WO2017130952A1 - 半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム - Google Patents

半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム Download PDF

Info

Publication number
WO2017130952A1
WO2017130952A1 PCT/JP2017/002314 JP2017002314W WO2017130952A1 WO 2017130952 A1 WO2017130952 A1 WO 2017130952A1 JP 2017002314 W JP2017002314 W JP 2017002314W WO 2017130952 A1 WO2017130952 A1 WO 2017130952A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mold
release film
release
semiconductor package
Prior art date
Application number
PCT/JP2017/002314
Other languages
English (en)
French (fr)
Inventor
真史 山本
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2017531418A priority Critical patent/JP6902273B2/ja
Publication of WO2017130952A1 publication Critical patent/WO2017130952A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor package manufacturing method and a release film for a semiconductor package manufacturing process.
  • a semiconductor element In the semiconductor package manufacturing field, a semiconductor element (chip) is sealed with a resin (mold resin) in order to protect and cut off the external environment such as contaminants, outside air, impact, light, magnetism, and high frequency.
  • a resin for example, a curable resin such as epoxy is generally used.
  • the mold aperture becomes shallower than in other fields, but the interior of the mold is in a high temperature and high pressure environment.
  • the semiconductor sealing process includes a transfer molding process, a compression molding process, and the like.
  • the transfer mold process will be described as an example.
  • a semiconductor element with a wired integrated circuit is placed on a mold, another mold is set from above, and tightened with high pressure, and then an epoxy resin.
  • the mold is opened after the resin is cured, the molded product is taken out, and the inner surface of the mold is cleaned. The sealing process is completed in this cleaning process.
  • the inner surface of the mold is cleaned by repeatedly sealing and molding at a high temperature, and the mold is contaminated by the curable resin, thereby reducing moldability and improving product quality. This is because the yield may decrease due to the decrease.
  • a release film is arranged on the cavity surface of the mold. That is, when a semiconductor package is resin-molded with a mold, a release film is used to prevent the inner surface of the mold from being soiled. The release film is disposed along the inner surface of the mold, thereby preventing the resin for forming the package from being melted and solidified from directly contacting the inner surface of the mold.
  • a film roll is loaded into the apparatus by, for example, a roll-to-roll system.
  • the release film for that purpose has the ability to follow the mold without generating wrinkles or the like when the stretched film is vacuumed and adsorbed to the apparatus mold, and has a temperature of about 170 ° C. around the mold.
  • Various specific mechanical properties such as heat resistance that does not cause shrinkage, sagging, and wrinkles in a high temperature atmosphere and releasability from injected and cured epoxy resin are required.
  • Patent Document 1 describes a release film in which a fluororesin is laminated on a stretched polyester resin film as this type of release film.
  • Patent Document 2 describes a sheet in which an inorganic substance is deposited on one side of a stretched polyester resin film and a release layer is provided on the opposite side.
  • Patent Document 3 describes a film in which a copolyester film is provided with a release layer and a coating layer containing particles.
  • Patent Document 1 the fluororesin laminated film disclosed in Patent Document 1 is expensive and easily corrodes the extruder screw during production, hardly burns in incineration disposal after use, and is useful in incineration disposal. It is not preferable in terms of environmental pollution such as generation of poisonous gas.
  • a release film provided with a coating layer containing particles as shown in Patent Document 3 mold stains are remarkably generated due to dropping off of coating layer components and contained particles when repeated molding is performed.
  • the film may be wrinkled and the appearance of the semiconductor package may be impaired.
  • resin components and copolymer components having a melting point lower than the mold temperature and resin components with low crystallinity may be included even if there is no melting point peak. The film tends to stick to each other, the releasability from the mold is greatly reduced, and wrinkles and tears are likely to occur.
  • the present invention can follow a mold having a complicated shape, and can suppress wrinkles and the like, so there is no trouble at the time of manufacture, it is excellent in releasability, and it is inexpensive and easy to dispose of after use.
  • Another object of the present invention is to make it possible to manufacture a semiconductor package using a release film that is free from environmental pollution.
  • the present inventor found that a film having a melting point (Tm) at two or more points higher than the mold temperature provides suitable characteristics for the semiconductor sealing process when the mold temperature normally used in the manufacture of a semiconductor package is 170 ° C.
  • Tm melting point
  • the gist of the present invention is as follows.
  • thermosetting resin for package production in the mold in which the element to be packaged is installed, when filling the thermosetting resin in the mold,
  • the release film a laminated film in which a base film disposed on the cavity surface side and a release resin disposed on the thermosetting resin side are laminated, A stretched polyester film having a melting point of at least two points above the mold setting temperature is used as the base film.
  • a mold release film is disposed on a cavity surface filled with a thermosetting resin for manufacturing a package, and then the mold is filled with the thermosetting resin.
  • the release film used in a method for manufacturing a semiconductor package The release film is laminated with a base film disposed on the cavity surface side and a release resin disposed on the thermosetting resin side, The said base film is comprised by the stretched polyester film which has 2 or more melting
  • the dicarboxylic acid component and / or diol component of the polyester resin constituting the base film contains an alkyl chain having 2 to 5 carbon atoms as a repeating component. Release film.
  • polyester resin constituting the base film contains 40 to 80 mass percent of polybutylene terephthalate Release film.
  • the release film to be used is free from wrinkles, tears, etc. when evacuated in a mold cavity under a high temperature atmosphere that is a mold setting temperature in the manufacture of a semiconductor package. Since the mold can be followed and the releasability from the thermosetting resin and the mold is not broken well, a semiconductor package having a good appearance can be obtained. That is, there is an advantage that the productivity is good in the process of continuous production.
  • the release film of the present invention is composed of a polyester stretched film base material having a specific structure and a release layer, so that it is excellent in mechanical strength, heat resistance, followability, and economical aspect, particularly a semiconductor. It is suitable as a release film for in-mold molding used for manufacturing packages.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG. It is a figure which shows the next process of FIG. 1 and FIG.
  • FIG. 4 is a cross-sectional view taken along line III-III in FIG. 3. It is a figure which shows the next process of FIG. 3 and FIG. It is a figure which shows the next process of FIG. It is a figure which shows the next process of FIG.
  • FIG. 8 is a sectional view taken along line VII-VII in FIG. 7. It is a figure which shows the cross-sectional form of the release film based on this invention.
  • reference numeral 11 denotes a mold for transfer molding of a semiconductor package.
  • the upper mold 12 is formed with a cavity 14 for embedding a thermoplastic resin constituting the semiconductor package.
  • the cavity 14 includes a package forming part 15, a resin introducing part 16, and a gate 17 for allowing the package forming part 15 and the resin introducing part 16 to communicate with each other.
  • the lower mold 13 is formed with a resin feed path 18 for feeding a molten thermosetting resin into the resin introduction portion 16.
  • 21 is a release film based on the present invention, which is loaded between the upper mold 12 and the lower mold 13 in a roll-to-roll system.
  • Reference numeral 22 denotes a feed roll, and 23 denotes a take-up roll.
  • a pair of the package forming portions 15 of the cavity 14 are provided in the width direction of the release film 21, and a plurality of package formation portions 15 are provided in the length direction of the release film 21 as shown in FIG. 2. .
  • One resin introducing portion 16 is provided between the package forming portions 15 and 15 in correspondence with the pair of package forming portions 15 and 15 in the width direction of the release film 21.
  • the resin introduction part 16 is provided for each of the pair of package forming parts 15, 15 having different positions along the length direction of the release film 21.
  • the lower mold 13 When manufacturing a semiconductor package, as shown in FIGS. 1 and 2, the lower mold 13 is opened away from the upper mold 12, and the take-up roll 23 is rotated to supply the semiconductor package. An unused new part in the release film 21 is fed between the upper mold 12 and the lower mold 13 in a state where tension is applied to this part.
  • the part of the release film 21 existing between the upper mold 12 and the lower mold 13 is attached to the inner surface of the cavity 14 by vacuum suction.
  • the release film 21 according to the present invention has an advantage that it is well tracked to the shape of the inner surface of the cavity 14 as will be described later, and that there is no occurrence of “wrinkles” when it sticks to the inner surface of the cavity 14. is there. When “wrinkles” occur, wrinkles are transferred to the molded product during molding, resulting in poor appearance.
  • the semiconductor substrate 26 on which the semiconductor element 25 is mounted is placed on the copper plate 24 at a position corresponding to the package forming portion 15 of the cavity 14 in the lower mold 13.
  • the copper plates 24 are separated from each other in the width direction of the release film 21 corresponding to the pair of package forming portions 15, 15, and in the length direction of the release film 21 corresponding to the plurality of package forming portions 15, 15. Are continuous with each other.
  • thermosetting resin 27 such as an epoxy resin is pumped in a molten state.
  • the thermosetting resin 27 sent to the resin introducing portion 16 passes through the gate 17 and fills the package forming portion 15.
  • the semiconductor element 25 and the semiconductor substrate 26 are embedded in the thermosetting resin 27.
  • the copper plate 24 is in a state where the surface opposite to the side where the semiconductor element 25 and the semiconductor substrate 26 are embedded is exposed from the thermosetting resin 27.
  • a plunger 19 is disposed inside the resin feed / feed path 18, and the thermosetting resin 27 is compactly filled into the cavity 14 by the plunger 19.
  • the temperature of the mold 11 is set to 170 ° C. or more, preferably 170 ° C. to 180 ° C. Preferably, it is set to 170 ° C. to 175 ° C. Under such a high temperature, the release film 21 according to the present invention has heat resistance as described later, and therefore has a feature that heat shrinkage and “wrinkles” caused by the heat shrink do not occur.
  • the release film 21 based on this invention has the favorable release property from thermosetting resins 27, such as an epoxy resin, as mentioned later. Thereafter, the take-up roll 23 is driven to discharge the used part of the release film 21 from the mold 11 and newly use the unused part of the release film 21 as shown in FIGS. Introduce into the mold 11.
  • the “transfer molding process” in which the molten thermosetting resin 27 is compactly filled from the outside of the mold 11 to the inside thereof has been described.
  • the release film 21 is similarly used in other molding processes, for example, a well-known “compression molding process” in which a mold is filled with a granular thermosetting resin in advance and then the mold is clamped. be able to.
  • release film 21 according to the present invention will be described in detail.
  • the release film 21 is formed from a base film 31 disposed on the cavity 14 side of the mold 11 shown in FIGS. 1 to 8 and a cured thermosetting resin 27.
  • the laminated body provided with the resin layer 32 for peeling arrange
  • the base film 31 is composed of a stretched polyester film having two or more melting points at a mold set temperature or higher, for example, 170 ° C or higher.
  • “Having two or more melting points above the mold set temperature” means that two or more kinds of polyester resins each having a melting point equal to or higher than the mold set temperature are blended. By blending two or more polyester resins each having a melting point equal to or higher than the mold setting temperature, the flexibility at a high mold temperature of 170 ° C. possessed by the resin on the low melting point side makes it possible to follow the mold. There is an advantage that both properties are improved, and the heat resistance of the high melting point resin prevents tearing at the time of release.
  • polyester resins examples include polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. Furthermore, those copolymers can also be mentioned.
  • the dicarboxylic acid component and / or diol component constituting the polyester includes an alkyl chain having 2 to 5 carbon atoms as a repeating component makes the polymer chain easy to move at high temperatures, and can follow the mold. Particularly preferred because it is optimal.
  • the polyester resin include those having a melting point of 170 ° C. or higher, such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and adipic acid copolymer polyester.
  • the polyester film constituting the base film needs to be a stretched film.
  • the reason for this is that the unstretched film is not oriented and has low strength, so that it is broken during molding, and the shrinkage is large and wrinkles occur under a high temperature atmosphere such as a mold.
  • the polymerization method of the raw material polyester resin is not particularly limited, and examples thereof include known production methods such as a direct esterification method and a transesterification method.
  • Examples of the direct esterification method include a method in which a necessary monomer raw material is injected into a reaction vessel, an esterification reaction is performed, and then a polycondensation reaction is performed. In the esterification reaction, the reaction is performed by heating and melting at a temperature of 160 ° C. or higher for 4 hours or longer in a nitrogen atmosphere. At that time, oxides such as magnesium, manganese, zinc, calcium, lithium, and titanium, and acetates may be used as the catalyst.
  • the reaction proceeds under a reduced pressure of 130 Pa or less until a desired molecular weight is reached at a temperature of 220 to 280 ° C.
  • an oxide such as antimony, titanium, germanium, acetate, or the like may be used as a catalyst.
  • polyester resin after polymerization contains monomers, oligomers, and by-products such as acetaldehyde and tetrahydrofuran
  • solid-state polymerization may be performed at a temperature of 200 ° C. or higher under reduced pressure or inert gas flow.
  • Polyester subjected to solid phase polymerization is preferably used because precipitation of oligomers on the surface of the unstretched sheet and film extruded in the production process of the base film 31 is prevented.
  • oligomers it is preferable that contamination in a mold or the like is less in a precision process such as semiconductor sealing. For this reason, the above solid-phase polymerized one is preferred.
  • an antioxidant When the polyester resin is polymerized, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, an antiblocking agent and the like may be added as necessary.
  • the antioxidant include hindered phenol compounds and hindered amine compounds.
  • the heat stabilizer include phosphorus compounds.
  • the ultraviolet absorber include benzophenone compounds and benzotriazole compounds.
  • the antistatic agent include antimony-doped tin oxide.
  • the antiblocking agent include silicon oxide.
  • the polyester resin used in the present invention can be appropriately copolymerized with other components as long as the effects of the present invention are not impaired.
  • the acid component used in the copolymerization is not particularly limited, but aromatic dicarboxylic acids such as isophthalic acid, (anhydrous) phthalic acid, 2,6-naphthalenedicarboxylic acid, and 5-sodium sulfoisophthalic acid, oxalic acid, and succinic acid , Adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, (anhydrous) maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid and other aliphatic dicarboxylic acids, (anhydrous) hexahydrophthalic acid, hexahydroterephthalic acid Such as alicyclic dicarboxylic acid such as dimer acid having 20 to 60 carbon atoms, p-hydroxybenzoic acid,
  • the alcohol component used for copolymerization is not particularly limited, but diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, neopentyl glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and other aliphatic diols, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol and other alicyclic diols, bisphenol A, Examples thereof include aromatic diols such as ethylene oxide or propylene oxide adducts of bisphenol S, polyfunctional alcohols such as trimethylolpropane, glycerin and pentaerythritol. Two or more of these copolymer components may be used in combination.
  • the proportion of the copolymerization component is preferably 20 mol% or less, more preferably 15 mol% or less. When it exceeds 20 mol%, the crystallinity of the resin is lowered, and therefore the strength when formed into a film is lowered, and as a result, tearing tends to occur at the time of mold release. Moreover, since melting
  • the base film is composed of a polyester film obtained by blending two or more kinds of polyester resins each having a melting point higher than the mold setting temperature.
  • the blend ratio of the polyester resin when polyethylene terephthalate is used, the blend ratio is preferably 20 to 60 mass percent, more preferably the lower limit is 25 mass percent, and the upper limit is 55 mass percent.
