JP4239716B2 - 内燃機関の蒸発燃料処理装置 - Google Patents

内燃機関の蒸発燃料処理装置 Download PDF

Info

Publication number
JP4239716B2
JP4239716B2 JP2003190652A JP2003190652A JP4239716B2 JP 4239716 B2 JP4239716 B2 JP 4239716B2 JP 2003190652 A JP2003190652 A JP 2003190652A JP 2003190652 A JP2003190652 A JP 2003190652A JP 4239716 B2 JP4239716 B2 JP 4239716B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
fuel tank
canister
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003190652A
Other languages
English (en)
Other versions
JP2005023851A (ja
Inventor
正晃 小西
哲之 大江
和之 矢田
善一 苗村
潤司 加藤
睦生 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003190652A priority Critical patent/JP4239716B2/ja
Publication of JP2005023851A publication Critical patent/JP2005023851A/ja
Application granted granted Critical
Publication of JP4239716B2 publication Critical patent/JP4239716B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の蒸発燃料処理装置に関し、特に、燃料タンク内で生じた蒸発燃料の処理装置に適用して好適である。
【0002】
【従来の技術】
従来、燃料タンク内で発生する蒸発燃料(燃料ベーパ)をキャニスタに吸着することで、その燃料ベーパが大気に放出されるのを防止する蒸発燃料処理装置が知られている。
【0003】
このような蒸発燃料処理装置において、閉路空間における漏れを判定するため、蒸発燃料経路に圧力を付与する方法が知られている。例えば、特開平11−351078号公報には、燃料タンクを含む蒸発燃料経路に正圧を付与し、そのときの圧力情報に基づいて閉路空間の漏れを判定する方法が記載されている。
【0004】
【特許文献1】
特開平11−351078号公報
【特許文献2】
特開平11−270418号公報
【0005】
【発明が解決しようとする課題】
しかしながら、蒸発燃料経路にはキャニスタが配置されているため、キャニスタにおける蒸発燃料の吸着現象、放出(パージ)現象により閉路空間の圧力情報は変動する。このため、蒸発燃料経路に圧力を付与して漏れ判定を行う場合に、蒸発燃料経路における実際の圧力と測定値とが相違するという問題が生じる。
【0006】
例えば、図16(A)に示すように、燃料タンク100を含む蒸発燃料経路にポンプ102を用いて正圧を付与した場合、キャニスタ104に吸着されている燃料ベーパがパージされる。この場合、ポンプ102からキャニスタ104に向かって流量mの空気(Air)が流れ、キャニスタ104から燃料タンク100に向かって空気とともにパージされた燃料ベーパが流れる。キャニスタ104から燃料タンク100へ流れる燃料ベーパの流量をmとすると、キャニスタ104から燃料タンク100へ流れる総流量は(m+m)となる。このため、ポンプ102とキャニスタ104間における圧力Pと、燃料タンク100内の圧力Pとが相違することとなり、圧力Pが圧力Pよりも高くなる。
【0007】
同様に、図16(B)に示すように、燃料タンク100を含む蒸発燃料経路にポンプ102を用いて負圧を付与した場合、燃料タンク100内には空気と燃料ベーパの双方が存在するため、燃料タンク100からキャニスタ104に向かって流量mの空気と流量mの燃料ベーパが流れる。そして、燃料ベーパはキャニスタ104で吸着されるため、キャニスタ104からポンプ102へ向かって流量mの空気のみが流れる。このため、ポンプ102とキャニスタ104間における圧力Pと、燃料タンク100内及び燃料タンク100とキャニスタ104間の圧力Pとが相違することとなり、圧力Pが圧力Pよりも高くなる。
【0008】
従って、図16(A)または図16(B)の場合に、ポンプ102の近傍で測定した圧力値に基づいて燃料タンク100内の漏れ判定を正確に行うことは困難となる。上記公報に記載された方法では、このようなキャニスタ104での燃料ベーパの吸着、パージ現象による圧力情報への影響を考慮していないため、圧力情報に基づいて漏れを正確に判定することは困難である。
【0009】
この発明は、上述のような問題を解決するために成されたものであり、蒸発燃料経路における漏れの判定を正確に行い、蒸発燃料処理装置の信頼性を向上させることを目的とする。
【0010】
【課題を解決するための手段】
第1の発明は、上記の目的を達成するため、燃料タンクと、前記燃料タンクと接続され、前記燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、前記キャニスタと接続され、前記キャニスタを介して前記燃料タンクを含む閉路空間に所定の圧力を付与するポンプと、前記キャニスタよりも前記ポンプ側における前記閉路空間での圧力を検出する圧力検出手段と、前記圧力検出手段で検出された圧力に基づいて、前記燃料タンクを含む閉路空間における漏れの状態を判定する判定手段と、前記キャニスタでの前記蒸発燃料の吸着現象または脱離現象に基づいて、前記判定手段での判定基準を補正する判定基準補正手段と、を備えたことを特徴とする。
【0011】
第2の発明は、第1の発明において、前記ポンプは、前記閉路空間に負圧を付与することを特徴とする。
【0012】
第3の発明は、第1の発明において、前記ポンプは、前記閉路空間に正圧を付与することを特徴とする。
【0013】
第4の発明は、第2の発明において、前記判定基準補正手段は、前記燃料タンク内での前記蒸発燃料の量に応じて前記判定基準を補正することを特徴とする。
【0014】
第5の発明は、第4の発明において、前記燃料タンク内の温度を検出する燃料タンク内温度検出手段を更に備え、前記判定基準補正手段は、前記燃料タンク内の温度に基づいて前記判定基準を補正することを特徴とする。
【0015】
第6の発明は、第5の発明において、前記燃料タンクの内圧を検出する燃料タンク内圧検出手段を更に備え、前記判定基準補正手段は、前記燃料タンク内の温度及び前記燃料タンクの内圧に基づいて前記判定基準を補正することを特徴とする。
【0016】
第7の発明は、第5の発明において、前記判定基準補正手段は、前記燃料タンク内の温度と前記判定基準を補正するための補正係数との関係を規定した第1のマップを備え、前記燃料タンク内の温度に応じた補正係数を前記第1のマップから取得し、当該補正係数に基づいて前記判定基準を補正することを特徴とする。
【0017】
第8の発明は、第7の発明において、前記キャニスタにおける前記蒸発燃料の吸着量が飽和状態にあるか否かを判定する吸着量飽和判定手段を更に備え、前記第1のマップは、前記飽和状態での前記燃料タンク内の温度と前記補正係数との関係を規定した第2のマップを含み、前記判定基準補正手段は、前記キャニスタが前記飽和状態にあると判定された場合は、前記補正係数を前記第2のマップから取得することを特徴とする。
【0018】
第9の発明は、第3の発明において、前記判定基準補正手段は、前記閉路空間に正圧を付与した場合に前記ポンプから前記キャニスタへ送られた空気量と、前記キャニスタにおける前記蒸発燃料の吸着量とに応じて前記判定基準を補正することを特徴とする。
【0019】
第10の発明は、第1〜第9の発明のいずれかにおいて、前記判定基準として基準圧力を設定する基準圧力設定手段を更に備え、前記判定手段は、前記圧力検出手段で検出された圧力と前記基準圧力とを比較した結果に基づいて、前記閉路空間における漏れの状態を判定し、前記判定基準補正手段は、前記判定基準を補正する際に、前記基準圧力を補正することを特徴とする。
【0020】
第11の発明は、上記の目的を達成するため、燃料タンクと、前記燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、前記燃料タンクと前記キャニスタの双方に接続され、前記燃料タンク又は前記キャニスタのいずれか一方を含む閉路空間に所定の圧力を付与するポンプと、前記閉路空間の圧力を検出する圧力検出手段と、前記圧力検出手段で検出された圧力に基づいて、前記閉路空間における漏れの状態を判定する判定手段と、を備えたことを特徴とする。
【0021】
第12の発明は、第11の発明において、前記蒸発燃料の発生に起因する前記燃料タンクの内圧の変動に基づいて、前記判定手段での判定基準を補正する判定基準補正手段を更に備えたことを特徴とする。
【0022】
第13の発明は、第12の発明において、前記判定基準補正手段は、前記ポンプを通過して前記燃料タンク内から前記燃料タンク外に流出する流出流量を算出する流出流量算出手段と、前記流出流量と、前記燃料タンク内での前記蒸発燃料と空気の圧力比とに基づいて、前記燃料タンクの漏れ孔から流入する流入空気量を算出する流入空気量算出手段と、前記流入空気量と漏れ判定のための基準孔の断面積とに基づいて、前記基準孔に前記流入空気量の空気が流れた場合の燃料タンクの内圧を算出し、当該燃料タンクの内圧を基準圧力として設定する基準圧力設定手段と、を備え、前記判定手段は、前記圧力検出手段で検出された圧力と前記基準圧力とを比較した結果に基づいて、前記閉路空間における漏れの状態を判定することを特徴とする。
【0023】
【発明の実施の形態】
以下、図面に基づいてこの発明のいくつかの実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。なお、以下の実施の形態によりこの発明が限定されるものではない。
