WO2017122842A1 - Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법 - Google Patents

Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2017122842A1
WO2017122842A1 PCT/KR2016/000371 KR2016000371W WO2017122842A1 WO 2017122842 A1 WO2017122842 A1 WO 2017122842A1 KR 2016000371 W KR2016000371 W KR 2016000371W WO 2017122842 A1 WO2017122842 A1 WO 2017122842A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
light absorbing
thin film
solar cell
layer
Prior art date
Application number
PCT/KR2016/000371
Other languages
English (en)
French (fr)
Inventor
장혁규
석동수
이규현
이호건
Original Assignee
주식회사 메카로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메카로 filed Critical 주식회사 메카로
Priority to PCT/KR2016/000371 priority Critical patent/WO2017122842A1/ko
Priority to EP16885154.1A priority patent/EP3404725A4/en
Priority to KR1020187010279A priority patent/KR102090184B1/ko
Priority to US16/066,631 priority patent/US10727366B2/en
Priority to CN201680077575.0A priority patent/CN108541349B/zh
Priority to JP2018533788A priority patent/JP6586238B2/ja
Publication of WO2017122842A1 publication Critical patent/WO2017122842A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell including a CIGS light absorbing layer and a method of manufacturing the same.
  • Such a solar cell is manufactured using a single crystal or a polycrystalline silicon wafer, but in general, single crystal silicon has the highest photoelectric conversion efficiency and thus is widely used in a large-scale power generation system. However, such monocrystalline silicon is uneconomical due to the complicated manufacturing process and high cost.
  • CIGS Cu (In 1-x Ga x ) Se 2
  • the present invention comprises the steps of (a) forming a lower electrode layer on the substrate; (b) supplying a copper precursor on the lower electrode layer to deposit a copper thin film by chemical vapor deposition, and then supplying a gallium precursor, an indium precursor, and a first selenium precursor to deposit a gallium thin film and an indium-selenium thin film by chemical vapor deposition. To form a CIGS light absorbing layer; And (c) sequentially forming a buffer layer and a front electrode layer on the CIGS light absorbing layer.
  • the present invention comprises the steps of (a) forming a lower electrode layer on the substrate; (b) supplying a copper precursor on the lower electrode layer to deposit a copper thin film by chemical vapor deposition, and then supplying a gallium precursor, an indium precursor, and a first selenium precursor to deposit a gallium thin film and an indium-selenium thin film by chemical vapor deposition. To form a CIGS light absorbing layer; And (c) sequentially forming a buffer layer and a front electrode layer on the CIGS light absorbing layer.
  • the gallium precursor, the indium precursor, and the first selenium precursor may be sequentially supplied to deposit the gallium thin film, and then the indium selenium thin film may be deposited.
  • a gallium-selenium thin film may be deposited by simultaneously supplying a second selenium precursor to the gallium precursor.
  • the gallium precursor in the step (b) is trimethylgallium (Trimethylgallium), Triethylgallium (Triethylgallium), Triisopropylgallium (Triisopropylgallium), Tributylgallium (Tributylgallium), Trit-butylgallium (Tritertiarybutylgallium), Trimethoxygallium (Trimethoxygallium), Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethyl Gallium (Diethylmethylgallium), dimethylisopropylgallium (Dimethylisopropylgallium), diethylisopropylgallium (Diethylisopropylgallium) and may include one or more selected from the group consisting
  • the gallium precursor may be supplied while maintaining the canister temperature at -40 ° C to 100 ° C and the supply line temperature at 25 ° C to 200 ° C.
  • the second selenium precursor is dimethyl selenide (Dimethylselenide), diethyl selenide (Diethylselenide), diisopropyl selenide (Diisoprylselenide), dit-butyl selenide (Ditertiarybutyl selenide), dimethyl diselenide ( Dimethyldiselenide, Diethyldiselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, t-butylisopropylselenide, and t-butyl selenol Tertiarybutylselenol) may comprise one or more selected from the group consisting of.
  • step (b) It may further comprise the step of heat treatment in step (b).
  • the heat treatment may be performed for 1 to 50 minutes at a temperature of 200 °C to 600 °C.
  • selenium deficiency occurs in a lower surface area of the CIGS light absorbing layer including a lower electrode layer, a CIGS light absorbing layer, a buffer layer and a front electrode layer sequentially formed on a substrate. It provides a solar cell.
  • the thickness of the MoSe x layer formed between the lower electrode layer and the CIGS light absorbing layer may be 10 nm or less.
  • the copper deficiency occurs in the upper surface area of the CIGS light absorbing layer in contact with the buffer layer.
  • the bandgap energy of the CIGS light absorbing layer may be 1.2 eV to 1.8 eV.
  • a copper precursor is deposited on the lower electrode layer to deposit a copper thin film by chemical vapor deposition.
  • the selenium thin film is deposited to form a CIGS light absorbing layer having a small porosity and a large average grain size.
  • the formation of the MoSe x layer can be minimized, and the performance of the solar cell can be improved.
  • FIG. 1 illustrates a method of manufacturing a solar cell including a CIGS light absorbing layer according to an embodiment of the present invention.
  • FIG. 2 illustrates a solar cell including a CIGS light absorbing layer according to an embodiment of the present invention.
  • Figure 3 shows the change in the composition ratio of each element in the thickness direction in the CIGS light absorption layer by AES (Auger Electron Spectroscopy) method.
  • FIG. 4 is a scanning electron microscope (SEM) photograph showing a top surface and a cross section of a CIGS light absorbing layer of the solar cell according to Example 1.
  • SEM scanning electron microscope
  • any configuration is formed in the "upper (or lower)" of the substrate not only means that any configuration is formed in contact with the upper (or lower) of the substrate, but also the upper (or lower) of the substrate and the substrate (or It is not limited to not including another structure between arbitrary structures formed below.
  • the present invention comprises the steps of (a) forming a lower electrode layer on the substrate; (b) supplying a copper precursor on the lower electrode layer to deposit a copper thin film by chemical vapor deposition, and then supplying a gallium precursor, an indium precursor, and a first selenium precursor to deposit a gallium thin film and an indium-selenium thin film by chemical vapor deposition. To form a CIGS light absorbing layer; And (c) sequentially forming a buffer layer and a front electrode layer on the CIGS light absorbing layer.
  • FIG. 1 illustrates a method of manufacturing a solar cell including a CIGS light absorbing layer according to an embodiment of the present invention.
  • a lower electrode layer 20 is formed on the substrate 10. .
  • the copper thin film 31 is deposited by supplying a copper precursor on the lower electrode layer 20 by chemical vapor deposition
  • the gallium thin film 32 is supplied by a chemical vapor deposition by supplying a gallium precursor, an indium precursor, and a first selenium precursor.
  • the indium selenium thin film 33 are deposited to form a CIGS light absorbing layer 30.
  • the buffer layer 40 and the front electrode layer 50 are sequentially formed on the CIGS light absorbing layer 30.
  • the present invention also provides a solar cell comprising a lower electrode layer, a CIGS light absorbing layer, a buffer layer and a front electrode layer sequentially formed on a substrate, wherein selenium deficiency occurs in the lower region of the CIGS light absorbing layer in contact with the lower electrode layer. do.
  • FIG. 2 illustrates a solar cell including a CIGS light absorbing layer according to an embodiment of the present invention.
  • the solar cell 1 including the CIGS light absorbing layer 30 includes a lower electrode layer 20 and a CIGS light absorbing layer 30 sequentially formed on the substrate 10. ), A buffer layer 40 and a front electrode layer 50, and the selenium deficiency occurs in the lower region of the CIGS light absorbing layer 30 in contact with the lower electrode layer 20.
  • the substrate 10 may be a glass substrate, a ceramic substrate, a metal substrate or a polymer substrate may also be used.
  • soda lime glass or high strained pointsoda glass substrate may be used as the glass substrate, and stainless steel or titanium may be used as the metal substrate.
  • a polyimide substrate may be used as the substrate.
  • the substrate 10 may be transparent.
  • the substrate 10 may be rigid or flexible.
  • the lower electrode layer 20 is formed on the substrate 10 and may include a metal such as Mo as a conductive layer.
  • the lower electrode layer 20 may be formed of one layer or may be formed of two or more layers. When the lower electrode layer 20 is formed of two or more layers, each of the layers may be formed of the same metal or different metals.
  • the lower electrode layer 20 may be formed by one or more known methods selected from the group consisting of sputtering, co-evaporation, chemical vapor deposition, atomic layer deposition, ion beam deposition, screen printing, spray dip coating, tape casting and ink jet. It may be.
  • the thickness of the lower electrode layer 20 is preferably 0.1 ⁇ m to 1 ⁇ m, and more preferably 0.4 ⁇ m to 0.6 ⁇ m, but is not limited thereto.
  • the CIGS light absorbing layer 30 is formed on the lower electrode layer 20, and supplies a copper precursor onto the lower electrode layer 20 to deposit a copper thin film 31 by chemical vapor deposition, and then a gallium precursor and The gallium thin film 32 and the indium selenium thin film 33 are formed by supplying an indium precursor and a first selenium precursor by chemical vapor deposition.
  • Chemical Vapor Deposition is a step in the semiconductor manufacturing process, in which a metal precursor is formed by using plasma and heat as a metal precursor.
  • a metal precursor is formed by using plasma and heat as a metal precursor.
  • the chemical vapor deposition method is used to form the CIGS light absorbing layer 30, there are advantages such as high efficiency, large area size, simple device structure, and low system price.
  • the chemical vapor deposition method it is necessary to secure the optimum precursor suitable for the desired process, it is necessary to set the optimum conditions in the process temperature, pressure and the like to obtain the desired characteristics by using this.
  • a chemical vapor deposition apparatus should be provided.
  • the chemical vapor deposition apparatus includes a chamber for maintaining the interior in a vacuum state; A gate provided at one side of the chamber and configured to bring the substrate 10 into the chamber; A substrate chuck (heating block and susceptor) provided under the chamber to mount the substrate 10 and to heat to a desired process temperature; And a shower head provided at an upper portion of the chamber to supply a process gas.
  • the shower head may be connected to a plurality of canisters disposed outside, and may receive a process gas (metal precursor, etc.) from each canister.
  • the substrate 10 is carried into the chamber through the gate and is fixed to the substrate chuck. After the substrate 10 is introduced into the chamber, the gate is sealed and the chamber is decompressed, and the chamber internal pressure is preferably 0.01 mtorr to atmospheric pressure.
  • a copper precursor is supplied onto the lower electrode layer 20 to deposit a copper thin film 31 by chemical vapor deposition.
  • the copper thin film 31 due to the deposition of the copper thin film 31, the copper thin film 31, the gallium thin film (or gallium-selenium thin film) 32 and the indium-selenium thin film 33 is subjected to sufficient heat treatment CIGS light absorption layer in the bulk state Even if 30 is manufactured, selenium deficiency occurs in the lower surface area of the CIGS light absorbing layer 30 in contact with the lower electrode layer, and as a result, the formation of the MoSe x layer can be minimized.
  • the copper precursor is bis (acetylacetonato) copper [Bis (acetylacetonato) copper], bis (2,2,6,6-tetramethylheptanedionato) copper [Bis (2,2,6,6 -tetramethylheptandionato) copper, bis (hexafluoroacetylacetonato) copper], (vinyltrimethylsilyl) (hexafluoroacetylacetonato) copper, (vinyltrimethylsilyl) (acetylacetonato) copper [(vinyltrimethylsilyl) acetylacetonatocopper], (vinyltrimethylsilyl) (2,2,6,6-tetramethylheptanedionato) copper [(Vinyltrimethylsilyl) (2,2,6,6-tetramethylheptandionato) copper], (vinyltriethylsilyl) (Acetylacetonato) copper [(Vinyltri
  • the canister temperature for supplying the copper precursor is determined in consideration of the vapor pressure of the copper precursor, the copper precursor is -40 °C to 100 °C, preferably 25 °C to 80 °C, supply line temperature It is preferably supplied while maintaining at 25 °C to 200 °C, but is not limited thereto.
  • the temperature of the substrate 10 is preferably maintained at 25 °C to 600 °C, it is preferable to use at least one gas selected from the group consisting of argon gas, helium gas and nitrogen gas as a carrier gas. desirable.
  • the deposition thickness of the copper thin film 31 is preferably 50 nm to 1000 nm, but is not limited thereto. At this time, when the deposition thickness of the copper thin film 31 is out of the above range, it is difficult to implement the ideal bandgap energy of the CIGS light absorbing layer 30.
  • a gallium precursor, an indium precursor, and a first selenium precursor are supplied to deposit a gallium thin film 32 and an indium selenium thin film 33 by chemical vapor deposition.
  • the band gap energy of the CIGS light absorption layer can be appropriately adjusted to 1.2 eV to 1.8 eV, preferably 1.3 eV to 1.5 eV, thereby improving the performance of the solar cell 1. Can be improved.
  • the gallium precursor, the indium precursor and the first selenium precursor are sequentially supplied to deposit the gallium thin film 32 first, and then the indium selenium thin film 33 is deposited to further increase the performance of the solar cell 1. There is an advantage to that.
  • the gallium precursor is trimethylgallium (Trimethylgallium), Triethylgallium (Triethylgallium), Triisopropylgallium (Triisopropylgallium), Tributylgallium (Tributylgallium), Trit-butylgallium (Tritertiarybutylgallium), Trimethoxygallium (Trimethoxygallium ), Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylisogaloxylium, Dimethylethylgallium, Diethylmethylgallium Diethylmethylgallium, dimethylisopropylgallium (Dimethylisopropylgallium), diethylisopropylgallium (Diethylisopropylgallium) and dimethyl t- butylgallium (Dimethyltert)
  • the canister temperature for supplying the gallium precursor is determined in consideration of the vapor pressure of the gallium precursor, the gallium precursor is -40 °C to 100 °C, preferably -40 °C to 30 °C, supply line temperature It is preferably supplied while maintaining at 25 °C to 200 °C, but is not limited thereto.
  • the temperature of the substrate 10 is preferably maintained at 25 °C to 600 °C, it is preferable to use at least one gas selected from the group consisting of argon gas, helium gas and nitrogen gas as a carrier gas. desirable.
  • the indium precursor is trimethylindium, triethylindium, triisopropylindium, triisopropylindium, tributylindium, trit-butylindium, trimethoxyindium ), Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium Diethylmethylindium), dimethylisopropylindium (Dimethylisopropylindium), diethylisopropylindium (Diethylisopropylindium) and dimethyl t-butylindium (Dimethyltertiarybutylindium) It is preferable to include one or more selected from the group consisting of, but not limited to.
  • the first selenium precursor is dimethyl selenide (Dimethylselenide), diethyl selenide (Diethylselenide), diisopropyl selenide (Diisoprylselenide), dit-butyl selenide (Ditertiarybutylselenide), dimethyl diselenide (Dimethyldiselenide) , Diethyldiselenide, diisopropyldiselenide, dit-butyldiselenide, ditertiarybutyldiselenide, tertiarybutylisopropylselenide and t-butyl selenol It is preferable to include one or more selected from the group consisting of, but is not limited thereto.
  • the canister temperature for supplying the indium precursor and the first selenium precursor is determined in consideration of the vapor pressure of the indium precursor and the first selenium precursor, and the canister temperature of the indium precursor is -40 ° C to 100 ° C, preferably Is -40 ° C to 30 ° C, the supply line temperature is 25 ° C to 200 ° C, and the canister temperature of the first selenium precursor is -40 ° C to 100 ° C, preferably 25 ° C to 80 ° C, and the supply line temperature is 25 It is preferably supplied while maintaining at °C to 200 °C, but is not limited thereto.
  • the temperature of the substrate 10 is preferably maintained at 25 °C to 600 °C, at least one gas selected from the group consisting of argon gas, helium gas and nitrogen gas It is preferable to use it as a carrier gas.
  • the deposition thickness of the gallium thin film 32 is preferably 10 nm to 300 nm, and the deposition thickness of the indium selenium thin film 33 is preferably 100 nm to 2000 nm, but is not limited thereto. At this time, when the deposition thickness of the gallium thin film 32 and the indium selenium thin film 33 is out of the above range, it is difficult to implement the ideal bandgap energy of the CIGS light absorbing layer 30.
  • the gallium-selenium thin film 32 may be deposited by simultaneously supplying a second selenium precursor to the gallium precursor.
  • the selenium content in the CIGS may be further increased, and thus the solar cell performance may be further improved.
  • the second selenium precursor may be the same as or different from the first selenium precursor described above. Specifically, dimethyl selenide, diethyl selenide, diisopropyl selenide, diisopryl selenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethyldiselenide, Diisopropyldiselenide, Dit-butyldiselenide, Ditertiarybutyldiselenide, t- It is preferred to include one or more selected from the group consisting of butyl isopropyl selenide (Tertiarybutylisopropylselenide) and t-butyl selenol (Tertiary butyl selenol), but is not limited thereto.
  • the heat treatment may be further performed.
  • the heat treatment is preferably performed for 1 minute to 50 minutes at a temperature of 200 °C to 600 °C, more preferably carried out for 30 minutes to 45 minutes at a temperature of 400 °C to 600 °C, but is not limited thereto.
  • the heat treatment may be performed under one or more atmosphere gas selected from the group consisting of argon, helium, nitrogen, hydrogen sulfide (H 2 S) and hydrogen selenide (H 2 Se).
  • the CIGS light absorbing layer 30 is characterized in that the selenium deficiency occurs in the lower surface area of the CIGS light absorbing layer 30 in contact with the lower electrode layer 20, it can be manufactured according to the method described above.
  • the present invention due to the prevention of direct contact between the surface of the lower electrode layer 20 including Mo and the selenium precursor, and the occurrence of selenium deficiency in the lower region of the CIGS light absorbing layer 30 in contact with the lower electrode layer 20. , it may minimize the formation of MoSe x layer, the thickness of MoSe x layer formed between the lower electrode layer 20 and the CIGS light absorption layer 30 be 10 nm or less, MoSe x layer is not formed can More preferably, it is not limited thereto.
  • the band gap energy of the CIGS light absorbing layer 30 is preferably 1.2 eV to 1.8 eV, but is not limited thereto.
  • the bandgap energy of 1.2 eV to 1.8 eV can be controlled by optimizing the composition of copper, gallium, indium and selenium in the CIGS light absorbing layer 30, and by maintaining the above range, the open voltage of the solar cell 1 (Voc) can be greatly increased.
  • the porosity of the CIGS light absorbing layer 30 may be 0.1% to 10%. At this time, when the porosity of the CIGS light absorbing layer 30 is out of the above range, a current leakage path is generated, thereby degrading the photoelectric conversion efficiency of the solar cell.
  • the average grain size of the CIGS light absorbing layer 30 may be large. At this time, when the average grain size of the CIGS light absorbing layer 30 is formed too small, grain boundaries between the crystals impede the flow of current, thereby degrading the photoelectric conversion efficiency of the solar cell 1.
  • the final thickness of the CIGS light absorbing layer 30 is preferably 500 nm to 3000 nm, but is not limited thereto. At this time, when the final thickness of the CIGS light absorbing layer 30 is out of the above range, the photoelectric conversion efficiency of the solar cell 1 is lowered.
  • the buffer layer 40 may be formed of at least one layer on the CIGS light absorbing layer 30.
  • the buffer layer 40 may be formed of CdS, InS, ZnS, or Zn (O, S) by sputtering, chemical solution, chemical vapor deposition, or atomic layer deposition.
  • the buffer layer 40 is an n-type semiconductor layer
  • the CIGS light absorption layer 30 is a p-type semiconductor layer. Accordingly, the CIGS light absorbing layer 30 and the buffer layer 40 form a pn junction.
  • the buffer layer 40 having the lattice constant and the band gap energy between the two materials is inserted into the CIGS light absorbing layer 30 and the front electrode layer 50. Good bonding can be formed.
  • the front electrode layer 50 is formed on the buffer layer 40.
  • the front electrode layer 500 is a window layer forming a pn junction with the CIGS light absorbing layer 30, and is formed by sputtering or the like. It may be formed of ZnO, ITO, or the like doped with aluminum (Al) or alumina (Al 2 O 3 ).
  • the front electrode layer 50 may have a double structure in which an n-type ZnO thin film or an ITO (Indium Tin Oxide) thin film having excellent electro-optic properties is deposited on an i-type ZnO thin film.
  • ITO Indium Tin Oxide
  • the first layer formed on the buffer layer 40 functions as a transparent electrode on the front of the solar cell, the light transmittance must be high, and the electrical resistance must be high to block a shunt path through which photoelectrons flow. It is preferable to form an undoped i-type ZnO thin film.
  • the second layer deposited on the i-type ZnO thin film is doped with aluminum (Al), alumina (Al 2 O 3 ), boron (B), magnesium (Mg), or gallium (Ga), which has a low resistance and has good current flow.
  • ZnO thin film or Indium Tin Oxide (ITO) thin film is suitable.
  • a gallium precursor, an indium precursor, and a first selenium precursor are deposited.
  • gallium thin film (32), and indium in CVD-bar MoSe x layer as to form a selenium thin film (33)
  • CIGS light absorption layer 30 was small and the porosity have an average crystal grain size has been formed deposit Not only can the formation be minimized, but the performance of the solar cell 1 can be improved.
  • the lower electrode layer of about 0.49 ⁇ m was formed by coating by Mo electrode DC sputtering prepared on a glass substrate.
  • triethylgallium Triethylgallium
  • Figure 3 shows the change in the composition ratio of each element in the thickness direction in the CIGS light absorption layer by AES (Auger Electron Spectroscopy) method.
  • the energy of the emitted Auger electrons was measured in real time to analyze the type and content of the elements constituting the surface to perform the AES (Auger Electron Spectroscopy) method.
  • CIGS CIGS After forming a 0.05 ⁇ m CdS buffer layer on the light absorption layer by chemical bath deposition, a 0.05 ⁇ m i type ZnO thin film and a 0.5 ⁇ m aluminum 2% doped ZnO thin film were deposited by RF sputtering. The solar cell was finally manufactured by forming the front electrode layer.
  • a solar cell was finally manufactured in the same manner as in Example 1, except that the heat treatment time was changed to 30 minutes.
  • a solar cell was finally manufactured in the same manner as in Example 1, except that the heat treatment time was changed to 45 minutes.
  • a solar cell was finally manufactured in the same manner as in Example 1, except that the heat treatment time was changed to 60 minutes.
  • a solar cell was finally manufactured in the same manner as in Examples 1 to 4, except that the deposition of the Ga thin film was omitted.
  • the porosity of the CIGS light absorbing layer in the solar cell manufactured according to Example 1 was measured and measured through a scanning electron microscope (SEM) image, and the specific results are shown in Table 1 and FIG. 4.
  • Figure 4 is a cross-sectional view of the CIGS light absorption layer of the solar cell according to Example 1 observed by scanning electron microscopy (SEM).
  • the CIGS light-absorbing layer of the solar cell according to Example 1 was confirmed that the average grain size is large, while the porosity is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 (a) 기판 상에 하부전극층을 형성하는 단계; (b) 상기 하부전극층 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막 및 인듐-셀레늄 박막을 증착시켜 CIGS 광흡수층을 형성하는 단계; 및 (c) 상기 CIGS 광흡수층 상에 버퍼층 및 전면전극층을 순차적으로 형성하는 단계를 포함하는 태양전지의 제조방법에 관한 것이다.

Description

CIGS 광흡수층을 포함하는 태양전지 및 이의 제조방법
본 발명은 CIGS 광흡수층을 포함하는 태양전지 및 이의 제조방법에 관한 것이다.
최근 환경규제에 따라 탄소 배출량을 줄이기 위한 신재생 에너지 개발의 일환으로, 태양광을 전기에너지로 변환하므로 설치장소에 제약이 작고 쉽게 전력을 발전할 수 있는 태양전지가 주목 받고 있다.
이러한 태양전지는 단결정 또는 다결정 실리콘 웨이퍼를 이용하여 제작되나, 일반적으로 단결정 실리콘이 광전변환 효율이 가장 높아 대규모 발전시스템 분야 등에서 널리 사용된다. 그러나, 이러한 단결정 실리콘은 제작공정이 복잡하고 가격이 높아 비경제적이다.
따라서, 비록 효율은 비교적 떨어지지만 저급의 실리콘 웨이퍼를 사용하는 다결정 실리콘으로 태양전지를 제조하는 방법이 개발되어 현재 주택용 발전시스템 등에 사용되고 있다. 그러나, 이 역시 공정이 복잡하고 실리콘의 가격에 인한 원자재 가격의 단가 상승으로 인하여 태양전지 제조비용을 낮추는데 한계가 있다.
이에 따라, 최근에는 이를 극복하기 위한 박막형 태양전지로서, 다중접합구조의 비정질 실리콘을 사용하는 방법과, 칼코게나이드계 화합물 등의 화합물 반도체를 사용하는 방법이 개발되고 있다.
이 중 칼코게나이드계 화합물인 Cu(In1-xGax)Se2(이하, CIGS로 명칭)를 CIGS 광흡수층으로 사용한 태양전지가 고효율, 저비용 후보로 평가 받고 있다.
본 발명은 (a) 기판 상에 하부전극층을 형성하는 단계; (b) 상기 하부전극층 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막 및 인듐-셀레늄 박막을 증착시켜 CIGS 광흡수층을 형성하는 단계; 및 (c) 상기 CIGS 광흡수층 상에 버퍼층 및 전면전극층을 순차적으로 형성하는 단계를 포함하는 태양전지의 제조방법 등을 제공하고자 한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 (a) 기판 상에 하부전극층을 형성하는 단계; (b) 상기 하부전극층 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막 및 인듐-셀레늄 박막을 증착시켜 CIGS 광흡수층을 형성하는 단계; 및 (c) 상기 CIGS 광흡수층 상에 버퍼층 및 전면전극층을 순차적으로 형성하는 단계를 포함하는 태양전지의 제조방법을 제공한다.
상기 (b) 단계에서 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 순차적으로 공급하여 갈륨 박막을 먼저 증착시킨 후, 인듐-셀레늄 박막을 증착시킬 수 있다.
상기 (b) 단계에서 갈륨 전구체에 제2 셀레늄 전구체를 동시에 공급하여 갈륨-셀레늄 박막을 증착시킬 수 있다.
상기 (b) 단계에서 갈륨 전구체는 트리메틸갈륨(Trimethylgallium), 트리에틸갈륨(Triethylgallium), 트리이소프로필갈륨(Triisopropylgallium), 트리부틸갈륨(Tributylgallium), 트리t-부틸갈륨(Tritertiarybutylgallium), 트리메톡시갈륨(Trimethoxygallium), 트리에톡시갈륨(Triethoxygallium), 트리이소프로폭시갈륨(Triisopropoxygallium), 디메틸이소프로폭시갈륨(Dimethylisopropoxygallium), 디에틸이소프로폭시갈륨(Diethylisopropoxygallium), 디메틸에틸갈륨(Dimethylethylgallium), 디에틸메틸갈륨(Diethylmethylgallium), 디메틸이소프로필갈륨(Dimethylisopropylgallium), 디에틸이소프로필갈륨(Diethylisopropylgallium) 및 디메틸t-부틸갈륨(Dimethyltertiarybutylgallium)로 이루어지는 군으로부터 선택된 하나 이상을 포함할 수 있다.
상기 (b) 단계에서 갈륨 전구체는 캐니스터 온도를 -40℃ 내지 100℃, 공급라인 온도를 25℃ 내지 200℃로 유지하면서 공급될 수 있다.
상기 (b) 단계에서 제2 셀레늄 전구체는 디메틸셀레나이드(Dimethylselenide), 디에틸셀레나이드(Diethylselenide), 디이소프로필셀레나이드(Diisoprylselenide), 디t-부틸셀레나이드(Ditertiarybutylselenide), 디메틸디셀레나이드(Dimethyldiselenide), 디에틸디셀레나이드(Diethyldiselenide), 디이소프로필디셀레나이드(Diisopropyldiselenide), 디t-부틸디셀레나이드(Ditertiarybutyldiselenide), t-부틸이소프로필셀레나이드(Tertiarybutylisopropylselenide) 및 t-부틸셀레놀(Tertiarybutylselenol)로 이루어지는 군으로부터 선택된 하나 이상을 포함할 수 있다.
상기 (b) 단계에서 열처리하는 단계를 추가로 포함할 수 있다.
상기 열처리는 200℃ 내지 600℃의 온도에서 1분 내지 50분 동안 수행될 수 있다.
본 발명의 일 구현예로, 기판 상에 순차적으로 형성된 하부전극층, CIGS 광흡수층, 버퍼층 및 전면전극층을 포함하고, 상기 하부전극층과 접하는 상기 CIGS 광흡수층 하부 표면 영역에서 셀레늄 결핍이 생기는 것을 특징으로 하는 태양전지를 제공한다.
상기 하부전극층과 상기 CIGS 광흡수층 사이에 형성된 MoSex층의 두께가 10 nm 이하일 수 있다.
상기 버퍼층과 접하는 상기 CIGS 광흡수층 상부 표면 영역에서 구리 결핍이 생기는 것을 특징으로 할 수 있다.
상기 CIGS 광흡수층의 밴드갭 에너지는 1.2eV 내지 1.8eV일 수 있다.
본 발명에 따른 태양전지는 상기 하부전극층 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막 및 인듐-셀레늄 박막을 증착시켜 공극율이 작고 평균 결정립 크기가 크게 형성된 CIGS 광흡수층을 형성하는 것을 특징으로 하는바, MoSex층의 형성을 최소화시킬 수 있을 뿐만 아니라, 태양전지의 성능을 개선시킬 수 있다.
도 1은 본 발명의 일 구현예에 따른 CIGS 광흡수층을 포함하는 태양전지의 제조방법을 나타낸 것이다.
도 2는 본 발명의 일 구현예에 따른 CIGS 광흡수층을 포함하는 태양전지를 나타낸 것이다.
도 3은 AES(Auger Electron Spectroscopy)법에 의한 CIGS 광흡수층에서 두께방향에 따른 각 원소의 조성비의 변화를 나타낸 것이다.
도 4는 실시예 1에 따른 태양전지의 CIGS 광흡수층의 상부면 및 단면을 보여주는 주사전자현미경(SEM) 사진이다.
도 5는 실시예 1~4 및 비교예 1~4에 따른 태양전지의 개방전압을 평가한 그래프이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
이하에서 기재의 “상 (또는 하)”에 임의의 구성이 형성된다는 것은, 임의의 구성이 상기 기재의 상 (또는 하)에 접하여 형성되는 것을 의미할 뿐만 아니라, 상기 기재와 기재의 상 (또는 하) 형성된 임의의 구성 사이에 다른 구성을 포함하지 않는 것으로 한정하는 것은 아니다.
이하, 본 발명을 상세히 설명한다.
본 발명은 (a) 기판 상에 하부전극층을 형성하는 단계; (b) 상기 하부전극층 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막 및 인듐-셀레늄 박막을 증착시켜 CIGS 광흡수층을 형성하는 단계; 및 (c) 상기 CIGS 광흡수층 상에 버퍼층 및 전면전극층을 순차적으로 형성하는 단계를 포함하는 태양전지의 제조방법을 제공한다.
도 1은 본 발명의 일 구현예에 따른 CIGS 광흡수층을 포함하는 태양전지의 제조방법을 나타낸 것이다.
도 1에 나타난 바와 같이, 본 발명의 일 구현예에 따른 CIGS 광흡수층(30)을 포함하는 태양전지(1)를 제조하기 위해서는, 먼저, 기판(10) 상에 하부전극층(20)을 형성한다. 이후, 상기 하부전극층(20) 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막(31)을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막(32) 및 인듐-셀레늄 박막(33)을 증착시켜 CIGS 광흡수층(30)을 형성한다. 이후, 상기 CIGS 광흡수층(30) 상에 버퍼층(40) 및 전면전극층(50)을 순차적으로 형성한다.
또한, 본 발명은 기판 상에 순차적으로 형성된 하부전극층, CIGS 광흡수층, 버퍼층 및 전면전극층을 포함하고, 상기 하부전극층과 접하는 상기 CIGS 광흡수층 하부 영역에서 셀레늄 결핍이 생기는 것을 특징으로 하는 태양전지를 제공한다.
도 2는 본 발명의 일 구현예에 따른 CIGS 광흡수층을 포함하는 태양전지를 나타낸 것이다.
도 2에 나타난 바와 같이, 본 발명의 일 구현예에 따른 CIGS 광흡수층(30)을 포함하는 태양전지(1)는 기판(10) 상에 순차적으로 형성된 하부전극층(20), CIGS 광흡수층(30), 버퍼층(40) 및 전면전극층(50)을 포함하고, 상기 하부전극층(20)과 접하는 상기 CIGS 광흡수층(30) 하부 영역에서 셀레늄 결핍이 생기는 것을 특징으로 한다.
기판(10)의 형성
상기 기판(10)은 유리 기판이 사용될 수 있으며, 세라믹 기판, 금속 기판 또는 폴리머 기판 등도 사용될 수 있다.
예를 들어, 유리 기판으로는 소다라임 유리(sodalime) 또는 고변형점 소다유리(high strained pointsoda glass) 기판을 사용할 수 있고, 금속 기판으로는 스테인레스 스틸 또는 티타늄을 포함하는 기판을 사용할 수 있으며, 폴리머 기판으로는 폴리이미드(polyimide) 기판을 사용할 수 있다.
상기 기판(10)은 투명할 수 있다. 상기 기판(10)은 리지드(rigid)하거나 플렉서블(flexible) 할 수 있다.
하부전극층(20)의 형성
상기 하부전극층(20)은 상기 기판(10) 상에 형성되는 것으로, 도전층으로서, Mo 등의 금속을 포함할 수 있다.
상기 하부전극층(20)은 하나의 층으로 이루어질 수도 있고, 2층 이상의 복수층으로 이루어질 수도 있다. 상기 하부전극층(20)이 2층 이상의 복수층으로 이루어지는 경우, 각각의 층들은 같은 금속으로 형성되거나, 서로 다른 금속으로 형성될 수 있다.
상기 하부전극층(20)의 형성은 스퍼터링, 동시증발법, 화학기상증착법, 원자층 증착법, 이온빔증착법, 스크린프린팅, 스프레이 딥코팅, 테이프개스팅 및 잉크젯으로 이루어진 군으로부터 선택된 하나 이상의 공지의 방법에 의한 것일 수 있다.
상기 하부전극층(20)의 두께는 0.1㎛ 내지 1㎛인 것이 바람직하고, 0.4㎛ 내지 0.6㎛인 것이 더욱 바람직하나, 이에 한정되지 않는다.
CIGS 광흡수층(30)의 형성
상기 CIGS 광흡수층(30)은 상기 하부전극층(20) 상에 형성되는 것으로, 상기 하부전극층(20) 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막(31)을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막(32) 및 인듐-셀레늄 박막(33)을 증착시켜 형성한다.
화학기상증착법(Chemical Vapor Deposition; CVD)이라 함은 반도체 제조 공정 중의 한 단계로, 금속 전구체를 플라즈마 및 열을 이용하여 금속 박막을 형성하는 것을 말한다. CIGS 광흡수층(30)의 형성에 화학기상증착법을 이용하는 경우, 증착물질의 사용으로 인한 고효율, 대면적화 용이, 간단한 장치 구조, 저렴한 시스템 가격 구현 가능 등의 이점이 있다. 한편, 화학기상증착법을 이용하는 경우 원하는 공정에 적합한 최적의 전구체 확보할 필요가 있고, 이를 이용하여 원하는 특성을 얻기 위한 공정 온도, 압력 등에 있어서 최적 조건을 설정할 필요가 있다. 화학기상증착법의 수행을 위해서는 화학기상증착장치가 구비되어야 할 것이다.
화학기상증착장치는 내부를 진공 상태로 유지하기 위한 챔버; 상기 챔버 일측에 구비되어, 기판(10)을 챔버 내부로 반입하기 위한 게이트; 상기 챔버 하부에 구비되어, 기판(10)을 장착하고 원하는 공정 온도까지 가열하기 위한 기판척(히팅블록 및 서셉터); 및 상기 챔버 상부에 구비되어, 공정가스를 공급하기 위한 샤워헤드를 포함한다. 또한, 상기 샤워헤드는 외부에 배치되어 있는 다수개의 캐니스터와 연결되어, 각 캐니스터로부터 공정가스(금속 전구체 등)를 공급받을 수 있다.
기판(10)은 상기 게이트를 통하여 상기 챔버 내부로 반입되며, 상기 기판척에 고정된다. 기판(10)이 상기 챔버 내부로 반입된 후에는 상기 게이트를 밀폐하고, 상기 챔버 내부를 감압시키는데, 챔버 내부 압력은 0.01mtorr 내지 대기압인 것이 바람직하다.
먼저, 상기 하부전극층(20) 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막(31)을 증착시킨다.
상기 구리 박막(31)의 증착으로 인하여, Mo을 포함하는 하부전극층(20) 표면과 셀레늄 전구체의 직접적인 접촉을 방지할 수 있어, MoSex층의 형성을 최소화시킬 수 있다.
또한, 상기 구리 박막(31)의 증착으로 인하여, 구리 박막(31), 갈륨 박막(또는 갈륨-셀레늄 박막)(32) 및 인듐-셀레늄 박막(33)에 충분한 열처리를 하여 벌크 상태의 CIGS 광흡수층(30)을 제조하더라도, 상기 하부전극층과 접하는 상기 CIGS 광흡수층(30) 하부 표면 영역에서 셀레늄 결핍을 발생시키는바, 결과적으로, MoSex층의 형성을 최소화시킬 수 있다.
구체적으로, 상기 구리 전구체는 비스(아세틸아세토네이토)구리[Bis(acetylacetonato)copper], 비스(2,2,6,6-테트라메틸헵탄디오네이토)구리[Bis(2,2,6,6-tetramethylheptandionato)copper], 비스(헥사플루오로아세틸아세토네이토)구리[Bis(hexafluoroacetylacetonato)copper], (vinyltrimethylsilyl)(hexafluoroacetylacetonato)copper, (비닐트리메틸실릴)(아세틸아세토네이토)구리 [(vinyltrimethylsilyl)(acetylacetonato)copper], (비닐트리메틸실릴)(2,2,6,6-테트라메틸헵탄디오네이토)구리[(Vinyltrimethylsilyl)(2,2,6,6-tetramethylheptandionato)copper], (비닐트리에틸실릴)(아세틸아세토네이토)구리 [(Vinyltriethylsilyl)-(acetylacetonato)copper], (비닐트리에틸실릴)(2,2,6,6-테트라메틸헵탄디오네이토)구리[(Vinyltriethylsilyl)-(2,2,6,6-teramethylheptandionato)copper] 및 (비닐트리에틸실릴)(헥사플루오로아세틸아세토네이토)구리 [(Vinyltriethylsilyl)-(hexafluoroacetylacetonato)copper]로 이루어지는 군에서 선택되는 어느 하나 이상인 것이 바람직하나, 이에 한정되지 않는다.
이때, 상기 구리 전구체를 공급하기 위한 캐니스터 온도는 구리 전구체의 증기압을 고려하여 결정되는 것으로, 상기 구리 전구체는 캐니스터 온도를 -40℃ 내지 100℃, 바람직하게는 25℃ 내지 80℃, 공급라인 온도를 25℃ 내지 200℃로 유지하면서 공급되는 것이 바람직하나, 이에 한정되지 않는다. 상기 구리 전구체의 공급시, 상기 기판(10)의 온도는 25℃ 내지 600℃를 유지하는 것이 바람직하고, 아르곤 가스, 헬륨 가스 및 질소 가스로 이루어진 군으로부터 선택된 하나 이상의 가스를 운반가스로 사용하는 것이 바람직하다.
상기 구리 박막(31)의 증착 두께는 50nm 내지 1000nm인 것이 바람직하나, 이에 한정되지 않는다. 이때, 구리 박막(31)의 증착 두께가 상기 범위를 벗어나는 경우, CIGS 광흡수층(30)의 이상적인 밴드갭 에너지 구현이 어렵다.
다음으로, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막(32) 및 인듐-셀레늄 박막(33)을 증착시킨다.
특히, 상기 갈륨 박막(32)의 증착으로 인하여, CIGS 광흡수층의 밴드갭 에너지를 1.2eV 내지 1.8eV, 바람직하게는, 1.3eV 내지 1.5eV로 적절히 조절할 수 있어, 태양전지(1)의 성능을 향상시킬 수 있다.
이때, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 순차적으로 공급하여 갈륨 박막(32)을 먼저 증착시킨 후, 인듐-셀레늄 박막(33)을 증착시킴으로써, 태양전지(1)의 성능을 더욱 높일 수 있는 이점이 있다.
구체적으로, 상기 갈륨 전구체는 트리메틸갈륨(Trimethylgallium), 트리에틸갈륨(Triethylgallium), 트리이소프로필갈륨(Triisopropylgallium), 트리부틸갈륨(Tributylgallium), 트리t-부틸갈륨(Tritertiarybutylgallium), 트리메톡시갈륨(Trimethoxygallium), 트리에톡시갈륨(Triethoxygallium), 트리이소프로폭시갈륨(Triisopropoxygallium), 디메틸이소프로폭시갈륨(Dimethylisopropoxygallium), 디에틸이소프로폭시갈륨(Diethylisopropoxygallium), 디메틸에틸갈륨(Dimethylethylgallium), 디에틸메틸갈륨(Diethylmethylgallium), 디메틸이소프로필갈륨(Dimethylisopropylgallium), 디에틸이소프로필갈륨(Diethylisopropylgallium) 및 디메틸t-부틸갈륨(Dimethyltertiarybutylgallium)로 이루어지는 군으로부터 선택된 하나 이상을 포함하는 것이 바람직하나, 이에 한정되지 않는다.
이때, 상기 갈륨 전구체를 공급하기 위한 캐니스터 온도는 갈륨 전구체의 증기압을 고려하여 결정되는 것으로, 상기 갈륨 전구체는 캐니스터 온도를 -40℃ 내지 100℃, 바람직하게는 -40℃ 내지 30℃, 공급라인 온도를 25℃ 내지 200℃로 유지하면서 공급되는 것이 바람직하나, 이에 한정되지 않는다. 상기 갈륨 전구체의 공급시, 상기 기판(10)의 온도는 25℃ 내지 600℃를 유지하는 것이 바람직하고, 아르곤 가스, 헬륨 가스 및 질소 가스로 이루어진 군으로부터 선택된 하나 이상의 가스를 운반가스로 사용하는 것이 바람직하다.
구체적으로, 상기 인듐 전구체는 트리메틸인듐(Trimethylindium), 트리에틸인듐(Triethylindium), 트리이소프로필인듐(Triisopropylindium), 트리부틸인듐(Tributylindium), 트리t-부틸인듐(Tritertiarybutylindium), 트리메톡시인듐(Trimethoxyindium), 트리에톡시인듐(Triethoxyindium), 트리이소프로폭시인듐(Triisopropoxyindium), 디메틸이소프로폭시인듐(Dimethylisopropoxyindium), 디에틸이소프로폭시인듐(Diethylisopropoxyindium), 디메틸에틸인듐(Dimethylethylindium), 디에틸메틸인듐(Diethylmethylindium), 디메틸이소프로필인듐(Dimethylisopropylindium), 디에틸이소프로필인듐(Diethylisopropylindium) 및 디메틸t-부틸인듐(Dimethyltertiarybutylindium)으로 이루어지는 군으로부터 선택된 하나 이상을 포함하는 것이 바람직하나, 이에 한정되지 않는다.
구체적으로, 상기 제1 셀레늄 전구체는 디메틸셀레나이드(Dimethylselenide), 디에틸셀레나이드(Diethylselenide), 디이소프로필셀레나이드(Diisoprylselenide), 디t-부틸셀레나이드(Ditertiarybutylselenide), 디메틸디셀레나이드(Dimethyldiselenide), 디에틸디셀레나이드(Diethyldiselenide), 디이소프로필디셀레나이드(Diisopropyldiselenide), 디t-부틸디셀레나이드(Ditertiarybutyldiselenide), t-부틸이소프로필셀레나이드(Tertiarybutylisopropylselenide) 및 t-부틸셀레놀(Tertiarybutylselenol)로 이루어지는 군으로부터 선택된 하나 이상을 포함하는 것이 바람직하나, 이에 한정되지 않는다.
이때, 상기 인듐 전구체와 제1 셀레늄 전구체를 공급하기 위한 캐니스터 온도는 인듐 전구체와 제1 셀레늄 전구체의 각 증기압을 고려하여 결정되는 것으로, 상기 인듐 전구체의 캐니스터 온도를 -40℃ 내지 100℃, 바람직하게는 -40℃ 내지 30℃, 공급라인 온도를 25℃ 내지 200℃로, 또한, 제1 셀레늄 전구체의 캐니스터 온도를 -40℃ 내지 100℃, 바람직하게는 25℃ 내지 80℃, 공급라인 온도를 25℃ 내지 200℃로 유지하면서 공급되는 것이 바람직하나, 이에 한정되지 않는다. 상기 인듐 전구체와 제1 셀레늄 전구체를 동시에 공급시, 상기 기판(10)의 온도는 25℃ 내지 600℃를 유지하는 것이 바람직하고, 아르곤 가스, 헬륨 가스 및 질소 가스로 이루어진 군으로부터 선택된 하나 이상의 가스를 운반가스로 사용하는 것이 바람직하다.
상기 갈륨 박막(32)의 증착 두께는 10nm 내지 300nm인 것이 바람직하고, 상기 인듐-셀레늄 박막(33)의 증착 두께는 100nm 내지 2000nm인 것이 바람직하나, 이에 한정되지 않는다. 이때, 갈륨 박막(32) 및 인듐-셀레늄 박막(33)의 증착 두께가 상기 범위를 벗어나는 경우, CIGS 광흡수층(30)의 이상적인 밴드갭 에너지 구현이 어렵다.
한편, 상기 갈륨 박막(32)의 단독 증착 대신, 갈륨 전구체에 제2 셀레늄 전구체를 동시에 공급하여 갈륨-셀레늄 박막(32')을 증착시킬 수도 있다.
상기와 같이, 갈륨-셀레늄 박막(32')을 증착시키는 경우, CIGS 내 셀레늄 함량을 더욱 높일 수 있어, 태양 전지 성능을 더욱 높일 수 있는 이점이 있다.
상기 제2 셀레늄 전구체는 전술한 제1 셀레늄 전구체와 동일할 수도 있고, 상이할 수도 있는데, 구체적으로, 디메틸셀레나이드(Dimethylselenide), 디에틸셀레나이드(Diethylselenide), 디이소프로필셀레나이드(Diisoprylselenide), 디t-부틸셀레나이드(Ditertiarybutylselenide), 디메틸디셀레나이드(Dimethyldiselenide), 디에틸디셀레나이드(Diethyldiselenide), 디이소프로필디셀레나이드(Diisopropyldiselenide), 디t-부틸디셀레나이드(Ditertiarybutyldiselenide), t-부틸이소프로필셀레나이드(Tertiarybutylisopropylselenide) 및 t-부틸셀레놀(Tertiarybutylselenol)로 이루어지는 군으로부터 선택된 하나 이상을 포함하는 것이 바람직하나, 이에 한정되지 않는다.
구리 박막(31), 갈륨 박막(또는 갈륨-셀레늄 박막)(32) 및 인듐-셀레늄 박막(33) 증착 이후, 추가로 열처리할 수 있다. 상기 열처리는 200℃ 내지 600℃의 온도에서 1분 내지 50분 동안 수행되는 것이 바람직하고, 400℃ 내지 600℃의 온도에서 30분 내지 45분 동안 수행되는 것이 더욱 바람직하나, 이에 한정되지 않는다. 상기와 같은 열처리 온도 및 열처리 시간을 최적화시킴으로써, 상기 구리 박막(31), 갈륨 박막(또는 갈륨-셀레늄 박막)(32) 및 인듐-셀레늄 박막(33)에 충분한 열처리를 하여 벌크 상태의 CIGS 광흡수층(30)을 제조할 수 있다. 이때, 상기 열처리는 아르곤, 헬륨, 질소, 유화수소(H2S) 및 셀레늄화수소(H2Se)로 이루어지는 군으로부터 선택된 하나 이상의 분위기 가스 하에 수행될 수 있다.
즉, 상기 CIGS 광흡수층(30)은 상기 하부전극층(20)과 접하는 상기 CIGS 광흡수층(30) 하부 표면 영역에서 셀레늄 결핍이 생기는 것을 특징으로 하며, 전술한 방법에 따라 제조될 수 있다.
본 발명에 따르면, Mo을 포함하는 하부전극층(20) 표면과 셀레늄 전구체의 직접적인 접촉의 방지, 그리고, 상기 하부전극층(20)과 접하는 상기 CIGS 광흡수층(30) 하부 영역에서 셀레늄 결핍의 발생으로 인하여, MoSex층의 형성을 최소화시킬 수 있는데, 상기 하부전극층(20)과 상기 CIGS 광흡수층(30) 사이에 형성된 MoSex층의 두께가 10 nm 이하일 수 있고, MoSex층이 가능한 형성되지 않은 것이 더욱 바람직하나, 이에 한정되지 않는다.
한편, 상기 버퍼층(40)과 접하는 상기 CIGS 광흡수층(30) 상부 표면 영역에서는 구리 겹핍이 생기는 것을 특징으로 하는바, 상기 버퍼층(40)과 접하는 상기 CIGS 광흡수층(30) 상부 표면 영역에서 구리 결핍으로 인하여 태양전지(1)의 성능을 더욱 향상시킬 수 있는 이점이 있다.
상기 CIGS 광흡수층(30)의 밴드갭 에너지는 1.2 eV 내지 1.8eV인 것이 바람직하나, 이에 한정되지 않는다. 1.2 eV 내지 1.8eV의 밴드갭 에너지는 CIGS 광흡수층(30) 내 구리, 갈륨, 인듐, 셀레늄의 조성의 최적화를 통해 조절될 수 있는 것으로, 상기 범위를 유지함으로써, 태양전지(1)의 개방전압(Voc)을 크게 높일 수 있다.
상기 CIGS 광흡수층(30)의 공극율은 0.1% 내지 10%일 수 있다. 이때, CIGS 광흡수층(30)의 공극율이 상기 범위를 벗어나는 경우, 전류의 흐름이 새는 통로(current leakage path)가 생성되고, 이에 따라 태양전지의 광전변환효율이 떨어지게 된다.
상기 CIGS 광흡수층(30)의 평균 결정립 크기는 크게 형성될 수 있다. 이때, CIGS 광흡수층(30)의 평균 결정립 크기가 너무 작게 형성되는 경우, 결정간의 경계(grain boundary)가 전류의 흐름을 방해하여 태양전지(1)의 광전변환효율이 떨어지게 된다.
상기 CIGS 광흡수층(30)의 최종적인 두께는 500nm 내지 3000nm인 것이 바람직하나, 이에 한정되지 않는다. 이때, CIGS 광흡수층(30)의 최종적인 두께가 상기 범위를 벗어나는 경우, 태양전지(1)의 광전변환효율이 떨어지게 된다.
버퍼층(40)의 형성
상기 버퍼층(40)은 상기 CIGS 광흡수층(30) 상에 적어도 하나 이상의 층으로 형성될 수 있다. 상기 버퍼층(40)은 스퍼터링, 화학용액법, 화학기상증착법 또는 원자층증착법 등에 의하여 CdS, InS, ZnS 또는 Zn(O,S) 등으로 형성될 수 있다. 이때, 상기 버퍼층(40)은 n형 반도체 층이고, 상기 CIGS 광흡수층(30)은 p형 반도체 층이다. 따라서, 상기 CIGS 광흡수층(30) 및 버퍼층(40)은 pn 접합을 형성한다.
즉, 상기 CIGS 광흡수층(30)과 전면전극층(50)은 격자상수와 밴드갭 에너지의 차이가 크기 때문에, 격자상수와 밴드갭 에너지가 두 물질의 중간에 위치하는 상기 버퍼층(40)을 삽입하여 양호한 접합을 형성할 수 있다.
전면전극층(50)의 형성
상기 전면전극층(50)은 상기 버퍼층(40) 상에 형성되는 것으로, 상기 전면전극층(500)은 상기 CIGS 광흡수층(30)과 pn접합을 형성하는 윈도우(window)층으로서, 스퍼터링 등에 의하여 ZnO, 알루미늄(Al) 또는 알루미나(Al2O3)로 도핑된 ZnO, ITO 등으로 형성될 수 있다.
상기 전면전극층(50)은 i형 ZnO박막 상에 전기광학적 특성이 뛰어난 n형 ZnO박막 또는 ITO(Indium Tin Oxide)박막을 증착한 2중 구조로 이루어질 수 있다.
이때, 상기 버퍼층(40) 상에 형성되는 첫번째 층은 태양전지 전면의 투명전극의 기능을 하기 때문에 광투과율이 높아야 하며, 광전자의 흐름이 새는 통로(shunt path)를 차단하기 위해 전기저항이 높아야 하므로, 도핑되지 않은 i형 ZnO 박막으로 형성되는 것이 바람직하다. 또한, i형 ZnO박막 상에 증착되는 두번째 층은 저항이 낮아 전류의 흐름이 좋은 알루미늄(Al), 알루미나(Al2O3), 보론(B), 마그네슘(Mg) 또는 갈륨(Ga)으로 도핑된 ZnO박막 또는 ITO(Indium Tin Oxide)박막이 적합하다.
따라서, 본 발명에 따른 태양전지(1)는 상기 하부전극층(20) 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막(31)을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막(32) 및 인듐-셀레늄 박막(33)을 증착시켜 공극율이 작고 평균 결정립 크기가 크게 형성된 CIGS 광흡수층(30)을 형성하는 것을 특징으로 하는바, MoSex층의 형성을 최소화시킬 수 있을 뿐만 아니라, 태양전지(1)의 성능을 개선시킬 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[ 실시예 ]
실시예 1
유리(sodalime glass) 기판 상에 제조된 Mo 전극 DC 스퍼터링에 의해 코팅하여 약 0.49㎛의 하부전극층을 형성하였다. 하부전극층 상에 Cu 전구체로서 Cu(hfac)2(캐니스터 온도=40℃, 공급라인 온도=100℃, 기판 온도=250℃, 운반가스=Ar)를 공급하여 화학기상증착법으로 Cu 박막을 0.3㎛ 두께로 증착시켰다. 이후, Ga 전구체로서 트리에틸갈륨(Triethylgallium)(캐니스터 온도=10℃, 공급라인 온도=100℃, 기판 온도=250℃, 운반가스=Ar)를 단독으로 공급하여 화학기상증착법으로 Ga 박막을 0.1㎛ 두께로 증착시킨 후, In 전구체로서 트리메틸인듐(Trimethylindium)(캐니스터 온도=10℃, 공급라인 온도=100℃, 기판 온도=250℃, 운반가스=Ar)와 Se 전구체로서 디에틸셀레나이드(Diethylselenide) (캐니스터 온도=30℃, 공급라인 온도=100℃, 기판 온도=250℃, 운반가스=Ar)를 동시에 공급하여 화학기상증착법으로 In-Se 박막을 1.1㎛ 두께로 증착시켰다. 이후, 550℃에서 15분 동안 열처리하여 1.5㎛의 CIGS 광흡수층을 형성하였다.
도 3은 AES(Auger Electron Spectroscopy)법에 의한 CIGS 광흡수층에서 두께방향에 따른 각 원소의 조성비의 변화를 나타낸 것이다.
구체적으로, CIGS 광흡수층 표면 상에 전자빔을 조사한 후, 방출되는 Auger 전자의 에너지를 실시간으로 측정하여 표면을 구성하고 있는 원소의 종류 및 함량을 분석하여 AES(Auger Electron Spectroscopy)법을 수행하였다.
도 3에 나타난 바와 같이, CIGS 광흡수층 상부 표면 영역(스퍼터 시간=약 0초)에서는 구리 결핍이 생기는 것으로 확인되고, CIGS 광흡수층 하부 표면 영역(스퍼터 시간=약 1200초)에서는 셀레늄 결핍이 생기는 것으로 확인된다.
이후, CIGS 광흡수층 상에 0.05㎛의 CdS 버퍼층을 화학용액증착법(chemical bath deposition)으로 형성한 후, RF 스퍼터링에 의해 0.05㎛의 i형 ZnO박막과 0.5㎛의 알루미늄이 2% 도핑된 ZnO박막을 각각 증착하여 전면전극층을 형성함으로써 태양전지를 최종 제조하였다.
실시예 2
열처리 시간을 30분으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 태양전지를 최종 제조하였다.
실시예 3
열처리 시간을 45분으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 태양전지를 최종 제조하였다.
실시예 4
열처리 시간을 60분으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 태양전지를 최종 제조하였다.
비교예 1~4
Ga 박막의 증착을 생략한 것을 제외하고는, 실시예 1~4와 동일한 방법으로 태양전지를 최종 제조하였다.
실험예
(1) CIGS 광흡수층의 공극율 측정 및 평균 결정립 크기 관찰
실시예 1에 따라 제조된 태양전지에서 CIGS 광흡수층의 공극율은 주사전자현미경(SEM) 이미지를 통해 계산하여 측정하였고, 그 구체적인 결과는 하기 표 1 및 도 4에 나타내었다.
구분 공극율(%)
실시예 1 3
또한, 실시예 1에 따라 제조된 태양전지에서 CIGS 광흡수층의 평균 결정립 크기는 주사전자현미경(SEM) 이미지를 통해 관찰하였고, 그 결과는 도 3에 나타내었다.
도 4는 실시예 1에 따른 태양전지의 CIGS 광흡수층의 단면을 주사전자현미경(SEM)으로 관찰하여 나타낸 것이다.
표 1 및 도 4에 나타난 바와 같이, 실시예 1에 따른 태양전지의 CIGS 광흡수층은 공극율이 작으면서도, 평균 결정립 크기가 크게 형성되었음을 확인할 수 있었다.
(2) 태양전지의 성능 평가
실시예 1~4 및 비교예 1~4에 따라 최종 제조된 태양전지의 개방전압(Voc)을 평가하였고, 그 결과는 표 2 및 도 5에 나타내었다.
구분 Voc(mV)
실시예 1 600
실시예 2 605
실시예 3 631
실시예 4 534
비교예 1 274
비교예 2 308
비교예 3 334
비교예 4 388
상기 표 2 및 도 5에서 보듯이, 실시예 1~4의 경우, 비교예 1~4에 비하여 태양전지의 개방전압(Voc)이 월등히 높아, 태양전지의 성능이 우수함을 확인할 수 있었다.
이는 최적 조건에서 Ga 박막 증착을 통해, CIGS 광흡수층의 밴드갭 에너지를 적절히 조절할 수 있고, 이를 실시예 1~4에 따른 태양전지에 적용한 결과이다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (12)

  1. (a) 기판 상에 하부전극층을 형성하는 단계;
    (b) 상기 하부전극층 상에 구리 전구체를 공급하여 화학기상증착법으로 구리 박막을 증착시킨 후, 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 공급하여 화학기상증착법으로 갈륨 박막 및 인듐-셀레늄 박막을 증착시켜 CIGS 광흡수층을 형성하는 단계; 및
    (c) 상기 CIGS 광흡수층 상에 버퍼층 및 전면전극층을 순차적으로 형성하는 단계를 포함하는
    태양전지의 제조방법.
  2. 제1항에 있어서,
    상기 (b) 단계에서 갈륨 전구체 및 인듐 전구체와 제1 셀레늄 전구체를 순차적으로 공급하여 갈륨 박막을 먼저 증착시킨 후, 인듐-셀레늄 박막을 증착시키는
    태양전지의 제조방법.
  3. 제1항에 있어서,
    상기 (b) 단계에서 갈륨 전구체에 제2 셀레늄 전구체를 동시에 공급하여 갈륨-셀레늄 박막을 증착시키는
    태양전지의 제조방법.
  4. 제1항에 있어서,
    상기 (b) 단계에서 갈륨 전구체는 트리메틸갈륨(Trimethylgallium), 트리에틸갈륨(Triethylgallium), 트리이소프로필갈륨(Triisopropylgallium), 트리부틸갈륨(Tributylgallium), 트리t-부틸갈륨(Tritertiarybutylgallium), 트리메톡시갈륨(Trimethoxygallium), 트리에톡시갈륨(Triethoxygallium), 트리이소프로폭시갈륨(Triisopropoxygallium), 디메틸이소프로폭시갈륨(Dimethylisopropoxygallium), 디에틸이소프로폭시갈륨(Diethylisopropoxygallium), 디메틸에틸갈륨(Dimethylethylgallium), 디에틸메틸갈륨(Diethylmethylgallium), 디메틸이소프로필갈륨(Dimethylisopropylgallium), 디에틸이소프로필갈륨(Diethylisopropylgallium) 및 디메틸t-부틸갈륨(Dimethyltertiarybutylgallium)로 이루어지는 군으로부터 선택된 하나 이상을 포함하는
    태양전지의 제조방법.
  5. 제1항에 있어서,
    상기 (b) 단계에서 갈륨 전구체는 캐니스터 온도를 -40℃ 내지 100℃, 공급라인 온도를 25℃ 내지 200℃로 유지하면서 공급되는
    태양전지의 제조방법.
  6. 제3항에 있어서,
    상기 (b) 단계에서 제2 셀레늄 전구체는 디메틸셀레나이드(Dimethylselenide), 디에틸셀레나이드(Diethylselenide), 디이소프로필셀레나이드(Diisoprylselenide), 디t-부틸셀레나이드(Ditertiarybutylselenide), 디메틸디셀레나이드(Dimethyldiselenide), 디에틸디셀레나이드(Diethyldiselenide), 디이소프로필디셀레나이드(Diisopropyldiselenide), 디t-부틸디셀레나이드(Ditertiarybutyldiselenide), t-부틸이소프로필셀레나이드(Tertiarybutylisopropylselenide) 및 t-부틸셀레놀(Tertiarybutylselenol)로 이루어지는 군으로부터 선택된 하나 이상을 포함하는
    태양전지의 제조방법.
  7. 제1항에 있어서,
    상기 (b) 단계에서 열처리하는 단계를 추가로 포함하는
    태양전지의 제조방법.
  8. 제7항에 있어서,
    상기 열처리는 200℃ 내지 600℃의 온도에서 1분 내지 50분 동안 수행되는
    태양전지의 제조방법.
  9. 기판 상에 순차적으로 형성된 하부전극층, CIGS 광흡수층, 버퍼층 및 전면전극층을 포함하고,
    상기 하부전극층과 접하는 상기 CIGS 광흡수층 하부 표면 영역에서 셀레늄 결핍이 생기는 것을 특징으로 하는
    태양전지.
  10. 제9항에 있어서,
    상기 하부전극층과 상기 CIGS 광흡수층 사이에 형성된 MoSex층의 두께가 10 nm 이하인
    태양전지
  11. 제9항에 있어서,
    상기 버퍼층과 접하는 상기 CIGS 광흡수층 상부 표면 영역에서 구리 결핍이 생기는 것을 특징으로 하는
    태양전지.
  12. 제9항에 있어서,
    상기 CIGS 광흡수층의 밴드갭 에너지는 1.2eV 내지 1.8eV인
    태양전지.
PCT/KR2016/000371 2016-01-13 2016-01-13 Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법 WO2017122842A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/KR2016/000371 WO2017122842A1 (ko) 2016-01-13 2016-01-13 Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
EP16885154.1A EP3404725A4 (en) 2016-01-13 2016-01-13 SOLAR CELL COMPRISING A CIGS LIGHT ABSORPTION LAYER AND METHOD FOR MANUFACTURING THE SAME
KR1020187010279A KR102090184B1 (ko) 2016-01-13 2016-01-13 Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
US16/066,631 US10727366B2 (en) 2016-01-13 2016-01-13 Solar cell comprising CIGS light absorbing layer and method for manufacturing same
CN201680077575.0A CN108541349B (zh) 2016-01-13 2016-01-13 包括cigs光吸收层的太阳能电池及其制造方法
JP2018533788A JP6586238B2 (ja) 2016-01-13 2016-01-13 Cigs光吸収層を含む太陽電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/000371 WO2017122842A1 (ko) 2016-01-13 2016-01-13 Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017122842A1 true WO2017122842A1 (ko) 2017-07-20

Family

ID=59311680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000371 WO2017122842A1 (ko) 2016-01-13 2016-01-13 Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법

Country Status (6)

Country Link
US (1) US10727366B2 (ko)
EP (1) EP3404725A4 (ko)
JP (1) JP6586238B2 (ko)
KR (1) KR102090184B1 (ko)
CN (1) CN108541349B (ko)
WO (1) WO2017122842A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11653502B2 (en) * 2019-12-02 2023-05-16 Intel Corporation FeFET with embedded conductive sidewall spacers and process for forming the same
KR20220153262A (ko) * 2021-05-11 2022-11-18 주식회사 메카로에너지 화학기상증착법을 이용한 태양전지용 cigs 광흡수층의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100035780A (ko) * 2008-09-29 2010-04-07 주식회사 쎄믹스 광 흡수용 화합물 박막 제조방법
KR20120051206A (ko) * 2010-11-12 2012-05-22 영남대학교 산학협력단 Cigs 태양광 흡수층 제조방법
KR20130059177A (ko) * 2011-11-28 2013-06-05 금호전기주식회사 씨아이지에스 박막태양전지 제조방법
KR101472409B1 (ko) * 2013-08-13 2014-12-16 주식회사 메카로닉스 화학적 증착법을 이용한 cis 박막 태양전지의 제조방법
KR101482786B1 (ko) * 2013-04-09 2015-01-19 한국교통대학교산학협력단 산화인듐을 이용한 cigs 광흡수층 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069684A1 (fr) * 2002-02-14 2003-08-21 Honda Giken Kogyo Kabushiki Kaisha Procédé de formation de couche absorbant la lumière
JP4055053B2 (ja) * 2002-03-26 2008-03-05 本田技研工業株式会社 化合物薄膜太陽電池およびその製造方法
ATE448569T1 (de) * 2006-04-18 2009-11-15 Dow Corning Fotovoltaische anordnung auf kupfer-indium- diselenidbasis und herstellungsverfahren dafür
CN101740660B (zh) * 2008-11-17 2011-08-17 北京华仁合创太阳能科技有限责任公司 铜铟镓硒太阳能电池、其吸收层薄膜及该薄膜的制备方法、设备
US20100236616A1 (en) * 2009-03-19 2010-09-23 Jenn Feng Industrial Co., Ltd. Cigs solar cell having thermal expansion buffer layer and method for fabricating the same
WO2011111889A1 (ko) * 2010-03-12 2011-09-15 주식회사 메카로닉스 Cigs 박막 제조방법
JP5623311B2 (ja) * 2011-02-28 2014-11-12 京セラ株式会社 光電変換装置
KR20120133342A (ko) * 2011-05-31 2012-12-10 한국에너지기술연구원 균일한 Ga 분포를 갖는 CIGS 박막 제조방법
KR101085980B1 (ko) * 2011-05-31 2011-11-22 주식회사 쎄믹스 엘리먼트 셀레늄 증기 분위기에서의 셀레나이제이션 공정에 의한 태양 전지의 광흡수층 제조 방법 및 광흡수층 제조용 열처리 장치
MX2014010452A (es) * 2012-02-29 2015-03-03 Alliance Sustainable Energy Sistemas y metodos para formar celdas solares con peliculas de cuinse2 y cu(in,ga)se2.
KR101384293B1 (ko) * 2012-06-29 2014-05-14 영남대학교 산학협력단 Cigs 태양전지 제조방법
US9159863B2 (en) * 2013-08-15 2015-10-13 Tsmc Solar Ltd. Method of forming chalcopyrite thin film solar cell
CN103474514B (zh) * 2013-10-08 2016-03-09 江西冠能光电材料有限公司 铜铟镓硒太阳能电池的制备方法
JP2015179863A (ja) * 2015-05-18 2015-10-08 株式会社東芝 光電変換素子および太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100035780A (ko) * 2008-09-29 2010-04-07 주식회사 쎄믹스 광 흡수용 화합물 박막 제조방법
KR20120051206A (ko) * 2010-11-12 2012-05-22 영남대학교 산학협력단 Cigs 태양광 흡수층 제조방법
KR20130059177A (ko) * 2011-11-28 2013-06-05 금호전기주식회사 씨아이지에스 박막태양전지 제조방법
KR101482786B1 (ko) * 2013-04-09 2015-01-19 한국교통대학교산학협력단 산화인듐을 이용한 cigs 광흡수층 제조방법
KR101472409B1 (ko) * 2013-08-13 2014-12-16 주식회사 메카로닉스 화학적 증착법을 이용한 cis 박막 태양전지의 제조방법

Also Published As

Publication number Publication date
KR102090184B1 (ko) 2020-03-18
JP6586238B2 (ja) 2019-10-02
KR20180056676A (ko) 2018-05-29
EP3404725A4 (en) 2019-10-02
CN108541349A (zh) 2018-09-14
EP3404725A1 (en) 2018-11-21
CN108541349B (zh) 2021-06-22
US10727366B2 (en) 2020-07-28
US20190157487A1 (en) 2019-05-23
JP2019502265A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2019017522A1 (ko) 페로브스카이트 태양전지 및 이를 포함하는 탬덤 태양전지
WO2014204130A1 (ko) 태양전지 및 그 제조방법
WO2011122853A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2015041470A1 (ko) 태양전지
WO2019098527A1 (ko) 태양전지의 제조 방법
WO2015041467A1 (ko) 태양전지 및 이의 제조 방법
WO2010147393A2 (en) Solar cell and method of fabricating the same
WO2012169845A2 (ko) 태양전지 기판과 그 제조방법 및 이를 이용한 태양전지
WO2011043610A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012064000A1 (ko) Cigs 태양광 흡수층 제조방법
WO2015046845A1 (ko) 태양전지
WO2011040778A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2013022234A2 (en) Method of manufacturing czt(s,se)-based thin film for solar cell and czt(s,se)-based thin film manufactured thereby
WO2022215990A1 (ko) 페로브스카이트 태양 전지 및 이를 포함하는 탠덤 태양 전지
WO2011002212A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2019039762A1 (ko) 태양전지 및 태양전지의 제조 방법
WO2015102409A1 (ko) 집적형 박막 태양전지의 제조 장치
WO2019054647A1 (ko) 태양전지 및 태양전지의 제조 방법
WO2017122842A1 (ko) Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
WO2019050185A1 (ko) 태양전지 및 그 제조 방법
EP2383362B1 (en) Devices and methods of protecting a cadmium sulfide layer for further processing
WO2011081239A1 (ko) 이종 접합 태양전지 및 그 제조방법
WO2013089305A1 (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
WO2019231052A1 (ko) 태양전지용 보호필름 및 이의 제조방법
WO2022059834A1 (ko) 광안정성이 향상된 양자점 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187010279

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018533788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE