WO2013133234A1 - 蒸発燃料処理装置の診断装置および診断方法 - Google Patents

蒸発燃料処理装置の診断装置および診断方法 Download PDF

Info

Publication number
WO2013133234A1
WO2013133234A1 PCT/JP2013/055898 JP2013055898W WO2013133234A1 WO 2013133234 A1 WO2013133234 A1 WO 2013133234A1 JP 2013055898 W JP2013055898 W JP 2013055898W WO 2013133234 A1 WO2013133234 A1 WO 2013133234A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
purge
canister
valve
processing apparatus
Prior art date
Application number
PCT/JP2013/055898
Other languages
English (en)
French (fr)
Inventor
晋祐 高倉
功 大津
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/380,539 priority Critical patent/US9863375B2/en
Publication of WO2013133234A1 publication Critical patent/WO2013133234A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • B60K2015/03514Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems with vapor recovery means

Definitions

  • the present invention relates to an evaporative fuel processing apparatus that processes evaporative fuel generated in a fuel tank during refueling using a canister, and more particularly, a diagnostic apparatus and diagnosis for diagnosing the presence or absence of an abnormality in a block valve between a fuel tank and a canister Regarding the method.
  • Patent Document 1 discloses an evaporative fuel processing apparatus that is provided with a blocking valve in a passage between a fuel tank and a canister so that evaporative fuel is adsorbed from the fuel tank to the canister basically only at the time of refueling.
  • the fuel tank is kept in a sealed state by the blocking valve when the vehicle is stopped other than at the time of refueling, and the system prevents the evaporative fuel from flowing out to the outside more reliably.
  • the evaporative fuel processing apparatus of patent document 1 is equipped with the diagnostic apparatus which diagnoses the presence or absence of the open failure which cannot be closed because the sealing valve is stuck in the open state.
  • the diagnostic device of Patent Document 1 includes a negative pressure pump connected to the drain port side of the canister, and controls the block valve in a closed state at an appropriate time while the vehicle is stopped by the negative pressure pump. Based on the pressure change in the fuel tank area or the pressure change in the canister area at that time, the presence / absence of an open failure of the block valve is determined.
  • the conventional diagnostic device is configured to perform a diagnosis after the operation of the vehicle is stopped, and it is necessary to seal the inside of the evaporated fuel processing system and monitor the pressure change. Sequential diagnosis cannot be performed.
  • a pressure reducing means such as an electric pump is indispensable, and cannot be applied to an evaporative fuel processing apparatus that does not include such a pressure reducing means.
  • the diagnostic device includes a sealing valve capable of communicating / blocking between a canister and a fuel tank.
  • the sealing valve When refueling, the sealing valve is opened to adsorb evaporated fuel generated in the fuel tank with the canister, while the engine It is premised on an evaporative fuel processing apparatus for an internal combustion engine that performs a purge process for introducing a purge gas containing a fuel component desorbed from a canister into an intake system of the internal combustion engine in a state in which the block valve is closed during operation.
  • the evaporated fuel flowing through the blocking valve is detected to diagnose whether the blocking valve is abnormal.
  • the evaporated fuel generated in the fuel tank is blocked. Leaks into the canister through the valve.
  • the purge process is not performed, the amount of adsorption of the canister gradually increases, but there is no active gas movement in the system including the canister, so the evaporative fuel leaking through the block valve is accurately detected. It is difficult to do.
  • the negative pressure of the intake system of the internal combustion engine acts on the canister, and this negative pressure generates a gas flow through the canister.
  • air generally the atmosphere
  • this air flows through the canister and mixes with the fuel component desorbed from the canister to become a so-called purge gas, from the canister to the intake system of the internal combustion engine.
  • purge gas a so-called purge gas
  • the negative pressure acting on the canister if the block valve is not closed due to a failure, the negative pressure also acts on the fuel tank side via the block valve, and a relatively large amount of evaporated fuel flows to the canister. Furthermore, it flows to the intake system of the internal combustion engine. Therefore, as compared with the state in which the purge process is not performed, the increase in the evaporated fuel due to the open failure of the block valve appears significantly during the purge process, and can be detected with higher accuracy.
  • Such a diagnosis of the blocking valve according to the present invention is based on the premise that the internal combustion engine is in operation and purge processing is being executed, and of course can be performed during the operation of the internal combustion engine. In other words, the diagnosis can be performed continuously, that is, repeatedly during the purge process.
  • the present invention it is possible to diagnose the abnormality of the block valve during operation of the internal combustion engine, and it is possible to accurately detect the open failure of the block valve without depending on the pressurizing / depressurizing means such as an electric pump. .
  • FIG. 1 is a structural explanatory view showing an embodiment of a fuel vapor processing apparatus equipped with a diagnostic device according to the present invention.
  • a vehicle (not shown) is equipped with an internal combustion engine 1 and is provided with a sealed fuel tank 2, and a canister 3 is used to process evaporated fuel generated in the fuel tank 2 during refueling.
  • An evaporative fuel processing device is provided.
  • the fuel tank 2 includes a fuel supply pipe portion 5 in which a filler cap 4 is detachably attached to a fuel supply port 5a at the tip, and a fuel pump unit 7 that supplies fuel to the fuel injection device 6 of the internal combustion engine 1. Is contained in the fuel tank 2.
  • the canister 3 has a U-turn channel formed by a synthetic resin case 11 and is filled with an adsorbent 12 made of activated carbon or the like.
  • the canister 3 has a U-turn channel flow.
  • a charge port 13 serving as an inflow portion for the evaporated fuel
  • a purge port 14 serving as an outflow portion for a purge gas containing a fuel component are provided.
  • a drain port 15 for taking in outside air is provided.
  • the charge port 13 is connected to the upper space of the fuel tank 2 through the evaporated fuel passage 16.
  • the tip of the fuel vapor passage 16 on the fuel tank 2 side is connected to the fuel tank via an FLV valve 20 that prevents liquid fuel from overflowing into the fuel vapor passage 16 when the fuel level is high. It communicates with the upper space of 2.
  • a blocking valve 21 for opening and closing the evaporated fuel passage 16 is provided in the middle of the evaporated fuel passage 16. This blocking valve 21 is used for shutting off the canister 3 and the fuel tank 2 and sealing the fuel tank 2 except when refueling, as a general rule, and is a normally closed electromagnetic that closes when no power is supplied. It consists of a valve.
  • the purge port 14 is connected to the intake system of the internal combustion engine 1, for example, the downstream side of the throttle valve 18 of the intake passage 17 via a purge passage 19.