【0024】
実施の形態1.
図1は、本発明の実施の形態1にかかる蒸発燃料処理装置の概要を説明するための図である。図1に示すように、本実施形態の装置は、燃料タンク10、キャニスタ20、ポンプモジュール36を有して構成されている。
【0025】
燃料タンク10の内部には、タンク温度センサ16が配置されている。タンク温度センサ16によれば、燃料タンク10内のガスの温度、つまり、燃料ベーパの温度を検出することができる。以下、この温度を「タンクベーパ温度Tvap」と称す。また、燃料タンク10には、タンク内圧Ptnkを検出するためのタンク内圧センサ11、燃料の液面高さを検出するための液面センサ14が設けられている。
【0026】
燃料タンク10には、ベーパ通路18を介してキャニスタ20が連通している。また、燃料タンク10には、ポンプ通路38を介してポンプモジュール36が連通している。キャニスタ20の内部には、燃料タンク10から流入してくる燃料ベーパを吸着するための活性炭30が充填されている。また、キャニスタ20には、ベーパ通路18と接続されるベーパポート22、ポンプ通路38と接続されるポンプ側ポート24、および後述するパージ通路26に連通するパージポート28が設けられている。図1に示すように、ベーパポート22とパージポート28とは、活性炭30に対して同じ側に設けられている。一方、ポンプ側ポート24は、活性炭30を挟んで、それらのポート22,28の反対側に設けられている。
【0027】
パージ通路26は、内燃機関の吸気通路(不図示)に連通する通路である。パージ通路26の途中には、その導通状態を制御するためのパージVSV32が設けられている。内燃機関の運転中は、内燃機関の吸気負圧がパージ通路26の内部に導かれる。また、内燃機関の運転中は、ポンプ側ポート24が大気へ開放される。この状態でパージVSV32が開かれると、その吸気負圧がキャニスタ20のパージポート28にまで到達し、その結果、ポンプ側ポート24からパージポート28へ向かう空気の流れが生ずる。このような空気の流れが生ずると、活性炭30に吸着されている燃料に脱離が生ずる。従って、内燃機関の運転中にパージVSV32を適当に開くことにより、キャニスタ20に吸着されている燃料を適当に内燃機関にパージさせることができる。
【0028】
キャニスタ20の内部には、パージポート28の近傍にキャニスタ温度センサ34が配置されている。また、ポンプ側ポート24の近傍にはキャニスタ温度センサ35が配置されている。キャニスタ温度センサ34,35によれば、パージポート28、およびポンプ側ポート24の近傍において、キャニスタ20の内部温度を測定することができる。
【0029】
図1に示すように、本実施形態の蒸発燃料処理装置は、ECU(Electronic Control Unit)40を備えている。ECU40には、上述したタンク内圧センサ11、液面センサ14、タンク温度センサ16、キャニスタ温度センサ34,35、ポンプモジュール36(圧力計44)などの出力信号が供給されている。
【0030】
図2は、ポンプモジュール36の構成を示す模式図である。ポンプモジュール36は、ポンプ42、圧力計44、切換弁46、オリフィス48を有して構成されている。ポンプ42と切換弁46は通路50によって接続され、切換弁46には通路51及び通路52が接続されている。通路51はポンプ通路38と接続されており、通路52にはオリフィス48が設けられている。また、ポンプ42の切換弁46と反対側には通路54が接続されている。通路54は大気に開放された大気ポートである。
【0031】
切換弁46は、通路51と通路52のいずれか一方を通路50と接続する弁として機能する。ポンプ42は、その作動により切換弁46から通路54に向かう流れを発生させる。これにより、ポンプ42よりも切換弁46側の領域に負圧が付与される。圧力計44はこのときの通路50における圧力を測定する。オリフィス48は、漏れ判定に使用するリファレンス圧PREFを測定するために設けられた基準孔(例えばφ0.5mm)である。
【0032】
以上のように構成された本実施形態の蒸発燃料処理装置において、蒸発燃料経路の漏れ判定を行う方法を以下に説明する。本実施形態では、ポンプモジュール36によって燃料タンク10、キャニスタ20を含む蒸発燃料経路に負圧を付与し、圧力計44で検出された圧力に基づいて漏れ判定を行う。漏れ判定を行う前提として、最初にリファレンス圧PREFを測定しておく。リファレンス圧PREFを測定する際には、通路52と通路50が接続されるように切換弁46の状態を設定してポンプ42を作動させる。これにより、オリフィス48から通路54へ向かう流れが発生し、通路52に負圧が付与される。この状態で圧力計44により通路50の圧力を測定することで、φ0.5mmのオリフィス48に対応したリファレンス圧PREFを検出することができる。
【0033】
漏れ判定を行う際には、通路51と通路50が接続されるように切換弁46の状態を設定する。そして、パージVSV32を閉じ、ポンプ42を作動させる。これにより、ポンプ通路38から通路54へ向かう流れが発生し、燃料タンク10、キャニスタ20、ベーパ通路18、パージ通路26、ポンプ通路38、を含む経路に負圧が付与される。そして、このときの圧力P実測値を圧力計44で測定する。
【0034】
燃料タンク10内では、燃料が蒸発して燃料ベーパが発生しているため、燃料タンク10に負圧を付与すると、燃料タンク10内に存在する空気とともに燃料ベーパがキャニスタ20に向かって流れる。そして、燃料ベーパはキャニスタ20で吸着され、キャニスタ20からポンプモジュール36に向かって空気のみが流れる。従って、燃料タンク10からキャニスタ20へ流れる流量は、キャニスタ20からポンプモジュール36へ流れる流量よりも、燃料タンク10内に存在する燃料ベーパの分だけ大きくなる。このため、燃料タンク10内、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路における圧力は、ポンプ側ポート24、ポンプ通路38、通路50における圧力よりも低くなり、圧力P実測値とリファレンス圧PREFを単に比較するのみでは、正確な漏れ判定を行うことはできない。
【0035】
そこで、本実施形態では、キャニスタ20での燃料ベーパの付着を考慮して、リファレンス圧PREFを補正するようにしている。この際、蒸発燃料経路における実際の圧力と圧力計44で検出された圧力P実測値との相違は、燃料タンク10内に存在していた燃料ベーパがキャニスタ20に流れて吸着されることによって生じるため、燃料タンク10内に存在していた燃料ベーパの量に応じてリファレンス圧PREFを補正する。
【0036】
燃料タンク10内の燃料ベーパの量、すなわち燃料タンク10内での燃料の蒸発量は、タンク内圧Ptnkとタンクベーパ温度Tvapに応じて変動する。通常、燃料ベーパは燃料タンク10内で飽和状態にあるため、燃料タンク10内での燃料ベーパの分圧は燃料ベーパの飽和蒸気圧に等しい。そして、燃料ベーパの飽和蒸気圧はタンクベーパ温度Tvapに応じて変動する。従って、燃料タンク10内の燃料ベーパの量は、タンクベーパ温度Tvapと相関があり、タンクベーパ温度Tvapに応じて変動する。
【0037】
このため、本実施形態では、タンクベーパ温度Tvapとリファレンス圧PREFを補正するための補正係数kとの関係を規定したマップを作成し、このマップから取得した補正係数kに基づいてリファレンス圧PREFを補正する。図3は、タンクベーパ温度Tvapと補正係数kとの関係を規定したマップを示す模式図である。
【0038】
図3のマップは、実験に基づいて求めることができる。具体的には、図1のシステムにおいて、例えば燃料タンク10内にリファレンス圧PREF測定用のオリフィス48と同じφ0.5mmの大きさの漏れ孔を1箇所設けた実験機を作成する。そして、この実験機において、通路51が通路50と接続されるように切換弁46の状態を設定し、ポンプ42を作動させて燃料タンク10内、キャニスタ20、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28、ポンプ通路38を含む蒸発燃料経路に負圧を付与する。そして、実験機を種々のタンクベーパ温度Tvapの条件下におき、各タンクベーパ温度Tvap毎に圧力計44から圧力Pを検出する。
【0039】
こうして検出された圧力Pは、実際に燃料タンク10内にφ0.5mmの漏れ孔が生じている場合に圧力計44で検出される圧力値であるため、漏れ判定の際に圧力計44で測定された圧力P実測値が、そのときのタンクベーパ温度Tvapに対応した圧力Pより高い場合は、蒸発燃料経路にφ0.5mmより大きな漏れ孔が発生していると判断できる。従って、図3のマップの補正係数kは、
k=PREF/P
を各タンクベーパ温度Tvap毎に演算することで求めることができる。
【0040】
図3のマップによれば、タンク温度センサ16で検出されたタンクベーパ温度Tvapに基づいて最適な補正係数kを取得することができる。そして、取得した補正係数kをリファレンス圧PREFに乗ずることで、リファレンス圧PREFの補正値P’REFを算出することが可能となる。そして、補正値P’REFと圧力計44で検出した圧力P実測値とを比較して漏れ判定を行うことで、キャニスタ20における燃料ベーパの吸着を考慮した上で漏れ判定を行うことが可能となる。従って、燃料タンク10内、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路での漏れ判定を高い精度で行うことが可能となる。
【0041】
なお、燃料ベーパの分圧が燃料タンク10内で飽和蒸気圧に達していない場合、燃料タンク10内での燃料の蒸発量はタンクベーパ温度Tvap及びタンク内圧Ptnkと相関がある。従って、タンクベーパ温度Tvap及びタンク内圧Ptnkと補正係数kとの関係を規定したマップを作成しておき、燃料ベーパが燃料タンク10内で飽和していない場合は、このマップからタンクベーパ温度Tvap及びタンク内圧Ptnkに対応した補正係数kを取得することが好適である。
【0042】
図4は、補正したリファレンス圧P’REFと、圧力計44で測定された圧力P実測値との関係を示す模式図である。図4においては、圧力P実測値を実線または破線の特性で示している。
