JP7139880B2 - 蒸発燃料処理装置 - Google Patents

蒸発燃料処理装置 Download PDF

Info

Publication number
JP7139880B2
JP7139880B2 JP2018201675A JP2018201675A JP7139880B2 JP 7139880 B2 JP7139880 B2 JP 7139880B2 JP 2018201675 A JP2018201675 A JP 2018201675A JP 2018201675 A JP2018201675 A JP 2018201675A JP 7139880 B2 JP7139880 B2 JP 7139880B2
Authority
JP
Japan
Prior art keywords
pressure
temperature
diagnosis
diagnosed
pressure change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018201675A
Other languages
English (en)
Other versions
JP2020067060A (ja
Inventor
圭一郎 石原
智啓 伊藤
康夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018201675A priority Critical patent/JP7139880B2/ja
Priority to CN201910976310.XA priority patent/CN111102101B/zh
Priority to US16/659,788 priority patent/US11136943B2/en
Publication of JP2020067060A publication Critical patent/JP2020067060A/ja
Application granted granted Critical
Publication of JP7139880B2 publication Critical patent/JP7139880B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0818Judging failure of purge control system having means for pressurising the evaporative emission space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • B60K2015/03514Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems with vapor recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、蒸発燃料処理装置に関する。
内燃機関の燃料タンク内で発生した蒸発燃料を処理する蒸発燃料処理装置において、燃料タンクの内圧の変化に基づいてリークの有無を判定する技術が、特許文献1に開示されている。
特開2012-21502号公報
しかしながら、燃料タンクの内圧の変化に基づいてリークの有無を精度よく判定するには、燃料タンクの温度変化がある程度大きいことが、前提として必要である。ところが、燃料タンクの温度変化が充分に生じない場合もある。そうすると、精度の高いリーク診断を行うことが困難となる場合がある。
本発明は、かかる課題に鑑みてなされたものであり、高い精度にて漏れ診断を行うことができる蒸発燃料処理装置を提供しようとするものである。
本発明の一態様は、内燃機関(11)の燃料を貯留する燃料タンク(2)と、
該燃料タンク内において発生した蒸発燃料を吸着するキャニスタ(3)と、
上記燃料タンクを含む診断対象系内を加圧又は減圧するポンプ(5)と、
上記診断対象系内の圧力を検出する圧力検出部(61)と、
上記診断対象系内の温度を検出する温度検出部(62)と、
上記診断対象系の漏れを診断する漏れ診断部(7)と、を有し、
該漏れ診断部は、
上記診断対象系内の温度が変化する際に、上記圧力検出部によって検出される圧力の変化である第1圧力変化(k1)と、
上記診断対象系内を上記ポンプによって加圧又は減圧した際に、上記圧力検出部によって検出される圧力の変化である第2圧力変化(k2)と、
上記温度検出部による検出温度(T)と、
上記診断対象系の漏れ度合に関する物理量(b)、上記燃料の揮発性に関する物性値(a)、及び上記診断対象系内の温度と、上記第1圧力変化との関係を予め求めた第1準備情報(MAP1)と、
上記診断対象系の漏れ度合に関する物理量、上記燃料の揮発性に関する物性値、及び上記診断対象系内の温度と、上記第2圧力変化との関係を予め求めた第2準備情報(MAP2)と、に基づいて、上記診断対象系の漏れを診断するよう構成されている、蒸発燃料処理装置(1)にある。
上記蒸発燃料処理装置において、上記漏れ診断部は、上記第1圧力変化と、上記第2圧力変化と、上記診断対象系内の温度と、上記第1準備情報と、上記第2準備情報と、に基づいて、上記診断対象系の漏れを診断するよう構成されている。これにより、上記漏れ診断部による診断精度を高くすることができる。