  • the purge passage 19 is provided with a purge control valve 23 for controlling the introduction of the purge gas to the internal combustion engine 1, and prohibits the introduction of the purge gas under a predetermined condition such as when the engine is not warmed up or when the fuel is cut. It has become.
  • the purge control valve 23 is also composed of a normally closed solenoid valve.
  • the purge control valve 23 may be configured to be simply open / close controlled on / off, or may be configured to continuously and variably control the purge gas flow rate by so-called duty ratio control. .
  • the drain port 15 is connected to a drain passage 25 whose tip is open to the atmosphere, and a drain cut valve 26 for opening and closing the drain passage 25 is provided in the drain passage 25.
  • the drain cut valve 26 is a normally open solenoid valve that is opened when the power is not supplied.
  • the drain cut valve 26 detects, for example, leak diagnosis performed by sealing the entire system or breakthrough of the canister 3 (a state in which the amount of evaporated fuel exceeds the capacity of the canister and cannot be absorbed) by some means. Although it may be closed in some cases, the drain passage 25 is basically opened in an open state.
  • the blocking valve 21, the purge control valve 23, and the drain cut valve 26 are various controls of the internal combustion engine 1 (for example, fuel injection amount control, injection timing control, ignition timing control, throttle valve 18 opening control, etc.). As will be described later, an adsorption process at the time of refueling, a purge process during operation, an open failure diagnosis of the blocking valve 21 and the like are executed.
  • a known air-fuel ratio sensor 32 is disposed in the exhaust passage 30 of the internal combustion engine 1 in order to detect the exhaust air-fuel ratio of the internal combustion engine 1.
  • the air-fuel ratio sensor 32 may be a so-called oxygen sensor or a wide area type air-fuel ratio sensor.
  • the fuel injection amount of the fuel injection device 6 is feedback-controlled so that the exhaust air / fuel ratio detected by the air / fuel ratio sensor 32 becomes the target air / fuel ratio (for example, the theoretical air / fuel ratio).
  • a necessary air-fuel ratio feedback correction coefficient ⁇ is calculated based on a detection signal of the air-fuel ratio sensor 32, and the corrected fuel injection amount is obtained by multiplying the basic fuel injection amount by this air-fuel ratio feedback correction coefficient ⁇ .
  • the air-fuel ratio feedback correction coefficient ⁇ becomes a small value and is introduced via the purge control valve 23.
  • the fuel component concentration of the purge gas is handled as “purge A / F”.
  • Purge A / F is defined as “mass of air in purge gas / mass of fuel component in purge gas”.
  • the evaporative fuel processing apparatus configured as described above, basically, only the evaporative fuel generated during refueling is adsorbed to the canister 3, and the fuel tank 2 is kept in a sealed state except during refueling. That is, for example, when the engine control unit 31 recognizes that it is during refueling based on an operation of a fuel lid opener (not shown) (a lid opening / closing mechanism for the vehicle body covering the refueling port 5a) or the like, the drain cut valve 26 is open. , The purge control valve 23 is closed and the blocking valve 21 is opened, so that the inside of the fuel tank 2 and the charge port 13 of the canister 3 are in communication. Therefore, the evaporated fuel generated in the fuel tank 2 with refueling is introduced into the canister 3 and adsorbed by the adsorbent 12.
  • a fuel lid opener not shown
  • the drain cut valve 26 is open.
  • the purge control valve 23 is closed and the blocking valve 21 is opened, so that the inside of the fuel tank 2 and the charge port
  • the closing valve 21 is closed. Accordingly, the inside of the fuel tank 2 is kept in a sealed state separated from the canister 3, and the amount of adsorption of the canister 3 does not basically increase or decrease while the internal combustion engine 1 is stopped. Thereafter, when the operation of the vehicle is started and the internal combustion engine 1 enters a predetermined operation state, the purge control valve 23 is appropriately opened while the blockade valve 21 is closed, and the purge process of the fuel component from the canister 3 is performed. Is done.
  • the atmosphere is introduced from the drain port 15 due to the pressure difference with the intake system of the internal combustion engine 1, and the fuel component purged from the adsorbent 12 by this atmosphere becomes the purge gas, and the intake air of the internal combustion engine 1 through the purge control valve 23. It is introduced into the passage 17. Therefore, the amount of adsorption of the canister 3 gradually decreases during the operation of the internal combustion engine 1.
  • the evaporative fuel treatment apparatus permits the adsorption to the canister 3 only when refueling in principle. However, when the fuel tank 2 becomes considerably high during operation due to a temperature change or the like, an exception is made.
  • the blocking valve 21 may be temporarily opened.
  • the evaporated fuel that has traveled toward the canister 3 via the blocking valve 21 flows as a shortcut from the charge port 13 to the adjacent purge port 14 and is directly introduced into the intake passage 17 of the internal combustion engine 1. That is, the adsorbent 12 of the canister 3 is hardly adsorbed.
  • the canister 3 and the fuel tank 2 communicate with each other only during refueling, and the fuel tank 2 is in a sealed state except during refueling, so the evaporative fuel leakage is extremely low. Suppressed to level.
  • the blockade valve 21 which consists of a normally closed solenoid valve fully interrupted the evaporative fuel path 16 at the time of closing. That is, a self-diagnosis of whether or not the blocking valve 21 has an open failure is performed during operation of the internal combustion engine 1.
  • the open failure includes, for example, a sealing failure at the time of closing due to the biting of foreign matter, sticking of the valve body at the open position, and the like.
  • FIG. 2 is a flowchart showing the flow of the open failure diagnosis process, which will be described below with reference to the time chart of FIG. This process is repeatedly executed, for example, every predetermined time.
  • step 1 it is determined whether or not the blocking valve 21 is in a closed state. As described above, the closing valve 21 is opened during refueling, and the closing valve 21 is basically closed otherwise. If the blocking valve 21 is closed, the process proceeds to step 2 to determine whether or not the purge process is being executed.
  • purge gas is introduced into the intake system of the internal combustion engine 1 through the purge control valve 23 as a purge process.
  • the purge process is basically executed in a part of the operation region where the fuel injection amount of the internal combustion engine 1 is feedback controlled.
  • step 3 calculates the integrated purge amount (total amount of fuel components desorbed from the canister 3) from the start of the purge process to the present time. This is obtained, for example, by sequentially integrating the fuel component amounts estimated from the above-described air-fuel ratio feedback correction coefficient ⁇ .
  • the time during which the purge control valve 23 is open or the purge control valve 23 The purge gas flow rate that has passed through may be regarded as the integrated purge amount.
