WO2017130769A1 - 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法 - Google Patents

蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法 Download PDF

Info

Publication number
WO2017130769A1
WO2017130769A1 PCT/JP2017/001227 JP2017001227W WO2017130769A1 WO 2017130769 A1 WO2017130769 A1 WO 2017130769A1 JP 2017001227 W JP2017001227 W JP 2017001227W WO 2017130769 A1 WO2017130769 A1 WO 2017130769A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
canister
internal pressure
fuel tank
vapor passage
Prior art date
Application number
PCT/JP2017/001227
Other languages
English (en)
French (fr)
Inventor
善和 宮部
啓太 福井
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Priority to CN201780008510.5A priority Critical patent/CN108603466B/zh
Priority to DE112017000518.3T priority patent/DE112017000518B4/de
Priority to US16/072,438 priority patent/US10907592B2/en
Publication of WO2017130769A1 publication Critical patent/WO2017130769A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0023Valves in the fuel supply and return system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0827Judging failure of purge control system by monitoring engine running conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation

Definitions

  • the present disclosure relates to an evaporative fuel processing apparatus including a block valve installed in a vapor passage connecting a fuel tank and a canister, and a valve opening start position learning method of the block valve.
  • the valve opening start position of the block valve is learned based on the change in the internal pressure of the fuel tank when the block valve driven by the stepping motor and the axial distance between the valve body and the valve seat of the block valve are changed.
  • An evaporative fuel processing device including a control device is known (for example, see Patent Document 1).
  • the control device of the fuel vapor processing apparatus moves the valve body in the valve opening direction from the valve closing limit position of the block valve by a predetermined stroke, and the internal pressure of the fuel tank is set to the previously detected value. On the other hand, it is determined whether or not it has decreased by a predetermined value or more.
  • the control device determines that the internal pressure of the fuel tank has decreased by a predetermined value or more with respect to the previous detection value, the control device regards that the block valve has started to open, and based on the total stroke amount from the valve closing limit position.
  • the learning value of the valve opening start position is calculated. Further, the control device determines whether or not the increase in the internal pressure of the fuel tank is within the allowable range, and the increase in the internal pressure of the fuel tank is outside the allowable range during or before learning the valve opening start position of the block valve. If it is determined that the learning is, the learning of the valve opening start position is interrupted or prohibited.
  • the detection value of the sensor that detects the internal pressure of the fuel tank changes not only according to the fuel evaporation state in the fuel tank but also depending on the behavior of the vehicle equipped with the evaporated fuel processing device, that is, the behavior of the fuel in the fuel tank. . Therefore, even if learning of the valve opening start position of the blocking valve is once started, learning of the valve opening start position is prohibited if the internal pressure (detected value) of the fuel tank changes due to a change in fuel behavior as the vehicle travels. Or it may be interrupted. Therefore, the conventional evaporative fuel processing apparatus still has room for improvement in terms of securing an opportunity to learn the valve opening start position.
  • the main object of the invention of the present disclosure is to increase the learning opportunities for the opening start position of the block valve.
  • An evaporative fuel processing apparatus of the present disclosure is provided in a vapor passage that connects a fuel tank and a canister, and has a block valve having a valve body that moves forward and backward in an axial direction with respect to a valve seat, and communication between the canister and the atmosphere.
  • an evaporative fuel processing apparatus including a shut-off valve that can be shut off and a pressure reducing pump that can reduce the internal pressure of the canister, the shut-off valve shuts off the communication between the canister and the atmosphere and opens the block valve.
  • the pressure reduction pump reduces the internal pressure of the fuel tank through the canister to diagnose the presence or absence of leakage in the vapor passage, and the vapor passage diagnosis portion detects leakage in the vapor passage.
  • the vapor passage diagnosis unit of the evaporative fuel processing apparatus reduces the internal pressure of the fuel tank through the canister by the decompression pump while the communication between the canister and the atmosphere is shut off by the shut-off valve and the block valve is opened. Diagnose the presence or absence of leaks in the vapor path.
  • the learning unit learns the valve opening start position of the sealing valve when the internal pressure of the fuel tank is equal to or lower than a predetermined value after the vapor passage diagnosis unit diagnoses whether there is a leak in the vapor passage. That is, after the diagnosis of the presence or absence of leakage in the vapor passage is executed, the internal pressure of the fuel tank has decreased, and when the internal pressure of the fuel tank is not more than a predetermined value after the diagnosis, the opening of the block valve is started. Location learning can be performed. Therefore, in this fuel vapor processing apparatus, it is possible to further increase the learning opportunities for the valve opening start position of the blocking valve.
  • the evaporative fuel treatment device may be configured so that the purge passage connected to the canister and the shutoff valve block communication between the canister and the atmosphere and close the shutoff valve, and
  • a purge passage diagnosis unit that lowers the internal pressure of the canister and diagnoses the presence or absence of a leak in the purge passage may further include a vapor passage diagnosis unit that detects whether or not there is a leak in the purge passage by the purge passage diagnosis unit. After the diagnosis, the presence or absence of a leak in the vapor passage may be diagnosed.
  • the vapor passage diagnosis unit detects a leak in the vapor passage when the internal pressure of the fuel tank exceeds a first threshold value lower than a standard atmospheric pressure and is lower than a second threshold value higher than the standard atmospheric pressure. The presence or absence of this may be diagnosed.
  • the learning unit may perform learning of the valve opening start position when the internal pressure of the fuel tank is equal to or lower than the first threshold value or equal to or higher than the second threshold value.
  • the predetermined value may be the first threshold value.
  • a valve opening start position learning method for a sealing valve in an evaporative fuel processing apparatus is provided in a vapor passage that connects a fuel tank and a canister and has a valve body that moves forward and backward in an axial direction with respect to a valve seat.
  • a valve opening start position learning method for a closing valve in an evaporative fuel processing apparatus comprising: a shutoff valve capable of shutting off communication between the canister and the atmosphere; and a pressure reducing pump capable of reducing an internal pressure of the canister, (A) With the shut-off valve shutting off the communication between the canister and the atmosphere and opening the block valve, the vapor passage reduces the internal pressure of the fuel tank via the canister with the decompression pump.
  • step (B) Diagnosing the presence or absence of leaks in (B) When the internal pressure of the fuel tank is not more than a predetermined value after the presence or absence of leakage in the vapor passage is diagnosed in step (a), the axial distance between the valve body and the valve seat is changed. Learning a valve opening start position of the block valve based on a change in internal pressure of the fuel tank at the time.
  • FIG. 1 is a schematic configuration diagram illustrating an evaporated fuel processing apparatus 20 according to the present disclosure.
  • evaporative fuel generated in a fuel tank 10 storing fuel supplied to a combustion chamber 2 of an engine (internal combustion engine) 1 mounted on a vehicle (not shown) leaks to the outside. It is for suppressing the above.
  • the air purified by the air cleaner 3 is sucked into the combustion chambers 2 via the intake pipe 4, the throttle valve 5, an intake valve (not shown), and the like.
  • the fuel is injected from the fuel injection valve 6 in 4p or in each combustion chamber 2.
  • the engine 1 is controlled by an electronic control unit (hereinafter referred to as “ECU”) 8 which is a microcomputer including a CPU (not shown).
  • ECU electronice control unit
  • the vehicle on which the engine 1 is mounted may have only the engine 1 as a power source that outputs driving power, and includes a hybrid that includes an electric motor that can output driving power in addition to the engine 1. It may be a vehicle.
  • the fuel tank 10 regulates a fuel inlet pipe 11 for supplying fuel into the fuel tank 10 through a fuel filler port of a vehicle (not shown), a vent line 12, and a reverse flow of fuel from the fuel tank 10 to the fuel filler port.
  • a check valve 13 a fuel sender gauge 14 for detecting the level of fuel in the fuel tank 10 using a float, a tank internal pressure sensor 15 for detecting the internal pressure Ptk of the fuel tank 10, and the like.
  • Each of the fuel sender gauge 14 and the tank internal pressure sensor 15 transmits a signal indicating the detected value to the ECU 8.
  • a fuel passage 16 is connected to the upper portion of the fuel tank 10, and a fuel pump module 17 controlled by the ECU 8 and connected to the fuel passage 16 is disposed in the fuel tank 10. The fuel injected by the fuel pump module 17 is supplied to the fuel injection valve 6 of the engine 1 through the fuel passage 16.
  • the evaporative fuel processing device 20 is installed in the middle of a canister 22, a vapor passage 24 connecting the fuel tank 10 and the canister 22, a purge passage 26, an atmospheric passage 28, and a vapor passage 24.
  • Block valve 30 The canister 22 has activated carbon as an adsorbent disposed therein, and adsorbs the evaporated fuel in the fuel tank 10 with the adsorbent.
  • One end portion (upstream end portion) of the vapor passage 24 is connected to the fuel tank 10 so as to communicate with the gas layer portion in the fuel tank 10, and the other end portion (downstream end portion) of the vapor passage 24 is
  • the canister 22 is connected to communicate with the inside of the canister 22.
  • One end (upstream end) of the purge passage 26 is connected to the canister 22 so as to communicate with the inside of the canister 22, and the other end (downstream end) of the purge passage 26 is connected to the engine 1.
  • the intake pipe 4 is connected downstream of the throttle valve 5.
  • a purge valve 27 that can shut off the purge passage 26 is provided in the middle of the purge passage 26.
  • the purge valve 27 is an on-off valve controlled by the ECU 8, and is normally maintained in a closed state.
  • one end of the atmospheric passage 28 is connected to the canister 22 via a key-off pump module 40 as a diagnostic part used for failure diagnosis of the evaporated fuel processing apparatus 20.
  • the key-off pump module 40 includes a switching valve (shutoff valve) 41 and a vacuum pump (decompression pump) 45 that are open / close valves controlled by the ECU 8, and a canister internal pressure sensor 47 that detects the internal pressure Pc of the canister 22 and transmits it to the ECU 8.
  • the switching valve 41 allows communication between the inside of the canister 22 and the atmospheric passage 28 when the valve is open, and blocks communication between the two when the valve is closed.
  • the vacuum pump 45 can depressurize (depressurize) the inside of the canister 22 with the switching valve 41 closed.
  • An air filter 29 is installed in the middle of the atmospheric passage 28, and the other end of the atmospheric passage 28 is open to the atmosphere.
  • the block valve 30 is a flow rate adjustment valve controlled by the ECU 8, blocks the vapor passage 24 when the valve is closed, blocks communication between the fuel tank 10 and the canister 22, and flows through the vapor passage 24 when the valve is open.
  • the flow rate of the gas to be adjusted is adjusted.
  • the blocking valve 30 includes a casing 31, a valve seat 32 formed in the casing 31, a valve body 33 disposed in the casing 31 so as to be movable in the axial direction, and a valve guide (not shown) disposed in the casing 31.
  • a stepping motor 34 connected to the valve body 33 via the. The stepping motor 34 is controlled by the ECU 8 and moves the valve body 33 forward and backward relative to the valve seat 32 in the axial direction.
  • valve body 33 With the operation of the stepping motor 34, the valve body 33 approaches the valve seat 32, and a sealing member (not shown) of the valve body 33 comes into contact with the valve seat 32, thereby closing the closing valve 30. Further, the valve element 33 is separated from the valve seat 32 in accordance with the operation of the stepping motor 34, and a sealing member (not shown) of the valve element 33 is separated from the valve seat 32, so that the blocking valve 30 is opened.
  • the blocking valve 30 is maintained in the closed state, and the fuel vapor in the fuel tank 10 flows into the canister 22. There is no. Further, while the vehicle is parked, the purge passage 26 is maintained in the shut-off state by closing the purge valve 27, and the canister 22 is in communication with the atmospheric passage 28 by opening the switching valve 41. Maintained. Further, in the fuel vapor processing apparatus 20, the ECU 8 diagnoses whether there is a leak in the vapor passage 24 or the purge passage 26 at the time of key-off of the vehicle with the ignition switch (start switch) turned off (when the operation of the engine 1 is stopped). .
  • the learning execution condition is satisfied when the internal pressure Ptk of the fuel tank 10 is equal to or lower than the first threshold Pa that is lower than the standard atmospheric pressure or equal to or higher than the second threshold Pb that is higher than the standard atmospheric pressure.
  • the ECU 8 opens the purge valve 27 in a state where the interior of the canister 22 is in communication with the atmospheric passage 28.
  • the intake negative pressure of the engine 1 (intake pipe 4) is supplied into the canister 22 via the purge passage 26, so that air flows into the canister 22 from the atmospheric passage 28.
  • the purge valve 27 is opened and the internal pressure Ptk of the fuel tank 10 is equal to or higher than a predetermined value
  • the ECU 8 opens the closing valve 30 to execute the pressure relief of the fuel tank 10.
  • the gas (evaporated fuel) in the fuel tank 10 flows into the canister 22 through the vapor passage 24 (blocking valve 30).
  • the adsorbent of the canister 22 is purged by air or the like flowing into the canister 22, and the evaporated fuel separated from the adsorbent is guided to the intake pipe 4 of the engine 1 together with air and burns in the combustion chamber 2. Be made.
  • FIG. 2 is a flowchart showing an example of a leak diagnosis routine executed by the ECU 8.
  • the leak diagnosis routine of FIG. 2 is executed at a stage where the time measured by a soak timer (not shown) reaches a predetermined time (for example, several hours) after the operation of the engine 1 is stopped.
  • the ECU 8 CPU not shown
  • the ECU 8 first executes a leak diagnosis process (step S100) of the purge passage 26 as shown in FIG.
  • step S100 the ECU 8 closes the switching valve 41 of the key-off pump module 40 to cut off the communication between the canister 22 and the atmosphere, and maintains the purge valve 27 and the block valve 30 in the closed state.
  • the ECU 8 monitors the internal pressure Pc of the canister 22 detected by the canister internal pressure sensor 47 while operating the vacuum pump 45 to reduce the internal pressure Pc of the canister 22.
  • step S110: YES When the ECU 8 determines that the internal pressure Pc of the canister 22 has become equal to or lower than the leak determination threshold value set smaller than the first threshold Pa after the vacuum pump 45 is operated, for example, the ECU 8 stops the vacuum pump 45, It is diagnosed that there is no leak in the purge passage 26 from the canister 22 to the purge valve 27 (step S110: YES). On the other hand, when the ECU 8 determines that the internal pressure Pc is not less than or equal to the leak determination threshold when the vacuum pump 45 is operated for a predetermined time, the ECU 8 stops the vacuum pump 45 and then enters the purge passage 26. It is diagnosed that a leak has occurred (step S110: NO), and this routine is terminated. As described above, when diagnosing that there is a leak in the purge passage 26 and ending this routine, the ECU 8 opens the switching valve 41 and then places a predetermined amount on the instrument panel (not shown) of the vehicle. Display a warning mark.
  • step S110 when it is diagnosed that there is no leak in the purge passage 26 (step S110: YES), the ECU 8 inputs the internal pressure Ptk of the fuel tank 10 detected by the tank internal pressure sensor 15 (step S120). Further, the ECU 8 determines whether or not the input internal pressure Ptk is higher than the first threshold value Pa lower than the standard atmospheric pressure and lower than the second threshold value Pb higher than the standard atmospheric pressure (step S130). When it is determined that the internal pressure Ptk exceeds the first threshold value Pa and is less than the second threshold value Pb (step S130: YES), the leak diagnosis process for the vapor passage 24 (step S140) is executed.
  • step S140 the ECU 8 closes the switching valve 41 of the key-off pump module 40 to open the block valve 30 while blocking the communication between the canister 22 and the atmosphere. In this case as well, the purge valve 27 is maintained in the closed state.
  • the ECU 8 monitors the internal pressure Ptk of the fuel tank 10 detected by the tank internal pressure sensor 15 while reducing the internal pressure Ptk of the fuel tank 10 via the canister 22 by operating the vacuum pump 45 again.
  • the ECU 8 After operating the vacuum pump 45, the ECU 8 causes the internal pressure Ptk of the fuel tank 10 to fall below a predetermined leak determination threshold value (which may be the same as or different from that for the purge passage 26). If it is determined that there is a leak, the vacuum pump 45 is stopped, and it is diagnosed that there is no leak in the vapor passage 24 (step S150: YES), and the closing valve 30 is closed and the switching valve 41 is opened (step S150: YES). Step S160). In contrast, if the ECU 8 determines that the internal pressure Ptk is not less than or equal to the leak determination threshold at the time when the vacuum pump 45 is operated for a predetermined time, the ECU 8 stops the vacuum pump 45 and then enters the vapor passage 24.
  • a predetermined leak determination threshold value which may be the same as or different from that for the purge passage 26.
  • step S150 A diagnosis is made that a leak has occurred (step S150: NO), and this routine is terminated. As described above, even when the routine is terminated after diagnosing that a leak has occurred in the vapor passage 24, the ECU 8 returns the blocking valve 30 and the switching valve 41 to the normal state, and the vehicle is not shown. A predetermined warning mark is displayed on the instrument panel.
  • step S160 the diagnosis of the presence or absence of leaks in the vapor passage 24 and the purge passage 26 of the evaporated fuel processing device 20 is completed, but the ECU 8 of the present embodiment performs processing after the processing in step S160.
  • the internal pressure Ptk of the fuel tank 10 detected by the tank internal pressure sensor 15 is input again (step S170), and it is determined whether or not the input internal pressure Ptk is equal to or lower than the first threshold value Pa (step S180).
  • step S130 the ECU 8 executes the processes of steps S170 and S180. And when it determines with internal pressure Ptk being below 1st threshold value Pa, ECU8 performs learning of the valve opening start position of the sealing valve 30 (step S190).
  • step S190 the ECU 8 sets a predetermined limit valve closing step S0 to an initial step Sint as an initial command value for the stepping motor 34 of the blocking valve 30, and the rotor of the stepping motor 34 rotates by the set initial step Sint.
  • the stepping motor 34 is controlled so as to rotate at high speed, and the initial step Sint is added and stored in the RAM as a step SA.
  • the ECU 8 controls the stepping motor 34 so that the rotor of the stepping motor 34 rotates by a predetermined learning step SL (for example, several steps), and the learning step is added to the step SA after the addition at that time.
  • the value obtained by adding SL is stored in the RAM as a new post-addition step SA.
  • the ECU 8 is based on the internal pressure Ptk of the fuel tank 10 detected by the tank internal pressure sensor 15 until the predetermined time (for example, several hundred mSec) elapses after the rotor rotates by the learning step SL.
  • a change amount ⁇ Ptk of the internal pressure Ptk is acquired (calculated), and it is determined whether or not the absolute value of the acquired change amount ⁇ Ptk is equal to or greater than a predetermined threshold value ⁇ Pref (positive value).
  • step S200 NO
  • the processes after step S170 are executed again.
  • the ECU 8 causes a substantial change in the internal pressure Ptk of the fuel tank 10 when the block valve 30 is opened.
  • the post-addition step SA stored in the RAM at that time is stored in the RAM as a valve opening start step SS that is a learned value of the valve opening start position (step S200: YES).
  • the ECU 8 closes the blocking valve 30 (step S210), and ends this routine. If it is determined in step S180 that the internal pressure Ptk exceeds the first threshold value Pa, the ECU 8 regards that the execution condition for learning the valve opening start position is not satisfied, and even before the learning is completed. This routine is terminated.
  • the ECU 8 that is the control device of the evaporated fuel processing device 20 shuts off the communication between the canister 22 and the atmosphere by the switching valve 41 and opens the block valve 30, and the canister 22 by the vacuum pump 45.
  • the internal pressure Ptk of the fuel tank 10 is reduced through the flow to diagnose the presence or absence of leakage in the vapor passage 24 (step S140).
  • the ECU 8 learns the valve opening start position of the block valve 30 (step S190). Execute.
  • the internal pressure Ptk of the fuel tank 10 has decreased, and the internal pressure Ptk of the fuel tank 10 satisfies the execution condition for learning the valve opening start position after the diagnosis.
  • learning of the valve opening start position of the blocking valve 30 can be performed. Therefore, the evaporative fuel processing apparatus 20 can further increase the learning opportunities for the valve opening start position of the block valve 30.
  • the evaporated fuel processing apparatus 20 of the present disclosure includes the valve body 33 that is installed in the vapor passage 24 that connects the fuel tank 10 and the canister 22 and that moves forward and backward in the axial direction with respect to the valve seat 32.
  • the closing valve 30, the switching valve 41 capable of blocking communication between the canister 22 and the atmosphere, the vacuum pump 45 capable of reducing the internal pressure of the canister 22, the opening and closing control of the closing valve 30, and the valve body 33 and the valve ECU8 which learns the valve opening start position of the blocking valve 30 based on the change of the internal pressure Ptk of the fuel tank 10 when the axial direction distance with the seat 32 is changed.
  • the ECU 8 as the control device shuts off the communication between the canister 22 and the atmosphere by the switching valve 41 and opens the blocking valve 30, and the internal pressure Ptk of the fuel tank 10 through the canister 22 by the vacuum pump 45.
  • Functions as a vapor passage diagnosis unit (steps S140 and S150) for diagnosing the presence or absence of leakage in the vapor passage 24.
  • the ECU 8 learns the opening start position of the block valve 30 when the internal pressure Ptk of the fuel tank 10 is equal to or lower than the first threshold Pa after diagnosis of the presence or absence of leakage in the vapor passage 24 (step S170). , S180, S190). As a result, it is possible to further increase the learning opportunities for the valve opening start position of the blocking valve 30.
  • the ECU 8 reduces the internal pressure Pc of the canister 22 with the vacuum pump 45 while the communication between the canister 22 and the atmosphere is blocked by the switching valve 41 and the block valve 30 is closed.
  • the block valve 30 is opened and the internal pressure Ptk of the fuel tank 10 is lowered by the vacuum pump 45 to diagnose the presence or absence of a leak in the vapor passage 24.
  • the leak diagnosis of the purge passage 26 in step S100 may be omitted.
  • the routine of FIG. 2 may be terminated when the negative determination is made instead of executing the processing after step S170.
  • the invention of the present disclosure can be used in the manufacturing industry of a fuel vapor processing apparatus.

