WO2016018010A1 - 발광소자 및 조명시스템 - Google Patents

발광소자 및 조명시스템 Download PDF

Info

Publication number
WO2016018010A1
WO2016018010A1 PCT/KR2015/007753 KR2015007753W WO2016018010A1 WO 2016018010 A1 WO2016018010 A1 WO 2016018010A1 KR 2015007753 W KR2015007753 W KR 2015007753W WO 2016018010 A1 WO2016018010 A1 WO 2016018010A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
layer
superlattice layer
light emitting
emitting device
Prior art date
Application number
PCT/KR2015/007753
Other languages
English (en)
French (fr)
Inventor
박찬근
한재웅
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/329,707 priority Critical patent/US10069035B2/en
Publication of WO2016018010A1 publication Critical patent/WO2016018010A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction

Definitions

  • Embodiments relate to a light emitting device, a method of manufacturing the light emitting device, a light emitting device package and an illumination system.
  • a light emitting device is a p-n junction diode in which electrical energy is converted into light energy, and may be generated by combining elements of group III and group V on the periodic table. LED can realize various colors by adjusting the composition ratio of compound semiconductors.
  • the n-layer electrons and the p-layer holes combine to emit energy corresponding to the energy gap of the conduction band and the valence band. It is emitted in the form of heat or light, and when it is emitted in the form of light, it becomes a light emitting device.
  • nitride semiconductors are receiving great attention in the field of optical devices and high power electronic devices due to their high thermal stability and wide bandgap energy.
  • blue light emitting devices, green light emitting devices, and ultraviolet light emitting devices using nitride semiconductors are commercially used and widely used.
  • Embodiments provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package, and an illumination system capable of maximizing a vehicle blocking function to improve light emission efficiency.
  • the embodiment is to provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package and an illumination system that can improve the current diffusion function to improve the luminous efficiency.
  • the light emitting device may include a first conductivity type semiconductor layer 112; An active layer 114 on the first conductive semiconductor layer 112; A gallium nitride based superlattice layer 120 on the active layer 114; And a second conductivity type semiconductor layer 116 on the gallium nitride based superlattice structure layer 120.
  • the gallium nitride-based superlattice layer 120 includes a first gallium nitride-based superlattice layer 122 on the active layer 114 and a second gallium nitride-based superlattice layer 122 on the first gallium nitride-based superlattice layer 122. And a superlattice layer 124.
  • the band gap energy of the first gallium nitride based superlattice layer 122 may be smaller than the band gap energy of the second gallium nitride based superlattice layer 124.
  • the lighting system according to the embodiment may include a light emitting unit having the light emitting device.
  • the embodiment can provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package, and an illumination system capable of maximizing a vehicle blocking function to improve luminous efficiency.
  • the embodiment can provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package and an illumination system that can improve the current diffusion function to improve the light emitting efficiency.
  • FIG. 1 is a cross-sectional view of a light emitting device according to an embodiment.
  • 2 is an exemplary composition of a light emitting device according to an embodiment.
  • FIG. 3 is a diagram illustrating a first part of a band diagram of a light emitting device according to an embodiment
  • FIG. 4 is a diagram illustrating a second part of a band diagram of a light emitting device according to an embodiment
  • 5 to 7 are views illustrating a method of manufacturing a light emitting device according to the embodiment.
  • FIG. 8 is a cross-sectional view of a light emitting device package according to the embodiment.
  • FIG. 9 is a perspective view of a lighting apparatus according to the embodiment.
  • each layer, region, pattern, or structure is “on / over” or “under” the substrate, each layer, layer, pad, or pattern.
  • “on / over” and “under” include both “directly” or “indirectly” formed. do.
  • the criteria for the above / above or below of each layer will be described based on the drawings.
  • FIG. 1 is a cross-sectional view of a light emitting device 100 according to an embodiment
  • FIG. 2 is an exemplary view of the composition of a light emitting device according to an embodiment.
  • FIG. 3 is a diagram illustrating a first part of a band diagram of a light emitting device according to an embodiment.
  • the light emitting device 100 includes a first conductive semiconductor layer 112, an active layer 114 on the first conductive semiconductor layer 112, and a gallium nitride based candle on the active layer 114.
  • the grating layer 120 and the second conductivity type semiconductor layer 116 may be included on the gallium nitride based superlattice structure layer 120.
  • the active layer 114 includes a quantum well 114w and a quantum wall 114b, and the first conductive semiconductor layer 112, the active layer 114, and the second conductive semiconductor layer 116 emit light.
  • the structure 110 may be configured.
  • the transmissive electrode 130 disposed on the second conductive semiconductor layer 116, the second electrode 152 disposed on the transmissive electrode 130, and the first conductive semiconductor layer 112 may be formed. It may include a first electrode 151 electrically connected to the.
  • FIG. 1 the horizontal light emitting device in which the electrodes are disposed in the same direction is illustrated, but the embodiment is not limited thereto.
  • the embodiment may include an aluminum gallium-based nitride semiconductor layer 128 on the gallium nitride-based superlattice layer 120 to increase luminous efficiency through an electron blocking function.
  • the gallium nitride-based superlattice layer 120 includes a first gallium nitride-based superlattice layer 122 on the active layer 114 and a second on the first gallium nitride-based superlattice layer 122.
  • the gallium nitride-based superlattice layer 124 may be included.
  • the first gallium nitride based superlattice layer 122 may be disposed between the active layer 114 and the second gallium nitride based superlattice layer 124.
  • first gallium nitride based superlattice layer 122 may be disposed closer to the active layer 114 than the second gallium nitride based superlattice layer 124.
  • the bandgap energy of the first gallium nitride based superlattice layer 122 may be smaller than the bandgap energy of the second gallium nitride based superlattice layer 124.
  • the gallium nitride-based superlattice layer 120 may include In x Ga 1-x N / Al y Ga 1-y N (where 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1). .
  • the first gallium nitride-based superlattice layer 122 may be In x1 Ga 1-x1 N (122 a) / Al y1 Ga 1-y1 N (122b), where 0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, and the second gallium nitride-based superlattice layer 124 has an In x2 Ga 1-x2 N (124a) / Al y2 Ga 1-y2 N (124b) (where 0 ⁇ x2 ⁇ 1). , 0 ⁇ y2 ⁇ 1).
  • the concentration (x1) of the indium in the first gallium nitride based superlattice layer 122 is greater than the concentration (x2) of the indium in the second gallium nitride based superlattice layer 124.
  • the electron reservoir effect can be significantly increased.
  • the bandgap energy of the first gallium nitride based superlattice layer 122 may be smaller than the bandgap energy of the second gallium nitride based superlattice layer 124.