以上のごとく、上記態様によれば、高い精度にて漏れ診断を行うことができる蒸発燃料処理装置を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
実施形態1における、蒸発燃料処理装置の構成説明図。 実施形態1における、漏れ診断のフロー図。 実施形態1における、第1マップの説明図。 実施形態1における、第2マップの説明図。 実施形態2における、蒸発燃料処理装置の構成説明図。 実施形態2における、漏れ診断のフロー図。 実施形態2における、第2マップの説明図。 実施形態3における、蒸発燃料処理装置の構成説明図。 実施形態3における、漏れ診断のフロー図。 実施形態4における、蒸発燃料処理装置の構成説明図。 実施形態4における、漏れ診断のフロー図。
(実施形態1)
蒸発燃料処理装置に係る実施形態について、図1~図4を参照して説明する。
本形態の蒸発燃料処理装置1は、図1に示すごとく、燃料タンク2と、キャニスタ3と、ポンプ5と、圧力検出部61と、温度検出部62と、漏れ診断部7と、を有する。
燃料タンク2は、内燃機関11の燃料を貯留する。キャニスタ3は、燃料タンク2内において発生した蒸発燃料を吸着する。ポンプ5は、燃料タンク2を含む診断対象系内を加圧又は減圧する。圧力検出部61は、診断対象系内の圧力を検出する。温度検出部62は、診断対象系内の温度を検出する。漏れ診断部7は、診断対象系の漏れを診断する。
漏れ診断部7は、下記の、第1圧力変化と、第2圧力変化と、温度検出部62による検出温度と、第1準備情報と、第2準備情報と、に基づいて、診断対象系の漏れを診断するよう構成されている。
第1圧力変化は、診断対象系内の温度が変化する際に、圧力検出部61によって検出される圧力の変化である。第2圧力変化は、診断対象系内をポンプ5によって加圧又は減圧した際に、圧力検出部61によって検出される圧力の変化である。
第1準備情報は、診断対象系の漏れ度合に関する物理量、燃料の揮発性に関する物性値、及び診断対象系内の温度と、第1圧力変化との関係を予め求めた準備情報である。第2準備情報は、診断対象系の漏れ度合に関する物理量、燃料の揮発性に関する物性値、及び診断対象系内の温度と、第2圧力変化との関係を予め求めた準備情報である。
上記検出温度は、温度検出部62によって検出される診断対象系内の温度である。検出温度は、後述するように、異なる複数の時点におけるものとして、複数存在するものとすることができる。そして、漏れ診断部7は、複数の検出温度を用いて、漏れ診断を行うことができる。また、診断対象系の漏れとは、診断対象系内と系外との間の気体の漏れを意味する。
本形態において、ポンプ5は、診断対象系内を加圧するよう構成されている。そして、第2圧力変化は、診断対象系内を所定圧力まで加圧した後、ポンプ5による加圧を停止した状態における診断対象系内の圧力変化である。
図1に示すごとく、燃料タンク2とキャニスタ3とは、蒸発燃料通路121を介して接続されている。すなわち、燃料タンク2の上部に接続された蒸発燃料通路121から、燃料タンク2内にて蒸発した蒸発燃料が、キャニスタ3に到達するよう構成されている。
キャニスタ3と内燃機関11の吸気系111とは、パージ通路124を介して接続されている。パージ通路124には、パージバルブ41が設けてある。このパージバルブ41の開閉によって、キャニスタ3から吸気系111への蒸発燃料の供給の制御を行うことができるよう構成されている。なお、吸気系111には、内燃機関11の吸気ポート付近に、インジェクタ112が設けてある。また、パージ通路124は、吸気系111におけるスロットル弁113よりも下流側に接続されている。
キャニスタ3には、大気を導入するためのベント通路122が接続されている。ベント通路122には、ベントバルブ42と共にポンプ5が接続されている。本形態においては、ポンプ5とベントバルブ42とは、直列的に接続されている。ベント通路122において、ベントバルブ42とキャニスタ3との間に、ポンプ5が接続されている。
本形態においては、ポンプ5は、大気側からキャニスタ3へ大気を供給するよう構成されている。パージバルブ41とベントバルブ42とを閉じることによって、キャニスタ3と燃料タンク2との双方を含む系内を密閉系とすることができるよう構成されている。本形態においては、この密閉系が、診断対象系となる。そして、パージバルブ41を閉じ、ベントバルブ42を開いた状態としたうえで、ポンプ5を作動させる。これにより、診断対象系内を加圧することができる。その後、ベントバルブ42も閉じることで、診断対象系内を正圧の状態で密閉することができる。
本形態においては、パージバルブ41及びベントバルブ42は、いずれも電磁弁によって構成されている。
本形態において、圧力検出部61は、燃料タンク2に設けてある。ただし、圧力検出部61の配設位置は、これに限られず、例えば、蒸発燃料通路121に設けることもできる。また、温度検出部62も、燃料タンク2に設けてある。ただし、温度検出部62の配設位置は、これに限られず、例えば、蒸発燃料通路121に設けることもできる。圧力検出部61及び温度検出部62は、燃料タンク2の上部に設けてある。温度検出部62は、診断対象系内の気体の温度を検出する。
漏れ診断部7は、圧力検出部61による検出圧力の情報と、温度検出部62による検出温度の情報とを、後述のように、第1準備情報及び第2準備情報と共に利用して、漏れ診断を行う。