  • the blend ratio is preferably 40 to 80 mass percent, more preferably a lower limit of 45 mass percent and an upper limit of 75 mass percent.
  • polyethylene terephthalate When polyethylene terephthalate is used, the film is difficult to tear due to the heat resistance of polyethylene terephthalate when molding at high temperature. Since polybutylene terephthalate has two more aliphatic carbon atoms in the chemical skeleton than polyethylene terephthalate, for example, the molecular chain has high mobility and high flexibility. For this reason, as two of the two or more types of resins constituting the base film 31, two or more types of resins having different skeletons, such as polyethylene terephthalate and polybutylene terephthalate, are mixed at the optimal ratio described above. The flexibility of the obtained film is improved, and the mold followability at the time of molding is improved.
  • the manufacturing method of the base film 31 is not particularly limited, and a conventionally known method can be used.
  • a resin sheet extruded by a known production method such as a T-die method or a tubular film-forming method is used as an unstretched sheet, and then this unstretched sheet is uniaxially stretched, simultaneous biaxially stretched, and sequentially biaxially stretched.
  • the film is stretched by a known production method such as a method.
  • the base film 31 needs to be a stretched film, and therefore a stretching process is necessary.
  • An unstretched sheet has low crystallinity and is inferior in heat resistance. In order to produce a film with little thickness unevenness, it is preferable to obtain a resin sheet by the T-die method, and then stretched by sequential biaxial stretching or simultaneous biaxial stretching.
  • a resin composition in which polyethylene terephthalate and polybutylene terephthalate are mixed in the above ratio is melted at 230 to 280 ° C. using an extruder equipped with a T die and then a T die. It is preferable to extrude the sheet into a sheet shape, and to bring it into close contact with a casting roll adjusted to a temperature of 40 ° C. or less and quench it to obtain an unstretched sheet having a predetermined thickness.
  • a material that has been previously melt-mixed may be used.
  • both ends of the unstretched sheet in the width direction are clipped, and 40 to 100 ° C. from both sides of the sheet.
  • the stretching temperature is less than 50 ° C.
  • the stretching stress is too high, so that necking is likely to occur.
  • the stretching temperature exceeds 120 ° C.
  • the film is blown out or the film is excessively crystallized to cause whitening.
  • the heat setting temperature exceeds 200 ° C.
  • the film tends to sag, and the quality of the film is significantly impaired.
  • a known method can be adopted.
  • a method of spraying hot air on the stretched film a method of irradiating the stretched film with infrared rays, and a method of irradiating the stretched film with microwaves can be mentioned.
  • a method of spraying hot air on the stretched film is preferable in that it can be heated uniformly and accurately.
  • a heat buffering step may be provided between the stretching step and the heat setting step.
  • the layer structure of the base film 31 is not particularly limited, and may be any layer structure such as a single layer, two types and two layers, two types and three layers, and three types and three layers. Especially, it is preferable that it is a multilayer which can control surface roughness for every one side. Moreover, it is preferable that the base film 31 is 90 mass% or more of the whole polyester. If it is less than that, flexibility specific to polyester is insufficient, and the followability during molding tends to be poor.
  • the base film 31 may contain particles.
  • the particles are not particularly limited as long as the effects of the present invention are not impaired as long as the particles can impart slipperiness. Specific examples include inorganic particles such as silica, alumina, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, titanium oxide, and barium sulfate.
  • polymer particles with good heat resistance made of silicone resin, cross-linked polystyrene resin, organic lubricants such as fatty acid ester and fatty acid amide, thermosetting urea resin, thermosetting phenol resin, thermosetting epoxy resin, benzoguanamine resin, etc.
  • the heat resistant organic particles may be used.
  • precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed can also be used.
  • the shape of the particle to be used is not particularly limited, and may be any of spherical shape, block shape, rod shape, flat shape, and the like.
  • the hardness, specific gravity, color, etc. are not particularly limited. Two or more kinds of these particles may be used in combination as required.
  • the average particle size of the particles is usually in the range of 0.01 to 6 ⁇ m, preferably 0.01 to 1 ⁇ m.
  • the average particle diameter is less than 0.01 ⁇ m, the particles are likely to aggregate and the dispersibility may be insufficient.
  • the average particle diameter exceeds 6 ⁇ m, the surface of the film becomes too rough, and a problem may occur when the peeling resin layer 32 shown in FIG.
  • the method for incorporating the particles into the base film 31 is not particularly limited, and the particles can be added at any stage of producing the polyester. For example, it is an esterification stage or a transesterification completion stage.
  • the particles are kneaded into the release film 21 in order to impart design properties.
  • the release film 21 can contain a colorant, an antioxidant, an antifoaming agent, an antistatic agent, an ultraviolet absorber and the like.
  • the thickness of the release film 21 is preferably 20 to 100 ⁇ m, more preferably 20 to 80 ⁇ m, further preferably 25 to 60 ⁇ m, and most preferably 35 to 60 ⁇ m. If the thickness of the release film 21 is less than 20 ⁇ m, the breaking strength is low, so that it is easy to cause breakage at the time of release, and if the thickness is more than 100 ⁇ m, the followability tends to decrease.
  • the base film 31 is a stretched film and has high strength in addition to heat resistance, it is a thin film as compared with a film having a thickness of 50 ⁇ m, which is the mainstream as a release film for a semiconductor package manufacturing process. Can be expected. By thinning, not only the cost merit but also the length of the film constituting the roll 22 shown in FIGS. 2, 4 and 8 can be increased, and therefore the roll loading frequency in the semiconductor sealing process is reduced. Can greatly contribute to the improvement of workability.
  • the peeling resin layer 32 shown in FIG. 9 will be described.
  • the composition of the release resin layer 32 is not particularly limited, and a known release agent such as a thermosetting or irradiation curable silicone type, or a non-silicone type such as a fluorine type, a long chain alkyl type, or a polyolefin type. Layers can be mentioned.
  • a thermosetting or irradiation curable silicone type such as a fluorine type, a long chain alkyl type, or a polyolefin type.
  • a non-silicone type such as a fluorine type, a long chain alkyl type, or a polyolefin type.
  • Layers can be mentioned.
  • the thermosetting silicone include addition reaction type silicone and condensation reaction type silicone.
  • Examples of the radiation curable silicone include UV curable silicone and EB curable silicone.
  • fluorine-based materials include those made of fluororesin films and coating materials for fluorine-based materials
  • long-chain alkyl-based materials include coating solutions for long-chain alkyl group-containing polymers
  • polyolefin-based materials include polyethylene resins and polypropylene resins.
  • a polyolefin resin such as polymethylpentene itself, and a coating solution of acid-modified polyolefin resin.
  • the release film 21 in the present invention has a peel strength of 1.0 N / cm or less from an epoxy prepreg cured by holding at 5 kg / cm 2 for 20 minutes with a press set at 170 ° C. and then cooling to room temperature.
  • it is 0.7 N / cm or less, more preferably 0.5 N / cm or less, and most preferably 0.3 N / cm or less.
  • the release resin layer 32 is not particularly limited as long as it satisfies this peel strength, and may be a release resin layer formed by applying a coating liquid from the viewpoint of thinning the release film 21. preferable. It is sufficient that the peeling resin layer 32 is thinly formed on the surface of the base film 31. Examples of the forming method include an in-line coating method and an offline coating method. The in-line coating method is desirable in terms of cost merit.
  • Thickness The thickness was measured using a thickness meter MT-12B manufactured by HEIDENHAIN.
  • Non-defective rate From the results of (6) and (7) above, the non-defective rate of the package obtained by processing 200 times was calculated.
  • the acceptable product rate was 80% or more.
  • Example 1 the polyester resins to be blended are referred to as the first resin, the second resin, and the third resin in the order of high ratio.
  • the end of the obtained unstretched sheet in the width direction is gripped by a clip of a tenter type simultaneous biaxial stretching machine, travels through a preheating zone at 60 ° C., and then in the MD (machine direction) at a temperature of 80 ° C. Simultaneous biaxial stretching was performed at 0 times and 3.3 times in TD (width direction). Thereafter, heat relaxation for 4 seconds was performed at a temperature of 195 ° C. with a relaxation rate of TD of 5%. And it cooled to room temperature and wound up and obtained the simultaneous biaxially stretched polyester film.
  • solvent addition reaction type silicone diluted with toluene (KS-847T (silicone A) manufactured by Shin-Etsu Chemical Co., Ltd.) was hand-coated using a # 3 Meyer bar and then dried at 150 ° C. for 30 seconds. As a result, a release film having a thickness of 50 ⁇ m on which a release resin layer having a thickness of 0.2 ⁇ m was formed was obtained.
  • Example 2 (Examples 2, 3, 16 to 18) Compared with Example 1, the composition ratio of PBT and PET was changed as shown in Table 1. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 4 A simultaneous biaxially stretched film was obtained in the same manner as in Example 1. Then, using the resin composition X produced as described below on the release resin layer, coating was performed under the same conditions as in Example 1, and a release resin layer having a thickness of 0.2 ⁇ m was formed. A film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • reaction product was put into a large amount of acetone to precipitate a resin.
  • This resin was further washed several times with acetone to remove unreacted maleic anhydride, and then dried under reduced pressure in a vacuum dryer to obtain acid-modified polyolefin resin Y.
  • Example 5 An unstretched sheet was obtained in the same manner as in Example 1. This unstretched sheet was guided to a roll type longitudinal stretching machine, preheated at 45 to 55 ° C., and then longitudinally stretched 3.0 times in the MD (machine direction) at 60 to 70 ° C.
  • the film was preheated at 75 ° C. while holding both ends of the film in the width direction with clips, and stretched transversely at TD (width direction) at 85 to 95 ° C. by 3.3 times. Furthermore, after performing a heat treatment for 4 seconds at a temperature of 190 ° C., the film was cooled to room temperature and wound up to obtain sequentially biaxially stretched films. Thereafter, the resin composition X was applied to the release resin layer under the same conditions as in Example 1 to obtain a release film having a thickness of 50 ⁇ m in which a release resin layer having a thickness of 0.2 ⁇ m was formed. Table 1 shows the evaluation results of the obtained release film.
  • Example 6 (Examples 6 and 7)
  • Example 6 a copolymerized polyester (IPA4, Tm (melting point) 245 ° C.) obtained by copolymerizing 4% by mole of isophthalic acid was used as the second resin in place of the PET homopolymer of Example 1, and the composition ratio was Was changed as shown in Table 1.
  • Example 7 a copolymerized polyester (AD6, Tm (melting point) 240 ° C.) obtained by copolymerizing 6 mol% of adipic acid was used as the second resin in place of the PET homopolymer of Example 1, and the composition ratio Was changed as shown in Table 1.
  • KS-3703 silicone B manufactured by Shin-Etsu Chemical Co., Ltd. was used as the release resin layer. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 8 (Examples 8 to 10) Compared with Example 1, the thickness of the release film was changed as shown in Table 1. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 11 Compared to Example 1, the resin composition ratio was changed as shown in Table 1, and the stretching method of the unstretched sheet was changed to the same sequential biaxial stretching method as in Example 5. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 12 Compared to Example 1, the first resin was changed. Specifically, in Example 12, as the first resin, copolymer PBT (modified PBT, Tm (melting point)) obtained by copolymerizing 15 parts by mass of PTMG (polytetramethylene ether glycol) having an average molecular weight Mw of 1000 with polybutylene terephthalate. 218 ° C). In Example 13, polytrimethylene terephthalate (PTT, Tm (melting point) 228 ° C.) was used as the first resin.
  • copolymer PBT modified PBT, Tm (melting point) obtained by copolymerizing 15 parts by mass of PTMG (polytetramethylene ether glycol) having an average molecular weight Mw of 1000 with polybutylene terephthalate. 218 ° C).
  • PTMG polytetramethylene ether glycol
  • Example 14 a copolymerized polyester (AD15, Tm (melting point) 225 ° C.) obtained by copolymerizing 15 mol% of adipic acid was used as the first resin, and the composition ratio was changed as shown in Table 1. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 15 In Example 1, a copolymer polyester (AD6, Tm (melting point) 240 ° C.) obtained by further copolymerizing 6 mol% of adipic acid was used as the third resin, and the composition ratio was changed as shown in Table 1. Otherwise in the same manner as in Example 1, a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 1 (Comparative Example 1) Compared with Example 1, a release film was obtained as the same as Example 1 except that only a base film was used without providing a release layer. Table 1 shows the evaluation results of the obtained release film.
  • Example 2 An unstretched sheet was obtained in the same manner as in Example 1. However, the discharge amount was adjusted so that the thickness of the unstretched sheet was 50 ⁇ m. The stretching process and the subsequent heat setting process were not performed. This unstretched sheet was hand-coated with a silicone coat in the same manner as in Example 1 to obtain a release film. Table 1 shows the evaluation results of the obtained release film.
  • Example 3 (Comparative Example 3) Compared to Example 1, the first resin was changed to polylactic acid (PLA) having a Tm (melting point) of 165 ° C. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 4 (Comparative Example 4) Compared to Example 1, the first resin was changed to the same PET as the second resin of Example 1, and the second resin was changed to polylactic acid having a Tm (melting point) of 165 ° C. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 6 (Comparative Example 6) Compared to Example 11, the same resin as the second resin of Example 1 was used as the first resin, and a copolymerized polyester (NPG60, no Tm (melting point)) obtained by copolymerizing neopentyl glycol with 60 mol% of the second resin. The composition ratio was changed as shown in Table 1. Further, the thickness was changed as shown in Table 1. Otherwise in the same manner as in Example 11, a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • NPG60 no Tm (melting point)
  • Example 7 (Comparative Example 7) Compared to Example 1, the first resin was changed to the same PET as the second resin of Example 1, and the second resin was not used. Further, the thickness was changed as shown in Table 1. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 8 (Comparative Example 8) Compared to Example 1, the first resin was the same PBT as Example 1, but the second resin was not used. Further, the thickness was changed as shown in Table 1. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 9 (Comparative Example 9) Compared to Example 1, the first resin was changed to the same IPA4 as the second resin of Example 6, and the second resin was not used. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • Example 10 (Comparative Example 10) Compared to Example 1, the first resin was changed to a copolymerized polyester (AD8, Tm (melting point) 235 ° C.) obtained by copolymerizing 8 mol% of adipic acid, and the second resin was not used. Other than that was the same as Example 1, and a release film was obtained. Table 1 shows the evaluation results of the obtained release film.
  • the release films of Examples 1 to 18 were excellent in moldability of the semiconductor package, and the appearance of the obtained molded products was good.
  • the thickness of the film is the most preferable range
  • the base film contains PET in a more preferable range
  • PBT is more preferably in the range. Since it contained, the evaluation of a wrinkle, a tear, and a followability was a favorable result.
  • the base film was an unstretched polyester film
  • the release film of Comparative Example 2 was inferior in heat resistance, and when the film was peeled, the film was broken and the peel strength could not be measured.
  • the film was greatly shrunk under a high temperature condition for evaluating wrinkles, wrinkles were generated, the releasability was poor, and the film was torn. Film fragments were attached to the package, and the follow-up evaluation based on the package state could not be performed.
  • the release films of Comparative Examples 3 to 5 use PLA with a low melting point and CHDM30 with low crystallinity and no melting point, so that the heat resistance is poor, and the film is broken when the film is peeled off, and the peel strength could not be measured. Further, the film was greatly shrunk under a high temperature condition for evaluating wrinkles, wrinkles were generated, the releasability was poor, and the film was torn. Film fragments were attached to the package, and the follow-up evaluation based on the package state could not be performed.
  • Comparative Example 8 and 10 release film were not heat resistant and wrinkled because the second resin was not used.
  • the generated wrinkles hindered releasability.
  • the film was torn because of the wrinkle portion as a trigger and the strength of the film was insufficient. For those in which no tearing occurred during molding, the followability was good.

