperses current applied to the light emitting device of the embodiment. It can serve to improve the luminous efficiency and light output.
  • ESD electrostatic discharge
  • the active layer 400 may be disposed on the superlattice layer 300 and may include at least one pit P.
  • the active layer 400 emits light by energy generated during recombination of electrons and holes provided from the first conductive semiconductor layer 200 and the second conductive semiconductor layer 700. Can be generated.
  • the active layer 400 may be a semiconductor compound, for example, a compound semiconductor of Group 3-Group 5, Group 2-Group 6, a single quantum well structure, multiple quantum well structure, quantum-wire structure, quantum dot (Quantum Dot) structure and the like.
  • the quantum well structure for example, having a compositional formula of In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • the quantum well layer may be provided to have an energy band gap lower than that of the barrier layer.
  • the electron blocking layer 500 may be disposed on the active layer 400 and include at least one pit P. Electrons move faster than holes. Accordingly, the electron blocking layer 500 prevents excessive amount of electrons from moving and gathering in a portion adjacent to the second conductive semiconductor, and thus, the active blocking layer 500 is adjacent to the second conductive semiconductor layer 700 instead of the active layer 400. It is possible to prevent the light emitting element from emitting light.
  • the electron blocking layer 500 serves to protect the electron blocking and the active layer 400, thereby improving the luminous efficiency.
  • Electron blocking layer 500 is Al x In y Ga 1 -x- y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1) system may be formed of a semiconductor, is higher than the energy band gap of the active layer 400 It may have an energy band gap, for example, may be formed to a thickness of about 100 kPa to 600 kPa, but is not limited thereto.
  • the electron blocking layer 500 may be formed of AlzGa (1-z) N / GaN (0 ⁇ z ⁇ 1). In another embodiment, the electron blocking layer 500 may be formed to form an InAIN / GaN layer.
  • the pit layer 600 may be disposed on the electron blocking layer 500 and include at least one pit P.
  • two pits P are formed in the pit layer 600, but the present invention is not limited thereto, and the pits P may be formed in various numbers.
  • the light emitting device of the embodiment is protected from electrostatic discharge (ESD), and the current applied to the light emitting device of the embodiment is dispersed. It can serve to improve the luminous efficiency and light output.
  • ESD electrostatic discharge
  • the pits P formed in the first conductive semiconductor layer 200, the superlattice layer 300, the active layer 400, and the electron blocking layer 500 are also the pits P of the pit layer 600. ), It can contribute to the electrostatic discharge blocking, the luminous efficiency and the light output of the light emitting device of the embodiment.
  • the pit layer 600 may include at least a portion of Mg (magnesium), and by including the Mg, the pit layer 600 may more effectively block electrostatic discharge, and further improve luminous efficiency and light output. Specific structure and function of the pit layer 600 will be described below in detail with reference to FIGS. 2 to 4.
  • the second conductive semiconductor layer 700 may be disposed on the pit layer 600.
  • the second conductive semiconductor layer 700 may be formed of, for example, a nitride semiconductor.
  • a semiconductor having a composition formula of the second conductive type semiconductor layer 700 is In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • the material may be selected from GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like, and p-type dopants such as Mg, Zn, Ca, Sr, and Ba may be doped.
  • the second conductive semiconductor layer 700 may include a fifth layer 750 and a sixth layer 760.
  • the fifth layer 750 may be disposed on the pit layer 600, and the sixth layer 760 may be disposed on the fifth layer 750.
  • the sixth layer 760 may have a higher doping concentration of the p-type dopant than the fifth layer 750. As the doping concentration of the p-type dopant is higher, more holes may be generated as carriers. In addition, holes need to move smoothly from the second conductive semiconductor layer 700 toward the first conductive semiconductor layer 200.
  • the second conductive semiconductor layer 700 forms the sixth layer 760 and the fifth layer 750 in the direction of the first conductive semiconductor layer 200, and the doping concentration of the p-type dopant is formed.
  • the sixth layer 760 may be higher than the fifth layer 750.
  • the sixth layer 760 having many holes and the fifth layer 750 having relatively few holes are disposed to face each other, and thus, the sixth layer 760 is directed from the sixth layer 760 to the fifth layer 750 due to the concentration difference between the major holes. Electrons can be moved.
  • FIG. 2 is an enlarged view of portion A of FIG. 1.
  • 3 is an enlarged view illustrating an example of part B of FIG. 2.
  • the maximum width W of the pit P in the pit layer 600 may be, for example, 180 nm to 250 nm. However, the present invention is not limited thereto.
  • Mg may be doped into the pit layer 600. Since Mg doped in the pit layer 600 acts as a resistor, the pit layer 600 is formed as a high resistance layer to protect the light emitting device of the embodiment from electrostatic discharge and to disperse the current applied to the light emitting device of the embodiment. Therefore, luminous efficiency and light output can be improved.
  • Mg has a property of absorbing light
  • the light emitting efficiency and light output of the light emitting device may be reduced. Therefore, there is a need for a structure that can effectively block or reduce electrostatic discharge and at the same time improve the luminous efficiency and light output of the light emitting device.
  • this structure will be described in detail.
  • the pit layer 600 may include a first layer 610 doped with Mg and a second layer 620, which is the remaining region.
  • the first layer 610 may include MgN
  • the second layer 620 may include GaN.
  • the pit layer 600 may include a plurality of first layers 610 and the second layers 620 and may be alternately stacked with each other. That is, as shown in FIG. 3, the pit layer 600 may be formed by stacking a plurality of pairs in which the first layer 610 and the second layer 620 are stacked. have.
  • the pit layer 600 includes, for example, a second layer 620 including GaN stacked on an upper surface of the electron blocking layer 500 to form a lowermost layer.
  • the first layer 610 including MgN may be stacked on an upper surface of the 620.
  • the second layer 200 may be formed of, for example, undoped GaN. However, a small amount of unintended impurities may be doped in the manufacturing process.
  • the pit layer 600 having the structure shown in FIG. 3 may be formed by repeating the stacking of the second layer 620 on the first layer 610.
  • the pit layer 600 may be provided with four first layers 610 and four second layers 620, and thus four pairs may be provided.
  • the present invention is not limited thereto, and the pair may be provided in three or less or five or more.
  • the pit layer 600 may include a first region A1 in which the pit P is formed, and a second region A2, which is the remaining region.
  • the first area A1 the thicknesses of the first layer 610, the second layer 620, and the pair stacked in the vertical direction may be greatly different from each other to fill the pit P. Can be.
  • the thickness of each of the first layer 610, the second layer 620, and the pair stacked in the vertical direction may be relatively constant.
  • the first thickness T1 measured by the thickness of the second region A2 may be, for example, 30 nm to 50 nm, more preferably about 40 nm.