また、本形態において、燃料の漏れ度合に関する物理量としては、燃料タンク2や蒸発燃料通路121等の診断対象系に生じている漏れ孔の直径を採用することができる。ここで、漏れ孔の直径は、例えば、円相当直径、すなわち、漏れ孔の面積と同等の面積を有する円の直径として定義することができる。漏れ度合に関する物理量としては、これに限らず、例えば、漏れ孔の面積等を採用することもできる。
また、燃料の揮発性に関する物性値としては、燃料のリード蒸気圧を採用することができる。なお、リード蒸気圧は、37.8℃におけるガソリンの蒸気圧である。リード蒸気圧に限らず、燃料の揮発性に関する物性値として、例えば、特定の温度における蒸気圧等を採用することもできる。
本形態の蒸発燃料処理装置1は、車両に搭載される。車両としては、内燃機関を備えた車両であり、ハイブリッド自動車等とすることもできる。そして、燃料としては、ガソリン、軽油等とすることができる。
本形態において、漏れ診断部7による漏れ診断は、車両停止後に行うことができる。車両の停止は、例えば、車両のエンジン(内燃機関)の停止、或いは、ハイブリッド自動車のシステム停止とすることができる。つまり、これらの停止の際の信号によって、車両停止を検出することができる。
図2のフローを参照して、漏れ診断部7による漏れ診断の方法の一例につき、説明する。
まず、車両停止直後において、圧力検出部61によって検出される圧力の変化を測定する。つまり、第1圧力変化を測定する(ステップS1参照)。なお、この時点においては、パージバルブ41及びベントバルブ42は閉じている。具体的には、所定時間内における圧力検出部61の検出値の変化量、すなわち、圧力変化速度を測定する。以下において、この圧力変化速度を、適宜、第1圧力変化速度k1という。
車両停止直後は、高温となっている内燃機関から燃料タンク2への熱の移動があるため、燃料タンク2を含む診断対象系内は温度上昇しやすい。この温度上昇に伴う、診断対象系内の蒸気圧の上昇によって、圧力が上昇する。この圧力の単位時間あたりの上昇量である圧力変化速度を、第1圧力変化速度k1として、測定する。また、第1圧力変化速度k1の測定期間の少なくとも一部において、診断対象系内の温度Tを、温度検出部62によって検出する。
次いで、ベントバルブ42を開放すると共に、ポンプ5を作動させる(ステップS2、S3参照)。これにより、診断対象系内が密閉状態となると共に加圧される。診断対象系内の圧力Pが、大気圧よりも充分に高い所定圧力P1に到達するまで、ポンプ5による加圧を続ける(ステップS4参照)。診断対象系内の圧力Pが、所定圧力P1に到達したとき、ポンプ5を停止する(ステップS5参照)。
次に、ポンプ5停止直後から、圧力検出部61によって検出される圧力の変化を測定する。つまり、第2圧力変化を測定する(ステップS6参照)。具体的には、所定時間内における圧力変化量、すなわち圧力変化速度を測定する。以下において、この圧力変化速度を、適宜、第2圧力変化速度k2という。
診断対象系内を所定圧力まで加圧した状態において、ポンプ5を停止した後には、診断対象系内の圧力が維持、若しくは大気圧に向って低下する。圧力変化速度は、漏れ度合に関する物理量(本形態においては漏れ孔の直径)に応じて、大きくなる。この圧力の単位時間あたりの低下量である圧力変化速度を、第2圧力変化速度k2として、測定する。また、この第2圧力変化速度k2の測定期間の少なくとも一部において、診断対象系内の温度Tを、温度検出部62によって検出する。
次いで、ステップS1にて測定した第1圧力変化速度k1及び検出温度Tと、ステップS6にて測定した第2圧力変化速度k2及び検出温度Tと、第1準備情報及び第2準備情報と、に基づいて、漏れ度合に関する物理量、すなわち本形態においては漏れ孔の直径bを算出する(ステップS7参照)。このステップS7における漏れ孔の直径bの算出については、後述する。
次いで、ステップS7にて算出された漏れ孔の直径bを、閾値bthと比較する(ステップS8参照)。漏れ孔の直径bが閾値bth未満の場合、異常な漏れはなし、すなわち正常と判断する(ステップS9参照)。一方、漏れ孔の直径bが閾値bth以上の場合、異常な漏れがあると判断する(ステップS10参照)。
上記ステップS7における漏れ孔の直径bの算出につき、以下に説明する。
第1準備情報は、燃料のリード蒸気圧aと、漏れ孔の直径bと、温度Tと、第1圧力変化速度k1との関係を、予め求めた第1マップMAP1として、準備することができる。これは、4次元的なマップとなるため、一つの図として図示するのは困難であるが、図3のように、bの値が異なる複数の部分を複数のグラフとして抜き出して、部分的に示すことができる。
図3に示すb1~b3は、b1<b2<b3の関係を有する特定の値である。また、T1~T3は、T1<T2<T3の関係を有する特定の値である。なお、図3は、あくまでも概略のイメージ図である。後述する図4も、同様である。
第1圧力変化速度k1は、リード蒸気圧aが大きいほど速くなりやすく、漏れ孔の直径bが大きいほど抑制されやすく、温度Tが高いほど速くなりやすい。それゆえ、第1圧力変化速度k1は、これらの関数f(a,b,T)として表すことができる。
また、第2準備情報も、燃料のリード蒸気圧aと、漏れ孔の直径bと、温度Tと、第圧力変化速度k2との関係を、予め求めた第2マップMAP2として、準備することができる。これも、4次元的なマップとなるため、一つの図として図示するのは困難であるが、図4のように、リード蒸気圧aの値が異なる複数の部分を複数のグラフとして抜き出して、部分的に示すことができる。図4に示すa1~a3は、a1<a2<a3の関係を有する特定の値である。