【0043】
図4に示すように、ポンプ42を作動させて、燃料タンク10内、キャニスタ20、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路に負圧を付与すると、圧力P実測値は低下していき、一定時間を経過した後、定常状態に落ち着く。圧力P実測値は、定常状態に落ち着いた後、リファレンス圧PREFの補正値P’REFと比較される。
【0044】
図4中に実線で示すように、圧力P実測値が補正されたリファレンス圧P’REFより高い場合は、負圧を付与しているのにも関わらず、蒸発燃料経路の圧力がφ0.5mm相当の漏れ孔が生じている場合の圧力よりも高い状態にあると判断できる。従って、この場合は、蒸発燃料経路にφ0.5より大きな漏れ孔が形成されていると判断できる。
【0045】
一方、図4中に破線で示すように、圧力Pが補正されたリファレンス圧P’REFよりも低い場合は、蒸発燃料経路の圧力がφ0.5mm相当の漏れ孔が生じている場合の圧力よりも低い状態にあると判断できる。従って、この場合は、蒸発燃料経路の漏れ孔がφ0.5より小さいと判断できる。
【0046】
補正前のリファレンス圧PREFを用いて漏れ判定を行うと、図4中の実線で示される圧力P実測値が検出された場合に、圧力P実測値がリファレンス圧PREFより低いため、蒸発燃料経路の漏れ孔がφ0.5より小さいと誤判定してしまうが、補正値P’REFを用いて判定を行うことで、正確な漏れ判定が可能となる。
【0047】
なお、上述した例では補正係数kを用いてリファレンス圧PREFを補正しているが、圧力計44で検出した圧力P実測値を補正してもよい。
【0048】
次に、図5のフローチャートに基づいて、本実施形態の蒸発燃料処理装置における処理の手順を説明する。先ず、ステップS1では、ポンプ42を作動させる。次のステップS2では、ポンプ42による負圧が、オリフィス48の設けられた通路52側へ付与されるように切換弁46の状態を設定して、リファレンス圧PREFを検出する。
【0049】
次のステップS3では、ポンプ42による負圧がポンプ通路38側へ付与されるように切換弁46の状態を設定して、燃料タンク10内、キャニスタ20、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路へ負圧を付与する。次のステップS4では、蒸発燃料経路に負圧を付与した状態で圧力計44により圧力P実測値を測定する。
【0050】
次のステップS5では、タンク温度センサ16によりタンクベーパ温度Tvapを検出する。次のステップS6では、タンクベーパ温度Tvapに応じた補正係数kを図3のマップから求め、次のステップS7では、ステップS6で求めた補正係数kを用いてリファレンス圧PREFの補正値P’REFを算出する。
【0051】
次のステップS8では、ステップS4で測定した圧力P実測値と、ステップS6で求めた補正値P’REFとの大小関係を比較する。すなわち、ここではP実測値≦P’REFであるか否かを判定する。
【0052】
ステップS8でP実測値≦P’REFと判定された場合は、ステップS9へ進み、蒸発燃料経路に形成された漏れ孔の大きさはφ0.5以下であると判定する。一方、ステップS8でP実測値>P’REFと判定された場合は、ステップS10へ進み、蒸発燃料経路にφ0.5よりも大きな漏れ孔が生じていると判定する。
【0053】
以上説明したように実施の形態1によれば、ポンプモジュール36を用いて蒸発燃料経路に負圧を付与した状態で圧力P実測値を測定し、キャニスタ20での燃料ベーパ吸着を考慮して圧力P実測値と比較されるリファレンス圧PREFを補正するようにしたため、蒸発燃料経路における漏れを高い精度で判定することが可能となる。
【0054】
実施の形態2.
次に、本発明の実施の形態2について説明する。実施の形態2は、実施の形態1と同様にキャニスタ20での燃料ベーパ吸着を考慮してリファレンス圧PREFを補正するものであるが、燃料ベーパの吸着状態に応じてリファレンス圧PREFの補正係数kを取得するマップを変更するものである。実施の形態2にかかる蒸発燃料処理装置の構成は、実施の形態1と同様である。
【0055】
キャニスタ20における燃料ベーパの吸着特性は、キャニスタ20が吸着している燃料ベーパの量に応じて変動する。キャニスタ20での燃料ベーパの吸着量がキャニスタ20が吸着可能な許容量よりも小さい場合は、燃料タンク10からキャニスタ20へ流れた燃料ベーパの殆どがキャニスタ20に吸着される。
【0056】
一方、キャニスタ20における燃料ベーパの吸着量が飽和状態となると、キャニスタ20における燃料ベーパ吸着量が低下するため、一部の燃料ベーパはキャニスタ20を通過してポンプモジュール36側へ流れる。従って、燃料タンク10内、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路における圧力と、ポンプ側ポート24、ポンプ通路38、通路50における圧力との関係は、キャニスタ20が飽和状態でない場合と相違する。
【0057】
このため、実施の形態2では、キャニスタ20における燃料ベーパの吸着が飽和状態にある場合と、飽和状態に達していない場合とで、補正係数kを取得するマップを使い分けるようにしている。図6は、補正係数kを取得するためのマップを示す模式図であって、図3のマップと同様にタンクベーパ温度Tvapと補正係数kとの関係を規定したものである。図6のマップは、図3のマップを含み、更にキャニスタ20における燃料ベーパの吸着量が飽和した場合の、補正係数kとタンクベーパ温度Tvapとの関係を規定したマップを含むものである。そして、キャニスタ20における燃料ベーパの吸着量が飽和していない場合は、実施の形態1と同様に図3のマップから補正係数kを取得し、キャニスタ20における燃料ベーパの吸着量が飽和している場合は、飽和状態における補正係数kとタンクベーパ温度Tvapとの関係を規定したマップから補正係数kを取得する。
【0058】
図6のマップは、実施の形態1で説明した方法と同様の方法で取得することができる。すなわち、実施の形態1で説明した、蒸発燃料経路にφ0.5mmの漏れ孔を設けた実験機において、キャニスタ20における燃料ベーパの吸着状態を飽和状態に設定し、ポンプ42により燃料タンク10内、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路に負圧を付与する。そして、実験機を異なる温度条件下におき、各温度毎に圧力計44で圧力Pを検出する。これにより、キャニスタ20における燃料ベーパの吸着が飽和している場合での、タンクベーパ温度Tvapと補正係数kとの関係を求めることができる。
【0059】
このように、キャニスタ20が飽和状態にある場合は、マップを切り換えて、飽和状態におけるタンクベーパ温度Tvapと補正係数kとの関係を規定したマップからリファレンス圧PREFの補正係数kを取得することで、キャニスタ20が飽和状態にある場合であっても、リファレンス圧PREFを正確に補正することが可能となる。なお、リファレンス圧PREFの補正値P’REFを算出する方法は、実施の形態1と同様である。
【0060】
キャニスタ20が飽和しているか否かの判定は、キャニスタ温度センサ34,35でキャニスタ20の内部温度を測定することで実現できる。図7は、キャニスタ20における燃料ベーパの吸着状態を示す模式図であって、図7(A)は燃料ベーパがほとんど吸着されていない状態を、図7(B)は燃料ベーパの吸着量が飽和状態にある場合をそれぞれ示している。
【0061】
図7(A)に示す状態では、燃料タンク10側のベーパポート22から燃料ベーパ(図7中において“×”で示す)がキャニスタ20内へ流入すると、ベーパポート22の近傍における活性炭30に燃料ベーパが吸着される。このため、活性炭30と燃料ベーパとの反応により、パージポート28の近傍に配置されたキャニスタ温度センサ34から検出されるキャニスタ温度が上昇する。燃料ベーパは、ベーパポート22側からポンプ側ポート24に向かって順次吸着されるため、図7(A)の状態では、ポンプ側ポート24の近傍に到達する燃料ベーパの量は僅かである。従って、ポンプ側ポート24の近傍に配置されたキャニスタ温度センサ35から検出されるキャニスタ温度に変化は殆ど生じない。このように、キャニスタ温度センサ34から検出されるキャニスタ温度が上昇し、キャニスタ温度センサ35から検出されるキャニスタ温度がほぼ一定している場合は、キャニスタ20における燃料ベーパの吸着量は少なく、キャニスタ20が飽和していないと推定することができる。
【0062】
図7(B)に示す状態では、キャニスタ20が既に飽和状態にあるため、活性炭30における燃料ベーパの吸着は殆ど生じない。従って、キャニスタ温度センサ34、キャニスタ温度センサ35の双方から検出されるキャニスタ温度に変動は生じない。このように、キャニスタ温度センサ34、キャニスタ温度センサ35の双方から検出されるキャニスタ温度がほぼ一定している場合は、キャニスタ20における燃料ベーパの吸着状態が飽和状態にあると推定することができる。
【0063】
従って、蒸発燃料経路における漏れ判定を行う前に、キャニスタ温度センサ34,35から検出されるキャニスタ温度をモニタすることで、キャニスタ20が飽和状態にあるか否かを判定することができる。なお、漏れ判定の際にポンプ42により蒸発燃料経路に負圧を与えると、燃料タンク10内の燃料ベーパがキャニスタ20へ流入する。従って、この時点でキャニスタ温度センサ34,35から検出したキャニスタ温度に基づいて、キャニスタ20が飽和状態にあるか否かを判定すればよい。
【0064】
図8は、実施の形態2にかかる蒸発燃料処理装置における処理の手順を示すフローチャートである。図8の処理は、キャニスタ20が飽和しているか否かを判定するステップを含む点で図5のフローチャートと相違する。先ず、ステップS11では、ポンプ42を作動させる。次のステップS12では、ポンプ42による負圧が、オリフィス48の設けられた通路52側へ付与されるように切換弁46の状態を設定して、リファレンス圧PREFを検出する。
【0065】
次のステップS13では、ポンプ42による負圧がポンプ通路38側へ付与されるように切換弁46の状態を設定して、燃料タンク10内、キャニスタ20、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路へ負圧を付与する。次のステップS14では、蒸発燃料経路に負圧を付与した状態で圧力計44により圧力P実測値を測定する。次のステップS15では、タンク温度センサ16によりタンクベーパ温度Tvapを検出する。
【0066】
次のステップS16では、キャニスタ温度センサ34,35によりキャニスタ内温度を検出する。次のステップS17では、ステップS16で検出したキャニスタ内温度に基づいて、キャニスタ20における燃料ベーパの吸着状態が飽和状態にあるか否かを判定する。
【0067】
ステップS17でキャニスタ20における燃料ベーパの吸着状態が飽和状態にあると判定された場合は、ステップS18へ進み、図6のマップのうち、飽和状態においてタンクベーパ温度Tvapと補正係数kとの関係を規定したマップから補正係数kを取得する。一方、ステップS17でキャニスタ20における燃料ベーパの吸着状態が飽和状態にないと判定された場合は、ステップS19へ進み、図3のマップから補正係数kを取得する。
【0068】
次のステップS20では、ステップS18またはステップS19で求めた補正係数kを用いてリファレンス圧PREFの補正値P’REFを算出する。次のステップS21では、ステップS14で測定した圧力P実測値と、ステップS20で求めた補正値P’REFとの大小関係を比較する。すなわち、ここではP≦P’REFであるか否かを判定する。
【0069】
ステップS21でP実測値≦P’REFと判定された場合は、ステップS22へ進み、蒸発燃料経路に形成された漏れ孔の大きさがφ0.5以下であると判定する。一方、ステップS21でP実測値>P’REFと判定された場合は、ステップS23へ進み、蒸発燃料経路にφ0.5よりも大きな漏れ孔が発生していると判定する。
【0070】
以上説明したように実施の形態2によれば、キャニスタ20における燃料ベーパの吸着状態が飽和状態にあるか否かに応じて、補正係数kを取得するマップを切り換えるようにしたため、キャニスタ20が飽和状態にある場合であっても、蒸発燃料経路における漏れを高い精度で判定することが可能となる。
【0071】
実施の形態3.
次に、本発明の実施の形態3について説明する。図9は、本発明の実施の形態3にかかる蒸発燃料処理装置の概要を説明するための図である。実施の形態3にかかる蒸発燃料処理装置は、図1の装置と同様に、燃料タンク10、キャニスタ20、ポンプモジュール36を有している。そして、実施の形態3では、燃料タンク10とキャニスタ20の間のベーパ通路18にポンプモジュール36を配置している。
【0072】
ポンプモジュール36の構成は実施の形態1と同様である。実施の形態3では、ポンプモジュール36の通路51が燃料タンク10側のベーパ通路18と接続され、通路54がキャニスタ20側のベーパ通路18(ベーパポート22)と接続されている。
【0073】
ベーパ通路18と並行してバイパス通路56が設けられている。バイパス通路56は、ポンプモジュール36をバイパスさせて燃料タンク10とキャニスタ20とを接続する通路である。バイパス通路56とベーパ通路18が接続される箇所には、切換弁58及び切換弁60がそれぞれ設けられている。また、切換弁60と接続されるように大気ポート62が設けられている。
【0074】
キャニスタ20には、吸気通路に燃料ベーパをパージする際に大気を導入するための大気ポート64が設けられている。大気ポート64は、活性炭30を挟んで、ベーパポート22、パージポート28の反対側に設けられている。また、大気ポート64には、封鎖弁66が設けられている。封鎖弁66は、漏れ判定を行う場合に大気ポート64を封鎖するものである。
【0075】
実施の形態3では、切換弁58及び切換弁60の状態を適宜設定することで、ポンプモジュール36で発生させた負圧を燃料タンク10側、またはキャニスタ20側へ付与して漏れ判定を行う。
【0076】
図10は、燃料タンク10側の漏れ判定を行う場合、キャニスタ20の漏れ判定を行う場合、および漏れ判定を行わない場合、のそれぞれにおける切換弁58,60の設定を示す模式図である。
【0077】
図10(A)に示す状態では、燃料タンク10からバイパス通路56への流れを遮断するように切換弁58が設定される。また、ポンプモジュール36からキャニスタ20及びバイパス通路56への流れを遮断し、ポンプモジュール36からの流れが大気ポート62へ向かうように切換弁60が設定される。
【0078】
図10(B)に示す状態では、バイパス通路56から燃料タンク10への流れを遮断するように切換弁58が設定される。切換弁60の設定は図10(A)と同様である。また、図10(B)に示す状態では、封鎖弁66によって大気ポート64が封鎖される。
【0079】
図10(C)に示す状態では、図10(A)と同様に、燃料タンク10からバイパス通路56への流れを遮断するように切換弁58が設定される。また、ポンプモジュール36から大気ポート62への流れを遮断し、ポンプモジュール36からの流れがキャニスタ20へ向かうように切換弁60が設定される。また、図10(C)に示す状態では、大気ポート64が大気に開放されるように封鎖弁66の状態が設定される。
【0080】
燃料タンク10側の漏れ判定を行う場合、図10(A)に示すように切換弁58,60の状態を設定する。そして、ポンプモジュール36のポンプ42を作動させる。これにより、燃料タンク10から大気ポート62に向かう流れが発生し、燃料タンク10側へ負圧が付与される。圧力計44では、このときの圧力P実測値を測定する。そして、予め検出しておいたリファレンス圧PREFと比較することで、燃料タンク10側の漏れ判定を行う。
【0081】
この際、図10(A)に示す状態に切換弁58,60が設定されているため、燃料タンク10内の燃料ベーパがキャニスタ20へ流れ込むことはない。このため、キャニスタ20での燃料ベーパの吸着現象に起因して、圧力計44で検出した圧力P実測値と燃料タンク10内の実際の圧力が相違してしまうことはない。従って、圧力計44から検出された圧力P実測値とリファレンス圧PREFとを比較することで、燃料タンク10側の漏れ判定を正確に行うことができる。
【0082】
キャニスタ20側の漏れ判定を行う場合、図10(B)に示すように切換弁58,60及び封鎖弁66の状態を設定する。そして、ポンプモジュール36のポンプ42を作動させる。これにより、キャニスタ20からバイパス通路56を通って大気ポート62に向かう流れが発生し、キャニスタ20側へ負圧が付与される。圧力計44では、このときの圧力P実測値を測定する。そして、予め検出しておいたリファレンス圧PREFと比較することで、キャニスタ20側の漏れ判定を行う。
【0083】
この際、負圧が付与されたキャニスタ20を含む経路においては、空気とともにキャニスタ20からパージされた燃料ベーパが流れることとなるが、キャニスタ20(活性炭30)よりも下流の経路において流量が変化する要因は存在しない。このため、ポンプモジュール46の圧力計44で検出された圧力P実測値と、キャニスタ20よりも下流の経路における実際の圧力は等しくなり、圧力計44から検出された圧力P実測値とリファレンス圧PREFとを比較することで、キャニスタ20側の漏れ判定を正確に行うことができる。
【0084】
また、漏れ判定を行わずに、通常の使用状態でキャニスタ20を使用する場合は、切換弁58,60及び封鎖弁66を図10(C)に示す状態に設定し、ポンプ42を開放する。これにより、燃料タンク10から流れた燃料ベーパはポンプモジュール36を通過してキャニスタ20へ流れることとなり、燃料ベーパをキャニスタ20で吸着することが可能となる。なお、この場合、燃料ベーパがバイパス通路56を通過してキャニスタ20へ流れるように切換弁58,60の状態を設定してもよい。
【0085】
以上説明したように実施の形態3によれば、燃料タンク10とキャニスタ20との間にポンプモジュール36を配置し、バイパス通路56、切換弁58,60、封鎖弁66を設けることで、ポンプモジュール36で発生させた負圧を燃料タンク10側、またはキャニスタ20側のいずれか一方へ付与することが可能となる。そして、この装置構成により、キャニスタ20での燃料ベーパの吸着または脱離現象に起因して、負圧が付与された経路の実際の圧力と圧力計44で検出した圧力P実測値とが相違してしまうことを抑止することができる。従って、圧力計44で検出した圧力P実測値とリファレンス圧PREFとを比較することで、燃料タンク10側またはキャニスタ20側の漏れ判定を正確に行うことができる。
【0086】
実施の形態4.
次に、本発明の実施の形態4について説明する。実施の形態4は蒸発燃料経路に正圧を付与して漏れ判定を行うものである。
【0087】
実施の形態4にかかる蒸発燃料処理装置の構成は、図1に示す装置と同様であるが、実施の形態4では、ポンプモジュール36から蒸発燃料経路に正圧を付与する点で実施の形態1〜3の装置と相違する。すなわち、実施の形態4のポンプモジュール36では、ポンプ42を作動させると、通路54から切換弁46へ向かう流れが発生する。従って、ポンプ側通路38と通路50とが接続されるように切換弁46の状態を設定しておくことで、燃料タンク10内、キャニスタ20、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28、ポンプ側通路38を含む経路に正圧が付与されることとなる。
【0088】
漏れ判定を行う前提として、最初にリファレンス圧PREFを測定しておく。リファレンス圧PREFを測定する際には、通路52と通路50が接続されるように切換弁46の状態を設定してポンプ42を作動させる。これにより、ポンプ42からオリフィス48へ向かう流れが発生し、通路52に正圧が付与される。この状態で圧力計44により通路50の圧力を測定することで、φ0.5mmのオリフィス48に対応したリファレンス圧PREFを検出することができる。
【0089】
漏れ判定を行う際には、ポンプ42による正圧がポンプ通路38側へ付与されるように切換弁46の状態を設定する。そして、燃料タンク10内、キャニスタ20、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28、ポンプ側通路38を含む経路に正圧を付与し、このときの通路50での圧力P実測値を圧力計44で測定する。