  • the second thickness T2 measured as the sum of the thicknesses of the second layer 620 may be 5 nm to 15 nm, more preferably about 10 nm.
  • the first layer 610 may be provided with a doping concentration of 1x10 18 to 5x10 18 per 1 cm 3 Mg.
  • Tables 1 and 2 below show experimental results of light emitting devices having the structures shown in FIGS. 2 and 3.
  • the first thickness T1 was about 40 nm
  • the second thickness T2 was about 10 nm
  • the first layer 610, the second layer 620, and the pair were each provided with four pairs. .
  • the doping concentration of Mg of the first layer 610 was 1x10 18 to 5x10 18 per cm 3 , and the average of the results of repeated experiments varying the doping concentration of Mg in this range was the experimental result. to be.
  • Table 1 is a test result for the lateral chip (65 GHz) rated current applied to the light emitting device
  • Table 2 is a test result for a flip chip that is 350mA rated current applied to the light emitting device to be.
  • sample 1 is a case where a light emitting device including only GaN without Mg doping is used for the pit layer 600
  • sample 2 is a case where the light emitting device of this embodiment is used.
  • the structure, specifications and experimental conditions of sample 1 and sample 2 are identical or extremely similar.
  • ESD yield refers to the proportion of lateral chips having a good electrostatic discharge amount after the electrostatic discharge test.
  • There is a set amount of static discharge which is a standard for determining whether the amount of static discharge is good or bad, which may vary depending on the experimental environment and the structure of the chip, but the experimental environment of sample 1 and sample 2 is the same or extremely similar, and the structure of the chip. The same applies to the above-described pit layer 600 of the light emitting device.
  • the ESD failure rate refers to the percentage of flip chips that produce a defective product due to excessive electrostatic discharge after the electrostatic discharge test.
  • There is a set amount of static discharge which is a criterion for determining whether the amount of static discharge is excessive, which may vary depending on the experimental environment and the structure of the chip. The same is true except for the pit layer 600 of the light emitting device.
  • the results of the experiment it can be seen that the light output of the sample 2 is significantly higher than that of the sample 1, which means that the light emitting device of the embodiment has improved luminous efficiency and light output than the sample 1.
  • the pit layer 600 doped with Mg in the light emitting device of the embodiment, it is possible to effectively block or reduce the electrostatic discharge and at the same time improve the luminous efficiency and light output of the light emitting device.
  • FIG. 4 is an enlarged view illustrating another embodiment of part B of FIG. 2.
  • the stacking order of the first layer 610 and the second layer 620 may be changed in comparison with the embodiment shown in FIG. 3.
  • the pit layer 600 includes, for example, a second layer 620 including MgN stacked on an upper surface of the electron blocking layer 500 to form a lowermost layer.
  • a second layer 620 including GaN may be stacked on an upper surface of the layer 610.
  • the pit layer 600 having the structure shown in FIG. 4 may be formed by repeating the stacking of the first layer 610 on the second layer 620.
  • the pit layer 600 may be provided with four first layers 610 and four second layers 620, and thus four pairs may be provided. However, it is not limited thereto.
  • first thickness T1, the second thickness T2, and the like are the same as or extremely similar to those of the light emitting device of the embodiment shown in FIG.
  • Mg may be applied to the entire pit layer 600 without separately forming the first layer 610 and the second layer 620 on the pit layer 600.
  • the pit layer 600 has such a structure, it is necessary to be careful that the doping concentration of Mg is uniform throughout the pit layer 600.
  • the pit layer 600 may be formed by chemical vapor deposition, plasma vacuum deposition, or the like.
  • An annealing process may be performed after laminating the first layer 610 and the second layer 620. Can be.
  • the annealing process may be performed, and the annealing process may be performed each time the pairs are formed. have.
  • GaN included in the first layer 610 plays an important role in moving holes to the active layer 400, and when GaN has a high quality structure in which stress or the like is relaxed, hole injection efficiency into the active layer 400. This can be improved.
  • the first layer 610 and the second layer 620 may be laminated after the annealing process to form a GaN having a good structure, the hole injection efficiency into the active layer 400 This can be improved.
  • FIG 5 is a view illustrating a light emitting device package 10 according to an exemplary embodiment.
  • the light emitting device package 10 includes a body 11 including a cavity, a first lead frame 12 and a second lead frame 13 installed on the body 11, and
  • the light emitting device 20 according to the above-described embodiment installed on the body 11 and electrically connected to the first lead frame 12 and the second lead frame 13, and the molding part 16 formed in the cavity. It includes.
  • the body 11 may be formed of a silicon material, a synthetic resin material, or a metal material.
  • a conductive material such as a metal material, although not shown, an insulating layer is coated on the surface of the body 11 to prevent an electrical short between the first and second lead frames 12 and 13. Can be.
  • a cavity is formed in the package body 11, and the light emitting device 20 may be disposed on the bottom surface of the cavity.
  • the first lead frame 12 and the second lead frame 13 are electrically separated from each other, and supply a current to the light emitting device 20.
  • the first lead frame 12 and the second lead frame 13 may increase light efficiency by reflecting the light generated from the light emitting device 20, and transmit heat generated from the light emitting device 20 to the outside. It may be discharged.
  • the light emitting device 20 may be according to the above-described embodiment, and may be electrically connected to the first lead frame 12 and the second lead frame 13 through a wire 14.
  • the light emitting device 20 may be fixed to the bottom surface of the package body 11 with a conductive paste (not shown), and the molding part 16 may surround and protect the light emitting device 20, and may be molded.
  • the phosphor 17 may be included in the unit 16 to excite the phosphor 17 by the light in the first wavelength region emitted from the light emitting device 20 to emit light in the second wavelength region.
  • the light emitting device package 10 may include one or a plurality of light emitting devices according to the above embodiments, but is not limited thereto.
  • the above-described light emitting device to light emitting device package may be used as a light source of the lighting system, for example, may be used in light emitting devices such as an image display device and an illumination device of the image display device.
  • When used as a backlight unit of the image display device may be used as an edge type backlight unit or a direct type backlight unit, and when used as a lighting device may be used for a luminaire or a built-in type light source.
  • the pit layer doped with Mg in the light emitting device of the embodiment, it is possible to effectively block or reduce the electrostatic discharge and to improve the luminous efficiency and light output of the light emitting device. Therefore, there is industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

발광소자의 일 실시예는, 기판; 상기 기판 상에 배치되고, 적어도 하나의 피트(pit)를 포함하는 제1도전형 반도체층; 상기 제1도전형 반도체층 상에 배치되고, 적어도 하나의 피트를 포함하는 초격자층; 상기 초격자층 상에 배치되고, 적어도 하나의 피트를 포함하는 활성층; 상기 활성층 상에 배치되고, 적어도 하나의 피트를 포함하는 전자차단층; 상기 전자차단층 상에 배치되고 적어도 하나의 피트를 포함하는 피트층; 상기 피트층 상에 배치되는 제2도전형 반도체층을 포함하고, 상기 피트층은, 적어도 일부에 Mg가 도핑되는 것일 수 있다.

Description

발광소자 및 이를 포함하는 발광소자 패키지
실시예는, 발광소자 및 이를 포함하는 발광소자 패키지에 관한 것이다.
이 부분에 기술된 내용은 단순히 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
GaN, AlGaN 등의 3-5 족 화합물 반도체는 넓고 조정이 용이한 에너지 밴드갭을 가지는 등의 많은 장점으로 인해 광 전자공학 분야(optoelectronics)와 전자 소자를 위해 등에 널리 사용된다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다.
따라서, 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등에까지 응용이 확대되고 있다.
이러한 발광소자는 전류가 인가되는 경우 정전기 방전(Electro-Static Discharge, ESD)이 발생할 수 있고, 이러한 정전기 방전량이 과도한 경우 발광소자의 제품불량을 발생시킬 수 있고, 발광소자의 발광효율 및 광출력을 저하시킬 수도 있다.
따라서, 실시예는, 정전기 방전을 효과적으로 차단 또는 줄이거나, 발광소자의 발광효율 및 광출력을 향상시킬 수 있는 발광소자에 관한 것이다.
실시예가 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 실시예가 속하는 기술분야에서 통상의 지식을 가진자에게 명확하게 이해될 수 있을 것이다.
발광소자의 일 실시예는, 기판; 상기 기판 상에 배치되고, 적어도 하나의 피트(pit)를 포함하는 제1도전형 반도체층; 상기 제1도전형 반도체층 상에 배치되고, 적어도 하나의 피트를 포함하는 초격자층; 상기 초격자층 상에 배치되고, 적어도 하나의 피트를 포함하는 활성층; 상기 활성층 상에 배치되고, 적어도 하나의 피트를 포함하는 전자차단층; 상기 전자차단층 상에 배치되고 적어도 하나의 피트를 포함하는 피트층; 상기 피트층 상에 배치되는 제2도전형 반도체층을 포함하고, 상기 피트층은, 적어도 일부에 Mg가 도핑되는 것일 수 있다.
발광소자의 다른 실시예는, 기판; 상기 기판 상에 배치되고, 적어도 하나의 피트를 포함하는 제1도전형 반도체층; 상기 제1도전형 반도체층 상에 배치되고, 적어도 하나의 피트를 포함하는 초격자층; 상기 초격자층 상에 배치되고, 적어도 하나의 피트를 포함하는 활성층; 상기 활성층 상에 배치되고, 적어도 하나의 피트를 포함하는 전자차단층; 상기 전자차단층 상에 배치되고 적어도 하나의 피트를 포함하는 피트층; 상기 피트층 상에 배치되는 제2도전형 반도체층을 포함하고, 상기 피트층은, MgN을 포함하는 제1층과 GaN을 포함하는 제2층으로 구비되며, 상기 제1층과 상기 제2층이 복수로 구비되고, 서로 교대로 적층되는 것일 수 있다.
발광소자 패키지의 일 실시예는, 캐비티를 포함하는 몸체; 상기 몸체에 설치된 리드 프레임(lead frame); 및 상기 리드 프레임과 전기적으로 연결되는 상기 발광소자를 포함하는 것일 수 있다.
실시예의 발광소자에 Mg이 도핑된 피트층을 형성함으로써, 정전기 방전을 효과적으로 차단 또는 줄임과 동시에 발광소자의 발광효율 및 광출력을 향상시킬 수 있다.
실시예에서, 상기 제1층과 상기 제2층의 적층 후 어닐링 공정을 진행하여 양질의 구조를 가진 GaN을 형성할 수 있으므로, 활성층으로의 정공주입효율이 향상될 수 있다.
도 1은 일 실시예에 따른 발광소자를 나타낸 단면도이다.
도 2는 도 1의 A부분을 나타낸 확대도이다.
도 3은 도 2의 B부분의 일 실시예를 나타낸 확대도이다.
도 4는 도 2의 B부분의 다른 실시예를 나타낸 확대도이다.
도 5는 일 실시예에 따른 발광소자 패키지를 나타낸 도면이다.
이하, 첨부된 도면들을 참조하여 실시예를 상세히 설명한다. 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 실시예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 실시예의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다.
"제1", "제2" 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 또한, 실시예의 구성 및 작용을 고려하여 특별히 정의된 용어들은 실시예를 설명하기 위한 것일 뿐이고, 실시예의 범위를 한정하는 것이 아니다.
실시예의 설명에 있어서, 각 element의 "상(위)" 또는 "하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위)" 또는 "하(아래)(on or under)”로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
또한, 이하에서 이용되는 "상/상부/위" 및 "하/하부/아래" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서만 이용될 수도 있다.
도 1은 일 실시예에 따른 발광소자를 나타낸 단면도이다. 도 1에 도시된 바와 같이, 실시예의 발광소자는 기판(100), 제1도전형 반도체층(200), 초격자층(300), 활성층(400), 전자차단층(500), 피트층(600)(pit layer), 제2도전형 반도체층(700), 제1전극(810) 및 제2전극(820)을 포함할 수 있다.
이때, 상기 제1도전형 반도체층(200), 초격자층(300), 활성층(400), 전자차단층(500), 피트층(600) 및 제2도전형 반도체층(700)은 발광구조물을 형성할 수 있다.
기판(100)은 상기 발광구조물을 지지할 수 있다. 상기 기판(100)은 사파이어 기판(100), 실리콘(Si), 산화아연(ZnO), 질화물 반도체 중 어느 하나 또는 GaN, InGaN, AlGaN, AlInGaN 중에서 적어도 어느 하나가 적층된 템플레이트(Template)로 형성되는 것일 수 있다.
발광구조물은 상기 기판(100) 상에 배치되고, 빛을 발생시키는 역할을 할 수 있다. 이때, 기판(100)과 발광구조물의 격자상수, 열팽창 계수 등의 차이로 인해 기판(100)과 발광구조물의 경계면 부위에 응력(stress)이 발생할 수 있다.
이러한 응력발생을 완화하기 위해 기판(100)과 발광구조물 사이에는 버퍼층(미도시)이 개재될 수 있다. 또한, 상기 제1도전형 반도체층(200)의 결정성 향상을 위하여 언도프트 반도체층(미도시)이 개재될 수 있다. 다만, 제조과정에서 의도하지 않은 불순물이 소량 도핑될 수도 있다.
이때, 버퍼층은 저온 성장될 수 있으며, 그 물질은 GaN층 또는 AlN층일 수 있으나, 이에 한정되는 것은 아니며, 언도프트 반도체층은 n형 도펀트가 도핑되지 않아 제1도전형 반도체층(200)에 비하여 낮은 전기 전도성을 갖는 것을 제외하고는 제1도전형 반도체층(200)과 동일할 수 있다.
