WO2017110791A1 - 切断用ブレードの製造方法、及び切断用ブレード - Google Patents

切断用ブレードの製造方法、及び切断用ブレード Download PDF

Info

Publication number
WO2017110791A1
WO2017110791A1 PCT/JP2016/087906 JP2016087906W WO2017110791A1 WO 2017110791 A1 WO2017110791 A1 WO 2017110791A1 JP 2016087906 W JP2016087906 W JP 2016087906W WO 2017110791 A1 WO2017110791 A1 WO 2017110791A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
blade body
fibrous filler
cutting
cutting blade
Prior art date
Application number
PCT/JP2016/087906
Other languages
English (en)
French (fr)
Inventor
中村 正人
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Priority to JP2017558144A priority Critical patent/JP6325182B2/ja
Publication of WO2017110791A1 publication Critical patent/WO2017110791A1/ja
Priority to US15/982,959 priority patent/US20180264627A1/en
Priority to US16/719,646 priority patent/US11458594B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • B24D3/342Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
    • B24D3/344Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent the bonding agent being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels

Definitions

  • the present invention relates to a method for manufacturing a cutting blade for cutting a material to be cut such as an electronic material part used in a semiconductor product or the like, and a cutting blade.
  • cutting such as grooving a material to be cut, such as electronic material parts used in semiconductor products, or by cutting the material to be cut into pieces.
  • a disc-shaped cutting blade titanium blade grindstone
  • the cutting blade includes a disk-shaped blade body and a cutting blade formed on the outer peripheral edge of the blade body.
  • the blade body is formed by dispersing abrasive grains such as diamond and cBN and filler in a binder phase (binder) such as a resin phase (resin solid phase) or a metal phase (metal solid phase). For this reason, the blade body has a binder phase and abrasive grains and fillers dispersed in the binder phase.
  • a cutting blade in which the blade body is formed of a resin phase (a cutting blade in which the blade body includes a resin phase as a binder phase) is called a resin bond blade (resin bond grindstone).
  • FIGS. 8 (a) to 8 (c) In manufacturing this kind of cutting blade, the following method has been conventionally used.
  • the mixed powder MP obtained by mixing the resin powder, the abrasive grains, and the filler, which are the raw materials of the resin phase, is applied to the mold. Fill.
  • FIG.8 (b) the surface of mixed powder MP with which the metal mold
  • mixed powder MP is hot-pressed and sintered.
  • lapping blade surface (both sides) flattening
  • the slurry containing binder is produced, this slurry is shape
  • a binder is not used but alcohol etc. are used as a solvent with respect to resin which is a binder. By evaporating the solvent, a plate-shaped molded product is obtained.
  • this type of cutting blade is required to perform cutting at higher speed. That is, it is required to perform cutting by rotating the cutting blade at a higher speed.
  • a fibrous filler is dispersed in the blade body.
  • the orientation of the fibrous filler is in the extending direction of the sheet body at the time of the doctor blade. Will be aligned.
  • a recess having a sheet body (cutting blade) shape is provided on the upper surface of the mold, and slurry is disposed on the upper surface of the mold.
  • the doctor blade is slid while being in contact with the upper surface of the mold, so that the slurry is filled in the recess and the excess slurry is removed.
  • the fibrous filler is oriented in the extending direction of the sheet (the sliding direction of the doctor blade). For this reason, the fibrous filler is oriented in a direction parallel to a specific radial direction of the cutting blade. As a result, the strength of the cutting blade varies in the circumferential direction of the blade.
  • a fibrous filler is used as the filler.
  • a solvent, abrasive grains, and fibrous filler are mixed with the resin phase material to prepare a slurry.
  • This slurry is dropped on the center of rotation of a rotating body such as a spin coater.
  • the slurry dropped on the rotating body spreads by a centrifugal force and becomes a sheet body.
  • the fibrous filler in the slurry is oriented so as to extend radially from the rotation center.
  • seat body is shape
  • the fibrous filler is prevented from being oriented only in a certain direction, and the strength of the cutting blade is equalized over the entire blade circumferential direction.
  • the conventional method for manufacturing a cutting blade has the following problems.
  • the surface of the mixed powder MP in the mold is acclimatized, and the surface of the mixed powder MP is apparently flattened.
  • the filling density of the mixed powder MP varies. For this reason, when a fibrous filler is used as the filler, the fibrous filler is not evenly dispersed inside the blade body, resulting in variations in blade strength.
  • thermocompression bonding resin such as a polyimide resin
  • a good solvent that is, a solvent having a high solubility in the resin
  • seat body may be shape
  • the orientation of the fibrous filler is aligned in a certain direction (the extending direction of the sheet body) as described above, the strength of the cutting blade cannot be equalized in the blade circumferential direction.
  • JP 10-193267 A Japanese Patent Laid-Open No. 10-193268 Japanese Patent Laid-Open No. 2015-98070
  • the present invention has been made in view of such circumstances, and is provided with a resin phase made of a thermocompression-bonding resin, and evenly without orienting the fibrous filler in a certain direction inside the blade body.
  • the cutting blade manufacturing method of one embodiment of the present invention includes a mixing step of adding a liquid dispersion medium to a mixed powder containing resin powder of thermocompression-bonding resin, abrasive grains, and fibrous filler, and adding the dispersion medium.
  • the mixed powder is cold-pressed in a mold to form a blade main plate and a compression step, and the original plate is hot-pressed and sintered.
  • the cutting blade according to one aspect of the present invention includes a disk-shaped blade body, and a cutting blade formed on an outer peripheral edge of the blade body.
  • the blade body is made of a thermocompression-bonding resin.
  • the blade body is partitioned into a plurality of regions at equal angles around the central axis of the blade body, The content of the fibrous filler measured in the region is 90 to 110% with respect to the total content of the fibrous filler in the entire blade body.
  • a liquid dispersion medium is added to the mixed powder containing the resin powder of the thermocompression bonding resin, the abrasive grains, and the fibrous filler.
  • the mixed powder containing the liquid dispersion medium is cold-pressed in a mold such as a mold. Therefore, at the time of this cold press, the dispersion medium enters the gaps between the powders of the mixed powder, and the powder flow utilizing the liquid flow can be promoted.
  • thermocompression-bonding resin in one embodiment of the present invention is included in the thermosetting resin, and the resin powder that is the raw material of the resin phase is in a state in which the polymerization reaction is almost completed.
  • the “thermocompression resin” is a resin classified as a thermosetting resin.
  • the resin powder that is the raw material of the resin phase is generally made of a thermosetting resin in a state where the polymerization reaction has been completed. During the sintering process, the resin powder is integrated by thermocompression bonding to form a resin phase.
  • thermocompression-bonding resin examples include a polyimide resin, a specific phenol resin, and polybenzimidazole (PBI (registered trademark)).
  • the “dispersion medium” for example, alternative chlorofluorocarbons such as a fluorine-based inert liquid can be used.
  • the “fibrous filler” refers to an elongated filler having an average (value) of aspect ratio (ratio expressed by length / outer diameter) of 5 or more.
  • various materials such as metal, carbon, and glass can be used.
  • the fibrous filler includes, for example, those having an aspect ratio of 1000 or more (so-called whiskers).
  • the dispersion medium acts like a lubricant, so that the resin powder, the abrasive Granules and fibrous fillers diffuse uniformly into the mold. For this reason, the dispersion
  • the fibrous filler is oriented in a direction intersecting the thickness direction of the blade body (that is, any direction in all 360 ° directions in a plane substantially perpendicular to the central axis of the blade body)
  • the fibrous filler is not oriented in a certain direction, and the fibrous filler is in a non-oriented dispersed state having no regularity in orientation (that is, randomly oriented).
  • the plurality of fibrous fillers are randomly oriented, they are substantially oriented and dispersed in all directions of 360 °.
  • this compression step since cold pressing (cold compression) is performed, the thermocompression bonding of the resin powder does not proceed, and the fluidity of the resin powder is stably secured.
  • the original plate of the blade body is hot-pressed and sintered.
  • the variation in the density of the original plate is suppressed to be small, it is possible to prevent the blade body from being contracted during the sintering. As a result, it is possible to produce a blade body with reduced warpage and flatness.
  • “sink marks” are dents and depressions caused by shrinkage caused by the material.
  • the fibrous filler is uniformly dispersed from the time of forming the original plate, the fibrous filler is evenly distributed in the circumferential direction and the radial direction of the blade even in the blade body obtained by sintering the original plate. is doing. For this reason, an excellent cutting blade with no variation in strength can be obtained.
  • the fibrous filler is randomly oriented in an unspecified direction (all directions of 360 °) without being oriented in a certain direction within a plane substantially perpendicular to the central axis of the blade body. Therefore, the fibrous filler functions like an aggregate, and the strength is evenly increased in the entire blade circumferential direction.
  • the fibrous filler is uniformly and randomly dispersed in the blade body, the following effects can be obtained.
  • Improved wear resistance.
  • Improved toughness.
  • Improved heat resistance.
  • the fibrous filler is uniformly and randomly distributed in the blade body, the blade body does not easily wear at a predetermined position in the circumferential direction, and the entire circumferential direction The wear will progress evenly. As a result, the amount of wear of the entire blade is suppressed, and wear resistance is improved. Moreover, since wear resistance is improved, the tool life is extended (tool life is improved).
  • the fibrous filler is randomly oriented in a plane substantially perpendicular to the central axis of the blade body.
  • the circumferential surface and longitudinal section (cross section along the direction in which the filler extends) of the fibrous filler having an elongated column shape are exposed on both side surfaces (front and back surfaces of the blade) facing the thickness direction of the blade body.
  • the exposure of the end face and the cross section (cross section perpendicular to the extending direction of the filler) facing the extending direction of the fibrous filler is suppressed.
  • the fibrous filler may have an exposed peripheral surface or vertical cross section, and may have an end surface or horizontal cross section exposed. is there.
  • the ratio of the exposed area of the fibrous filler per unit area of the outer surface of the blade is increased with respect to both side surfaces of the blade body.
  • the ratio of the exposed area of the fibrous filler per unit area of the blade outer surface is small with respect to the outer peripheral surface of the blade body. That is, with respect to the exposed area of the fibrous filler per unit area of the blade outer surface, the exposed area of the fibrous filler on both side surfaces is larger than the exposed area of the fibrous filler on the outer peripheral surface of the blade body. For this reason, on the outer peripheral surface of the blade main body, it is possible to appropriately wear and maintain the sharpness of the cutting edge satisfactorily (a self-generated blade action can be promoted).
  • the blade strength is improved by uniform dispersion and random orientation of the fibrous filler.
  • one embodiment of the present invention is more appropriate than the case of trying to improve the blade strength using a particulate filler having a high hardness without using a fibrous filler. It is possible to promote a self-generated blade action. That is, when trying to increase the blade strength using a conventional particulate filler, a method of simply increasing the hardness of the particulate filler is employed because the particulate filler cannot be characterized in orientation.
  • the blade strength can be increased without increasing the hardness of the filler, so that an appropriate self-generated blade action is promoted and the sharpness is maintained well. Can do.
  • the fibrous fillers are uniformly dispersed and randomly oriented inside the blade body, these fibrous fillers act like aggregates, improving the toughness of the blade body. For this reason, the strength of the cutting blade is increased and the impact resistance is also excellent, and sufficient rigidity is ensured especially in cutting processing at high speed rotation, and high-quality cutting accuracy can be maintained. it can.
  • the fibrous filler is uniformly dispersed and randomly oriented, it is possible to improve the thermal conductivity due to the fibrous fillers inside the blade body. For this reason, for example, when a metal fiber or carbon fiber having a good thermal conductivity is used as the fibrous filler, the frictional heat generated at the outer peripheral edge (cutting edge) of the blade body during the cutting process passes through the fibrous filler. The heat is quickly dispersed in the blade and the cooling efficiency is improved, so that the heat resistance of the cutting blade is improved.
  • the dispersion medium added to the mixed powder before cold pressing flows out of the mixed powder (blade main plate) during cold pressing and is removed. Further, the dispersion medium remaining on the original plate of the blade body after the cold pressing can be volatilized and removed from the blade body, for example, before hot pressing in the sintering process. At this time, since the dispersion medium exists in a slight gap between the powders, the blade body is prevented from being formed into a porous shape due to volatilization of the dispersion medium. In this case, since the dispersion medium is not left in the blade body manufactured through the sintering process, the performance of the blade body is not affected by the dispersion medium.
  • the timing at which the dispersion medium is volatilized in the sintering process is preferably before the resin powder starts thermocompression bonding by hot pressing. That is, it is preferable that all of the dispersion medium is volatilized before the hot pressing (before the sintering step). As a result, the space in which the dispersion medium was present between the powders is blocked (replaced) by the resin phase, and no trace of the dispersion medium is left in the sintered blade body. Therefore, the dispersion medium and its traces do not affect the performance of the blade body.
  • the blade main body is divided into a plurality of regions (for example, four divided into four around the central axis at equal angles around the central axis of the blade main body).
  • the content of the fibrous filler obtained in each region is suppressed to 90 to 110% with respect to the total content of the fibrous filler in the entire blade body. That is, the ratio (percentage) of the fibrous filler content in each region to the total fibrous filler content in the entire blade body is 90 to 110%. That is, the fibrous filler is uniformly contained in each region of the blade body, and the fibrous filler is uniformly dispersed over the entire area of the blade body. As described above, this is because the fibrous filler has already been evenly dispersed throughout the blade in the original plate of the blade body that has undergone the compression process by cold pressing. Therefore, the manufactured blade body has excellent rigidity with no variation in strength throughout the blade.
  • blade main body it can obtain
  • the entire side surface of the blade body is polished in the thickness direction to expose the fibrous filler disposed inside the side surface in the thickness direction.
  • the side surface of the polished blade body is photographed with an SEM (scanning electron microscope) or the like.
  • SEM scanning electron microscope
  • image data that can be discriminated from the fibrous filler and other members is created.
  • the blade main body is divided into a plurality of regions (for example, four regions divided into four equal parts around the central axis) at equal angles around the central axis of the blade main body.
  • the ratio of the area occupied by the fibrous filler is obtained with respect to the area of each area (the entire area in the area). This ratio is defined as the fibrous filler content in each region of the blade body.
  • the method for obtaining the fibrous filler content in each region of the blade body is not limited to the above method. Further, the total content of the fibrous filler in the entire blade body may be obtained from the image data, or may be obtained from the ratio of the volume of the fibrous filler in the entire volume of the blade body.
  • the blade body has a plurality of regions (e.g., eight regions divided into eight equally around the central axis) at the same angle around the central axis of the blade body.
  • the average density measured in each region is defined as the average density.
  • the density measured in each region is suppressed to, for example, 90 to 110% with respect to this average density. That is, the ratio (percentage) of the density of each region to the average value of the density is, for example, 90 to 110%. That is, the density difference (density variation) is suppressed to be small throughout the blade body. This is because, as described above, the density difference is already suppressed to be small in the blade main plate that has undergone the compression process by the cold press. Therefore, the produced blade body is suppressed in warping and flatness.
  • the amount of warpage of the blade body can be suppressed to 300 ⁇ m or less.
  • the flatness of the blade body can be suppressed to 20 ⁇ m or less.
  • the flatness of both side surfaces facing the thickness direction of the blade body obtained after sintering is kept small as described above. For this reason, even in the field of use that requires particularly high-grade cutting accuracy, the desired (desired) flatness can be satisfied without flattening both side surfaces of the blade body by lapping.
  • the warpage amount of the blade body is measured by the following method. As shown in FIGS. 5A and 5B, the cutting blade 10 is placed on the surface plate S. While rotating the surface plate S, the cutting blade 10 is irradiated with the laser light L of the laser interferometer, and the height of the entire circumference of the cutting blade 10 (height from the surface plate S) is measured. Of the measured values, the blade thickness is subtracted from the highest value (the height at the position farthest from the surface plate S), and the obtained value is the amount of warpage of the blade body. This measurement is performed on both surfaces of the blade body (both side surfaces facing the thickness direction), and the larger value is adopted. The flatness of the blade body is measured by the following method.
  • the blade main body is divided into a plurality of regions (for example, eight regions divided into eight equally around the central axis) at equal angles around the central axis of the blade main body.
  • the thickness of the blade body is measured with a micrometer or the like.
  • the maximum difference (difference between the maximum thickness and the minimum thickness) of the measured value variation is the flatness of the blade body.
  • the cutting width can be suppressed small and the product yield of the material to be cut can be improved.
  • a force in the cutting width direction (the width direction of the cutting line formed on the material to be cut by the cutting process) hardly acts on the material to be cut from the cutting blade. For this reason, the cutting blade smoothly cuts into the material to be cut, and the occurrence of burrs and chipping on the cut surface is prevented. Accordingly, the quality of electronic material parts (products) formed by dividing the material to be cut into pieces can be stably improved.
  • the lapping process does not cause abrasive grains to protrude from the resin phase. That is, in one aspect of the present invention, the blade body obtained through the sintering step has abrasive grains arranged on the inner side in the thickness direction than the side surface of the blade body, and protrudes from the side surface to the outer side in the thickness direction. There are no abrasive grains.
  • the thickness of the blade body was reduced to 1.1 mm or less, in order to keep the blade surface flatness small, and the thickness of the blade body was expected to be small.
  • the flatness is already suppressed to a low level after sintering, so that lapping is not necessary.
  • the reaction force received when the cutting blade cuts the material to be cut has been biased against a portion having a large amount of warpage.
  • the above-described matters are prevented by suppressing the warpage and flatness of the blade body to be small. That is, according to one aspect of the present invention, the reaction force is likely to act equally over the entire circumference of the cutting blade, and a large load is prevented from being applied to a predetermined location. The tool life of the cutting blade is extended (the tool life is improved).
  • a specially complicated manufacturing process is not used in one embodiment of the present invention compared to the conventional manufacturing method.
  • a fibrous filler is obtained while suppressing variations in the density of the blade body (original plate) through a simple process of cold pressing the mixed powder to which the dispersion medium is added in a mold. Are uniformly dispersed and the fibrous filler is randomly oriented. Thereby, since the above-mentioned outstanding operation effect can be obtained, manufacture of a blade for cutting is easy.
  • a fiber phase can be provided without aligning the fibrous filler in a certain direction inside the blade body while having a resin phase made of a thermocompression bonding resin.
  • the filler can be evenly dispersed. Thereby, it is possible to easily manufacture a cutting blade whose strength is increased uniformly in the entire blade circumferential direction.
  • the strength is evenly increased in the entire circumferential direction of the blade, so that the cutting process can be stably performed at a high speed.
  • the mixing step includes a step of filling a molding die with a mixed powder containing resin powder, abrasive grains, and fibrous filler of a thermocompression bonding resin, and a surface of the mixed powder. It is preferable to comprise a step of flattening and a step of dropping a liquid dispersion medium onto the mixed powder.
  • the mixing step includes a step of flattening the surface of the mixed powder filled in the mold, the mixed powder diffuses evenly in the molding die in the compression step subsequent to the mixing step.
  • the flow amount up to can be kept small. For this reason, the following effects are achieved (obtained) more stably.
  • the effect that the variation in the density of the original plate of the blade body described above can be suppressed small.
  • the effect that the fibrous filler can be randomly oriented without being oriented in a certain direction while the fibrous filler is uniformly dispersed inside the original plate.
  • the mixing step includes a step of dropping the dispersion medium onto the mixed powder whose surface is flattened, the dispersion medium is easily mixed evenly with the mixed powder.
  • the dispersion medium spreads over the entire mixed powder and becomes easy to become familiar with, the powder flow of the mixed powder using the liquid flow of the dispersion medium is uniformly distributed throughout the molding die in the compression process after the mixing process. Done. Therefore, the following effects can be achieved (obtained) more stably.
  • the effect that the variation in the density of the original plate of the blade body described above can be suppressed small.
  • the effect that the fibrous filler can be randomly oriented without being oriented in a certain direction while the fibrous filler is uniformly dispersed inside the original plate.
  • the dispersion medium In the method for manufacturing the cutting blade, it is preferable to use a liquid having a kinematic viscosity of 2.3 mm 2 / s or less as the dispersion medium.
  • the kinematic viscosity of the dispersion medium is 2.3 mm 2 / s or less (2.3 cSt or less)
  • the dispersion medium is well-adapted between the powders of the mixed powder, and the liquid powder easily flows in a wide range. It functions effectively as a lubricant that promotes powder flow.
  • molding die is acquired more notably.
  • the kinematic viscosity of the dispersion medium is 2.3 mm 2 / s or less, warpage and flatness of the blade body obtained after sintering can be remarkably suppressed, and the strength of the entire blade is remarkably remarkable.
  • the “kinematic viscosity” is a kinematic viscosity necessary at the time of cold pressing in the compression process, and refers to, for example, the kinematic viscosity of a liquid at 25 ° C.
  • the blade body is divided into a plurality of regions at equal angles around the central axis of the blade body, and the average density is defined as an average density measured in each region.
  • the density measured in each region is preferably 90 to 110%.
  • the total content of the fibrous filler in the entire blade body is preferably 20 to 60 vol%.