【0090】
ここで、ポンプ42による正圧をポンプ通路38側へ付与することで、ポンプモジュール36からキャニスタ20に向かって空気が流れる。この空気がキャニスタ20を通過すると、キャニスタ20で吸着されている燃料ベーパの一部がパージされる。従って、キャニスタ20から燃料タンク10に向かって空気とともに燃料ベーパが流れる。
【0091】
これにより、燃料タンク10内、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路における圧力は、ポンプ側ポート24、ポンプ通路38、通路50における圧力よりも高くなる。
【0092】
そこで、本実施形態では、キャニスタ20での燃料ベーパのパージを考慮して、リファレンス圧PREFを補正する。図11は、リファレンス圧PREFを補正するための補正係数kを取得するためのマップを示す模式図である。キャニスタ20からパージされる燃料ベーパの量は、ポンプモジュール36からキャニスタ20へ送られる空気の流量に応じて変動する。また、パージされる燃料ベーパの量は、キャニスタ20での燃料ベーパの吸着量に応じて変動する。従って、図11のマップでは、ポンプモジュール36からキャニスタ20へ送られた空気の流量及びキャニスタ20における燃料ベーパの吸着量と、補正係数kとの関係を規定している。
【0093】
図11のマップによれば、キャニスタ20へ送られた空気の流量と、キャニスタ20における燃料ベーパの吸着量とに応じて、リファレンス圧PREFを補正するための補正係数kを取得することができる。なお、ポンプモジュール36からキャニスタ20へ送られた空気の流量は、ポンプ42の諸元、および作動状態(ポンプ42の前後の差圧)から求めることができる。また、キャニスタ温度センサ34,35でキャニスタ内部温度の変動を検出することで、活性炭30と燃料ベーパの反応量を推定することができるため、キャニスタ20における燃料ベーパの吸着量はキャニスタ内部温度から推定することができる。また、燃料ベーパの付着に伴ってキャニスタ20の重量は増加するため、燃料ベーパの吸着が飽和状態にある場合のキャニスタ20の重量と、燃料ベーパが殆ど吸着されていない場合のキャニスタ20の重量を計測しておき、ロードセル等を用いてキャニスタ20の重量を逐次検出することで燃料ベーパの吸着量を推定しても良い。
【0094】
そして、実施の形態1と同様に、取得した補正係数kをリファレンス圧PREFに乗ずることでリファレンス圧PREFの補正値P’REFを算出することができ、補正値P’REFと圧力計44で検出した圧力P実測値とを比較して漏れ判定を行うことで、正圧を付与した場合のキャニスタ20における燃料ベーパのパージを考慮した上で漏れ判定を行うことが可能となる。従って、燃料タンク10内、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路での漏れ判定を高い精度で行うことが可能となる。
【0095】
図12は、補正したリファレンス圧P’REFと、圧力計44で測定された圧力P実測値との関係を示す模式図である。図12に示すように、ポンプ42を作動させて、燃料タンク10内、キャニスタ20、ベーパ通路18、パージ通路26、ベーパポート22、パージポート28を含む蒸発燃料経路に正圧を付与すると、圧力計44で検出される圧力P実測値は上昇し、一定時間を経過した後、定常状態に落ち着く。圧力計44で検出された圧力P実測値は、定常状態に落ち着いた後、リファレンス圧PREFの補正値P’REFと比較される。
【0096】
図12中に実線で示すように、圧力P実測値が補正されたリファレンス圧P’REFより低い場合は、正圧を付与しているのにも関わらず、蒸発燃料経路の圧力がφ0.5mm相当の漏れ孔が生じている場合の圧力より低い圧力状態にあると判断できる。従って、この場合は、蒸発燃料経路にφ0.5より大きな漏れ孔が形成されていると判断できる。
【0097】
一方、図12中に破線で示すように、圧力Pが補正されたリファレンス圧P’REFより高い場合は、蒸発燃料経路の圧力が、φ0.5mm相当の漏れ孔が生じている場合の圧力より高い状態にあると判断できる。従って、この場合は、蒸発燃料経路の漏れ孔はφ0.5より小さいと判断できる。
【0098】
以上説明したように実施の形態4によれば、蒸発燃料経路に正圧を付与した場合に、キャニスタ20における燃料ベーパのパージを考慮して漏れ判定のリファレンス圧PREFを補正するようにしたため、蒸発燃料経路における漏れを高い精度で判定することが可能となる。
【0099】
実施の形態5.
次に、本発明の実施の形態5について説明する。実施の形態5は、燃料タンク10内での燃料蒸発による圧力影響分を考慮して漏れ判定を行うものであり、図10(A)で説明した、ポンプモジュール36から付与した負圧を燃料タンク10へ付与して漏れ判定を行う場合に適用して好適である。
【0100】
実施の形態3の図10(A)で説明したように、燃料タンク10の漏れ判定を行う場合、燃料タンク10内に負圧を付与して圧力計44での圧力P実測値とリファレンス圧PREFとを比較する。この場合、燃料タンク10内では燃料の蒸発により燃料ベーパが発生しているため、燃料タンク10内に燃料ベーパが存在しない場合と比較すると、燃料蒸発に起因して燃料タンク10内の圧力が高くなる。
【0101】
実施の形態5は、燃料タンク10内での燃料の蒸発による燃料タンク10内の圧力変動分を考慮して、燃料タンク10内の漏れ判定を行うものである。この際、実施の形態5では、燃料タンク10内の物理モデルを用いて、燃料蒸発に起因した圧力変動を求める。なお、実施の形態1,2では、燃料の蒸発による圧力変動分を含めた状態で図3、図6のマップが作成されているため、本実施形態にかかる手法で燃料の蒸発による燃料タンク10内の圧力変動分を考慮する必要はない。本実施形態にかかる手法は、例えば実施の形態3の図10(A)の場合に適用して好適である。
【0102】
図13は、実施の形態5にかかる蒸発燃料処理装置を示す模式図である。図13に示すように、実施の形態5の装置は、燃料タンク10とポンプモジュール36を有して構成されている。ポンプモジュール36の構成は実施の形態1と同様である。漏れ判定の際には、ポンプモジュール36のポンプ42を作動させて、燃料タンク10から通路54(大気ポート)へ向かう流れを生じさせる。これにより、燃料タンク10内が負圧に設定される。
【0103】
図13に示すように、燃料タンク10にオリフィス70(漏れ孔)が形成されている場合、オリフィス70から燃料タンク10内に空気が流入する。実施の形態5では、オリフィス70から燃料タンク10内に流入する空気量を求め、これに基づいてリファレンス圧PREFを補正する。
【0104】
最初に、実施の形態1と同様の方法で、ポンプモジュール36に設けられたオリフィス48を用いてリファレンス圧PREFを求める。リファレンス圧PREFが求まると、以下の(1)式からオリフィス48における空気の流量QREFが求まる。
【0105】
【数1】
Figure 0004239716
【0106】
(1)式はオリフィス48の両側の圧力比(PREF/P)、オリフィス48の断面積Aと、オリフィスの流量QREFとの関係を関数Φを用いて表した一般的なオリフィスの式である。(1)式において、Tはオリフィス48の上流側の空気温度であって、大気温度を測定することで求まる。また、Rは気体定数、Maは空気の分子量であって、それぞれ既知の値である。また、Pは大気圧であって、圧力センサ等から求める。(1)式によれば、オリフィス48における空気の流量QREFを算出できる。
【0107】
オリフィス48における空気の流量QREFが求まると、図14に示すように、リファレンス圧PREF、流量QREFに基づいてポンプ特性f(P−P)を決定することができる。図14は、ポンプ特性70(P−Q特性)を示す特性図である。ポンプ特性の傾きは、ポンプ42の諸元から決定され既知の値である。一方、ポンプ特性は、作動電圧等によって、特性70a、特性70bのように変動する。リファレンス圧PREF及び流量QREFが求まると、図14に示すように、(PREF,QREF)の点を通る特性としてポンプ特性70を決定することができる。
【0108】
図13に示すように、ポンプ42を作動させて燃料タンク10内へ負圧を付与すると、オリフィス70から燃料タンク10内に空気が流入する。また、燃料タンク10内で燃料が蒸発することにより、燃料ベーパが発生する。そして、燃料タンク10内では質量保存が成立するため、オリフィス70から燃料タンク10内へ流入した空気と、燃料タンク10内での燃料の蒸発によって発生した燃料ベーパとが、ポンプ42の作動により通路54へ流れることとなる。
【0109】
ここで、燃料タンク10内から通路54へ流れる燃料ベーパ及び空気の総流量Qは、燃料タンク10のタンク内圧Ptnkを用いて、ポンプ特性70から求めることができる。タンク内圧Ptnkは、タンク内圧センサ11による検出値を用いる。
【0110】
また、燃料タンク10の内圧Ptnkは、空気の分圧Paと燃料ベーパの分圧Pvとを合計した値となる。すなわち、Ptnk=Pa+Pvとなる。燃料タンク10内へ流入する空気量Qは、空気の分圧Paに対応した量であり、空気の分圧Paと燃料ベーパの分圧Pvとから求まる質量分率から求めることができる。従って、燃料タンク10内から大気ポート54へ流れる燃料ベーパ及び空気の総流量Qと、燃料タンク10内における空気の質量分率とから、オリフィス70から燃料タンク10内へ流入する空気量Qを求めることができる。
【0111】
この際、燃料タンク10内では、燃料ベーパが飽和状態にあると考えて良いため、燃料ベーパの分圧Pvは燃料ベーパの飽和蒸気圧となる。飽和蒸気圧Pvは以下の(2)式から算出することができる。
【0112】
【数2】
Figure 0004239716
【0113】
(2)式において、温度Tlは燃料ベーパの温度であって、タンク温度センサ16による検出値(タンクベーパ温度Tvap)を用いる。また、RVPは燃料(ガソリン)の蒸発のし易さを示す係数である。(2)式から燃料ベーパの飽和蒸気圧Pvを算出すると、空気の分圧Paは、Pa=Ptnk−Pvとして求められる。