第2圧力変化速度k2は、加圧状態から大気圧へ向かって圧力低下する速度であるため、漏れ孔の直径bが大きいほど速くなりやすく、リード蒸気圧aが大きいほど抑制されやすく、温度Tが高いほど抑制されやすい。それゆえ、第2圧力変化速度も、これらの関数g(a,b,T)として表すことができる。ただし、第1圧力変化速度の関数f(a,b,T)と第2圧力変化速度の関数g(a,b,T)とは、互いに異なるものとなる。
ここで、漏れ孔の直径bはもとより、燃料のリード蒸気圧aも、直接的な測定等によって把握することは困難である。ただし、温度Tは、上述のように、温度検出部62によって検出が可能であり、第1圧力変化及び第2圧力変化の際に、測定することができる。上述のフローでは、それぞれの時点において、温度Tを測定している。
なお、いずれかの一時点において測定した一つの温度Tを採用して、f(a,b,T)及びg(a,b,T)におけるTとすることもできる。また、第1圧力変化の際には、温度変化が生じることが前提であるが、この間の特定の一時点の温度Tを採用してもよいし、複数時点の温度Tを採用してもよい。この場合、関数f(a,b,T)において、Tは複数存在することとなる。また、第1圧力変化の間の温度の平均値をTとして採用することもできる。このTの採用の仕方は、漏れ孔の直径bの算出精度に多少の影響を及ぼし得るものの、本形態の漏れ診断方法にて診断精度向上を図ることができることに変わりはない。
2つの関数f(a,b,T)及びg(a,b,T)において、Tは互いに異なっていてもよい。また、各関数の中に、複数のTが存在することもあり得る。例えば、圧力測定の期間中における複数の時点において、検出温度Tを取得することもできる。その場合においても、複数のTは具体的な測定値として得られるため、変数は、aとbとの2つとなる。
したがって、第1圧力変化速度の関数f(a,b,T)及び第2圧力変化速度の関数g(a,b,T)は、それぞれ実質的に2つの変数を有する関数f(a,b)、g(a,b)と考えることができる。
そうすると、上記ステップS1にて測定された第1圧力変化速度k1と、ステップS6において測定された第2圧力変化速度k2とを用いて、以下の2つの方程式、すなわち連立方程式が得られる。
k1=f(a,b)
k2=g(a,b)
上記の連立方程式を解くことにより、変数aと変数bが算出される。つまり、漏れ孔の直径bを、算出することができる。そして、上述のように、漏れ孔の直径bを、基準の閾値bthと比較して、漏れ診断を行うことができる。
次に、本実施形態の作用効果につき説明する。
上記蒸発燃料処理装置1において、漏れ診断部7は、第1圧力変化と、第2圧力変化と、診断対象系内の温度と、第1準備情報と、第2準備情報と、に基づいて、診断対象系の漏れを診断するよう構成されている。これにより、漏れ診断部7による診断精度を高くすることができる。
つまり、互いに異なる複数の圧力変化である、第1圧力変化と第2圧力変化とを測定し、両者の測定結果を利用して、診断対象系の漏れ度合、すなわち漏れ孔の直径bを算出する。これにより、燃料の揮発性の要因を適切に排除しつつ、漏れ孔の直径bを高精度に推定することができる。
特に、第1圧力変化の際の温度変化が小さく、第1圧力変化速度k1が小さい場合でも、第1圧力変化速度k1と第2圧力変化速度k2と第1準備情報及び第2準備情報とを利用することで、精度の高い漏れ診断が可能となる。第1圧力変化の際の温度変化が小さくなる状況としては、例えば、ハイブリッド自動車等において、車両停止前の所定期間、内燃機関11を用いずに、モータを用いて走行していた場合などが想定される。
このような場合、内燃機関11の温度が特に高くなっていないため、車両停止直後において、燃料タンク2に移動する熱の量も少なく、燃料タンク2内の温度変化が小さくなりやすい。そうすると、第1圧力変化が小さくなり、第1圧力変化のみで漏れ診断を行うことが困難となる場合がある。これに対して、上述のように、第1圧力変化速度k1と第2圧力変化速度k2と第1準備情報及び第2準備情報とを利用することで、精度の高い漏れ診断が可能となる。
また、本形態においては、第2圧力変化は、診断対象系内を所定圧力まで加圧した後、ポンプ5による加圧を停止した状態における診断対象系内の圧力変化である。これにより、より正確に診断対象系の漏れを診断することができる。すなわち、診断対象系内を加圧する場合、診断対象系内における燃料の揮発が抑制される。そうすると、第2圧力変化に対する、燃料の揮発による圧力変化の影響が抑制される。その結果、漏れ診断をより高精度に行うことができる。
以上のごとく、本実施形態によれば、高い精度にて漏れ診断を行うことができる蒸発燃料処理装置を提供することができる。
(実施形態2)
本形態は、図5~図7に示すごとく、第2圧力変化として、診断対象系内を所定圧力まで減圧した後の圧力変化を利用して、漏れ診断を行うよう構成した形態である。
すなわち、本形態の蒸発燃料処理装置1において、ポンプ5は、診断対象系内を減圧するよう構成されている。そして、第2圧力変化は、診断対象系内を所定圧力まで減圧した後、ポンプ5による圧を停止した状態における診断対象系内の圧力変化である。
本形態において、漏れ診断部7による漏れ診断は、図6に示すフローに沿って行うことができる。本形態のフローは、ステップS3A、S4A、S5A以外は、実施形態1の図2のフローと実質的に同様である。本形態の場合、ステップS3のポンプ5の始動により、ポンプ5による診断対象系内の減圧が開始される。そして、ステップS4Aにおいて、診断対象系内の圧力Pが所定圧力P2まで減圧されているか否かを判定する。診断対象系内の圧力Pが所定圧力P2以下に低下したとき、ポンプ5による減圧を終了する(ステップS5A参照)。すなわち、ポンプ5を停止する。
次に、ポンプ5停止直後から、圧力検出部61によって検出される圧力の変化を測定する。つまり、第2圧力変化を測定する(ステップS6参照)。具体的には、所定時間内における圧力変化量、すなわち圧力変化速度を測定する。特に本形態においては、漏れ孔が存在すれば、圧力が大気圧に向って上昇する。それゆえ、本形態においては、この圧力上昇速度が、第2圧力変化速度k2となる。
なお、第1圧力変化速度k1は、ステップS1において、実施形態1と同様に測定される。その結果、本形態においても、燃料のリード蒸気圧aと、漏れ孔の直径bとの2つの変数を有する、2つの方程式、k1=f(a,b)、及び、k2=g(a,b)が得られる。ただし、k2=g(a,b)については、実施形態1のものとは異なる方程式となる。つまり、予め求めておく第2準備情報である第2マップMAP2は、実施形態1におけるものとは異なるものとなる。本形態においては、第2マップMAP2は、例えば、図7に示すイメージのものとなる。
第2圧力変化速度k2は、減圧状態から大気圧へ向かって圧力上昇する速度であるため、漏れ孔の直径bが大きいほど速くなりやすく、リード蒸気圧aが大きいほど速くなりやすく、温度Tが高いほど速くなりやすい。それゆえ、第2圧力変化速度k2も、これらの関数g(a,b)として表すことができる。ただし、本形態におけるg(a,b)は、実施形態1におけるg(a,b)とは異なるものとなる。
そして、上述の2つの方程式、k1=f(a,b)、及び、k2=g(a,b)、からなる連立方程式を解くことで、漏れ孔の直径bを算出することができる。
その他は、実施形態1と同様である。なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
本形態においては、第2圧力変化を測定する際に、診断対象系内を減圧する。このとき、燃料タンク2内の燃料が揮発しやすくなる。そうすると、燃料揮発に起因する圧力変動が、第2圧力変化に影響しやすい。それゆえ、仮に、燃料の揮発性を考慮せずに、漏れ診断を行おうとすると、漏れ診断の精度が低下しやすいところ、本実施形態のように、2つの方程式から漏れ孔の直径bを算出することで、直径bを精度よく推定することができる。つまり、漏れ診断の精度を効果的に高めることができる。
また、本形態においては、第2圧力変化の際に、診断対象系内を減圧するため、仮に漏れ孔が存在しても、漏れ診断の最中に蒸発燃料が積極的に外部へ漏れることを防ぐことができる。
その他、実施形態1と同様の作用効果を有する。
(実施形態3)
本形態は、図8、図9に示すごとく、蒸発燃料通路121に封鎖弁43を設けた形態である。
すなわち、本形態の蒸発燃料処理装置1においては、燃料タンク2とキャニスタ3との間の蒸発燃料通路121に、開閉可能な封鎖弁43を設けている。封鎖弁43は、燃料タンク2とキャニスタ3との間の連通と遮断とを切り替えることができるよう構成されている。封鎖弁43は、例えば、電磁弁によって構成することができる。封鎖弁43を閉じることにより、燃料タンク2とキャニスタ3との間を遮断することができる。これにより、燃料タンク2を密閉状態とすることができる。
また、本形態においては、ベントバルブ42とポンプ5とが並列的に接続されている。つまり、ベント通路122におけるベントバルブ42よりも大気側とキャニスタ3側とに、バイパス通路123の一端と他端とが接続されている。そして、バイパス通路123にポンプ5が設けてある。また、バイパス通路123には、逆止弁141も設けてある。
また、本形態の蒸発燃料処理装置1は、パージバルブ41とベントバルブ42と封鎖弁43とによって閉じられる、キャニスタ3を含めた密閉系の圧力を測定するための圧力検出部63をも有する。図8においては、パージ通路124における、パージバルブ41とキャニスタ3との間に、圧力検出部63が配設されている。
そして、封鎖弁43の開閉を利用して、封鎖弁43よりも燃料タンク2側の診断対象系(以下において、適宜、「タンク系」という。)と、封鎖弁43よりもキャニスタ3側の診断対象系(以下において、適宜、「エバポ系」という。)とを分けて、漏れ診断部7による漏れ診断を行うことが可能となる。
以下において、図9のフローを用いて、本形態における漏れ診断の一例を説明する。
まず、車両停止直後において、封鎖弁43を閉じ、実施形態1と同様に、第1圧力変化速度k1を、温度Tと共に測定する(ステップS31参照)。
次いで、ベントバルブ42を閉じ、ポンプ5を始動する(ステップS32、S33参照)。
そして、燃料タンク2に配した圧力検出部61によって検出される圧力Pt(以下において、適宜、「タンク圧Pt」ともいう。)と、パージ通路124に設けた圧力検出部63によって検出される圧力Pe(以下において、適宜、「エバポ圧Pe」ともいう。)とを比較する(ステップS34参照)。Pe>Ptとなったとき、封鎖弁43を開ける(ステップS35参照)。そして、タンク系の圧力Ptが、所定圧力P1に達したとき、ポンプ5による加圧を終了し、封鎖弁43を再度閉じる(ステップS36、S37,S38参照)。
この状態で、エバポ圧Peの変化速度Reを測定する(ステップS39参照)。そして、エバポ圧Peの変化速度Reが所定の閾値Re1を下回っているか否かを判定する(ステップS310参照)。変化速度Reが所定の閾値Re1を下回っている場合には、エバポ系に異常な漏れはないと判定する(ステップS311参照)。一方、変化速度Reが所定の閾値Re1以上の場合には、エバポ系に異常な漏れがあると判定する(ステップS312参照)。エバポ系においては、燃料の揮発要因すなわちリード蒸気圧の影響が殆どないため、単純なエバポ圧の変化速度にて、漏れ診断を行うことができる。
エバポ系に異常な漏れはないと判定された場合に、ステップS313に進み、タンク系の第2圧力変化速度k2及び温度Tを測定する(ステップS313参照)。そして、実施形態1と同様に、漏れ孔の直径bを算出し、タンク系における異常な漏れ孔の有無を診断する(ステップS314~S317参照)。
その他は、実施形態1と同様である。
本形態においては、封鎖弁43を設けることにより、診断対象系をエバポ系とタンク系とに分けて、それぞれにおける漏れ診断を行うことができる。これにより、漏れ箇所の特定がしやすくなる。そして、タンク系の漏れ診断においては、燃料の揮発性の影響を効果的に排除して、精度の高い漏れ診断を行うことができる。
その他、実施形態1と同様の作用効果を有する。
(実施形態4)
本形態は、図10、図11に示すごとく、第2圧力変化として、診断対象系内を所定圧力まで減圧した後の圧力変化を利用して、漏れ診断を行うよう構成した形態である。
すなわち、本形態の蒸発燃料処理装置1において、ポンプ5は、診断対象系内を減圧するよう構成されている。また、逆止弁141の向きは、大気側からキャニスタ3側への気体の流入を阻止する向きとしている。その他の構成は、実施形態3と同様である。
本形態においても、実施形態3と同様に、封鎖弁43の開閉を利用して、タンク系とエバポ系とを分けて、漏れ診断部7による漏れ診断を行うことが可能となる。
図11のフローを用いて、本形態における漏れ診断の一例を説明する。
車両停止直後に、第1圧力変化速度k1及び温度Tを測定し、ベントバルブ42を閉じるまでは、実施形態3と同様である(ステップS41、S42参照)。その後、封鎖弁43を開けて、ポンプ5を作動させる(ステップS43、S44参照)。すなわち、ポンプ5による診断対象系内の減圧を開始する。
そして、燃料タンク2内の圧力Pが所定値P2まで減圧されたとき、ポンプ5による減圧を終了し、封鎖弁43を閉じる(ステップS45、S46、S47参照)。この状態において、エバポ系の圧力変化速度Reを測定する(ステップS48参照)。このときのエバポ系の圧力Peは、漏れ孔が存在する場合、上昇することとなる。したがって、圧力変化速度Reは、圧力上昇の速度となる。
この圧力変化速度Reと所定の閾値Re2と比較することで、エバポ系の漏れ診断を行う(ステップS49、S410、S411参照)。エバポ系において異常な漏れがないと判断されたとき、ステップS412に進み、第2圧力変化速度k2及び温度Tを測定し、漏れ孔の直径bを算出する(ステップS412、S413参照)。この直径bを用いて、タンク系の漏れ診断を行う点は、実施形態3と同様である(ステップS414、S415、S416参照)。
その他は、実施形態2又は実施形態3と同様である。
本形態においては、実施形態2の作用効果と実施形態3の作用効果とを奏することができる。
上記の実施形態においては、第1圧力変化及び第2圧力変化として、圧力変化の速度を測定する形態を示したが、これに限られるものではない。第1圧力変化及び第2圧力変化としては、例えば、所定圧力までの到達時間等として測定することもできる。
また、上述した第1圧力変化及び第2圧力変化の検出タイミングや、漏れ診断の手法については、あくまでも一例であり、種々のタイミング、手法を採用することができる。
本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
1 蒸発燃料処理装置
2 燃料タンク
3 キャニスタ
5 ポンプ
61 圧力検出部
62 温度検出部
7 漏れ診断部

Claims (3)

  1. 内燃機関(11)の燃料を貯留する燃料タンク(2)と、
    該燃料タンク内において発生した蒸発燃料を吸着するキャニスタ(3)と、
    上記燃料タンクを含む診断対象系内を加圧又は減圧するポンプ(5)と、
    上記診断対象系内の圧力を検出する圧力検出部(61)と、
    上記診断対象系内の温度を検出する温度検出部(62)と、
    上記診断対象系の漏れを診断する漏れ診断部(7)と、を有し、
    該漏れ診断部は、
    上記診断対象系内の温度が変化する際に、上記圧力検出部によって検出される圧力の変化である第1圧力変化(k1)と、
    上記診断対象系内を上記ポンプによって加圧又は減圧した際に、上記圧力検出部によって検出される圧力の変化である第2圧力変化(k2)と、
    上記温度検出部による検出温度(T)と、
    上記診断対象系の漏れ度合に関する物理量(b)、上記燃料の揮発性に関する物性値(a)、及び上記診断対象系内の温度と、上記第1圧力変化との関係を予め求めた第1準備情報(MAP1)と、
    上記診断対象系の漏れ度合に関する物理量、上記燃料の揮発性に関する物性値、及び上記診断対象系内の温度と、上記第2圧力変化との関係を予め求めた第2準備情報(MAP2)と、に基づいて、上記診断対象系の漏れを診断するよう構成されている、蒸発燃料処理装置(1)。
  2. 上記ポンプは、上記診断対象系内を加圧するよう構成されており、上記第2圧力変化は、上記診断対象系内を所定圧力(P1)まで加圧した後、上記ポンプによる加圧を停止した状態における上記診断対象系内の圧力変化である、請求項1に記載の蒸発燃料処理装置。
  3. 上記ポンプは、上記診断対象系内を減圧するよう構成されており、上記第2圧力変化は、上記診断対象系内を所定圧力(P2)まで減圧した後、上記ポンプによる圧を停止した状態における上記診断対象系内の圧力変化である、請求項1に記載の蒸発燃料処理装置。
JP2018201675A 2018-10-26 2018-10-26 蒸発燃料処理装置 Active JP7139880B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018201675A JP7139880B2 (ja) 2018-10-26 2018-10-26 蒸発燃料処理装置
CN201910976310.XA CN111102101B (zh) 2018-10-26 2019-10-15 蒸发燃料处理系统
US16/659,788 US11136943B2 (en) 2018-10-26 2019-10-22 Evaporative fuel processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201675A JP7139880B2 (ja) 2018-10-26 2018-10-26 蒸発燃料処理装置

Publications (2)

Publication Number Publication Date
JP2020067060A JP2020067060A (ja) 2020-04-30
JP7139880B2 true JP7139880B2 (ja) 2022-09-21

Family

ID=70325153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201675A Active JP7139880B2 (ja) 2018-10-26 2018-10-26 蒸発燃料処理装置

Country Status (3)

Country Link
US (1) US11136943B2 (ja)
JP (1) JP7139880B2 (ja)
CN (1) CN111102101B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2992230C (en) * 2017-01-20 2020-02-18 Power Solutions International, Inc. Systems and methods for monitoring a fuel system
JP7322809B2 (ja) * 2020-05-21 2023-08-08 株式会社デンソー 蒸発燃料処理装置の漏れ穴判定装置
CN112228217B (zh) * 2020-09-16 2021-11-23 江苏大学 用于汽车燃油蒸发泄露监测的车载诊断装置及诊断方法
DE102020215552A1 (de) 2020-12-09 2022-06-09 Audi Aktiengesellschaft Verfahren zum Betreiben einer Kraftstofftankanordnung für ein Kraftfahrzeug sowie entsprechende Kraftstofftankanordnung
JP7467387B2 (ja) 2021-06-02 2024-04-15 愛三工業株式会社 蒸発燃料処理システムの漏れ診断装置
CN114320637B (zh) * 2021-12-31 2023-03-21 中国第一汽车股份有限公司 一种燃油蒸发泄漏检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003440A (ja) 2002-04-11 2004-01-08 Nippon Soken Inc 蒸発燃料処理装置の故障診断方法および故障診断装置
JP2012021502A (ja) 2010-07-16 2012-02-02 Honda Motor Co Ltd 蒸発燃料処理装置
JP2015075032A (ja) 2013-10-09 2015-04-20 愛三工業株式会社 蒸発燃料処理装置の故障検出装置
JP2018044514A (ja) 2016-09-16 2018-03-22 株式会社デンソー 蒸発燃料処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353559A (ja) * 2003-05-29 2004-12-16 Hitachi Unisia Automotive Ltd 蒸発燃料処理装置のリーク診断装置
US7255093B2 (en) * 2003-06-30 2007-08-14 Hitachi, Ltd. Device and method for diagnosing evaporation leak, and control device of internal combustion engine
JP4640133B2 (ja) * 2005-11-22 2011-03-02 日産自動車株式会社 蒸発燃料処理装置のリーク診断装置
JP4552837B2 (ja) * 2005-11-22 2010-09-29 日産自動車株式会社 蒸発燃料処理装置のリーク診断装置
JP5473877B2 (ja) * 2010-11-24 2014-04-16 本田技研工業株式会社 蒸発燃料処理装置の故障検知装置
JP6586369B2 (ja) * 2016-01-27 2019-10-02 愛三工業株式会社 蒸発燃料処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003440A (ja) 2002-04-11 2004-01-08 Nippon Soken Inc 蒸発燃料処理装置の故障診断方法および故障診断装置
JP2012021502A (ja) 2010-07-16 2012-02-02 Honda Motor Co Ltd 蒸発燃料処理装置
JP2015075032A (ja) 2013-10-09 2015-04-20 愛三工業株式会社 蒸発燃料処理装置の故障検出装置
JP2018044514A (ja) 2016-09-16 2018-03-22 株式会社デンソー 蒸発燃料処理装置

Also Published As

Publication number Publication date
JP2020067060A (ja) 2020-04-30
CN111102101B (zh) 2022-06-14
CN111102101A (zh) 2020-05-05
US11136943B2 (en) 2021-10-05
US20200132023A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7139880B2 (ja) 蒸発燃料処理装置
JP3923473B2 (ja) 蒸発燃料処理装置の故障診断装置
JP4640133B2 (ja) 蒸発燃料処理装置のリーク診断装置
US7350512B1 (en) Method of validating a diagnostic purge valve leak detection test
JP4552837B2 (ja) 蒸発燃料処理装置のリーク診断装置
US6550316B1 (en) Engine off natural vacuum leakage check for onboard diagnostics
US20130297178A1 (en) Method for detecting a presence or absence of a leak in a fuel system
JPH06502901A (ja) タンク通気装置の機能能力を検査する方法および装置
CN109281759A (zh) 一种采用压力传感器诊断油箱泄漏的系统和方法
JPH11316171A (ja) 車両のタンク通気装置の機能性の検査方法
CN104632471B (zh) 调节燃料箱隔离阀的方法和系统
KR20100012401A (ko) 자동차의 고장 진단 방법 및 장치
US8161948B2 (en) Method for testing the function of a pressure switch of a tank ventilation system, control device, and internal combustion engine
JPH0835452A (ja) エバポパージシステムの診断方法
JPH04314928A (ja) タンク通気装置とその気密性を検査する方法
JP2015527517A (ja) 衝突時に燃料システム内の圧力を解放するための方法
US7418856B2 (en) Method for checking the gastightness of a motor vehicle tank ventilation system
US8365706B2 (en) Method and device for testing the tightness of a fuel tank of an internal combustion engine
US11732679B2 (en) Failure diagnostic device for fuel vapor processing apparatus
US11073112B2 (en) Evaporative emission control system for a vehicle
US6925855B2 (en) Fuel filling detection
US6234152B1 (en) Method of checking the operability of a tank-venting system
JP2003527589A (ja) 車両タンク装置の気密検査方法および装置
KR101251687B1 (ko) 벤트 밸브 고착 진단방법
KR100385750B1 (ko) 엔진 정지후 부압을 이용한 연료시스템 누설감지 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R151 Written notification of patent or utility model registration

Ref document number: 7139880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151