Abstract

半導体パッケージの製造方法である。パッケージされる素子25を設置した金型11における、パッケージ製造用の熱硬化性樹脂27が充填されるキャビティ14面に離型フィルム21を配置したうえで、金型11内に熱硬化性樹脂27を充填する。このとき、離型フィルム21として、キャビティ14面側に配置される基材フィルムと熱硬化性樹脂側に配置される剥離用樹脂とが積層された積層フィルムが用いられる。基材フィルムとして、融点を金型設定温度以上に2点以上有する延伸ポリエステルフィルムが用いられる。

Description

半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム
 本発明は半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルムに関する。
 半導体パッケージの製造分野では、半導体素子(チップ)を汚染物質、外気、衝撃、光、磁気、高周波などの外部環境から保護、遮断するために、樹脂(モールド樹脂)で封止する。モールド樹脂としては、例えばエポキシ等の硬化性樹脂が一般的である。封止を行う際に、他の分野と比較して金型の絞りは浅くなるが、金型内は高温、高圧の環境となる。
 半導体封止工程には、一般的に、トランスファーモールド工程、コンプレッションモールド工程などがある。
 トランスファーモールド工程を例にその工程を説明すると、配線済み集積回路が組み込まれた半導体素子を金型上に置き、さらに上から別の金型をセットして、高圧力で締め、その後、エポキシ樹脂を流し込み、樹脂が硬化してから金型を開け、成型品を取り出し、金型の内面をクリーニングする工程である。このクリーニングする工程で封止工程が終了する。
 金型の内面をクリーニングするのは、半導体封止工程では、高温で繰り返し封止・成型を行うと、硬化性樹脂により金型が汚染され、それによって、成型性が低下したり、製品品質の低下による歩留まりの低下が発生したりするためである。
 一方で、クリーニングの工程を省くために、金型のキャビティ面に離型フィルムを配することが行われている。つまり、金型によって半導体パッケージを樹脂成型する際に、金型の内面が汚損するのを防止するために、離型フィルムが用いられる。離型フィルムは、金型の内面に沿って配置されることで、溶融固化などによりパッケージを形成するための樹脂が、金型の内面に直接接触することを防止する。その離型フィルムを用いた工程では、たとえばロール・ツゥ・ロール方式でフィルムロールが装置に装填される。そのための離型フィルムには、張られたフィルムが装置金型に真空引きされて吸着されるときにしわ等を発生せず金型への追随性があること、金型周囲の約170℃の高温雰囲気下において収縮やたるみやしわができない耐熱性があること、注入され硬化したエポキシ樹脂との離型性があること、などの特異的な種々の機械的特性が求められる。
 特許文献1には、この種の離型フィルムとして、延伸ポリエステル樹脂フィルムにフッ素樹脂が積層された離型フィルムが記載されている。
 特許文献2には、延伸ポリエステル樹脂フィルムの片面に無機物質が蒸着され、反対面に離型層が設けられたシートが記載されている。
 特許文献3には、共重合ポリエステルフィルムに、離型層と粒子を含有した塗布層が設けられたフィルムが記載されている。
JP2006-49850A JP2004-79566A WO2012/077571
 しかし、特許文献1で開示されているフッ素樹脂積層フィルムは、高価である上、製造時に押出機スクリューを腐食させやすく、使用後の焼却廃棄処理において燃焼しにくく、かつ、焼却廃棄の際に有毒ガスが発生するなど環境汚染の面で好ましくない。
 近年では、半導体の小型化、複雑化が進んでおり、それに合わせて半導体モールド用離型フィルムに求められる要求性能が高まっている。すなわち、小型で複雑な形状の金型に追随できるような半導体モールド用離型フィルムが求められている。この観点によれば、特許文献2や3に開示された離型フィルムでは複雑形状の金型には追随できない恐れがある。さらに、複層の離型シートは各層の追随性が互いに相違するため、層が多くなるほど層間の追随性差が生じ、それがシワなどの原因となるという懸念もある。
 特許文献3に示されるような、粒子を含有した塗布層が設けられた離型フィルムでは、繰り返しモールド成型を行った際に、塗布層成分や含有粒子の脱落により金型汚れが顕著に発生し、その影響で例えばフィルムにシワが生じて半導体パッケージの外観を損ねることがある。さらに、金型温度よりも融点が低温である樹脂成分や共重合成分が多く、また融点ピークがなくとも結晶性の低い樹脂成分が含まれることがあり、それらの場合には、高温の金型とフィルムがくっつきやすくなり、金型との離型性が大きく低下して、シワや破れが発生しやすくなることがある。
 そこで本発明は、複雑な形状の金型にも追随でき、シワなどを抑制できるため製造時のトラブルがなく、離型性にも優れており、さらに、安価で、使用後の廃棄処理が容易で、しかも環境汚染の心配のない離型フィルムを用いて半導体パッケージを製造できるようにすることを目的とする。
 本発明者は、半導体パッケージの製造において通常用いられる金型温度が170℃であるところ、その金型温度以上の融点(Tm)を2点以上有するフィルムが半導体封止工程に適切な特性をもたらすことを見出し、本発明に到達した。
 すなわち、本発明の要旨は、下記の通りである。
 (1)半導体パッケージの製造方法であって、
 パッケージされる素子を設置した金型における、パッケージ製造用の熱硬化性樹脂が充填されるキャビティ面に離型フィルムを配置したうえで、前記金型内に熱硬化性樹脂を充填するに際し、
 前記離型フィルムとして、キャビティ面側に配置される基材フィルムと熱硬化性樹脂側に配置される剥離用樹脂とが積層された積層フィルムを用い、
 前記基材フィルムとして、融点を金型設定温度以上に2点以上有する延伸ポリエステルフィルムを用いることを特徴とする半導体パッケージの製造方法。
 (2)基材フィルムを構成するポリエステル樹脂として、ジカルボン酸成分および/またはジオール成分が炭素数2~5のアルキル鎖を繰り返し成分として含むものを用いることを特徴とする(1)の半導体パッケージの製造方法。
 (3)基材フィルムを構成するポリエステル樹脂として、ポリエチレンテレフタレートを20~60質量パーセント含有するポリエステル樹脂を用いることを特徴とする(1)または(2)の半導体パッケージの製造方法。
 (4)基材フィルムを構成するポリエステル樹脂として、ポリブチレンテレフタレートを40~80質量パーセント含有するポリエステル樹脂を用いることを特徴とする(1)から(3)までのいずれかの半導体パッケージの製造方法。
 (5)厚さが20μm~100μmである離型フィルムを用いることを特徴とする(1)から(4)までのいずれかの半導体パッケージの製造方法。
 (6)170℃に設定したプレス機で5kg/cmで20分間保持した後、室温まで冷却して硬化したエポキシプリプレグとの剥離強度が1.0N/cm以下である離型フィルムを用いることを特徴とする(1)から(5)までのいずれかの半導体パッケージの製造方法。
 (7)パッケージされる素子を設置した金型における、パッケージ製造用の熱硬化性樹脂が充填されるキャビティ面に離型フィルムを配置したうえで、前記金型内に熱硬化性樹脂を充填する半導体パッケージの製造方法に用いられる前記離型フィルムであって、
 前記離型フィルムは、キャビティ面側に配置される基材フィルムと熱硬化性樹脂側に配置される剥離用樹脂とが積層されており、
 前記基材フィルムは、融点を金型設定温度以上に2点以上有する延伸ポリエステルフィルムにて構成されていることを特徴とする半導体パッケージの製造工程用の離型フィルム。
 (8)基材フィルムを構成するポリエステル樹脂のジカルボン酸成分および/またはジオール成分が炭素数2~5のアルキル鎖を繰り返し成分として含むことを特徴とする(7)の半導体パッケージの製造工程用の離型フィルム。
 (9)基材フィルムを構成するポリエステル樹脂が、ポリエチレンテレフタレートを20~60質量パーセント含有するものであることを特徴とする(7)または(8)の半導体パッケージの製造工程用の離型フィルム。
 (10)基材フィルムを構成するポリエステル樹脂が、ポリブチレンテレフタレートを40~80質量パーセント含有するものであることを特徴とする(7)から(9)までのいずれかの半導体パッケージの製造工程用の離型フィルム。
 (11)厚さが20μm~100μmであることを特徴とする(7)から(10)までのいずれかの半導体パッケージの製造工程用の離型フィルム。
 (12)170℃に設定したプレス機で5kg/cmで20分間保持した後、室温まで冷却して硬化したエポキシプリプレグとの剥離強度が、1.0N/cm以下であることを特徴とする(7)から(11)までのいずれかの半導体パッケージの製造工程用の離型フィルム。
 (13)成形金型のキャビティ面側に配置される基材フィルムと成形用樹脂側に配置される剥離用樹脂とが積層されてなる離型フィルムであって、
 前記基材フィルムが、融点を金型設定温度以上に2点以上有する延伸ポリエステルフィルムであることを特徴とする離型フィルム。
 (14)基材フィルムを構成するポリエステル樹脂のジカルボン酸成分および/またはジオール成分が、炭素数2~5のアルキル鎖を繰り返し成分として含むものであることを特徴とする(13)の離型フィルム。
 (15)基材フィルムを構成するポリエステル樹脂が、ポリエチレンテレフタレートを20~60質量パーセント含有するものであることを特徴とする(13)または(14)の離型フィルム。
 (16)基材フィルムを構成するポリエステル樹脂が、ポリブチレンテレフタレートを40~80質量パーセント含有するものであることを特徴とする(13)から(15)までのいずれかの離型フィルム。
 (17)厚さが20μm~100μmであることを特徴とする(13)から(16)までのいずれかにの離型フィルム。
 (18)170℃設定したプレス機で5kg/cmで20分間保持した後、室温まで冷却して硬化したエポキシプリプレグとの剥離強度が1.0N/cm以下であることを特徴とする(13)から(17)までのいずれかの離型フィルム。
 本発明の半導体パッケージの製造方法によれば、用いる離型フィルムが、半導体パッケージの製造における金型設定温度である高温雰囲気下において、金型キャビティで真空引きする際に、しわ、破れ等がなく、金型に追随することができ、熱硬化性樹脂や金型との離型性も良く破れないため、良好な外観を有する半導体パッケージを得ることができる。すなわち、連続生産する工程において生産性が良いという利点がある。
 また、本発明の離型フィルムは、特定構造のポリエステル系延伸フィルム基材と、離型層から構成されているため、機械的強度、耐熱性、追随性、経済面に優れており、特に半導体パッケージの製造などに用いられるインモールド成型用の離型フィルムとして好適である。
本発明の実施の形態の半導体パッケージの製造方法を示す図である。 図1のI-I線に沿った断面図である。 図1および図2の次の工程を示す図である。 図3のIII-III線に沿った断面図である。 図3および図4の次の工程を示す図である。 図5の次の工程を示す図である。 図6の次の工程を示す図である。 図7のVII-VII線に沿った断面図である。 本発明にもとづく離型フィルムの断面形態を示す図である。
 まず、本発明の実施の形態の半導体パッケージの製造方法が説明される。
 図1および図2において、11は半導体パッケージをトランスファー成形するための金型であり、固定式の上型12と、上型12に対して近づいたり遠ざかったりすることができる移動式の下型13とを備えている。上型12には、半導体パッケージを構成する熱可塑性樹脂を包埋するためのキャビティ14が形成されている。キャビティ14は、パッケージ形成部15と、樹脂導入部16と、これらパッケージ形成部15および樹脂導入部16を互いに連通させるためのゲート17とを備える。下型13には、樹脂導入部16へ溶融状態の熱硬化性樹脂を送り込むための樹脂送給路18が形成されている。