  • the integrated purge amount sequentially integrated in step 3 is reset in step 9 when the blocking valve 21 is opened, but the purge process is intermittently performed due to a change in operating conditions or the like. In some cases, resetting is not performed, and integration is continued when the purge process is resumed.
  • the reference fuel component concentration limit that is, the purge A / F limit value at that time is calculated using, for example, a predetermined arithmetic expression or from a predetermined table. Find by search, etc.
  • the limit value on the lean side of the purge A / F indicated by the broken line AF1 in FIG. 3 and the limit value on the rich side indicated by the broken line AF2 are set corresponding to the integrated purge amount.
  • the horizontal axis is time, but as the original characteristic of the canister 3, the fuel component concentration of the purge gas flowing from the canister 3 to the intake system is high at the start of the purge process, and then the purge process proceeds. Along with this, the fuel component concentration of the purge gas gradually decreases. Since the characteristic of the change in the fuel component concentration is uniquely determined, the reference fuel component concentration, that is, the purge A / F can be obtained in advance for each integrated purge amount. In step 4, it is assumed that a certain allowable range is taken into consideration in consideration of variations in the initial adsorption amount, and the lean side limit value AF 1 and the rich side limit value AF 2 are compared with the cumulative purge amount at that time. Is set.
  • step 5 the actual purge A / F at that time is obtained based on the air-fuel ratio feedback correction coefficient ⁇ as described above.
  • step 6 the actual purge A / F value is compared with the lean limit value AF1 and the rich limit value AF2. If the actual purge A / F value is within the range of the lean side limit value AF1 and the rich side limit value AF2, it is determined that the blocking valve 21 is closed correctly (step 7) and out of range (more specifically, If it is richer than the rich limit value AF2, it is determined that the blocking valve 21 is not sufficiently closed and an open failure has occurred (step 8).
  • FIG. 3 shows that, after refueling is finished and the sealing valve 21 is closed, the purge process is started when the internal combustion engine 1 is started and a predetermined operating condition is reached. Shows the situation when it lasts for a long time.
  • the lean side limit value AF1 and the rich side limit value AF2 along the reference purge A / F assumed when the blocking valve 21 is closed indicate the passage of time or the progress of the purge process. It changes to the lean side.
  • the actual purge A / F is a value between both limit values AF1 and AF2.
  • the blocking valve 21 remains open as an open failure, the suction negative pressure of the internal combustion engine 1 acts on the purge port 14 of the canister 3 via the purge control valve 23 and the purge passage 19, and this negative pressure is reduced. Further, since it acts on the fuel tank 2 via the evaporated fuel passage 16, a relatively large amount of evaporated fuel is introduced into the intake system of the internal combustion engine 1 through the evaporated fuel passage 16 and the purge passage 19. Moreover, as described above, the evaporated fuel newly generated in the fuel tank flows in the canister 3 as a shortcut from the charge port 13 to the adjacent purge port 14, so that it is hardly adsorbed by the adsorbent 12. It flows to the intake system of the internal combustion engine 1.
  • a solid line AFNG1 in FIG. 3 shows an example of the characteristics of the purge A / F when the blocking valve 21 is in an open failure, and the actual purge A / F is thus richer than the limit value AF2 on the rich side. If it is on the side, it can be determined that there is an open failure.
  • the blocking valve 21 has an open failure while the internal combustion engine 1 is in operation.
  • repeated diagnosis is performed. It can be carried out.
  • the open failure can be diagnosed without depending on pressurizing and depressurizing means such as an electric pump as in the conventional patent document 1.
  • both the lean limit value AF1 and the rich limit value AF2 are set as the reference limit values. However, as can be understood from FIG. In determining a failure, it is sufficient to determine only the limit value AF2 on the rich side. When the actual purge A / F is further leaner than the lean limit value AF1, it is determined that some other abnormality, for example, the entry of outside air into the purge passage 19, has occurred. Also good.
  • FIG. 4 and FIG. 5 show a modification in which the diagnostic method based on the purge A / F is partially changed.
  • it is determined in step 11 whether or not the blocking valve 21 is closed.
  • step 12 after determining whether or not the purge process is being executed, in step 13, based on the air-fuel ratio feedback correction coefficient ⁇ . Then, the purge A / F at that time is detected.
  • step 14 an increase / decrease change in the value of the purge A / F is obtained, and it is determined whether or not the purge A / F has changed to the rich side. This can be determined from, for example, comparison with the previous value of the purge A / F, or an average gradient of several sample values. If the purge A / F has changed to the rich side, it is determined that the blocking valve 21 is not sufficiently closed and an open failure has occurred (step 16). If it is hardly changed or changed to the lean side, it is determined that the blocking valve 21 is properly closed.
  • the purge A / F gradually changes to the lean side as shown by the broken line AF0.
  • the fuel tank 2 can be controlled regardless of the value of the purge A / F. It can be determined that this is a change in the fuel component concentration due to the inflow of the evaporated fuel.
  • the present invention focuses on the principle that if the blocking valve 21 is open during the purge process, a negative pressure for purge acts on the fuel tank 2 and the evaporated fuel increases. As described above, it may be more directly detected whether or not the evaporated fuel flowing out from the fuel tank 2 has increased during the purge process.
  • a gas sensor 33 that provides an output in response to the fuel component concentration of the purge gas is provided in the middle of the purge passage 19 from the canister 3 to the intake system of the internal combustion engine 1.
  • the gas sensor 33 may be on the upstream side or the downstream side of the purge control valve 23.
  • a gas sensor 34 is provided in the middle of the evaporated fuel passage 16 from the fuel tank 2 to the canister 3. During execution of the purge process, it may be determined whether or not there is an evaporative fuel exceeding a certain level in the evaporative fuel passage 16.
  • the gas sensor 34 may be closer to the canister 3 than the closing valve 21 as shown in the figure, or may be closer to the fuel tank 2 than the closing valve 21.
  • Either of the gas sensors 33 and 34 can diagnose the open failure of the blocking valve 21, but detection is performed at two locations of the purge passage 19 and the evaporated fuel passage 16 using both as shown in FIG. You may comprise so that a diagnosis may be performed based on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 キャニスタ(3)を用いた蒸発燃料処理装置は、パージ制御バルブ(23)およびドレンカットバルブ(26)を備えるとともに、燃料タンク(2)とキャニスタ(3)との間の連通・遮断を切り換える封鎖弁(21)を備える。封鎖弁(21)は、常閉型電磁弁からなり、給油時のみに開く。パージ処理の実行中に、空燃比センサ(32)に基づいてパージガスの燃料成分濃度を検出し、このパージガスの燃料成分濃度が基準よりもリッチ側であれば、封鎖弁(21)が開故障であると判定する。パージ処理の実行中は、封鎖弁(21)の開故障があれば、吸入負圧が燃料タンク(2)に作用し、蒸発燃料が増加するので、確実に検出できる。

