WO2015041470A1 - 태양전지 - Google Patents

태양전지 Download PDF

Info

Publication number
WO2015041470A1
WO2015041470A1 PCT/KR2014/008665 KR2014008665W WO2015041470A1 WO 2015041470 A1 WO2015041470 A1 WO 2015041470A1 KR 2014008665 W KR2014008665 W KR 2014008665W WO 2015041470 A1 WO2015041470 A1 WO 2015041470A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
layer
electrode layer
front electrode
buffer
Prior art date
Application number
PCT/KR2014/008665
Other languages
English (en)
French (fr)
Inventor
장정인
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/022,718 priority Critical patent/US20160284882A1/en
Priority to CN201480062894.5A priority patent/CN105794000A/zh
Publication of WO2015041470A1 publication Critical patent/WO2015041470A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • Embodiments relate to solar cells.
  • the manufacturing method of a solar cell for photovoltaic power generation is as follows. First, a substrate is provided, and a back electrode layer is formed on the substrate and patterned by a laser to form a plurality of back electrodes.
  • a light absorbing layer, a buffer layer, and a high resistance buffer layer are sequentially formed on the rear electrodes.
  • copper, indium, gallium and selenium are simultaneously or separately evaporated while forming a light absorbing layer of copper-indium-gallium-selenide (Cu (In, Ga) Se 2 ; CIGS-based).
  • a method of forming a metal precursor film by a selenization process is widely used.
  • the energy band gap of the light absorbing layer is about 1 to 1.8 eV.
  • a buffer layer containing cadmium sulfide (CdS) is formed on the light absorbing layer by a sputtering process.
  • the energy bandgap of the buffer layer is about 2.2 to 2.4 eV.
  • a through groove penetrating the light absorbing layer and the buffer layer is formed.
  • a high resistance buffer layer may be further formed on the buffer layer and in the through groove.
  • a transparent conductive material is stacked on the high resistance buffer layer, and the through groove is filled with the transparent conductive material. Accordingly, a transparent electrode layer is formed on the high resistance buffer layer.
  • the material used as the transparent electrode layer include aluminum doped zinc oxide.
  • the energy band gap of the transparent electrode layer is about 3.1 to 3.3 eV.
  • the high resistance buffer layer may directly contact the rear electrode layer exposed by the through groove.
  • the efficiency of the solar cell is lowered due to the high contact resistance between the high resistance buffer layer and the back electrode layer.
  • the transparent electrode layer requires high light transmittance and low sheet resistance for improved efficiency, and a transparent electrode layer of a new material capable of satisfying the transparent electrode layer is required.
  • Embodiments provide a solar cell having improved light transmittance and photoelectric conversion efficiency.
  • the solar cell according to the first embodiment includes a support substrate; A rear electrode layer formed on the support substrate; A light absorbing layer formed on the back electrode layer; A first buffer layer formed on the light absorbing layer; A second buffer layer formed on the first buffer layer; And a front electrode layer formed on the second buffer layer, and at least one of the second buffer layer and the front electrode layer includes a Group 13 element.
  • the solar cell according to the second embodiment includes a support substrate; A rear electrode layer formed on the support substrate; A light absorbing layer formed on the back electrode layer; A first buffer layer formed on the light absorbing layer; A second buffer layer formed on the first buffer layer; And a front electrode layer formed on the second buffer layer, wherein at least one of the second buffer layer and the front electrode layer is doped with an impurity.
  • the Group 13 element is doped in the second buffer layer and the front electrode layer.
  • the solar cell according to the embodiment may be formed by doping a compound including at least one of boron, aluminum, or gallium in the second buffer layer and the front electrode layer.
  • the contact resistance between the second buffer layer and the back electrode layer can be reduced.
  • the light transmittance of the front electrode layer can be improved and the sheet resistance can be reduced.
  • the contact resistance and the sheet resistance can be reduced, and the current density can be improved.
  • the solar cell according to the embodiment may have an improved photoelectric conversion efficiency as a whole.
  • FIG. 1 is a plan view illustrating a solar cell according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a cross section of the solar cell according to the embodiment.
  • 3 to 10 are views for explaining a method of manufacturing a solar cell according to the embodiment.
  • each layer, region, pattern, or structure may be “on” or “under” the substrate, each layer, region, pad, or pattern.
  • Substrate formed in includes all formed directly or through another layer. Criteria for the top / bottom or bottom / bottom of each layer will be described with reference to the drawings.
  • each layer (film), region, pattern, or structure may be modified for clarity and convenience of description, and thus do not necessarily reflect the actual size.
  • FIG. 1 is a plan view illustrating a solar cell according to an embodiment
  • FIG. 2 is a cross-sectional view illustrating a cross section of the solar cell according to the embodiment.
  • a solar cell includes a support substrate 100, a back electrode layer 200, a light absorbing layer 300, a first buffer layer 410, a second buffer layer 420, and a front surface.
  • the electrode layer 500 and the plurality of connection parts 600 are included.
  • the support substrate 100 has a plate shape, and the back electrode layer 200, the light absorbing layer 300, the first buffer layer 410, the second buffer layer 420, the front electrode layer 500, and the Support the connection part 600.
  • the support substrate 100 may be an insulator.
  • the support substrate 100 may be a glass substrate, a plastic substrate, or a metal substrate.
  • the support substrate 100 may be a soda lime glass substrate.
  • the support substrate 100 may be transparent.
  • the support substrate 100 may be rigid or flexible.
  • the back electrode layer 200 is disposed on the support substrate 100.
  • the back electrode layer 200 is a conductive layer.
  • Examples of the material used as the back electrode layer 200 include a metal such as molybdenum.
  • the back electrode layer 200 may include two or more layers.
  • each of the layers may be formed of the same metal or different metals.
  • First through holes TH1 are formed in the back electrode layer 200.
  • the first through holes TH1 are open regions that expose the top surface of the support substrate 100.
  • the first through holes TH1 may have a shape extending in a first direction when viewed in a plan view.
  • the width of the first through holes TH1 may be about 80 ⁇ m to about 200 ⁇ m.
  • the back electrode layer 200 is divided into a plurality of back electrodes. That is, the back electrodes are defined by the first through holes TH1.
  • the rear electrodes are spaced apart from each other by the first through holes TH1.
  • the back electrodes are arranged in a stripe shape.
  • the back electrodes may be arranged in a matrix form.
  • the first through holes TH1 may have a lattice shape when viewed in a plan view.
  • the light absorbing layer 300 is disposed on the back electrode layer 200.
  • the material included in the light absorbing layer 300 is filled in the first through holes TH1.
  • the light absorbing layer 300 includes a group I-III-VI compound.
  • the light absorbing layer 300 may be formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) crystal structure, copper-indium-selenide-based, or copper-gallium-selenide It may have a system crystal structure.