【0114】
このようにして燃料ベーパの分圧Pv(=飽和蒸気圧)と空気の分圧Paとが求まると、燃料(ガソリン)の分子量Mgと空気の分子量Maとが既知の値であるため、燃料タンク10内における空気の質量分率aを求めることができる。空気の質量分率aは以下の(3)式から算出することができる。
【0115】
【数3】
Figure 0004239716
【0116】
従って、オリフィス70から燃料タンク10内へ流入する空気量Qは、燃料タンク10内から大気ポート54へ流れる燃料ベーパ及び空気の総流量Qに空気の質量分率aを乗じて求めることができ、以下の(4)式から算出する。
【0117】
【数4】
Figure 0004239716
【0118】
オリフィス70から燃料タンク10内へ流入する空気量Qが求まると、以下のオリフィスの式((5)式)にQを代入する。
【0119】
【数5】
Figure 0004239716
【0120】
(5)式は、(1)式と同様に、オリフィス70の両側の圧力比(P/P)、オリフィス70の断面積Aと、オリフィスの流量Qとの関係を関数Φを用いて表した一般的なオリフィスの式である。(5)式において、Tはオリフィス70の上流側の空気温度であって、図示しない大気温度センサでの検出値を用いる。また、Pは大気圧、Rは気体定数、Maは空気の分子量であって、それぞれ既知の値である。
【0121】
(5)式において、断面積Aをφ0.5mmのオリフィスの断面積に設定すると、A,P0,R,Ma,Tが既に求められているため、(5)式からPが求まる。ここで求まるPは、オリフィス70がφ0.5mmの大きさの場合に、オリフィス70から燃料タンク10内へ流量Qの空気が流れた場合の燃料タンク10の内圧であり、燃料タンク10内での燃料蒸発による分圧を含むものである。従って、(5)式から算出された内圧Pと圧力計44で検出した圧力P測定値とを比較することで、燃料蒸発分を考慮した上でオリフィス70がφ0.5mmより小さいか否かを判定することができる。すなわち、(5)式から求められた燃料タンク10の内圧は、燃料蒸発分を考慮したリファレンス圧の補正値P’REFに相当する。
【0122】
次に、図15のフローチャートに基づいて、本実施形態の蒸発燃料処理装置における処理の手順を説明する。先ず、ステップS21では、ポンプ42を作動させる。次のステップS22では、ポンプ42による負圧が、オリフィス48の設けられた通路52側へ付与されるように切換弁46の状態を設定して、リファレンス圧PREFを検出する。
【0123】
次のステップS23では、(1)式を用いて、リファレンス圧PREFからオリフィス48における空気の流量QREFを算出し、ポンプ特性70を求める。
【0124】
次のステップS24では、ポンプ42による負圧が燃料タンク10へ付与されるように切換弁46の状態を設定して、燃料タンク10内に負圧を付与する。次のステップS25では、燃料タンク10内に負圧を付与した状態で圧力計44により圧力P実測値を測定する。
【0125】
次のステップS26では、タンク温度センサ16によりタンクベーパ温度Tvapを検出し、また、タンク内圧センサ11によりタンク内圧Ptnkを検出する。次のステップS27では、(2)式を用いて、燃料ベーパの飽和蒸気圧Pvを算出する。
【0126】
次のステップS28では、タンク内圧Ptnkと燃料ベーパの飽和蒸気圧Pvとから空気の分圧Paを求め、空気の質量分率を用いて(4)式からオリフィス70における空気の流量Qを求める。
【0127】
次のステップS29では、(5)式を用いて、断面積Aをφ0.5mmのオリフィスの断面積に設定して、オリフィス70の大きさがφ0.5mmの場合の圧力P、すなわちリファレンス圧の補正値P’REFを算出する。
【0128】
次のステップS30では、ステップS25で測定した圧力P実測値と、ステップS29で求めた補正値P’REFとの大小関係を比較する。すなわち、ここではP実測値≦P’REFであるか否かを判定する。
【0129】
ステップS30でP実測値≦P’REFと判定された場合は、ステップS31へ進み、蒸発燃料経路に形成された漏れ孔の大きさがφ0.5以下であると判定する。一方、ステップS30でP実測値>P’REFと判定された場合は、ステップS32へ進み、蒸発燃料経路にφ0.5よりも大きな漏れ孔が生じていると判定する。
【0130】
以上説明したように実施の形態5によれば、燃料タンク10内の物理モデルに基づいて、燃料タンク10内での燃料蒸発による圧力影響分を考慮してリファレンス圧PREFの補正値P’REFを算出するようにしたため、補正値P’RE に基づいて漏れ孔の判定を精度良く行うことが可能となる。
【0131】
【発明の効果】
第1の発明によれば、キャニスタで発生する蒸発燃料の吸着現象または脱離現象に基づいて、判定手段での判定基準を補正するようにしたため、蒸発燃料経路における漏れを高い精度で判定することが可能となる。
【0132】
第2の発明によれば、閉路空間に負圧を付与した場合に圧力検出手段で検出された圧力に基づいて、燃料タンクを含む閉路空間における漏れの状態を判定することが可能となる。
【0133】
第3の発明によれば、閉路空間に正圧を付与した場合に圧力検出手段で検出された圧力に基づいて、燃料タンクを含む閉路空間における漏れの状態を判定することが可能となる。
【0134】
第4の発明によれば、燃料タンク内での蒸発燃料の量に応じて判定基準を補正することで、キャニスタで吸着された蒸発燃料の量に応じて判定基準を補正することができ、判定基準を高精度に補正することが可能となる。
【0135】
第5の発明によれば、燃料タンク内の温度に応じて燃料タンク内での蒸発燃料の量が変動するため、燃料タンク内の温度に基づいて判定基準を補正することで、燃料タンク内での蒸発燃料の量に応じて判定基準を補正することができ、判定基準を高精度に補正することが可能となる。
【0136】
第6の発明によれば、燃料タンク内の温度及び燃料タンクの内圧に応じて燃料タンク内での蒸発燃料の量が変動するため、燃料タンク内の温度及び燃料タンクの内圧に基づいて判定基準を補正することで、燃料タンク内での蒸発燃料の量に応じて判定基準を補正することができ、判定基準を高精度に補正することが可能となる。
【0137】
第7の発明によれば、第1のマップから判定基準を補正するための補正係数を取得することができ、補正係数に基づいて判定手段での判定基準を補正することが可能となる。
【0138】
第8の発明によれば、キャニスタが飽和状態にあると判定された場合は、補正係数を第2のマップから取得するため、キャニスタが飽和状態にある場合であっても蒸発燃料経路における漏れを高い精度で判定することが可能となる。
【0139】
第9の発明によれば、ポンプからキャニスタへ送られた空気量と、キャニスタにおける蒸発燃料の吸着量とに応じて判定基準を補正するため、正圧を付与した場合のキャニスタでの蒸発燃料の脱離現象に応じて判定基準を補正することが可能となる。
【0140】
第10の発明によれば、判定基準として基準圧力を設定し、判定基準を補正する際に基準圧力を補正するようにしたため、判定基準の補正を正確に行うことが可能となる。
【0141】
第11の発明によれば、燃料タンク又はキャニスタのいずれか一方を含む閉路空間に所定の圧力を付与するようにしたため、キャニスタでの蒸発燃料の吸着または脱離現象に影響を受けることなく、燃料タンク又はキャニスタのいずれか一方を含む閉路空間の漏れ判定を正確に行うことが可能となる。
【0142】
第12の発明によれば、蒸発燃料の発生に起因する燃料タンクの内圧の変動に基づいて、判定手段での判定基準を補正するようにしたため、燃料タンクにおける漏れを高い精度で判定することが可能となる。
【0143】
第13の発明によれば、燃料タンクの漏れ孔から流入する流入空気量を算出し、漏れ判定のための基準孔にこの流入空気量の空気が流れた場合の燃料タンクの内圧を基準圧力として設定するようにしたため、基準圧力に蒸発燃料の発生に起因する圧力変動分が含まれることとなる。従って、基準圧力に基づいて漏れ判定を行うことで、燃料タンク又はキャニスタのいずれか一方を含む閉路空間の漏れ判定を正確に行うことが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1にかかる蒸発燃料処理装置の概要を説明するための模式図である。
【図2】 ポンプモジュールの構成を示す模式図である。
【図3】 タンクベーパ温度Tvapと補正係数kとの関係を規定したマップを示す模式図である。
【図4】 実施の形態1において、補正したリファレンス圧P’REFと、圧力計で測定された圧力P実測値との関係を示す模式図である。
【図5】 実施の形態1の蒸発燃料処理装置における処理の手順を示すフローチャートである。
【図6】 実施の形態2において、補正係数kを取得するためのマップを示す模式図である。
【図7】 キャニスタにおける燃料ベーパの吸着状態を示す模式図である。
【図8】 実施の形態2の蒸発燃料処理装置における処理の手順を示すフローチャートである。
【図9】 本発明の実施の形態3にかかる蒸発燃料処理装置の概要を説明するための模式図である。
【図10】 燃料タンク側の漏れ判定を行う場合、キャニスタの漏れ判定を行う場合、および漏れ判定を行わない場合、のそれぞれにおける切換弁の設定を示す模式図である。
【図11】 実施の形態4において、リファレンス圧PREFを補正するための補正係数kを取得するためのマップを示す模式図である。
【図12】 実施の形態4において、補正したリファレンス圧P’REFと、圧力計で測定された圧力P実測値との関係を示す模式図である。
【図13】 実施の形態5にかかる蒸発燃料処理装置を示す模式図である。
【図14】 ポンプ特性(P−Q特性)を示す特性図である。
【図15】 実施の形態5の蒸発燃料処理装置における処理の手順を示すフローチャートである。
【図16】 蒸発燃料経路に圧力を付与して漏れ判定を行う場合の問題点を説明するための模式図である。
【符号の説明】
10 燃料タンク
11 タンク内圧センサ
16 タンク温度センサ
20 キャニスタ
34,35 キャニスタ温度センサ
40 ECU
42 ポンプ
44 圧力計
48 オリフィス