Description

蒸発燃料処理装置の診断装置および診断方法
 この発明は、給油時に燃料タンク内で発生する蒸発燃料をキャニスタを用いて処理する蒸発燃料処理装置に関し、特に、燃料タンクとキャニスタとの間の封鎖弁の異常の有無を診断する診断装置および診断方法に関する。
 車両の燃料タンクで発生する蒸発燃料が外部へ流出することがないように、活性炭等の吸着材を用いたキャニスタに一時的に吸着させ、その後、内燃機関の運転中に、新気の導入によりキャニスタから燃料成分をパージさせて内燃機関の吸気系に導入するようにした蒸発燃料処理装置が従来から広く用いられている。
 特許文献1には、燃料タンクとキャニスタとの間の通路に封鎖弁を備え、基本的に給油時にのみ燃料タンクからキャニスタへ蒸発燃料を吸着させるようにした蒸発燃料処理装置が開示されている。つまり、給油時以外の車両停車中は封鎖弁によって燃料タンクが密閉状態に維持され、蒸発燃料の外部への流出がより確実に防止されるシステムとなっている。
 そして、特許文献1の蒸発燃料処理装置は、封鎖弁が開状態のまま固着して閉じることができない開故障の有無を診断する診断装置を具備している。この特許文献1の診断装置は、キャニスタのドレンポート側に接続された負圧ポンプを備え、車両停止中の適当な時期に、封鎖弁を閉状態に制御しつつ系内をこの負圧ポンプによって減圧し、そのときの燃料タンク側の領域の圧力変化ないしキャニスタ側の領域の圧力変化に基づいて、封鎖弁の開故障の有無を判別している。
 しかし、上記従来の診断装置は、車両の運転が停止した後に診断を行う構成であり、蒸発燃料処理装置の系内を密閉して圧力変化を監視する必要があることから、内燃機関の運転中に逐次診断を行うことはできない。
 また、電動式ポンプのような加圧減圧手段が必須であり、このような加圧減圧手段を具備しない蒸発燃料処理装置には適用することができない。
特許第4140345号
 この発明の診断装置は、キャニスタと燃料タンクとの間の連通・遮断が可能な封鎖弁を備え、給油時は上記封鎖弁を開として燃料タンクで発生した蒸発燃料をキャニスタで吸着する一方、機関運転中に上記封鎖弁を閉じた状態において、キャニスタから脱離した燃料成分を含むパージガスを内燃機関の吸気系へ導入するパージ処理を行う内燃機関の蒸発燃料処理装置を前提としている。そして、上記パージ処理の実行中に、上記封鎖弁を通して流れる蒸発燃料を検出して上記封鎖弁の異常の有無を診断する。
 すなわち、封鎖弁が閉に制御されている状態において、閉弁時のシール不良や弁体が開位置で固着している開固着などの異常があると、燃料タンク内で発生した蒸発燃料が封鎖弁を通してキャニスタ側へ漏れ出る。しかし、パージ処理が行われていない状態では、キャニスタの吸着量が徐々に増えるものの、キャニスタを含む系内で積極的なガスの移動が生じていないため、封鎖弁を通して漏れる蒸発燃料を精度良く検出することは困難である。
 これに対し、パージ処理の実行中は、内燃機関の吸気系の負圧がキャニスタに作用し、この負圧によってキャニスタを通るガスの流れが発生する。つまり、上記負圧によりキャニスタに空気(一般に大気)が導入され、この空気がキャニスタを通して流れるとともに、キャニスタから脱離した燃料成分と混合して、いわゆるパージガスとなり、キャニスタから内燃機関の吸気系へと流れる。このようにキャニスタに負圧が作用する結果、仮に封鎖弁が故障で閉じていないとすると、封鎖弁を介して燃料タンク側にも負圧が作用し、比較的多量の蒸発燃料がキャニスタへ流れ、さらには内燃機関の吸気系へと流れる。従って、パージ処理を行っていない状態に比べて、パージ処理の実行中は、封鎖弁の開故障による蒸発燃料の増加が顕著に出現し、より精度良く検出できる。
 このような本発明の封鎖弁の診断は、内燃機関の運転中でかつパージ処理の実行中であることを前提とするので、当然のことながら内燃機関の運転中に行うことができ、さらには、パージ処理の実行中に継続的につまり繰り返し診断を行うこともできる。
 従って、この発明によれば、内燃機関の運転中に封鎖弁の異常診断が可能であり、電動ポンプ等の加圧減圧手段に依存することなく封鎖弁の開故障を精度よく検出することができる。
この発明に係る診断装置を備えた蒸発燃料処理装置の一実施例を示す構成説明図。 この実施例における診断処理の流れを示すフローチャート。 診断の際のパージA/F等の変化を示すタイムチャート。 診断処理の第2の例を示すフローチャート。 第2の例におけるパージA/F等の変化を示すタイムチャート。 センサを備えた実施例を示す構成説明図。
 図1は、この発明に係る診断装置を備えた蒸発燃料処理装置の一実施例を示す構成説明図である。図示せぬ車両に、内燃機関1が搭載されているとともに、密閉型の燃料タンク2が設けられており、給油時に燃料タンク2内で発生した蒸発燃料を処理するために、キャニスタ3を用いた蒸発燃料処理装置が設けられている。上記燃料タンク2は、先端の給油口5aにフィラーキャップ4が着脱可能に装着された給油管部5を備えており、また、内燃機関1の燃料噴射装置6へ燃料を供給する燃料ポンプユニット7が燃料タンク2内部に収容されている。
 上記キャニスタ3は、合成樹脂製のケース11によってUターン形状に流路が形成され、その内部に活性炭等からなる吸着材12が充填されたものであって、Uターン形状をなす流路の流れ方向の一端部に、蒸発燃料の流入部となるチャージポート13と、燃料成分を含むパージガスの流出部となるパージポート14と、が設けられており、流れ方向の他端部に、パージの際に外気を取り込むためのドレンポート15が設けられている。
 上記チャージポート13は、蒸発燃料通路16を介して燃料タンク2の上部空間に接続されている。なお、この蒸発燃料通路16の燃料タンク2側の先端部は、燃料液面が高い位置にあるときに液体燃料が蒸発燃料通路16内に溢れ出ることを防止するFLVバルブ20を介して燃料タンク2の上部空間に連通している。そして、上記蒸発燃料通路16の通路途中には、該蒸発燃料通路16を開閉する封鎖弁21が設けられている。この封鎖弁21は、原則として給油時以外はキャニスタ3と燃料タンク2との間を遮断して燃料タンク2を密閉状態とするためのものであって、非通電時に閉となる常閉型電磁弁から構成されている。
 上記パージポート14は、内燃機関1の吸気系、例えば吸気通路17のスロットル弁18下流側に、パージ通路19を介して接続されている。上記パージ通路19には、内燃機関1へのパージガスの導入を制御するパージ制御バルブ23が設けられており、未暖機時やフューエルカット時など所定の条件のときにはパージガスの導入を禁止する構成となっている。上記パージ制御バルブ23は、やはり常閉型電磁弁から構成されている。なお、このパージ制御バルブ23は単純にオン・オフ的に開閉制御される構成であってもよく、あるいは、いわゆるデューティ比制御によってパージガスの流量を連続的に可変制御し得る構成であってもよい。