 21は本発明にもとづく離型フィルムで、ロール・ツゥ・ロール方式で、上型12と下型13との間に装填されている。22は送り出しロール、23は巻き取りロールである。
 キャビティ14のパッケージ形成部15は、図1に示すように離型フィルム21の幅方向に一対が設けられるとともに、図2に示すように離型フィルム21の長さ方向に複数が設けられている。樹脂導入部16は、離型フィルム21の幅方向に一対のパッケージ形成部15、15に対応して、これらパッケージ形成部15、15同士の間に一つが設けられている。また樹脂導入部16は、図示は省略するが、離型フィルム21の長さ方向に沿って位置の異なる一対のパッケージ形成部15、15ごとに、各一つが設けられている。
 半導体パッケージを製造する際には、図1および図2に示すように下型13を上型12から遠ざけた型開きを行い、巻き取りロール23を回転させることで、送り出しロール22から供給される離型フィルム21における未使用の新しい部分を、この部分に張力を付与した状態で、上型12と下型13との間に送り込む。
 その後、図3および図4に示すように、上型12と下型13との間に存在する離型フィルム21の部分を、真空吸引によりキャビティ14の内面に張り付ける。このとき本発明にもとづく離型フィルム21は、後述のようにキャビティ14の内面形状に良好に追隋し、しかもキャビティ14の内面に張り付いたときに「しわ」などの発生がないという利点がある。「しわ」が発生すると、モールド成型において、成型品にしわが転写されるため外観不良を引き起こす。
 その後、図5に示すように、下型13におけるキャビティ14のパッケージ形成部15に対応した位置に、半導体素子25を装着した半導体基板26を、銅板24に乗せた状態で設置する。銅板24は、一対のパッケージ形成部15、15に対応した離型フィルム21の幅方向には互いに分離しており、複数のパッケージ形成部15、15に対応した離型フィルム21の長さ方向には互いに連続している。
 そして、図6に示すように下型13を上型12に近づく方向に移動させて型締めを行い、下型13の樹脂送給路18から図5に示すキャビティ14の樹脂導入部16に向けてエポキシ樹脂などの熱硬化性樹脂27を溶融状態で圧送する。樹脂導入部16に送り込まれた熱硬化性樹脂27は、ゲート17を通って、パッケージ形成部15に充填される。これによって、半導体素子25および半導体基板26が熱硬化性樹脂27の内部に包埋される。銅板24は、半導体素子25および半導体基板26が包埋された側とは反対側の面が熱硬化性樹脂27から露出した状態となる。詳細には、図示のように樹脂送供給路18の内部にプランジャ19が配置されており、このプランジャ19によって熱硬化性樹脂27をキャビティ14の内部に圧密充填させる。
 このとき、熱可塑性樹脂27として、半導体パッケージに一般的に使用される上述のエポキシ樹脂を用いる場合には、金型11の温度は170℃以上に設定され、好ましくは170℃~180℃、より好ましくは170℃~175℃に設定される。このような高温下において、本発明にもとづく離型フィルム21は、後述のように耐熱性を有するために、熱収縮やそれを原因とする「しわ」が発生しないという特長を有する。
 充填された樹脂27が硬化したなら、図7および図8に示すように下型13を上型12から遠ざけて型開きを行い、得られた成形品28を金型11から取り出す。このとき、本発明にもとづく離型フィルム21は、後述のように、エポキシ樹脂などの熱硬化性樹脂27からの離型性が良好である。その後、巻き取りロール23を駆動して、離型フィルム21における使用済みの部分を金型11から排出するとともに、図1および図2に示すように離型フィルム21における未使用の部分を新たに金型11に導入する。
 以上においては、金型11の外部からその内部へ溶融状態の熱硬化性樹脂27を圧密充填させる「トランスファーモールド工程」について説明した。しかし、離型フィルム21は、それ以外のモールド工程、例えば、あらかじめ金型内に粉粒状の熱硬化性樹脂を充填したうえで型締めを行う公知の「コンプレッションモールド工程」などにも同様に用いることができる。
 以下、本発明にもとづく離型フィルム21が詳細に説明される。
 図9に示すように、離型フィルム21は、図1~図8に示される金型11のキャビティ14側に配置される基材フィルム31と、硬化後の熱硬化性樹脂27からの良好な剥離を行うために同樹脂27側に配置される剥離用樹脂層32とを備えた積層体によって構成されている。
 まず、基材フィルム31を詳細に説明する。基材フィルム31は、金型設定温度以上たとえば170℃以上に融点を2点以上有する延伸ポリエステルフィルムによって構成される。
 融点を金型設定温度以上に2点以上有するとは、それぞれ融点が金型設定温度以上である2種類以上のポリエステル樹脂がブレンドされていることをいう。それぞれ融点が金型設定温度以上である2種類以上のポリエステル樹脂がブレンドされていることで、低融点側の樹脂のもつ金型温度170℃という高温での柔軟性により金型への追随性が向上し、高融点側の樹脂のもつ耐熱性により離型時の破れが防止されるといった、両方の性質を併せ持つ利点がある。
 このようなポリエステル樹脂として、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどが挙げられる。さらにそれらの共重合体なども挙げることができる。
 なかでも、ポリエステルを構成するジカルボン酸成分および/またはジオール成分が炭素数2~5のアルキル鎖を繰り返し成分として含むものが、高温化での高分子鎖が動きやすく、金型への追随性に最適であるために、特に好ましい。このようなポリエステル樹脂として、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、アジピン酸共重合ポリエステルなどの共重合体、などの、170℃以上に融点をもつものを挙げることができる。
 基材フィルムを構成するポリエステルフィルムは、延伸フィルムであることが必要である。その理由は、未延伸フィルムでは配向していないため強度が低くそのため成型時に破れ、また、金型のような高温雰囲気のもとでは収縮が大きくしわが発生するからである。
 原料のポリエステル樹脂の重合方法としては、特に限定されないが、例えば、直接エステル化法、エステル交換法等の公知の製造方法が挙げられる。直接エステル化法としては、例えば、必要なモノマー原料を反応缶内に注入し、エステル化反応をおこなった後、重縮合反応をおこなう方法が挙げられる。エステル化反応では、窒素雰囲気下、160℃以上の温度で4時間以上、加熱溶融して反応させる。その際、触媒として、マグネシウム、マンガン、亜鉛、カルシウム、リチウム、チタン等の酸化物や、酢酸塩などを用いてもよい。重縮合反応では、130Pa以下の減圧下で、220~280℃の温度で所望の分子量に達するまで反応を進める。その際、触媒として、アンチモン、チタン、ゲルマニウム等の酸化物や、酢酸塩などを用いてもよい。
 重合後のポリエステル樹脂は、モノマーやオリゴマー、アセトアルデヒドやテトラヒドロフラン等の副生成物を含んでいるため、減圧または不活性ガス流通下、200℃以上の温度で固相重合を施しても良い。固相重合を施したポリエステルを用いると、基材フィルム31の製造工程において押し出された未延伸シート及びフィルムの表面へのオリゴマーの析出が防止されるため好ましい。オリゴマーについては、半導体封止といった精密工程においては、金型等への汚染がより少ない方が好ましい。このため、上記の固相重合したものの方が好ましい。
 ポリエステル樹脂を重合する際、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、ブロッキング防止剤等を添加してもよい。酸化防止剤としては、例えば、ヒンダードフェノール系化合物、ヒンダードアミン系化合物が挙げられる。熱安定剤としては、例えば、リン系化合物が挙げられる。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物が挙げられる。帯電防止剤としては、例えばアンチモンドープ酸化錫が挙げられる。ブロッキング防止剤としては、例えばケイ素酸化物が挙げられる。
 本発明に用いられるポリエステル樹脂は、本発明の効果が損なわれない範囲で適宜、他の成分を共重合することができる。共重合に用いられる酸成分としては、特に限定されないが、イソフタル酸、(無水)フタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、(無水)マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等の脂肪族ジカルボン酸、(無水)ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸等の脂環族ジカルボン酸、炭素数20~60のダイマー酸、p-ヒドロキシ安息香酸、乳酸、4-ヒドロキシ酪酸、ε-カプロラクトン等のヒドロキシカルボン酸、(無水)トリメリット酸、トリメシン酸、(無水)ピロメリット酸等の多官能カルボン酸等を挙げることができる。これらの共重合成分は2種以上併用しても良い。
 共重合に用いられるアルコール成分としては、特に限定されないが、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール等の脂環族ジオール、ビスフェノールAやビスフェノールSのエチレンオキシドあるいはプロピレンオキシド付加物等の芳香族ジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多官能アルコールなどを挙げることができる。これらの共重合成分は2種以上併用しても良い。
 共重合成分の割合は好ましくは20モル%以下、さらに好ましくは15モル%以下である。20モル%を超えると樹脂の結晶性が低下し、このためフィルム化した時の強度が低下し、その結果、離型時に破れが発生しやすくなる。また、共重合量が多くなるほど、融点が低下するため耐熱性の面で好ましくない。
 上述のように、基材フィルムは、それぞれ金型設定温度以上に融点を有する2種類以上のポリエステル樹脂をブレンドしたポリエステルフィルムによって構成されている。
 ポリエステル樹脂のブレンド比率について、ポリエチレンテレフタレートを用いる場合は、そのブレンド比率が20~60質量パーセントであることが好ましく、より好ましい下限値は25質量パーセントであり、上限値は55質量パーセントである。また、ポリブチレンテレフタレートを用いる場合は、そのブレンド比率が40~80質量パーセントであることが好ましく、より好ましい下限値は45質量パーセントであり、上限値は75質量パーセントである。
 ポリエチレンテレフタレートを用いると、高温下での成型をする際に、ポリエチレンテレフタレートのもつ耐熱性により、フィルムが破れにくくなる。ポリブチレンテレフタレートは、例えばポリエチレンテレフタレートに比べて、化学骨格中に含まれる脂肪族の炭素数が2つ多いため、分子鎖の可動性が高く、柔軟性が高い。このため、基材フィルム31を構成する2種類以上の樹脂のうちの2つとして、上記したポリエチレンテレフタレートとポリブチレンテレフタレートという骨格の異なる2種類以上の樹脂を上記の最適な比率で混合することで、得られたフィルムの柔軟性が向上して、成型時の金型追随性が良くなる。
 ポリブチレンテレフタレートが80質量%を超えると、特性が過剰に発現して、機械強度や耐熱性が低く、このため成形時の温度下でシワが発生しやすくなり離型時に破れが生じやすくなる。一方、ポリエチレンテレフタレートが60質量%を超えると、特性が過剰に発現して、金型追随性が低下し、またかたく割れやすくなり、このため例え機械強度を有していても離型時に破れやすくなる。