  • the total content of the fibrous filler occupying the entire blade body is 20 to 60 vol%, the blade rigidity due to excessive inclusion of the fibrous filler while reliably achieving the above-described effects of the fibrous filler. Can be prevented. That is, since the total content of the fibrous filler is 20 vol% or more, the above-described effects due to the dispersion of the fibrous filler in the blade body can be reliably obtained. In addition, when the total content of the fibrous filler is 60 vol% or less, it is possible to suppress the resin phase that is a binder interposed between the fibrous fillers from being excessively reduced and stabilize the function of the resin phase. Can do.
  • a warpage amount of the blade body is 300 ⁇ m or less.
  • the flatness of the blade body is preferably 20 ⁇ m or less.
  • the cutting blade since the variation in the density of the blade body is suppressed, the amount of warpage of the blade body can be suppressed to 300 ⁇ m or less. In addition, the flatness of the blade body can be reduced to 20 ⁇ m or less. For this reason, it is possible to reduce (omit) a lapping process for flattening the blade surface (both side surfaces) when manufacturing the cutting blade. Therefore, it is possible to remarkably increase the cutting accuracy of the cutting blade while improving the ease of manufacturing the cutting blade.
  • the filling density inside the mixed powder in the mold tends to vary during the manufacture of the blade.
  • the flatness of the side surface of the blade body obtained after ligation was as large as about 100 ⁇ m (about 100 ⁇ m). For this reason, especially in the field of use where cutting accuracy is required, both sides of the blade body are lapped to achieve flattening.
  • the resin phase is removed by the lapping treatment, the abrasive grains having high hardness tend to remain in a state of protruding from the side surface, and it is difficult to satisfy the desired (desired) flatness.
  • the variation in filling density can be suppressed within the mixed powder in the mold, so that the flatness of the side surface of the blade body obtained after sintering is 20 ⁇ m or less. Can be kept small. For this reason, the desired (desired) flatness can be satisfied without flattening both side surfaces of the blade body by lapping even in the field of use in which cutting accuracy is particularly required.
  • the lapping process does not cause abrasive grains to protrude from the resin phase.
  • the lapping process since there are no abrasive grains protruding in the thickness direction, combined with the effect that the above flatness can be kept small, cutting accuracy is reduced. It can be significantly increased.
  • the blade body preferably has a thickness of 1.1 mm or less.
  • the strength of the cutting blade is enhanced in the entire area of the blade body, it is easy to reduce the thickness of the blade body to 1.1 mm or less while ensuring the rigidity of the blade body. is there. Therefore, the effect that the yield of products can be improved by keeping the cutting width of the material to be cut small while maintaining good cutting accuracy can be obtained more remarkably.
  • the fibrous filler is provided without being oriented in a certain direction inside the blade body while having a resin phase made of a thermocompression bonding resin. Can be evenly distributed. Thereby, it is possible to easily manufacture a cutting blade whose strength is increased uniformly in the entire blade circumferential direction. Further, according to the cutting blade of one embodiment of the present invention, the strength is evenly increased in the entire circumferential direction of the blade, so that the cutting process can be stably performed at a high speed.
  • the electronic material parts cut and manufactured by the cutting blade 10 of the present embodiment are cut from a semiconductor wafer like a semiconductor element, divided and then mounted on a lead frame and resin molded, and for example, The following are listed.
  • A Like a so-called QFN (quad flat non-leaded package), a large number of elements are packaged on the lead frame, molded together, and then cut into pieces. Electronic material parts to be manufactured.
  • B Like an IrDA (Infrared Data Communication Association) standard optical transmission module (hereinafter simply abbreviated as IrDA), Ni, Au, Cu are formed on the inner peripheral surface of a through hole formed in a substrate made of glass epoxy resin. An electronic material component that has a substrate plated with the above and is separated into pieces by cutting.
  • the cutting blade 10 of this embodiment is used for precisely cutting a material to be cut such as an electronic material part.
  • the cutting blade 10 includes a blade body 1 having a disk shape and a cutting edge 1 ⁇ / b> A formed on the outer peripheral edge of the blade body 1.
  • the cutting blade 10 has its blade body 1 attached to the main shaft of the cutting device via a flange.
  • the cutting blade 10 is rotated around the central axis O of the blade body 1 while being sent out in a direction perpendicular to the central axis O, so that the outer peripheral edge of the blade body 1 is projected radially outward from the flange.
  • the material to be cut is cut by the portion (cutting edge 1A).
  • the direction along the central axis O of the blade body 1 is referred to as the thickness direction of the blade body 1 or simply the central axis O direction. Further, this thickness direction may be referred to as a cutting width direction of the cutting blade 10 (corresponding to a width direction of a cutting line formed on a workpiece by cutting).
  • a direction orthogonal to the central axis O is referred to as a radial direction, and a direction around the central axis O is referred to as a circumferential direction.
  • the size (that is, the thickness) along the thickness direction of the blade body 1 is, for example, 0.1 mm or more and 1.1 mm or less. Therefore, the blade body 1 has an extremely thin disk shape.
  • the thickness of the blade body 1 is displayed thicker than the actual thickness.
  • a mounting hole 4 is formed in the central portion (on the central axis O) in the radial direction of the blade body 1 so as to form a circular hole centered on the central axis O and penetrate the blade body 1 in the thickness direction. ing.
  • the blade body 1 specifically has an annular plate shape.
  • the “blade body 1 having a disc shape” in the present embodiment includes the blade body 1 having a ring shape.
  • the cutting edge 1 ⁇ / b> A of the blade body 1 includes an outer peripheral surface of the blade body 1 having a very small width equal to the thickness of the blade body 1, and both side surfaces facing the thickness direction of the blade body 1.
  • Each of the outer peripheral edge portions in 1B and 1B and a pair of edge portions forming an intersecting ridge line between these outer peripheral edge portions and the outer peripheral surface are formed.
  • the blade body 1 includes a resin phase 2 formed of a thermocompression bonding resin, an abrasive 3 dispersed in the resin phase 2 and made of a material harder than the resin phase 2, and dispersed in the resin phase 2. And a fibrous filler 5 made of a softer material. That is, the blade body 1 has a resin phase 2, abrasive grains 3 dispersed in the resin phase 2, and fibrous fillers 5 dispersed in the resin phase 2.
  • blade main body 1 is mixing of the resin powder, the abrasive grain 3, and the fibrous filler 5 in mixed powder MP used at the manufacturing process mentioned later. Is the same as the rate.
  • the resin phase 2 is, for example, a resin binder phase (resin bond matrix) mainly composed of a synthetic resin such as polyimide resin, some phenol resin (specific phenol resin), and polybenzimidazole (PBI (registered trademark)). Material).
  • the “thermocompression-bonding resin” referred to in the present embodiment is included in the thermosetting resin, and the resin powder that is the raw material of the resin phase 2 is formed after the polymerization reaction is almost completed. In addition, it refers to a type of resin that is integrated by thermocompression bonding during the sintering process to form the resin phase 2.
  • the abrasive 3 contains either diamond abrasive or cBN abrasive.
  • diamond abrasive grains are used as the abrasive grains 3.
  • the fibrous filler 5 refers to an elongated filler having an average aspect ratio (value expressed by length / outer diameter) of 5 or more.
  • various materials such as metal, carbon, and glass can be used.
  • the fibrous filler 5 includes those having an aspect ratio of 1000 or more (so-called whiskers), for example.
  • the aspect ratio of the fibrous filler 5 is preferably 5 or more and 100 or less.
  • a single type of material is used as the fibrous filler 5 dispersed in the blade body 1, but the present invention is not limited to this, and a plurality of types of fibrous fillers 5 are used in the blade body. 1 may be dispersed. That is, a plurality of types of fibrous fillers 5 having different lengths, aspect ratios, materials, and the like may be used.
  • a particulate filler may be used together with the fibrous filler 5 as a filler.
  • the abrasive grains 3 and the fibrous filler 5 are both made of a material harder than the resin phase 2.
  • the abrasive grains 3 mainly contribute to improvement of workability, and the fibrous filler 5 mainly contributes to improvement of the rigidity of the blade body 1.
  • the material of the abrasive grain 3 and the fibrous filler 5 is not limited to what was demonstrated by this embodiment.
  • the abrasive grains 3 are not projected from both side surfaces 1 ⁇ / b> B and 1 ⁇ / b> B facing the thickness direction of the blade body 1. Further, the fibrous filler 5 is not protruded from both side surfaces 1B and 1B facing the thickness direction of the blade body 1. That is, the abrasive grains 3 and the fibrous filler 5 are entirely disposed on the inner side in the thickness direction than the side surface 1 ⁇ / b> B of the blade body 1.
  • either the abrasive grain 3 or the fibrous filler 5 becomes side surface 1B by performing the sharpening process etc. of the cutting blade 1A.
  • the resin phase 2 may be protruded.
  • either the abrasive grain 3 or the fibrous filler 5 is projected from the outer peripheral surface facing the radially outer side of the blade body 1.
  • the blade body 1 is partitioned into a plurality of regions at equal angles around the central axis O of the blade body 1.
  • the content of the fibrous filler 5 measured in each region is 90 to 110% with respect to the total content of the fibrous filler 5 in the entire blade body 1.
  • region of the blade main body 1 it can obtain
  • the entire side surface 1B of the blade body 1 is polished in the thickness direction to expose the fibrous filler 5 arranged inside the side surface 1B in the thickness direction.
  • the polished side surface 1B of the blade body 1 is photographed with an SEM (scanning electron microscope) or the like. By performing binarization on the captured image, image data that can be discriminated between the fibrous filler 5 and other members is created.
  • the blade body 1 is partitioned into a plurality of regions (for example, four regions divided into four equal parts around the central axis O) at the same angle around the central axis O of the blade body 1.
  • the ratio of the area occupied by the fibrous filler 5 is obtained with respect to the area of each region (the entire area in the region). This ratio is defined as the content of the fibrous filler 5 in each region of the blade body 1.
  • the method for obtaining the content of the fibrous filler 5 in each region of the blade body 1 is not limited to the above method.
  • the blade body 1 is divided into four regions around the central axis O of the blade body 1 and divided into four regions. Then, the total content of the fibrous filler 5 in the entire blade body 1 is within the range of 90 to 110% of the total content of the fibrous filler 5 in the four regions (the total content is 100%). , Within ⁇ 10%). That is, the ratio (percentage) of the content of the fibrous filler 5 in each region to the total content of the fibrous filler 5 in the entire blade body 1 is in the range of 90 to 110%.
  • the content of the fibrous filler 5 in each region is within the range of 95 to 105% with respect to the total content of the fibrous filler 5 (total content). Within 100% and within ⁇ 5%).
  • “when X is 100%, Y is in the range of ⁇ Z%” means that the ratio of Y to X (Y / X) (percentage) is from (100 ⁇ Z)% to It means within the range of (100 + Z)%.
  • the blade body 1 is divided into four regions by dividing the blade body 1 around the central axis O of the blade body 1, and the content of the fibrous filler 5 is obtained in each region.
  • the present invention is not limited to this. That is, the blade body 1 may be partitioned into a plurality of regions at equal angles around the central axis O of the blade body 1, and the content of the fibrous filler 5 may be obtained in each region.
  • the number of equally divided areas is not limited to four.
  • the number of equally divided regions is preferably at least four.
  • the total content of the fibrous filler 5 in the entire blade body 1 is 20 to 60 vol%. That is, the ratio of the volume of the fibrous filler 5 to the entire volume of the blade body 1 is 20 to 60%.
  • the total content of the fibrous filler 5 in the entire blade body 1 is more preferably 30 vol% or more and 50 vol% or less.
  • the blade body 1 is partitioned into a plurality of regions at the same angle around the central axis O of the blade body 1, and the average density measured in each region is the average density.
  • the density measured in each region is 90 to 110% with respect to this average density. That is, the ratio (percentage) of the density of each region to the average value of the density is in the range of 90 to 110%.
  • the blade body 1 is divided into eight regions by dividing the blade body 1 into eight equal parts around the central axis O of the blade body 1. And let the average value of the density measured in each of the eight regions be the average density. With respect to the average density, all the densities measured in the eight regions are included in the range of 90 to 110% (within ⁇ 10% with the average density being 100%). More specifically, in the cutting blade 10 of the present embodiment, the density measured in each region is within the range of 95 to 105% (within ⁇ 5% with the average density being 100%) with respect to the average density. included.
  • the blade body 1 is divided into eight regions by dividing the blade body 1 around the central axis O of the blade body 1, and the density is measured in each region.
  • the present invention is not limited to this. is not. That is, the blade body 1 may be partitioned into a plurality of regions at the same angle around the central axis O of the blade body 1, and the density may be measured in each region.
  • the number of equally divided areas is not limited to eight. However, in order to ensure measurement accuracy, the number of equally divided regions is preferably at least four.
  • the amount of warping of the blade body 1 is 300 ⁇ m or less.
  • the amount of warping of the blade body 1 is obtained as follows.
  • the cutting blade 10 is placed on the surface plate S.
  • the height of the entire circumference of the cutting blade 10 (the height from the surface plate S).
  • a value obtained by subtracting the thickness of the blade body 1 from the maximum value (the height at the position farthest from the surface plate S) among the values obtained by the measurement is defined as a warpage amount. This measurement is performed on both surfaces (both side surfaces 1B and 1B facing the thickness direction) of the blade body 1, and the larger value is adopted.
  • the flatness of the blade body 1 is 20 ⁇ m or less.
  • the flatness of the blade body 1 is obtained as follows.
  • the blade body 1 is partitioned into a plurality of regions (for example, eight regions divided into eight equally around the central axis O) at equal angles around the central axis O of the blade body 1. Then, in each region, the thickness of the blade body 1 is measured with a micrometer or the like. The maximum difference in measured value variation (difference between the maximum value and the minimum value of thickness) is defined as flatness.
  • the blade body 1 may be partitioned into a plurality of regions at equal angles around the central axis O of the blade body 1, and the thickness may be measured in each region. For this reason, the number of equally divided areas is not limited to eight. However, in order to ensure measurement accuracy, the number of equally divided regions is preferably at least four.
  • the method for manufacturing the cutting blade 10 of the present embodiment includes a mixing step of adding a liquid dispersion medium DM to a mixed powder MP containing resin powder of a thermocompression bonding resin, abrasive grains 3 and fibrous fillers 5, and a dispersion medium.
  • the mixed powder MP to which DM is added is cold-pressed in a mold to form the original plate 11 of the blade body 1, the sintering step in which the original plate 11 is hot-pressed and sintered, and the original plate 11 is baked.
  • the mixing step includes a step of filling a mold with mixed powder MP including resin powder of thermocompression-bonding resin, abrasive grains 3 and fibrous filler 5, and FIG.
  • the step of flattening the surface of the mixed powder MP filled in the mold and as shown in FIG. 6C, the liquid dispersion medium DM is dropped onto the mixed powder MP whose surface is flattened.
  • the step of performing In the step of flattening the surface of the mixed powder MP, the entire surface (upper surface) of the mixed powder MP is leveled by a manual operation or a machine so as to have a uniform height. Further, in the step of dropping the dispersion medium DM onto the mixed powder MP, the dispersion medium DM is dropped evenly over the entire surface of the mixed powder MP.
  • the “dispersion medium DM” in the present embodiment for example, alternative fluorocarbons such as a fluorine-based inert liquid can be used.
  • the “kinematic viscosity” as used in the present embodiment is a kinematic viscosity necessary at the time of cold pressing in the compression step described later, and refers to the kinematic viscosity of a liquid at 25 ° C., for example.
  • examples of the substance name used in the dispersion medium DM include decahexafluorohexane and perfluorocarbide (C5 to C9). More specifically, products shown below can be used as the dispersion medium DM.
  • cSt 3M FLUORINERT (registered trademark)
  • FC 3283 Kinematic viscosity 0.82
  • cSt 3M FLUORINERT (registered trademark)
  • FC40 Kinematic viscosity 2.2 cSt 3M: FLUORINERT (registered trademark)
  • FC43 Kinematic viscosity 2.8
  • FC3283 kinematic viscosity 0.82) 25.3%: kinematic viscosity 2.3 cSt Note that “c
  • the mixed powder MP is prepared by previously mixing resin powder made of a thermocompression-bonding resin, abrasive grains 3 and fibrous fillers 5 in a premixing step (premixing step) prior to the mixing step. ing. That is, in the pre-mixing step, the resin powder of the thermocompression bonding resin, the abrasive grains 3 and the fibrous filler 5 are mixed in advance to form a mixed powder MP. In the process, a liquid dispersion medium DM is mixed.
  • the mixed powder MP to which the dispersion medium DM has been added through the mixing step is subjected to compression processing (cold press) in a cold mold.
  • the “cold press” in the present embodiment is, for example, compression processing at room temperature, and more specifically indicates compression processing at a temperature lower than the temperature at which thermocompression bonding of resin powder occurs.
  • the temperature of the cold press is preferably 60 ° C. or less
  • the pressure of the cold press is preferably 100 MPa or less.
  • a mold is used as the mold.
  • a mold made of a material other than a metal material may be used as the mold at least in the process before the compression process.
  • thermocompression bonding resin is a phenol resin
  • the hot press temperature is 180 to 220 ° C.
  • the pressure is 10 MPa or more
  • the hot press time is 25 minutes or more.
  • thermocompression bonding resin is a polyimide resin
  • the hot press temperature is 350 ° C. or higher
  • the pressure is 50 MPa or higher
  • the hot press time is 25 minutes or longer.
  • thermocompression bonding resin is polybenzimidazole
  • the hot press temperature is 400 ° C. or higher
  • the pressure is 50 MPa or higher
  • the hot press time is 25 minutes or longer.
  • the original plate 11 is hot-pressed at a mold hot plate of 330 ° C. and a mold temperature of 320 ° C. or more for 30 minutes under a pressure of 10 ton.
  • the heat treatment is preferably performed in a state where no load is applied to the original plate 11 (an unloaded state).
  • the heat treatment time is preferably 24 hours or less.
  • the thermocompression bonding resin is a phenol resin
  • the heat treatment temperature is preferably 180 to 220 ° C.
  • the thermocompression bonding resin is a polyimide resin or polybenzimidazole
  • the temperature of the heat treatment is preferably 350 to 450 ° C.
  • the blade body 1 obtained by thermosetting the original plate 11 in the sintering step is cut or ground on the outer periphery and the inner periphery so as to have a predetermined outer diameter and inner diameter size, and finish processing is performed. To do.
  • the edge of the cutting edge 1 ⁇ / b> A may be sharpened on the outer peripheral edge of the blade body 1. Thereby, the cutting blade 10 of this embodiment is obtained.
  • a mixture obtained by adding the liquid dispersion medium DM to the mixed powder MP including the resin powder of the thermocompression bonding resin, the abrasive grains 3 and the fibrous filler 5 is used.
  • Cold press in a mold such as a mold Therefore, during the cold pressing, the dispersion medium DM enters the gaps between the powders of the mixed powder MP, and the powder flow utilizing the liquid flow can be promoted.
  • the dispersion medium DM acts like a lubricant by applying pressure in the molding die to the mixture powder MP mixed with the dispersion medium DM, so that the resin powder, The abrasive grains 3 and the fibrous filler 5 are uniformly diffused into the mold. For this reason, variation in the density of the original plate 11 of the blade body 1 to be manufactured is remarkably reduced, and the fibrous filler 5 is evenly dispersed in the original plate 11.
  • the fibrous filler 5 is oriented in the direction intersecting the thickness direction of the blade body 1 (that is, any direction in all 360 ° directions in a plane substantially perpendicular to the central axis O of the blade body 1).
  • the fibrous filler 5 is not oriented in a certain direction, and the fibrous filler 5 is in a non-orientated dispersion state having no regularity in orientation (that is, randomly oriented).
  • the plurality of fibrous fillers 5 are randomly oriented, they are substantially oriented and dispersed in all directions of 360 °.
  • this compression step since cold pressing (cold compression) is performed, the thermocompression bonding of the resin powder does not proceed, and the fluidity of the resin powder is stably secured.
  • the original plate 11 of the blade body 1 is hot pressed and sintered.
  • the variation in the density of the original plate 11 is suppressed to be small, it is possible to suppress the blade body 1 from being contracted during the sintering. As a result, it is possible to manufacture the blade body 1 with reduced warpage and flatness.
  • the fibrous filler 5 is evenly dispersed from the time when the original plate 11 is formed, the fibrous filler 5 is also present in the circumferential direction and diameter of the blade in the blade body 1 obtained by sintering the original plate 11. Evenly distributed in the direction. Therefore, an excellent cutting blade 10 with no variation in strength can be obtained.
  • the fibrous filler 5 is randomly oriented in an unspecified direction (all directions of 360 °) without being oriented in a certain direction in a plane substantially perpendicular to the central axis O of the blade body 1. Therefore, the fibrous filler 5 functions like an aggregate, and the strength is evenly increased in the entire blade circumferential direction.
  • the fibrous fillers 5 are uniformly and randomly dispersed in the blade body 1, the following effects can be obtained. ⁇ Improved wear resistance. -Suppressing blade thinning. -Moderate self-generated blade action. ⁇ Improved toughness. ⁇ Improved heat resistance.
  • the blade body 1 since the fibrous fillers 5 are evenly and randomly distributed in the blade body 1, the blade body 1 is not easily worn at a predetermined position in the circumferential direction. Wear will progress evenly throughout the direction. As a result, the amount of wear of the entire blade is suppressed, and wear resistance is improved. Moreover, since the wear resistance is improved, the tool life is extended.
  • the fibrous filler 5 is randomly oriented in a plane substantially perpendicular to the central axis O of the blade body 1. For this reason, with respect to both side surfaces (front and back surfaces of the blade) 1B and 1B facing the thickness direction of the blade body 1, for example, the peripheral surface or longitudinal section of the fibrous filler 5 having an elongated columnar shape (extending direction of the filler 5) Is exposed, and the exposure of the end face and the cross section (cross section perpendicular to the extending direction of the filler 5) facing the extending direction of the fibrous filler 5 is suppressed. On the other hand, for the outer peripheral surface facing the radially outer side of the blade body 1, the fibrous filler 5 has an exposed peripheral surface and a vertical section, and an exposed end surface and a horizontal section. There are various.
  • the ratio of the exposed area of the fibrous filler 5 per unit area of the blade outer surface increases with respect to the both side surfaces 1B and 1B of the blade body 1.
  • the ratio of the exposed area of the fibrous filler 5 per unit area of the blade outer surface is small with respect to the outer peripheral surface of the blade body 1. That is, regarding the exposed area of the fibrous filler 5 per unit area of the outer surface of the blade, the exposed area of the fibrous filler 5 on both side surfaces 1B and 1B is more than the exposed area of the fibrous filler 5 on the outer peripheral surface of the blade body 1. Becomes larger.
  • the wear can be appropriately advanced to maintain the sharpness of the cutting edge 1 ⁇ / b> A (a self-generated blade action can be promoted). Further, on both side surfaces 1B and 1B of the blade body 1, it is possible to suppress the progress of wear and to suppress the blade thinning. Therefore, in the cut surface formed on the material to be cut by the cutting process, problems such as inclination due to the cutting edge are less likely to occur, and the quality of the cutting process is remarkably improved.
  • the blade strength is improved by uniform dispersion and random orientation of the fibrous filler 5.
  • the present embodiment is moderately spontaneously generated in comparison with the case where the blade strength is improved by simply using a particulate filler having a high hardness without using the fibrous filler 5.
  • the blade action can be promoted. That is, when trying to increase the blade strength using a conventional particulate filler, a method of simply increasing the hardness of the particulate filler is employed because the particulate filler cannot be characterized in orientation.
  • the holding force of the abrasive grains 3 becomes too high in the cutting edge 1A, and it becomes difficult to form a new blade (self-generated blade action decreases). For this reason, the sharpness cannot be maintained satisfactorily.
  • the fibrous filler 5 is used as in the present embodiment, the blade strength can be increased without increasing the hardness of the filler, so that an appropriate self-generated blade action can be promoted and the sharpness can be maintained well. it can.
  • the fibrous fillers 5 are evenly dispersed and randomly oriented inside the blade body 1, these fibrous fillers 5 act like aggregates, and the toughness of the blade body 1. Will improve. For this reason, the strength of the cutting blade 10 is increased, and the impact resistance is also improved. In particular, sufficient rigidity is ensured even in cutting processing at high speed rotation, and high-quality cutting accuracy is maintained. Can do.
  • the fibrous fillers 5 are evenly dispersed and oriented randomly, the thermal conductivity can be improved by the fibrous fillers 5 inside the blade body 1. For this reason, for example, when a metal fiber or carbon fiber having a good thermal conductivity is used as the fibrous filler 5, the frictional heat generated at the outer peripheral edge portion (cutting edge 1 ⁇ / b> A) of the blade body 1 during the cutting process is the fiber. The heat is quickly dispersed in the blade through the filler 5 and the cooling efficiency is improved, so that the heat resistance of the cutting blade 10 is improved.
  • the dispersion medium DM added to the mixed powder MP before cold pressing flows out from the mixed powder MP (the original plate 11 of the blade body 1) during cold pressing and is removed. Further, the dispersion medium DM remaining on the original plate 11 of the blade body 1 after cold pressing can be removed from the blade body 1 by evaporating, for example, before hot pressing in the sintering step. At this time, since the dispersion medium DM exists in a slight gap between the powders, the blade body 1 is prevented from being formed into a porous shape due to volatilization of the dispersion medium DM. In this case, since the dispersion medium DM is not left in the blade body 1 manufactured through the sintering process, the performance of the blade body 1 is not affected by the dispersion medium DM.
  • the timing at which the dispersion medium DM is volatilized in the sintering step is preferably before the resin powder starts thermocompression bonding by hot pressing. That is, it is preferable that all of the dispersion medium DM is volatilized before the hot pressing (before the sintering step). As a result, the space in which the dispersion medium DM was present between the powders is closed (replaced) by the resin phase 2, and no trace of the dispersion medium DM is left in the sintered blade body 1. . Therefore, the dispersion medium DM and its traces do not affect the performance of the blade body 1.
  • the blade main body 1 is divided into a plurality of regions (in the example of the present embodiment, the central axis in the same angle around the central axis O of the blade main body 1).
  • the area is divided into four regions divided into four equal parts around O).
  • the content of the fibrous filler 5 obtained in each region is suppressed to 90 to 110% with respect to the total content of the fibrous filler 5 in the entire blade body 1. That is, the fibrous filler 5 is uniformly contained in each region of the blade body 1, and the fibrous filler 5 is evenly dispersed over the entire area of the blade body 1.
  • the fibrous filler 5 is already evenly dispersed throughout the blade. Therefore, the manufactured blade body 1 has excellent rigidity with no variation in strength over the entire blade.
  • the blade main body 1 is moved to a plurality of regions (in the example of the present embodiment, around the central axis O) at the same angle around the central axis O of the blade main body 1.
  • the average density of the density measured in each area is defined as the average density.
  • the density measured in each region is suppressed to 90 to 110% with respect to this average density. That is, the density difference (density variation) is suppressed to be small throughout the blade body 1. This is because, as described above, the density difference is already suppressed to be small in the original plate 11 of the blade body 1 that has undergone the compression process by cold pressing. Therefore, the produced blade body 1 is suppressed in warpage and flatness.
  • the amount of warping of the blade body 1 can be suppressed to 300 ⁇ m or less. Further, the flatness of the blade body 1 can be suppressed to 20 ⁇ m or less. In addition, the flatness of both side surfaces 1B and 1B facing the thickness direction of the blade body 1 obtained after sintering is kept small as described above. For this reason, the desired flatness can be satisfied without flattening the both side surfaces 1B and 1B of the blade body 1 by lapping even in the field of use where particularly high-grade cutting accuracy is required.
  • the following effects can be obtained when the material to be cut is cut by the cutting blade 10. That is, since the deflection of the cutting blade 10 in the thickness direction is suppressed, the cutting width can be suppressed small, and the yield of the product to be cut can be improved. Further, the force in the cutting width direction (the width direction of the cutting line formed on the material to be cut by the cutting process) hardly acts on the material to be cut from the cutting blade 10. For this reason, the cutting blade 10 cuts smoothly into the material to be cut, and the occurrence of burrs and chipping on the cut surface is prevented. Accordingly, the quality of electronic material parts (products) formed by dividing the material to be cut into pieces can be stably improved.
  • the lapping 3 does not protrude from the resin phase 2 by this lapping. That is, in the present embodiment, the blade body 1 obtained through the sintering process has the abrasive grains 3 arranged on the inner side in the thickness direction than the side surface 1B of the blade body 1, and the thickness in the thickness direction from the side surface 1B. There are no abrasive grains 3 protruding outward. For this reason, at the time of cutting processing, the abrasive grains 3 protruding from the side surface 1B of the blade body 1 cause a problem that the cutting surface of the material to be cut is roughened and the processing quality is deteriorated (causing burr, chipping, etc.). Can be suppressed. Therefore, combined with the effect of reducing the flatness described above, the cutting accuracy can be remarkably increased.
  • the reaction force received when the cutting blade 10 cuts the material to be cut has been biased against a portion having a large amount of warpage.
  • the above-mentioned matter is prevented by suppressing the warpage and flatness of the blade body 1 to be small. That is, according to the present embodiment, the reaction force is likely to act equally over the entire circumference of the cutting blade 10, and a large load is prevented from being applied to a predetermined location. The tool life of the blade 10 is extended.
  • the present embodiment has a particularly complicated manufacturing process compared to the conventional manufacturing method shown in FIGS. 8 (a) to (c). Is not used.
  • the fiber powder MP added with the dispersion medium DM is subjected to a simple process of cold pressing in a mold, thereby suppressing the variation in the density of the blade body 1 (original plate 11) and the fiber.
  • the fibrous filler 5 is evenly dispersed and the fibrous filler 5 is randomly oriented.
  • the resin filler 2 made of the thermocompression bonding resin is provided, and the fibrous filler 5 is not oriented in a certain direction inside the blade body 1. And the fibrous filler 5 can be disperse
  • the cutting blade 10 whose strength is evenly increased in the entire blade circumferential direction can be easily manufactured.
  • the strength is evenly increased in the entire blade circumferential direction, so that the cutting process can be stably performed at a high speed.
  • the mixing step includes a step of filling the mold with the mixed powder MP including the resin powder of the thermocompression bonding resin, the abrasive grains 3 and the fibrous filler 5. Since the method includes a step of flattening the surface of the mixed powder MP and a step of dropping a liquid dispersion medium DM onto the mixed powder MP, the following effects are achieved.
  • the mixing step includes a step of flattening the surface of the mixed powder MP filled in the mold, the mixed powder MP is evenly distributed in the mold in the compression step after the mixing step.
  • the amount of flow until it diffuses into the surface can be kept small. For this reason, the following effects are achieved more stably.
  • the effect that the variation in the density of the original plate 11 of the blade body 1 described above can be suppressed small.
  • the effect that the fibrous filler 5 can be randomly oriented without being oriented in a certain direction while the fibrous filler 5 is uniformly dispersed inside the original plate 11.
  • the mixing step includes a step of dropping the dispersion medium DM onto the mixed powder MP having a flattened surface, the dispersion medium DM is easily mixed evenly with the mixed powder MP. That is, since the dispersion medium DM spreads over the entire mixed powder MP and becomes easy to become familiar with, the powder flow of the mixed powder MP using the liquid flow of the dispersion medium DM in the compression process of the subsequent process of the mixing process is within the mold. Done evenly throughout. Therefore, the following effects can be achieved more stably. The effect that the variation in the density of the original plate 11 of the blade body 1 described above can be suppressed small. The effect that the fibrous filler 5 can be randomly oriented without being oriented in a certain direction while the fibrous filler 5 is uniformly dispersed inside the original plate 11.
  • the dispersion medium DM is between the powders of the mixed powder MP. It is well adapted and easily fluidized in a wide range, and effectively functions as a lubricant that promotes powder flow of the mixed powder MP. Thereby, in a compression process, the effect that the mixed powder MP can be spread
  • the kinematic viscosity of the dispersion medium DM is 2.3 mm 2 / s or less, warpage and flatness of the blade body 1 obtained after sintering can be remarkably reduced, and the strength of the entire blade is exceptional. Markedly enhanced.
  • the cutting blade 10 of the present embodiment has a total content of the fibrous filler 5 in the entire blade body 1 of 20 to 60 vol%, the effects of the fibrous filler 5 described above are reliably achieved. Moreover, the fall of the braid
  • the total content rate of the fibrous filler 5 is 60 vol% or less, it is suppressed that the resin phase 2 which is a binder interposed between the fibrous fillers 5 decreases too much, and the function of the resin phase 2 is carried out. Can be stabilized.
  • the blade body 1 is partitioned into a plurality of regions at the same angle around the central axis O of the blade body 1, and the average density measured in each region is an average density. And The density measured in each region is 90 to 110% with respect to the average density. Further, the amount of warping of the blade body 1 is 300 ⁇ m or less, and the flatness of the blade body 1 is 20 ⁇ m or less.
  • the cutting blade 10 has a density measured in each region of 90 to 110% (within ⁇ 10% within an average density of 100%) with respect to the average density, and the variation in the density of the blade body 1 is kept small. It has been. For this reason, the amount of warping of the blade body 1 can be suppressed to 300 ⁇ m or less. Further, the flatness of the blade body 1 can be reduced to 20 ⁇ m or less. For this reason, at the time of manufacturing the cutting blade 10, it is possible to reduce a lapping process for flattening the blade surface (both side surfaces 1B, 1B). Therefore, it is possible to remarkably increase the cutting accuracy of the cutting blade 10 while improving the ease of manufacturing the cutting blade 10.
  • the filling density inside the mixed powder in the mold tends to vary during the manufacture of the blade.
  • the flatness of the side surface of the blade body obtained after ligation was as large as about 100 ⁇ m (about 100 ⁇ m). For this reason, especially in the field of use where cutting accuracy is required, both sides of the blade body are lapped to achieve flattening.
  • the resin phase is removed by the lapping treatment, the abrasive grains having high hardness tend to remain in a state of protruding from the side face, and it is difficult to satisfy the expected flatness.
  • the variation in filling density can be suppressed within the mixed powder MP in the mold, so that the flatness of the side surface 1B of the blade body 1 obtained after sintering is 20 ⁇ m. It can be kept down to the following. For this reason, even in the field of use where cutting accuracy is particularly required, the desired flatness can be satisfied without flattening both side surfaces 1B and 1B of the blade body 1 by lapping.
  • the lapping 3 does not protrude from the resin phase 2 by this lapping. That is, in the side surface 1B of the blade body 1 obtained through the sintering step, since there is no abrasive grain 3 protruding in the thickness direction, combined with the effect that the above flatness can be suppressed, The cutting accuracy can be remarkably increased.
  • the thickness of the blade body 1 is 1.1 mm or less.
  • the blade body 1 Since the cutting blade 10 is enhanced in strength over the entire area of the blade body 1 as described above, the blade body 1 is thinned to a thickness of 1.1 mm or less while ensuring the rigidity of the blade body 1. Is easy. Therefore, the effect that the yield of products can be improved by keeping the cutting width of the material to be cut small while maintaining good cutting accuracy can be obtained more remarkably.
  • the blade body 1 is formed by providing one layer of the resin phase 2 in which the abrasive grains 3 and the fibrous filler 5 are dispersed.
  • the blade body 1 may be formed by laminating a plurality of layers in the thickness direction. In this case, a plurality of the original plates 11 of the blade body 1 obtained through the compression process are stacked in the thickness direction in the sintering process and hot-pressed and sintered.
  • the mixing step of the method for manufacturing the cutting blade 10 includes a step of filling the mold with the mixed powder MP containing the resin powder, the abrasive grains 3, and the fibrous filler 5, and the mixed powder MP.
  • the process of flattening the surface and the process of dropping the dispersion medium DM onto the mixed powder MP are provided, the present invention is not limited to this. That is, in the mixing step, for example, the dispersion medium DM may be dropped without flattening the surface of the mixed powder MP, or the dispersion medium DM may be dropped onto the mixed powder MP and then filled in the mold.
  • the mixing process includes the above three processes, there is a variation in density in the original plate 11 of the blade body 1 that has undergone a compression process that is a subsequent process after the mixing process.
  • the effect that the fibrous filler 5 is suppressed to be small and the fibrous filler 5 is evenly dispersed is more remarkably obtained.
  • the mixing step includes the above three steps.
  • the abrasive grains 3 made of either diamond or cBN are dispersed in the resin phase 2.
  • the present invention is not limited to this. That is, as the abrasive grains 3, particles made of a hard material other than diamond and cBN may be dispersed in the resin phase 2 as the abrasive grains 3.
  • thermocompression bonding resin for forming the resin phase 2 for example, polyimide resin, specific phenol resin, polybenzimidazole (PBI (registered trademark)) or the like is used. Other than that, a thermocompression bonding resin may be used.
  • the blade body 1 is partitioned into a plurality of regions at equal angles around the central axis O of the blade body 1, and the average value of the density measured in each region is defined as the average density. It has been described that the density measured in each region is 90 to 110% with respect to the average density.
  • each density density of each region is included in the range of 90 to 110%.
  • the present invention is not limited to the case where the density measured in each region with respect to the average density is included in the range of 90 to 110%.
  • the blade body 1 is divided into a plurality of regions at equal angles around the central axis O of the blade body 1, and the content rate of the fibrous filler 5 measured in each region is measured. It has been described that the content of the fibrous filler 5 in each region is 90 to 110% with respect to the total content of the fibrous filler 5 in the entire blade body 1. For example, even if the total content of the fibrous filler 5 occupying the entire blade body 1 varies between 20 and 60 vol% described in the above-described embodiment, the central axis Meaning that each content rate of the fibrous filler 5 measured in a plurality of regions equally divided around O (the content rate of the fibrous filler 5 in each region) is included in the range of 90 to 110%. Yes.
  • the present invention is not limited to the case where the total content of the fibrous filler 5 in the entire blade body 1 is included in the range of 20 to 60 vol%.
  • the dispersion medium DM for example, an alternative fluorocarbon such as a fluorine-based inert liquid is used, but the present invention is not limited thereto. That is, the dispersion medium DM may be an alternative chlorofluorocarbon other than the fluorine-based inert liquid or a liquid other than the alternative chlorofluorocarbon.
  • the cutting blade 10 is used for cutting an electronic material component that is a composite material having a metal material in a resin such as QFN or IrDA as a material to be cut.
  • the present invention is not limited to this. That is, the cutting blade 10 is used in a process of precisely cutting a material to be cut that is used for a semiconductor device (electronic material component) and made of a brittle material (hard brittle material) such as glass, ceramics, or quartz. May be.
  • the cutting blade 10 manufactured by the manufacturing method of the cutting blade 10 described in the above embodiment is referred to as Example 1, and the cutting blade manufactured by the conventional manufacturing method shown in FIGS. 8A to 8C is a comparative example.
  • a cutting blade produced by the doctor blade method was designated as Comparative Example 2.
  • the total content of the fibrous filler in the entire blade body is 19 vol%, 20 vol%, 30 vol%, 40 vol%, 50 vol%, 60 vol%, 61 vol% Prepared.
  • Each blade for cutting had a blade body formed of a resin phase, and the same material (material) was used for the resin powder as a raw material of the resin phase. Specifically, a polyimide resin, which is a thermocompression bonding resin, was used as the resin powder. The same material was used for the abrasive grains and fibrous filler dispersed in the resin phase. About the content rate of the abrasive grain in a braid
  • each cutting blade as shown in FIG. 4, the blade main body was divided into four regions divided into four equal parts around the central axis O of the blade main body, and the fibrous filler content was measured in each region. .
  • the total content rate of the fibrous filler which occupies the whole blade main body mentioned above is 100%, and each content rate of the fibrous filler measured in four area
  • regions is plus with respect to 100% of the total content rate of a fibrous filler. It was confirmed that the percentage was within the minus range. Specifically, the ratio (percentage) of the content of the fibrous filler in each region to the total content of the fibrous filler was determined, and the range of variation in the ratio was determined.
  • the triangular mark indicates that the content of the fibrous filler in each region was within a range of ⁇ 15% with respect to 100% of the total content of the fibrous filler.
  • the cross mark indicates that the content of the fibrous filler in each region is out of the range of ⁇ 15% with respect to 100% of the total content of the fibrous filler. Specifically, the cross mark indicates that among the values of the fibrous filler content in each region, there was a value that was outside the range of ⁇ 15% with respect to 100% of the total content of the fibrous filler. Show.
  • the measured content of the fibrous filler 5 in each region was all within ⁇ 10% with respect to the total content of 100% (that is, 90 to 90%). 110%). Specifically, the content of the fibrous filler 5 in each region was all within a range of ⁇ 5% (that is, 95 to 105%) with respect to the total content of 100%.
  • Example 2 The cutting blade 10 produced by the same manufacturing method as the above-mentioned Example 1 is referred to as Example 2, the cutting blade produced by the same manufacturing method as the above-mentioned Comparative Example 1 is set as Comparative Example 3, and the same as the above-mentioned Comparative Example 2 The cutting blade produced by the production method was designated as Comparative Example 4. A comparative test of blade wear amount was performed using each cutting blade.
  • the dimensions of the blade body of each cutting blade were as follows. ⁇ Outer diameter: ⁇ 58mm ⁇ Inner diameter: ⁇ 40mm ⁇ Thickness: 1.1mm
  • the blade used was the specification of SDC170-100 for both Example 2, Comparative Example 3 and Comparative Example 4.
  • test conditions were as follows. ⁇ Use cutting machine: Tokyo Seimitsu A-WD100A ⁇ Spindle speed: 15000m-1 ⁇ Incision: 0.8mm ⁇ Feeding speed: 100mm / s ⁇ Cooling water volume: 1.2L + 1.2L ⁇ Dresser plate: Tokyo Seimitsu A2-2mm ⁇ Groove number: 30 x 5 sets
  • Example 2 From the results in Table 2, it was confirmed that the wear amount of each cutting blade 10 of Example 2 was all less than 500 ⁇ m, the wear amount was remarkably suppressed, and the wear resistance was improved.
  • Example 2 the variation in the density of the blade body 1 was suppressed to be small, and the fibrous filler 5 was evenly dispersed. For this reason, the amount of wear progressing from the outer periphery of the blade toward the inner side in the radial direction is made uniform throughout the entire circumferential direction. As a result, it is considered that the wear resistance was improved because there was no place where the wear progressed early and the progress of the wear as a whole was also suppressed.
  • the cutting blade 10 having a total content of the fibrous filler 5 of 20 to 60 vol% was confirmed to have excellent wear resistance because the wear amount was all less than 400 ⁇ m. .
  • Example 3 The cutting blade 10 produced by the same manufacturing method as the above-mentioned Example 1 is referred to as Example 3, the cutting blade produced by the same manufacturing method as the above-mentioned Comparative Example 1 is set as Comparative Example 5, and the same as the above-mentioned Comparative Example 2 The cutting blade produced by the production method was designated as Comparative Example 6. A comparative test of processing quality was performed using each cutting blade.
  • Comparative Example 6 the total content of the fibrous filler in the entire blade body was 19 vol%, 20 vol%, 30 vol% and 40 vol, respectively. %, 50 vol%, 60 vol%, and 61 vol% were prepared. In Comparative Example 6, when the total content of the fibrous filler was 40 vol% or more, a sheet body could not be formed from the slurry, and molding was impossible.
  • the dimensions of the blade body of each cutting blade were as follows. ⁇ Outer diameter: ⁇ 58mm ⁇ Inner diameter: ⁇ 40mm ⁇ Thickness: 1.1mm
  • the blade used was the specification of SDC170-100 for both Example 3, Comparative Example 5 and Comparative Example 6.
  • test conditions were as follows. ⁇ Use cutting machine: Tokyo Seimitsu A-WD100A ⁇ Spindle speed: 25000m -1 ⁇ Feeding speed: 30mm / s ⁇ Tape cutting: 0.5mm ⁇ Cooling water volume: 2.0L + 2.0L -Material to be cut: QFN package (resin and copper composite)
  • the cutting blade mounted on the cutting machine was rotated to cut the QFN package, and the processing quality was confirmed.
  • the processing quality was judged by the following method. As shown in FIG. 7, the material to be cut was cut (diced) into a square shape (the material to be cut was cut into a plurality of cubic chips). Next, the length of the burrs 20 of the separated chips was measured. The length of the burr 20 was measured for 10 chips per work. When the burr size was 75 ⁇ m or less, it was determined that the chip processing quality was ensured. The test results are shown in Table 3 below.
  • the cutting blade of the present invention is suitably applied to a process of cutting a material to be cut such as an electronic material part used in a semiconductor product or the like.
  • the electronic material component include a component in which a semiconductor element is mounted on a lead frame and resin-molded, a QFN (quad flat non-leaded package), and an IrDA (Infrared Data Communication Association) standard optical transmission module.
  • the cutting blade of the present invention is also suitably applied to a process of precisely cutting a material to be cut made of a brittle material (hard brittle material) such as glass, ceramics, and quartz.
  • the method for manufacturing a cutting blade according to the present invention is suitably applied to a process for manufacturing a blade for cutting a material to be cut such as the electronic material component described above.