Claims (13)

  1. 燃料タンクと、
    前記燃料タンクと接続され、前記燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、
    前記キャニスタと接続され、前記キャニスタを介して前記燃料タンクを含む閉路空間に所定の圧力を付与するポンプと、
    前記キャニスタよりも前記ポンプ側における前記閉路空間での圧力を検出する圧力検出手段と、
    前記圧力検出手段で検出された圧力に基づいて、前記燃料タンクを含む閉路空間における漏れの状態を判定する判定手段と、
    前記キャニスタでの前記蒸発燃料の吸着現象または脱離現象に基づいて、前記判定手段での判定基準を補正する判定基準補正手段と、
    を備えたことを特徴とする内燃機関の蒸発燃料処理装置。
  2. 前記ポンプは、前記閉路空間に負圧を付与することを特徴とする請求項1記載の内燃機関の蒸発燃料処理装置。
  3. 前記ポンプは、前記閉路空間に正圧を付与することを特徴とする請求項1記載の内燃機関の蒸発燃料処理装置。
  4. 前記判定基準補正手段は、前記燃料タンク内での前記蒸発燃料の量に応じて前記判定基準を補正することを特徴とする請求項2記載の内燃機関の蒸発燃料処理装置。
  5. 前記燃料タンク内の温度を検出する燃料タンク内温度検出手段を更に備え、
    前記判定基準補正手段は、前記燃料タンク内の温度に基づいて前記判定基準を補正することを特徴とする請求項4記載の内燃機関の蒸発燃料処理装置。
  6. 前記燃料タンクの内圧を検出する燃料タンク内圧検出手段を更に備え、
    前記判定基準補正手段は、前記燃料タンク内の温度及び前記燃料タンクの内圧に基づいて前記判定基準を補正することを特徴とする請求項5記載の内燃機関の蒸発燃料処理装置。
  7. 前記判定基準補正手段は、前記燃料タンク内の温度と前記判定基準を補正するための補正係数との関係を規定した第1のマップを備え、前記燃料タンク内の温度に応じた補正係数を前記第1のマップから取得し、当該補正係数に基づいて前記判定基準を補正することを特徴とする請求項5記載の内燃機関の蒸発燃料処理装置。
  8. 前記キャニスタにおける前記蒸発燃料の吸着量が飽和状態にあるか否かを判定する吸着量飽和判定手段を更に備え、
    前記第1のマップは、前記飽和状態での前記燃料タンク内の温度と前記補正係数との関係を規定した第2のマップを含み、
    前記判定基準補正手段は、前記キャニスタが前記飽和状態にあると判定された場合は、前記補正係数を前記第2のマップから取得することを特徴とする請求項7記載の内燃機関の蒸発燃料処理装置。
  9. 前記判定基準補正手段は、前記閉路空間に正圧を付与した場合に前記ポンプから前記キャニスタへ送られた空気量と、前記キャニスタにおける前記蒸発燃料の吸着量とに応じて前記判定基準を補正することを特徴とする請求項3記載の内燃機関の蒸発燃料処理装置。
  10. 前記判定基準として基準圧力を設定する基準圧力設定手段を更に備え、
    前記判定手段は、前記圧力検出手段で検出された圧力と前記基準圧力とを比較した結果に基づいて、前記閉路空間における漏れの状態を判定し、
    前記判定基準補正手段は、前記判定基準を補正する際に、前記基準圧力を補正することを特徴とする請求項1〜9のいずれかに記載の内燃機関の蒸発燃料処理装置。
  11. 燃料タンクと、
    前記燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、
    前記燃料タンクと前記キャニスタの双方に接続され、前記燃料タンク又は前記キャニスタのいずれか一方を含む閉路空間に所定の圧力を付与するポンプと、
    前記閉路空間の圧力を検出する圧力検出手段と、
    前記圧力検出手段で検出された圧力に基づいて、前記閉路空間における漏れの状態を判定する判定手段と、
    を備えたことを特徴とする内燃機関の蒸発燃料処理装置。
  12. 前記蒸発燃料の発生に起因する前記燃料タンクの内圧の変動に基づいて、前記判定手段での判定基準を補正する判定基準補正手段を更に備えたことを特徴とする請求項11記載の内燃機関の蒸発燃料処理装置。
  13. 前記判定基準補正手段は、
    前記ポンプを通過して前記燃料タンク内から前記燃料タンク外に流出する流出流量を算出する流出流量算出手段と、
    前記流出流量と、前記燃料タンク内での前記蒸発燃料と空気の圧力比とに基づいて、前記燃料タンクの漏れ孔から流入する流入空気量を算出する流入空気量算出手段と、
    前記流入空気量と漏れ判定のための基準孔の断面積とに基づいて、前記基準孔に前記流入空気量の空気が流れた場合の燃料タンクの内圧を算出し、当該燃料タンクの内圧を基準圧力として設定する基準圧力設定手段と、を備え、
    前記判定手段は、前記圧力検出手段で検出された圧力と前記基準圧力とを比較した結果に基づいて、前記閉路空間における漏れの状態を判定することを特徴とする請求項12記載の内燃機関の蒸発燃料処理装置。
JP2003190652A 2003-07-02 2003-07-02 内燃機関の蒸発燃料処理装置 Expired - Fee Related JP4239716B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190652A JP4239716B2 (ja) 2003-07-02 2003-07-02 内燃機関の蒸発燃料処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190652A JP4239716B2 (ja) 2003-07-02 2003-07-02 内燃機関の蒸発燃料処理装置

Publications (2)

Publication Number Publication Date
JP2005023851A JP2005023851A (ja) 2005-01-27
JP4239716B2 true JP4239716B2 (ja) 2009-03-18

Family

ID=34188471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190652A Expired - Fee Related JP4239716B2 (ja) 2003-07-02 2003-07-02 内燃機関の蒸発燃料処理装置

Country Status (1)

Country Link
JP (1) JP4239716B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220349772A1 (en) * 2021-04-30 2022-11-03 Aisan Kogyo Kabushiki Kaisha Leakage Detector

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007002188B4 (de) * 2007-01-16 2012-12-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybrid-Fahrzeug
JP2010071198A (ja) * 2008-09-18 2010-04-02 Fts:Kk インタンクキャニスタシステムの故障診断装置及び故障診断方法
JP2010071199A (ja) * 2008-09-18 2010-04-02 Fts:Kk インタンクキャニスタシステムの故障診断装置及び故障診断方法
JP5880159B2 (ja) * 2012-03-09 2016-03-08 日産自動車株式会社 蒸発燃料処理装置の診断装置
JP6536476B2 (ja) * 2016-05-13 2019-07-03 株式会社デンソー エバポリークチェックシステム、および、これを用いたエバポリークのチェック方法
JP7322809B2 (ja) * 2020-05-21 2023-08-08 株式会社デンソー 蒸発燃料処理装置の漏れ穴判定装置
CN114033583B (zh) * 2021-10-28 2023-01-31 苏州恩都法汽车系统有限公司 脱附诊断装置及油箱泄漏诊断系统
JP7434646B1 (ja) 2023-05-10 2024-02-20 神奈川トヨタ自動車株式会社 インタンク式キャニスタ点検装置、及び、インタンク式キャニスタ点検方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220349772A1 (en) * 2021-04-30 2022-11-03 Aisan Kogyo Kabushiki Kaisha Leakage Detector

Also Published As

Publication number Publication date
JP2005023851A (ja) 2005-01-27

Similar Documents

Publication Publication Date Title
US7469686B2 (en) Leak detecting apparatus and fuel vapor treatment apparatus
JP5880158B2 (ja) 蒸発燃料処理装置の診断装置
JP3849584B2 (ja) 蒸発燃料処理装置
JP2635270B2 (ja) 蒸発燃料制御装置の故障検出装置
JP5318793B2 (ja) 蒸発燃料処理装置の漏れ診断装置
US8099999B2 (en) Purge gas concentration estimation apparatus
JP4379496B2 (ja) 蒸発燃料処理装置
US7165447B2 (en) Failure diagnostic apparatus for fuel vapor purge system and fuel vapor purge apparatus and combustion engine having failure diagnostic apparatus
US7165446B2 (en) Failure diagnostic apparatus for fuel vapor purge system and fuel vapor purge apparatus and combustion engine having failure diagnostic apparatus
JP2001304054A (ja) 燃料蒸気パージシステムの故障診断装置
US7418952B2 (en) Evaporative fuel treatment system
JP2003269265A (ja) 燃料蒸気パージシステムの故障診断装置
JP4239716B2 (ja) 内燃機関の蒸発燃料処理装置
JP2007211611A (ja) 内燃機関の燃料蒸気処理装置
JP4497293B2 (ja) 内燃機関の蒸発燃料制御装置
JP2007205322A (ja) 蒸発燃料処理装置の異常検出装置
JP4622948B2 (ja) リーク検査装置
JP2005133616A (ja) 燃料量計測装置および燃料計の故障判定装置
JP4442309B2 (ja) 燃料処理システムの異常検出装置
JP4304826B2 (ja) 燃料蒸気パージシステムの異常診断装置
JP2751758B2 (ja) エバポパージシステムの故障診断装置
JP2007177653A (ja) 蒸発燃料処理装置
JP4147940B2 (ja) 内燃機関の蒸発燃料処理装置
JP2008002298A (ja) リーク検査装置
JPH0565856A (ja) 内燃機関の蒸発燃料制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees