WO2017131076A1 - 空気入りタイヤ及び空気入りタイヤの製造方法 - Google Patents

空気入りタイヤ及び空気入りタイヤの製造方法 Download PDF

Info

Publication number
WO2017131076A1
WO2017131076A1 PCT/JP2017/002683 JP2017002683W WO2017131076A1 WO 2017131076 A1 WO2017131076 A1 WO 2017131076A1 JP 2017002683 W JP2017002683 W JP 2017002683W WO 2017131076 A1 WO2017131076 A1 WO 2017131076A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
width direction
shoulder lug
pneumatic tire
Prior art date
Application number
PCT/JP2017/002683
Other languages
English (en)
French (fr)
Inventor
梨沙 田内
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201780007908.7A priority Critical patent/CN108602388B/zh
Priority to JP2017563808A priority patent/JP6720986B2/ja
Priority to AU2017213372A priority patent/AU2017213372B2/en
Priority to US16/073,684 priority patent/US11325423B2/en
Priority to EP17744306.6A priority patent/EP3409506A4/en
Publication of WO2017131076A1 publication Critical patent/WO2017131076A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • B60C11/0316Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1315Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls having variable inclination angles, e.g. warped groove walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0362Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • B60C2011/0369Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth with varying depth of the groove

Definitions

  • the present invention relates to a pneumatic tire having a shoulder lug groove and a method for manufacturing the pneumatic tire.
  • Construction vehicle tires or industrial vehicle tires are expected to have excellent durability and long tire life because they are subjected to high loads due to their usage. Factors in the tire structure that deteriorate the durability include the disturbance of the carcass cord near the end of the belt portion and the change in the interval between the carcass cords (waves).
  • the convex portion of the vulcanizing mold corresponding to the lug groove is tread rubber in the tread portion of the raw tire before vulcanization molding.
  • the lug groove is formed by pushing toward the inner side in the tire width direction while pushing in the circumferential direction, the carcass cord in the carcass ply is dragged by the flow of the tread rubber so that the carcass cord is disturbed or waved near the end of the belt portion. An outbreak occurs.
  • Patent Document 1 a method for manufacturing a heavy-duty pneumatic radial tire capable of preventing the belt end from being wavy is known (Patent Document 1).
  • the raw tire (green tire) is provided. Is vulcanized and molded into a product tire in a vulcanization mold.
  • the diameter is increased during vulcanization molding.
  • the sipe of the green tire (green tire) thus opened is opened, and the convex portions forming the lug grooves of the vulcanization mold are likely to bite into the sipe provided on the outer peripheral surface of the green tire (green tire).
  • the inward force in the tire radial direction generated by the biting of the convex portion is dispersed in the circumferential direction, and the movement of the belt layer end in the tire radial direction inward and outward is suppressed, and the belt layer Edge waviness can be suppressed.
  • the wave at the end of the belt layer is the object of suppression, and the wave at the end of the belt layer is not the disorder or wave of the ply cord. It is out of the wave. And since it is necessary to perform the process which provides a sipe on the surface of the green tire before vulcanization (green tire), production efficiency is bad.
  • the depth of the lug groove provided in the tire and suppressing the amount of tread rubber of the raw tire that the convex part of the mold pushes in the tire circumferential direction the carcass cord near the end of the belt part is disturbed
  • measures to reduce the undulations are also conceivable, since the depth of the lug groove is shallow, the tire life is shortened.
  • One aspect of the present invention is a pneumatic tire, A belt section; A tread portion that extends outward in the tire width direction, opens at the ground contact end, and has a plurality of shoulder lug grooves that are closed at the inner end in the tire width direction; In the region of the shoulder lug groove on the inner side in the tire width direction from the end of the maximum width belt of the belt part, the groove width of the shoulder lug groove decreases toward the inner side in the tire width direction, but the groove wall angle of the shoulder lug groove And by changing at least one of the groove depth, a portion where the groove cross-sectional area is kept constant is provided in the tire width direction at least 20% of the half of the tire development width. It is a characteristic pneumatic tire.
  • the groove wall angle in the portion changes in a range of 10 to 35 degrees.
  • the ratio of the minimum groove depth to the maximum groove depth in the region of the shoulder lug groove from the tire center line of the pneumatic tire to a quarter of the tire deployment width and a position away from the ground contact edge is 0. Is preferably 8 or more.
  • the groove wall angle preferably varies in a range of 15 to 25 degrees in the portion.
  • the shoulder lug groove is provided with a groove bottom inclined surface that is inclined so that the groove depth of the shoulder lug groove gradually decreases as approaching the closed end,
  • the inclination angle of the groove bottom inclined surface with respect to the normal of the surface of the tread portion at the closed end is preferably 20 degrees or more and 45 degrees or less.
  • the portion where the groove cross-sectional area is kept constant is located at a distance L2 away from a position away from a tire center line of the pneumatic tire by a distance L1;
  • the distance L1 is a distance corresponding to 40 to 60% of half of the tire development width,
  • the distance L2 is preferably a distance corresponding to 70 to 90% of half of the tire development width.
  • the length in the tire width direction of the portion where the groove cross-sectional area is kept constant is preferably 35% or less of half of the tire development width.
  • Another aspect of the present invention is a method for manufacturing a pneumatic tire, Forming a green tire before vulcanization with a belt portion; Enclosing and heating the green tire with a mold, In the tread portion of the pneumatic tire, a plurality of shoulder lug grooves that extend outward in the tire width direction, open to the ground contact end, and have closed ends at the inner end in the tire width direction are provided at intervals in the tire circumferential direction.
  • the mold includes a plurality of convex portions extending in one direction for forming a shoulder lug groove, Each of the convex portions has a width of each convex portion toward the inner side in the tire width direction in each region of the convex portion corresponding to the inner side in the tire width direction from the end of the maximum width belt of the belt portion of the green tire.
  • the number of protrusions corresponding to the groove wall of the shoulder lug groove is reduced, at least one of the protrusion height of the protrusions and the wall inclination angle of the side wall changes, so that the cross-sectional area of each of the protrusions is kept constant.
  • the pneumatic tire manufacturing method is characterized in that the portion to be provided is provided in the tire width direction at least 20% of the half of the tire development width.
  • the mold includes two partial molds for forming a tread pattern on the tread portion of the green tire, Each of the partial molds includes the convex portion, When the mold surrounds the green tire, it is preferable that each of the convex portions enter the tread portion of the green tire from the outer side in the tire width direction toward the inner side.
  • FIG. 1 It is a figure which shows an example of the profile cross section of the pneumatic tire of this embodiment.
  • A is a figure which shows the example of the tread pattern of the tire of this embodiment
  • (b) is a figure which shows the example from which the groove depth of the shoulder lug groove shown to (a) changes
  • (d) is a figure which shows the example from which the groove shape of the shoulder lug groove shown to (a) changes. It is a figure explaining the metal mold
  • (A)-(c) is a figure explaining the movement of the convex part of the lower mold
  • (d) is the carcass cord of the end vicinity of the belt part in the conventional tire It is a figure which shows the X-ray imaging image which shows disturbance of a wave and a wave.
  • FIG. 1 shows an example of a profile cross section of the tire 1 when the tire 1 is cut along a plane along the tire radial direction including the tire rotation axis of the pneumatic tire (hereinafter also referred to as a tire) 1 of the present embodiment.
  • FIG. 1 is a heavy duty pneumatic tire.
  • illustration of the shoulder lug groove is omitted.
  • the heavy-duty pneumatic tire referred to in this specification is a tire described in Chapter C of JATMA (Japan Automobile Tire Association Standard) YEAR BOOK 2014, and one type described in Chapter D (dump truck, scraper) Tires, 2 types (Grada) tires, 3 types (excavator loader) tires, 4 types (tire rollers) tires, mobile crane (truck cranes, wheel cranes) tires, or TRA 2013 YEAR BOOK SECTION 4 Or the vehicle tire described in SECTION IV6.
  • each direction and side are defined as follows.
  • the tire width direction is a direction parallel to the rotation axis of the pneumatic tire.
  • the outer side in the tire width direction is the side away from the tire center line CL representing the tire equatorial plane with respect to the position to be compared in the tire width direction.
  • the inner side in the tire width direction is the side closer to the tire center line CL in the tire width direction with respect to the position to be compared.
  • the tire circumferential direction is a direction in which the pneumatic tire rotates around the rotation axis of the pneumatic tire.
  • the tire radial direction is a direction orthogonal to the rotation axis of the pneumatic tire.
  • the outer side in the tire radial direction refers to the side away from the rotation axis along the tire radial direction with respect to the position to be compared. Further, the inner side in the tire radial direction refers to a side closer to the rotation axis along the tire radial direction with respect to the position to be compared.
  • the tire 1 has a carcass ply 3, a belt portion 4, and a pair of bead cores 5, and has rubber layers such as a tread portion 6, a side portion 7, a bead filler 8, and an inner liner 9 around these. .
  • the tread portion 6 has tread rubber.
  • the carcass ply 3 is provided with at least one layer (one layer in FIG. 1) and is mounted between the pair of bead cores 5.
  • the carcass ply 3 includes a plurality of carcass cords extending in the tire radial direction, and is folded around the bead core 5 from the inner side to the outer side in the tire width direction.
  • a bead filler 8 is disposed outside the bead core 5 in the tire radial direction, and the bead filler 8 is wrapped by the main body portion and the folded portion of the carcass ply 3.
  • a belt portion 4 composed of a plurality of belts is provided on the inner side in the tire radial direction of the tread portion 6 and on the outer side in the tire radial direction of the carcass ply 3.
  • the belt unit 4 includes five belts.
  • the five belts include one reinforcing belt 4a located on the innermost side in the tire radial direction, two cross belts 4b and 4c on the outer side in the tire radial direction of the reinforcing belt 4a, and an outer side in the tire radial direction of the cross belt 4c.
  • protective belts 4d and 4e are included in the belt unit 4 .
  • the reinforcing belt 4a has a hollow structure, and the inclination angle of the steel cord constituting the belt with respect to the tire circumferential direction is larger than that of the cross belts 4b and 4c and the protection belts 4d and 4e. Thereby, the reinforcement belt 4a exhibits the function which improves the belt rigidity of a tire width direction.
  • the steel cords constituting the cross belts 4b and 4c are inclined to different sides in the tire width direction with respect to the tire circumferential direction. For this reason, the cross belts 4b and 4c exert a tagging effect on the tire to be expanded by filling with internal pressure.
  • the inclination angle of the steel cords of the protection belts 4d and 4e with respect to the tire circumferential direction is larger than the inclination angle of the steel cords of the cross belts 4b and 4c with respect to the tire circumferential direction.
  • the belt width along the tire width direction of the protective belt 4d is wider than any belt width of the protective belt 4e, the reinforcing belt 4a, and the cross belts 4b and 4c.
  • the tire 1 has the tire structure described above, but is not limited thereto, and may be a known tire structure or a novel tire structure.
  • FIG. 2A is a diagram illustrating an example of a tread pattern of the tire 1.
  • the tread pattern of the tire 1 is provided with a plurality of shoulder lug grooves 10 that extend outward in the tire width direction and open to the ground contact ends EA and EB, with the inner ends in the tire width direction being closed ends, spaced in the tire circumferential direction. It has been.
  • the shoulder lug groove 10 includes a portion where the groove width becomes narrower from the outer side in the tire width direction toward the inner side.
  • the shoulder lug groove 10 is provided in each of the half tread regions on both sides in the tire width direction with the tire center line CL as a boundary.
  • the position in the tire circumferential direction of the shoulder lug groove 10 provided in one half tread region is between the tire circumferential direction positions of the shoulder lug grooves 10 adjacent in the tire circumferential direction provided in the other half tread region.
  • the position in the tire width direction of the closed end on the inner side in the tire width direction of the shoulder lug groove 10 is a distance of 5 to 35% of half of the tire development width (periphery length T from the tire center line CL to the ground contact ends EA and EB). , At a position away from the tire center line CL.
  • the groove shape of the shoulder lug groove 10 is set as follows. That is, in the shoulder lug groove 10, the width of the shoulder lug groove 10 from the outer side in the tire width direction to the inner side in the tire width direction in the region inside the tire width direction from the end of the protective belt 4 d that is the maximum width belt of the belt portion 4. However, when at least one of the groove wall angle and the groove depth of the shoulder lug groove 10 is changed, a portion where the groove cross-sectional area is kept constant is half the tire development width (periphery length T ) At least 20% of the length (length in the tire width direction), provided in the tire width direction.
  • the width of the shoulder lug groove 10 decreases from the outer side in the tire width direction toward the inner side in the tire width direction.
  • the groove cross-sectional area is kept constant by changing at least one of the groove wall angle and the groove depth of the groove 10.
  • the distance L1 is preferably 40 to 60% of the peripheral length T
  • the distance L2 is preferably 70 to 90% of the peripheral length T.
  • the upper limit of the length in the tire width direction of the portion where the groove cross-sectional area is kept constant is preferably 35% or less of half the tire development width (periphery length T).
  • FIG. 2B is a diagram illustrating an example in which the groove depth of the shoulder lug groove 10 changes in the tire width direction.
  • 2C and 2D are diagrams showing an example in which the groove shape of the shoulder lug groove 10 changes. As shown in FIG. 2B, in the region on the outer side in the tire width direction of the groove bottom inclined surface 10a excluding the groove bottom inclined surface 10a that gradually becomes deeper from the closed portion on the inner side in the tire width direction, or the tire center line CL.
  • the groove shape shown in FIG. 2 (c) is a groove shape at a position away from the tire center line CL by a distance L1
  • the groove shape shown in FIG. 2 (d) is a distance L2 (L2> L1) from the tire center line CL. It is a groove shape at a distant position.
  • the groove wall angle in the groove shape shown in FIG. 2C is ⁇ 1
  • the groove wall angle in the groove shape shown in FIG. 2D is ⁇ 2 ( ⁇ 2> ⁇ 1).
  • the groove width changes from W1 to W2 (W2> W1)
  • the groove wall angle changes from ⁇ 1 to ⁇ 2
  • the groove depth also changes from D1 to D2 (D2 ⁇ D1).
  • the area is constant.
  • the constant groove cross-sectional area means that the value of the groove cross-sectional area at any position of the portion A is 95 to 105%, preferably 97 to 103% with respect to the average groove cross-sectional area in the above-described portion A. It means that.
  • the average groove cross-sectional area is a value obtained by dividing the groove volume in the portion A by the groove length of the portion A.
  • the groove wall angle is preferably changed by 2 degrees or more, and the groove depth is preferably changed by 3 mm or more.
  • FIG. 3 is a view for explaining a raw tire 18 (shaded area) surrounded by a mold during vulcanization in a tire manufacturing process.
  • FIGS. 4A to 4C are views for explaining the movement of the convex portion 16 of the lower mold 14 that pushes the tread rubber while biting into the tread portion 6 of the raw tire 18.
  • the tread rubber is pushed away in the tire circumferential direction and flows. Therefore, the tread rubber flows between the convex portions 16 adjacent to each other in the tire circumferential direction, and is not in contact with the belt portion 4 as shown in FIGS. 4A to 4C so as to be dragged by this flow.
  • the carcass cord undulates, and the carcass cord is disturbed or waved near the end of the belt portion.
  • 4D is a view showing an X-ray image showing a disturbance and a wave of the carcass cord near the end of the belt portion in the carcass ply 3 in the conventional tire. As shown in FIG. 4 (d), the carcass cord is disturbed and a wave is generated.
  • the tire width from the end of the protective belt 4 d that is the maximum width belt of the belt portion 4 in the shoulder lug groove 10.
  • the groove width of the shoulder lug groove 10 decreases toward the inner side in the tire width direction.
  • the portion A that maintains a constant area is provided in the tire width direction at least 20% of the half of the tire development width (periphery length T).
  • the minimum groove depth Dmin is 80 mm or more, the carcass cord can be more effectively prevented from being disturbed or waved.
  • the groove wall angle in the portion A can be changed in the range of 10 to 35 degrees, which can improve the durability by suppressing the turbulence and undulation of the carcass cord near the end of the belt portion 4.
  • the groove wall angle is less than 10 degrees, the resistance when the convex portions 16 of the upper mold 12 and the lower mold 14 bite into the tread portion 6 of the raw tire 18 increases, and the flow of tread rubber in the tire circumferential direction is intense.
  • the carcass cords in the vicinity of the end of the belt portion 4 in the carcass ply 3 are disturbed and wavy.
  • the groove wall angle of the groove wall of the both sides of the shoulder lug groove 10 does not necessarily need to be the same.
  • the tire development width from the tire center line CL (periphery length T from the tire center line CL to the ground contact EA or the ground contact EB), that is, a position separated by a quarter of the tire development width.
  • the ratio of the minimum groove depth Dmin to the maximum groove depth Dmax of the shoulder lug groove 10 in the region of the shoulder lug groove 10 from the contact edge EA, EB to the ground contact edge EA is 0.8 or more. Without shortening, it is preferable from the point that durability and durability can be improved by suppressing turbulence and undulation of the carcass cord near the end of the belt portion 4. At this time, the range of the minimum groove depth Dmin is preferably 80 to 100 mm.
  • the ratio of the minimum groove depth Dmin to the maximum groove depth Dmax is 0.85 or more and 0.95 or less, and the groove wall angle is 15 degrees in the portion A.
  • the change in the range of ⁇ 25 degrees can improve the durability by suppressing the disturbance of the carcass cord and the wave near the end of the belt portion in the carcass ply 3 without shortening the life of the tire. From the standpoint, it is practically preferable.
  • the shoulder lug groove 10 has a groove bottom inclined surface 10a that is inclined so that the groove depth gradually decreases as the shoulder lug groove 10 approaches the closed end on the inner side in the tire width direction.
  • the inclination angle ⁇ 0 of the groove bottom inclined surface 10a with respect to the normal of the surface of the tread portion at the closed end is 20 degrees or more and 45 degrees or less, and the convexity of the upper mold 12 and the lower mold 14 This is preferable because the resistance when the portion 16 bites into the tread portion of the raw tire 18 can be reduced to suppress the flow of the tread rubber.
  • Such a pneumatic tire is manufactured by the following manufacturing method. First, the raw tire 18 before vulcanization provided with the belt portion 4 is molded. Next, as shown in FIG. 3, the green tire 18 is surrounded by a mold and heated (vulcanized). At this time, a metal mold
  • the shoulder lug grooves 10 are provided at intervals in the tire circumferential direction, extend outward in the tire width direction, open to the ground contact ends EA and EB, and close at the inner ends in the tire width direction.
  • Each of the convex portions 16 corresponding to the shoulder lug groove 10 is formed in each region of the convex portion 16 corresponding to the inner side in the tire width direction from the end of the maximum width belt of the belt portion 4 of the raw tire 18.
  • the width (the length in the direction orthogonal to the extending direction of the convex portion 16) decreases toward the inner side in the tire width direction, but corresponds to the protruding height of each convex portion 16 and the groove wall of the shoulder lug groove 10.
  • the portion that maintains the cross-sectional area of each convex portion 16 is a length that is at least 20% of the half of the tire deployment width, and the tire width. In the direction.
  • the constant cross-sectional area means that the cross-sectional area at any position of the portion of the convex portion 16 corresponding to the portion A with respect to the average cross-sectional area of the portion of the convex portion 16 corresponding to the portion A described above.
  • the value is 95 to 105%, preferably 97 to 103%.
  • the mold also includes an upper mold 12 and a lower mold 14 that are two partial molds for forming a tread pattern on the tread portion of the raw tire 18. That is, the mold is a two-part mold. At this time, each of the upper mold 12 and the lower mold 14 includes a convex portion 16. When the upper mold 12 and the lower mold 14 surround the raw tire 18, as shown in FIG.
  • each of the convex portions 16 enters the inside of the tread portion of the raw tire 18 from the outer side in the tire width direction toward the inner side.
  • the shoulder lug groove 10 is formed.
  • the groove depth and the groove wall angle of the shoulder lug groove 10 are changed to make the groove cross-sectional area in the portion A constant.
  • only the groove depth of the shoulder lug groove 10 may be changed to make the groove cross-sectional area constant at the portion A, or only the groove wall angle of the shoulder lug groove 10 may be changed to change the groove cross-sectional area at the portion A. It may be constant.
  • the reciprocal of the measurement result was indexed with the reciprocal of the measurement result of the conventional example as a reference (index 100).
  • the higher the index the higher the durability.
  • the groove depth of the shoulder lug groove of the tire after running was measured, and the time until the shoulder lug groove did not function as the lug groove from the measurement result was evaluated as the tire life.
  • the tire life was indexed using the tire life of the conventional example as a reference (index 100). A higher index means a longer tire life.
  • Tables 1 and 2 show the specifications of each shoulder lug groove and the evaluation results.
  • the manufacturing method of the pneumatic tire and pneumatic tire of the present invention was explained in detail, the pneumatic tire of the present invention is not limited to the above-mentioned embodiment or an example, and in the range which does not deviate from the main point of the present invention, Of course, various improvements and changes may be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Tires In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

空気入りタイヤのトレッド部には、タイヤ幅方向外側に延びて接地端に開口し、タイヤ幅方向内側の端が閉塞端であるショルダーラグ溝がタイヤ周方向に間隔をあけて複数設けられている。空気入りタイヤのベルト部の最大幅ベルトの端からタイヤ幅方向内側の前記ショルダーラグ溝の領域において、前記ショルダーラグ溝の溝幅がタイヤ幅方向内側に向かって減少するが、前記ショルダーラグ溝の溝壁角度及び溝深さの少なくともいずれか一方が変化することにより、溝断面積を一定に維持した部分が、タイヤ展開幅の半分の少なくとも20%の長さ、タイヤ幅方向に設けられている。

Description

空気入りタイヤ及び空気入りタイヤの製造方法
 本発明は、ショルダーラグ溝を備える空気入りタイヤ及び空気入りタイヤの製造方法に関する。
 建設車両用タイヤあるいは産業車両用タイヤは、その使用状況から、高荷重の負荷を受けるため優れた耐久性を備え、かつタイヤ寿命が長いことが望まれている。耐久性を劣化させるタイヤ構造上の要因として、ベルト部の端近傍のカーカスコードの乱れやカーカスコード間の間隔が変動すること(波うち)が挙げられる。タイヤを製造する際、タイヤにトレッドパターンとしてラグ溝を形成するとき、ラグ溝に対応する加硫用金型の凸部が加硫成形前の生タイヤのトレッド部内でトレッド部のトレッドゴムをタイヤ周方向に押し分けながらタイヤ幅方向内側に向かって進むことによりラグ溝を形成するので、カーカスプライ中のカーカスコードがトレッドゴムの流れに引きずられることによってベルト部の端近傍のカーカスコードの乱れや波うちが発生する。
 これに対して、ベルト端の波打ちを防止することができる、重荷重用空気入りラジアルタイヤの製造方法が知られている(特許文献1)。
 当該製造方法では、加硫成形前の生タイヤ(グリーンタイヤ)の、ラグ溝を設ける領域に、タイヤ幅方向成分を有するサイプを、タイヤ周方向に複数設けた後、その生タイヤ(グリーンタイヤ)を加硫金型内で加硫成形して製品タイヤとする。
特開2005-193525号公報
 上記製造方法では、加硫成形前の生タイヤ(グリーンタイヤ)の、ラグ溝を設ける領域に、タイヤ幅方向成分を有するサイプを、タイヤ周方向に複数設けることにより、加硫成形時には、拡径された生タイヤ(グリーンタイヤ)のサイプは開くことになり、加硫金型のラグ溝を形成する凸部が、生タイヤ(グリーンタイヤ)の外周面に設けたサイプに食い込み易くなる。これにより、凸部の食い込みにより発生する、タイヤ半径方向内方へ向かう力を周方向に分散して、ベルト層端のタイヤ半径方向内方および外方への移動を抑制して、ベルト層の端の波打ちを抑制することができる。
 しかし、上記製造方法では、ベルト層端の波うちを抑制の対象としており、プライコードの乱れや波うちではなく、しかも、ベルト層端の波うちはタイヤ半径方向内方および外方への移動による波うちである。しかも、加硫前の生タイヤ(グリーンタイヤ)の表面にサイプを設ける処理を行う必要があるため、生産効率が悪い。一方、タイヤに設けられるラグ溝の溝深さを浅くして、金型の凸部がタイヤ周方向に押し分ける生タイヤのトレッドゴム量を抑えることにより、ベルト部の端近傍のカーカスコードの乱れや波うちを小さくする対策も考えられるが、ラグ溝の溝深さが浅くなるため、タイヤ寿命が短くなる。
 本発明は、タイヤ寿命を延ばしつつ、ベルト部の端近傍のカーカスコードの乱れや波うちを抑制することにより耐久性を向上させる空気入りタイヤ及び空気入りタイヤの製造方法を提供することを目的とする。
 本発明の一態様は、空気入りタイヤであって、
 ベルト部と、
 タイヤ幅方向外側に延びて接地端に開口し、タイヤ幅方向内側の端が閉塞端であるショルダーラグ溝がタイヤ周方向に間隔をあけて複数設けられたトレッド部と、を備え、
 前記ベルト部の最大幅ベルトの端からタイヤ幅方向内側の前記ショルダーラグ溝の領域において、前記ショルダーラグ溝の溝幅がタイヤ幅方向内側に向かって減少するが、前記ショルダーラグ溝の溝壁角度及び溝深さの少なくともいずれか一方が変化することにより、溝断面積を一定に維持した部分が、タイヤ展開幅の半分の少なくとも20%の長さ、タイヤ幅方向に設けられている、ことを特徴とする空気入りタイヤである。
 前記部分における前記溝壁角度は、10~35度の範囲で変化する、ことが好ましい。
 前記空気入りタイヤのタイヤセンターラインから前記タイヤ展開幅の4分の1、離れた位置から前記接地端までの、前記ショルダーラグ溝の領域における最大溝深さに対する最小溝深さの比は、0.8以上である、ことが好ましい。
 その際、前記比は、0.85以上0.95以下であり、
 前記溝壁角度は、前記部分において15度~25度の範囲で変化する、ことが好ましい。
 前記ショルダーラグ溝は、前記閉塞端に近づくにつれて前記ショルダーラグ溝の溝深さが徐々に浅くなるように傾斜した溝底傾斜面を備え、
 前記空気入りタイヤのタイヤ径方向に沿ったプロファイル断面において、前記閉塞端における前記トレッド部の表面の法線に対する前記溝底傾斜面の傾斜角度は、20度以上45度以下である、ことが好ましい。
 前記溝断面積を一定に維持した前記部分は、前記空気入りタイヤのタイヤセンターラインから距離L1離れた位置から距離L2離れた位置にあり、
 前記距離L1は、前記タイヤ展開幅の半分の40~60%に相当する距離であり、
 前記距離L2は、前記タイヤ展開幅の半分の70~90%に相当する距離である、ことが好ましい。
 前記溝断面積を一定に維持した前記部分のタイヤ幅方向の長さは、前記タイヤ展開幅の半分の35%の長さ以下である、ことが好ましい。
 また、本発明の他の一態様は、空気入りタイヤの製造方法であって、
 ベルト部を備えた加硫前の生タイヤを成形するステップと、
 前記生タイヤを金型で囲み加熱するステップと、を備え、
 空気入りタイヤのトレッド部に、タイヤ幅方向外側に延びて接地端に開口し、タイヤ幅方向内側の端が閉塞端であるショルダーラグ溝がタイヤ周方向に間隔をあけて複数設けられるように、前記金型は、ショルダーラグ溝形成用の一方向に延在した複数の凸部を備え、
 前記凸部のそれぞれは、前記生タイヤの前記ベルト部の最大幅ベルトの端からタイヤ幅方向内側に対応する前記凸部それぞれの領域において、前記凸部それぞれの幅がタイヤ幅方向内側に向かって減少するが、前記ショルダーラグ溝の溝壁に対応する前記凸部それぞれの突出高さ及び側壁の壁傾斜角度の少なくともいずれか一方が変化することにより、前記凸部それぞれの断面積を一定に維持する部分が、タイヤ展開幅の半分の少なくとも20%の長さ、タイヤ幅方向に設けられている、ことを特徴とする空気入りタイヤの製造方法である。
 前記金型は、前記生タイヤの前記トレッド部にトレッドパターンを形成するための2つの部分金型を備え、
 前記部分金型のそれぞれは、前記凸部を備え、
 前記金型が前記生タイヤを囲むとき、前記凸部のそれぞれが、前記生タイヤのトレッド部内にタイヤ幅方向外側から内側に向かって入り込む、ことが好ましい。
 上述の空気入りタイヤ及び空気入りタイヤの製造方法によれば、タイヤ寿命を延ばしつつ、ベルト部の端近傍のカーカスコードの乱れや波うちを抑制することにより耐久性を向上させることができる。
本実施形態の空気入りタイヤのプロファイル断面の一例を示す図である。 (a)は、本実施形態のタイヤのトレッドパターンの例を示す図であり、(b)は(a)に示すショルダーラグ溝の溝深さが変化する例を示す図であり、(c)及び(d)は、(a)に示すショルダーラグ溝の溝形状が変化する例を示す図である。 本実施形態のタイヤの製造過程における加硫時の金型と生タイヤを説明する図である。 (a)~(c)は、タイヤの製造過程における加硫で用いる下型の凸部の動きを説明する図であり、(d)は、従来のタイヤにおける、ベルト部の端近傍のカーカスコードの乱れ、波うちを示すX線撮影画像を示す図である。
 以下、本発明の空気入りタイヤを詳細に説明する。
 図1は、本実施形態の空気入りタイヤ(以降、タイヤともいう)1のタイヤ回転軸を含み、タイヤ径方向に沿った平面でタイヤ1を切断したときのタイヤ1のプロファイル断面の一例を示す図である。タイヤ1は、重荷重用空気入りタイヤである。図1では、ショルダーラグ溝の図示は省略されている。
 本明細書でいう重荷重用空気入りタイヤとは、JATMA(日本自動車タイヤ協会規格) YEAR BOOK 2014のC章に記載されるタイヤの他に、D章に記載される1種(ダンプトラック、スクレーバ)用タイヤ、2種(グレーダ)用タイヤ、3種(ショベルローダ等)用タイヤ、4種(タイヤローラ)用タイヤ、モビールクレーン(トラッククレーン、ホイールクレーン)用タイヤ、あるいはTRA 2013 YEAR BOOKのSECTION 4 あるいは、SECTION 6に記載される車両用タイヤをいう。
 本明細書では、各方向及び側を以下のように定義する。
 タイヤ幅方向は、空気入りタイヤの回転軸と平行な方向である。タイヤ幅方向外側は、タイヤ幅方向において、比較する位置に対して、タイヤ赤道面を表すタイヤセンターラインCLから離れる側である。また、タイヤ幅方向内側は、比較する位置に対して、タイヤ幅方向において、タイヤセンターラインCLに近づく側である。タイヤ周方向は、空気入りタイヤの回転軸を回転の中心として空気入りタイヤが回転する方向である。タイヤ径方向は、空気入りタイヤの回転軸に直交する方向である。タイヤ径方向外側は、比較する位置に対して、タイヤ径方向に沿って前記回転軸から離れる側をいう。また、タイヤ径方向内側は、比較する位置に対して、タイヤ径方向に沿って前記回転軸に近づく側をいう。
(タイヤ構造)
 タイヤ1は、カーカスプライ3と、ベルト部4と、一対のビードコア5とを有し、これらの周りに、トレッド部6、サイド部7、ビードフィラー8、インナーライナ9等の各ゴム層を有する。トレッド部6は、トレッドゴムを有する。 
 カーカスプライ3は少なくとも1層(図1では1層)設けられ、一対のビードコア5間に装架されている。このカーカスプライ3は、タイヤ径方向に延びる複数本のカーカスコードを含み、ビードコア5の廻りにタイヤ幅方向内側から外側に折り返されている。また、ビードコア5のタイヤ径方向外側にはビードフィラー8が配置され、このビードフィラー8がカーカスプライ3の本体部分と折り返し部分により包み込まれている。
 トレッド部6のタイヤ径方向内側で、カーカスプライ3のタイヤ径方向外側には、複数のベルトで構成されたベルト部4が設けられている。
 ベルト部4は、5枚のベルトを備える。5枚のベルトは、タイヤ径方向の最も内側にある1枚の強化ベルト4aと、強化ベルト4aのタイヤ径方向外側にある2枚の交差ベルト4b,4cと、交差ベルト4cのタイヤ径方向外側にある、保護ベルト4d,4eと、を含む。
 強化ベルト4aは、中抜き構造になっており、交差ベルト4b,4c及び保護ベルト4d,4eに比べて、ベルトを構成するスチールコードのタイヤ周方向に対する傾斜角度が大きい。これにより、強化ベルト4aは、タイヤ幅方向のベルト剛性を高める機能を発揮する。交差ベルト4b,4cを構成するスチールコードは、タイヤ周方向に対してタイヤ幅方向の互いに異なる側に傾斜している。このため、交差ベルト4b,4cは、内圧充填により拡張しようとするタイヤに対してタガ効果を発揮する。
 保護ベルト4d,4eのスチールコードのタイヤ周方向に対する傾斜角度は、交差ベルト4b,4cのスチールコードのタイヤ周方向に対する傾斜角度に比べて大きい。保護ベルト4dのタイヤ幅方向に沿ったベルト幅は、保護ベルト4e、強化ベルト4a、及び交差ベルト4b,4cのいずれのベルト幅よりも広い。
 タイヤ1は、上記タイヤ構造を有するが、これに限定されず、公知のタイヤ構造であってもよいし、新規なタイヤ構造であってもよい。
(トレッドパターン)
 図2(a)は、タイヤ1のトレッドパターンの例を示す図である。タイヤ1のトレッドパターンには、タイヤ幅方向外側に延びて接地端EA,EBに開口し、タイヤ幅方向内側の端が閉塞端であるショルダーラグ溝10がタイヤ周方向に間隔をあけて複数設けられている。ショルダーラグ溝10は、タイヤ幅方向外側から内側に向かうに従がって溝幅が狭くなる部分を備える。ショルダーラグ溝10は、タイヤセンターラインCLを境にして、タイヤ幅方向の両側の半トレッド領域のそれぞれに設けられている。一方の半トレッド領域に設けられたショルダーラグ溝10のタイヤ周方向の位置は、他方の半トレッド領域に設けられたタイヤ周方向に隣り合うショルダーラグ溝10のタイヤ周方向位置の間にある。ショルダーラグ溝10のタイヤ幅方向内側の閉塞端のタイヤ幅方向の位置は、タイヤ展開幅の半分(タイヤセンターラインCLから接地端EA,EBまでのペリフェリ長さT)の5~35%の距離、タイヤセンターラインCLから離れた位置にある。
 また、ショルダーラグ溝10の溝形状は、以下のように設定されている。すなわち、ショルダーラグ溝10のうち、ベルト部4の最大幅ベルトである保護ベルト4dの端からタイヤ幅方向内側の領域において、ショルダーラグ溝10の溝幅がタイヤ幅方向外側からタイヤ幅方向内側に向かって減少するが、ショルダーラグ溝10の溝壁角度及び溝深さの少なくともいずれか一方が変化することにより、溝断面積を一定に維持した部分が、タイヤ展開幅の半分(ペリフェリ長さT)の少なくとも20%の長さ(タイヤ幅方向の長さ)、タイヤ幅方向に設けられている。例えば、タイヤセンターラインCLから距離L1離れた位置から距離L2離れた位置までの部分Aにおいて、ショルダーラグ溝10の溝幅がタイヤ幅方向外側からタイヤ幅方向内側に向かって減少するが、ショルダーラグ溝10の溝壁角度及び溝深さの少なくともいずれか一方が変化することにより溝断面積を一定に維持している。ここで、距離L1は、ペリフェリ長さTの40~60%であることが好ましく、距離L2は、ペリフェリ長さTの70~90%であることが好ましい。また、溝断面積を一定に維持した部分のタイヤ幅方向の長さの上限は、好ましくは、タイヤ展開幅の半分(ペリフェリ長さT)の35%以下である。
 図2(b)は、ショルダーラグ溝10の溝深さがタイヤ幅方向で変化する例を示す図である。図2(c),(d)は、ショルダーラグ溝10の溝形状が変化する例を示す図である。
 図2(b)に示すように、タイヤ幅方向内側の閉塞部から徐々に深くなる溝底傾斜面10aを除く、溝底傾斜面10aのタイヤ幅方向外側の領域において、あるいは、タイヤセンターラインCLからタイヤ展開幅の半分(ペリフェリ長さT)の50%、すなわち、タイヤ展開幅の4分の1、離れた位置から接地端EA,EBまでの、ショルダーラグ溝10の領域において、ショルダーラグ溝10の溝深さは、最大溝深さDmaxとなった後、徐々に浅くなり、最小溝深さDminになり、その後、再度深くなり、接地端EA,EBに至る。
 このとき、ショルダーラグ溝10の溝形状も変化している。図2(c)に示す溝形状は、タイヤセンターラインCLから距離L1離れた位置における溝形状であり、図2(d)に示す溝形状は、タイヤセンターラインCLから距離L2(L2>L1)離れた位置における溝形状である。このとき、図2(c)に示す溝形状における溝壁角度はθ1であり、図2(d)に示す溝形状における溝壁角度はθ2(θ2>θ1)である。このとき、溝幅はW1からW2(W2>W1)に変化し、溝壁角度がθ1からθ2に変化し、さらに、溝深さもD1からD2(D2<D1)に変化することにより、溝断面積は一定になっている。溝断面積が一定であるとは、上述の部分Aにおける平均溝断面積に対して、部分Aのいずれの位置の溝断面積の値も95~105%であること、好ましくは97~103%であることをいう。図2(c),(d)に示す溝形状の溝断面積S1,S2も、平均溝断面積の95~105%の範囲内にある。平均溝断面積は、部分Aにおける溝体積を部分Aの溝長さで割った値である。溝断面積が一定である部分Aでは、溝壁角度は2度以上変化し、溝深さは、3mm以上変化することが好ましい。
 このように、ショルダーラグ溝10において、溝断面積を一定に維持する部分Aを設ける意義を以下説明する。
 図3に示すように、上型12及び下型14を有する2つ割り金型を用いて生タイヤの加硫を行うとき、生タイヤ18をタイヤ幅方向の両側(図3の上側及び下側)から挟むように上型12及び下型14が接近して生タイヤ18を金型内に閉じ込めて、加硫を行う。図3は、タイヤの製造過程の加硫時の金型に囲まれた生タイヤ18(斜線の領域)を説明する図である。このとき、上型12及び下型14に設けられる、ショルダーラグ溝10を形成するための凸部16が生タイヤ18のトレッド部内に食い込みながらトレッドゴムをタイヤ周方向に押しのけてショルダーラグ溝10を形成する。
 図4(a)~(c)は、生タイヤ18のトレッド部6内に食い込みながらトレッドゴムを押しのける下型14の凸部16の動きを説明する図である。凸部16がトレッド部6内に食い込むことにより、トレッドゴムがタイヤ周方向に押しのけられて流動する。このため、タイヤ周方向に隣り合う凸部16の間にトレッドゴムが流動し、この流動に引きずられるように、図4(a)~(c)に示すように、ベルト部4と接してなくトレッドゴムと接するカーカスプライ3の領域において、カーカスコードがうねり、ベルト部の端近傍のカーカスコードの乱れや波うちが生じる。図4(d)は、従来のタイヤにおける、カーカスプライ3中のベルト部の端近傍のカーカスコードの乱れ、波うちを示すX線撮影画像を示す図である。図4(d)に示すように、カーカスコードに粗密ができる乱れ、波うちが生じる。
 本実施形態では、このようなカーカスプライ3中のカーカスコードの乱れや波うちを抑制するために、ショルダーラグ溝10のうち、ベルト部4の最大幅ベルトである保護ベルト4dの端からタイヤ幅方向内側の領域において、ショルダーラグ溝10の溝幅がタイヤ幅方向内側に向かって減少するが、ショルダーラグ溝10の溝壁角度及び溝深さの少なくともいずれか一方が変化することにより、溝断面積を一定に維持した部分Aが、タイヤ展開幅の半分(ペリフェリ長さT)の少なくとも20%の長さ、タイヤ幅方向に設けられている。本実施形態では、最小溝深さDminが80mm以上である場合に、カーカスコードの乱れや波うちをより効果的に抑制することができる。
 このとき、部分Aにおける溝壁角度は、10~35度の範囲で変化することが、ベルト部4の端近傍のカーカスコードの乱れや波うちを抑制して耐久性を向上させることができる点から好ましい。溝壁角度が10度未満の場合、上型12及び下型14の凸部16が生タイヤ18のトレッド部6内に食い込む際の抵抗が大きくなり、トレッドゴムのタイヤ周方向への流動が激しくなり、カーカスプライ3中のベルト部4の端近傍のカーカスコードの乱れや波うちが大きくなる。一方、溝壁角度が35度を越える場合、上型12及び下型14の凸部16の先端が尖るため、上型12及び下型14の凸部16が生タイヤ18のトレッド部6内に食い込み易くなり、カーカスプライ3中のベルト部4の端近傍のカーカスコードの乱れや波うちを抑制できるが、ショルダーラグ溝10の溝底にクラックが発生し易くなる。なお、ショルダーラグ溝10の両側の溝壁の溝壁角度は必ずしも同じでなくてもよい。
 また、タイヤセンターラインCLからタイヤ展開幅の半分(タイヤセンターラインCLから接地端EAあるいは接地端EBまでのペリフェリ長さT)の50%、すなわち、タイヤ展開幅の4分の1、離れた位置から接地端EA,EBまでの、ショルダーラグ溝10の領域における、ショルダーラグ溝10の最大溝深さDmaxに対する最小溝深さDminの比は、0.8以上であることが、タイヤの寿命を短くすることなく、ベルト部4の端近傍のカーカスコードの乱れや波うちを抑制して耐久性を向上させることができる点から好ましい。このとき、最小溝深さDminの範囲は、80~100mmであることが好ましい。
 特に、溝壁角度と溝深さを変化させる場合、最大溝深さDmaxに対する最小溝深さDminの比は、0.85以上0.95以下であり、溝壁角度は、部分Aにおいて15度~25度の範囲で変化することが、タイヤの寿命を短くすることなく、カーカスプライ3中のベルト部の端近傍のカーカスコードの乱れや波うちを抑制して耐久性を向上させることができる点から実用上好ましい。
 また、図2(b)に示すように、ショルダーラグ溝10は、ショルダーラグ溝10のタイヤ幅方向内側の閉塞端に近づくにつれて溝深さが徐々に浅くなるように傾斜した溝底傾斜面10aを備え、タイヤプロファイル断面において、閉塞端におけるトレッド部の表面の法線に対する溝底傾斜面10aの傾斜角度θ0は、20度以上45度以下であることが、上型12及び下型14の凸部16が生タイヤ18のトレッド部内に食い込む時の抵抗を小さくしてトレッドゴムの流動を抑制することできる点から、好ましい。
 このような空気入りタイヤは、以下の製造方法により作製される。
 まず、ベルト部4を備えた加硫前の生タイヤ18を成形する。次に、この生タイヤ18を、図3に示すように、金型で囲み加熱する(加硫する)。このとき、金型は、製造するタイヤのトレッド部6に設けられる一方向に延在した複数のショルダーラグ溝10に対応したショルダーラグ溝形成用の複数の凸部16を備える。このショルダーラグ溝10は、タイヤ周方向に間隔をあけて設けられ、タイヤ幅方向外側に延びて接地端EA,EBに開口し、タイヤ幅方向内側の端で閉塞する。このようなショルダーラグ溝10に対応した凸部16のそれぞれは、生タイヤ18のベルト部4の最大幅ベルトの端からタイヤ幅方向内側に対応する凸部16それぞれの領域において、凸部16それぞれの幅(凸部16の延在方向と直交する方向の長さ)がタイヤ幅方向内側に向かって減少するが、凸部16それぞれの突出高さ、及びショルダーラグ溝10の溝壁に対応する凸部16の側壁の壁傾斜角度の少なくともいずれか一方が変化することにより、凸部16それぞれの断面積を一定に維持する部分が、タイヤ展開幅の半分の少なくとも20%の長さ、タイヤ幅方向に設けられている。ここで、断面積が一定であるとは、上述の部分Aに対応する凸部16の部分の平均断面積に対して、部分Aに対応する凸部16の部分のいずれの位置の断面積の値が95~105%であること、好ましくは97~103%であることをいう。
 また、金型は、生タイヤ18のトレッド部にトレッドパターンを形成するための2つの部分金型である上型12及び下型14を備える。すなわち、金型は、2つ割り金型である。このとき、上型12及び下型14のそれぞれは、凸部16を備える。上型12及び下型14が、図3に示すように、生タイヤ18を囲むとき、凸部16のそれぞれが、生タイヤ18のトレッド部内をタイヤ幅方向外側から内側に向かって入り込むようにして、ショルダーラグ溝10を形成する。このような2つ割り金型を用いる場合、カーカスプライ3中のベルト部の端近傍のカーカスコードの乱れや波うちの抑制の効果が顕著に発揮できる。
 本実施形態では、タイヤ幅方向内側に向かって溝幅が減少するショルダーラグ溝10において、ショルダーラグ溝10の溝深さ及び溝壁角度を変化させて、部分Aにおける溝断面積を一定にするが、ショルダーラグ溝10の溝深さのみを変化させて部分Aにおける溝断面積を一定にしてもよく、また、ショルダーラグ溝10の溝壁角度のみを変化させて部分Aにおける溝断面積を一定にしてもよい。
(従来例、比較例、実施例)
 本実施形態の空気入りタイヤの効果を調べるために、ショルダーラグ溝の断面形状を種々変更した、図1に示すタイヤを作製し、タイヤの耐久性及びタイヤ寿命を調べた。試作したタイヤのサイズは、26.5R25L-5である。このタイヤに、リムサイズ25×22.00-3.0のリム(TRA規定リム)を装着した。空気圧は、500kPa(TRA規定空気圧)とした。
 耐久性及びタイヤ寿命については、重量23トンのローダーを用いて、悪路(オフロード)路面の走行を速度5km/時で3000時間行なった後、タイヤを解体して、ショルダー部の亀裂の伸展を測定し、測定結果の逆数を、従来例の測定結果の逆数を基準(指数100)として指数化した。指数が高いほど、耐久性が高いことを意味する。また、上記走行後のタイヤのショルダーラグ溝の溝深さを測定し、測定結果からショルダーラグ溝がラグ溝として機能しなくなるまでの時間をタイヤ寿命として評価した。タイヤ寿命は、従来例のタイヤ寿命を基準(指数100)として指数化した。指数が高いほど、タイヤ寿命が長いことを意味する。
 表1、2に各ショルダーラグ溝の仕様とその評価結果を示す。
 従来例の、溝断面積一定の部分A(距離L1=0.5×T、距離L2=0.8×T)におけるショルダーラグ溝10の最大溝断面積を、平均溝断面積に対して105%超、具体的には107%とした。一方、実施例1,3~7では、溝断面積一定の部分A(距離L1=0.5×T、距離L2=0.8×T)におけるショルダーラグ溝10の溝断面積を一定(溝断面積の、平均溝断面積に対する比は95~105%)とし、溝断面積一定の部分の長さ(表1では、「ショルダーラグ溝の断面積一定の部分の長さ」と記載)を0.3×Tとした。実施例2では、距離L1=0.55×T、距離L2=0.75×Tとし、ショルダーラグ溝10の溝断面積を一定(溝断面積の、平均溝断面積に対する比は95~105%)とし、溝断面積一定の部分の長さを0.2×Tとした。比較例では、距離L1=0.6×T、距離L2=0.75×Tとし、溝断面積一定の部分の長さを0.15×Tとした。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
 表1、2の従来例、比較例、及び実施例1~4より、ショルダーラグ溝10の溝深さ及び溝壁角度の少なくとも一方を変化させて、溝断面積を一定にし、かつ、溝断面積を一定にするショルダーラグ溝の部分の長さを少なくとも0.2×Tにすることにより、タイヤ寿命を向上させつつ、耐久性を向上させることができることわかる。また、実施例1~7のベルト部4の端近傍のカーカスコードの乱れ及び波うちの程度は、従来例対比小さかった。
 また、表1の実施例4~7よりわかるように、ショルダーラグ溝10の溝底傾斜面10aの傾斜角度θ0は、20度以上45以下であるとき、耐久性が向上する。
 以上、本発明の空気入りタイヤ及び空気入りタイヤの製造方法について詳細に説明したが、本発明の空気入りタイヤは上記実施形態あるいは実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
1 空気入りタイヤ
3 カーカスプライ
4 ベルト部
4a 強化ベルト
4b,4c 交差ベルト
4d 保護ベルト
5 ビードコア
6 トレッド部
7 サイド部
8 ビードフィラー
9 インナーライナ
10 ショルダーラグ溝
10a 溝底傾斜面
12 上型
14 下型
16 凸部
18 生タイヤ

Claims (9)

  1.  空気入りタイヤであって、
     ベルト部と、
     タイヤ幅方向外側に延びて接地端に開口し、タイヤ幅方向内側の端が閉塞端であるショルダーラグ溝がタイヤ周方向に間隔をあけて複数設けられたトレッド部と、を備え、
     前記ベルト部の最大幅ベルトの端からタイヤ幅方向内側の前記ショルダーラグ溝の領域において、前記ショルダーラグ溝の溝幅がタイヤ幅方向内側に向かって減少するが、前記ショルダーラグ溝の溝壁角度及び溝深さの少なくともいずれか一方が変化することにより、溝断面積を一定に維持した部分が、タイヤ展開幅の半分の少なくとも20%の長さ、タイヤ幅方向に設けられている、ことを特徴とする空気入りタイヤ。
  2.  前記部分における前記溝壁角度は、10~35度の範囲で変化する、請求項1に記載の空気入りタイヤ。
  3.  前記空気入りタイヤのタイヤセンターラインから前記タイヤ展開幅の4分の1、離れた位置から前記接地端までの、前記ショルダーラグ溝の領域における最大溝深さに対する最小溝深さの比は、0.8以上である、請求項1又は2に記載の空気入りタイヤ。
  4.  前記比は、0.85以上0.95以下であり、
     前記溝壁角度は、前記部分において15度~25度の範囲で変化する、請求項3に記載の空気入りタイヤ。
  5.  前記ショルダーラグ溝は、前記閉塞端に近づくにつれて前記ショルダーラグ溝の溝深さが徐々に浅くなるように傾斜した溝底傾斜面を備え、
     前記空気入りタイヤのタイヤ径方向に沿ったプロファイル断面において、前記閉塞端における前記トレッド部の表面の法線に対する前記溝底傾斜面の傾斜角度は、20度以上45度以下である、請求項1~4のいずれか1項に記載の空気入りタイヤ。
  6.  前記溝断面積を一定に維持した前記部分は、前記空気入りタイヤのタイヤセンターラインから距離L1離れた位置から距離L2離れた位置にあり、
     前記距離L1は、前記タイヤ展開幅の半分の40~60%に相当する距離であり、
     前記距離L2は、前記タイヤ展開幅の半分の70~90%に相当する距離である、請求項1~5のいずれか1項に記載の空気入りタイヤ。
  7.  前記溝断面積を一定に維持した前記部分のタイヤ幅方向の長さは、前記タイヤ展開幅の半分の35%の長さ以下である、請求項1~6のいずれか1項に記載の空気入りタイヤ。
  8.  空気入りタイヤの製造方法であって、
     ベルト部を備えた加硫前の生タイヤを成形するステップと、
     前記生タイヤを金型で囲み加熱するステップと、を備え、
     空気入りタイヤのトレッド部に、タイヤ幅方向外側に延びて接地端に開口し、タイヤ幅方向内側の端が閉塞端であるショルダーラグ溝がタイヤ周方向に間隔をあけて複数設けられるように、前記金型は、ショルダーラグ溝形成用の一方向に延在した複数の凸部を備え、
     前記凸部のそれぞれは、前記生タイヤの前記ベルト部の最大幅ベルトの端からタイヤ幅方向内側に対応する前記凸部それぞれの領域において、前記凸部それぞれの幅がタイヤ幅方向内側に向かって減少するが、前記ショルダーラグ溝の溝壁に対応する前記凸部それぞれの突出高さ及び側壁の壁傾斜角度の少なくともいずれか一方が変化することにより、前記凸部それぞれの断面積を一定に維持する部分が、タイヤ展開幅の半分の少なくとも20%の長さ、タイヤ幅方向に設けられている、ことを特徴とする空気入りタイヤの製造方法。
  9.  前記金型は、前記生タイヤの前記トレッド部にトレッドパターンを形成するための2つの部分金型を備え、
     前記部分金型のそれぞれは、前記凸部を備え、
     前記金型が前記生タイヤを囲むとき、前記凸部のそれぞれが、前記生タイヤのトレッド部内をタイヤ幅方向外側から内側に向かって入り込む、請求項8に記載の空気入りタイヤの製造方法。
PCT/JP2017/002683 2016-01-29 2017-01-26 空気入りタイヤ及び空気入りタイヤの製造方法 WO2017131076A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780007908.7A CN108602388B (zh) 2016-01-29 2017-01-26 充气轮胎以及充气轮胎的制造方法
JP2017563808A JP6720986B2 (ja) 2016-01-29 2017-01-26 空気入りタイヤ及び空気入りタイヤの製造方法
AU2017213372A AU2017213372B2 (en) 2016-01-29 2017-01-26 Pneumatic tire and pneumatic tire manufacturing method
US16/073,684 US11325423B2 (en) 2016-01-29 2017-01-26 Pneumatic tire and pneumatic tire manufacturing method
EP17744306.6A EP3409506A4 (en) 2016-01-29 2017-01-26 PNEUMATIC BANDAGE AND METHOD FOR MANUFACTURING PNEUMATIC BANDAGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016406 2016-01-29
JP2016016406 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131076A1 true WO2017131076A1 (ja) 2017-08-03

Family

ID=59399080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002683 WO2017131076A1 (ja) 2016-01-29 2017-01-26 空気入りタイヤ及び空気入りタイヤの製造方法

Country Status (6)

Country Link
US (1) US11325423B2 (ja)
EP (1) EP3409506A4 (ja)
JP (1) JP6720986B2 (ja)
CN (1) CN108602388B (ja)
AU (1) AU2017213372B2 (ja)
WO (1) WO2017131076A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144308B2 (ja) * 2018-12-19 2022-09-29 株式会社ブリヂストン 加硫成形用金型

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325108A (ja) * 1986-07-18 1988-02-02 Bridgestone Corp 空気入りタイヤ
JPS63106114A (ja) * 1986-06-13 1988-05-11 Bridgestone Corp 空気入りタイヤ
JPH03193507A (ja) * 1989-12-22 1991-08-23 Bridgestone Corp 棄却限界を延伸した建設車両用空気入りタイヤ
JPH05254311A (ja) * 1992-03-13 1993-10-05 Bridgestone Corp 空気入りタイヤ
JPH10305713A (ja) * 1997-05-06 1998-11-17 Bridgestone Corp タイヤ用加硫金型
JP2002248908A (ja) * 2001-02-26 2002-09-03 Bridgestone Corp 重荷重車両用タイヤおよび加硫金型
JP2004210133A (ja) * 2002-12-27 2004-07-29 Yokohama Rubber Co Ltd:The 空気入りタイヤ、その製造方法および成形金型
JP2005193525A (ja) 2004-01-07 2005-07-21 Bridgestone Corp 重荷重用空気入りラジアルタイヤの製造方法およびその製造方法により製造された重荷重用空気入りラジアルタイヤ
JP2008173777A (ja) * 2007-01-16 2008-07-31 Bridgestone Corp 空気入りタイヤの製造方法
JP2009034933A (ja) * 2007-08-02 2009-02-19 Toyo Tire & Rubber Co Ltd タイヤ成型用金型、およびそれを用いた空気入りタイヤ
JP2011225084A (ja) * 2010-04-19 2011-11-10 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014073736A (ja) * 2012-10-03 2014-04-24 Bridgestone Corp ラグ付きタイヤ及びその製造方法
JP2015063182A (ja) * 2013-09-24 2015-04-09 住友ゴム工業株式会社 空気入りタイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2192842B (en) * 1986-06-13 1991-01-30 Bridgestone Corp Pneumatic tire
JPH08300908A (ja) * 1995-05-10 1996-11-19 Bridgestone Corp 空気入りタイヤ
JP3361257B2 (ja) * 1997-10-27 2003-01-07 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JP3391755B2 (ja) 1999-12-06 2003-03-31 住友ゴム工業株式会社 空気入りタイヤ
US6609548B2 (en) * 2000-05-11 2003-08-26 Michelin Recherche Et Technique S.A. Asymmetrical vehicle tire with balanced wet and dry performance
EP1468845B1 (en) * 2001-12-26 2010-08-18 Bridgestone Corporation Pneumatic radial tire
JP4330561B2 (ja) * 2005-07-12 2009-09-16 住友ゴム工業株式会社 重荷重用タイヤ
JP5134879B2 (ja) * 2007-07-30 2013-01-30 株式会社ブリヂストン 空気入りタイヤ
JP2009126280A (ja) * 2007-11-21 2009-06-11 Bridgestone Corp 重荷重用空気入りタイヤ
JP5357988B2 (ja) * 2012-02-23 2013-12-04 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106114A (ja) * 1986-06-13 1988-05-11 Bridgestone Corp 空気入りタイヤ
JPS6325108A (ja) * 1986-07-18 1988-02-02 Bridgestone Corp 空気入りタイヤ
JPH03193507A (ja) * 1989-12-22 1991-08-23 Bridgestone Corp 棄却限界を延伸した建設車両用空気入りタイヤ
JPH05254311A (ja) * 1992-03-13 1993-10-05 Bridgestone Corp 空気入りタイヤ
JPH10305713A (ja) * 1997-05-06 1998-11-17 Bridgestone Corp タイヤ用加硫金型
JP2002248908A (ja) * 2001-02-26 2002-09-03 Bridgestone Corp 重荷重車両用タイヤおよび加硫金型
JP2004210133A (ja) * 2002-12-27 2004-07-29 Yokohama Rubber Co Ltd:The 空気入りタイヤ、その製造方法および成形金型
JP2005193525A (ja) 2004-01-07 2005-07-21 Bridgestone Corp 重荷重用空気入りラジアルタイヤの製造方法およびその製造方法により製造された重荷重用空気入りラジアルタイヤ
JP2008173777A (ja) * 2007-01-16 2008-07-31 Bridgestone Corp 空気入りタイヤの製造方法
JP2009034933A (ja) * 2007-08-02 2009-02-19 Toyo Tire & Rubber Co Ltd タイヤ成型用金型、およびそれを用いた空気入りタイヤ
JP2011225084A (ja) * 2010-04-19 2011-11-10 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014073736A (ja) * 2012-10-03 2014-04-24 Bridgestone Corp ラグ付きタイヤ及びその製造方法
JP2015063182A (ja) * 2013-09-24 2015-04-09 住友ゴム工業株式会社 空気入りタイヤ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"JATMA Year Book", 2014, THE JAPAN AUTOMOBILE TYRE MANUFACTURERS ASSOCIATION, INC.
See also references of EP3409506A4

Also Published As

Publication number Publication date
JP6720986B2 (ja) 2020-07-08
JPWO2017131076A1 (ja) 2018-07-19
AU2017213372A1 (en) 2018-08-09
CN108602388B (zh) 2020-07-07
US11325423B2 (en) 2022-05-10
EP3409506A1 (en) 2018-12-05
AU2017213372B2 (en) 2019-07-11
EP3409506A4 (en) 2019-07-03
CN108602388A (zh) 2018-09-28
US20190047329A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
AU2014388518B2 (en) Pneumatic tire
US20130092301A1 (en) Pneumatic tire
JP6153763B2 (ja) 空気入りタイヤ
JP6234891B2 (ja) 空気入りタイヤ
JP6138663B2 (ja) タイヤ
JP6111792B2 (ja) 空気入りタイヤ
JP7226603B2 (ja) 重荷重用タイヤ
JP7024360B2 (ja) 重荷重用タイヤ、及び重荷重用タイヤの製造方法
US9550396B2 (en) Tread profile of a pneumatic vehicle tire for utility vehicles
JP2019123469A (ja) 空気入りタイヤ及びタイヤ金型
JP6571068B2 (ja) 空気入りタイヤ
JP4843661B2 (ja) 重荷重用タイヤ
JP6919503B2 (ja) 重荷重用空気入りタイヤ
WO2017131076A1 (ja) 空気入りタイヤ及び空気入りタイヤの製造方法
JP6793021B2 (ja) 空気入りタイヤ
JP5129855B2 (ja) 重荷重用タイヤ
JP6107041B2 (ja) 空気入りタイヤ
JP7454390B2 (ja) 空気入りラジアルタイヤ、空気入りラジアルタイヤの製造方法、及びタイヤ加硫金型
JP2020164107A (ja) 空気入りタイヤ
JP6186756B2 (ja) 空気入りタイヤ
US11440353B2 (en) Heavy duty tire
JP2019073226A (ja) タイヤ
JP5453157B2 (ja) 空気入りタイヤ
JP5494245B2 (ja) 重荷重用空気入りタイヤ
JP6542110B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017213372

Country of ref document: AU

Date of ref document: 20170126

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017744306

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744306

Country of ref document: EP

Effective date: 20180829