  • Table 1 is a comparison of the light intensity Po and the operating voltage VF3 of the light emitting device 100 and the comparative example according to the embodiment.
  • the second gallium nitride based superlattice layer 124 and the active layer 114 is disposed between, and has a band gap energy less than the band gap energy of the second gallium nitride based superlattice layer 124. Since the first gallium nitride-based superlattice layer 122 is provided, electrons are effectively stored to prevent electrons from overflowing, thereby increasing internal luminous efficiency, thereby increasing the light intensity Po as shown in Table 1 below.
  • the first gallium nitride based superlattice layer 122 and the second gallium nitride based superlattice layer 124 are disposed between the second conductive semiconductor layer 116 and the active layer 114 to spread current.
  • the operating voltage VF3 is improved and the brightness Po is improved.
  • the first gallium nitride-based superlattice layer 122 includes In x 1 Ga 1-x 1 N / Al y 1 Ga 1-y 1 N (where 0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1).
  • the concentration (x1) may be equal to or less than the indium concentration of the quantum well of the active layer 114.
  • the concentration of indium (x1) in the first gallium nitride-based superlattice layer 122 is greater than the concentration of indium of the quantum well of the active layer 114, light loss may occur due to light absorption and electron traps. Can be.
  • the light emitting device according to the embodiment may be a UV light emitting device employing an AlGaN barrier, but is not limited thereto.
  • the concentration y1 of aluminum in the first gallium nitride-based superlattice layer 122 may be smaller than the concentration of aluminum in the quantum wall of the active layer 114.
  • the operating voltage VF3 may serve as a barrier. Problems of rise or luminous intensity may occur.
  • the first gallium nitride-based superlattice layer 122 may be doped with a first conductive doping element, for example, Si, but the doping concentration may be less than 1 ⁇ 10 ⁇ 19 (atoms / cm 3 ). .
  • the doping concentration of the first conductivity type element is 1 ⁇ 10 ⁇ 19 (atoms / cm 3 ) or more, yield may be reduced due to low current generation due to electron tunneling.
  • the thickness of each In x1 Ga 1-x1 N layer or Al y1 Ga 1-y1 N layer in the first gallium nitride-based superlattice layer 122 is about 1 nm to about 3 nm, and about 10 pairs to It can grow to 30 pairs, but is not limited thereto.
  • FIG. 4 is a diagram illustrating a second part of the band diagram of the light emitting device according to the embodiment.
  • the thickness of the first gallium nitride based superlattice layer 122 may be smaller than the thickness of the second gallium nitride based superlattice layer 124.
  • the number of pairs of the first gallium nitride series superlattice layer 122 may be less than the number of pairs of the second gallium nitride series superlattice layer 124, and thus, a lattice constant
  • the embodiment can provide a light emitting device capable of maximizing the vehicle blocking function to improve luminous efficiency.
  • the embodiment can provide a light emitting device that can improve the current diffusion function to improve the luminous efficiency.
  • the substrate 102 is prepared as shown in FIG. 5.
  • the substrate 102 may be formed of a material having excellent thermal conductivity, and may be a conductive substrate or an insulating substrate.
  • the substrate 102 may use at least one of sapphire (Al 2 O 3 ), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga 2 0 3 .
  • An uneven structure may be formed on the substrate 102, but is not limited thereto.
  • a buffer layer (not shown) may be formed on the substrate 102.
  • the buffer layer may mitigate lattice mismatch between the material of the light emitting structure 110 and the substrate 102 to be formed later, and the material of the buffer layer may be a Group III-V compound semiconductor such as GaN, InN, AlN, InGaN, AlGaN. It may be formed of at least one of, InAlGaN, AlInN.
  • the light emitting structure 110 including the first conductive semiconductor layer 112, the active layer 114, and the second conductive semiconductor layer 116 may be formed on the first substrate 102.
  • the first conductivity type semiconductor layer 112 may be formed of a semiconductor compound. It may be implemented as a compound semiconductor, such as Group 3-5, Group 2-6, and the first conductivity type dopant may be doped. When the first conductive semiconductor layer 112 is an n-type semiconductor layer, the first conductive dopant is an n-type dopant and may include Si, Ge, Sn, Se, Te, but is not limited thereto.
  • the first conductivity-type semiconductor layer 112 may include a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Can be.
  • the first conductive semiconductor layer 112 may be formed of any one or more of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP.
  • the active layer 114 may be formed of at least one of a single quantum well structure, a multi quantum well structure (MQW), a quantum-wire structure, or a quantum dot structure.
  • the active layer 114 may be formed by injecting trimethyl gallium gas (TMGa), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and trimethyl indium gas (TMIn) to form a multi-quantum well structure. It is not limited to this.
  • the quantum well 114W / both barrier 114B of the active layer 114 is InGaN / GaN, InGaN / InGaN, GaN / AlGaN, InGaN / AlGaN, InAlGaN / GaN, GaAs (InGaAs) / AlGaAs, GaP (InGaP) / One or more of AlGaP may be formed as a pair structure, but is not limited thereto.
  • a gallium nitride based superlattice layer 120 may be formed on the active layer 114.
  • the gallium nitride-based superlattice layer 120 includes a first gallium nitride-based superlattice layer 122 on the active layer 114 and a second gallium nitride-based superlattice layer 122 on the first gallium nitride-based superlattice layer 122.
  • the superlattice layer 124 may be included.
  • the first gallium nitride based superlattice layer 122 may be disposed closer to the active layer 114 than the second gallium nitride based superlattice layer 124.
  • the bandgap energy of the first gallium nitride based superlattice layer 122 may be smaller than the bandgap energy of the second gallium nitride based superlattice layer 124.
  • the first gallium nitride-based superlattice layer 122 may be In x1 Ga 1-x1 N (122a) / Al y1 Ga 1-y1 N (122b) (where 0 ⁇ x1 ⁇ 1 and 0 ⁇ y1).
  • the second gallium nitride series superlattice layer 124 includes In x Ga 1-x 2 N (124a) / Al y 2 Ga 1-y 2 N (124b), where 0 ⁇ x 2 ⁇ 1, 0 ⁇ y2 ⁇ 1).
  • the thickness of each In x1 Ga 1-x1 N layer or Al y1 Ga 1-y1 N layer in the first gallium nitride-based superlattice layer 122 is about 1 nm to about 3 nm, and about 10 pairs to It can grow to 30 pairs, but is not limited thereto.
  • the concentration (x1) of the indium in the first gallium nitride based superlattice layer 122 is greater than the concentration (x2) of the indium in the second gallium nitride based superlattice layer 124.
  • the electron reservoir effect can be significantly increased.
  • the bandgap energy of the first gallium nitride based superlattice layer 122 may be smaller than the bandgap energy of the second gallium nitride based superlattice layer 124.
  • the second gallium nitride based superlattice layer 124 and the active layer 114 is disposed between, and has a band gap energy less than the band gap energy of the second gallium nitride based superlattice layer 124. Since the first gallium nitride based superlattice layer 122 is provided, electrons can be effectively stored to prevent electrons from overflowing, thereby increasing the internal light emitting efficiency, thereby significantly increasing the light intensity Po.
  • the first gallium nitride based superlattice layer 122 and the second gallium nitride based superlattice layer 124 are disposed between the second conductive semiconductor layer 116 and the active layer 114 to spread current. Current spreading may be effectively performed to improve the operating voltage VF3 and to improve the brightness Po.
  • the first gallium nitride-based superlattice layer 122 includes In x 1 Ga 1-x 1 N / Al y 1 Ga 1-y 1 N (where 0 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 1).
  • the concentration (x1) may be equal to or less than the indium concentration of the quantum well of the active layer 114.
  • the concentration of indium (x1) in the first gallium nitride-based superlattice layer 122 is greater than the concentration of indium of the quantum well of the active layer 114, light loss may occur due to light absorption and electron traps. Can be.
  • the concentration y1 of aluminum in the first gallium nitride-based superlattice layer 122 may be smaller than the concentration of aluminum in the quantum wall of the active layer 114.
  • the operating voltage VF3 may serve as a barrier. Problems of rise or luminous intensity may occur.
  • the first gallium nitride-based superlattice layer 122 may be doped with a first conductive doping element, for example, Si, but the doping concentration may be less than 1 ⁇ 10 ⁇ 19 (atoms / cm 3 ). .
  • the thickness of the first gallium nitride based superlattice layer 122 may be smaller than the thickness of the second gallium nitride based superlattice layer 124.
  • the number of pairs of the first gallium nitride series superlattice layer 122 may be less than the number of pairs of the second gallium nitride series superlattice layer 124, and thus, a lattice constant
  • an aluminum gallium-based nitride semiconductor layer 128 may be formed on the second gallium nitride-based superlattice layer 124.
  • the aluminum gallium-based nitride semiconductor layer 128 may improve the luminous efficiency by acting as electron blocking and cladding of the active layer.
  • the aluminum gallium-based nitride semiconductor layer 128 may be formed of Al x In y Ga (1-xy) N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1) based semiconductor, and the active layer ( It may have a higher energy band gap than the energy band gap of 114), and may be formed to a thickness of about 100 kPa to about 600 kPa, but is not limited thereto.
  • the second conductivity-type semiconductor layer 116 may be formed of a semiconductor compound on the aluminum gallium-based nitride semiconductor layer 128.
  • the second conductivity type semiconductor layer 116 may include a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Can be.
  • the second conductive semiconductor layer 116 is a p-type semiconductor layer
  • the second conductive dopant may be a p-type dopant and may include Mg, Zn, Ca, Sr, and Ba.
  • the first conductive semiconductor layer 112 may be an n-type semiconductor layer
  • the second conductive semiconductor layer 116 may be a p-type semiconductor layer, but is not limited thereto.
  • the light emitting structure 110 may be implemented as any one of an n-p junction structure, a p-n junction structure, an n-p-n junction structure, and a p-n-p junction structure.
  • the translucent electrode 130 is formed on the second conductive semiconductor layer 116.
  • the translucent electrode 130 may include an ohmic layer, and may be formed by stacking a single metal, a metal alloy, a metal oxide, or the like in multiple layers to efficiently inject holes.
  • the translucent electrode 130 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), or IGTO.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IZTO indium zinc tin oxide
  • IAZO indium aluminum zinc oxide
  • IGZO indium gallium zinc oxide
  • IGTO indium gallium zinc oxide
  • the transparent electrode 130, the second conductive semiconductor layer 116, the aluminum gallium-based nitride semiconductor layer 128, and the second gallium nitride are exposed so that the first conductive semiconductor layer 112 is exposed.
  • a portion of the series superlattice layer 124, the first gallium nitride series superlattice layer 122, and the active layer 114 may be removed.
  • the first electrode 151 is formed on the second electrode 152 and the exposed first conductive semiconductor layer 112 on the light-transmitting electrode 130 to emit light according to the exemplary embodiment.
  • An element can be formed.
  • the embodiment can provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package, and an illumination system capable of maximizing a vehicle blocking function to improve luminous efficiency.
  • the embodiment can provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package and an illumination system that can improve the current diffusion function to improve the light emitting efficiency.
  • FIG. 8 is a view illustrating a light emitting device package in which a light emitting device is installed, according to embodiments.
  • the light emitting device package according to the embodiment is provided in the package body portion 205, the third electrode layer 213 and the fourth electrode layer 214 provided on the package body portion 205, and the package body portion 205.
  • the light emitting device 100 is electrically connected to the third electrode layer 213 and the fourth electrode layer 214, and a molding member 230 surrounding the light emitting device 100 is included.
  • the third electrode layer 213 and the fourth electrode layer 214 are electrically separated from each other, and serve to provide power to the light emitting device 100.
  • the third electrode layer 213 and the fourth electrode layer 214 may serve to increase light efficiency by reflecting the light generated from the light emitting device 100, and generated from the light emitting device 100. It may also serve to release heat to the outside.
  • the light emitting device 100 may be electrically connected to the third electrode layer 213 and / or the fourth electrode layer 214 by any one of a wire method, a flip chip method, and a die bonding method.
  • FIG. 9 is an exploded perspective view of a lighting system according to an embodiment.
  • the lighting apparatus may include a cover 2100, a light source module 2200, a heat radiator 2400, a power supply 2600, an inner case 2700, and a socket 2800.
  • the lighting apparatus according to the embodiment may further include any one or more of the member 2300 and the holder 2500.
  • the light source module 2200 may include a light emitting device or a light emitting device package according to an embodiment.
  • the light source module 2200 may include a light source unit 2210, a connection plate 2230, and a connector 2250.
  • the member 2300 is disposed on an upper surface of the heat dissipator 2400, and has a plurality of light source parts 2210 and guide grooves 2310 into which the connector 2250 is inserted.
  • the holder 2500 may block the accommodating groove 2719 of the insulating portion 2710 of the inner case 2700. Therefore, the power supply unit 2600 accommodated in the insulating unit 2710 of the inner case 2700 is sealed.
  • the holder 2500 has a guide protrusion 2510.
  • the power supply unit 2600 may include a protrusion 2610, a guide unit 2630, a base 2650, and an extension unit 2670.
  • the inner case 2700 may include a molding unit together with the power supply unit 2600 therein.
  • the molding part is a part where the molding liquid is hardened, so that the power supply part 2600 can be fixed inside the inner case 2700.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시예는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템에 관한 것이다. 실시예에 따른 발광소자는 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 활성층; 상기 활성층 상에 질화갈륨계열 초격자층; 상기 질화갈륨계열 초격자 구조층 상에 제2 도전형 반도체층을 포함할 수 있다. 상기 질화갈륨계열 초격자층은 상기 활성층 상에 제1 질화갈륨계열 초격자층과, 상기 제1 질화갈륨계열 초격자층 상에 제2 질화갈륨계열 초격자층;을 포함할 수 있다.