Abstract

蒸発燃料処理装置は、燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁と、キャニスタと大気との連通を遮断可能な遮断弁と、キャニスタの内圧を低下させることができる減圧ポンプと、遮断弁によりキャニスタと大気との連通を遮断すると共に封鎖弁を開弁させた状態で、減圧ポンプによりキャニスタを介して燃料タンクの内圧を低下させてベーパ通路におけるリークの有無を診断するベーパ通路診断部と、ベーパ通路におけるリークの有無の診断後に燃料タンクの内圧が所定値以下である場合に、弁体と弁座との軸方向距離を変化させたときの燃料タンクの内圧変化に基づいて封鎖弁の開弁開始位置を学習する学習部とを含む。

Description

蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法
 本開示は、燃料タンクとキャニスタとを結ぶベーパ通路に設置された封鎖弁を含む蒸発燃料処理装置および当該封鎖弁の開弁開始位置学習方法に関する。
 従来、ステッピングモータにより駆動される封鎖弁と、当該封鎖弁の弁体と弁座との軸方向距離を変化させたときの燃料タンクの内圧変化に基づいて当該封鎖弁の開弁開始位置を学習する制御装置とを含む蒸発燃料処理装置が知られている(例えば、特許文献1参照)。この蒸発燃料処理装置の制御装置は、開弁開始位置の学習に際して、封鎖弁の閉弁限界位置から弁体を所定ストロークずつ開弁方向に移動させると共に、燃料タンクの内圧が前回の検出値に対して所定値以上低下しているか否かを判定する。そして、当該制御装置は、燃料タンクの内圧が前回の検出値に対して所定値以上低下したと判定すると、封鎖弁が開弁し始めたとみなし、閉弁限界位置からのトータルのストローク量に基づいて開弁開始位置の学習値を算出する。また、当該制御装置は、燃料タンクの内圧上昇量が許容範囲内であるか否かを判定し、封鎖弁の開弁開始位置の学習中あるいは学習前に燃料タンクの内圧上昇量が許容範囲外であると判定した場合、当該開弁開始位置の学習を中断あるいは禁止する。
特開2015-110914号公報
 ここで、燃料タンクの内圧を検出するセンサの検出値は、当該燃料タンクにおける燃料の蒸発状態のみならず、蒸発燃料処理装置を搭載した車両の挙動すなわち燃料タンク内の燃料の挙動によっても変化する。従って、封鎖弁の開弁開始位置の学習が一旦開始されても、車両の走行に伴う燃料の挙動の変化によって燃料タンクの内圧(検出値)が変化すると、当該開弁開始位置の学習が禁止または中断されてしまうことがある。従って、上記従来の蒸発燃料処理装置は、開弁開始位置の学習機会の確保の面でなお改善の余地を有している。
 そこで、本開示の発明は、封鎖弁の開弁開始位置の学習機会をより増加させることを主目的とする。
 本開示の蒸発燃料処理装置は、燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁と、前記キャニスタと大気との連通を遮断可能な遮断弁と、前記キャニスタの内圧を低下させることができる減圧ポンプとを含む蒸発燃料処理装置において、前記遮断弁により前記キャニスタと大気との連通を遮断すると共に前記封鎖弁を開弁させた状態で、前記減圧ポンプにより前記キャニスタを介して前記燃料タンクの内圧を低下させて前記ベーパ通路におけるリークの有無を診断するベーパ通路診断部と、前記ベーパ通路診断部による前記ベーパ通路におけるリークの有無の診断後に前記燃料タンクの内圧が所定値以下である場合に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習する学習部とを備えるものである。
 この蒸発燃料処理装置のベーパ通路診断部は、遮断弁によりキャニスタと大気との連通を遮断すると共に封鎖弁を開弁させた状態で、減圧ポンプによりキャニスタを介して燃料タンクの内圧を低下させてベーパ通路におけるリークの有無を診断する。また、学習部は、ベーパ通路診断部によるベーパ通路におけるリークの有無の診断後に燃料タンクの内圧が所定値以下である場合に、封鎖弁の開弁開始位置の学習を実行する。すなわち、ベーパ通路におけるリークの有無の診断が実行された後には、燃料タンクの内圧が低下しており、当該診断後に燃料タンクの内圧が所定値以下である場合には、封鎖弁の開弁開始位置の学習を実行することができる。従って、この蒸発燃料処理装置では、封鎖弁の開弁開始位置の学習機会をより増加させることが可能となる。
 また、前記蒸発燃料処理装置は、前記キャニスタに接続されたパージ通路と、前記遮断弁により前記キャニスタと大気との連通を遮断すると共に前記封鎖弁を閉弁させた状態で、前記減圧ポンプにより前記キャニスタの内圧を低下させて前記パージ通路におけるリークの有無を診断するパージ通路診断部とを更に備えてもよく、前記ベーパ通路診断部は、前記パージ通路診断部による前記パージ通路におけるリークの有無の診断後に、前記ベーパ通路におけるリークの有無を診断するものであってもよい。
 更に、前記ベーパ通路診断部は、前記燃料タンクの内圧が標準大気圧よりも低い第1閾値を上回っており、かつ前記標準大気圧よりも高い第2閾値未満である場合、前記ベーパ通路におけるリークの有無を診断するものであってもよい。
 また、前記学習部は、前記燃料タンクの内圧が前記第1閾値以下であるか、あるいは前記第2閾値以上である場合、前記開弁開始位置の学習を実行するものであってもよく、前記所定値は、前記第1閾値であってもよい。
 本開示の蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法は、燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁と、前記キャニスタと大気との連通を遮断可能な遮断弁と、前記キャニスタの内圧を低下させることができる減圧ポンプとを含む蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法であって、
(a)前記遮断弁により前記キャニスタと大気との連通を遮断すると共に前記封鎖弁を開弁させた状態で、前記減圧ポンプにより前記キャニスタを介して前記燃料タンクの内圧を低下させて前記ベーパ通路におけるリークの有無を診断するステップと、
(b)ステップ(a)にて前記ベーパ通路におけるリークの有無が診断された後に前記燃料タンクの内圧が所定値以下である場合に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習するステップとを含むものである。
 かかる方法によれば、封鎖弁の開弁開始位置の学習機会をより増加させることが可能となる。
本開示の蒸発燃料処理装置を示す概略構成図である。 本開示の蒸発燃料処理装置において実行されるリーク診断ルーチンの一例を示すフローチャートである。
 次に、図面を参照しながら本開示の発明を実施するための形態について説明する。
 図1は、本開示の蒸発燃料処理装置20を示す概略構成図である。同図に示す蒸発燃料処理装置20は、図示しない車両に搭載されるエンジン(内燃機関)1の燃焼室2に供給される燃料を貯留する燃料タンク10で発生した蒸発燃料が外部へと漏洩するのを抑制するためのものである。ここで、エンジン1では、エアクリーナ3にて清浄された空気が吸気管4、スロットルバルブ5、図示しない吸気バルブ等を介して各燃焼室2内に吸入され、吸入空気に対しては、吸気ポート4pあるいは各燃焼室2内で燃料噴射弁6から燃料が噴射される。そして、空気と燃料との混合気が各燃焼室2で図示しない点火プラグからの電気火花によって爆発燃焼することで、ピストン7が往復運動することになる。かかるエンジン1は、図示しないCPU等を含むマイクロコンピュータである電子制御ユニット(以下「ECU」という)8により制御される。なお、エンジン1が搭載される車両は、エンジン1のみを走行用の動力を出力する動力源として有するものであってもよく、エンジン1に加えて走行用の動力を出力可能な電動機を含むハイブリッド車両であってもよい。
 燃料タンク10は、図示しない車両の給油口を介して当該燃料タンク10内に燃料を供給するための燃料インレットパイプ11や、ベントライン12、燃料タンク10内から給油口への燃料の逆流を規制する逆止弁13、フロートにより燃料タンク10内の燃料の液面レベルを検出する燃料センダーゲージ14、燃料タンク10の内圧Ptkを検出するタンク内圧センサ15等を有する。燃料センダーゲージ14およびタンク内圧センサ15は、それぞれ検出値を示す信号をECU8に送信する。また、燃料タンク10の上部には、燃料通路16が接続されており、燃料タンク10内には、ECU8により制御されると共に燃料通路16に接続された燃料ポンプモジュール17が配置されている。エンジン1の燃料噴射弁6には、燃料ポンプモジュール17により圧送される燃料が燃料通路16を介して供給される。
 図1に示すように、蒸発燃料処理装置20は、キャニスタ22と、燃料タンク10とキャニスタ22とを結ぶベーパ通路24と、パージ通路26と、大気通路28と、ベーパ通路24の中途に設置された封鎖弁30とを含む。キャニスタ22は、その内部に配置された吸着材としての活性炭を有し、燃料タンク10内の蒸発燃料を当該吸着材により吸着するものである。ベーパ通路24の一端部(上流側端部)は、燃料タンク10内の気層部と連通するように当該燃料タンク10に接続され、ベーパ通路24の他端部(下流側端部)は、キャニスタ22の内部と連通するように当該キャニスタ22に接続される。
 また、パージ通路26の一端部(上流側端部)は、キャニスタ22の内部と連通するように当該キャニスタ22に接続され、パージ通路26の他端部(下流側端部)は、エンジン1のスロットルバルブ5よりも下流側で吸気管4に接続されている。そして、パージ通路26の中途には、パージ通路26を遮断可能なパージ弁27が設置されている。パージ弁27は、ECU8により制御される開閉弁であり、通常閉弁状態に維持される。更に、大気通路28の一端部は、蒸発燃料処理装置20の故障診断に使用される診断用部品としてのキーオフポンプモジュール40を介してキャニスタ22に接続されている。キーオフポンプモジュール40は、それぞれECU8により制御される開閉弁である切換弁(遮断弁)41および真空ポンプ(減圧ポンプ)45と、キャニスタ22の内圧Pcを検出してECU8に送信するキャニスタ内圧センサ47とを含むものである。切換弁41は、開弁状態でキャニスタ22の内部と大気通路28との連通を許容し、閉弁状態で両者の連通を遮断するものである。真空ポンプ45は、切換弁41の閉弁状態でキャニスタ22の内部を減圧(負圧化)可能なものである。また、大気通路28の中途には、エアフィルタ29が設置されており、大気通路28の他端部は大気開放されている。
 封鎖弁30は、ECU8により制御される流量調整弁であり、閉弁状態でベーパ通路24を封鎖して燃料タンク10とキャニスタ22との連通を遮断すると共に、開弁状態でベーパ通路24を流通する気体の流量を調整するものである。封鎖弁30は、ケーシング31と、ケーシング31に形成された弁座32と、ケーシング31内に軸方向に移動自在に配置される弁体33と、ケーシング31内に配置されると共に図示しないバルブガイドを介して弁体33に連結されるステッピングモータ34とを含む。ステッピングモータ34は、ECU8により制御され、弁体33を弁座32に対して軸方向に進退移動させる。ステッピングモータ34の作動に伴って弁体33が弁座32に接近し、当該弁体33の図示しないシール部材が弁座32に当接することで封鎖弁30が閉弁する。また、ステッピングモータ34の作動に伴って弁体33が弁座32から離間し、当該弁体33の図示しないシール部材が弁座32から離間することで封鎖弁30が開弁する。
 上述のような蒸発燃料処理装置20において、車両の駐車中(エンジン1の運転停止中)、封鎖弁30は閉弁状態に維持され、燃料タンク10内の蒸発燃料がキャニスタ22内に流入することはない。また、車両の駐車中、パージ通路26は、パージ弁27が閉弁されることで遮断状態に維持され、キャニスタ22は、切換弁41が開弁されることで大気通路28に連通された状態に維持される。更に、蒸発燃料処理装置20では、イグニッションスイッチ(スタートスイッチ)がオフされた車両のキーオフ時(エンジン1の運転停止時)に、ECU8によってベーパ通路24やパージ通路26のリークの有無が診断される。
 一方、車両のイグニッションスイッチがオンされると、予め定められた学習実行条件が成立した際に、弁体33と弁座32との軸方向距離を変化させたときの燃料タンク10の内圧変化に基づいて、封鎖弁30の開弁開始位置の学習が実行される。本実施形態において、当該学習実行条件は、燃料タンク10の内圧Ptkが標準大気圧よりも低い第1閾値Pa以下であるか、あるいは標準大気圧よりも高い第2閾値Pb以上である場合に成立する。また、車両の走行中に予め定められたパージ条件が成立すると、ECU8は、キャニスタ22の内部が大気通路28に連通された状態でパージ弁27を開弁させる。これにより、エンジン1(吸気管4)の吸気負圧がパージ通路26を介してキャニスタ22内に供給されることで、キャニスタ22内に大気通路28から空気が流入する。更に、ECU8は、パージ弁27が開弁されており、かつ燃料タンク10の内圧Ptkが所定値以上である場合、当該燃料タンク10の圧抜きを実行すべく封鎖弁30を開弁させる。これにより、ベーパ通路24(封鎖弁30)を介してキャニスタ22内に燃料タンク10内の気体(蒸発燃料)が流入するようになる。そして、キャニスタ22の吸着材は、当該キャニスタ22内に流入する空気等によりパージされ、吸着材から離脱した蒸発燃料は、空気と共にエンジン1の吸気管4へと導かれて燃焼室2内で燃焼させられる。
 次に、図2を参照しながら、蒸発燃料処理装置20におけるベーパ通路24やパージ通路26のリークの有無の診断について説明する。図2は、ECU8により実行されるリーク診断ルーチンの一例を示すフローチャートである。
 本実施形態において、図2のリーク診断ルーチンは、エンジン1の運転が停止されてから図示しないソークタイマの計時時間が所定時間(例えば数時間)に達した段階で実行される。ECU8(図示しないCPU)は、リーク診断ルーチンの実行タイミングが到来すると、図2に示すように、まずパージ通路26のリーク診断処理(ステップS100)を実行する。ステップS100において、ECU8は、キーオフポンプモジュール40の切換弁41を閉弁させてキャニスタ22と大気との連通を遮断すると共に、パージ弁27および封鎖弁30を閉弁状態に維持する。次いで、ECU8は、真空ポンプ45を作動させてキャニスタ22の内圧Pcを低下させながら、キャニスタ内圧センサ47により検出されるキャニスタ22の内圧Pcを監視する。
 ECU8は、真空ポンプ45を作動させた後にキャニスタ22の内圧Pcが例えば上記第1閾値Paよりも小さく定められたリーク判定閾値以下になったと判定した場合、真空ポンプ45を停止させた上で、キャニスタ22からパージ弁27までのパージ通路26にリークが生じていないと診断する(ステップS110:YES)。これに対して、ECU8は、真空ポンプ45を所定時間だけ作動させた時点で内圧Pcがリーク判定閾値以下になっていないと判定した場合、真空ポンプ45を停止させた上で、パージ通路26にリークが生じていると診断し(ステップS110:NO)、本ルーチンを終了させる。このように、パージ通路26にリークが生じていると診断して本ルーチンを終了させた場合、ECU8は、切換弁41を開弁させた上で、車両の図示しないインストルメントパネル上に所定の警告マークを表示させる。
 一方、パージ通路26にリークが生じていないと診断した場合(ステップS110:YES)、ECU8は、タンク内圧センサ15により検出された燃料タンク10の内圧Ptkを入力する(ステップS120)。更にECU8は、入力した内圧Ptkが標準大気圧よりも低い上記第1閾値Paを上回っており、かつ標準大気圧よりも高い上記第2閾値Pb未満であるか否かを判定し(ステップS130)、内圧Ptkが第1閾値Paを上回っており、かつ第2閾値Pb未満であると判定した場合(ステップS130:YES)、ベーパ通路24のリーク診断処理(ステップS140)を実行する。ステップS140において、ECU8は、キーオフポンプモジュール40の切換弁41を閉弁させてキャニスタ22と大気との連通を遮断したまま、封鎖弁30を開弁させる。なお、この場合も、パージ弁27は、閉弁状態に維持される。次いで、ECU8は、真空ポンプ45を再度作動させてキャニスタ22を介して燃料タンク10の内圧Ptkを低下させながら、タンク内圧センサ15により検出される燃料タンク10の内圧Ptkを監視する。
 ECU8は、真空ポンプ45を作動させた後に燃料タンク10の内圧Ptkが予め定められたリーク判定閾値(パージ通路26用のものと同一であってもよく、異なっていてもよい。)以下になったと判定した場合、真空ポンプ45を停止させた上で、ベーパ通路24にリークが生じていないと診断し(ステップS150:YES)、封鎖弁30を閉弁させると共に切換弁41を開弁させる(ステップS160)。これに対して、ECU8は、真空ポンプ45を所定時間だけ作動させた時点で内圧Ptkがリーク判定閾値以下になっていないと判定した場合、真空ポンプ45を停止させた上で、ベーパ通路24にリークが生じていると診断し(ステップS150:NO)、本ルーチンを終了させる。このように、ベーパ通路24にリークが生じていると診断して本ルーチンを終了させた場合も、ECU8は、封鎖弁30や切換弁41を通常の状態に戻した上で、車両の図示しないインストルメントパネル上に所定の警告マークを表示させる。
 上述のような処理が行われる結果、蒸発燃料処理装置20のベーパ通路24およびパージ通路26におけるリークの有無の診断が完了することになるが、本実施形態のECU8は、ステップS160の処理の後、タンク内圧センサ15により検出された燃料タンク10の内圧Ptkを再度入力し(ステップS170)、入力した内圧Ptkが上記第1閾値Pa以下であるか否かを判定する(ステップS180)。同様に、上記ステップS130にて否定判断を行った場合も、ECU8は、ステップS170およびS180の処理を実行する。そして、内圧Ptkが第1閾値Pa以下であると判定した場合、ECU8は、封鎖弁30の開弁開始位置の学習(ステップS190)を実行する。
 ステップS190において、ECU8は、予め定められた限界閉弁ステップS0を封鎖弁30のステッピングモータ34に対する初期指令値としての初期ステップSintに設定し、設定した初期ステップSintだけステッピングモータ34のロータが回転(高速回転)するように当該ステッピングモータ34を制御すると共に、初期ステップSintを加算後ステップSAとしてRAMに記憶させる。次いで、ECU8は、ステッピングモータ34のロータが予め定められた学習用ステップSL(例えば、数ステップ)だけ回転するように当該ステッピングモータ34を制御すると共に、その時点の加算後ステップSAに学習用ステップSLを加算した値を新たな加算後ステップSAとしてRAMに記憶させる。
 更に、ECU8は、タンク内圧センサ15により検出される燃料タンク10の内圧Ptkに基づいて、ロータが学習用ステップSLだけ回転してから所定時間(例えば、数百mSec)が経過するまでの間の内圧Ptkの変化量ΔPtkを取得(算出)し、取得した変化量ΔPtkの絶対値が予め定められた閾値ΔPref(正の値)以上であるか否かを判定する。内圧Ptkの変化量ΔPtkの絶対値が閾値ΔPref未満であると判定した場合、ECU8は、燃料タンク10の内圧Ptkの実質的な変化が生じておらず、封鎖弁30が開弁に至っていない(学習が完了していない)とみなし(ステップS200:NO)、上述のステップS170以降の処理を再度実行する。
 これに対して、内圧Ptkの変化量ΔPtkの絶対値が閾値ΔPref以上であると判定した場合、ECU8は、封鎖弁30が開弁することで燃料タンク10の内圧Ptkに実質的な変化が生じたとみなし、その時点でRAMに記憶されている加算後ステップSAを開弁開始位置の学習値である開弁開始ステップSSとしてRAMに記憶させる(ステップS200:YES)。そして、ECU8は、封鎖弁30を閉弁させた上で(ステップS210)、本ルーチンを終了させる。なお、ステップS180にて内圧Ptkが第1閾値Paを上回っていると判定した場合、ECU8は、開弁開始位置の学習の実行条件が成立していないとみなし、学習の完了前であっても本ルーチンを終了させる。
 上述のように、蒸発燃料処理装置20の制御装置であるECU8は、切換弁41によりキャニスタ22と大気との連通を遮断すると共に封鎖弁30を開弁させた状態で、真空ポンプ45によりキャニスタ22を介して燃料タンク10の内圧Ptkを低下させてベーパ通路24におけるリークの有無を診断する(ステップS140)。そして、ECU8は、ベーパ通路24におけるリークの有無の診断後に燃料タンク10の内圧Ptkが第1閾値(所定値)Pa以下である場合に、封鎖弁30の開弁開始位置の学習(ステップS190)を実行する。すなわち、ベーパ通路24におけるリークの有無の診断が実行された後には、燃料タンク10の内圧Ptkが低下しており、当該診断後に燃料タンク10の内圧Ptkが開弁開始位置の学習の実行条件を規定する第1閾値Pa以下である場合には、封鎖弁30の開弁開始位置の学習を実行することができる。従って、蒸発燃料処理装置20では、封鎖弁30の開弁開始位置の学習機会をより増加させることが可能となる。
 以上説明したように、本開示の蒸発燃料処理装置20は、燃料タンク10とキャニスタ22とを結ぶベーパ通路24に設置されると共に弁座32に対して軸方向に進退移動する弁体33を有する封鎖弁30と、キャニスタ22と大気との連通を遮断可能な切換弁41と、キャニスタ22の内圧を低下させることができる真空ポンプ45と、封鎖弁30を開閉制御すると共に、弁体33と弁座32との軸方向距離を変化させたときの燃料タンク10の内圧Ptkの変化に基づいて封鎖弁30の開弁開始位置を学習するECU8とを含む。そして、制御装置としてのECU8は、切換弁41によりキャニスタ22と大気との連通を遮断すると共に封鎖弁30を開弁させた状態で、真空ポンプ45によりキャニスタ22を介して燃料タンク10の内圧Ptkを低下させてベーパ通路24におけるリークの有無を診断するベーパ通路診断部(ステップS140,S150)として機能する。更に、ECU8は、ベーパ通路24におけるリークの有無の診断後に燃料タンク10の内圧Ptkが第1閾値Pa以下である場合に、封鎖弁30の開弁開始位置の学習を実行する学習部(ステップS170,S180,S190)として機能する。この結果、封鎖弁30の開弁開始位置の学習機会をより増加させることが可能となる。
 なお、上記実施形態において、ECU8は、切換弁41によりキャニスタ22と大気との連通を遮断すると共に封鎖弁30を閉弁させた状態で、真空ポンプ45によりキャニスタ22の内圧Pcを低下させて当該キャニスタ22に接続されたパージ通路26におけるリークの有無を診断した後、封鎖弁30を開弁させると共に真空ポンプ45により燃料タンク10の内圧Ptkを低下させてベーパ通路24におけるリークの有無を診断するが、これに限られるものではない。すなわち、図2において、ステップS100のパージ通路26のリーク診断が省略されてもよい。また、図2のステップS130にて否定判断がされた場合、ステップS170以降の処理を実行する代わりに、当該否定判断がなされた時点で、図2のルーチンを終了させてもよい。
 そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本開示の発明は、蒸発燃料処理装置の製造産業等において利用可能である。

Claims (5)

  1.  燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁と、前記キャニスタと大気との連通を遮断可能な遮断弁と、前記キャニスタの内圧を低下させることができる減圧ポンプとを含む蒸発燃料処理装置において、
     前記遮断弁により前記キャニスタと大気との連通を遮断すると共に前記封鎖弁を開弁させた状態で、前記減圧ポンプにより前記キャニスタを介して前記燃料タンクの内圧を低下させて前記ベーパ通路におけるリークの有無を診断するベーパ通路診断部と、
     前記ベーパ通路診断部による前記ベーパ通路におけるリークの有無の診断後に前記燃料タンクの内圧が所定値以下である場合に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習する学習部と、
     を備える蒸発燃料処理装置。
  2.  請求項1に記載の蒸発燃料処理装置において、
     前記キャニスタに接続されたパージ通路と、
     前記遮断弁により前記キャニスタと大気との連通を遮断すると共に前記封鎖弁を閉弁させた状態で、前記減圧ポンプにより前記キャニスタの内圧を低下させて前記パージ通路におけるリークの有無を診断するパージ通路診断部とを更に備え、
     前記ベーパ通路診断部は、前記パージ通路診断部による前記パージ通路におけるリークの有無の診断後に、前記ベーパ通路におけるリークの有無を診断する蒸発燃料処理装置。
  3.  請求項1または2に記載の蒸発燃料処理装置において、
     前記ベーパ通路診断部は、前記燃料タンクの内圧が標準大気圧よりも低い第1閾値を上回っており、かつ前記標準大気圧よりも高い第2閾値未満である場合、前記ベーパ通路におけるリークの有無を診断する蒸発燃料処理装置。
  4.  請求項3に記載の蒸発燃料処理装置において、
     前記学習部は、前記燃料タンクの内圧が前記第1閾値以下であるか、あるいは前記第2閾値以上である場合、前記開弁開始位置の学習を実行し、前記所定値は、前記第1閾値である蒸発燃料処理装置。
  5.  燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁と、前記キャニスタと大気との連通を遮断可能な遮断弁と、前記キャニスタの内圧を低下させることができる減圧ポンプとを含む蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法であって、
    (a)前記遮断弁により前記キャニスタと大気との連通を遮断すると共に前記封鎖弁を開弁させた状態で、前記減圧ポンプにより前記キャニスタを介して前記燃料タンクの内圧を低下させて前記ベーパ通路におけるリークの有無を診断するステップと、
    (b)ステップ(a)にて前記ベーパ通路におけるリークの有無が診断された後に前記燃料タンクの内圧が所定値以下である場合に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習するステップと、
     を含む蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法。
PCT/JP2017/001227 2016-01-27 2017-01-16 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法 WO2017130769A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780008510.5A CN108603466B (zh) 2016-01-27 2017-01-16 蒸发燃料处理装置和蒸发燃料处理装置中的密封阀的阀打开开始位置的学习方法
DE112017000518.3T DE112017000518B4 (de) 2016-01-27 2017-01-16 Kraftstoffdampfbehandlungsvorrichtung und Lernmethode einer Ventilöffnungsstartposition eines Dichtungsventils in einer Kraftstoffdampfbehandlungsvorrichtung
US16/072,438 US10907592B2 (en) 2016-01-27 2017-01-16 Vaporized fuel treatment device and learning method of valve opening start position of sealing valve in vaporized fuel treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016013419A JP6586369B2 (ja) 2016-01-27 2016-01-27 蒸発燃料処理装置
JP2016-013419 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130769A1 true WO2017130769A1 (ja) 2017-08-03

Family

ID=59398023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001227 WO2017130769A1 (ja) 2016-01-27 2017-01-16 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法

Country Status (5)

Country Link
US (1) US10907592B2 (ja)
JP (1) JP6586369B2 (ja)
CN (1) CN108603466B (ja)
DE (1) DE112017000518B4 (ja)
WO (1) WO2017130769A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133411A (ja) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 蒸発燃料処理装置
JP6795430B2 (ja) * 2017-03-14 2020-12-02 トヨタ自動車株式会社 蒸発燃料処理装置
US10481043B2 (en) * 2017-09-12 2019-11-19 GM Global Technology Operations LLC Method for small leak testing of an evaporative emissions system
FR3078747B1 (fr) * 2018-03-08 2020-02-14 Continental Automotive France Detection de fuite dans un dispositif d'evaporation des vapeurs d'un carburant stocke dans un reservoir d'un moteur thermique de vehicule
JP7139880B2 (ja) * 2018-10-26 2022-09-21 株式会社デンソー 蒸発燃料処理装置
JP2020133503A (ja) * 2019-02-20 2020-08-31 愛三工業株式会社 蒸発燃料処理装置
US11168648B2 (en) * 2019-06-03 2021-11-09 Ford Global Technologies, Llc Systems and methods for vehicle fuel system and evaporative emissions system diagnostics
JP2021120555A (ja) 2020-01-30 2021-08-19 株式会社デンソー 蒸発燃料処理装置
US11933251B2 (en) * 2022-07-20 2024-03-19 Ford Global Technologies, Llc Fuel system fuel vapor recirculation system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328867A (ja) * 2002-05-17 2003-11-19 Honda Motor Co Ltd 蒸発燃料処理系の漏れ診断装置
JP2010216287A (ja) * 2009-03-13 2010-09-30 Toyota Motor Corp ハイブリッド車両用蒸発燃料処理装置の故障診断装置
JP2011226401A (ja) * 2010-04-21 2011-11-10 Aisan Industry Co Ltd 蒸発燃料処理装置
JP2015045264A (ja) * 2013-08-28 2015-03-12 三菱自動車工業株式会社 燃料タンクシステム
JP2015218659A (ja) * 2014-05-19 2015-12-07 愛三工業株式会社 蒸発燃料処理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166001B2 (ja) * 2001-05-02 2008-10-15 株式会社日本自動車部品総合研究所 蒸発燃料処理装置およびその故障診断装置
JP3849584B2 (ja) * 2002-06-07 2006-11-22 トヨタ自動車株式会社 蒸発燃料処理装置
JP4241102B2 (ja) 2003-03-10 2009-03-18 三菱電機株式会社 蒸散燃料ガスリーク検出装置及びこの装置に適用されるベントバルブ装置
US8640676B2 (en) * 2010-03-11 2014-02-04 Honda Motor Co., Ltd. Evaporated fuel treatment apparatus
US8602004B2 (en) 2010-04-09 2013-12-10 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
JP6076885B2 (ja) 2013-11-25 2017-02-08 愛三工業株式会社 蒸発燃料処理装置
JP6133201B2 (ja) * 2013-12-06 2017-05-24 愛三工業株式会社 蒸発燃料処理装置
JP6177675B2 (ja) * 2013-12-06 2017-08-09 愛三工業株式会社 蒸発燃料処理装置
JP6087266B2 (ja) * 2013-12-06 2017-03-01 愛三工業株式会社 蒸発燃料処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328867A (ja) * 2002-05-17 2003-11-19 Honda Motor Co Ltd 蒸発燃料処理系の漏れ診断装置
JP2010216287A (ja) * 2009-03-13 2010-09-30 Toyota Motor Corp ハイブリッド車両用蒸発燃料処理装置の故障診断装置
JP2011226401A (ja) * 2010-04-21 2011-11-10 Aisan Industry Co Ltd 蒸発燃料処理装置
JP2015045264A (ja) * 2013-08-28 2015-03-12 三菱自動車工業株式会社 燃料タンクシステム
JP2015218659A (ja) * 2014-05-19 2015-12-07 愛三工業株式会社 蒸発燃料処理装置

Also Published As

Publication number Publication date
JP6586369B2 (ja) 2019-10-02
JP2017133412A (ja) 2017-08-03
CN108603466B (zh) 2020-06-26
DE112017000518T5 (de) 2018-10-11
CN108603466A (zh) 2018-09-28
US10907592B2 (en) 2021-02-02
US20190032613A1 (en) 2019-01-31
DE112017000518B4 (de) 2022-08-11

Similar Documents

Publication Publication Date Title
JP6586369B2 (ja) 蒸発燃料処理装置
JP6588357B2 (ja) 蒸発燃料処理装置
JP4483523B2 (ja) 内燃機関の蒸発燃料処理装置
US7383826B2 (en) Fuel vapor treatment apparatus, system having the same, method for operating the same
US7082815B1 (en) Evaporated fuel treatment device of internal combustion engine
CN110945230B (zh) 蒸发燃料处理装置的泄漏检测装置
US9523316B2 (en) Vaporized fuel processing apparatus
WO2013133234A1 (ja) 蒸発燃料処理装置の診断装置および診断方法
JP4337730B2 (ja) 蒸発燃料処理装置のリーク診断装置
WO2017130708A1 (ja) 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法
JP4182650B2 (ja) パージシステムの故障診断装置
JP6202267B2 (ja) 燃料蒸発ガス排出抑止装置
JP6308266B2 (ja) 蒸発燃料処理システムの異常診断装置
US20210270213A1 (en) Leakage Diagnosis Device for Fuel Vapor Processing Apparatus
JP7322809B2 (ja) 蒸発燃料処理装置の漏れ穴判定装置
JP4526901B2 (ja) 蒸発燃料処理システムの診断装置
JP3888287B2 (ja) 燃料蒸気パージシステムの故障診断装置及び燃料蒸気パージシステムの故障診断方法
JPH06235355A (ja) 内燃機関の蒸発燃料蒸散防止装置の故障診断装置
JP2019101003A (ja) 燃料レベル検出手段の故障診断装置
JP2005076469A (ja) 蒸発燃料処理システムの診断装置および診断方法
JP3044995B2 (ja) 燃料蒸発ガス抑止装置の診断装置
JPH08326611A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000518

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744000

Country of ref document: EP

Kind code of ref document: A1