한편, 도 1에 도시된 바와 같이, 제1전극(810)은 상기 제1도전형 반도체층(200)의 노출되는 단차부위 상에 배치될 수 있고, 제2전극(820)은 상기 제2도전형 반도체층(700)의 상측 노출부위 상에 배치될 수 있다. 상기 제1전극(810)과 상기 제2전극(820)을 통해 전류가 인가되면 실시예의 발광소자는 발광할 수 있다.
한편, 도 1에서는 수평형 발광소자를 도시하고 있으나, 수직형 발광소자 또는 플립 칩 발광소자의 구조로 구비될 수도 있다.
상기한 바와 같이, 상기 발광구조물은 상기 제1도전형 반도체층(200), 초격자층(300), 활성층(400), 전자차단층(500), 피트층(600) 및 제2도전형 반도체층(700)을 포함할 수 있다.
제1도전형 반도체층(200)은 상기 기판(100) 상에 배치되고, 적어도 하나의 피트(P)(pit)를 포함할 수 있다. 상기 제1도전형 반도체층(200)은 예를 들어, 질화물 반도체로 형성될 수 있다.
즉, 상기 제1도전형 반도체층(200)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등에서 선택될 수 있으며, Si, Ge, Sn, Se, Te 등의 n형 도펀트가 도핑될 수 있다.
상기 제1도전형 반도체층(200)은 제3층(230)과 제4층(240)을 포함할 수 있다. 상기 제3층(230)은 상부에 피트(P)가 형성될 수 있고, 상기 초격자층(300) 하부에 배치될 수 있다. 상기 제4층(240)은 상기 제3층(230)의 하부에 배치될 수 있고, 상기 기판(100) 상에 배치될 수 있다.
이때, 상기 제4층(240)은 상기 제3층(230)보다 상기 n형 도펀트의 도핑 농도가 높을 수 있다. n형 도펀트의 도핑 농도가 높을수록 캐리어(carrier)인 전자가 많이 발생할 수 있다. 또한, 상기 제1도전형 반도체층(200)으로부터 상기 제2도전형 반도체층(700) 방향으로 전자가 원활하게 이동할 필요가 있다.
이러한 이유로, 상기 제2도전형 반도체층(700) 방향으로 상기 제1도전형 반도체층(200)은 제4층(240)과 제3층(230)을 차례로 형성하고, n형 도펀트의 도핑 농도가 제3층(230)보다 제4층(240)이 더 높도록 구비할 수 있다.
이에 따라, 전자가 많은 제4층(240)과 상대적으로 전자가 적은 제3층(230)이 서로 대면하도록 배치하여 전자의 농도차에 의해 제4층(240)에서 제3층(230) 방향으로 전자가 이동하도록 할 수 있다.
이러한 구조로 인해, 상기 제1도전형 반도체층(100)으로부터 상기 제2도전형 반도체층(700) 방향으로 전자가 원활하게 이동할 수 있다.
초격자층(300)(superlattice)은 상기 제1도전형 반도체층(200) 상에 배치되고, 적어도 하나의 피트(P)를 포함할 수 있다.
상기 초격자층(300)은 예를 들어, 한 쌍의 단위 초격자층(300)이 복수로 적층되는 구조로 형성될 수 있고, 상기 한 쌍의 단위 초격자층(300)은 예를 들어, InGaN/GaN, InGaN/InGaN 등으로 형성될 수 있다.
상기 초격자층(300)은 제1도전형 반도체층(200)과 활성층(400) 사이에 배치되어 버퍼층의 역할을 할 수 있다.
즉, 상기 제1도전형 반도체층(200)과 활성층(400)이 직접 결합하는 경우, 상기 제1도전형 반도체층(200)과 상기 활성층(400)의 격자상수, 열팽창 계수 등의 차이로 인해, 상기 제1도전형 반도체층(200)과 상기 활성층(400)의 경계면 부위에 응력이 발생할 수 있다. 상기 초격자층(300)은 이러한 응력발생을 완화하는 역할을 할 수 있다.
또한, 상기 초격자층(300)은 다른 부분에 비하여 높은 전기저항을 가지므로, 정전기 방전(Electro-Static Discharge, ESD)로부터 실시예의 발광소자를 보호하고, 실시예의 발광소자에 인가되는 전류를 분산하여 발광효율 및 광출력을 향상시키는 역할을 할 수 있다.
활성층(400)은 상기 초격자층(300) 상에 배치되고, 적어도 하나의 피트(P)를 포함할 수 있다. 상기 활성층(400)은 상기 제1도전형 반도체층(200) 및 상기 제2도전형 반도체층(700)으로부터 제공되는 전자와 정공(hole)의 재결합(recombination) 과정에서 발생하는 에너지에 의해 광을 생성할 수 있다.
상기 활성층(400)은 반도체 화합물, 예컨대, 3족-5족, 2족-6족의 화합물 반도체일 수 있으며, 단일 양자우물 구조, 다중 양자우물 구조, 양자선(Quantum-Wire) 구조, 양자 점(Quantum Dot) 구조 등으로 형성될 수 있다.
활성층(400)이 양자우물 구조인 경우 예를 들어, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 양자우물층과 InaAlbGa1 -a- bN (0≤a≤1, 0≤b≤1, 0≤a+b≤1)의 조성식을 갖는 장벽층을 구비하는 단일 또는 다중 양자우물 구조를 가질 수 있다.
이때, 상기 양자우물층은 장벽층의 에너지 밴드갭보다 낮은 에너지 밴드갭을 갖도록 구비될 수 있다.
전자차단층(500)은 상기 활성층(400) 상에 배치되고, 적어도 하나의 피트(P)를 포함할 수 있다. 전자는 정공보다 이동속도가 빠르다. 따라서, 상기 전자차단층(500)은 제2도전형 반도체에 인접한 부위에 과도한 양의 전자가 이동하여 모이는 것을 막아, 활성층(400)이 아닌 제2도전형 반도체층(700) 인접부위에서 실시예의 발광소자가 발광하는 것을 방지할 수 있다.
따라서, 전자차단층(500)은 전자차단 및 활성층(400)을 보호하는 역할을 하며, 이로 인해 발광 효율을 향상시킬 수 있다.
전자차단층(500)은 AlxInyGa1 -x- yN(0≤x≤1,0≤y≤1)계 반도체로 형성될 수 있으며, 상기 활성층(400)의 에너지 밴드갭보다 높은 에너지 밴드갭을 가질 수 있으며, 예를 들어, 약 100Å 내지 600Å의 두께로 형성될 수 있으나 이에 한정되는 것은 아니다.
다른 실시예로, 상기 전자차단층(500)은 AlzGa(1-z)N/GaN(0≤z≤1)로 형성될 수 있다. 또 다른 실시예로, 전자차단층(500)은 InAIN/GaN 층을 이루도록 형성될 수 있다.
피트층(600)은 상기 전자차단층(500) 상에 배치되고 적어도 하나의 피트(P)를 포함할 수 있다. 도 1에서는 상기 피트층(600)에 2개의 피트(P)가 형성되었으나, 이에 한정되지 않고 상기 피트(P)는 다양한 개수로 형성될 수 있다.
상기 피트층(600)의 피트(P) 부위에는 비교적 높은 전기저항을 가지므로, 정전기 방전(Electro-Static Discharge, ESD)로부터 실시예의 발광소자를 보호하고, 실시예의 발광소자에 인가되는 전류를 분산하여 발광효율 및 광출력을 향상시키는 역할을 할 수 있다.
한편, 상기 제1도전형 반도체층(200), 초격자층(300), 활성층(400) 및 전자차단층(500)에 형성되는 피트(P)도, 상기 피트층(600)의 피트(P)와 마찬가지로, 실시예의 발광소자의 정전기 방전 차단, 발광효율 및 광출력의 향상에 기여할 수 있다.
상기 피트층(600)은 적어도 일부에 Mg(마그네슘)를 포함할 수 있고, 상기 Mg를 포함함으로써 정전기 방전을 더욱 효과적으로 차단하고, 발광효율 및 광출력을 더욱 향상시킬 수 있다. 상기 피트층(600)의 구체적인 구조와 기능은 도 2 내지 4를 참조하여 하기에 구체적으로 설명한다.
제2도전형 반도체층(700)은 상기 피트층(600) 상에 배치될 수 있다. 이때, 상기 제2도전형 반도체층(700)은 예를 들어, 질화물 반도체로 형성될 수 있다.
즉, 상기 제2도전형 반도체층(700)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등에서 선택될 수 있으며, Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다.
상기 제2도전형 반도체층(700)은 제5층(750)과 제6층(760)을 포함할 수 있다. 상기 제5층(750)은 상기 피트층(600) 상에 배치될 수 있고, 상기 제6층(760)은 상기 제5층(750) 상에 배치될 수 있다.
이때, 상기 제6층(760)은 상기 제5층(750)보다 상기 p형 도펀트의 도핑 농도가 높을 수 있다. p형 도펀트의 도핑 농도가 높을수록 캐리어인 정공이 많이 발생할 수 있다. 또한, 상기 제2도전형 반도체층(700)으로부터 상기 제1도전형 반도체층(200) 방향으로 정공이 원활하게 이동할 필요가 있다.
이러한 이유로, 상기 제1도전형 반도체층(200) 방향으로 상기 제2도전형 반도체층(700)은 제6층(760)과 제5층(750)을 차례로 형성하고, p형 도펀트의 도핑 농도가 제5층(750)보다 제6층(760)이 더 높도록 구비할 수 있다.
이에 따라, 정공이 많은 제6층(760)과 상대적으로 정공이 적은 제5층(750)이 서로 대면하도록 배치하여 전공의 농도차에 의해 제6층(760)에서 제5층(750) 방향으로 전자가 이동하도록 할 수 있다.
이러한 구조로 인해, 상기 제2도전형 반도체층(700)으로부터 상기 제1도전형 반도체층(200) 방향으로 정공이 용이하게 이동할 수 있다.
도 2는 도 1의 A부분을 나타낸 확대도이다. 도 3은 도 2의 B부분의 일 실시예를 나타낸 확대도이다. 상기 피트층(600)에서 상기 피트(P)의 최대폭(W)은 예를 들어, 180nm 내지 250nm로 구비될 수 있다. 다만, 이에 한정되는 것은 아니다.
상기 피트층(600)에는 Mg가 도핑될 수 있다. 상기 피트층(600)에 도핑되는 Mg는 저항체로 작용하므로, 상기 피트층(600)을 고저항층으로 형성하여 정전기 방전으로부터 실시예의 발광소자를 보호하고, 실시예의 발광소자에 인가되는 전류를 분산하여 발광효율 및 광출력을 향상시킬 수 있다.
그러나, 상기 Mg는 광을 흡수하는 성질이 있으므로, 상기 Mg가 상기 피트층(600)에 과도하게 도핑되는 경우, 발광소자의 발광효율 및 광출력을 저하시킬 수 있다. 따라서, 정전기 방전을 효과적으로 차단 또는 줄임과 동시에 발광소자의 발광효율 및 광출력을 향상시킬 수 있는 구조가 필요하다. 이하에서는 이러한 구조에 대하여 구체적으로 설명한다.
도 2 및 도 3에 도시된 바와 같이, 상기 피트층(600)은 Mg가 도핑되는 제1층(610)과 그 나머지 영역인 제2층(620)을 포함할 수 있다. 예를 들어, 상기 제1층(610)은 MgN을 포함하고, 상기 제2층(620)은 GaN을 포함할 수 있다.
상기 피트층(600)은 상기 제1층(610)과 상기 제2층(620)이 복수로 구비되고, 서로 교대로 적층되는 구조로 구비될 수 있다. 즉, 상기 피트층(600)은, 도 3에 도시된 바와 같이, 상기 제1층(610)과 상기 제2층(620)이 적층된 하나의 페어(pair)가 복수로 적층되어 형성될 수 있다.
도 3을 참조하면, 상기 피트층(600)은, 예를 들어, 상기 전자차단층(500)의 상면에 GaN을 포함하는 제2층(620)이 적층되어 최하층을 이루고, 상기 제2층(620) 상면에 MgN을 포함하는 제1층(610)이 적층될 수 있다. 상기 제2층(200)은 예를 들어, 언도프트 GaN으로 형성될 수 있다. 다만, 제조과정에서 의도하지 않은 불순물이 소량 도핑될 수도 있다.
다시 상기 제1층(610)에 상기 제2층(620)을 적층하는 작업을 반복하여 도 3에 도시된 구조의 피트층(600)을 형성할 수 있다. 상기 피트층(600)은 예를 들어, 상기 제1층(610)과 상기 제2층(620)이 각각 4개씩 구비될 수 있고, 이에 따라 상기 페어도 총 4개로 구비될 수 있다. 그러나 이에 한정되지 않으며, 상기 페어는 3개 이하 또는 5개 이상으로 구비될 수도 있다.
한편, 도 2를 참조하면, 상기 피트층(600)은 상기 피트(P)가 형성되는 제1영역(A1)과, 그 나머지 영역인 제2영역(A2)을 포함할 수 있다. 상기 제1영역(A1)에서는 상기 피트(P)를 메우기 위해, 상하방향으로 적층되는 각각의 상기 제1층(610), 상기 제2층(620) 및 상기 페어의 두께가 서로 크게 차이가 날 수 있다.
그러나 제2영역(A2)에서는, 상하방향으로 적층되는 각각의 상기 제1층(610), 상기 제2층(620) 및 상기 페어의 두께는 비교적 일정하게 형성될 수 있다. 이때, 상기 제2영역(A2)의 두께로 측정되는 제1두께(T1)는 예를 들어, 30nm 내지 50nm로, 더욱 적절하게는 약 40nm로 구비될 수 있다.
이때, 도 3에 도시된 바와 같이, 상기 제1층(610), 상기 제2층(620) 및 상기 페어가 각각 4개로 구비되는 경우, 상기 제2영역(A2)에서 상기 제1층(610)과 상기 제2층(620)의 두께의 합으로 측정되는 제2두께(T2)는 5nm 내지 15nm로, 더욱 적절하게는 약 10nm로 구비될 수 있다.
한편, 상기 제1층(610)은 Mg의 도핑 농도가 1cm3 당 1x1018개 내지 5x1018개로 구비될 수 있다.
하기의 표 1 및 표 2는 도 2 및 도 3에 도시된 구조의 발광소자에 대한 실험결과를 나타낸다. 실험에서 상기 제1두께(T1)는 약 40nm이고, 상기 제2두께(T2)는 약 10nm이며, 상기 제1층(610), 상기 제2층(620) 및 상기 페어가 각각 4개로 구비되었다.
또한, 실험에서 상기 제1층(610)의 Mg의 도핑 농도가 1cm3 당 1x1018개 내지 5x1018개이고, 이 범위에서 Mg의 도핑농도를 달리하여 반복실험한 결과값을 평균한 것이 실험결과값이다.
또한, 표 1은 발광소자에 인가되는 정격전류가 65mA인 래터럴 칩(lateral chip)에 대한 실험결과이고, 표 2는 발광소자에 인가되는 정격전류가 350mA인 플립 칩(flip chip)에 대한 실험결과이다.
또한, sample 1은 피트층(600)에 Mg가 도핑되지 않고 GaN만을 포함하는 발광소자를 사용한 경우이고, sample 2는 본 실시예의 발광소자를 사용한 경우이다. 이외에 sample 1과 sample 2의 구조와 규격 및 실험조건은 동일하거나 극히 유사하다.
ESD 수율(%) 광출력(mW)
sample 1 88 98.2
sample 2 93.2 98.4
표 1에서 ESD 수율이란 정전기 방전 테스트를 한 후 정전기 방전량이 양호한 상태의 래터럴 칩의 비율을 의미한다. 정전기 방전량이 양호한지 불량인지를 판단하는 기준이 되는 설정된 정전기 방전량이 있고, 이는 실험환경, 칩의 구조 등에 따라 달라질 수 있으나, sample 1과 sample 2의 실험환경은 동일하거나 극히 유사하고, 칩의 구조도 상기한 발광소자의 피트층(600) 이외에는 동일하다.
실험결과를 보면, sample 2 즉, 실시예의 발광소자를 사용한 칩의 ESD 수율이 sample 1의 그것에 비해 현저히 높음을 알 수 있고, 이는 실시예의 발광소자가 sample 1 보다 정전기 방전으로 인한 제품불량이 현저히 낮아짐을 의미한다.
ESD 불량율(%) 광출력(mW)
sample 1 9 280.7
sample 2 2 291.7
표 2에서 ESD 불량율이란 정전기 방전 테스트를 한 후 정전기 방전량이 과도하여 제품불량이 발생하는 플립 칩의 비율을 의미한다. 정전기 방전량이 과도한지를 판단하는 기준이 되는 설정된 정전기 방전량이 있고, 이는 실험환경, 칩의 구조 등에 따라 달라질 수 있으나, sample 1과 sample 2의 실험환경은 동일하거나 극히 유사하고, 칩의 구조도 상기한 발광소자의 피트층(600) 이외에는 동일하다.
실험결과를 보면, sample 2 즉, 실시예의 발광소자를 사용한 칩의 ESD 불량율이 sample 1의 그것에 비해 현저히 낮음을 알 수 있고, 이는 실시예의 발광소자가 sample 1 보다 정전기 방전으로 인한 제품불량이 현저히 낮아짐을 의미한다.
또한, 실험결과를 보면, sample 2의 광출력이 sample 1의 그것에 비해 현저히 높음을 알 수 있고, 이는 실시예의 발광소자가 sample 1보다 발광효율 및 광출력이 향상되었음을 의미한다.
실험결과를 고려하면, 실시예의 발광소자에 Mg이 도핑된 피트층(600)을 형성함으로써, 정전기 방전을 효과적으로 차단 또는 줄임과 동시에 발광소자의 발광효율 및 광출력을 향상시킬 수 있다.
도 4는 도 2의 B부분의 다른 실시예를 나타낸 확대도이다. 도 4에 도시된 실시예에서는 도 3에 도시된 실시예와 비교하여 상기 제1층(610)과 상기 제2층(620)의 적층순서가 바뀐 구조로 구비될 수 있다.
즉, 도 4를 참조하면, 상기 피트층(600)은, 예를 들어, 상기 전자차단층(500)의 상면에 MgN을 포함하는 제2층(620)이 적층되어 최하층을 이루고, 상기 제1층(610) 상면에 GaN을 포함하는 제2층(620)이 적층될 수 있다.
다시 상기 제2층(620)에 상기 제1층(610)을 적층하는 작업을 반복하여 도 4에 도시된 구조의 피트층(600)을 형성할 수 있다. 상기 피트층(600)은 예를 들어, 상기 제1층(610)과 상기 제2층(620)이 각각 4개씩 구비될 수 있고, 이에 따라 상기 페어도 총 4개로 구비될 수 있다. 그러나 이에 한정되지 않음은 물론이다.
이외에 상기 제1두께(T1), 상기 제2두께(T2) 기타의 구조 및 규격은 도 3에 도시된 실시예의 발광소자와 동일하거나 극히 유사다.
한편, 다른 실시예로, 상기 피트층(600)에 상기 제1층(610)과 제2층(620)을 구별하여 형성하지 않고, 상기 피트층(600) 전체에 Mg를 도포할 수도 있다. 상기 피트층(600)이 이러한 구조를 가지는 경우, Mg의 도핑 농도가 상기 피트층(600) 전체에 걸쳐 균일하도록 유의할 필요가 있다.
한편, 상기 피트층(600)은 화학기상증착, 플라즈마 진공증착 등의 방법으로 형성될 수 있는데, 상기 제1층(610)과 상기 제2층(620)의 적층 후 어닐링(annealing) 공정이 진행될 수 있다.
즉, 상기 제1층(610)과 상기 제2층(620)이 적층된 상기 페어 하나의 형성이 완료된 후, 어닐링 공정을 진행하고, 상기 페어 각각이 형성완료되는 때마다 각각 어닐링 공정을 진행할 수 있다.
어닐링을 진행하는 경우, 격자상수, 열팽창 계수 등의 차이로 인해 상기 제1층(610)과 상기 제2층(620)의 경계면 부위에 발생할 수 있는 응력, 또는 상기 제1층(610) 및/또는 제2층(620)에 개별적으로 발생할 수 있는 응력을 제거하거나 완화하여 양질의 피트층(600)을 형성할 수 있다.
특히, 제1층(610)에 포함되는 GaN은 정공을 활성층(400)으로 이동시키는데 중요한 역할을 하고, 상기 GaN이 응력 등이 완화된 양질의 구조를 가지는 경우 활성층(400)으로의 정공주입효율이 향상될 수 있다.
따라서, 실시예에서, 상기 제1층(610)과 상기 제2층(620)의 적층 후 어닐링 공정을 진행하여 양질의 구조를 가진 GaN을 형성할 수 있으므로, 활성층(400)으로의 정공주입효율이 향상될 수 있다.
도 5는 일 실시예에 따른 발광소자 패키지(10)를 나타낸 도면이다.
실시예에 따른 발광소자 패키지(10)는 캐비티를 포함하는 몸체(11)와, 상기 몸체(11)에 설치된 제1 리드 프레임(12)(lead frame) 및 제2 리드 프레임(13)과, 상기 몸체(11)에 설치되어 상기 제1 리드 프레임(12) 및 제2 리드 프레임(13)과 전기적으로 연결되는 상술한 실시예에 따른 발광소자(20)와, 상기 캐비티에 형성된 몰딩부(16)를 포함한다.
몸체(11)는 실리콘 재질, 합성수지 재질, 또는 금속 재질을 포함하여 형성될 수 있다. 상기 몸체(11)가 금속 재질 등 도전성 물질로 이루어지면, 도시되지는 않았으나 상기 몸체(11)의 표면에 절연층이 코팅되어 상기 제1,2 리드 프레임(12, 13) 간의 전기적 단락을 방지할 수 있다. 패키지 몸체(11)에는 캐비티가 형성되고, 캐비티의 바닥면에 발광소자(20)가 배치될 수 있다.
제1 리드 프레임(12) 및 제2 리드 프레임(13)은 서로 전기적으로 분리되며, 상기 발광소자(20)에 전류를 공급한다. 또한, 제1 리드 프레임(12) 및 제2 리드 프레임(13)은 발광소자(20)에서 발생된 광을 반사시켜 광 효율을 증가시킬 수 있으며, 발광소자(20)에서 발생된 열을 외부로 배출시킬 수도 있다.
발광소자(20)는 상술한 실시예에 따를 수 있으며, 제1 리드 프레임(12)과 제2 리드 프레임(13)에 와이어(14)를 통하여 전기적으로 연결될 수 있다.
발광소자(20)는 패키지 몸체(11)의 바닥면에 도전성 페이스트(미도시) 등으로 고정될 수 있고, 상기 몰딩부(16)는 상기 발광소자(20)를 포위하여 보호할 수 있으며, 몰딩부(16) 내에는 형광체(17)가 포함되어 발광소자(20)에서 방출된 제1 파장 영역의 광에 의하여 형광체(17)가 여기되어 제2 파장 영역의 광을 방출할 수 있다.
발광소자 패키지(10)는 상술한 실시예들에 따른 발광소자 중 하나 또는 복수 개를 탑재할 수 있으며, 이에 대해 한정하지는 않는다.
상술한 발광소자 내지 발광소자 패키지는 조명 시스템의 광원으로 사용될 수 있는데, 예를 들어 영상표시장치의 영상표시장치와 조명 장치 등의 발광 장치에 사용될 수 있다.
영상표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치에 사용될 때 등기구나 빌트인(built-in) 타입의 광원에 사용될 수도 있다.
실시예와 관련하여 전술한 바와 같이 몇 가지만을 기술하였지만, 이외에도 다양한 형태의 실시가 가능하다. 앞서 설명한 실시예들의 기술적 내용들은 서로 양립할 수 없는 기술이 아닌 이상은 다양한 형태로 조합될 수 있으며, 이를 통해 새로운 실시형태로 구현될 수도 있다.
실시예의 발광소자에 Mg이 도핑된 피트층을 형성함으로써, 정전기 방전을 효과적으로 차단 또는 줄임과 동시에 발광소자의 발광효율 및 광출력을 향상시킬 수 있다. 따라서 산업상 이용가능성이 있다.

Claims (11)

  1. 기판;
    상기 기판 상에 배치되고, 적어도 하나의 피트(pit)를 포함하는 제1도전형 반도체층;
    상기 제1도전형 반도체층 상에 배치되고, 적어도 하나의 피트를 포함하는 초격자층;
    상기 초격자층 상에 배치되고, 적어도 하나의 피트를 포함하는 활성층;
    상기 활성층 상에 배치되고, 적어도 하나의 피트를 포함하는 전자차단층;
    상기 전자차단층 상에 배치되고 적어도 하나의 피트를 포함하는 피트층;
    상기 피트층 상에 배치되는 제2도전형 반도체층
    을 포함하고,
    상기 피트층은,
    적어도 일부에 Mg가 도핑되는 발광소자.
  2. 제1항에 있어서,
    상기 피트층은,
    Mg가 도핑되는 제1층과 그 나머지 영역인 제2층을 포함하고,
    상기 제1층은 Mg의 도핑 농도가 1cm3 당 1x1018개 내지 5x1018개인 발광소자.
  3. 제2항에 있어서
    상기 제1층은 MgN을 포함하고, 상기 제2층은 GaN을 포함하는 발광소자.
  4. 제2항에 있어서
    상기 피트층은,
    상기 제1층과 상기 제2층이 복수로 구비되고, 서로 교대로 적층되는 발광소자.
  5. 제2항에 있어서
    상기 피트층은,
    상기 피트가 형성되는 제1영역과, 그 나머지 영역인 제2영역을 포함하고,
    상기 제2영역의 두께로 측정되는 제1두께가 30nm 내지 50nm이고,
    상기 제2영역에서 상기 제1층과 상기 제2층의 두께의 합으로 측정되는 제2두께는 5nm 내지 15nm인 발광소자.
  6. 제1항에 있어서
    상기 피트층은,
    상기 피트의 최대폭이 180nm 내지 250nm로 구비되는 발광소자.
  7. 제1항에 있어서
    상기 제1도전형 반도체층은,
    n형 도펀트가 도핑되고,
    상기 피트가 형성되는 제3층과 상기 제3층의 하부에 배치되는 제4층을 포함하고,
    상기 제2도전형 반도체층은,
    p형 도펀트가 도핑되고,
    상기 피트층 상에 배치되는 제5층과 상기 제5층 상에 배치되는 제6층을 포함하고,
    상기 제1도전형 반도체층의 상기 제4층은 상기 제3층보다 상기 n형 도펀트의 도핑농도가 높고,
    상기 제2도전형 반도체층의 상기 제6층은 상기 제5층보다 상기 p형 도펀트의 도핑농도가 높은 발광소자.
  8. 기판;
    상기 기판 상에 배치되고, 적어도 하나의 피트를 포함하는 제1도전형 반도체층;
    상기 제1도전형 반도체층 상에 배치되고, 적어도 하나의 피트를 포함하는 초격자층;
    상기 초격자층 상에 배치되고, 적어도 하나의 피트를 포함하는 활성층;
    상기 활성층 상에 배치되고, 적어도 하나의 피트를 포함하는 전자차단층;
    상기 전자차단층 상에 배치되고 적어도 하나의 피트를 포함하는 피트층;
    상기 피트층 상에 배치되는 제2도전형 반도체층
    을 포함하고,
    상기 피트층은,
    MgN을 포함하는 제1층과 GaN을 포함하는 제2층으로 구비되며,
    상기 제1층과 상기 제2층이 복수로 구비되고, 서로 교대로 적층되는 발광소자.
  9. 제8항에 있어서,
    상기 피트층은,
    상기 제1층과 상기 제2층의 적층 후 어닐링 공정이 진행되고, 상기 피트의 최대폭이 180nm 내지 250nm로 구비되고,
    상기 피트가 형성되는 제1영역과, 그 나머지 영역인 제2영역을 포함하고,
    상기 제2영역의 두께로 측정되는 제1두께가 30nm 내지 50nm이며, 상기 제2영역에서 상기 제1층과 상기 제2층의 두께의 합으로 측정되는 제2두께는 5nm 내지 15nm인 발광소자.
  10. 제8항에 있어서,
    상기 제1도전형 반도체층은 n형 도펀트가 도핑되고, 상기 피트가 형성되는 제3층과 상기 제3층의 하부에 배치되는 제4층을 포함하며,
    상기 제4층은 상기 제3층보다 상기 n형 도펀트의 도핑농도가 높고,
    상기 제2도전형 반도체층은 p형 도펀트가 도핑되고, 상기 피트층 상에 배치되는 제5층과 상기 제5층 상에 배치되는 제6층을 포함하며,
    상기 제6층은 상기 제5층보다 상기 p형 도펀트의 도핑농도가 높은 발광소자.
  11. 캐비티를 포함하는 몸체;
    상기 몸체에 설치된 리드 프레임(lead frame); 및
    상기 리드 프레임과 전기적으로 연결되는 제1항 내지 제10항 중 어느 한 항의 발광소자
    를 포함하는 발광소자 패키지.
PCT/KR2016/014693 2015-12-29 2016-12-15 발광소자 및 이를 포함하는 발광소자 패키지 WO2017116048A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/066,975 US10770622B2 (en) 2015-12-29 2016-12-15 Light-emitting element and light-emitting element package comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150188180A KR102464030B1 (ko) 2015-12-29 2015-12-29 발광소자
KR10-2015-0188180 2015-12-29

Publications (1)

Publication Number Publication Date
WO2017116048A1 true WO2017116048A1 (ko) 2017-07-06

Family

ID=59224907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014693 WO2017116048A1 (ko) 2015-12-29 2016-12-15 발광소자 및 이를 포함하는 발광소자 패키지

Country Status (3)

Country Link
US (1) US10770622B2 (ko)
KR (1) KR102464030B1 (ko)
WO (1) WO2017116048A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524522A (zh) * 2018-11-14 2019-03-26 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法
CN109786530A (zh) * 2018-12-28 2019-05-21 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102400339B1 (ko) * 2017-08-30 2022-05-20 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체소자 및 반도체소자 패키지
CN112397621B (zh) * 2020-10-30 2022-03-18 华灿光电(苏州)有限公司 紫外发光二极管的外延片及其制备方法
CN116705948B (zh) * 2023-08-08 2023-11-21 江西兆驰半导体有限公司 一种led外延片及其制备方法、led芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108487A (ja) * 2004-10-07 2006-04-20 ▲さん▼圓光電股▲ふん▼有限公司 窒化ガリウム系発光ダイオード
KR20100073702A (ko) * 2008-12-23 2010-07-01 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR20120134339A (ko) * 2011-06-02 2012-12-12 엘지이노텍 주식회사 발광소자
KR20150112274A (ko) * 2014-03-27 2015-10-07 엘지이노텍 주식회사 발광 소자
KR20150120268A (ko) * 2014-04-17 2015-10-27 서울바이오시스 주식회사 질화물 반도체 소자 및 그 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI269466B (en) * 2004-06-18 2006-12-21 Showa Denko Kk Group III nitride semiconductor light emitting device
US7446345B2 (en) * 2005-04-29 2008-11-04 Cree, Inc. Light emitting devices with active layers that extend into opened pits
US8731595B2 (en) * 2009-05-14 2014-05-20 Qualcomm Incorporated Transmission power management for a moblie device supporting simultaneous transmission on multiple air interfaces
KR20110041683A (ko) * 2009-10-16 2011-04-22 삼성엘이디 주식회사 반도체 발광소자 및 이를 제조하는 방법
KR20150012026A (ko) * 2013-07-24 2015-02-03 현대모비스 주식회사 차량용 헤드라이트 조립체 및 차량용 헤드라이트 조립체를 구비하는 차량
DE102014115599A1 (de) 2013-10-28 2015-04-30 Seoul Viosys Co., Ltd. Halbleitervorrichtung und Verfahren zu deren Herstellung
KR102335105B1 (ko) * 2014-11-14 2021-12-06 삼성전자 주식회사 발광 소자 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108487A (ja) * 2004-10-07 2006-04-20 ▲さん▼圓光電股▲ふん▼有限公司 窒化ガリウム系発光ダイオード
KR20100073702A (ko) * 2008-12-23 2010-07-01 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR20120134339A (ko) * 2011-06-02 2012-12-12 엘지이노텍 주식회사 발광소자
KR20150112274A (ko) * 2014-03-27 2015-10-07 엘지이노텍 주식회사 발광 소자
KR20150120268A (ko) * 2014-04-17 2015-10-27 서울바이오시스 주식회사 질화물 반도체 소자 및 그 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524522A (zh) * 2018-11-14 2019-03-26 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法
CN109524522B (zh) * 2018-11-14 2021-04-06 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法
CN109786530A (zh) * 2018-12-28 2019-05-21 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法

Also Published As

Publication number Publication date
KR20170078058A (ko) 2017-07-07
KR102464030B1 (ko) 2022-11-07
US20190013437A1 (en) 2019-01-10
US10770622B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2017116048A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2013018937A1 (ko) 반도체 발광소자
WO2014065571A1 (ko) 발광소자
WO2017095154A1 (ko) 발광소자 및 이를 포함하는 조명장치
WO2009134095A2 (ko) 발광 소자 및 그 제조방법
WO2017057978A1 (ko) 발광소자
WO2017014512A1 (ko) 발광 소자
WO2014058224A1 (ko) 발광소자
WO2014010816A1 (en) Light emitting device, and method for fabricating the same
WO2016104958A1 (ko) 적색 발광소자 및 조명장치
WO2016018010A1 (ko) 발광소자 및 조명시스템
WO2017119730A1 (ko) 발광 소자
WO2017034346A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2017135688A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2017119754A1 (ko) 발광 소자
WO2016032178A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 시스템
WO2016072661A1 (ko) 자외선 발광소자 및 조명시스템
WO2023277608A1 (ko) 복수 대역 발광 다이오드
WO2022240179A1 (ko) 복수 대역 발광 다이오드
KR20120132979A (ko) 발광소자
KR102486331B1 (ko) 발광소자
WO2017018767A1 (ko) 자외선 발광소자 및 발광소자 패키지
WO2017135644A1 (ko) 자외선 발광소자 및 조명시스템
WO2021158016A1 (ko) 단일칩 복수 대역 발광 다이오드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882000

Country of ref document: EP

Kind code of ref document: A1