  • the energy band gap of the light absorbing layer 300 may be about 1 eV to 1.8 eV.
  • the buffer layer is disposed on the light absorbing layer 300.
  • the buffer layer is in direct contact with the light absorbing layer 300.
  • the buffer layer may include a first buffer layer 410 and a second buffer layer 420.
  • the first buffer layer 410 is formed on the light absorbing layer 300
  • the second buffer layer 420 is formed on the first buffer layer 420.
  • the first buffer layer 410 and the second buffer layer 420 may include different materials.
  • the first buffer layer may include CdS or Zn (O, S).
  • the second buffer layer may include zinc oxide (ZnO).
  • Second through holes TH2 may be formed on the buffer layer.
  • second through holes TH2 are formed on the first buffer layer 410, and the second buffer layer 420 fills the second through holes TH2 and fills the first buffer layer 410. It can be formed on).
  • the second through holes TH2 are open regions exposing the top surface of the support substrate 100 and the top surface of the back electrode layer 200. Accordingly, the second buffer layer 420 formed in the second through holes TH2 may directly contact the back electrode layer 200 exposed by the second through holes TH2.
  • the second through holes TH2 may have a shape extending in one direction when viewed in a plan view.
  • the width of the second through holes TH2 may be about 80 ⁇ m to about 200 ⁇ m, but is not limited thereto.
  • the buffer layer that is, the first buffer layer 410 and the second buffer layer 420 are defined as a plurality of buffer layers by the second through holes TH2.
  • the second buffer layer 420 may further include a Group 13 element in addition to zinc oxide.
  • the second buffer layer 420 may include at least one group 13 element of aluminum (Al), gallium (Ga), and boron (B).
  • the second buffer layer 420 may include at least one group 13 element of aluminum and gallium.
  • impurities may be doped into the second buffer layer 420.
  • the second buffer layer 420 may be doped with a small amount of compounds containing a Group 13 element.
  • the second buffer layer 420 may be doped with compounds including at least one of aluminum and gallium.
  • metal oxides may be doped into the second buffer layer 420.
  • the second buffer layer 420 may be doped with an oxide such as Al 2 O 3 , B 2 O 3, or Ga 2 O 3 .
  • the Group 13 element that is, aluminum or gallium, may be added or doped in a small amount to the second buffer layer 420.
  • the aluminum or the gallium may reduce the contact resistance of the second buffer layer 420.
  • the second buffer layer 420 is in direct contact with the rear electrode layer 200 exposed by the second through holes TH2, and thus a contact resistance occurs.
  • the difference between the physical properties of the zinc oxide and the rear electrode layer is different. As a result, high contact resistance may occur.
  • This high contact resistance affects the efficiency of the solar cell, and as a whole, may cause a decrease in the efficiency of the solar cell.
  • the contact resistance may be reduced by adding or doping a small amount of the Group 13 element to the second buffer layer 420 in contact with the back electrode layer 200. Therefore, the solar cell according to the embodiment can reduce the contact resistance between the back electrode layer 200 and the second buffer layer 420, thereby improving the efficiency of the solar cell as a whole.
  • the front electrode layer 500 is disposed on the buffer layer.
  • the front electrode layer 500 is disposed on the second buffer layer 420.
  • the front electrode layer 500 is transparent and a conductive layer.
  • the resistance of the front electrode layer 500 is higher than the resistance of the back electrode layer 500.
  • the front electrode layer 500 includes an oxide.
  • the front electrode layer 500 includes zinc oxide (ZnO).
  • the front electrode layer 500 may further include a Group 13 element in addition to zinc oxide.
  • the front electrode layer 500 may include at least one group 13 element of aluminum (Al), gallium (Ga), and boron (B).
  • the front electrode layer 500 may include at least one group 13 element of aluminum and gallium.
  • the Group 13 element that is, aluminum or gallium, may be added in a small amount to the front electrode layer 500.
  • impurities may be doped into the front electrode layer 500.
  • the front electrode layer 500 may be doped with a small amount of compounds containing a Group 13 element.
  • the front electrode layer 500 may be doped with compounds including at least one of aluminum and gallium.
  • metal oxides may be doped into the front electrode layer 500.
  • the front electrode layer 500 may be doped with an oxide, such as Al 2 O 3 or Ga 2 O 3 .
  • the front electrode layer 500 may include aluminum doped ZnO (AZO) or gallium doped ZnO (Ga doped ZnO; GZO).
  • the aluminum or the gallium may be added or doped to the front electrode layer 500 to improve light transmittance of the front electrode layer 500, and may also reduce sheet resistance.
  • the front electrode layer 500 is a layer formed on the outermost side of the solar cell, and serves as an incident surface of light. Accordingly, the front electrode layer 500 requires high light transmittance and low sheet resistance. That is, the light transmittance and the sheet resistance are variables closely related to the current density (JSC) and the efficiency of the solar cell, and the efficiency of the solar cell may vary according to the light transmittance and the sheet resistance.
  • JSC current density
  • the solar cell according to the embodiment a small amount of the Group 13 element is added or doped to the front electrode layer 500, thereby improving light transmittance and reducing sheet resistance. Therefore, the solar cell according to the embodiment can improve the current density, it is possible to improve the efficiency of the solar cell as a whole.
  • At least one layer of the second buffer layer 420 and the front electrode layer 500 may include a Group 13 element.
  • both of the second buffer layer 420 and the front electrode layer 500 may include a Group 13 element.
  • the second buffer layer 420 and the front electrode layer 500 may include at least one element of aluminum and gallium.
  • the second buffer layer 420 and the front electrode layer 500 may include the same Group 13 element or may include different Group 13 elements.
  • the second buffer layer 420 and the front electrode layer 500 may include aluminum or gallium.
  • the front electrode layer 500 includes connection parts 600 positioned in the second through holes TH2.
  • Third through holes TH3 are formed in the first buffer layer 410, the second buffer layer 420, and the front electrode layer 500.
  • the third through holes TH3 may pass through some or all of the first buffer layer 410 and the second buffer layer 420, and the front electrode layer 500. That is, the third through holes TH3 may expose the top surface of the back electrode layer 200.
  • the third through holes TH3 are formed at positions adjacent to the second through holes TH2.
  • the third through holes TH3 are disposed next to the second through holes TH2. That is, when viewed in a plan view, the third through holes TH3 are arranged side by side next to the second through holes TH2.
  • the third through holes TH3 may have a shape extending in the first direction.
  • the third through holes TH3 pass through the front electrode layer 500.
  • the third through holes TH3 may pass through the light absorbing layer 300, the first buffer layer 410, and the second buffer layer 420.
  • the front electrode layer 500 is divided into a plurality of front electrodes by the third through holes TH3. That is, the front electrodes are defined by the third through holes TH3.
  • the front electrodes have a shape corresponding to the rear electrodes. That is, the front electrodes are arranged in a stripe shape. Alternatively, the front electrodes may be arranged in a matrix form.
  • a plurality of solar cells C1, C2... are defined by the third through holes TH3.
  • the solar cells C1, C2... are defined by the second through holes TH2 and the third through holes TH3. That is, the solar cell according to the embodiment is divided into the solar cells C1, C2... By the second through holes TH2 and the third through holes TH3.
  • the solar cells C1, C2... are connected to each other in a second direction crossing the first direction. That is, current may flow in the second direction through the solar cells C1, C2...
  • the solar cell panel 10 includes the support substrate 100 and the solar cells C1, C2...
  • the solar cells C1, C2... are disposed on the support substrate 100 and spaced apart from each other.
  • the solar cells C1, C2... are connected in series to each other by the connection parts 600.
  • connection parts 600 are disposed inside the second through holes TH2.
  • the connection parts 600 extend downward from the front electrode layer 500 and are connected to the back electrode layer 200.
  • the connection parts 600 extend from the front electrode of the first cell C1 and are connected to the back electrode of the second cell C2.
  • connection parts 600 connect solar cells adjacent to each other.
  • the connection part 600 connects the front electrode and the back electrode included in each of the adjacent solar cells.
  • connection part 600 is formed integrally with the front electrode layer 600. That is, the material used as the connection part 600 is the same as the material used as the front electrode layer 500.
  • impurities including the group 13 element are added or doped to the second buffer layer or the front electrode layer. Accordingly, the light transmittance of the front electrode layer can be improved, and the sheet resistance can be reduced. In addition, contact resistance between the second buffer layer and the back electrode layer may be reduced.
  • the solar cell according to the embodiment may have improved current density and low contact resistance, thereby improving the efficiency of the solar cell as a whole.
  • the rear electrode layer was patterned to divide the plurality of rear electrodes. Subsequently, a light absorbing layer was formed on the back electrode layer, and a first buffer layer and a second buffer layer were formed on the light absorbing layer.
  • the second buffer layer is doped with aluminum oxide (Al 2 O 3 ) or gallium oxide (Ga 2 O 3 ) by a vacuum deposition method.
  • a front electrode layer was formed on the second buffer layer to manufacture a solar cell.
  • the front electrode layer was doped with aluminum oxide (Al 2 O 3 ) or gallium oxide (Ga 2 O 3 ) by a vacuum deposition method.
  • a solar cell was manufactured in the same manner as in the example, except that the second buffer layer and the front electrode layer did not have a doping process.
  • the front electrode layer characteristics, the current density and the contact resistance of the solar cells according to the examples and the comparative examples were measured and compared, and the respective characteristics were shown in Table 1 below.
  • the solar cell according to the embodiment may improve the efficiency of the solar cell as a whole by doping at least one group 13 element of boron, aluminum, and gallium to at least one of the second buffer layer and the front electrode layer. Can be.
  • FIGS. 3 to 10 are views for explaining a solar cell manufacturing method according to an embodiment.
  • the back electrode layer 200 is formed on the support substrate 100.
  • the rear electrode layer 200 is patterned to form first through holes TH1. Accordingly, a plurality of rear electrodes are formed on the support substrate 100.
  • the back electrode layer 200 is patterned by a laser.
  • the first through holes TH1 may expose an upper surface of the support substrate 100 and have a width of about 80 ⁇ m to about 200 ⁇ m.
  • an additional layer such as a diffusion barrier may be interposed between the support substrate 100 and the rear electrode layer 200, wherein the first through holes TH1 expose the top surface of the additional layer.
  • a light absorbing layer 300 is formed on the back electrode layer 200.
  • the light absorbing layer 300 may be formed by a sputtering process or an evaporation method.
  • the light absorbing layer 300 For example, copper, indium, gallium, selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) while evaporating copper, indium, gallium, and selenium simultaneously or separately to form the light absorbing layer 300.
  • the method of forming the light absorbing layer 300 and the method of forming the metal precursor film and forming it by the selenization process are widely used.
  • a metal precursor film is formed on the back electrode 200 by a sputtering process using a copper target, an indium target, and a gallium target.
  • the metal precursor film is formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) light absorbing layer 300 by a selenization process.
  • the sputtering process and the selenization process using the copper target, the indium target, and the gallium target may be simultaneously performed.
  • the CIS-based or CIG-based light absorbing layer 300 may be formed by using only a copper target and an indium target, or by a sputtering process and a selenization process using a copper target and a gallium target.
  • cadmium sulfide is deposited by a sputtering process, a chemical bath depositon (CBD), or the like, and the first buffer layer 410 is formed.
  • CBD chemical bath depositon
  • portions of the light absorbing layer 300 and the first buffer layer 410 are removed to form second through holes TH2.
  • the second through holes TH2 may be formed by a mechanical device such as a tip or a laser device.
  • the light absorbing layer 300 and the buffer layers may be patterned by a tip having a width of about 40 ⁇ m to about 180 ⁇ m.
  • the second through holes TH2 may be formed by a laser having a wavelength of about 200 nm to about 600 nm.
  • the width of the second through holes TH2 may be about 100 ⁇ m to about 200 ⁇ m.
  • the second through holes TH2 are formed to expose a portion of the top surface of the back electrode layer 200.
  • a second buffer layer 420 may be formed on the first buffer layer 410.
  • the second buffer layer 420 may be formed by depositing zinc oxide doped with aluminum or gallium by a deposition process or the like.
  • the order of forming the second buffer layer 420 and the second through holes TH2 may be changed. That is, after the second buffer layer 420 is formed first, the second through holes TH2 may be formed.
  • a transparent conductive material is deposited on the second buffer layer 420 to form the front electrode layer 500.
  • the front electrode layer may be formed by depositing zinc oxide doped with aluminum or gallium by a deposition process or the like.
  • the front electrode layer 500 may be formed by depositing zinc oxide doped with aluminum or gallium in an inert gas atmosphere containing no oxygen.
  • the forming of the front electrode layer may be formed by depositing a zinc oxide doped with aluminum or gallium by a method of depositing using a ZnO target by an RF sputtering method or a reactive sputtering method using a Zn target.
  • a portion of the light absorbing layer 300, the first buffer layer 410, the second buffer layer 420, and the front electrode layer 500 may be removed to form third through holes TH3. Is formed. Accordingly, the front electrode layer 500 is patterned to define a plurality of front electrodes, a first cell C1, a second cell C2, and a third cell C3. The width of the third through holes TH3 may be about 80 ⁇ m to about 200 ⁇ m.

Abstract

실시예에 따른 태양전지는, 지지 기판; 상기 지지 기판 상에 형성되는 후면 전극층; 상기 후면 전극층 상에 형성되는 광 흡수층; 상기 광 흡수층 상에 형성되는 제 1 버퍼층; 상기 제 1 버퍼층 상에 형성되는 제 2 버퍼층; 및 상기 제 2 버퍼층 상에 형성되는 전면 전극층을 포함하고, 상기 제 2 버퍼층 및 상기 전면 전극층 중 적어도 하나의 층은 13족 원소를 포함한다.

Description

태양전지
실시예는 태양전지에 관한 것이다.
태양광 발전을 위한 태양전지의 제조방법은 다음과 같다. 먼저, 기판이 제공되고, 상기 기판 상에 후면 전극층이 형성되고, 레이저에 의해서 패터닝되어, 다수 개의 후면 전극들이 형성된다.
이후, 상기 후면 전극들 상에 광 흡수층, 버퍼층 및 고저항 버퍼층이 차례로 형성된다. 상기 광 흡수층을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다. 상기 광 흡수층의 에너지 밴드갭(band gap)은 약 1 내지 1.8 eV 이다.
이후, 상기 광 흡수층 상에 황화 카드뮴(CdS)을 포함하는 버퍼층이 스퍼터링 공정에 의해서 형성된다. 상기 버퍼층의 에너지 밴드갭은 약 2.2 내지 2.4 eV 이다.
이후, 상기 광 흡수층 및 상기 버퍼층을 관통하는 관통홈이 형성된다. 상기 버퍼층 상 및 상기 관통홈 내에는 고저항 버퍼층이 더 형성될 수 있다.
이후, 상기 고저항 버퍼층 상에 투명한 도전물질이 적층되고, 상기 관통홈이 상기 투명한 도전물질이 채워진다. 이에 따라서, 상기 고저항 버퍼층 상에 투명전극층이 형성된다. 상기 투명전극층으로 사용되는 물질의 예로서는 알루미늄 도핑된 징크 옥사이드 등을 들 수 있다. 상기 투명전극층의 에너지 밴드갭은 약 3.1 내지 3.3 eV 이다.
이때, 상기 고저항 버퍼층은 관통홈에 의해 노출되는 후면 전극층과 직접 접촉할 수 있다. 그러나, 상기 고저항 버퍼층과 상기 후면 전극층의 높은 접촉 저항으로 인해 태양전지의 효율이 저하되는 문제점이 있다.
또한, 상기 투명 전극층은 향상된 효율을 위해, 높은 광투과율과 낮은 면저항을 요구되는데, 이러한 투명 전극층을 충족시킬 수 있는 새로운 재질의 투명 전극층이 요구된다.
따라서, 낮은 접촉 저항 및 높은 전류 밀도를 충족하는 새로운 구조의 태양전지가 요구된다.
실시예는 향상된 광 투과율 및 광-전 변환 효율을 가지는 태양전지를 제공하고자 한다.
제 1 실시예에 따른 태양전지는, 지지 기판; 상기 지지 기판 상에 형성되는 후면 전극층; 상기 후면 전극층 상에 형성되는 광 흡수층; 상기 광 흡수층 상에 형성되는 제 1 버퍼층; 상기 제 1 버퍼층 상에 형성되는 제 2 버퍼층; 및 상기 제 2 버퍼층 상에 형성되는 전면 전극층을 포함하고, 상기 제 2 버퍼층 및 상기 전면 전극층 중 적어도 하나의 층은 13족 원소를 포함한다.
제 2 실시예에 따른 태양전지는, 지지 기판; 상기 지지 기판 상에 형성되는 후면 전극층; 상기 후면 전극층 상에 형성되는 광 흡수층; 상기 광 흡수층 상에 형성되는 제 1 버퍼층; 상기 제 1 버퍼층 상에 형성되는 제 2 버퍼층; 및 상기 제 2 버퍼층 상에 형성되는 전면 전극층을 포함하고, 상기 제 2 버퍼층 및 상기 전면 전극층 중 적어도 하나의 층에는 불순물이 도핑(doping)된다.
실시예에 따른 태양전지는 제 2 버퍼층 및 전면 전극층에 13족 원소가 도핑된다.
즉, 실시예에 따른 태양전지는 제 2 버퍼층 및 전면 전극층에 붕소, 알루미늄 또는 갈륨 중 적어도 하나를 포함하는 화합물이 도핑되어 형성될 수 있다.
이에 따라, 제 2 버퍼층과 후면 전극층의 접촉 저항을 감소시킬 수 있다. 또한, 전면 전극층의 광투과율을 향상시키고, 면저항을 감소시킬 수 있다.
즉, 제 2 버퍼층과 전면 전극층의 조성을 변화함에 따라, 접촉 저항 및 면저항을 감소시키고, 전류 밀도를 향상시킬 수 있다.
따라서, 실시예에 따른 태양전지는 전체적으로 향상된 광-전 변환 효율을 가질 수 있다.
도 1은 실시예에 따른 태양전지를 도시한 평면도이다.
도 2는 실시예에 따른 태양전지의 일 단면을 도시한 단면도이다.
도 3은 내지 도 10은 실시예에 따른 태양전지의 제조방법을 설명하기 위한 도면들이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 “상/위(on)”에 또는 “하/아래(under)”에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
도 1 및 도 2를 참조하여, 실시예에 따른 태양전지를 상세하게 설명한다. 도 1은 실시예에 따른 태양전지를 도시한 평면도이고, 도 2는 실시예에 따른 태양전지의 일 단면을 도시한 단면도이다.
도 1 및 도 2를 참조하면, 실시예에 따른 태양전지는, 지지 기판(100), 후면 전극층(200), 광 흡수층(300), 제 1 버퍼층(410), 제 2 버퍼층(420), 전면 전극층(500) 및 다수 개의 접속부(600)를 포함한다.
상기 지지 기판(100)은 플레이트 형상을 가지며, 상기 후면 전극층(200), 상기 광 흡수층(300), 상기 제 1 버퍼층(410), 상기 제 2 버퍼층(420), 상기 전면 전극층(500) 및 상기 접속부(600)를 지지한다.
상기 지지 기판(100)은 절연체일 수 있다. 상기 지지 기판(100)은 유리 기판, 플라스틱 기판 또는 금속 기판일 수 있다. 더 자세하게, 상기 지지 기판(100)은 소다 라임 글래스(soda lime glass) 기판일 수 있다. 상기 지지 기판(100)은 투명할 수 있다. 상기 지지 기판(100)은 리지드(rigid)하거나 플렉서블(flexible)할 수 있다.
상기 후면 전극층(200)은 상기 지지 기판(100) 상에 배치된다. 상기 후면 전극층(200)은 도전층이다. 상기 후면 전극층(200)으로 사용되는 물질의 예로서는 몰리브덴 등의 금속을 들 수 있다.
또한, 상기 후면 전극층(200)은 두 개 이상의 층들을 포함할 수 있다. 이때, 각각의 층들은 같은 금속으로 형성되거나 서로 다른 금속으로 형성될 수 있다.
상기 후면전극층(200)에는 제 1 관통홈들(TH1)이 형성된다. 상기 제 1 관통홈들(TH1)은 상기 지지기판(100)의 상면을 노출하는 오픈 영역이다. 상기 제 1 관통홈들(TH1)은 평면에서 보았을 때, 제 1 방향으로 연장되는 형상을 가질 수 있다.
상기 제 1 관통홈들(TH1)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다.
상기 제 1 관통홈들(TH1)에 의해서, 상기 후면전극층(200)은 다수 개의 후면전극들로 구분된다. 즉, 상기 제 1 관통홈들(TH1)에 의해서, 상기 후면전극들이 정의된다.
상기 후면 전극들은 상기 제 1 관통홈들(TH1)에 의해서 서로 이격된다. 상기 후면 전극들은 스트라이프 형태로 배치된다.
이와는 다르게, 상기 후면 전극들은 매트릭스 형태로 배치될 수 있다. 이때, 상기 제 1 관통홈들(TH1)은 평면에서 보았을 때, 격자 형태로 형성될 수 있다.
상기 광 흡수층(300)은 상기 후면전극층(200) 상에 배치된다. 또한, 상기 광 흡수층(300)에 포함된 물질은 상기 제 1 관통홈들(TH1)에 채워진다.
상기 광 흡수층(300)은 Ⅰ-Ⅲ-Ⅵ족 계 화합물을 포함한다. 예를 들어, 상기 광 흡수층(300)은 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계) 결정 구조, 구리-인듐-셀레나이드계 또는 구리-갈륨-셀레나이드계 결정 구조를 가질 수 있다.
상기 광 흡수층(300)의 에너지 밴드갭(band gap)은 약 1eV 내지 1.8eV일 수 있다.
이어서, 상기 버퍼층은 상기 광 흡수층(300) 상에 배치된다. 상기 버퍼층은 상기 광 흡수층(300)에 직접 접촉한다.
상기 버퍼층은 제 1 버퍼층(410) 및 제 2 버퍼층(420)을 포함할 수 있다. 자세하게, 상기 제 1 버퍼층(410)은 상기 광 흡수층(300) 상에 형성되고, 상기 제 2 버퍼층(420)은 상기 제 1 버퍼층(420) 상에 형성된다.
상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)은 서로 다른 물질을 포함할 수 있다.
상기 제 1 버퍼층은 CdS 또는 Zn(O,S)를 포함할 수 있다. 또한, 상기 제 2 버퍼층은 징크 옥사이드(ZnO)를 포함할 수 있다.
상기 버퍼층 상에는 제 2 관통홈들(TH2)이 형성될 수 있다. 자세하게, 상기 제 1 버퍼층(410) 상에 제 2 관통홈들(TH2)이 형성되고, 상기 제 2 버퍼층(420)은 상기 제 2 관통홈들(TH2) 내를 메우면서 상기 제 1 버퍼층(410) 상에 형성될 수 있다.
상기 제 2 관통홈들(TH2)은 상기 지지 기판(100)의 상면 및 상기 후면 전극층(200)의 상면을 노출하는 오픈 영역이다. 이에 따라, 상기 제 2 관통홈들(TH2) 내부에 형성되는 상기 제 2 버퍼층(420)은 상기 제 2 관통홈들(TH2)에 의해 노출되는 후면 전극층(200)과 직접 접촉할 수 있다.
상기 제 2 관통홈들(TH2)은 평면에서 보았을 때, 일 방향으로 연장되는 형상을 가질 수 있다. 상기 제 2 관통홈들(TH2)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있으나, 이에 제한되는 것은 아니다.
상기 버퍼층 즉, 상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)은 상기 제 2 관통홈들(TH2)에 의해서, 다수 개의 버퍼층들로 정의된다.
상기 제 2 버퍼층(420)은 징크 옥사이드 이외에 더 13족 원소가 포함될 수 있다. 자세하게, 상기 제 2 버퍼층(420)은 알루미늄(Al), 갈륨(Ga) 및 붕소(B) 중 적어도 하나의 13족 원소를 포함할 수 있다. 더 자세하게, 상기 제 2 버퍼층(420)은 알루미늄 및 갈륨 중 적어도 하나의 13족 원소를 포함할 수 있다.
일례로, 상기 제 2 버퍼층(420)에는 불순물이 도핑(doping)될 수 있다. 일례로, 상기 제 2 버퍼층(420)는 13족 원소를 포함하는 화합물들이 소량으로 도핑될 수 있다.
자세하게, 상기 제 2 버퍼층(420)에는 알루미늄 및 갈륨 중 적어도 하나를 포함하는 화합물들이 도핑될 수 있다. 일례로, 상기 제 2 버퍼층(420)에는 금속 산화물들이 도핑될 수 있다. 자세하게, 상기 제 2 버퍼층(420)에는 Al2O3, B2O3 또는 Ga2O3 등의 산화물이 도핑될 수 있다.
상기 13족 원소 즉, 알루미늄 또는 갈륨은 상기 제 2 버퍼층(420)에 소량으로 첨가 또는 도핑될 수 있다. 상기 알루미늄 또는 상기 갈륨은 상기 제 2 버퍼층(420)의 접촉 저항을 감소시킬 수 있다.
즉, 상기 제 2 버퍼층(420)은 상기 제 2 관통홈들(TH2)에 의해 노출되는 상기 후면 전극층(200)과 직접 접촉함에 따라 접촉 저항이 발생하고, 이때, 징크 옥사이드와 후면 전극층의 물성 차이에 따라 높은 접촉 저항이 발생할 수 있다.
이러한 높은 접촉 저항은 태양전지의 효율에 영향을 주게 되어 전체적으로는, 태양전지의 효율 저하의 원인이 될 수 있다.
따라서, 상기 후면 전극층(200)과 접촉하는 제 2 버퍼층(420)에 소량의 13족 원소를 첨가 또는 도핑함으로써, 접촉 저항을 감소시킬 수 있다. 따라서, 실시예에 따른 태양전지는 상기 후면 전극층(200)과 상기 제 2 버퍼층(420)에 접촉 저항을 감소시킬 수 있어, 전체적으로는 태양전지의 효율을 향상시킬 수 있다.
상기 전면 전극층(500)은 상기 버퍼층 상에 배치된다. 자세하게, 상기 전면 전극층(500)은 상기 제 2 버퍼층(420) 상에 배치된다. 상기 전면 전극층(500)은 투명하며 도전층이다. 또한, 상기 전면 전극층(500)의 저항은 상기 후면 전극층(500)의 저항보다 높다.
상기 전면 전극층(500)은 산화물을 포함한다. 일례로, 상기 전면 전극층(500)은 징크 옥사이드(ZnO)를 포함한다. 또한, 상기 전면 전극층(500)은 징크 옥사이드 이외에 13족 원소가 더 포함될 수 있다. 자세하게, 상기 전면 전극층(500)은 알루미늄(Al), 갈륨(Ga) 및 붕소(B) 중 적어도 하나의 13족 원소를 포함할 수 있다. 더 자세하게, 상기 전면 전극층(500)은 알루미늄 및 갈륨 중 적어도 하나의 13족 원소를 포함할 수 있다.
상기 13족 원소 즉, 알루미늄 또는 갈륨은 상기 전면 전극층(500)에 소량으로 첨가될 수 있다.
일례로, 상기 전면 전극층(500)에는 불순물이 도핑(doping)될 수 있다. 일례로, 상기 전면 전극층(500)은 13족 원소를 포함하는 화합물들이 소량으로 도핑될 수 있다.
자세하게, 상기 전면 전극층(500)에는 알루미늄 및 갈륨 중 적어도 하나를 포함하는 화합물들이 도핑될 수 있다. 일례로, 상기 전면 전극층(500)에는 금속 산화물들이 도핑될 수 있다. 자세하게, 상기 전면 전극층(500)에는 Al2O3 또는 Ga2O3 등의 산화물이 도핑될 수 있다.
이에 따라, 상기 전면 전극층(500)은 알루미늄이 도핑된 징크 옥사이드(Al doped ZnO;AZO) 또는 갈륨이 도핑된 징크 옥사이드(Ga doped ZnO;GZO)를 포함할 수 있다.
상기 알루미늄 또는 상기 갈륨은 상기 전면 전극층(500)에 첨가 또는 도핑되어 상기 전면 전극층(500)의 광투과율을 향상시킬 수 있고, 또한, 면저항을 감소시킬 수 있다.
즉, 상기 전면 전극층(500)은 태양전지의 최외곽에 형성되는 층으로서, 광의 입사면 역할을 한다. 이에 따라, 상기 전면 전극층(500)은 높은 광투과율과 낮은 면저항이 요구된다. 즉, 상기 광투과율과 상기 면저항은 태양전지의 전류 밀도(JSC) 및 효율과 밀접한 관련이 있는 변수로서, 이러한 광투과율과 면저항에 따라 태양전지의 효율이 달라질 수 있다.
따라서, 실시예에 따른 태양전지는 상기 전면 전극층(500)에 소량의 13족 원소가 첨가 또는 도핑됨으로써, 광투과율을 향상시키고, 면저항을 감소시킬 수 있다. 따라서, 실시예에 따른 태양전지는 전류 밀도를 향상시킬 수 있어, 전체적으로는 태양전지의 효율을 향상시킬 수 있다.
상기 제 2 버퍼층(420)과 상기 전면 전극층(500) 중 적어도 하나의 층은 13족 원소를 포함할 수 있다. 일례로, 상기 제 2 버퍼층(420) 및 상기 전면 전극층(500)은 모두 13족 원소를 포함할 수 있다. 자세하게, 상기 제 2 버퍼층(420) 및 상기 전면 전극층(500)은 알루미늄 및 갈륨 중 적어도 하나의 원소를 포함할 수 있다.
이때, 상기 제 2 버퍼층(420)과 상기 전면 전극층(500)은 동일한 13족 원소를 포함하거나 서로 다른 13족 원소를 포함할 수 있다. 동일한 13족 원소를 포함하는 경우, 상기 제 2 버퍼층(420)과 상기 전면 전극층(500)은 알루미늄을 포함하거나 갈륨을 포함할 수 있다.
상기 전면 전극층(500)은 상기 제 2 관통홈들(TH2) 내부에 위치하는 접속부(600)들을 포함한다.
상기 제 1 버퍼층(410), 상기 제 2 버퍼층(420) 및 상기 전면 전극층(500)에는 제 3 관통홈들(TH3)이 형성된다. 상기 제 3 관통홈들(TH3)은 상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)의 일부 또는 전부 및 상기 전면 전극층(500)을 관통할 수 있다. 즉, 상기 제 3 관통홈들(TH3)은 상기 후면 전극층(200)의 상면을 노출시킬 수 있다.
상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2)에 인접하는 위치에 형성된다. 더 자세하게, 상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2) 옆에 배치된다. 즉, 평면에서 보았을 때, 상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2) 옆에 나란히 배치된다. 상기 제 3 관통홈들(TH3)은 상기 제 1 방향으로 연장되는 형상을 가질 수 있다.
상기 제 3 관통홈들(TH3)은 상기 전면 전극층(500)을 관통한다. 더 자세하게, 상기 제 3 관통홈들(TH3)은 상기 광 흡수층(300), 상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)을 일부 또는 전부 관통할 수 있다.
상기 제 3 관통홈들(TH3)에 의해서, 상기 전면 전극층(500)은 다수 개의 전면 전극들로 구분된다. 즉, 상기 전면전극들은 상기 제 3 관통홈들(TH3)에 의해서 정의된다.
상기 전면 전극들은 상기 후면전극들과 대응되는 형상을 가진다. 즉, 상기 전면 전극들은 스트라이프 형태로 배치된다. 이와는 다르게, 상기 전면 전극들은 매트릭스 형태로 배치될 수 있다.
또한, 상기 제 3 관통홈들(TH3)에 의해서, 다수 개의 태양전지들(C1, C2...)이 정의된다. 더 자세하게, 상기 제 2 관통홈들(TH2) 및 상기 제 3 관통홈들(TH3)에 의해서, 상기 태양전지들(C1, C2...)이 정의된다. 즉, 상기 제 2 관통홈들(TH2) 및 상기 제 3 관통홈들(TH3)에 의해서, 실시예에 따른 태양전지는 상기 태양전지들(C1, C2...)로 구분된다. 또한, 상기 태양전지들(C1, C2...)은 상기 제 1 방향과 교차하는 제 2 방향으로 서로 연결된다. 즉, 상기 태양전지들(C1, C2...)을 통하여 상기 제 2 방향으로 전류가 흐를 수 있다.
즉, 상기 태양전지 패널(10)은 상기 지지기판(100) 및 상기 태양전지들(C1, C2...)을 포함한다. 상기 태양전지들(C1, C2...)은 상기 지지기판(100) 상에 배치되고, 서로 이격된다. 또한, 상기 태양전지들(C1, C2...)은 상기 접속부들(600)에 의해서 서로 직렬로 연결된다.
상기 접속부들(600)은 상기 제 2 관통홈들(TH2) 내측에 배치된다. 상기 접속부들(600)은 상기 전면 전극층(500)으로부터 하방으로 연장되며, 상기 후면 전극층(200)에 접속된다. 예를 들어, 상기 접속부들(600)은 상기 제 1 셀(C1)의 전면전극으로부터 연장되어, 상기 제 2 셀(C2)의 후면전극에 접속된다.
따라서, 상기 접속부들(600)은 서로 인접하는 태양전지들을 연결한다. 더 자세하게, 상기 접속부들(600)은 서로 인접하는 태양전지들에 각각 포함된 전면전극과 후면전극을 연결한다.
상기 접속부(600)는 상기 전면전극층(600)과 일체로 형성된다. 즉, 상기 접속부(600)로 사용되는 물질은 상기 전면전극층(500)으로 사용되는 물질과 동일하다.
앞서 설명하였듯이, 실시예에 따른 태양전지는 13족 원소를 포함하는 불순물들이 상기 제 2 버퍼층 또는 상기 전면 전극층에 첨가 또는 도핑된다. 이에 따라, 상기 전면 전극층의 광 투과율을 향상시킬 수 있고, 면저항을 감소시킬 수 있다. 또한, 상기 제 2 버퍼층과 상기 후면 전극층의 접촉 저항을 감소시킬 수 있다.
이에 따라, 실시예에 따른 태양전지는 향상된 전류 밀도 및 낮은 접촉 저항을 가질 수 있으므로, 전체적으로 태양전지의 효율을 향상시킬 수 있다.
이하, 실시예를 통하여 본 발명을 좀 더 상세하게 설명한다. 이러한 실시예는 본 발명을 좀더 상세하게 설명하기 위하여 예시로 제시한 것에 불과하다. 따라서 본 발명이 이러한 실시예에 한정되는 것은 아니다.
실시예
유리 또는 플라스틱의 지지기판 상에 몰리브덴을 포함하는 후면 전극층을 형성한 후, 후면 전극층을 패터닝하여 다수 개의 후면 전극들로 구분하였다. 이어서, 후면 전극층 상에 광 흡수층을 형성하고, 상기 광 흡수층 상에 제 1 버퍼층 및 제 2 버퍼층을 형성하였다.
이때, 상기 제 2 버퍼층에는 진공 증착 방법에 의해 산화알루미늄(Al2O3) 또는 산화갈륨(Ga2O3)을 도핑하였다.
이어서, 상기 제 2 버퍼층 상에 전면 전극층을 형성하여 태양전지를 제조하였다. 이때, 상기 전면 전극층에는 진공 증착 방법에 의해 산화알루미늄(Al2O3) 또는 산화갈륨(Ga2O3)을 도핑하였다.
비교예
제 2 버퍼층 및 전면 전극층에 도핑 공정 없는 것을 제외하고 실시예와 동일하게 태양전지를 제조하였다.
결과
실시예와 비교예에 따른 태양전지의 전면 전극층 특성, 전류 밀도 및 접촉 저항을 측정하여 비교하였으며, 각각의 특성은 하기 표 1과 같았다.
표 1
제 1 버퍼층 제 2 버퍼층 전면전극층 전면 전극층 특성 Jsc(㎃/㎠) 제 2 버퍼층과 후면전극층의접촉저항(Ω)
면저항(□/Ω) 투과율(%)(400~800㎚) 투과율(%)(800~1200㎚)
CdS i-ZnO AZO 13.5 89.0 82.0 31.5 1.85
GAZO 11.5 89.0 75.0 31 2.32
B doped ZnO BZO 9.7 85.8 91.3 27.8 2.51
Al2O3 doped ZnO AZO 16.5 89.6 83.2 34.5 1.45
Ga2O3 doped ZnO GAZO 9.7 91.3 86.5 35.8 1.20
Zn(O,S) i-ZnO AZO 13.5 89.0 82.0 31 1.98
GAZO 11.5 89.0 75.0 30.2 2.37
B doped ZnO BZO 11.0 87.4 91.6 28.9 2.55
Al2O3 doped ZnO AZO 16.7 89.7 83.5 34.2 1.75
Ga2O3 doped ZnO GAZO 10.1 91.5 86.8 36 1.38
표 1을 참고하면, 제 2 버퍼층 및 전면 전극층에 13족 원소 즉, 붕소, 알루미늄 또는 갈륨을 도핑하였을 때, 도핑하지 않은 경우에 비해 전면 전극층의 광 투과율이 향상되고, 면저항이 감소하는 것을 알 수 있다.
또한, 전류밀도도 도핑하는 경우가 도핑하지 않는 경우에 비해 향상되는 것을 알 수 있다.
따라서, 실시예에 따른 태양전지는, 제 2 버퍼층 및 전면 전극층 중 적어도 하나의 층에 붕소, 알루미늄 및 갈륨 중 적어도 하나의 13족 원소를 도핑함으로써, 전체적으로 태양전지의 효율을 향상시킬 수 있는 것을 알 수 있다.
이하, 도 3 내지 도 10을 참조하여, 실시예에 따른 태양전지의 제조방법을 설명한다. 도 3 내지 도 10은 실시예에 따른 태양전지 제조방법을 설명하기 위한 도면들이다.
먼저, 도 3을 참조하면, 지지기판(100) 상에 후면 전극층(200)이 형성된다.
이어서, 도 4를 참조하면, 상기 후면 전극층(200)은 패터닝되어 제 1 관통홈들(TH1)이 형성된다. 이에 따라서, 상기 지지기판(100) 상에 다수 개의 후면 전극들이 형성된다. 상기 후면 전극층(200)은 레이저에 의해서 패터닝된다.
상기 제 1 관통홈들(TH1)은 상기 지지기판(100)의 상면을 노출하며, 약 80㎛ 내지 약 200㎛의 폭을 가질 수 있다.
또한, 상기 지지기판(100) 및 상기 후면 전극층(200) 사이에 확산 방지막 등과 같은 추가적인 층이 개재될 수 있고, 이때, 상기 제 1 관통홈들(TH1)은 상기 추가적인 층의 상면을 노출하게 된다.
이어서, 도 5를 참조하면, 상기 후면 전극층(200) 상에 광 흡수층(300)이 형성된다. 상기 광 흡수층(300)은 스퍼터링 공정 또는 증발법 등에 의해서 형성될 수 있다.
예를 들어, 상기 광 흡수층(300)을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.
금속 프리커서 막을 형성시킨 후 셀레니제이션 하는 것을 세분화하면, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서, 상기 후면전극(200) 상에 금속 프리커서 막이 형성된다.
이후, 상기 금속 프리커서 막은 셀레이제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)이 형성된다.
이와는 다르게, 상기 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정 및 상기 셀레니제이션 공정은 동시에 진행될 수 있다.
이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 광 흡수층(300)이 형성될 수 있다.
이후, 도 6을 참조하면, 황화 카드뮴이 스퍼터링 공정 또는 용액성장법(chemical bath depositon;CBD) 등에 의해서 증착되고, 상기 제 1 버퍼층(410)이 형성된다.
이어서, 도 7을 참조하면, 상기 광 흡수층(300) 및 상기 제 1 버퍼층(410)의 일부가 제거되어 제 2 관통홈들(TH2)이 형성된다.
상기 제 2 관통홈들(TH2)은 팁 등의 기계적인 장치 또는 레이저 장치 등에 의해서 형성될 수 있다.
예를 들어, 약 40㎛ 내지 약 180㎛의 폭을 가지는 팁에 의해서, 상기 광 흡수층(300) 및 상기 버퍼층들은 패터닝될 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 약 200㎚ 내지 약 600㎚의 파장을 가지는 레이저에 의해서 형성될 수 있다.
이때, 상기 제 2 관통홈들(TH2)의 폭은 약 100㎛ 내지 약 200㎛ 일 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 상기 후면전극층(200)의 상면의 일부를 노출하도록 형성된다.
이어서, 도 8을 참조하면, 상기 제 1 버퍼층(410) 상에 제 2 버퍼층(420)이 형성될 수 있다. 상기 제 2 버퍼층(420)은 알루미늄 또는 갈륨이 도핑된 징크 옥사이드가 증착 공정 등에 의해서 증착되어 형성될 수 있다.
상기 제 2 버퍼층(420)과 상기 제 2 관통홈들(TH2)의 형성 순서는 서로 바뀔 수 있다. 즉, 상기 제 2 버퍼층(420)이 먼저 형성된 후, 상기 제 2 관통홈들(TH2)이 형성될 수도 있다.
이어서, 도 9를 참조하면, 상기 제 2 버퍼층(420) 상에 투명한 도전물질이 증착되어 전면 전극층(500)이 형성된다.
상기 전면 전극층에는 알루미늄 또는 갈륨이 도핑된 징크 옥사이드가 증착 공정 등에 의해서 증착되어 형성될 수 있다.
자세하게, 상기 전면 전극층(500)은 산소를 포함하지 않는 불활성 기체 분위기에서 알루미늄 또는 갈륨이 도핑된 징크 옥사이드가 증착되어 형성될 수 있다.
상기 전면 전극층을 형성하는 단계는, RF 스퍼터링 방법으로 ZnO 타겟을 사용하여 증착하는 방법 또는 Zn 타겟을 이용한 반응성 스퍼터링 방법으로 알루미늄 또는 갈륨이 도핑된 징크 옥사이드를 증착하여 형성될 수 있다.
이어서, 도 10을 참조하면, 상기 광 흡수층(300), 상기 제 1 버퍼층(410), 제 2 버퍼층(420) 및 상기 전면 전극층(500)의 일부가 제거되어 제 3 관통홈들(TH3)이 형성된다. 이에 따라서, 상기 전면 전극층(500)은 패터닝되어, 다수 개의 전면전극들 및 제 1 셀(C1), 제 2 셀(C2) 및 제 3 셀들(C3)이 정의된다. 상기 제 3 관통홈들(TH3)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 지지 기판;
    상기 지지 기판 상에 배치되는 후면 전극층;
    상기 후면 전극층 상에 배치되는 광 흡수층;
    상기 광 흡수층 상에 배치되는 제 1 버퍼층;
    상기 제 1 버퍼층 상에 배치되는 제 2 버퍼층; 및
    상기 제 2 버퍼층 상에 배치되는 전면 전극층을 포함하고,
    상기 제 2 버퍼층 및 상기 전면 전극층 중 적어도 하나의 층은 13족 원소를 포함하는 태양전지.
  2. 제 1항에 있어서,
    상기 13족 원소는 알루미늄(Al), 갈륨(Ga) 및 붕소(B) 중 적어도 하나의 원소를 포함하는 태양전지.
  3. 제 1항에 있어서,
    상기 제 2 버퍼층은 상기 후면 전극층과 직접 접촉하는 태양전지.
  4. 제 3항에 있어서,
    상기 제 2 버퍼층 및 상기 전면 전극층은 알루미늄, 붕소 및 갈륨 중 적어도 하나의 원소를 포함하는 태양전지.
  5. 제 4항에 있어서,
    상기 제 2 버퍼층 및 상기 전면 전극층에는 Al2O3, B2O3 및 Ga2O3 중 적어도 하나을 포함하는 산화물이 도핑되는 태양전지.
  6. 제 3항에 있어서,
    상기 제 2 버퍼층 및 상기 전면 전극층은 동일한 13족 원소를 포함하는 태양전지.
  7. 제 3항에 있어서,
    상기 제 2 버퍼층 및 상기 전면 전극층은 서로 다른 13족 원소를 포함하는 태양전지.
  8. 제 1항에 있어서,
    상기 제 1 버퍼층과 상기 제 2 버퍼층은 서로 다른 물질을 포함하는 태양전지.
  9. 지지 기판;
    상기 지지 기판 상에 형성되는 후면 전극층;
    상기 후면 전극층 상에 형성되는 광 흡수층;
    상기 광 흡수층 상에 형성되는 제 1 버퍼층;
    상기 제 1 버퍼층 상에 형성되는 제 2 버퍼층; 및
    상기 제 2 버퍼층 상에 형성되는 전면 전극층을 포함하고,
    상기 제 2 버퍼층 및 상기 전면 전극층 중 적어도 하나의 층에는 불순물이 도핑(doping)되는 태양전지.
  10. 제 9항에 있어서,
    상기 불순물은 13족 원소를 포함하는 태양전지.
  11. 제 10항에 있어서,
    상기 13족 원소는 갈륨 및 알루미늄 중 적어도 하나의 원소를 포함하는 태양전지.
  12. 제 9항에 있어서,
    상기 제 2 버퍼층 및 상기 전면 전극층 중 적어도 하나의 층에는 Al2O3, B2O3 및 Ga2O3 중 적어도 하나를 포함하는 불순물이 도핑되는 태양전지.
  13. 제 12항에 있어서,
    상기 제 2 버퍼층 및 상기 전면 전극층에는 Al2O3, B2O3 또는 Ga2O3의 불순물이 도핑되고,
    상기 제 2 버퍼층 및 상기 전면 전극층은 동일한 불순물이 도핑되는 태양전지.
  14. 제 12항에 있어서,
    상기 제 2 버퍼층 및 상기 전면 전극층에는 Al2O3, B2O3 또는 Ga2O3의 불순물이 도핑되고,
    상기 제 2 버퍼층 및 상기 전면 전극층은 다른 불순물이 도핑되는 태양전지.
  15. 제 9항에 있어서,
    상기 제 1 버퍼층과 상기 제 2 버퍼층은 서로 다른 물질을 포함하는 태양전지.
  16. 제 9항에 있어서,
    상기 제 2 버퍼층은 상기 후면 전극층과 직접 접촉하는 태양전지.
PCT/KR2014/008665 2013-09-17 2014-09-17 태양전지 WO2015041470A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/022,718 US20160284882A1 (en) 2013-09-17 2014-09-17 Solar Cell
CN201480062894.5A CN105794000A (zh) 2013-09-17 2014-09-17 太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130111659A KR20150031889A (ko) 2013-09-17 2013-09-17 테양전지
KR10-2013-0111659 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015041470A1 true WO2015041470A1 (ko) 2015-03-26

Family

ID=52689079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008665 WO2015041470A1 (ko) 2013-09-17 2014-09-17 태양전지

Country Status (4)

Country Link
US (1) US20160284882A1 (ko)
KR (1) KR20150031889A (ko)
CN (1) CN105794000A (ko)
WO (1) WO2015041470A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121920B2 (en) * 2015-06-30 2018-11-06 International Business Machines Corporation Aluminum-doped zinc oxysulfide emitters for enhancing efficiency of chalcogenide solar cell
JP7070946B2 (ja) * 2017-04-19 2022-05-18 中建材硝子新材料研究院集団有限公司 薄膜太陽電池用層構造を製造するための方法
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
WO2019036157A1 (en) 2017-08-18 2019-02-21 Applied Materials, Inc. HIGH PRESSURE AND HIGH TEMPERATURE RECOVERY CHAMBER
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
US20210028322A1 (en) * 2017-09-15 2021-01-28 Idemitsu Kosan Co., Ltd. Photoelectric conversion module and method for manufacturing photoelectric conversion module
EP4321649A2 (en) 2017-11-11 2024-02-14 Micromaterials LLC Gas delivery system for high pressure processing chamber
KR20200075892A (ko) 2017-11-17 2020-06-26 어플라이드 머티어리얼스, 인코포레이티드 고압 처리 시스템을 위한 컨덴서 시스템
JP7239598B2 (ja) 2018-03-09 2023-03-14 アプライド マテリアルズ インコーポレイテッド 金属含有材料の高圧アニーリングプロセス
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11728449B2 (en) * 2019-12-03 2023-08-15 Applied Materials, Inc. Copper, indium, gallium, selenium (CIGS) films with improved quantum efficiency
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film
WO2023220911A1 (en) * 2022-05-17 2023-11-23 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Layer stack for thin-film photovoltaic modules and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186342A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatment
JP2007317879A (ja) * 2006-05-25 2007-12-06 Honda Motor Co Ltd カルコパイライト型太陽電池およびその製造方法
KR20110047726A (ko) * 2009-10-30 2011-05-09 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US20120325310A1 (en) * 2010-03-02 2012-12-27 Shigefusa Chichibu Laminate, method for producing same, and functional element using same
WO2013077547A1 (ko) * 2011-11-22 2013-05-30 한국에너지기술연구원 후면 tco층을 구비한 cis/cigs계 태양전지 및 그 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597247B2 (ja) * 2009-03-31 2014-10-01 エルジー イノテック カンパニー リミテッド 太陽電池及びその製造方法
KR101091258B1 (ko) * 2009-06-30 2011-12-07 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101091361B1 (ko) * 2010-07-30 2011-12-07 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
US8394670B2 (en) * 2011-05-31 2013-03-12 Crossbar, Inc. Vertical diodes for non-volatile memory device
KR101783784B1 (ko) * 2011-11-29 2017-10-11 한국전자통신연구원 태양전지 모듈 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186342A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatment
JP2007317879A (ja) * 2006-05-25 2007-12-06 Honda Motor Co Ltd カルコパイライト型太陽電池およびその製造方法
KR20110047726A (ko) * 2009-10-30 2011-05-09 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US20120325310A1 (en) * 2010-03-02 2012-12-27 Shigefusa Chichibu Laminate, method for producing same, and functional element using same
WO2013077547A1 (ko) * 2011-11-22 2013-05-30 한국에너지기술연구원 후면 tco층을 구비한 cis/cigs계 태양전지 및 그 제조방법

Also Published As

Publication number Publication date
CN105794000A (zh) 2016-07-20
KR20150031889A (ko) 2015-03-25
US20160284882A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2015041470A1 (ko) 태양전지
WO2015041467A1 (ko) 태양전지 및 이의 제조 방법
WO2011119001A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011053077A2 (ko) 태양전지 및 이의 제조방법
WO2010147393A2 (en) Solar cell and method of fabricating the same
WO2011040782A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011040781A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011043610A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011040780A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011055946A2 (ko) 태양전지 및 이의 제조방법
WO2012015151A2 (ko) 태양전지 및 이의 제조방법
WO2015046845A1 (ko) 태양전지
WO2011040778A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012033274A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2011002211A2 (ko) 태양전지 및 이의 제조방법
WO2012015286A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2013147517A1 (en) Solar cell and method of fabricating the same
WO2012046934A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2014204182A1 (ko) 태양전지
EP2443660A2 (en) Solar cell and method of fabricating the same
WO2012015150A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2013058521A1 (en) Solar cell and method of fabricating the same
WO2011083995A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011055954A2 (ko) 태양전지 및 이의 제조방법
WO2012102453A1 (en) Solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15022718

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14846267

Country of ref document: EP

Kind code of ref document: A1