Description

발광소자 및 조명시스템
실시예는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템에 관한 것이다.
발광소자(Light Emitting Device)는 전기에너지가 빛에너지로 변환되는 특성의 p-n 접합 다이오드로서, 주기율표상에서 Ⅲ족과 Ⅴ족의 원소가 화합하여 생성될 수 있다. LED는 화합물 반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다.
발광소자는 순방향전압 인가 시 n층의 전자와 p층의 정공(hole)이 결합하여 전도대(Conduction band)와 가전대(Valance band)의 에너지 갭에 해당하는 만큼의 에너지를 발산하는데, 이 에너지는 열이나 빛의 형태로 방출되며, 빛의 형태로 발산되면 발광소자가 되는 것이다.
예를 들어, 질화물 반도체는 높은 열적 안정성과 폭넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자 등은 상용화되어 널리 사용되고 있다.
종래기술에 의하면, 활성층과 제2 도전형 반도체층 사에 전자차단층을 구비하여 전자의 오버 플로우를 막아 발광효율을 증대하는 기술이 있으나 전자차단의 기능을 제대로 수행하지 못하는 경우가 많다.
또한 종래기술에 의하면, 패드전극 중심으로 캐리어의 집중에 의해 발광효율이 저하되는 문제가 있다.
실시예는 전차차단 기능을 극대화하여 발광효율을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공하고자 한다.
또한 실시예는 전류확산 기능을 향상시켜 발광효율을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공하고자 한다.
실시예에 따른 발광소자는 제1 도전형 반도체층(112); 상기 제1 도전형 반도체층(112) 상에 활성층(114); 상기 활성층(114) 상에 질화갈륨계열 초격자층(120); 상기 질화갈륨계열 초격자 구조층(120) 상에 제2 도전형 반도체층(116);을 포함할 수 있다.
상기 질화갈륨계열 초격자층(120)은 상기 활성층(114) 상에 제1 질화갈륨계열 초격자층(122)과, 상기 제1 질화갈륨계열 초격자층(122) 상에 제2 질화갈륨계열 초격자층(124);을 포함할 수 있다.
상기 제1 질화갈륨계열 초격자층(122)의 밴드갭 에너지는 상기 제2 질화갈륨계열 초격자층(124)의 밴드갭 에너지보다 작을 수 있다.
실시예에 따른 조명시스템은 상기 발광소자를 구비하는 발광유닛을 포함할 수 있다.
실시예는 전차차단 기능을 극대화하여 발광효율을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
또한 실시예는 전류확산 기능을 향상시켜 발광효율을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
도 1은 실시예에 따른 발광소자의 단면도.
도 2는 실시예에 따른 발광소자의 조성 예시도.
도 3은 실시예에 따른 발광소자의 밴드 다이어그램 제1 부분 예시도.
도 4는 실시예에 따른 발광소자의 밴드 다이어그램 제2 부분 예시도.
도 5 내지 도 7은 실시예에 따른 발광소자의 제조방법 공정 예시도.
도 8은 실시예에 따른 발광소자 패키지의 단면도.
도 9는 실시예에 따른 조명 장치의 사시도.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
(실시예)
도 1은 실시예에 따른 발광소자(100)의 단면도이며, 도 2는 실시예에 따른 발광소자의 조성 예시도이다.
도 3은 실시예에 따른 발광소자의 밴드 다이어그램 제1 부분 예시도이다.
실시예에 따른 발광소자(100)는 제1 도전형 반도체층(112)과, 상기 제1 도전형 반도체층(112) 상에 활성층(114)과, 상기 활성층(114) 상에 질화갈륨계열 초격자층(120)과, 상기 질화갈륨계열 초격자 구조층(120) 상에 제2 도전형 반도체층(116)을 포함할 수 있다.
상기 활성층(114)은 양자우물(114w)과 양자벽(114b)을 포함하며, 상기 제1 도전형 반도체층(112), 상기 활성층(114) 및 상기 제2 도전형 반도체층(116)은 발광구조물(110)을 구성할 수 있다.
실시예는 상기 제2 도전형 반도체층(116) 상에 배치되는 투광성 전극(130)과 상기 투광성 전극(130) 상에 배치되는 제2 전극(152) 및 상기 제1 도전형 반도체층(112)과 전기적으로 연결되는 제1 전극(151)을 포함할 수 있다.
도 1에서, 전극이 같은 방향으로 배치되는 수평형 발광소자에 대해 도시하고 있으나 실시예가 이에 한정되는 것은 아니다.
실시예는 상기 질화갈륨계열 초격자층(120) 상에 알류미늄 갈륨계열 질화물반도체층(128)을 구비하여 전자차단 기능을 통해 발광효율을 증대시킬 수 있다.
실시예에서 상기 질화갈륨계열 초격자층(120)은 상기 활성층(114) 상에 제1 질화갈륨계열 초격자층(122)과, 상기 제1 질화갈륨계열 초격자층(122) 상에 제2 질화갈륨계열 초격자층(124)을 포함할 수 있다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)은 상기 활성층(114)과 상기 제2 질화갈륨계열 초격자층(124) 사이에 배치될 수 있다.
즉, 상기 제1 질화갈륨계열 초격자층(122)은 상기 제2 질화갈륨계열 초격자층(124)보다 활성층(114)에 인접하여 배치될 수 있다.
실시예에 의하면, 도 3과 같이, 제1 질화갈륨계열 초격자층(122)의 밴드갭 에너지는 상기 제2 질화갈륨계열 초격자층(124)의 밴드갭 에너지보다 작을 수 있다.
예를 들어, 상기 질화갈륨계열 초격자층(120)은 InxGa1-xN/AlyGa1-yN(단,0<x<1, 0<y<1)을 포함할 수 있다.
예를 들어, 상기 제1 질화갈륨계열 초격자층(122)은 Inx1Ga1-x1N(122 a)/Aly1Ga1-y1N(122b)(단,0<x1<1, 0<y1<1)을 포함하고, 상기 제2 질화갈륨계열 초격자층(124)은 Inx2Ga1-x2N(124a)/Aly2Ga1-y2N(124b)(단,0<x2<1, 0≤y2<1)을 포함할 수 있다.
이때, 도 2와 같이 실시예에서 상기 제1 질화갈륨계열 초격자층(122)에서 인듐의 농도(x1)는 상기 제2 질화갈륨계열 초격자층(124)에서의 인듐의 농도(x2)보다 큼으로써 전자의 보유(electron reservoir) 효과가 현저히 증대될 수 있다.
예를 들어, 도 3에서와 같이, 상기 제1 질화갈륨계열 초격자층(122)의 밴드갭 에너지는 상기 제2 질화갈륨계열 초격자층(124)의 밴드갭 에너지보다 작을 수 있다.
표 1
광도(Po) 동작전압(VF3)
비교예 449.1 3.45
실험예 497.4 3.33
표 1은 실시예에 따른 실험예 발광소자(100)와 비교예의 광도(Po) 및 동작전압(VF3) 비교 데이터이다.
실시예에 의하면, 상기 제2 질화갈륨계열 초격자층(124)과 활성층(114) 사이에 배치되며, 상기 제2 질화갈륨계열 초격자층(124)의 밴드갭 에너지보다 작은 밴드갭 에너지를 구비하는 제1 질화갈륨계열 초격자층(122)을 구비함으로써 전자(electron)들을 효과적으로 저장하여 전자의 오버플로우를 방지하여 내부 발광효율을 증대하여 표1과 같이 광도(Po)가 증대되었다.
또한 실시예에 의하면 제2 도전형 반도체층(116)과 활성층(114) 사이에 제1 질화갈륨계열 초격자층(122)과 제2 질화갈륨계열 초격자층(124)을 배치함으로써 전류확산(Current spreading)을 효과적으로 수행하여 표 1과 같이, 동작전압(VF3)개선 및 광도(Po)가 개선되었다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)이 Inx1Ga1-x1N/Aly1Ga1-y1N(단,0<x1<1, 0<y1<1)을 구비하는 경우, 제1 질화갈륨계열 초격자층(122)에서 인듐의 농도(x1)는 상기 활성층(114)의 양자우물의 인듐의 농도 이하일 수 있다.
상기 제1 질화갈륨계열 초격자층(122)에서 인듐의 농도(x1)가 상기 활성층(114)의 양자우물의 인듐의 농도 보다 큰 경우 광 흡수 및 전자트랩(electron trap) 등에 의하여 광손실이 발생할 수 있다.
실시예에 따른 발광소자는 AlGaN 배리어를 채용하는 UV 발광소자일 수 있으나 이에 한정되는 것은 아니다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)에서 알루미늄의 농도(y1)는 상기 활성층(114)의 양자벽의 알루미늄의 농도보다 작을 수 있다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)의 알루미늄의 농도(y1)가 상기 활성층(114)의 양자벽의 알루미늄의 농도보다 큰 경우 배리어(barrier) 역할에 의한 동작전압(VF3) 상승 또는 광도 저하의 문제가 발생할 수 있다.
실시예에서 제1 질화갈륨계열 초격자층(122)에 제1 도전형 도핑원소, 예를 들어 Si이 도핑될 수 있으나, 그 도핑농도는 1×10-19 (atoms/cm3)미만일 수 있다. 상기 제1 도전형 원소의 도핑농도가 1×10-19 (atoms/cm3) 이상일 경우 전자 터널링(electron tunneling)에 의하여 저 전류 발생으로 수율 저하 가능성이 있다.
실시예에서 제1 질화갈륨계열 초격자층(122)에서 각 Inx1Ga1-x1N층 또는 Aly1Ga1-y1N층의 두께는 약 1nm 내지 약 3nm 이며, 약 10 페어(pair) 내지 30 페어로 성장할 수 있으나 이에 한정되는 것은 아니다.
도 4는 실시예에 따른 발광소자의 밴드 다이어그램 제2 부분 예시도이다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)의 두께는 상기 제2 질화갈륨계열 초격자층(124)의 두께보다 작을 수 있다.
예를 들어, 상기 제1 질화갈륨계열 초격자층(122)의 페어(pair) 수는 상기 제2 질화갈륨계열 초격자층(124)의 페어(pair) 수보다 적을 수 있고, 이를 통해 격자 상수가 큰 In의 비율을 최적화하면서 전자의 차단기능 및 보유 기능을 극대화하면서 전류확산 기능을 높혀서 광도향상의 극대화 및 동작전압을 효과적으로 낮출 수 있다.
실시예는 전차차단 기능을 극대화하여 발광효율을 향상시킬 수 있는 발광소자를 제공할 수 있다.
또한 실시예는 전류확산 기능을 향상시켜 발광효율을 향상시킬 수 있는 발광소자를 제공할 수 있다.
이하, 도 5 내지 도 7을 참조하여 실시예에 따른 발광소자의 제조방법을 설명하면서 실시예를 좀 더 상술하기로 한다.
먼저, 도 5와 같이 기판(102)을 준비한다. 상기 기판(102)은 열전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판일수 있다.
예를 들어, 상기 기판(102)은 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga203 중 적어도 하나를 사용할 수 있다. 상기 기판(102) 위에는 요철 구조가 형성될 수 있으며, 이에 대해 한정하지는 않는다.
이때, 상기 기판(102) 위에는 버퍼층(미도시)이 형성될 수 있다. 상기 버퍼층은 이후 형성되는 발광구조물(110)의 재료와 기판(102)의 격자 부정합을 완화시켜 줄 수 있으며, 버퍼층의 재료는 3족-5족 화합물 반도체 예컨대, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중 적어도 하나로 형성될 수 있다.
다음으로, 상기 제1 기판(102) 상에 제1 도전형 반도체층(112), 활성층(114) 및 제2 도전형 반도체층(116)을 포함하는 발광구조물(110)이 형성될 수 있다.
상기 제1 도전형 반도체층(112)은 반도체 화합물로 형성될 수 있다. 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 도펀트가 도핑될 수 있다. 상기 제1 도전형 반도체층(112)이 n형 반도체층인 경우, 상기 제1도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
상기 제1 도전형 반도체층(112)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다.
상기 제1 도전형 반도체층(112)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN,AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상으로 형성될 수 있다.
상기 활성층(114)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다. 예를 들어, 상기 활성층(114)은 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 트리메틸 인듐 가스(TMIn)가 주입되어 다중 양자우물구조가 형성될 수 있으나 이에 한정되는 것은 아니다.
상기 활성층(114)의 양자우물(114W)/양장벽(114B)은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InGaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다.
다음으로, 상기 활성층(114) 상에 질화갈륨계열 초격자층(120)이 형성될 수 있다.
상기 질화갈륨계열 초격자층(120)은 상기 활성층(114) 상에 제1 질화갈륨계열 초격자층(122)과, 상기 제1 질화갈륨계열 초격자층(122) 상에 제2 질화갈륨계열 초격자층(124)을 포함할 수 있다.
상기 제1 질화갈륨계열 초격자층(122)은 상기 제2 질화갈륨계열 초격자층(124)보다 활성층(114)에 인접하여 배치될 수 있다.
실시예에 의하면, 도 3과 같이, 제1 질화갈륨계열 초격자층(122)의 밴드갭 에너지는 상기 제2 질화갈륨계열 초격자층(124)의 밴드갭 에너지보다 작을 수 있다.
예를 들어, 상기 제1 질화갈륨계열 초격자층(122)은 Inx1Ga1-x1N(122a)/Aly1Ga1-y1N(122b)(단,0<x1<1, 0<y1<1)을 포함하고, 상기 제2 질화갈륨계열 초격자층(124)은 Inx2Ga1-x2N(124a)/Aly2Ga1-y2N(124b)(단,0<x2<1, 0≤y2<1)을 포함할 수 있다.
실시예에서 제1 질화갈륨계열 초격자층(122)에서 각 Inx1Ga1-x1N층 또는 Aly1Ga1-y1N층의 두께는 약 1nm 내지 약 3nm 이며, 약 10 페어(pair) 내지 30 페어로 성장할 수 있으나 이에 한정되는 것은 아니다.
이때, 도 2와 같이 실시예에서 상기 제1 질화갈륨계열 초격자층(122)에서 인듐의 농도(x1)는 상기 제2 질화갈륨계열 초격자층(124)에서의 인듐의 농도(x2)보다 큼으로써 전자의 보유(electron reservoir) 효과가 현저히 증대될 수 있다.
예를 들어, 도 3에서와 같이, 상기 제1 질화갈륨계열 초격자층(122)의 밴드갭 에너지는 상기 제2 질화갈륨계열 초격자층(124)의 밴드갭 에너지보다 작을 수 있다.
실시예에 의하면, 상기 제2 질화갈륨계열 초격자층(124)과 활성층(114) 사이에 배치되며, 상기 제2 질화갈륨계열 초격자층(124)의 밴드갭 에너지보다 작은 밴드갭 에너지를 구비하는 제1 질화갈륨계열 초격자층(122)을 구비함으로써 전자(electron)들을 효과적으로 저장하여 전자의 오버플로우를 방지하여 내부 발광효율을 증대하여 광도(Po)가 현저히 증대될 수 있다.
또한 실시예에 의하면 제2 도전형 반도체층(116)과 활성층(114) 사이에 제1 질화갈륨계열 초격자층(122)과 제2 질화갈륨계열 초격자층(124)을 배치함으로써 전류확산(Current spreading)을 효과적으로 수행하여 동작전압(VF3)개선 및 광도(Po)가 개선될 수 있다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)이 Inx1Ga1-x1N/Aly1Ga1-y1N(단,0<x1<1, 0<y1<1)을 구비하는 경우, 제1 질화갈륨계열 초격자층(122)에서 인듐의 농도(x1)는 상기 활성층(114)의 양자우물의 인듐의 농도 이하일 수 있다.
상기 제1 질화갈륨계열 초격자층(122)에서 인듐의 농도(x1)가 상기 활성층(114)의 양자우물의 인듐의 농도 보다 큰 경우 광 흡수 및 전자트랩(electron trap) 등에 의하여 광손실이 발생할 수 있다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)에서 알루미늄의 농도(y1)는 상기 활성층(114)의 양자벽의 알루미늄의 농도보다 작을 수 있다.
실시예에서 상기 제1 질화갈륨계열 초격자층(122)의 알루미늄의 농도(y1)가 상기 활성층(114)의 양자벽의 알루미늄의 농도보다 큰 경우 배리어(barrier) 역할에 의한 동작전압(VF3) 상승 또는 광도 저하의 문제가 발생할 수 있다.
실시예에서 제1 질화갈륨계열 초격자층(122)에 제1 도전형 도핑원소, 예를 들어 Si이 도핑될 수 있으나, 그 도핑농도는 1×10-19 (atoms/cm3)미만일 수 있다.
실시예에서 도 4와 같이, 상기 제1 질화갈륨계열 초격자층(122)의 두께는 상기 제2 질화갈륨계열 초격자층(124)의 두께보다 작을 수 있다.
예를 들어, 상기 제1 질화갈륨계열 초격자층(122)의 페어(pair) 수는 상기 제2 질화갈륨계열 초격자층(124)의 페어(pair) 수보다 적을 수 있고, 이를 통해 격자 상수가 큰 In의 비율을 최적화하면서 전자의 차단기능 및 보유 기능을 극대화하면서 전류확산 기능을 높혀서 광도향상의 극대화 및 동작전압을 효과적으로 낮출 수 있다.
다음으로, 제2 질화갈륨계열 초격자층(124) 상에 알류미늄 갈륨계열 질화물반도체층(128)이 형성될 수 있다.
상기 알류미늄 갈륨계열 질화물반도체층(128)은 전자 차단(electron blocking) 및 활성층의 클래딩(MQW cladding) 역할을 해줌으로써 발광효율을 개선될 수 있다.
예를 들어, 상기 알류미늄 갈륨계열 질화물반도체층(128)은 AlxInyGa(1-x-y)N(0≤x≤1,0≤y≤1)계 반도체로 형성될 수 있으며, 상기 활성층(114)의 에너지 밴드 갭보다는 높은 에너지 밴드 갭을 가질 수 있으며, 약 100Å~ 약 600Å의 두께로 형성될 수 있으나 이에 한정되는 것은 아니다.
이후, 상기 제2 도전형 반도체층(116)이 알류미늄 갈륨계열 질화물반도체층(128) 상에 반도체 화합물로 형성될 수 있다.
상기 제2 도전형 반도체층(116)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제2 도전형 반도체층(116)이 p형 반도체층인 경우, 상기 제2도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
실시예에서 상기 제1 도전형 반도체층(112)은 n형 반도체층, 상기 제2 도전형 반도체층(116)은 p형 반도체층으로 구현할 수 있으나 이에 한정되지 않는다.
또한 상기 제2 도전형 반도체층(116) 위에는 상기 제2 도전형과 반대의 극성을 갖는 반도체 예컨대 n형 반도체층(미도시)을 형성할 수 있다. 이에 따라 발광구조물(110)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
이후, 상기 제2 도전형 반도체층(116) 상에 투광성 전극(130)이 형성된다.
예를 들어, 상기 투광성 전극(130)은 오믹층을 포함할 수 있으며, 정공주입을 효율적으로 할 수 있도록 단일 금속 혹은 금속합금, 금속산화물 등을 다중으로 적층하여 형성할 수 있다.
예를 들어, 상기 투광성 전극(130)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으며, 이러한 재료에 한정되는 않는다.
다음으로, 도 6과 같이, 제1 도전형 반도체층(112)이 노출되도록 투광성 전극(130), 제2 도전형 반도체층(116), 알류미늄 갈륨계열 질화물반도체층(128), 제2 질화갈륨계열 초격자층(124), 제1 질화갈륨계열 초격자층(122) 및 활성층(114)의 일부를 제거할 수 있다.
다음으로, 도 7와 같이 상기 투광성 전극(130) 상에 제2 전극(152), 노출된 제1 도전형 반도체층(112) 상에 제1 전극(151)을 각각 형성하여 실시예에 따른 발광소자를 형성할 수 있다.
실시예는 전차차단 기능을 극대화하여 발광효율을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
또한 실시예는 전류확산 기능을 향상시켜 발광효율을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
도 8은 실시예들에 따른 발광소자가 설치된 발광소자 패키지를 설명하는 도면이다.
실시예에 따른 발광 소자 패키지는 패키지 몸체부(205)와, 상기 패키지 몸체부(205)에 설치된 제3 전극층(213) 및 제4 전극층(214)과, 상기 패키지 몸체부(205)에 설치되어 상기 제3 전극층(213) 및 제4 전극층(214)과 전기적으로 연결되는 발광 소자(100)와, 상기 발광 소자(100)를 포위하는 몰딩부재(230)가 포함된다.
상기 제3 전극층(213) 및 제4 전극층(214)은 서로 전기적으로 분리되며, 상기 발광 소자(100)에 전원을 제공하는 역할을 한다. 또한, 상기 제3 전극층(213) 및 제4 전극층(214)은 상기 발광 소자(100)에서 발생된 빛을 반사시켜 광 효율을 증가시키는 역할을 할 수 있으며, 상기 발광 소자(100)에서 발생된 열을 외부로 배출시키는 역할을 할 수도 있다.
상기 발광 소자(100)는 상기 제3 전극층(213) 및/또는 제4 전극층(214)과 와이어 방식, 플립칩 방식 또는 다이 본딩 방식 중 어느 하나에 의해 전기적으로 연결될 수도 있다.
도 9는 실시예에 따른 조명시스템의 분해 사시도이다.
실시예에 따른 조명 장치는 커버(2100), 광원 모듈(2200), 방열체(2400), 전원 제공부(2600), 내부 케이스(2700), 소켓(2800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치는 부재(2300)와 홀더(2500) 중 어느 하나 이상을 더 포함할 수 있다. 상기 광원 모듈(2200)은 실시 예에 따른 발광소자 또는 발광소자 패키지를 포함할 수 있다.
상기 광원 모듈(2200)은 광원부(2210), 연결 플레이트(2230), 커넥터(2250)를 포함할 수 있다. 상기 부재(2300)는 상기 방열체(2400)의 상면 위에 배치되고, 복수의 광원부(2210)들과 커넥터(2250)이 삽입되는 가이드홈(2310)들을 갖는다.
상기 홀더(2500)는 내부 케이스(2700)의 절연부(2710)의 수납홈(2719)를 막는다. 따라서, 상기 내부 케이스(2700)의 상기 절연부(2710)에 수납되는 상기 전원 제공부(2600)는 밀폐된다. 상기 홀더(2500)는 가이드 돌출부(2510)를 갖는다.
상기 전원 제공부(2600)는 돌출부(2610), 가이드부(2630), 베이스(2650), 연장부(2670)를 포함할 수 있다. 상기 내부 케이스(2700)는 내부에 상기 전원 제공부(2600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는 몰딩 액체가 굳어진 부분으로서, 상기 전원 제공부(2600)가 상기 내부 케이스(2700) 내부에 고정될 수 있도록 한다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (11)

  1. 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 활성층;
    상기 활성층 상에 질화갈륨계열 초격자층;
    상기 질화갈륨계열 초격자 구조층 상에 제2 도전형 반도체층;을 포함하며,
    상기 질화갈륨계열 초격자층은
    상기 활성층 상에 제1 질화갈륨계열 초격자층과,
    상기 제1 질화갈륨계열 초격자층 상에 제2 질화갈륨계열 초격자층;을 포함하고,
    상기 제1 질화갈륨계열 초격자층의 밴드갭 에너지는 상기 제2 질화갈륨계열 초격자층의 밴드갭 에너지보다 작은 발광소자.
  2. 제1 항에 있어서,
    상기 질화갈륨계열 초격자층은 InxGa1-xN/AlyGa1-yN(단,0<x<1, 0<y<1)을 포함하는 발광소자.
  3. 제2 항에 있어서,
    상기 제1 질화갈륨계열 초격자층은 Inx1Ga1-x1N/Aly1Ga1-y1N(단,0<x1<1, 0<y1<1)을 포함하고,
    상기 제2 질화갈륨계열 초격자층은 Inx2Ga1-x2N/Aly2Ga1-y2N(단,0<x2<1, 0≤y2<1)을 포함하는 발광소자.
  4. 제3 항에 있어서,
    상기 제1 질화갈륨계열 초격자층에서 인듐의 농도(x1)는
    상기 제2 질화갈륨계열 초격자층에서의 인듐의 농도(x2)보다 큰 발광소자.
  5. 제4 항에 있어서,
    상기 제1 질화갈륨계열 초격자층에서 인듐의 농도(x1)는
    상기 활성층의 양자우물의 인듐의 농도보다 이하인 발광소자.
  6. 제4 항에 있어서,
    상기 제1 질화갈륨계열 초격자층에서 알루미늄의 농도(y1)는
    상기 활성층의 양자벽의 알루미늄의 농도보다 작은 발광소자.
  7. 제1 항에 있어서,
    상기 제1 질화갈륨계열 초격자층의 두께는
    상기 제2 질화갈륨계열 초격자층의 두께보다 작은 발광소자.
  8. 제1 항에 있어서,
    상기 제1 질화갈륨계열 초격자층은
    상기 활성층과 상기 제2 질화갈륨계열 초격자층 사이에 배치되는 발광소자.
  9. 제1 항에 있어서,
    상기 제1 질화갈륨계열 초격자층에 제1 도전형 도핑원소가 도핑된 발광소자.
  10. 제9 항에 있어서,
    상기 제1 도전형 원소의 도핑농도는 1×10-19 (atoms/cm3)미만인 발광소자.
  11. 제1 항 내지 제10 항 중 어느 하나에 기재된 발광소자를 구비하는 발광유닛을 포함하는 조명시스템.
PCT/KR2015/007753 2014-07-28 2015-07-24 발광소자 및 조명시스템 WO2016018010A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,707 US10069035B2 (en) 2014-07-28 2015-07-24 Light-emitting device and lighting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140095497A KR102237111B1 (ko) 2014-07-28 2014-07-28 발광소자 및 조명시스템
KR10-2014-0095497 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016018010A1 true WO2016018010A1 (ko) 2016-02-04

Family

ID=55217823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007753 WO2016018010A1 (ko) 2014-07-28 2015-07-24 발광소자 및 조명시스템

Country Status (3)

Country Link
US (1) US10069035B2 (ko)
KR (1) KR102237111B1 (ko)
WO (1) WO2016018010A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016111929A1 (de) * 2016-06-29 2018-01-04 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Leuchtdiode
KR102432226B1 (ko) * 2017-12-01 2022-08-12 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
KR102466006B1 (ko) * 2018-01-24 2022-11-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
WO2019139366A1 (ko) * 2018-01-11 2019-07-18 엘지이노텍 주식회사 반도체 소자
KR102465061B1 (ko) * 2018-04-05 2022-11-09 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019277A (ja) * 2005-07-07 2007-01-25 Rohm Co Ltd 半導体発光素子
JP2007067454A (ja) * 1997-01-09 2007-03-15 Nichia Chem Ind Ltd 窒化物半導体素子
KR20090058364A (ko) * 2007-12-04 2009-06-09 삼성전기주식회사 질화갈륨계 반도체 발광소자
KR20100077264A (ko) * 2008-12-29 2010-07-08 서울옵토디바이스주식회사 인듐질화물을 포함하는 발광 다이오드
KR20140050810A (ko) * 2012-10-22 2014-04-30 엘지이노텍 주식회사 발광소자

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660152B1 (ko) 1997-01-09 2006-12-21 니치아 카가쿠 고교 가부시키가이샤 질화물반도체소자
US6677619B1 (en) * 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7692182B2 (en) * 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
JP2007080996A (ja) * 2005-09-13 2007-03-29 Sony Corp GaN系半導体発光素子及びその製造方法
EP1883141B1 (de) * 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht
US20100123119A1 (en) 2008-11-20 2010-05-20 Seoul Opto Device Co., Ltd. Light emitting diode having indium nitride
KR101782079B1 (ko) 2010-07-28 2017-09-26 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
KR101712049B1 (ko) 2010-11-17 2017-03-03 엘지이노텍 주식회사 발광 소자
KR20130058406A (ko) * 2011-11-25 2013-06-04 삼성전자주식회사 반도체 발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067454A (ja) * 1997-01-09 2007-03-15 Nichia Chem Ind Ltd 窒化物半導体素子
JP2007019277A (ja) * 2005-07-07 2007-01-25 Rohm Co Ltd 半導体発光素子
KR20090058364A (ko) * 2007-12-04 2009-06-09 삼성전기주식회사 질화갈륨계 반도체 발광소자
KR20100077264A (ko) * 2008-12-29 2010-07-08 서울옵토디바이스주식회사 인듐질화물을 포함하는 발광 다이오드
KR20140050810A (ko) * 2012-10-22 2014-04-30 엘지이노텍 주식회사 발광소자

Also Published As

Publication number Publication date
US10069035B2 (en) 2018-09-04
US20170213935A1 (en) 2017-07-27
KR102237111B1 (ko) 2021-04-08
KR20160013553A (ko) 2016-02-05

Similar Documents

Publication Publication Date Title
WO2014065571A1 (ko) 발광소자
KR102053388B1 (ko) 발광소자
WO2016018010A1 (ko) 발광소자 및 조명시스템
WO2014046527A1 (ko) 발광소자
WO2014058224A1 (ko) 발광소자
WO2016104958A1 (ko) 적색 발광소자 및 조명장치
WO2017052344A1 (ko) 발광소자, 발광소자 패키지 및 발광장치
KR20130069215A (ko) 발광소자
KR20160013552A (ko) 발광소자 및 조명시스템
WO2016072661A1 (ko) 자외선 발광소자 및 조명시스템
WO2017135644A1 (ko) 자외선 발광소자 및 조명시스템
WO2017018767A1 (ko) 자외선 발광소자 및 발광소자 패키지
WO2016133310A1 (ko) 발광소자 및 이를 포함하는 조명시스템
WO2016195342A1 (ko) 자외선 발광소자
US9236531B2 (en) Light emitting device and lighting system
WO2016017884A1 (ko) 발광소자 및 조명시스템
KR102212781B1 (ko) 발광소자 및 조명시스템
KR102261957B1 (ko) 발광소자 및 조명시스템
WO2016144135A1 (ko) 발광소자, 발광소자 패키지, 및 이를 포함하는 조명시스템
KR101983292B1 (ko) 발광소자
KR102237119B1 (ko) 발광소자 및 조명시스템
WO2016021853A1 (ko) 발광소자 및 조명시스템
WO2015156490A1 (ko) 발광소자 및 조명시스템
WO2013180388A1 (en) Light emitting device
KR102249633B1 (ko) 발광소자 및 조명시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15329707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826525

Country of ref document: EP

Kind code of ref document: A1