 上記ドレンポート15には、先端が大気開放されたドレン通路25が接続されており、かつこのドレン通路25に、該ドレン通路25を開閉するドレンカットバルブ26が設けられている。このドレンカットバルブ26は、非通電時に開となる常開型電磁弁から構成されている。このドレンカットバルブ26は、例えば、系全体を密閉して行うリーク診断の際や、キャニスタ3の破過(蒸発燃料量がキャニスタの容量を上回り、吸着しきれなくなる状態)を何らかの手段で検知した場合などに閉じられ得るが、基本的には開状態となってドレン通路25を開放している。
 上記の封鎖弁21、パージ制御バルブ23、およびドレンカットバルブ26は、内燃機関1の種々の制御(例えば、燃料噴射量制御、噴射時期制御、点火時期制御、スロットル弁18の開度制御など)を行うエンジンコントロールユニット31によって適宜に制御され、後述するように、給油時の吸着処理、運転中のパージ処理、封鎖弁21の開故障診断、などが実行される。また、内燃機関1の排気空燃比を検出するために、内燃機関1の排気通路30に公知の空燃比センサ32が配置されている。この空燃比センサ32としては、いわゆる酸素センサあるいは広域型空燃比センサのいずれであってもよい。
 なお、燃料噴射装置6の燃料噴射量は、この空燃比センサ32により検出される排気空燃比が目標空燃比(例えば理論空燃比)となるようにフィードバック制御される。詳しくは、空燃比センサ32の検出信号に基づいて必要な空燃比フィードバック補正係数αが演算され、この空燃比フィードバック補正係数αを基本燃料噴射量に乗じて補正後の燃料噴射量を求めている。ここで、吸気系へ燃料成分を含むパージガスが流入すると、排気空燃比がリッチ方向へ変動することから、空燃比フィードバック補正係数αは小さな値となり、また、パージ制御バルブ23を介して導入されるパージガスの流量(体積流量)が等しいものとすれば、その燃料成分濃度が高いほど空燃比フィードバック補正係数αが小さな値となる。従って、上記空燃比フィードバック補正係数αに基づいて、パージガスの燃料成分濃度を推定することが可能である。本実施例では、パージガスの燃料成分濃度を、「パージA/F」として取り扱う。パージA/Fは、「パージガス中の空気の質量/パージガス中の燃料成分の質量」として定義される。
 上記のように構成された蒸発燃料処理装置は、基本的に、給油時に発生する蒸発燃料のみがキャニスタ3に吸着され、給油時以外は、燃料タンク2が密閉状態に保たれる。すなわち、例えば図示せぬフューエルリッドオープナー(給油口5aを覆う車体のリッドの開閉機構)などの操作に基づき、給油時であるとエンジンコントロールユニット31が認識したときには、ドレンカットバルブ26が開いている状態において、パージ制御バルブ23が閉、封鎖弁21が開、となり、燃料タンク2内とキャニスタ3のチャージポート13とが連通状態となる。従って、給油に伴って燃料タンク2内で発生した蒸発燃料は、キャニスタ3に導入され、その吸着材12に吸着される。
 そして、給油が終わると、封鎖弁21が閉となる。従って、燃料タンク2内がキャニスタ3から分離した密閉状態に保たれ、内燃機関1の停止中は、キャニスタ3の吸着量は基本的に増減しない。その後、車両の運転が開始され、内燃機関1が所定の運転状態となると、封鎖弁21を閉とした状態のまま、パージ制御バルブ23が適宜に開かれ、キャニスタ3からの燃料成分のパージ処理が行われる。つまり、内燃機関1の吸気系との圧力差によってドレンポート15から大気が導入され、この大気により吸着材12からパージされた燃料成分がパージガスとなって、パージ制御バルブ23を通して内燃機関1の吸気通路17へと導入される。従って、内燃機関1の運転中に、キャニスタ3の吸着量は徐々に減少する。なお、上記蒸発燃料処理装置は、原則として給油時のみにキャニスタ3への吸着を許可するものであるが、温度変化などにより運転中に燃料タンク2がかなり高圧となった場合に、例外的に封鎖弁21を一時的に開くようにしてもよい。但し、この場合に封鎖弁21を経由してキャニスタ3に向かった蒸発燃料は、チャージポート13から隣接するパージポート14へとショートカットして流れ、そのまま内燃機関1の吸気通路17に導入される。つまり、キャニスタ3の吸着材12には殆ど吸着されない。
 このように上記の蒸発燃料処理装置では、給油時のみにキャニスタ3と燃料タンク2とが連通し、給油時以外では燃料タンク2が密閉状態となるため、蒸発燃料の外部への漏洩が極めて低いレベルに抑制される。
 そして、このような蒸発燃料処理装置の本来の処理性能を担保するために、上記実施例では、常閉型電磁弁からなる封鎖弁21が閉時に蒸発燃料通路16を十分に遮断しているか否か、つまり封鎖弁21が開故障していないかどうか、の自己診断が内燃機関1の運転中に実行される。上記開故障は、例えば異物の噛み込みによる閉時のシール不良、弁体の開位置での固着などを含む。
 図2は、この開故障診断の処理の流れを示すフローチャートであって、図3のタイムチャートを参照しつつ、以下、これを説明する。この処理は、例えば一定時間毎に繰り返し実行されるものであって、まずステップ1において、封鎖弁21が閉状態にあるか否かを判定する。前述したように、給油時には封鎖弁21が開となり、それ以外は基本的に封鎖弁21は閉となる。封鎖弁21が閉であれば、ステップ2へ進み、パージ処理の実行中であるか否かを判定する。前述したように、内燃機関1が所定の運転条件にあるときに、パージ処理として、パージ制御バルブ23を介して内燃機関1の吸気系へのパージガスの導入が行われる。なお、パージ処理は、基本的に内燃機関1の燃料噴射量がフィードバック制御される運転領域内の一部で実行される。
 パージ処理の実行中であれば、ステップ3へ進み、パージ処理を開始してから現時点までの積算パージ量(キャニスタ3から脱離した燃料成分の総量)を算出する。これは、例えば、前述した空燃比フィードバック補正係数αから推定される燃料成分量を順次積算していくことによって求められ、簡易的には、パージ制御バルブ23が開いている時間あるいはパージ制御バルブ23を通過したパージガス流量を積算パージ量とみなしてもよい。なお、ステップ3で順次積算されていく積算パージ量は、封鎖弁21が開となったときには、ステップ9においてリセットされるが、運転条件の変化等によってパージ処理が断続的に行われたような場合にはリセットされず、パージ処理が再開されたときに積算が継続される。
 ステップ4では、上記の積算パージ量に基づき、その時点での基準となる燃料成分濃度限界つまりパージA/Fの限界値を、例えば、所定の演算式を用いた演算、あるいは所定のテーブルからの検索、などによって求める。この実施例では、図3に破線AF1で示すパージA/Fのリーン側の限界値と、破線AF2で示すリッチ側の限界値と、がそれぞれ積算パージ量に対応して設定される。
 すなわち、図3は、横軸が時間であるが、キャニスタ3の本来の特性として、パージ処理の開始時点では、キャニスタ3から吸気系に流れるパージガスの燃料成分濃度は高く、その後、パージ処理の進行に伴って、パージガスの燃料成分濃度は徐々に薄くなっていく。この燃料成分濃度の変化の特性は一義的に定まるので、各々の積算パージ量に対して、基準となる燃料成分濃度つまりパージA/Fを予め求めることができる。ステップ4では、初期の吸着量のばらつき等を考慮して、ある程度の許容範囲を見込んだものとして、リーン側の限界値AF1とリッチ側の限界値AF2とが、そのときの積算パージ量に対して設定される。
 次いで、ステップ5では、前述したように空燃比フィードバック補正係数αに基づき、その時点での実際のパージA/Fを求める。そして、この実際のパージA/Fの値を、ステップ6において、上記のリーン側限界値AF1およびリッチ側限界値AF2と比較する。実際のパージA/Fの値がリーン側限界値AF1およびリッチ側限界値AF2の範囲内であれば、封鎖弁21が正しく閉じているものと判定し(ステップ7)、範囲外(より詳しくはリッチ側限界値AF2よりもリッチ側)であれば、封鎖弁21が十分に閉じておらず、開故障であると判定する(ステップ8)。
 図3は、一例として、給油が終了して封鎖弁21が閉となった後に、内燃機関1が始動し、かつ所定の運転条件となった段階でパージ処理が開始され、このパージ処理が十分に長く継続したときの状況を示している。図示するように、封鎖弁21が閉じている場合に想定される基準のパージA/Fに沿ったリーン側限界値AF1およびリッチ側限界値AF2は、時間の経過ないしパージ処理の進行に伴ってリーン側へ変化していく。ここで、封鎖弁21が正しく閉じていれば、実際のパージA/Fは両限界値AF1,AF2の間の値となる。
 これに対し、封鎖弁21が開故障として開いたままであると、パージ制御バルブ23およびパージ通路19を介してキャニスタ3のパージポート14に内燃機関1の吸入負圧が作用し、この負圧がさらに蒸発燃料通路16を介して燃料タンク2に作用するので、比較的多量の蒸発燃料が、蒸発燃料通路16およびパージ通路19を通して内燃機関1の吸気系に導入される。しかも、前述したように、燃料タンクで新たに発生した蒸発燃料は、キャニスタ3においてはチャージポート13から隣接したパージポート14へとショートカットするように流れるので、吸着材12に殆ど吸着されることなく内燃機関1の吸気系へと流れる。従って、封鎖弁21が開故障していると、パージA/Fが明確にリッチ化する。図3の実線AFNG1は、封鎖弁21が開故障している場合のパージA/Fの特性の一例を示しており、このように実際のパージA/Fがリッチ側の限界値AF2よりもリッチ側にあれば、開故障であると判定することができる。
 なお、パージ処理が実行されていない間、つまりパージ制御バルブ23が閉じている状態においては、仮に封鎖弁21が開故障していても、燃料タンク2に吸入負圧が作用することがないので、パージ通路19や蒸発燃料通路16において顕著な燃料成分濃度の増加が見られない。
 このように上記実施例によれば、内燃機関1の運転中に封鎖弁21の開故障の有無を精度良く診断することが可能であり、特に、パージ処理を継続している間、繰り返し診断を行うことができる。また、従来の特許文献1のように電動ポンプ等の加圧減圧手段に依存せずに開故障の診断が可能となる。
 ところで、図2および図3の例では、基準となる限界値としてリーン側限界値AF1およびリッチ側限界値AF2の双方を設定しているが、図3から理解できるように、封鎖弁21の開故障の判定に際しては、リッチ側の限界値AF2のみを定めれば足りる。なお、実際のパージA/Fがリーン側の限界値AF1よりもさらにリーン側である場合に、他の何らかの異常、例えばパージ通路19における外気の侵入、などが生じていると判定するようにしてもよい。
 次に、図4および図5は、パージA/Fに基づく診断手法を一部変更した変形例を示している。この実施例では、ステップ11で封鎖弁21が閉であるか否か判定し、ステップ12でパージ処理の実行中であるか否か判定した後に、ステップ13において、空燃比フィードバック補正係数αに基づいて、そのときのパージA/Fを検出する。
 そして、ステップ14では、このパージA/Fの値の増減変化を求め、パージA/Fがリッチ側へ変化しているか否かを判定する。これは、例えばパージA/Fの前回値との比較、あるいは数個のサンプル値の平均勾配、などから判定することができる。そして、パージA/Fがリッチ側へ変化している場合には、封鎖弁21が十分に閉じておらず、開故障であると判定し(ステップ16)、それ以外、つまりパージA/Fが殆ど変化しないかリーン側へ変化している場合には、封鎖弁21が正しく閉じているものと判定する。
 すなわち、図5に示すように、封鎖弁21を閉じた状態でパージ処理が進行していくと、パージA/Fは破線AF0として示すように、徐々にリーン側へ変化していく。これに対し、実線AFNG2で示すように、排気空燃比に基づくパージA/Fの値がリッチ側へ変化していく場合は、そのパージA/Fの値の大小に拘わらず、燃料タンク2からの蒸発燃料の流入に起因した燃料成分濃度の変化であると判断することができる。
 このような図4および図5に示した実施例によれば、前述した実施例と同様に、内燃機関1の運転中に封鎖弁21の開故障の有無を精度良く診断することが可能であり、パージ処理を継続している間、繰り返し診断を行うことができる。特に、前述した実施例に比較して、パージA/Fの基準値のデータを具備せずに診断が可能となる利点がある。
 なお、図4および図5に示した実施例の診断手法を、図2,図3に示した実施例の診断と組み合わせて用いることも可能である。
 以上、内燃機関1の排気空燃比(換言すれば空燃比フィードバック補正係数α)に基づいて封鎖弁21を通過する蒸発燃料の有無を判定する実施例を説明したが、本発明はこれに限定されるものではない。本発明は、パージ処理の実行中に、仮に封鎖弁21が開いていると燃料タンク2にパージ用の負圧が作用して蒸発燃料が増加する、という原理に着目したものであって、このようにパージ処理の実行中に燃料タンク2から流出する蒸発燃料が増えたか否かを、より直接的に検出するようにしてもよい。
 一つの例では、図6に例示するように、キャニスタ3から内燃機関1の吸気系へ至るパージ通路19の途中に、パージガスの燃料成分濃度に応答した出力が得られるガスセンサ33を設け、前述した各実施例と同様に、パージ処理の実行中に、封鎖弁21の開故障に起因した燃料成分濃度の変化を検出するように構成することができる。上記ガスセンサ33は、パージ制御バルブ23の上流側にあってもよく、下流側にあってもよい。
 また、他の一つの例では、図6に例示するように、燃料タンク2からキャニスタ3へ至る蒸発燃料通路16の途中に、同様に蒸発燃料成分に応答した出力が得られるガスセンサ34を設け、パージ処理の実行中に、蒸発燃料通路16内にあるレベル以上の蒸発燃料が存在するか否かを判定するようにしてもよい。上記ガスセンサ34は、図のように封鎖弁21よりもキャニスタ3側にあってもよく、あるいは封鎖弁21よりも燃料タンク2側にあってもよい。
 上記ガスセンサ33,34は、いずれか一方で封鎖弁21の開故障の診断が可能であるが、図6に示すように双方を用いて、パージ通路19および蒸発燃料通路16の2箇所での検出に基づいて診断を行うように構成してもよい。
 

Claims (10)

  1.  キャニスタと燃料タンクとの間の連通・遮断が可能な封鎖弁を備え、給油時は上記封鎖弁を開として燃料タンクで発生した蒸発燃料をキャニスタで吸着する一方、機関運転中に上記封鎖弁を閉じた状態において、キャニスタから脱離した燃料成分を含むパージガスを内燃機関の吸気系へ導入するパージ処理を行う内燃機関の蒸発燃料処理装置において、
     上記パージ処理の実行中に、上記封鎖弁を通して流れる蒸発燃料を検出して上記封鎖弁の異常の有無を診断する、蒸発燃料処理装置の診断装置。
  2.  上記キャニスタは、流れ方向の一端部にチャージポートおよびパージポートが配置されているとともに、他端部にドレンポートが配置されており、
     上記チャージポートが上記封鎖弁を介して上記燃料タンクに接続されており、
     パージ処理の実行中は、上記パージポートが上記吸気系に連通し、かつ上記ドレンポートが大気開放されている、請求項1に記載の蒸発燃料処理装置の診断装置。
  3.  上記キャニスタから上記吸気系へ導入されるパージガスの燃料成分濃度に基づいて上記封鎖弁を通過した蒸発燃料の有無を判別する、請求項1または2に記載の蒸発燃料処理装置の診断装置。
  4.  上記内燃機関は、排気空燃比を検出する排気空燃比検出手段を備えており、上記排気空燃比に基づいて上記パージガスの燃料成分濃度を検出する、請求項3に記載の蒸発燃料処理装置の診断装置。
  5.  上記キャニスタから上記吸気系に至るパージ通路に、パージガスの燃料成分濃度を検出するセンサを備えている、請求項3に記載の蒸発燃料処理装置の診断装置。
  6.  上記パージ処理の進行に伴って上記燃料成分濃度が濃くなった場合に上記封鎖弁が異常であると診断する、請求項3~5のいずれかに記載の蒸発燃料処理装置の診断装置。
  7.  上記パージ処理の進行に対して基準となる燃料成分濃度限界を逐次設定し、検出した燃料成分濃度が上記燃料成分濃度限界よりも濃い場合に上記封鎖弁が異常であると診断する、請求項3~5のいずれかに記載の蒸発燃料処理装置の診断装置。
  8.  上記燃料タンクから上記キャニスタに至る蒸発燃料通路に、蒸発燃料を検出するセンサを備えている、請求項1または2に記載の蒸発燃料処理装置の診断装置。
  9.  キャニスタと燃料タンクとの間の連通・遮断が可能な封鎖弁を備え、給油時は上記封鎖弁を開として燃料タンクで発生した蒸発燃料をキャニスタで吸着する一方、機関運転中に上記封鎖弁を閉じた状態において、キャニスタから脱離した燃料成分を含むパージガスを内燃機関の吸気系へ導入するパージ処理を行う内燃機関の蒸発燃料処理装置において、
     上記パージ処理の実行中に、上記封鎖弁を通して流れる蒸発燃料を検出して上記封鎖弁の異常の有無を診断する、蒸発燃料処理装置の診断方法。
  10.  上記キャニスタから上記吸気系へ導入されるパージガスの燃料成分濃度に基づいて上記封鎖弁を通過した蒸発燃料の有無を判別する、請求項9に記載の蒸発燃料処理装置の診断方法。
PCT/JP2013/055898 2012-03-09 2013-03-05 蒸発燃料処理装置の診断装置および診断方法 WO2013133234A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/380,539 US9863375B2 (en) 2012-03-09 2013-03-05 Device and method for diagnosing evaporated fuel processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-052519 2012-03-09
JP2012052519A JP5880158B2 (ja) 2012-03-09 2012-03-09 蒸発燃料処理装置の診断装置

Publications (1)

Publication Number Publication Date
WO2013133234A1 true WO2013133234A1 (ja) 2013-09-12

Family

ID=49116709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055898 WO2013133234A1 (ja) 2012-03-09 2013-03-05 蒸発燃料処理装置の診断装置および診断方法

Country Status (3)