 基材フィルム31の製法は、特に限定されず、従来から知られている方法を用いることができる。例えば、Tダイ法もしくはチューブラー式製膜法等の公知の製法で押出された樹脂シートを未延伸シートとし、続いてこの未延伸シートを一軸延伸法、同時二軸延伸法、逐次二軸延伸法等の公知の製法により延伸する。基材フィルム31は延伸フィルムであることが必要であり、したがって延伸工程が必要である。未延伸シートは、結晶性が低く、耐熱性に劣る。厚みむらの少ないフィルムを製造するためにはTダイ法で樹脂シートを得ることが好ましく、続いて逐次二軸延伸もしくは同時二軸延伸等により延伸する。
 基材フィルム31の詳細な製法としては、例えばポリエチレンテレフタレートとポリブチレンテレフタレートとを上記の比率とした樹脂組成物を、Tダイを備えた押出機を用いて、230~280℃で溶融後Tダイよりシート状に押出し、これを40℃以下の温度に調整されたキャスティングロールに密着させて急冷し、所定の厚さの未延伸シートを得るのが好ましい。原料樹脂組成物を均一に混合するために、あらかじめ溶融混合された材料を用いてもよい。
 上記のようにして得られた未延伸シートを、例えばフラット式同時二軸延伸法で延伸する場合には、未延伸シートの幅方向の両端をクリップでつかみ、シートの両面から40~100℃の熱風を吹き付けて予熱し、50~120℃雰囲気下で縦方向及び横方向にそれぞれ2~4倍程度延伸する。その後、80~180℃程度で数秒間処理し縦もしくは横方向に数%弛緩する。さらに所定の収縮率を持つフィルムを得るために、80~200℃で数秒間熱処理して熱固定した後、室温まで冷却し20~300m/minの速度で巻き取る。延伸温度が50℃未満の場合には、延伸応力が高すぎるために、ネッキングが発生しやすい。反対に延伸温度が120℃を超える場合には、溶断したり、フィルムの結晶化が進みすぎて白化を起こしたりする。熱固定温度が200℃を超えると、フィルムにたるみが生じやすくなりフィルムの品位を著しく損なう。
 延伸後の熱固定方法としては、公知の方法を採用することができる。例えば延伸フィルムに熱風を吹き付ける方法、延伸フィルムに赤外線を照射する方法、延伸フィルムにマイクロ波を照射する方法が挙げられる。均一に精度よく加熱できる点で、延伸フィルムに熱風を吹き付ける方法が好適である。延伸工程と熱固定工程との間に熱緩衝工程を設けてもよい。
 基材フィルム31の層構成は特に限定されるものではなく、単層、二種二層、二種三層、三種三層などの、どのような層構成であってもよい。なかでも、片面ごとに表面粗度を制御できる複層であることが好ましい。また基材フィルム31は、ポリエステルが全体の90質量%以上であることが好ましい。それ未満であると、ポリエステルに特有の柔軟性が不足し、成型時の追随性が劣りやすくなる。
 離型フィルム21の巻き取り性を改善するために、基材フィルム31は粒子を含有してもよい。粒子は、易滑性付与可能な粒子であれば、本発明の効果が損なわれない範囲で特に限定されるものではない。具体例としては、シリカ、アルミナ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン、硫酸バリウム等の無機粒子が挙げられる。
 あるいは、シリコーン樹脂、架橋ポリスチレン樹脂等からなる耐熱性のよい高分子微粒子、脂肪酸エステルや脂肪酸アミド等の有機滑剤、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等の耐熱性有機粒子を用いてもよい。さらに、ポリエステルの製造工程中において、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。使用する粒子の形状は特に限定されず、球状、塊状、棒状、扁平状等のいずれでもよい。その硬度、比重、色等についても特に制限はない。これらの粒子は、必要に応じて2種類以上を併用してもよい。
 粒子の平均粒径は、通常0.01~6μm、好ましくは0.01~1μmの範囲である。平均粒径が0.01μm未満の場合には、粒子が凝集しやすく、分散性が不十分となる場合がある。一方、平均粒径が6μmを超える場合には、フィルムの表面が粗くなりすぎて、後工程において図9に示される剥離用樹脂層32を塗設する場合等に不具合が生じることがある。
 基材フィルム31に粒子を含有させる方法は、特に限定されるものではなく、ポリエステルを製造する任意の段階において粒子を添加することができる。例えば、エステル化段階、もしくはエステル交換反応終了段階である。
 半導体封止工程において離型フィルム21の表面状態が熱硬化性樹脂に転写されることを考慮して、その意匠性付与のために、離型フィルム21に、例えば、上記粒子等の練り込み、オフライン工程でのエンボス加工やサンドマット加工、インライン工程での梨地ロールによる冷却成型を行っても良い。
 さらに離型フィルム21には、着色剤、酸化防止剤、消泡剤、帯電防止剤、紫外線吸収剤等を含有させることができる。
 離型フィルム21の厚さは、20~100μmであることが好ましく、20~80μmであることがより好ましく、25~60μmであることがさらに好ましく、35~60μmが最も好ましい。離型フィルム21の厚さが20μmより薄いと、破断強度が低くこのため離型時の破れの発生につながりやすく、厚さが100μmより厚いと追随性が低下する傾向にある。ただし、基材フィルム31は、延伸フィルムであるため、耐熱性に加えて強度も高いことから、半導体パッケージの製造工程用の離型フィルムとして主流となっている厚さ50μmのものと比較すると薄膜化を期待できる。薄膜化により、コストメリットだけでなく、図2、図4、図8に示されるロール22を構成するフィルムの長さを増大させることができ、このため半導体封止工程におけるロールの装填頻度を減らすことができて、作業性の向上にも大きく寄与できる。
 図9に示される剥離用樹脂層32が説明される。剥離用樹脂層32の組成は、特に限定されるものではなく、熱硬化型や照射硬化型のシリコーン系や、フッ素系、長鎖アルキル系、ポリオレフィン系などの非シリコーン系などの公知の離型層を挙げることができる。熱硬化型シリコーンとしては、付加反応型シリコーンや縮合反応型シリコーンなどが挙げられる。照射硬化型シリコーンとしては、UV硬化型シリコーンやEB硬化型シリコーンが挙げられる。また、フッ素系は、フッ素樹脂フィルム化したものやフッ素系材料のコーティング液が挙げられ、長鎖アルキル系は、長鎖アルキル基含有ポリマーのコーティング液が挙げられ、ポリオレフィン系はポリエチレン樹脂やポリプロピレン樹脂、ポリメチルペンテンのようなポリオレフィン系樹脂自体をフィルム化したものや、酸変性ポリオレフィン樹脂のコーティング液が挙げられる。
 本発明における離型フィルム21は、170℃に設定したプレス機で5kg/cmで20分間保持した後、室温まで冷却して硬化したエポキシプリプレグとの剥離強度が1.0N/cm以下であることが好ましく、0.7N/cm以下であることがより好ましく、0.5N/cm以下がさらに好ましく、0.3N/cm以下が最も好ましい。剥離用樹脂層32は、この剥離強度を満足するものであれば特に限定するものではなく、離型フィルム21の薄膜化の観点からコート液を塗布して形成する剥離用樹脂層であることが好ましい。剥離用樹脂層32は、基材フィルム31の表面に薄く形成されていれば足りる。その形成方法としては、インラインコート法、オフラインコート法を挙げることができる。コストメリットの面でインラインコート法が望ましい。
 下記の実施例及び比較例における特性値の測定法は以下の通りである。
 (1)融点(℃)
 Perkin Elmer社製DSCを用い、20℃/minで昇温して、基材フィルムの融点を測定した。
 (2)厚さ
 ハイデンハイン社製の厚み測定器MT-12Bを用いて測定した。
 (3)剥離強度
 60mm×100mmの大きさのエポキシプリプレグ(住友ベークライト社製 EI-6765)の両面を離型フィルムで挟み、プレス板を金型設定温度としての170℃に設定したプレス機で5kg/cmで20分間保持した。その後、室温まで冷却しサンプルを得た。得られたサンプルの、硬化後のエポキシプリプレグと離型フィルムとの剥離強度を、25℃の恒温室で、引張試験機(インテスコ社製、精密万能材料試験機、2020型)にて測定した。剥離角度は180度、剥離速度は300mm/分とした。剥離強度は、スペクトルの強度が安定した部分の平均値を取った。評価結果はn=5の平均値とした。
 (4)しわ
 キャビティの内寸が220mm×55mm×1.5mmである金型を170℃に加熱し、離型フィルムを装填して真空引きし、2分間保持した。その後、真空引きを解除して常圧にし、離型フィルムを取り除き、取り除いた離型フィルムにおけるしわの有無を目視により確認した。この操作を200回繰り返し、しわの発生回数を確認した。
 (5)離型性
 離型フィルムを用い、上記(4)しわ評価と同じ金型を170℃の温度設定で用いてモールド成型装置による加工を行った。成型後に金型を開けた時の離型フィルムとパッケージの状態を目視で観察し、次の基準に従って評価した。
  良好:フィルムがパッケージから完全に剥がれていた。
  普通:金型の型開き時にフィルムの一部がパッケージに引っ張られながら剥がれた。
  不良:フィルムがパッケージから剥がれず残っていた。
 (6)破れ
 離型フィルムを用い、上記(4)しわ評価と同じ金型を170℃の温度設定で用いてモールド成型装置による加工を行った。成型後に金型を開けた時に離型フィルムが破れなかったかを、目視で確認した。この操作を200回繰り返し、破れの発生回数を確認した。
 (7)追随性
 上記(6)の加工において、離型フィルムが破れなかったものについて、離型フィルムの追随性にもとづく、成型されたパッケージの角部と辺部との状態について目視で観察し、丸みを帯びたパッケージの発生回数を確認した。
 (8)良品率
 上記(6)と(7)の結果より、200回の加工で得られたパッケージの良品率を算出した。良品率は80%以上を合格とした。
 (実施例1)
 以下、ブレンドするポリエステル樹脂について、比率の高いものから、第1樹脂、第2樹脂、第3樹脂と称する。
 第1樹脂としての、PBT(ポリブチレンテレフタレート、IV(極限粘度)1.08dl/g、Tm(融点)223℃)54質量部と、第2樹脂としての、PET(ポリエチレンテレフタレート、IV0.75dl/g、Tm255℃)46質量部とをドライブレンドしたものを、Tダイを備えた押出機を用いて、275℃でシート状に溶融押出し、表面温度18℃の冷却ドラムに密着させて冷却し未延伸シートを得た。得られた未延伸シートの幅方向の端部をテンター式同時二軸延伸機のクリップにて把持し、60℃の予熱ゾーンを走行させた後、温度80℃でMD(機械方向)に3.0倍、TD(幅方向)に3.3倍で同時二軸延伸した。その後、TDの弛緩率を5%として、温度195℃で4秒間の熱固定を施した。そして、室温まで冷却して巻き取り、同時二軸延伸ポリエステルフィルムを得た。その後、トルエンで希釈した溶剤付加反応型シリコーン(信越化学工業社製のKS-847T(シリコーンA))を、#3マイヤーバーを用いてハンドコートした後、150℃×30秒間乾燥した。これにより、厚さ0.2μmの剥離用樹脂層を形成した厚さ50μmの離型フィルムを得た。
 以上のようにして得られた離型フィルムの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例2、3、16~18)
 実施例1に比べ、PBTとPETとの組成比を表1に示すように変更した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (実施例4)
 実施例1と同様にして同時二軸延伸フィルムを得た。その後、剥離用樹脂層に下記のようにして製造した樹脂組成物Xを用い、実施例1と同じ条件でコートし、厚さ0.2μmの剥離用樹脂層を形成した厚さ50μmの離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 [樹脂組成物Xの製造]
 下記のようにして製造した酸変性ポリオレフィン樹脂水性分散体Mと、ポリビニルアルコール(日本酢ビ・ポバール社製「VC-10」、重合度:1,000)の8質量%水溶液と、架橋剤としてのオキサゾリン化合物の水性溶液(日本触媒社製、エポクロス「WS-500」、固形分濃度:40質量%)とを、ポリビニルアルコールが酸変性ポリオレフィン樹脂100質量部に対して50質量部、オキサゾリン化合物の固形分が酸変性ポリオレフィン樹脂100質量部に対して10質量部となるように混合して、液状の樹脂組成物Xを得た。
 [酸変性ポリオレフィン樹脂水性分散体Mの製造]
 ヒーター付きの密閉できる耐圧1リットル容ガラス容器を備えた攪拌機を用いて、60.0gの、下記のようにして製造した酸変性ポリオレフィン樹脂Yと、45.0gのBu-EG(和光純薬社製、特級、沸点171℃、なお「Bu-EG」はエチレングリコール-n-ブチルエーテルを意味する)と、6.9g(樹脂中の無水マレイン酸単位のカルボキシル基に対して1.0倍当量)のDMEA(和光純薬社製、特級、沸点134℃、なお「DMEA」はN,N-ジメチルエタノールアミンを意味する)と、188.1gの蒸留水とを上記のガラス容器内に仕込み、攪拌翼の回転速度を300rpmとして攪拌した。そうしたところ、容器底部には樹脂の沈澱は認められず、浮遊状態となっていることが確認された。そこでこの状態を保ちつつ、10分後にヒーターの電源を入れ加熱した。そして系内温度を140℃に保ってさらに60分間攪拌した。その後、空冷にて、回転速度300rpmのまま攪拌しつつ室温(約25℃)まで冷却した。さらに、300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)することで、乳白黄色の均一な酸変性ポリオレフィン樹脂水性分散体Mを得た。なお、フィルター上には残存樹脂は殆どなかった。
 [酸変性ポリオレフィン樹脂Yの製造]
 プロピレン-ブテン-エチレン三元共重合体(ヒュルスジャパン社製、ベストプラスト708、プロピレン/ブテン/エチレン=64.8/23.9/11.3質量%)280gを、4つ口フラスコ中において、窒素雰囲気下で加熱溶融させた後、系内温度を170℃に保って、攪拌下、不飽和カルボン酸として無水マレイン酸32.0gとラジカル発生剤としてジクミルパーオキサイド6.0gとをそれぞれ1時間かけて加え、その後1時間反応させた。
 反応終了後、得られた反応物を多量のアセトン中に投入し、樹脂を析出させた。この樹脂をさらにアセトンで数回洗浄し、未反応の無水マレイン酸を除去した後、減圧乾燥機中で減圧乾燥して、酸変性ポリオレフィン樹脂Yを得た。
 (実施例5)
 実施例1と同様にして未延伸シートを得た。この未延伸シートをロール式縦延伸機に導き、45~55℃で予熱した後、60~70℃で、MD(機械方向)に3.0倍に縦延伸した。
 そして室温まで冷却した後、フィルムの幅方向の両端をクリップにつかみながら75℃で予熱し85~95℃で、TD(幅方向)に3.3倍に横延伸した。さらに、温度190℃で4秒間の熱処理を施した後、室温まで冷却して巻き取り、逐次二軸延伸フィルムを得た。その後、剥離用樹脂層に樹脂組成物Xを用い、実施例1と同じ条件でコートし、厚さ0.2μmの剥離用樹脂層を形成した厚さ50μmの離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (実施例6、7)
 実施例6においては、第2樹脂として、実施例1のPETのホモポリマーに代えて、イソフタル酸を4モル%共重合した共重合ポリエステル(IPA4、Tm(融点)245℃)を用い、組成比を表1に示すように変更した。実施例7においては、第2樹脂として、実施例1のPETのホモポリマーに代えて、アジピン酸を6モル%共重合した共重合ポリエステル(AD6、Tm(融点)240℃)を用い、組成比を表1に示すように変更した。実施例6、7とも、剥離用樹脂層として、信越化学工業社製のKS-3703(シリコーンB)を使用した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (実施例8~10)
 実施例1に比べて離型フィルムの厚さを表1に示すように変更した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (実施例11)
 実施例1に比べ、樹脂組成比を表1に示すように変更するとともに、未延伸シートの延伸方法を実施例5と同じ逐次二軸延伸方法に変更した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (実施例12~14)
 実施例1に比べ、第1樹脂を変更した。詳細には、実施例12においては、第1樹脂として、ポリブチレンテレフタレートに平均分子量Mw:1000のPTMG(ポリテトラメチレンエーテルグリコール)を15質量部共重合した共重合PBT(変性PBT、Tm(融点)218℃)を用いた。実施例13においては、第1樹脂として、ポリトリメチレンテレフタレート(PTT、Tm(融点)228℃)を用いた。実施例14においては、第1樹脂として、アジピン酸を15モル%共重合した共重合ポリエステル(AD15、Tm(融点)225℃)を用い、組成比を表1に示すように変更した。
それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (実施例15)
 実施例1に、さらにアジピン酸を6モル%共重合した共重合ポリエステル(AD6、Tm(融点)240℃)を第3樹脂として用い、組成比を表1に示すように変更した。それ以外は実施例1と同様にし、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例1)
 実施例1に比べ、離型層を設けずに、基材フィルムのみを用い、それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例2)
 実施例1と同様にして未延伸シートを得た。ただし、厚さについては、未延伸シートで50μmとなるように吐出量を調整した。延伸処理と、その後の熱固定処理とは施さなかった。この未延伸シートに、実施例1と同様にシリコーンコートをハンドコートして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例3)
 実施例1に比べ、第1樹脂をTm(融点)165℃のポリ乳酸(PLA)に変更した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例4)
 実施例1に比べ、第1樹脂を実施例1の第2樹脂と同じPETに変更するとともに、第2樹脂をTm(融点)165℃のポリ乳酸に変更した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例5)
 実施例11に比べ、第1樹脂にシクロヘキサンジメタノールを30モル%共重合した共重合ポリエステル(CHDM30、Tm(融点)なし)を用い、第2樹脂にジエチレングリコールを8モル%共重合した共重合ポリエステル(DEG8、Tm(融点)240℃)を用いて、組成比を表1に示すように変更した。それ以外は実施例11と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例6)
 実施例11に比べ、第1樹脂に実施例1の第2樹脂と同じPETを用い、第2樹脂にネオペンチルグリコールを60モル%共重合した共重合ポリエステル(NPG60、Tm(融点)なし)を用いて、組成比を表1に示すように変更した。さらに厚さを表1に示すように変更した。それ以外は実施例11と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例7)
 実施例1に比べ、第1樹脂を実施例1の第2樹脂と同じPETに変更するとともに、第2樹脂は用いなかった。さらに厚さを表1に示すように変更した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例8)
 実施例1に比べ、第1樹脂は実施例1と同じPBTとしたが、第2樹脂は用いなかった。さらに厚さを表1に示すように変更した。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例9)
 実施例1に比べ、第1樹脂を実施例6の第2樹脂と同じIPA4に変更するとともに、第2樹脂は用いなかった。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 (比較例10)
 実施例1に比べ、第1樹脂をアジピン酸を8モル%共重合した共重合ポリエステル(AD8、Tm(融点)235℃)に変更するとともに、第2樹脂は用いなかった。それ以外は実施例1と同じとして、離型フィルムを得た。得られた離型フィルムの評価結果を表1に示す。
 実施例1~18の離型フィルムは、半導体パッケージの成形性に優れ、得られた成形品の外観は良好であった。特に実施例1、4、5、8、11の離型フィルムは、フィルムの厚さが最も好ましい範囲であり、基材フィルムとしてPETをより好ましい範囲で含有し、かつ、PBTをより好ましい範囲で含有していたため、しわ、破れ、追随性の評価が良好な結果であった。
 一方、比較例1の離型フィルムは、剥離用樹脂層を積層していなかったため、離型性が発現しなかった。このため、フィルムを剥離する際に、同フィルムが破壊し、剥離強度を測定することができなかった。モールド成型装置で加工すると、金型を開けた際にフィルムがパッケージから剥がれず、それをきっかけとしてフィルムが破れた。パッケージにはフィルムの破片が付着しており、パッケージの状態にもとづく追随性の評価はできなかった。
 比較例2の離型フィルムは、基材フィルムが未延伸のポリエステルフィルムであったため、耐熱性に劣り、フィルムを剥離する際に、同フィルムが破壊し、剥離強度を測定することができなかった。また、しわを評価するための高温条件下で大きく収縮してしわが発生し、離型性に劣り、フィルムも破れた。パッケージにはフィルムの破片が付着しており、パッケージの状態にもとづく追随性の評価はできなかった。
 比較例3~5の離型フィルムは、融点の低いPLAや、結晶性が低く融点のないCHDM30を用いたために、耐熱性に劣り、フィルムを剥離する際に、同フィルムが破壊し、剥離強度を測定することができなかった。また、しわを評価するための高温条件下で大きく収縮してしわが発生し、離型性に劣り、フィルムも破れた。パッケージにはフィルムの破片が付着しており、パッケージの状態にもとづく追随性の評価はできなかった。
 比較例6の離型フィルムは、融点の低いNPG60を用いたが、その樹脂比率が低いため、剥離強度は測定できた。しかし、実際の成型時には、繰り返し成型を行うことで、しわやフィルムの一部が溶けて破れる現象が頻繁に発生した。成型時に破れの発生しなかったものについては、追随性は良好であった。
 比較例7、9の離型フィルムは、第2樹脂を用いなかったために、追随性に劣り、また、しわも発生しやすく、さらにそのしわ部をきっかけとしてフィルムが破れる現象が頻繁に発生した。
 比較例8、10離型フィルムは、第2樹脂を用いなかったために、耐熱性に劣り、しわが発生した。モールド成型装置で加工すると、発生したしわが離形性を阻害した。さらにそのしわ部をきっかけとして、また、フィルムの強度も不足していたため、フィルムが破れた。成型時に破れが発生しなかったものについては、追随性は良好であった。
 比較例1~10の離型フィルムにおいて、所要の全ての性能(しわ、離型性、破れ、追随性)を同時に満足するものは無かった。

Claims (18)

  1.  半導体パッケージの製造方法であって、
     パッケージされる素子を設置した金型における、パッケージ製造用の熱硬化性樹脂が充填されるキャビティ面に離型フィルムを配置したうえで、前記金型内に熱硬化性樹脂を充填するに際し、
     前記離型フィルムとして、キャビティ面側に配置される基材フィルムと、熱硬化性樹脂側に配置される剥離用樹脂とが積層された積層フィルムを用い、
     前記基材フィルムとして、融点を金型設定温度以上に2点以上有する延伸ポリエステルフィルムを用いることを特徴とする半導体パッケージの製造方法。
  2.  基材フィルムを構成するポリエステル樹脂として、ジカルボン酸成分および/またはジオール成分が炭素数2~5のアルキル鎖を繰り返し成分として含むものを用いることを特徴とする請求項1記載の半導体パッケージの製造方法。
  3.  基材フィルムを構成するポリエステル樹脂として、ポリエチレンテレフタレートを20~60質量パーセント含有するポリエステル樹脂を用いることを特徴とする請求項1または2に記載の半導体パッケージの製造方法。
  4.  基材フィルムを構成するポリエステル樹脂として、ポリブチレンテレフタレートを40~80質量パーセント含有するポリエステル樹脂を用いることを特徴とする請求項1から3までのいずれか1項記載の半導体パッケージの製造方法。
  5.  厚さが20μm~100μmである離型フィルムを用いることを特徴とする請求項1から4までのいずれか1項記載の半導体パッケージの製造方法。
  6.  170℃に設定したプレス機で5kg/cmで20分間保持した後、室温まで冷却して硬化したエポキシプリプレグとの剥離強度が1.0N/cm以下である離型フィルムを用いることを特徴とする請求項1から5までのいずれか1項記載の半導体パッケージの製造方法。
  7.  パッケージされる素子を設置した金型における、パッケージ製造用の熱硬化性樹脂が充填されるキャビティ面に離型フィルムを配置したうえで、前記金型内に熱硬化性樹脂を充填する半導体パッケージの製造方法に用いられる前記離型フィルムであって、
     前記離型フィルムは、キャビティ面側に配置される基材フィルムと熱硬化性樹脂側に配置される剥離用樹脂とが積層されており、
     前記基材フィルムは、融点を金型設定温度以上に2点以上有する延伸ポリエステルフィルムにて構成されていることを特徴とする半導体パッケージの製造工程用の離型フィルム。
  8.  基材フィルムを構成するポリエステル樹脂のジカルボン酸成分および/またはジオール成分が炭素数2~5のアルキル鎖を繰り返し成分として含むことを特徴とする請求項7記載の半導体パッケージの製造工程用の離型フィルム。
  9.  基材フィルムを構成するポリエステル樹脂が、ポリエチレンテレフタレートを20~60質量パーセント含有するものであることを特徴とする請求項7または8記載の半導体パッケージの製造工程用の離型フィルム。
  10.  基材フィルムを構成するポリエステル樹脂が、ポリブチレンテレフタレートを40~80質量パーセント含有するものであることを特徴とする請求項7から9までのいずれか1項記載の半導体パッケージの製造工程用の離型フィルム。
  11.  厚さが20μm~100μmであることを特徴とする請求項7から10までのいずれか1項記載の半導体パッケージの製造工程用の離型フィルム。
  12.  170℃に設定したプレス機で5kg/cmで20分間保持した後、室温まで冷却して硬化したエポキシプリプレグとの剥離強度が、1.0N/cm以下であることを特徴とする請求項7から11までのいずれか1項記載の半導体パッケージの製造工程用の離型フィルム。
  13.  成形金型のキャビティ面側に配置される基材フィルムと成形用樹脂側に配置される剥離用樹脂とが積層されてなる離型フィルムであって、
     前記基材フィルムが、融点を金型設定温度以上に2点以上有する延伸ポリエステルフィルムであることを特徴とする離型フィルム。
  14.  基材フィルムを構成するポリエステル樹脂のジカルボン酸成分および/またはジオール成分が、炭素数2~5のアルキル鎖を繰り返し成分として含むものであることを特徴とする請求項13記載の離型フィルム。
  15.  基材フィルムを構成するポリエステル樹脂が、ポリエチレンテレフタレートを20~60質量パーセント含有するものであることを特徴とする請求項13または14記載の離型フィルム。
  16.  基材フィルムを構成するポリエステル樹脂が、ポリブチレンテレフタレートを40~80質量パーセント含有するものであることを特徴とする請求項13から15までのいずれか1項記載の離型フィルム。
  17.  厚さが20μm~100μmであることを特徴とする請求項13から16までのいずれかに記載の離型フィルム。
  18.  170℃設定したプレス機で5kg/cmで20分間保持した後、室温まで冷却して硬化したエポキシプリプレグとの剥離強度が1.0N/cm以下であることを特徴とする請求項13から17までのいずれか1項記載の離型フィルム。
PCT/JP2017/002314 2016-01-29 2017-01-24 半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム WO2017130952A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017531418A JP6902273B2 (ja) 2016-01-29 2017-01-24 半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-014963 2016-01-29
JP2016014963 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130952A1 true WO2017130952A1 (ja) 2017-08-03

Family

ID=59398832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002314 WO2017130952A1 (ja) 2016-01-29 2017-01-24 半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム

Country Status (3)

Country Link
JP (1) JP6902273B2 (ja)
TW (1) TW201737366A (ja)
WO (1) WO2017130952A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069658A1 (ja) * 2017-10-06 2019-04-11 東レフィルム加工株式会社 モールド成形用離型フィルムおよびモールド成形法
CN111051060A (zh) * 2017-08-30 2020-04-21 东丽薄膜先端加工股份有限公司 脱模膜
CN113573898A (zh) * 2019-03-25 2021-10-29 二村化学株式会社 具有膜状树脂层的薄板状层叠物的制造方法
CN113677494A (zh) * 2019-03-20 2021-11-19 小林股份有限公司 模具与离型膜的组合、离型膜、模具、以及成形体的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978431A (zh) * 2021-02-04 2021-06-18 芯笙半导体科技(上海)有限公司 基于树脂成型的除静电薄膜处理设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172864A (ja) * 2008-01-24 2009-08-06 Teijin Dupont Films Japan Ltd 成形加工用多層積層二軸配向ポリエステルフィルム
JP2011194702A (ja) * 2010-03-19 2011-10-06 Toray Ind Inc 積層フィルムおよびそれを用いた成型用シート
JP2011230289A (ja) * 2010-04-23 2011-11-17 Teijin Dupont Films Japan Ltd 離型フィルム
JP2012066586A (ja) * 2011-10-24 2012-04-05 Mitsubishi Plastics Inc 成型同時転写用ポリエステルフィルム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079566A (ja) * 2002-08-09 2004-03-11 Hitachi Chem Co Ltd 半導体モールド用離型シート
JP2006049850A (ja) * 2004-06-29 2006-02-16 Asahi Glass Co Ltd 半導体チップ封止用離型フィルム
WO2012077571A1 (ja) * 2010-12-07 2012-06-14 東洋紡績株式会社 モールド工程用離型ポリエステルフィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172864A (ja) * 2008-01-24 2009-08-06 Teijin Dupont Films Japan Ltd 成形加工用多層積層二軸配向ポリエステルフィルム
JP2011194702A (ja) * 2010-03-19 2011-10-06 Toray Ind Inc 積層フィルムおよびそれを用いた成型用シート
JP2011230289A (ja) * 2010-04-23 2011-11-17 Teijin Dupont Films Japan Ltd 離型フィルム
JP2012066586A (ja) * 2011-10-24 2012-04-05 Mitsubishi Plastics Inc 成型同時転写用ポリエステルフィルム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051060A (zh) * 2017-08-30 2020-04-21 东丽薄膜先端加工股份有限公司 脱模膜
WO2019069658A1 (ja) * 2017-10-06 2019-04-11 東レフィルム加工株式会社 モールド成形用離型フィルムおよびモールド成形法
CN111183010A (zh) * 2017-10-06 2020-05-19 东丽薄膜先端加工股份有限公司 模塑成型用脱模膜及模塑成型法
JPWO2019069658A1 (ja) * 2017-10-06 2020-09-10 東レフィルム加工株式会社 モールド成形用離型フィルムおよびモールド成形法
JP7046825B2 (ja) 2017-10-06 2022-04-04 東レフィルム加工株式会社 モールド成形用離型フィルムおよびモールド成形法
CN113677494A (zh) * 2019-03-20 2021-11-19 小林股份有限公司 模具与离型膜的组合、离型膜、模具、以及成形体的制造方法
CN113573898A (zh) * 2019-03-25 2021-10-29 二村化学株式会社 具有膜状树脂层的薄板状层叠物的制造方法
CN113573898B (zh) * 2019-03-25 2023-07-04 二村化学株式会社 具有膜状树脂层的薄板状层叠物的制造方法

Also Published As

Publication number Publication date
TW201737366A (zh) 2017-10-16
JP6902273B2 (ja) 2021-07-14
JPWO2017130952A1 (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017130952A1 (ja) 半導体パッケージの製造方法および半導体パッケージの製造工程用離型フィルム
TWI748056B (zh) 熱收縮性聚酯系膜、熱收縮性標籤以及包裝體
KR20150105943A (ko) 이형 필름 및 그 제조방법
KR101816619B1 (ko) 이형용 2축 연신 폴리에스테르 필름
TW201817603A (zh) 聚酯膜
US20150210879A1 (en) Laminated film and method for producing the same
JP6271118B2 (ja) ガスバリア性二軸延伸ポリブチレンテレフタレートフィルム
KR20150105942A (ko) 이형 필름 및 그 제조방법
JP4232004B2 (ja) 二軸配向ポリエステルフィルム
JP6983397B2 (ja) 半導体パッケージの製造工程用離型フィルムおよびその製造方法
JPH05254015A (ja) ポリエステル系シュリンクフイルム
JP2002347109A (ja) 成形加工用二軸延伸ポリエステルフィルムおよびその製造方法
JP2004034451A (ja) 熱収縮性ポリエステル系フィルムの製造方法
JP2006328271A (ja) 熱収縮性ポリエステル系フィルム及び熱収縮性ラベル
JP4543743B2 (ja) 成形用二軸延伸ポリ乳酸フィルムおよび容器
JP2005146112A (ja) 板紙用貼合せフィルム
JP2020147723A (ja) 離型フィルムおよびその製造方法
JPH0367629A (ja) 成形用二軸延伸ポリエステルフィルム
JP5564753B2 (ja) 熱収縮性ポリエステル系フィルム、及び熱収縮性ラベル
JPH04344222A (ja) ポリエステル系シュリンクフイルム
JP4411937B2 (ja) 容器用ポリエステル樹脂ラミネート金属板
JP2003064202A (ja) 手切れ性に優れたポリエステルフィルムおよびその製造法
JP4617663B2 (ja) Ptp包装用容器
JP2009040960A (ja) ポリエステルの熱処理方法
JP2002103443A (ja) 成形加工用二軸延伸ポリエステルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531418

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744182

Country of ref document: EP

Kind code of ref document: A1