Country Link
US (1) US9863375B2 (ja)
JP (1) JP5880158B2 (ja)
WO (1) WO2013133234A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049157A1 (de) * 2013-10-02 2015-04-09 Continental Automotive Gmbh Verfahren zum regenerieren eines aktivkohlefilters und tankentlüftungssystem
CN104847539A (zh) * 2013-10-14 2015-08-19 大陆汽车系统公司 对evap闭锁阀的车载诊断检查
CN110226030A (zh) * 2017-03-09 2019-09-10 爱三工业株式会社 蒸发燃料处理装置、吹扫气体的浓度检测方法以及蒸发燃料处理装置的控制装置
JP2020029843A (ja) * 2018-08-24 2020-02-27 株式会社Subaru 蒸発燃料処理システムの診断装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825281B2 (ja) * 2013-03-21 2015-12-02 トヨタ自動車株式会社 蒸発燃料処理装置
US9797348B2 (en) * 2014-08-25 2017-10-24 Ford Global Technologies, Llc Evaporative emissions system and method for a stop/start vehicle
US9797344B2 (en) * 2014-08-29 2017-10-24 GM Global Technology Operations LLC System and method for diagnosing a dual path purge system using a hydrocarbon sensor and for diagnosing a hydrocarbon sensor in a single path purge system or a dual path purge system
US10060367B2 (en) * 2015-08-14 2018-08-28 Ford Global Technologies, Llc Method and system for high fuel vapor canister purge flow
JP6634997B2 (ja) * 2016-10-07 2020-01-22 株式会社デンソー 蒸発燃料処理システム
US10961937B2 (en) * 2019-05-21 2021-03-30 Ford Global Technologies, Llc Systems and methods for improving vehicle engine stability
JP7500295B2 (ja) 2020-06-15 2024-06-17 株式会社Subaru 車両の燃料タンクシステムおよびその異常診断方法
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132868A (ja) * 1990-09-25 1992-05-07 Toyota Motor Corp エバポパージシステムの異常診断装置
JPH04262047A (ja) * 1991-02-08 1992-09-17 Mitsubishi Electric Corp 内燃機関用蒸発燃料制御装置の故障検出装置
JP2004156498A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2005248911A (ja) * 2004-03-08 2005-09-15 Toyota Motor Corp 流路遮断装置およびそれを用いた燃料貯留装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69109516T2 (de) * 1990-02-26 1995-09-14 Nippon Denso Co Selbstdiagnoseapparat in einem System zur Verhinderung des Entweichens von verdampftem Brennstoffgas.
JPH0577563U (ja) * 1991-06-04 1993-10-22 愛三工業株式会社 燃料蒸気パージ装置の故障診断装置
JP2533350Y2 (ja) * 1991-09-05 1997-04-23 本田技研工業株式会社 内燃エンジンの燃料蒸気排出抑止装置
JP3149006B2 (ja) * 1994-08-11 2001-03-26 株式会社ユニシアジェックス エンジンの蒸発燃料処理装置における診断装置
JPH0932658A (ja) * 1995-07-14 1997-02-04 Nissan Motor Co Ltd 内燃機関のエバポパージ装置における機能診断装置
JP2001193580A (ja) * 2000-01-14 2001-07-17 Honda Motor Co Ltd 蒸発燃料放出防止装置の異常診断装置
JP4140345B2 (ja) 2002-11-05 2008-08-27 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP4419445B2 (ja) * 2003-06-12 2010-02-24 トヨタ自動車株式会社 蒸発燃料処理システム
JP4161819B2 (ja) * 2003-06-27 2008-10-08 トヨタ自動車株式会社 蒸発燃料処理装置
JP2007146797A (ja) * 2005-11-30 2007-06-14 Denso Corp 蒸発燃料処理装置
DE202011110838U1 (de) * 2010-09-24 2016-10-13 Karma Automotive Llc System für Verdunstungs- und Auftankungsemissionskontrolle für ein Fahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132868A (ja) * 1990-09-25 1992-05-07 Toyota Motor Corp エバポパージシステムの異常診断装置
JPH04262047A (ja) * 1991-02-08 1992-09-17 Mitsubishi Electric Corp 内燃機関用蒸発燃料制御装置の故障検出装置
JP2004156498A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2005248911A (ja) * 2004-03-08 2005-09-15 Toyota Motor Corp 流路遮断装置およびそれを用いた燃料貯留装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049157A1 (de) * 2013-10-02 2015-04-09 Continental Automotive Gmbh Verfahren zum regenerieren eines aktivkohlefilters und tankentlüftungssystem
CN104847539A (zh) * 2013-10-14 2015-08-19 大陆汽车系统公司 对evap闭锁阀的车载诊断检查
US9683523B2 (en) 2013-10-14 2017-06-20 Continental Automotive Systems, Inc. On-board diagnostic check for evap latching valves
CN110226030A (zh) * 2017-03-09 2019-09-10 爱三工业株式会社 蒸发燃料处理装置、吹扫气体的浓度检测方法以及蒸发燃料处理装置的控制装置
CN110226030B (zh) * 2017-03-09 2021-06-01 爱三工业株式会社 蒸发燃料处理装置及其控制装置、吹扫气体浓度检测方法
JP2020029843A (ja) * 2018-08-24 2020-02-27 株式会社Subaru 蒸発燃料処理システムの診断装置
US11111883B2 (en) 2018-08-24 2021-09-07 Subaru Corporation Diagnostic apparatus for evaporative fuel processing system

Also Published As

Publication number Publication date
US9863375B2 (en) 2018-01-09
JP2013185525A (ja) 2013-09-19
US20150020780A1 (en) 2015-01-22
JP5880158B2 (ja) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5880158B2 (ja) 蒸発燃料処理装置の診断装置
JP5998529B2 (ja) 蒸発燃料処理装置の診断装置
JP5880159B2 (ja) 蒸発燃料処理装置の診断装置
JP4400312B2 (ja) 蒸発燃料処理装置の故障検出装置
US7469686B2 (en) Leak detecting apparatus and fuel vapor treatment apparatus
US7418953B2 (en) Fuel vapor treatment apparatus for internal combustion engine
JP3503584B2 (ja) 燃料蒸気パージシステムの故障診断装置
JP6251469B2 (ja) 蒸発燃料処理装置の診断装置
US20170184058A1 (en) Fuel evaporative emission control device
WO2016207964A1 (ja) 蒸発燃料処理装置の診断装置
JP2008101524A (ja) 内燃機関の蒸発燃料処理装置
US7165447B2 (en) Failure diagnostic apparatus for fuel vapor purge system and fuel vapor purge apparatus and combustion engine having failure diagnostic apparatus
JPH08261073A (ja) エバポパージシステムの故障診断装置
JP2003035216A (ja) 燃料蒸発ガス処理装置の故障診断装置
JPH09158794A (ja) エンジンの蒸発燃料処理装置におけるリーク診断装置
JP4337730B2 (ja) 蒸発燃料処理装置のリーク診断装置
JP4715427B2 (ja) 蒸発燃料処理システムのリーク診断装置
JP4239716B2 (ja) 内燃機関の蒸発燃料処理装置
WO2021166056A1 (ja) 蒸発燃料処理装置の故障診断方法および故障診断装置
JPH06235355A (ja) 内燃機関の蒸発燃料蒸散防止装置の故障診断装置
JP2007085230A (ja) 蒸発燃料処理システムの給油口開放検出装置
JP3823011B2 (ja) 蒸発燃料処理装置のリーク診断装置
JP2001152975A (ja) 蒸発燃料処理装置のリーク診断装置
JP2007177653A (ja) 蒸発燃料処理装置
JP2020056344A (ja) 蒸発燃料処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14380539

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13758039

Country of ref document: EP

Kind code of ref document: A1