Abstract

この切断用ブレードの製造方法は、熱圧着性樹脂の樹脂粉体、砥粒及び繊維状フィラーを含む混合粉に、液状の分散媒を加える混合工程と、前記分散媒を加えた前記混合粉を、成形型内でコールドプレスして、ブレード本体の原板を形成する圧縮工程と、前記原板をホットプレスして焼結する焼結工程と、を備える。

Description

切断用ブレードの製造方法、及び切断用ブレード
 本発明は、例えば半導体製品などに用いられる電子材料部品等の被切断材を切断加工する切断用ブレードの製造方法、及び切断用ブレードに関する。
 本願は、2015年12月21日に、日本に出願された特願2015-248991号に基づき優先権を主張し、その内容をここに援用する。
 半導体製品などに用いられる電子材料部品等の被切断材に溝加工を施したり、被切断材を切断することによって個片化したりする加工(以下、切断加工と省略する)には、高精度が要求される。このような切断加工には、円板状の切断用ブレード(薄刃砥石)が使用されている。
 切断用ブレードは、円板状をなすブレード本体と、ブレード本体の外周縁部に形成された切れ刃と、を備えている。ブレード本体は、樹脂相(樹脂の固相)や金属相(金属の固相)等の結合相(結合剤)に、ダイヤモンドやcBN等の砥粒、及びフィラーが分散されて形成されている。このため、ブレード本体は、結合相と、結合相中に分散された砥粒及びフィラーを有する。ブレード本体が樹脂相で形成された切断用ブレード(ブレード本体が結合相として樹脂相を含む切断用ブレード)は、レジンボンドブレード(レジンボンド砥石)と呼ばれる。
 この種の切断用ブレードを製造するにあたり、従来、下記の方法が用いられている。
 図8(a)~(c)に示す従来の製法では、まず、図8(a)において、樹脂相の原料である樹脂粉体、砥粒及びフィラーを混合した混合粉MPを、金型に充填する。次に、図8(b)において、金型に充填した混合粉MPの表面を、手作業や機械等により平坦化する。次に、図8(c)において、混合粉MPをホットプレスして焼結する。また、特に図示していないが、ホットプレス後には、外周・内周加工、及び場合によってはラップ処理(ブレード表面(両側面)の平坦化加工)が行われて、ブレード本体の形状が整えられ、製品となる切断用ブレードが形成される。
 また、下記の特許文献1、2の切断用ブレードの製造方法では、結合剤を含むスラリーを作製し、このスラリーをドクターブレード法により板状(シート体)に成形し、型抜きし、脱脂(スラリー作製時に添加したバインダーの除去)及び焼結を行っている。なお、レジンボンドブレードを製造する場合は、バインダーは使用されず、結合剤である樹脂に対する溶媒としてアルコール等が使用される。この溶媒を揮発させることで、板状の成形品を得る。
 ところで、この種の切断用ブレードには、切断加工をより高速回転で行うことへの要求がある。すなわち、切断用ブレードをより高速で回転させて切断加工を行うことが要求されている。切断加工を高速回転で行うには、切断用ブレードの強度を高める必要がある。切断用ブレードの強度を高める手法として、ブレード本体に繊維状フィラーを分散させることが行われている。
 しかしながら、特許文献1、2のようにドクターブレード法を用いて切断用ブレードを製造する方法において、繊維状フィラーを用いた場合、繊維状フィラーの配向が、ドクターブレード時のシート体の延展方向に揃ってしまう。詳細には、金型の上面に、シート体(切断用ブレード)の形状を有する窪み部が設けられ、この金型の上面にスラリーを配置する。次いで金型の上面に接触した状態でドクターブレードを摺動させて、スラリーを窪み部に充填すると共に、余分なスラリーを取り除く。この際に、繊維状フィラーがシート体の延展方向(ドクターブレードの摺動方向)に配向する。このため、繊維状フィラーは、切断用ブレードの特定の径方向に平行な方向に配向する。これにより、切断用ブレードの強度が、ブレード周方向にばらついてしまっていた。
 下記の特許文献3の切断用ブレードの製造方法では、フィラーとして繊維状フィラーを用いている。樹脂相の素材に、溶媒、砥粒及び繊維状フィラーを混合してスラリーを作製する。このスラリーを、スピンコーター等の回転体の回転中心に滴下する。回転体上に滴下されたスラリーは、遠心力により拡がってシート体となる。この際、スラリー中の繊維状フィラーは、回転中心から放射状に延びるように配向される。そして、このシート体を円形板状に成形し、成形体をホットプレスして、ブレード本体とする。
 この手法によれば、繊維状フィラーが一定の方向にのみ配向されるようなことが防止されて、切断用ブレードの強度が、ブレード周方向の全体に均等化される。
 しかしながら、従来の切断用ブレードの製造方法では、下記の問題があった。
 図8(a)~(c)に示す従来の製法では、図8(b)の工程において、金型内の混合粉MPの表面を慣らして、混合粉MPの表面を見かけ上、平坦化しても、混合粉MPの充填密度には、ばらつきが生じている。このため、フィラーとして繊維状フィラーを用いた場合、ブレード本体の内部で繊維状フィラーが均等に分散せず、ブレード強度にばらつきが生じていた。
 また、特許文献1~3のように、スラリーからシート体を成形して切断用ブレードを作製する場合、熱圧着性樹脂に対応することができなかった。すなわち、例えばポリイミド樹脂等の熱圧着性樹脂については、良溶媒(つまり樹脂に対する溶解度が高い溶媒)が存在しないため、スラリーからシート体を成形することが難しく、製造自体が困難であった。
 なお、特許文献1、2のドクターブレード法においては、ブレード本体全体に占める繊維状フィラーの含有率が低い場合(例えば30vol%以下の場合)には、シート体の成形が可能な場合もある。ただし、上述のように繊維状フィラーの配向が一定方向(シート体の延展方向)に揃ってしまうため、切断用ブレードの強度をブレード周方向に均等化することができない。
特開平10-193267号公報 特開平10-193268号公報 特開2015-98070号公報
 本発明は、このような事情に鑑みてなされたものであって、熱圧着性樹脂からなる樹脂相を備えつつ、ブレード本体の内部で繊維状フィラーを一定方向に配向させることなく、かつ均等に分散させることができ、これにより、ブレード周方向の全体において強度が均等に高められた切断用ブレードを、簡単に製造することが可能な切断用ブレードの製造方法、及び切断用ブレードを提供することを目的としている。
 本発明の一態様の切断用ブレードの製造方法は、熱圧着性樹脂の樹脂粉体、砥粒及び繊維状フィラーを含む混合粉に、液状の分散媒を加える混合工程と、前記分散媒を加えた前記混合粉を、成形型内でコールドプレスして、ブレード本体の原板を形成する圧縮工程と、前記原板をホットプレスして焼結する焼結工程と、を備えることを特徴とする。
 また、本発明の一態様の切断用ブレードは、円板状をなすブレード本体と、前記ブレード本体の外周縁部に形成された切れ刃と、を備え、前記ブレード本体は、熱圧着性樹脂で形成された樹脂相と、前記樹脂相に分散された砥粒及び繊維状フィラーと、を備え、前記ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域に区画し、各領域において測定した前記繊維状フィラーの含有率が、前記ブレード本体全体に占める前記繊維状フィラーの総含有率に対して、90~110%であることを特徴とする。
 本発明の一態様の切断用ブレードの製造方法では、熱圧着性樹脂の樹脂粉体、砥粒及び繊維状フィラーを含む混合粉に、液状の分散媒を加える。次いで、この液状の分散媒を含む混合粉を、金型等の成形型内でコールドプレスする。従って、このコールドプレスの際に、混合粉の粉末同士の隙間に分散媒が入り込み、液体流動を利用した粉体流動を促すことができる。
 なお、本発明の一態様でいう「熱圧着性樹脂」とは、熱硬化性樹脂に含まれるものであり、樹脂相の原料である樹脂粉体が、概ね重合反応を終えた状態とされて形成されているとともに、焼結工程の際には熱圧着により一体化して、樹脂相を形成するタイプの樹脂を指している。すなわち、「熱圧着性樹脂」は、熱硬化性樹脂に分類される樹脂である。樹脂相の原料である樹脂粉体は、概ね重合反応を終えた状態の熱硬化性樹脂からなる。焼結工程の際には熱圧着により樹脂粉体が一体化して、樹脂相が形成される。このような熱圧着性樹脂としては、例えばポリイミド樹脂や、特定のフェノール樹脂や、ポリベンゾイミダゾール(PBI(登録商標))等を挙げることができる。
 また、「分散媒」としては、例えばフッ素系不活性液体などの代替フロン等を用いることができる。
 また、「繊維状フィラー」とは、アスペクト比(長さ/外径で表される比)の平均(値)が5以上とされた細長い形状のフィラーを指す。繊維状フィラーとして、例えば、金属、カーボン、ガラス等の各種の材質を用いることができる。なお、繊維状フィラーには、例えばアスペクト比が1000以上のもの(いわゆるウィスカー)も含まれる。
 つまり、本発明の一態様では圧縮工程において、混合粉に分散媒を混ぜたものに、成形型内にて圧力をかけることで、分散媒が潤滑剤のごとく作用して、樹脂粉体、砥粒及び繊維状フィラーが均一に成形型内に拡散する。このため、作製されるブレード本体の原板の密度のばらつきが顕著に小さく抑えられ、かつ、繊維状フィラーが原板内に均等に分散させられる。
 この際、繊維状フィラーは、ブレード本体の厚さ方向に交差する向き(つまりブレード本体の中心軸に略垂直な面内における360°全方向のうちいずれかの向き)を向くことになるが、繊維状フィラーが一定の方向に配向してしまうことはなく、繊維状フィラーは、配向に規則性がない無配向の分散状態とされる(つまりランダムに配向される)。言い換えると、複数の繊維状フィラーが、ランダムに配向されていることで、実質的には360°全方向に配向して分散されている。
 なお、この圧縮工程の際には、コールドプレス(冷間にて圧縮)していることから、樹脂粉体の熱圧着が進行することはなく、樹脂粉体の流動性は安定して確保される。
 そして、このブレード本体の原板をホットプレスして焼結する。上述のように、原板の密度のばらつきは小さく抑えられているため、焼結時にブレード本体に引け等が生じるようなことが抑えられる。その結果、反りや平面度が小さく抑えられたブレード本体を作製することができる。
 なお、引け(Sink Marks)とは、材料が起こす収縮によって生じるへこみや窪みである。原板の密度のばらつきが大きい場合、焼結時に、密度の低い部位は、他の部位に比べて、より収縮し、へこみや窪みが生じる恐れがある。この収縮により生じるへこみや窪みを引けという。
 また、原板を成形した時点から繊維状フィラーが均等に分散しているので、前記原板を焼結して得られたブレード本体においても、繊維状フィラーはブレードの周方向及び径方向に均等に分散している。このため、強度にばらつきのない優れた切断用ブレードを得ることができる。詳しくは、上述したようにブレード本体の中心軸に略垂直な面内において、繊維状フィラーは一定方向に配向することなく、不特定な方向(360°すべての向き)にランダムに配向されているので、繊維状フィラーが骨材のごとく機能して、ブレード周方向の全体において強度が均等に高められることになる。
 また、ブレード本体において繊維状フィラーが、均等にかつランダム配向で分散されていることにより、下記の作用効果も得られる。
・耐磨耗性の向上。
・刃痩せの抑制。
・適度な自生発刃作用。
・靱性の向上。
・耐熱性の向上。
 すなわち、ブレード本体の内部に繊維状フィラーが均等にかつランダム配向で分散されていることにより、このブレード本体は周方向の所定箇所において磨耗が進行しやすくなるようなことがなく、周方向の全体に均等に磨耗が進行していくことになる。その結果、ブレード全体としての磨耗量も抑制されて、耐磨耗性が向上する。また、耐磨耗性が向上するので、工具寿命が延長する(工具寿命が向上する)。
 また、ブレード本体の中心軸に略垂直な面内において、繊維状フィラーは、ランダムに配向されている。このため、ブレード本体の厚さ方向を向く両側面(ブレードの表裏面)に対しては、例えば細長い柱状をなす繊維状フィラーの周面や縦断面(フィラーの延在方向に沿う断面)が露出させられることになり、繊維状フィラーの延在方向を向く端面や横断面(フィラーの延在方向に垂直な断面)の露出は抑えられる。一方、ブレード本体の径方向の外側を向く外周面に対しては、繊維状フィラーは、その周面や縦断面が露出するものもあれば、端面や横断面が露出するものもあり、様々である。
 このため、ブレード本体の両側面に対しては、ブレード外面の単位面積あたりにおける繊維状フィラーの露出面積の割合が大きくなる。これに比べてブレード本体の外周面に対しては、ブレード外面の単位面積あたりにおける繊維状フィラーの露出面積の割合は小さくなる。つまり、ブレード外面の単位面積あたりの繊維状フィラーの露出面積に関して、ブレード本体の外周面における繊維状フィラーの露出面積よりも、両側面における繊維状フィラーの露出面積の方が大きくなる。このため、ブレード本体の外周面においては、適度に磨耗を進行させて切れ刃の切れ味を良好に維持することができる(自生発刃作用を促すことができる)。また、ブレード本体の両側面においては、磨耗の進行を抑制して、刃痩せを抑えることができる。従って、切断加工により被切断材に形成される切断面において、刃痩せに起因する傾斜等の不具合が生じにくくなり、切断加工の品位が顕著に高められる。
 また、本発明の一態様では繊維状フィラーの均等な分散及びランダム配向によりブレード強度を向上させている。このため、例えば本発明の一態様とは異なり、繊維状フィラーを用いることなく単に硬度の高い粒子状フィラーを用いてブレード強度を向上させようとする場合に比べて、本発明の一態様では適度な自生発刃作用を促すことができる。
 すなわち、従来の粒子状フィラーを用いてブレード強度を高めようとした場合、粒子状フィラーは配向に特徴を持たせることができないため、単純に粒子状フィラーの硬度を上げる手法が採用される。しかしながら、粒子状フィラーの硬度が上がると、切れ刃において砥粒の保持力が高くなり過ぎて新しい刃が形成されにくくなる(自生発刃作用が低下する)。このため、切れ味を良好に維持することができない。
 一方、本発明の一態様のように繊維状フィラーを用いれば、フィラーの硬度を上げることなくブレード強度を高めることができるので、適度な自生発刃作用を促して、切れ味を良好に維持することができる。
 また、ブレード本体の内部で、繊維状フィラーが均等に分散し、かつランダムに配向していることから、これらの繊維状フィラーが骨材のように作用して、ブレード本体の靱性が向上する。このため、切断用ブレードの強度が高められつつ、耐衝撃性にも優れたものとなり、特に高速回転時の切断加工においても剛性が十分に確保されて、高品位な切断精度を維持することができる。
 また、繊維状フィラーが均等に分散され、かつランダムに配向されているので、ブレード本体の内部において繊維状フィラー同士による熱伝導率の向上を図ることができる。このため、例えば、繊維状フィラーとして熱伝導率のよい金属繊維やカーボンファイバー等を用いた場合において、切断加工時にブレード本体の外周縁部(切れ刃)に生じた摩擦熱が、繊維状フィラーを通して早期にブレード内で熱分散されるとともに冷却効率が向上して、切断用ブレードの耐熱性が向上する。
 なお、コールドプレス前に混合粉に加えた分散媒については、その大部分が、コールドプレス時に混合粉(ブレード本体の原板)より流出し、除去される。また、コールドプレス後にブレード本体の原板に残留した分散媒については、例えば焼結工程のホットプレス前に揮発させて、ブレード本体から除去することができる。この際、分散媒は粉体同士の僅かな隙間に存在しているため、分散媒の揮発によりブレード本体が多孔質状に形成されるようなことは防止される。またこの場合、焼結工程を経て作製されたブレード本体に分散媒が残されることがないので、ブレード本体の性能が分散媒による影響を受けることもない。
 より詳しくは、焼結工程において分散媒が揮発させられるタイミングは、ホットプレスにより樹脂粉体が熱圧着を開始する以前であることが好ましい。つまり、ホットプレスの実施以前(焼結工程の前まで)に、分散媒がすべて揮発させられていることが好ましい。これにより、粉体同士の間において分散媒が存在していたスペースが樹脂相により塞がれて(置換されて)、焼結後のブレード本体に分散媒の痕跡が残されなくなる。従って、ブレード本体の性能に関して、分散媒及びその痕跡が影響するようなことがなくなる。
 具体的に、本発明の一態様により製造された切断用ブレードにおいては、ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域(例えば中心軸回りに4等分した4つの領域)に区画し、各領域において求めた繊維状フィラーの含有率が、ブレード本体全体に占める繊維状フィラーの総含有率に対して、90~110%にまで抑えられる。すなわち、ブレード本体全体の繊維状フィラーの総含有率に対する各領域の繊維状フィラーの含有率の比(百分率)は、90~110%である。
 つまり、ブレード本体の各領域に、繊維状フィラーが均等に含有されているとともに、ブレード本体の全域にわたって、繊維状フィラーが均等に分散している。これは上述したように、コールドプレスによる圧縮工程を経たブレード本体の原板において、すでに繊維状フィラーがブレード全体に均等に分散しているためである。従って、作製されたブレード本体は、ブレード全体において強度ばらつきのない剛性に優れたものとなる。
 なお、ブレード本体の各領域における繊維状フィラーの含有率については、例えば下記の手法により求めることができる。
 まず、ブレード本体の側面全体を厚さ方向に研磨し、前記側面の厚さ方向の内側に配置された繊維状フィラーを露出させる。次に、研磨したブレード本体の側面を、SEM(走査型電子顕微鏡)等で撮影する。撮影画像に対して2値化を実施することにより、繊維状フィラーとそれ以外の部材とに判別可能な画像データを作成する。この画像データにおいて、ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域(例えば中心軸回りに4等分した4つの領域)に区画する。各領域の面積(領域内全体の面積)に対して、繊維状フィラーが占める面積の割合を求める。この割合を、ブレード本体の各領域における繊維状フィラーの含有率とする。
 ただし、ブレード本体の各領域における繊維状フィラーの含有率を求める手法は、上記の手法に限定されるものではない。
 また、ブレード本体全体に占める繊維状フィラーの総含有率については、上記画像データから求めてもよいし、或いは、ブレード本体全体の体積に占める繊維状フィラーの体積の割合から求めてもよい。
 また、本発明の一態様により製造された切断用ブレードにおいては、ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域(例えば中心軸回りに8等分した8つの領域)に区画し、各領域において測定した密度の平均値を平均密度とする。この平均密度に対して、各領域において測定した密度が例えば90~110%にまで抑えられる。すなわち、密度の平均値に対する各領域の密度の比(百分率)は、例えば90~110%である。つまり、ブレード本体の全域において密度の差(密度のばらつき)が小さく抑えられている。これは上述したように、コールドプレスによる圧縮工程を経たブレード本体の原板において、すでに密度差が小さく抑えられているためである。従って、作製されたブレード本体は、反りや平面度が小さく抑えられることになる。
 より詳しくは、本発明の一態様により製造された切断用ブレードにおいては、例えば、ブレード本体の反り量を300μm以下に抑えることができる。また、ブレード本体の平面度を20μm以下に抑えることができる。
 また、焼結後に得られるブレード本体の厚さ方向を向く両側面の平面度が、上述のように小さく抑えられている。このため、特に高品位な切断精度が求められる使用分野においても、ブレード本体の両側面をラップ処理により平坦化することなく、所期する(所望の)平面度を満足することができる。
 なお、ブレード本体の反り量は、以下の方法により測定される。図5(a)、(b)に示すように、切断用ブレード10を定盤S上に置く。定盤Sを回転させながら、切断用ブレード10に対してレーザ干渉計のレーザ光Lを照射して、切断用ブレード10の全周の高さ(定盤Sからの高さ)を測定する。測定値のうち最高値(定盤Sから最も離れた位置の高さ)から、ブレード厚さを差し引き、得られた値がブレード本体の反り量である。なお、この測定はブレード本体の両面(厚さ方向を向く両側面)に対して行い、数値の大きい方を採用する。
 また、ブレード本体の平面度は、以下の方法により測定される。ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域(例えば中心軸回りに8等分した8つの領域)に区画する。各領域においてブレード本体の厚さをマイクロメータ等により測定する。測定値のばらつきの最大差(最大厚さと最小厚さとの差)がブレード本体の平面度である。
 このように、ブレード本体の反りや平面度が小さく抑えられることにより、この切断用ブレードで被切断材を切断したときに、下記の作用効果が得られる。
 すなわち、切断用ブレードの厚さ方向への振れが抑えられるため、切断幅が小さく抑えられて、被切断材の製品の歩留まりを向上させることができる。また、切断用ブレードから被切断材に対して、切断幅方向(切断加工により被切断材に形成される切断ラインの幅方向)への力が作用しにくくなる。このため、切断用ブレードが被切断材にスムーズに切り込んで、切断面のバリやチッピング等の発生が防止される。従って、被切断材を個片化してなる電子材料部品(製品)等の品質が、安定して高められることになる。
 さらに、ブレード表面にラップ処理を施す必要がないことから、このラップ処理によって砥粒が樹脂相から突き出してしまうようなことがない。つまり本発明の一態様では、焼結工程を経て得られたブレード本体は、前記ブレード本体の側面よりも厚さ方向の内側に砥粒が配置されており、側面から厚さ方向の外側へ突き出す砥粒が存在しない。このため、切断加工時において、ブレード本体の側面から突出する砥粒が被切断材の切断面を荒らして加工品位を低下させる(バリやチッピング等を生じさせる)ような不具合を顕著に抑制できる。従って、上述の平面度を小さく抑えることができるという効果と相俟って、切断精度を格別に顕著に高めることができる。
 詳しくは、従来においては、特にブレード本体の厚さを1.1mm以下に薄肉化しようとした場合に、ブレード表面の平面度を小さく抑えるために、また、ブレード本体の厚さを所期する薄さまで追い込んでいく(所望の厚さまで薄くする)ために、ラップ処理を行うことが必須であった。このため、ブレード本体の側面から砥粒が突き出すことを防止することはできなかった。
 一方、本発明の一態様によれば、ブレード本体の厚さを例えば1.1mm以下に薄肉化しても、焼結後においてすでに平面度が小さく抑えられているため、ラップ処理が不要である。このため、ブレード本体の側面から砥粒が突き出すことを確実に防止することができる。すなわち、焼結工程を経たブレード本体の両側面は、プレス加工により表面が平らに形成されており砥粒の突き出しが無い状態である。このため、ラップ処理を省いたことにより、ブレード表面からの砥粒の突き出しをゼロにすることが可能である。
 さらに、ラップ処理を施す必要がないので、製造が容易化されるのはもちろんのこと、従来のようにラップ処理を見込んでブレード本体の厚さを予め大きく形成しておく必要もなくなり、材料費が削減される。
 また、従来では切断用ブレードが被切断材を切断する際に受ける反力が、反り量の大きい箇所に対して偏って作用していた。本発明の一態様では、ブレード本体の反りや平面度が小さく抑えられることにより、上記事項が防止される。つまり本発明の一態様によれば、上記反力が、切断用ブレードの周方向の全周にわたって均等に作用しやすくなるとともに、所定箇所に対して大きな負荷がかかるようなことが防止されるので、切断用ブレードの工具寿命が延長する(工具寿命が向上する)。
 そして、このように切断精度が顕著に高められた切断用ブレードを製造するにあたり、従来の製法に比べて、本発明の一態様では特別に複雑な製造工程を用いているわけではない。具体的に本発明の一態様では、分散媒を加えた混合粉を成形型内でコールドプレスするという簡単な工程を経ることにより、ブレード本体(原板)の密度のばらつきを抑えつつ、繊維状フィラーを均等に分散しかつ繊維状フィラーをランダムに配向させる。これにより、上述の優れた作用効果を得ることができるため、切断用ブレードの製造が容易である。
 以上より、本発明の一態様の切断用ブレードの製造方法によれば、熱圧着性樹脂からなる樹脂相を備えつつ、ブレード本体の内部で繊維状フィラーを一定方向に配向させることなく、かつ繊維状フィラーを均等に分散させることができる。これにより、ブレード周方向の全体において強度が均等に高められた切断用ブレードを、簡単に製造することができる。
 また、本発明の一態様の切断用ブレードによれば、ブレード周方向の全体において強度が均等に高められているので、切断加工を高速回転で安定して行うことができる。
 また、上記切断用ブレードの製造方法において、前記混合工程は、熱圧着性樹脂の樹脂粉体、砥粒及び繊維状フィラーを含む混合粉を、成形型に充填する工程と、前記混合粉の表面を平坦化する工程と、前記混合粉に液状の分散媒を滴下する工程と、を備えることが好ましい。
 この場合、混合工程が、成形型に充填された混合粉の表面を平坦化する工程を備えているので、この混合工程の後工程の圧縮工程において、混合粉が成形型内で均等に拡散するまでの流動量を小さく抑えることができる。このため、以下の作用効果が、より安定して奏功される(得られる)。
 上述したブレード本体の原板の密度のばらつきを小さく抑えられるという作用効果。
 原板の内部において繊維状フィラーを均等に分散させつつ、繊維状フィラーを一定方向に配向させることなくランダムに配向させられるという作用効果。
 また、混合工程が、表面を平坦化した混合粉に、分散媒を滴下する工程を備えているので、混合粉に対して分散媒が均等に混ざりやすくなる。つまり、混合粉全体に分散媒が行き渡り馴染みやすくなるので、この混合工程の後工程の圧縮工程において、分散媒の液体流動を利用した混合粉の粉体流動が、成形型内の全体にわたって均等に行われる。従って、以下の作用効果が、より安定して奏功される(得られる)。
 上述したブレード本体の原板の密度のばらつきを小さく抑えられるという作用効果。
 原板の内部において繊維状フィラーを均等に分散させつつ、繊維状フィラーを一定方向に配向させることなくランダムに配向させられるという作用効果。
 また、上記の切断用ブレードの製造方法において、前記分散媒として、動粘度が2.3mm/s以下の液体を用いることが好ましい。
 この場合、分散媒の動粘度が2.3mm/s以下(2.3cSt以下)であるので、分散媒が混合粉の粉体間によく馴染んで広範囲に液体流動しやすくなるとともに、混合粉の粉体流動を促す潤滑剤として効果的に機能する。これにより、圧縮工程において、成形型内で混合粉を均等に拡散できるという作用効果が、より格別に顕著に得られる。
 具体的に、分散媒の動粘度が2.3mm/s以下であると、焼結後に得られるブレード本体の反りや平面度が顕著に小さく抑えられ、かつ、ブレード全体の強度が格別に顕著に高められる。
 なお、上記「動粘度」とは、圧縮工程のコールドプレス時において必要な動粘度であり、例えば25℃における液体の動粘度を指す。
 また、上記の切断用ブレードにおいて、前記ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域に区画し、各領域において測定した密度の平均値を平均密度として、前記平均密度に対して、各領域において測定した密度が90~110%であることが好ましい。
 また、上記切断用ブレードにおいて、前記ブレード本体全体に占める前記繊維状フィラーの総含有率が、20~60vol%であることが好ましい。
 この場合、ブレード本体全体に占める繊維状フィラーの総含有率が20~60vol%であるので、上述した繊維状フィラーによる作用効果を確実に奏功しつつ、繊維状フィラーが含有され過ぎることによるブレード剛性の低下を防ぐことができる。
 すなわち、繊維状フィラーの総含有率が20vol%以上であるので、ブレード本体に繊維状フィラーが分散されたことによる上述の作用効果が確実に得られることになる。また、繊維状フィラーの総含有率が60vol%以下であることにより、繊維状フィラー同士の間に介在する結合剤である樹脂相が減り過ぎることを抑えて、樹脂相の機能を安定化させることができる。
 また、上記切断用ブレードにおいて、前記ブレード本体の反り量が、300μm以下であることが好ましい。
 また、上記切断用ブレードにおいて、前記ブレード本体の平面度が、20μm以下であることが好ましい。
 この切断用ブレードは、ブレード本体の密度のばらつきが小さく抑えられているため、ブレード本体の反り量を300μm以下にまで小さく抑えることができる。また、ブレード本体の平面度を20μm以下にまで小さく抑えることができる。このため、切断用ブレードの製造時において、ブレード表面(両側面)を平坦化するためのラップ処理等を削減すること(省略すること)が可能である。
 従って、切断用ブレードの製造の容易性を向上しつつ、この切断用ブレードによる切断精度を顕著に高めることができる。
 詳しくは、従来の切断用ブレードでは、図8(a)~(c)を用いて説明したように、ブレード製造時において成形型内の混合粉の内部の充填密度にばらつきが生じやすいため、焼結後に得られるブレード本体の側面の平面度が、100μm前後の値(約100μm)と大きくなっていた。このため、特に切断精度が求められる使用分野においては、ブレード本体の両側面をラップ処理して平坦化を図っていた。しかしながら、ラップ処理により樹脂相が除去されても、硬度が高い砥粒は側面から突き出した状態のまま残留しやすく、所期する(所望の)平面度を満足することが困難であった。
 一方、本発明の一態様の切断用ブレードによれば、成形型内の混合粉の内部において充填密度のばらつきが小さく抑えられるため、焼結後に得られるブレード本体の側面の平面度を20μm以下にまで小さく抑えられる。このため、特に切断精度が求められる使用分野においても、ブレード本体の両側面をラップ処理により平坦化することなく、所期する(所望の)平面度を満足することができる。
 さらに、ブレード表面にラップ処理を施す必要がないことから、このラップ処理によって砥粒が樹脂相から突き出してしまうようなことがない。つまり、焼結工程を経て得られたブレード本体の側面においては、厚さ方向に突き出す砥粒が存在しないため、上述の平面度を小さく抑えることができるという効果と相俟って、切断精度を格別顕著に高めることができるのである。
 また、上記切断用ブレードにおいて、前記ブレード本体の厚さが、1.1mm以下であることが好ましい。
 この切断用ブレードは、上述のようにブレード本体の全域において強度が高められているので、ブレード本体の剛性を確保しつつ、前記ブレード本体を厚さ1.1mm以下に薄肉化することが容易である。
 従って、切断精度を良好に維持しつつ、被切断材の切断幅を小さく抑えて製品の歩留まりを向上できるという効果が、より格別に顕著に得られる。
 本発明の一態様の切断用ブレードの製造方法によれば、熱圧着性樹脂からなる樹脂相を備えつつ、ブレード本体の内部で繊維状フィラーを一定方向に配向させることなく、かつ繊維状フィラーを均等に分散させることができる。これにより、ブレード周方向の全体において強度が均等に高められた切断用ブレードを、簡単に製造することができる。
 また、本発明の一態様の切断用ブレードによれば、ブレード周方向の全体に強度が均等に高められているので、切断加工を高速回転で安定して行うことができる。
本発明の一実施形態に係る切断用ブレードを示す側面図(平面図)である。 図1のA-A断面を示す図である。 図2のB部を拡大して示す図である。 ブレード本体の各領域における繊維状フィラーの含有率のばらつきを説明するための図である。 ブレード本体の反り量の測定方法を説明する図である。 本発明の一実施形態に係る切断用ブレードの製造方法を説明する図である。 被切断材を切断したときに生じるバリを説明する図である。 従来の切断用ブレードの製造方法を説明する図である。
 以下、本発明の一実施形態に係る切断用ブレード10及びその製造方法について、図面を参照して説明する。
 本実施形態の切断用ブレード10によって切断され製造される電子材料部品としては、半導体素子のように半導体ウェハから切断されて分割された後に、リードフレームに実装されて樹脂モールディングされるもの、及び例えば下記のようなものが挙げられる。
(a)QFN(quad flat non-leaded package)と称されるもののように、リードフレーム上に一括して多数の素子を実装し、これらをまとめてモールディングした後に切断することにより個片化されて製造される電子材料部品。
(b)IrDA(赤外線データ通信協会)規格の光伝送モジュール(以下、単にIrDAと省略する)のように、ガラスエポキシ樹脂製の基体に形成されたスルーホールの内周面にNi、Au、Cu等のめっきが施された基板を有し、切断により個片化される電子材料部品。
 本実施形態の切断用ブレード10は、このような電子材料部品等の被切断材を、精密に切断加工するために用いられる。
 図1及び図2に示すように、切断用ブレード10は、円板状をなすブレード本体1と、ブレード本体1の外周縁部に形成された切れ刃1Aと、を備えている。
 特に図示しないが、切断用ブレード10は、そのブレード本体1がフランジを介して切断装置の主軸に取り付けられる。切断用ブレード10は、前記ブレード本体1の中心軸O回りに回転されつつ前記中心軸Oに垂直な方向に送り出されることにより、このブレード本体1においてフランジより径方向の外側に突出された外周縁部(切れ刃1A)で被切断材を切断加工する。
 本実施形態においては、ブレード本体1の中心軸Oに沿う方向(中心軸Oが延在する方向)を、ブレード本体1の厚さ方向又は単に中心軸O方向という。また、この厚さ方向を、切断用ブレード10の切断幅方向(切断加工により被切断材に形成される切断ラインの幅方向に相当)ということがある。
 また、中心軸Oに直交する方向を径方向といい、中心軸O回りに周回する方向を周方向という。
 ブレード本体1の厚さ方向に沿う大きさ(つまり厚さ)は、例えば0.1mm以上であり、1.1mm以下である。従って、ブレード本体1は極薄の円板状をなしている。なお、図2においては切断用ブレード10の形状をわかりやすくするため、ブレード本体1の厚さが実際の厚さよりも厚く表示されている。
 また、ブレード本体1の径方向の中央部(中心軸O上)には、中心軸Oを中心とした円形孔状をなし、前記ブレード本体1を厚さ方向に貫通する取付孔4が形成されている。このためブレード本体1は、具体的には円環板状をなしている。本実施形態でいう「円板状をなすブレード本体1」には、円環板状をなすブレード本体1が含まれている。
 図3に示すように、ブレード本体1の切れ刃1Aは、前記ブレード本体1の厚さと等しい極小さな幅とされたブレード本体1の外周面と、前記ブレード本体1の厚さ方向を向く両側面1B、1Bにおける各々の外周縁部と、これらの外周縁部と前記外周面との交差稜線をなす一対のエッジ部と、によって形成されている。
 ブレード本体1は、熱圧着性樹脂で形成された樹脂相2と、樹脂相2に分散され、樹脂相2よりも硬質の材料からなる砥粒3と、樹脂相2に分散され、砥粒3よりも軟質の材料からなる繊維状フィラー5と、を有している。すなわち、ブレード本体1は、樹脂相2と、樹脂相2中に分散された砥粒3と、樹脂相2中に分散された繊維状フィラー5と、を有する。
 なお、ブレード本体1中の樹脂相2、砥粒3及び繊維状フィラー5の含有率は、後述する製造工程で用いられる混合粉MP中の樹脂粉体、砥粒3及び繊維状フィラー5の混合率と同一である。
 樹脂相2は、例えば、ポリイミド樹脂、一部のフェノール樹脂(特定のフェノール樹脂)、ポリベンゾイミダゾール(PBI(登録商標))等の合成樹脂を主成分とした樹脂結合剤相(レジンボンドのマトリックス材)である。
 なお、本実施形態でいう「熱圧着性樹脂」とは、熱硬化性樹脂に含まれるものであり、樹脂相2の原料である樹脂粉体が、概ね重合反応を終えた状態とされて形成されているとともに、焼結工程の際には熱圧着により一体化して、樹脂相2を形成するタイプの樹脂を指している。
 砥粒3は、ダイヤモンド砥粒及びcBN砥粒のいずれかを含む。本実施形態では、砥粒3として、ダイヤモンド砥粒が用いられている。
 繊維状フィラー5とは、アスペクト比(長さ/外径で表される比)の平均(値)が5以上とされた細長い形状のフィラーを指す。繊維状フィラー5として、例えば、金属、カーボン、ガラス等の各種の材質を用いることができる。なお、繊維状フィラー5には、例えばアスペクト比が1000以上のもの(いわゆるウィスカー)も含まれる。繊維状フィラー5のアスペクト比は、好ましくは、5以上100以下である。
 本実施形態では、ブレード本体1に分散される繊維状フィラー5として、単一種類の素材が用いられているが、これに限定されるものではなく、複数の種類の繊維状フィラー5をブレード本体1に分散させてもよい。つまり、互いに長さやアスペクト比、材質等が異なる繊維状フィラー5を、複数の種類用いてもよい。さらに、フィラーとして、繊維状フィラー5とともに、粒子状フィラーを用いてもよい。
 砥粒3及び繊維状フィラー5は、いずれも樹脂相2より硬質の材料からなる。砥粒3は、主として加工性の向上に寄与し、繊維状フィラー5は、主としてブレード本体1の剛性の向上に寄与する。なお、砥粒3及び繊維状フィラー5の材質は、本実施形態で説明したものに限定されない。
 図3に示すように、砥粒3は、ブレード本体1の厚さ方向を向く両側面1B、1Bから突出させられていない。また、繊維状フィラー5も、ブレード本体1の厚さ方向を向く両側面1B、1Bから突出させられていない。つまり、砥粒3及び繊維状フィラー5は、その全体が、ブレード本体1の側面1Bよりも厚さ方向の内側に配置されている。
 なお、ブレード本体1の径方向の外側の端縁(外周端縁)については、切れ刃1Aの目立て処理等が施されることにより、砥粒3及び繊維状フィラー5のいずれかが、側面1Bのうち外周端縁以外の部位に対して厚さ方向の外側に突出しない範囲で、樹脂相2から突出させられていてもよい。
 図3に示す例では、ブレード本体1の径方向の外側を向く外周面から、砥粒3及び繊維状フィラー5のいずれかが突出させられている。
 本実施形態の切断用ブレード10において、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画する。各領域において測定した繊維状フィラー5の含有率が、ブレード本体1全体に占める繊維状フィラー5の総含有率に対して、90~110%とされている。
 なお、ブレード本体1の各領域における繊維状フィラー5の含有率については、例えば下記の手法により求めることができる。
 まず、ブレード本体1の側面1B全体を厚さ方向に研磨し、前記側面1Bの厚さ方向の内側に配置された繊維状フィラー5を露出させる。次に、研磨したブレード本体1の側面1Bを、SEM(走査型電子顕微鏡)等で撮影する。撮影画像に対して2値化を実施することにより、繊維状フィラー5とそれ以外の部材とに判別可能な画像データを作成する。この画像データにおいて、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域(例えば中心軸O回りに4等分した4つの領域)に区画する。各領域の面積(領域内全体の面積)に対して、繊維状フィラー5が占める面積の割合を求める。この割合を、ブレード本体1の各領域における繊維状フィラー5の含有率とする。
 ただし、ブレード本体1の各領域における繊維状フィラー5の含有率を求める手法は、上記の手法に限定されるものではない。
 また、ブレード本体1全体に占める繊維状フィラー5の総含有率については、上記画像データから求めてもよいし、或いは、ブレード本体1全体の体積に占める繊維状フィラー5の体積の割合から求めてもよい。
 具体的に、本実施形態では図4に示すように、ブレード本体1を、前記ブレード本体1の中心軸O回りに4等分して、4つの領域に区画する。そして、ブレード本体1全体に占める繊維状フィラー5の総含有率に対して、4つの領域における繊維状フィラー5の各含有率が、すべて90~110%の範囲内(総含有率を100%として、±10%以内)に含まれる。すなわち、ブレード本体1全体に占める繊維状フィラー5の総含有率に対する各領域の繊維状フィラー5の含有率の比(百分率)は、90~110%の範囲内である。
 より詳しくは、本実施形態の切断用ブレード10では、上記繊維状フィラー5の総含有率に対して、各領域における繊維状フィラー5の含有率が、95~105%の範囲内(総含有率を100%として、±5%以内)に含まれる。
 なお、本明細書において、「Xを100%とすると、Yが±Z%の範囲内である」とは、Xに対するYの比(Y/X)(百分率)が(100-Z)%~(100+Z)%の範囲内であることを意味する。
 なお、本実施形態では、ブレード本体1を、前記ブレード本体1の中心軸O回りに4等分して4つの領域に区画し、各領域において繊維状フィラー5の含有率を求めることとしたが、これに限定されるものではない。すなわち、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画し、各領域において繊維状フィラー5の含有率を求めればよい。このため、等分する領域の数は4つに限定されない。ただし、繊維状フィラー5の含有率の精度を確保するためには、等分する領域の数は、少なくとも4つ以上であることが好ましい。
 また、本実施形態では、ブレード本体1全体に占める繊維状フィラー5の総含有率が、20~60vol%である。つまり、ブレード本体1全体の体積に占める、繊維状フィラー5の体積の割合が、20~60%である。なお、ブレード本体1全体に占める繊維状フィラー5の総含有率は、より好ましくは、30vol%以上であり、50vol%以下である。
 また、本実施形態の切断用ブレード10では、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画し、各領域において測定した密度の平均値を平均密度として、この平均密度に対して、各領域において測定した密度が90~110%とされている。すなわち、密度の平均値に対する各領域の密度の比(百分率)は、90~110%の範囲内である。
 すなわち、特に図示していないが、ブレード本体1を、前記ブレード本体1の中心軸O回りに8等分して、8つの領域に区画する。そして、8つの領域においてそれぞれ測定した密度の平均値を、平均密度とする。この平均密度に対して、8つの領域において測定した各密度が、すべて90~110%の範囲内(平均密度を100%として、±10%以内)に含まれる。
 より詳しくは、本実施形態の切断用ブレード10は、上記平均密度に対して、各領域において測定した密度が、95~105%の範囲内(平均密度を100%として、±5%以内)に含まれる。
 なお、本実施形態では、ブレード本体1を、前記ブレード本体1の中心軸O回りに8等分して8つの領域に区画し、各領域において密度を測定するとしたが、これに限定されるものではない。すなわち、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画し、各領域において密度を測定すればよい。このため、等分する領域の数は8つに限定されない。ただし、測定精度を確保するためには、等分する領域の数は、少なくとも4つ以上であることが好ましい。
 また、切断用ブレード10は、ブレード本体1の反り量が、300μm以下である。なお、ブレード本体1の反り量は、次のようにして求められる。
 図5(a)、(b)に示すように、切断用ブレード10を定盤S上に置く。定盤Sを中心軸回りに回転させながら、切断用ブレード10に対してレーザ干渉計のレーザ光Lを照射することで、切断用ブレード10の全周の高さ(定盤Sからの高さ)を測定する。そして、測定により得られた値のうち最高値(定盤Sから最も離れた位置の高さ)から、ブレード本体1の厚さを差し引いた値を、反り量とする。なお、この測定はブレード本体1の両面(厚さ方向を向く両側面1B、1B)に対して行い、数値の大きい方を採用する。
 また、切断用ブレード10は、ブレード本体1の平面度が、20μm以下である。なお、ブレード本体1の平面度は、次のようにして求められる。
 ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域(例えば中心軸O回りに8等分した8つの領域)に区画する。そして、各領域においてブレード本体1の厚さをマイクロメータ等により測定する。測定値のばらつきの最大差(厚さの最大値と最小値との差)を、平面度とする。
 なお、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画し、各領域において厚さを測定すればよい。このため、等分する領域の数は8つに限定されない。ただし、測定精度を確保するためには、等分する領域の数は、少なくとも4つ以上であることが好ましい。
 次に、上述した切断用ブレード10の製造方法について、図6を参照して説明する。
 本実施形態の切断用ブレード10の製造方法は、熱圧着性樹脂の樹脂粉体、砥粒3及び繊維状フィラー5を含む混合粉MPに、液状の分散媒DMを加える混合工程と、分散媒DMを加えた混合粉MPを、成形型内でコールドプレスして、ブレード本体1の原板11を形成する圧縮工程と、原板11をホットプレスして焼結する焼結工程と、原板11を焼結して得られたブレード本体1の外周及び内周の形状を整える仕上げ工程と、を備えている。
 上記混合工程は、図6(a)に示すように、熱圧着性樹脂の樹脂粉体、砥粒3及び繊維状フィラー5を含む混合粉MPを、成形型に充填する工程と、図6(b)に示すように、成形型に充填した混合粉MPの表面を平坦化する工程と、図6(c)に示すように、表面を平坦化した混合粉MPに液状の分散媒DMを滴下する工程と、を含んでいる。
 混合粉MPの表面を平坦化する工程では、手作業や機械等により、混合粉MPの表面(上面)全体が均一な高さとなるように、平らにならす。また、混合粉MPに分散媒DMを滴下する工程では、混合粉MPの表面全体に対して、分散媒DMを均等に滴下する。
 なお、本実施形態でいう「分散媒DM」としては、例えばフッ素系不活性液体などの代替フロン等を用いることができる。また分散媒DMとして、動粘度が2.3mm/s以下(2.3cSt以下)の液体を用いることが好ましい。
 なお、本実施形態でいう「動粘度」とは、後述する圧縮工程のコールドプレス時において必要な動粘度であり、例えば25℃における液体の動粘度を指す。
 具体的に、分散媒DMに用いられる物質名としては、例えば、デカヘキサフルオロヘキサンやペルフルオロカーバイト(C5~C9)等が挙げられる。
 より詳しくは、下記に示す製品等を分散媒DMとして使用することができる。
・スリーエム社:フロリナート(FLUORINERT)(登録商標)FC72:動粘度0.4cSt
・スリーエム社:フロリナート(FLUORINERT)(登録商標)FC84:動粘度0.55cSt
・スリーエム社:フロリナート(FLUORINERT)(登録商標)FC3283:動粘度0.82cSt
・スリーエム社:フロリナート(FLUORINERT)(登録商標)FC40:動粘度2.2cSt
・スリーエム社:フロリナート(FLUORINERT)(登録商標)FC43(動粘度2.8)74.7%+FC3283(動粘度0.82)25.3%:動粘度2.3cSt
 なお、上記動粘度の単位である「cSt」は、JIS Z8803:2011に記載されている通り、1cSt=1mm/sの関係にある。
 また、混合粉MPは、上記混合工程よりも前工程の予混合工程(予め混合する工程)において、熱圧着性樹脂からなる樹脂粉体、砥粒3及び繊維状フィラー5を予め混合し作製されている。つまり予混合工程においては、熱圧着性樹脂の樹脂粉体、砥粒3及び繊維状フィラー5が予め混合されて、混合粉MPとされており、この混合粉MPに対して、後工程の混合工程において液状の分散媒DMが混合される。
 上記圧縮工程では、図6(d)に示すように、上記混合工程を経て分散媒DMが加えられた混合粉MPを、成形型内で冷間にて圧縮加工(コールドプレス)する。
 なお、本実施形態でいう「コールドプレス」とは、例えば常温での圧縮加工であり、より詳しくは、樹脂粉体の熱圧着が生じる温度未満の温度における圧縮加工を指す。具体的には、コールドプレスの温度は、60℃以下が好ましく、コールドプレスの圧力は、100MPa以下が好ましい。このコールドプレスにより、混合粉MPに含まれる分散媒DMの大部分が、前記混合粉MPから外部へ流出させられる。
 また、本実施形態では、成形型として金型を用いている。ただし、少なくとも圧縮工程以前の工程においては、成形型として金属材料以外の材料からなる型を用いてもよい。
 上記焼結工程では、成形型内において、ブレード本体1の原板11を加熱しつつ圧縮加工(ホットプレス)する。
 なお、本実施形態でいう「ホットプレス」とは、樹脂粉体の熱圧着が行われる温度範囲での圧縮加工を指す。
 ホットプレスの好ましい条件を以下に示す。
(a)熱圧着性樹脂がフェノール樹脂の場合、ホットプレス温度は180~220℃であり、圧力は10MPa以上であり、ホットプレス時間は25分間以上である。
(b)熱圧着性樹脂がポリイミド樹脂の場合、ホットプレス温度は350℃以上であり、圧力は50MPa以上であり、ホットプレス時間は25分間以上である。
(c)熱圧着性樹脂がポリベンゾイミダゾールの場合、ホットプレス温度は400℃以上であり、圧力は50MPa以上であり、ホットプレス時間は25分間以上である。
 具体的には、例えば熱圧着性樹脂がポリイミド樹脂の場合、成形型の熱板330℃、金型温度320℃以上で30分間、圧力10tonの条件にて、原板11をホットプレスする。
 また、ホットプレス後、180~450℃の加熱炉中で8時間以上熱処理を施し、ブレード本体1の焼結を完了させることが好ましい。熱処理は、原板11に負荷を加えていない状態(無負荷の状態)で行うことが好ましい。熱処理の時間は、好ましくは24時間以下である。熱圧着性樹脂がフェノール樹脂の場合、熱処理の温度は、好ましくは180~220℃である。熱圧着性樹脂がポリイミド樹脂又はポリベンゾイミダゾールの場合、熱処理の温度は、好ましくは350~450℃である。
 上記仕上げ工程では、上記焼結工程により原板11が熱硬化して得られたブレード本体1を、所定の外径、内径サイズとなるように、外周と内周を切断又は研削して、仕上げ加工する。また、この仕上げ工程において、ブレード本体1の外周端縁に対して、切れ刃1Aの目立て処理を施してもよい。
 これにより、本実施形態の切断用ブレード10が得られる。
 以上説明した本実施形態の切断用ブレード10の製造方法では、熱圧着性樹脂の樹脂粉体、砥粒3及び繊維状フィラー5を含む混合粉MPに、液状の分散媒DMを加えたものを、金型等の成形型内でコールドプレスする。従って、このコールドプレスの際に、混合粉MPの粉末同士の隙間に分散媒DMが入り込み、液体流動を利用した粉体流動を促すことができる。
 つまり、本実施形態では圧縮工程において、混合粉MPに分散媒DMを混ぜたものに、成形型内にて圧力をかけることで、分散媒DMが潤滑剤のごとく作用して、樹脂粉体、砥粒3及び繊維状フィラー5が均一に成形型内に拡散する。このため、作製されるブレード本体1の原板11の密度のばらつきが顕著に小さく抑えられ、かつ、繊維状フィラー5が原板11内に均等に分散させられる。
 この際、繊維状フィラー5は、ブレード本体1の厚さ方向に交差する向き(つまりブレード本体1の中心軸Oに略垂直な面内における360°全方向のうちいずれかの向き)を向くことになるが、繊維状フィラー5が一定の方向に配向してしまうことはなく、繊維状フィラー5は、配向に規則性がない無配向の分散状態とされる(つまりランダムに配向される)。言い換えると、複数の繊維状フィラー5が、ランダムに配向されていることで、実質的には360°全方向に配向して分散されている。
 なお、この圧縮工程の際には、コールドプレス(冷間にて圧縮)していることから、樹脂粉体の熱圧着が進行することはなく、樹脂粉体の流動性は安定して確保される。
 そして、このブレード本体1の原板11をホットプレスして焼結する。上述のように、原板11の密度のばらつきは小さく抑えられているため、焼結時にブレード本体1に引け等が生じるようなことが抑えられる。その結果、反りや平面度が小さく抑えられたブレード本体1を作製することができる。
 また、原板11を成形した時点から繊維状フィラー5が均等に分散しているので、前記原板11を焼結して得られたブレード本体1においても、繊維状フィラー5はブレードの周方向及び径方向に均等に分散している。このため、強度にばらつきのない優れた切断用ブレード10を得ることができる。詳しくは、上述したようにブレード本体1の中心軸Oに略垂直な面内において、繊維状フィラー5は一定方向に配向することなく、不特定な方向(360°すべての向き)にランダムに配向されているので、繊維状フィラー5が骨材のごとく機能して、ブレード周方向の全体において強度が均等に高められることになる。
 また、ブレード本体1において繊維状フィラー5が、均等にかつランダム配向で分散されていることにより、下記の作用効果も得られる。
・耐磨耗性の向上。
・刃痩せの抑制。
・適度な自生発刃作用。
・靱性の向上。
・耐熱性の向上。
 すなわち、ブレード本体1の内部に繊維状フィラー5が均等にかつランダム配向で分散されていることにより、このブレード本体1は周方向の所定箇所において磨耗が進行しやすくなるようなことがなく、周方向の全体に均等に磨耗が進行していくことになる。その結果、ブレード全体としての磨耗量も抑制されて、耐磨耗性が向上する。また、耐磨耗性が向上するので、工具寿命が延長する。
 また、ブレード本体1の中心軸Oに略垂直な面内において、繊維状フィラー5は、ランダム配向されている。このため、ブレード本体1の厚さ方向を向く両側面(ブレードの表裏面)1B、1Bに対しては、例えば細長い柱状をなす繊維状フィラー5の周面や縦断面(フィラー5の延在方向に沿う断面)が露出させられることになり、繊維状フィラー5の延在方向を向く端面や横断面(フィラー5の延在方向に垂直な断面)の露出は抑えられる。一方、ブレード本体1の径方向の外側を向く外周面に対しては、繊維状フィラー5は、その周面や縦断面が露出するものもあれば、端面や横断面が露出するものもあり、様々である。
 このため、ブレード本体1の両側面1B、1Bに対しては、ブレード外面の単位面積あたりにおける繊維状フィラー5の露出面積の割合が大きくなる。これに比べてブレード本体1の外周面に対しては、ブレード外面の単位面積あたりにおける繊維状フィラー5の露出面積の割合は小さくなる。つまり、ブレード外面の単位面積あたりの繊維状フィラー5の露出面積に関して、ブレード本体1の外周面における繊維状フィラー5の露出面積よりも、両側面1B、1Bにおける繊維状フィラー5の露出面積の方が大きくなる。このため、ブレード本体1の外周面においては、適度に磨耗を進行させて切れ刃1Aの切れ味を良好に維持することができる(自生発刃作用を促すことができる)。また、ブレード本体1の両側面1B、1Bにおいては、磨耗の進行を抑制して、刃痩せを抑えることができる。従って、切断加工により被切断材に形成される切断面において、刃痩せに起因する傾斜等の不具合が生じにくくなり、切断加工の品位が顕著に高められる。
 また、本実施形態では、繊維状フィラー5の均等な分散及びランダム配向によりブレード強度を向上させている。このため、例えば本実施形態とは異なり、繊維状フィラー5を用いることなく単に硬度の高い粒子状フィラーを用いてブレード強度を向上させようとする場合に比べて、本実施形態では適度な自生発刃作用を促すことができる。
 すなわち、従来の粒子状フィラーを用いてブレード強度を高めようとした場合、粒子状フィラーは配向に特徴を持たせることができないため、単純に粒子状フィラーの硬度を上げる手法が採用される。しかしながら、粒子状フィラーの硬度が上がると、切れ刃1Aにおいて砥粒3の保持力が高くなり過ぎて新しい刃が形成されにくくなる(自生発刃作用が低下する)。このため、切れ味を良好に維持することができない。
 一方、本実施形態のように繊維状フィラー5を用いれば、フィラーの硬度を上げることなくブレード強度を高めることができるので、適度な自生発刃作用を促して、切れ味を良好に維持することができる。
 また、ブレード本体1の内部で、繊維状フィラー5が均等に分散し、かつランダムに配向していることから、これらの繊維状フィラー5が骨材のように作用して、ブレード本体1の靱性が向上する。このため、切断用ブレード10の強度が高められつつ、耐衝撃性にも優れたものとなり、特に高速回転時の切断加工においても剛性が十分に確保されて、高品位な切断精度を維持することができる。
 また、繊維状フィラー5が均等に分散され、かつランダムに配向されているので、ブレード本体1の内部において繊維状フィラー5同士による熱伝導率の向上を図ることができる。このため、例えば、繊維状フィラー5として熱伝導率のよい金属繊維やカーボンファイバー等を用いた場合において、切断加工時にブレード本体1の外周縁部(切れ刃1A)に生じた摩擦熱が、繊維状フィラー5を通して早期にブレード内で熱分散されるとともに冷却効率が向上して、切断用ブレード10の耐熱性が向上する。
 なお、コールドプレス前に混合粉MPに加えた分散媒DMについては、その大部分が、コールドプレス時に混合粉MP(ブレード本体1の原板11)より流出し、除去される。また、コールドプレス後にブレード本体1の原板11に残留した分散媒DMについては、例えば焼結工程のホットプレス前に揮発させて、ブレード本体1から除去することができる。この際、分散媒DMは粉体同士の僅かな隙間に存在しているため、分散媒DMの揮発によりブレード本体1が多孔質状に形成されるようなことは防止される。またこの場合、焼結工程を経て作製されたブレード本体1に分散媒DMが残されることがないので、ブレード本体1の性能が分散媒DMによる影響を受けることもない。
 より詳しくは、焼結工程において分散媒DMが揮発させられるタイミングは、ホットプレスにより樹脂粉体が熱圧着を開始する以前であることが好ましい。つまり、ホットプレスの実施以前(焼結工程の前まで)に、分散媒DMがすべて揮発させられていることが好ましい。これにより、粉体同士の間において分散媒DMが存在していたスペースが樹脂相2により塞がれて(置換されて)、焼結後のブレード本体1に分散媒DMの痕跡が残されなくなる。従って、ブレード本体1の性能に関して、分散媒DM及びその痕跡が影響するようなことがなくなる。
 具体的に、本実施形態により製造された切断用ブレード10においては、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域(本実施形態の例では、中心軸O回りに4等分した4つの領域)に区画する。各領域において求めた繊維状フィラー5の含有率が、ブレード本体1全体に占める繊維状フィラー5の総含有率に対して、90~110%にまで抑えられる。
 つまり、ブレード本体1の各領域に、繊維状フィラー5が均等に含有されているとともに、ブレード本体1の全域にわたって、繊維状フィラー5が均等に分散している。これは上述したように、コールドプレスによる圧縮工程を経たブレード本体1の原板11において、すでに繊維状フィラー5がブレード全体に均等に分散しているためである。従って、作製されたブレード本体1は、ブレード全体において強度ばらつきのない剛性に優れたものとなる。
 また、本実施形態により製造された切断用ブレード10においては、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域(本実施形態の例では、中心軸O回りに8等分した8つの領域)に区画し、各領域において測定した密度の平均値を平均密度とする。この平均密度に対して、各領域において測定した密度が90~110%にまで抑えられる。つまり、ブレード本体1の全域において密度の差(密度のばらつき)が小さく抑えられている。これは上述したように、コールドプレスによる圧縮工程を経たブレード本体1の原板11において、すでに密度差が小さく抑えられているためである。従って、作製されたブレード本体1は、反りや平面度が小さく抑えられることになる。
 より詳しくは、本実施形態により製造された切断用ブレード10においては、ブレード本体1の反り量を300μm以下に抑えることができる。また、ブレード本体1の平面度を20μm以下に抑えることができる。
 また、焼結後に得られるブレード本体1の厚さ方向を向く両側面1B、1Bの平面度が、上述のように小さく抑えられている。このため、特に高品位な切断精度が求められる使用分野においても、ブレード本体1の両側面1B、1Bをラップ処理により平坦化することなく、所期する平面度を満足することができる。
 このように、ブレード本体1の反りや平面度が小さく抑えられることにより、この切断用ブレード10で被切断材を切断したときに、下記の作用効果が得られる。
 すなわち、切断用ブレード10の厚さ方向への振れが抑えられるため、切断幅が小さく抑えられて、被切断材の製品の歩留まりを向上させることができる。また、切断用ブレード10から被切断材に対して、切断幅方向(切断加工により被切断材に形成される切断ラインの幅方向)への力が作用しにくくなる。このため、切断用ブレード10が被切断材にスムーズに切り込んで、切断面のバリやチッピング等の発生が防止される。従って、被切断材を個片化してなる電子材料部品(製品)等の品質が、安定して高められることになる。
 さらに、ブレード表面にラップ処理を施す必要がないことから、このラップ処理によって砥粒3が樹脂相2から突き出してしまうようなことがない。つまり本実施形態では、焼結工程を経て得られたブレード本体1は、前記ブレード本体1の側面1Bよりも厚さ方向の内側に砥粒3が配置されており、側面1Bから厚さ方向の外側へ突き出す砥粒3が存在しない。このため、切断加工時において、ブレード本体1の側面1Bから突出する砥粒3が被切断材の切断面を荒らして加工品位を低下させる(バリやチッピング等を生じさせる)ような不具合を顕著に抑制できる。従って、上述の平面度を小さく抑えることができるという効果と相俟って、切断精度を格別顕著に高めることができるのである。
 詳しくは、従来においては、特にブレード本体の厚さを1.1mm以下に薄肉化しようとした場合に、ブレード表面の平面度を小さく抑えるために、また、ブレード本体の厚さを所期する薄さまで追い込んでいく(所望の厚さまで薄くする)ために、ラップ処理を行うことが必須であった。このため、ブレード本体の側面から砥粒が突き出すことを防止することはできなかった。
 一方、本実施形態によれば、ブレード本体1の厚さを1.1mm以下に薄肉化しても、焼結後においてすでに平面度が小さく抑えられているため、ラップ処理が不要である。このため、ブレード本体1の側面1Bから砥粒3が突き出すことを確実に防止することができる。すなわち、焼結工程を経たブレード本体1の両側面1B、1Bは、プレス加工により表面が平らに形成されており砥粒3の突き出しが無い状態である。このため、ラップ処理を省いたことにより、ブレード表面からの砥粒3の突き出しをゼロにすることが可能である。
 さらに、ラップ処理を施す必要がないので、製造が容易化されるのはもちろんのこと、従来のようにラップ処理を見込んでブレード本体の厚さを予め大きく形成しておく必要もなくなり、材料費が削減される。
 また、従来では切断用ブレード10が被切断材を切断する際に受ける反力が、反り量の大きい箇所に対して偏って作用していた。本実施形態では、ブレード本体1の反りや平面度が小さく抑えられることにより、上記事項が防止される。つまり本実施形態によれば、上記反力が、切断用ブレード10の周方向全周にわたって均等に作用しやすくなるとともに、所定箇所に対して大きな負荷がかかるようなことが防止されるので、切断用ブレード10の工具寿命が延長する。
 そして、このように切断精度が顕著に高められた切断用ブレード10を製造するにあたり、図8(a)~(c)に示す従来の製法に比べて、本実施形態では特別に複雑な製造工程を用いているわけではない。具体的に本実施形態では、分散媒DMを加えた混合粉MPを成形型内でコールドプレスするという簡単な工程を経ることにより、ブレード本体1(原板11)の密度のばらつきを抑えつつ、繊維状フィラー5を均等に分散しかつ繊維状フィラー5をランダム配向させる。これにより、上述の優れた作用効果を得ることができるため、切断用ブレード10の製造が容易である。
 以上より、本実施形態の切断用ブレード10の製造方法によれば、熱圧着性樹脂からなる樹脂相2を備えつつ、ブレード本体1の内部で繊維状フィラー5を一定方向に配向させることなく、かつ繊維状フィラー5を均等に分散させることができる。これにより、ブレード周方向の全体において強度が均等に高められた切断用ブレード10を、簡単に製造することができる。
 また、本実施形態の切断用ブレード10によれば、ブレード周方向の全体において強度が均等に高められているので、切断加工を高速回転で安定して行うことができる。
 また、本実施形態の切断用ブレード10の製造方法では、混合工程が、熱圧着性樹脂の樹脂粉体、砥粒3及び繊維状フィラー5を含む混合粉MPを、成形型に充填する工程と、前記混合粉MPの表面を平坦化する工程と、前記混合粉MPに液状の分散媒DMを滴下する工程と、を備えているので、下記の作用効果を奏する。
 すなわちこの場合、混合工程が、成形型に充填された混合粉MPの表面を平坦化する工程を備えているので、この混合工程の後工程の圧縮工程において、混合粉MPが成形型内で均等に拡散するまでの流動量を小さく抑えることができる。このため、以下の作用効果が、より安定して奏功される。
 上述したブレード本体1の原板11の密度のばらつきを小さく抑えられるという作用効果。
 原板11の内部において繊維状フィラー5を均等に分散させつつ、繊維状フィラー5を一定方向に配向させることなくランダムに配向させられるという作用効果。
 また、混合工程が、表面を平坦化した混合粉MPに、分散媒DMを滴下する工程を備えているので、混合粉MPに対して分散媒DMが均等に混ざりやすくなる。つまり、混合粉MP全体に分散媒DMが行き渡り馴染みやすくなるので、この混合工程の後工程の圧縮工程において、分散媒DMの液体流動を利用した混合粉MPの粉体流動が、成形型内の全体にわたって均等に行われる。従って、以下の作用効果が、より安定して奏功される。
 上述したブレード本体1の原板11の密度のばらつきを小さく抑えられるという作用効果。
 原板11の内部において繊維状フィラー5を均等に分散させつつ、繊維状フィラー5を一定方向に配向させることなくランダムに配向させられるという作用効果。
 また、本実施形態の切断用ブレード10の製造方法では、分散媒DMとして、動粘度が2.3mm/s以下の液体を用いているので、分散媒DMが混合粉MPの粉体間によく馴染んで広範囲に液体流動しやすくなるとともに、混合粉MPの粉体流動を促す潤滑剤として効果的に機能する。これにより、圧縮工程において、成形型内で混合粉MPを均等に拡散できるという作用効果が、より格別に顕著に得られる。
 具体的に、分散媒DMの動粘度が2.3mm/s以下であると、焼結後に得られるブレード本体1の反りや平面度が顕著に小さく抑えられ、かつ、ブレード全体の強度が格別に顕著に高められる。
 また、本実施形態の切断用ブレード10は、ブレード本体1全体に占める繊維状フィラー5の総含有率が20~60vol%であるので、上述した繊維状フィラー5による作用効果を確実に奏功しつつ、繊維状フィラー5が含有され過ぎることによるブレード剛性の低下を防ぐことができる。
 すなわち、繊維状フィラー5の総含有率が20vol%以上であるので、ブレード本体1に繊維状フィラー5が分散されたことによる上述の作用効果が確実に得られることになる。また、繊維状フィラー5の総含有率が60vol%以下であることにより、繊維状フィラー5同士の間に介在する結合剤である樹脂相2が減り過ぎることを抑えて、樹脂相2の機能を安定化させることができる。
 また、本実施形態の切断用ブレード10において、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画し、各領域において測定した密度の平均値を平均密度とする。前記平均密度に対して、各領域において測定した密度が90~110%である。
 また、ブレード本体1の反り量が、300μm以下であり、ブレード本体1の平面度が、20μm以下である。
 この切断用ブレード10は、前記平均密度に対して、各領域において測定した密度が90~110%(平均密度を100%として±10%以内)であり、ブレード本体1の密度のばらつきが小さく抑えられている。このため、ブレード本体1の反り量を300μm以下にまで小さく抑えることができる。また、ブレード本体1の平面度を20μm以下にまで小さく抑えることができる。このため、切断用ブレード10の製造時において、ブレード表面(両側面1B、1B)を平坦化するためのラップ処理等を削減することが可能である。
 従って、切断用ブレード10の製造の容易性を向上しつつ、この切断用ブレード10による切断精度を顕著に高めることができる。
 詳しくは、従来の切断用ブレードでは、図8(a)~(c)を用いて説明したように、ブレード製造時において成形型内の混合粉の内部の充填密度にばらつきが生じやすいため、焼結後に得られるブレード本体の側面の平面度が、100μm前後の値(約100μm)と大きくなっていた。このため、特に切断精度が求められる使用分野においては、ブレード本体の両側面をラップ処理して平坦化を図っていた。しかしながら、ラップ処理により樹脂相が除去されても、硬度が高い砥粒は側面から突き出した状態のまま残留しやすく、所期する平面度を満足することが困難であった。
 一方、本実施形態の切断用ブレード10によれば、成形型内の混合粉MPの内部において充填密度のばらつきが小さく抑えられるため、焼結後に得られるブレード本体1の側面1Bの平面度を20μm以下にまで小さく抑えられる。このため、特に切断精度が求められる使用分野においても、ブレード本体1の両側面1B、1Bをラップ処理により平坦化することなく、所期する平面度を満足することができる。
 さらに、ブレード表面にラップ処理を施す必要がないことから、このラップ処理によって砥粒3が樹脂相2から突き出してしまうようなことがない。つまり、焼結工程を経て得られたブレード本体1の側面1Bにおいては、厚さ方向に突き出す砥粒3が存在しないため、上述の平面度を小さく抑えることができるという効果と相俟って、切断精度を格別顕著に高めることができるのである。
 また、本実施形態の切断用ブレード10は、ブレード本体1の厚さが、1.1mm以下である。
 この切断用ブレード10は、上述のようにブレード本体1の全域において強度が高められているので、ブレード本体1の剛性を確保しつつ、前記ブレード本体1を厚さ1.1mm以下に薄肉化することが容易である。
 従って、切断精度を良好に維持しつつ、被切断材の切断幅を小さく抑えて製品の歩留まりを向上できるという効果が、より格別に顕著に得られる。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の要件を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前述の実施形態の切断用ブレード10は、砥粒3及び繊維状フィラー5が分散された樹脂相2が1層設けられてブレード本体1が形成されているが、このような樹脂相2が厚さ方向に複数積層されてブレード本体1が形成されていてもよい。この場合、圧縮工程を経て得られたブレード本体1の原板11を、焼結工程において厚さ方向に複数積層してホットプレスし焼結する。
 また、前述の実施形態では、切断用ブレード10の製造方法の混合工程が、樹脂粉体、砥粒3及び繊維状フィラー5を含む混合粉MPを成形型に充填する工程と、混合粉MPの表面を平坦化する工程と、混合粉MPに分散媒DMを滴下する工程と、を備えているとしたが、これに限定されるものではない。すなわち、混合工程では、例えば混合粉MPの表面を平坦化せずに分散媒DMを滴下したり、混合粉MPに分散媒DMを滴下してから成形型に充填したりしてもよい。ただし、前述の実施形態で説明したように、混合工程が上記3つの工程を備えている場合には、この混合工程より後工程の圧縮工程を経たブレード本体1の原板11において、密度のばらつきが小さく抑えられ、かつ繊維状フィラー5が均等に分散されるという効果がより顕著に得られる。このため、混合工程が上記3つの工程を備えていることが好ましい。
 また、前述の実施形態では、ダイヤモンド及びcBNのいずれかからなる砥粒3が樹脂相2に分散されているとしたが、これに限定されるものではない。すなわち、砥粒3として、ダイヤモンド及びcBN以外の硬質材料からなる粒子が、砥粒3として樹脂相2に分散されていてもよい。
 また、前述の実施形態では、樹脂相2を形成する熱圧着性樹脂として、例えばポリイミド樹脂、特定のフェノール樹脂、ポリベンゾイミダゾール(PBI(登録商標))等を用いるとしたが、これに限定されるものではなく、それ以外の熱圧着性樹脂であってもよい。
 また、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画し、各領域において測定した密度の平均値を平均密度とする。前記平均密度に対して、各領域において測定した密度が90~110%であると説明した。これは、例えば、樹脂相2の原料となる樹脂粉体の種類が変わり、前記平均密度が変化しても、この平均密度に対して、中心軸O回りに等分した複数の領域において測定した各密度(各領域の密度)が、すべて90~110%の範囲内に含まれることを意味している。ただし本発明は、平均密度に対して各領域で測定した密度が、90~110%の範囲内に含まれる場合に限定されない。
 また、ブレード本体1を、前記ブレード本体1の中心軸O回りに互いに等しい角度で複数の領域に区画し、各領域において測定した繊維状フィラー5の含有率を測定する。ブレード本体1全体に占める繊維状フィラー5の総含有率に対して、各領域における繊維状フィラー5の含有率は90~110%であると説明した。これは、例えば、ブレード本体1全体に占める繊維状フィラー5の総含有率が、前述の実施形態で説明した20~60vol%の間で変化しても、この総含有率に対して、中心軸O回りに等分した複数の領域において測定した繊維状フィラー5の各含有率(各領域における繊維状フィラー5の含有率)が、すべて90~110%の範囲内に含まれることを意味している。
 なお、本発明は、ブレード本体1全体に占める繊維状フィラー5の総含有率が、20~60vol%の範囲内に含まれる場合に限定されるわけではない。
 また、前述の実施形態では、分散媒DMとして、例えばフッ素系不活性液体などの代替フロン等を用いることとしたが、これに限定されるものではない。すなわち、分散媒DMは、フッ素系不活性液体以外の代替フロンや、代替フロン以外の液体であってもよい。
 また、前述の実施形態では、切断用ブレード10が、被切断材として例えばQFNやIrDAのような、樹脂中に金属材を有する複合材である電子材料部品の切断に使用されると説明したが、これに限定されるものではない。すなわち、半導体デバイス(電子材料部品)に用いられ、かつ例えばガラス、セラミックス、石英等の脆性材料(硬脆材料)からなる被切断材を精密に切断加工する工程にて、切断用ブレード10を用いてもよい。
 その他、本発明の要件から逸脱しない範囲において、前述の実施形態、変形例及びなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 以下、本発明を実施例により具体的に説明する。ただし本発明はこの実施例に限定されるものではない。
<繊維状フィラーの含有率のばらつきの確認>
 前述の実施形態で説明した切断用ブレード10の製造方法により製造した切断用ブレード10を実施例1とし、図8(a)~(c)に示す従来の製法により製造した切断用ブレードを比較例1とし、ドクターブレード法により製造した切断用ブレードを比較例2とした。これら3種類の切断用ブレードにおいて、それぞれ、ブレード本体全体に占める繊維状フィラーの総含有率が、19vol%、20vol%、30vol%、40vol%、50vol%、60vol%、61vol%とされたものを用意した。
 なお、各切断用ブレードは、ブレード本体が樹脂相により形成されており、樹脂相の原料である樹脂粉体には互いに同一の材料(素材)を用いた。具体的には、樹脂粉体として、熱圧着性樹脂であるポリイミド樹脂を用いた。また、樹脂相に分散される砥粒及び繊維状フィラーについても同一の材料を用いた。ブレード本体中の砥粒の含有率については、各切断用ブレード同士において互いに同等に設定した。
 実施例1の切断用ブレード10の製造には、分散媒DMとして、スリーエム社:フロリナート(FLUORINERT)(登録商標)FC72:動粘度0.4cStを用いた。
 各切断用ブレードのブレード本体の寸法は、下記の通りとした。
・外径:φ58mm
・内径:φ40mm
・厚さ:1.1mm
 そして、各切断用ブレードにおいて、図4に示すようにブレード本体を、前記ブレード本体の中心軸O回りに4等分した4つの領域に区画し、各領域において繊維状フィラーの含有率を測定した。そして、上述したブレード本体全体に占める繊維状フィラーの総含有率を100%として、4つの領域で測定した繊維状フィラーの各含有率が、繊維状フィラーの総含有率の100%に対してプラスマイナス何%の範囲内に収まっているかを確認した。詳細には、繊維状フィラーの総含有率に対する各領域の繊維状フィラーの含有率の比(百分率)を求め、その比のばらつきの範囲を求めた。
 なお、「Xを100%とすると、Yが±Z%の範囲内である」及び「Xの100%に対して、Yが±Z%の範囲内である」とは、Xに対するYの比(Y/X)(百分率)が(100-Z)%~(100+Z)%の範囲内であることを意味する。また、繊維状フィラーの総含有率は、ほぼ設計値(狙い値)通りである。
 測定結果を、下記表1に示す。
 表1中、丸印は、繊維状フィラーの総含有率の100%に対して、各領域の繊維状フィラーの含有率が±5%の範囲内であったことを示す。三角の印は、繊維状フィラーの総含有率の100%に対して、各領域の繊維状フィラーの含有率が±15%の範囲内であったことを示す。バツの印(cross mark)は、繊維状フィラーの総含有率の100%に対して、各領域の繊維状フィラーの含有率が±15%の範囲外であったことを示す。詳細には、バツの印は、各領域の繊維状フィラーの含有率の値のうち、繊維状フィラーの総含有率の100%に対して±15%の範囲外となる値があったことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、実施例1の切断用ブレード10では、測定した各領域における繊維状フィラー5の含有率が、総含有率100%に対して、すべて±10%の範囲内(つまり90~110%)に含まれていた。具体的には、総含有率100%に対して、各領域における繊維状フィラー5の含有率は、すべて±5%の範囲内(つまり95~105%)に収まっていた。
 一方、比較例1、2の切断用ブレードでは、測定した各領域における繊維状フィラーの含有率の値のうち、総含有率100%に対して±15%の範囲外となる値(つまり85%未満又は115%を超える値)があり、繊維状フィラーの含有率のばらつきが大きかった。なお、比較例2については、繊維状フィラーの総含有率が40vol%以上になると、スラリーからシート体を形成することができず、成型不可であった。
<磨耗試験>
 上述の実施例1と同じ製造方法で作製した切断用ブレード10を実施例2とし、上述の比較例1と同じ製造方法で作製した切断用ブレードを比較例3とし、上述の比較例2と同じ製造方法で作製した切断用ブレードを比較例4とした。各切断用ブレードを用いてブレード磨耗量の比較試験を行った。
 この磨耗試験においても、実施例2、比較例3及び比較例4の各切断用ブレードについて、それぞれ、ブレード本体全体に占める繊維状フィラーの総含有率が、19vol%、20vol%、30vol%、40vol%、50vol%、60vol%、61vol%とされたものを用意した。なお、比較例4については、繊維状フィラーの総含有率が40vol%以上になると、スラリーからシート体を形成することができず、成型不可であった。
 各切断用ブレードのブレード本体の寸法は、下記の通りとした。
・外径:φ58mm
・内径:φ40mm
・厚さ:1.1mm
 また、使用されたブレードは、実施例2、比較例3及び比較例4ともに、SDC170-100の仕様とした。
 試験条件は、下記の通りとした。
・使用切断機:東京精密製 A-WD100A
・スピンドル回転数:15000m-1
・切り込み:0.8mm
・送り速度:100mm/s
・冷却水量:1.2L+1.2L
・ドレッサプレート:東京精密製 A2-2mm
・溝入れ本数:30本×5セット
 そして、切断機に装着した切断用ブレードを回転させて、ドレッサプレートに溝入れ加工を施し、ブレード磨耗量を確認した。
 試験結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、実施例2の各切断用ブレード10の磨耗量は、すべて500μm未満に収まっており、磨耗量が顕著に抑えられていて、耐摩耗性が高められることが確認された。実施例2においてはブレード本体1の密度のばらつきが小さく抑えられ、かつ、繊維状フィラー5が均等に分散させられた。このため、ブレード外周から径方向の内側へ向けて進行する磨耗量が周方向の全体に均一化された。この結果、磨耗が早期に進行してしまう箇所がなくなって、全体としての磨耗の進行も抑制されたため、耐摩耗性が高められたと考えられる。
 また、その中でも、繊維状フィラー5の総含有率が20~60vol%である切断用ブレード10については、磨耗量がすべて400μm未満とされて、優れた耐摩耗性が得られることが確認された。
 一方、比較例3、4については、各切断用ブレードの磨耗量がすべて550μmを超えており、磨耗量が多かった。なお、繊維状フィラーの総含有率が多くなるほど、ブレード磨耗量が増加する傾向が見受けられた。
<切断試験>
 上述の実施例1と同じ製造方法で作製した切断用ブレード10を実施例3とし、上述の比較例1と同じ製造方法で作製した切断用ブレードを比較例5とし、上述の比較例2と同じ製造方法で作製した切断用ブレードを比較例6とした。各切断用ブレードを用いて加工品位の比較試験を行った。
 この切断試験においても、実施例3、比較例5及び比較例6の各切断用ブレードについて、それぞれ、ブレード本体全体に占める繊維状フィラーの総含有率が、19vol%、20vol%、30vol%、40vol%、50vol%、60vol%、61vol%とされたものを用意した。なお、比較例6については、繊維状フィラーの総含有率が40vol%以上になると、スラリーからシート体を形成することができず、成型不可であった。
 各切断用ブレードのブレード本体の寸法は、下記の通りとした。
・外径:φ58mm
・内径:φ40mm
・厚さ:1.1mm
 また、使用されたブレードは、実施例3、比較例5及び比較例6ともに、SDC170-100の仕様とした。
 試験条件は、下記の通りとした。
・使用切断機:東京精密製 A-WD100A
・スピンドル回転数:25000m-1
・送り速度:30mm/s
・テープ切り込み:0.5mm
・冷却水量:2.0L+2.0L
・被切断材:QFNパッケージ(樹脂と銅の複合材)
 そして、切断機に装着した切断用ブレードを回転させて、QFNパッケージに切断加工を施し、加工品位を確認した。加工品位は、以下の方法により判断した。図7に示すように、被切断材を賽の目状に切断(ダイシング)した(被切断材を複数の立方体のチップに切断した)。次いで、個片化したチップのバリ20の長さを測定した。バリ20の長さは、1ワークにつき10チップ測定した。なお、バリサイズが75μm以下であれば、チップの加工品位が確保されたものと判断した。
 試験結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、比較例5の各切断用ブレードにより切断したチップのバリサイズ、及び、比較例6の各切断用ブレードにより切断したチップのバリサイズに比べて、実施例3の各切断用ブレード10により切断したチップのバリサイズは、顕著に小さく抑えられることがわかった。そして、実施例3においては、すべてのバリサイズが75μm以下に抑えられていた。実施例3においてはブレード本体1の密度のばらつきが小さく抑えられ、ブレード本体1の反りや平面度が小さく抑えられた。その結果、チップの切断面に作用する抵抗が低減したため、バリサイズが顕著に小さく抑えられたと考えられる。また、ブレード本体1において繊維状フィラー5が均等に分散させられて、切れ刃1Aの刃痩せが抑制された。その結果、切断面の加工品位が良好に維持されたため、バリサイズが顕著に小さく抑えられたと考えられる。
 本発明の切断用ブレードは、半導体製品などに用いられる電子材料部品等の被切断材を切断加工する工程に好適に適用される。電子材料部品としては、半導体素子がリードフレームに実装されて樹脂モールディングされた部品、QFN(quad flat non-leaded package)、及びIrDA(赤外線データ通信協会)規格の光伝送モジュールが挙げられる。また、本発明の切断用ブレードは、ガラス、セラミックス、石英等の脆性材料(硬脆材料)からなる被切断材を精密に切断加工する工程にも好適に適用される。
 本発明の切断用ブレードの製造方法は、上記の電子材料部品等の被切断材を切断するためのブレードを製造する工程に好適に適用される。
 1 ブレード本体
 1A 切れ刃
 2 樹脂相
 3 砥粒
 5 繊維状フィラー
 10 切断用ブレード
 11 ブレード本体の原板
 DM 分散媒
 MP 混合粉
 O ブレード本体の中心軸

Claims (9)

  1.  熱圧着性樹脂の樹脂粉体、砥粒及び繊維状フィラーを含む混合粉に、液状の分散媒を加える混合工程と、
     前記分散媒を加えた前記混合粉を、成形型内でコールドプレスして、ブレード本体の原板を形成する圧縮工程と、
     前記原板をホットプレスして焼結する焼結工程と、を備えることを特徴とする切断用ブレードの製造方法。
  2.  前記混合工程は、
     熱圧着性樹脂の樹脂粉体、砥粒及び繊維状フィラーを含む混合粉を、成形型に充填する工程と、
     前記混合粉の表面を平坦化する工程と、
     前記混合粉に液状の分散媒を滴下する工程と、を備えることを特徴とする請求項1に記載の切断用ブレードの製造方法。
  3.  前記分散媒として、動粘度が2.3mm/s以下の液体を用いることを特徴とする請求項1又は2に記載の切断用ブレードの製造方法。
  4.  円板状をなすブレード本体と、前記ブレード本体の外周縁部に形成された切れ刃と、を備え、
     前記ブレード本体は、
     熱圧着性樹脂で形成された樹脂相と、
     前記樹脂相に分散された砥粒及び繊維状フィラーと、を備え、
     前記ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域に区画し、各領域において測定した前記繊維状フィラーの含有率が、前記ブレード本体全体に占める前記繊維状フィラーの総含有率に対して、90~110%であることを特徴とする切断用ブレード。
  5.  前記ブレード本体を、前記ブレード本体の中心軸回りに互いに等しい角度で複数の領域に区画し、各領域において測定した密度の平均値を平均密度として、
     前記平均密度に対して、各領域において測定した密度が90~110%であることを特徴とする請求項4に記載の切断用ブレード。
  6.  前記ブレード本体全体に占める前記繊維状フィラーの総含有率が、20~60vol%であることを特徴とする請求項4又は5に記載の切断用ブレード。
  7.  前記ブレード本体の反り量が、300μm以下であることを特徴とする請求項4~6のいずれか一項に記載の切断用ブレード。
  8.  前記ブレード本体の平面度が、20μm以下であることを特徴とする請求項4~7のいずれか一項に記載の切断用ブレード。
  9.  前記ブレード本体の厚さが、1.1mm以下であることを特徴とする請求項4~8のいずれか一項に記載の切断用ブレード。
PCT/JP2016/087906 2015-12-21 2016-12-20 切断用ブレードの製造方法、及び切断用ブレード WO2017110791A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017558144A JP6325182B2 (ja) 2015-12-21 2016-12-20 切断用ブレードの製造方法、及び切断用ブレード
US15/982,959 US20180264627A1 (en) 2015-12-21 2018-05-17 Method for manufacturing cutting blade, and cutting blade
US16/719,646 US11458594B2 (en) 2015-12-21 2019-12-18 Method for manufacturing cutting blade, and cutting blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-248991 2015-12-21
JP2015248991 2015-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/982,959 Continuation US20180264627A1 (en) 2015-12-21 2018-05-17 Method for manufacturing cutting blade, and cutting blade

Publications (1)

Publication Number Publication Date
WO2017110791A1 true WO2017110791A1 (ja) 2017-06-29

Family

ID=59090357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087906 WO2017110791A1 (ja) 2015-12-21 2016-12-20 切断用ブレードの製造方法、及び切断用ブレード

Country Status (4)

Country Link
US (2) US20180264627A1 (ja)
JP (1) JP6325182B2 (ja)
TW (1) TWI719097B (ja)
WO (1) WO2017110791A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177452A (ja) * 2018-03-30 2019-10-17 山形県 カーボンナノチューブ複合レジンボンド砥石及びその製造方法
CN110640645A (zh) * 2019-09-29 2020-01-03 江苏赛扬精工科技有限责任公司 胶木基体砂轮落差法制备方法
JP2021034467A (ja) * 2019-08-21 2021-03-01 株式会社ディスコ 切削ブレード及び加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113007042B (zh) * 2019-12-20 2022-07-15 江苏金风科技有限公司 风力发电机组的叶片修复方法、叶片胶结结构和叶片
CN112917403B (zh) * 2021-01-27 2022-07-05 江苏新砺河磨具科技有限公司 热压磨钢轨砂轮多层投料工艺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410751B1 (ja) * 1967-04-12 1979-05-09
JPS61173863A (ja) * 1985-01-28 1986-08-05 Showa Denko Kk 薄肉砥石の製造法
JP2014524358A (ja) * 2011-08-24 2014-09-22 サンーゴバン アブレイシブズ,インコーポレイティド 研磨具用マイクロファイバー補強材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313742A (en) * 1991-01-11 1994-05-24 Norton Company Highly rigid composite shaped abrasive cutting wheel
JPH10193268A (ja) 1996-05-22 1998-07-28 Mitsubishi Materials Corp 超砥粒メタルボンド砥石の製造方法
JP3436064B2 (ja) 1996-11-14 2003-08-11 三菱マテリアル株式会社 超砥粒メタルボンド砥石の製造方法
US6012977A (en) * 1997-12-22 2000-01-11 Shin-Etsu Chemical Co., Ltd. Abrasive-bladed cutting wheel
US8530404B2 (en) 2005-06-15 2013-09-10 Fibrogen, Inc. Compounds and methods for treatment of cancer
JP5167696B2 (ja) * 2006-06-05 2013-03-21 セントラル硝子株式会社 フッ素化ナノダイヤモンド分散液の作製方法
JP4994990B2 (ja) * 2007-08-03 2012-08-08 東京エレクトロン株式会社 基板処理方法、基板処理装置、プログラム、記録媒体および置換剤
JP6207015B2 (ja) * 2013-11-19 2017-10-04 株式会社東京精密 切断用ブレード及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410751B1 (ja) * 1967-04-12 1979-05-09
JPS61173863A (ja) * 1985-01-28 1986-08-05 Showa Denko Kk 薄肉砥石の製造法
JP2014524358A (ja) * 2011-08-24 2014-09-22 サンーゴバン アブレイシブズ,インコーポレイティド 研磨具用マイクロファイバー補強材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177452A (ja) * 2018-03-30 2019-10-17 山形県 カーボンナノチューブ複合レジンボンド砥石及びその製造方法
JP7168159B2 (ja) 2018-03-30 2022-11-09 山形県 カーボンナノチューブ複合レジンボンド砥石及びその製造方法
JP2021034467A (ja) * 2019-08-21 2021-03-01 株式会社ディスコ 切削ブレード及び加工方法
JP7350436B2 (ja) 2019-08-21 2023-09-26 株式会社ディスコ 切削ブレード及び加工方法
CN110640645A (zh) * 2019-09-29 2020-01-03 江苏赛扬精工科技有限责任公司 胶木基体砂轮落差法制备方法

Also Published As

Publication number Publication date
JPWO2017110791A1 (ja) 2018-05-24
US20200122297A1 (en) 2020-04-23
TW201729947A (zh) 2017-09-01
JP6325182B2 (ja) 2018-05-23
US20180264627A1 (en) 2018-09-20
TWI719097B (zh) 2021-02-21
US11458594B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP6325182B2 (ja) 切断用ブレードの製造方法、及び切断用ブレード
JP2012232378A (ja) 精密研磨工具用チップおよびその製法ならびに該チップを用いた研磨工具
JP6641590B2 (ja) 切断用ブレードの製造方法
JP5841437B2 (ja) 切断用ブレード及びその製造方法
JP5841438B2 (ja) 切断用ブレード
JP2006082187A (ja) 薄刃砥石
JP6207015B2 (ja) 切断用ブレード及びその製造方法
KR200495527Y1 (ko) 석재 가공 및 절삭용 회전톱
JP6641591B2 (ja) 切断用ブレードの製造方法
US6428883B1 (en) Resinoid dicing blade including a dry lubricant
JP5651045B2 (ja) 切断用ブレード
JP5528064B2 (ja) 切断用ブレード
JP2021194719A (ja) 切断用ブレード
KR20220078574A (ko) 삼중 레이어 연마 원판
JP5676324B2 (ja) 樹脂ボンド砥石
JP7295626B2 (ja) 半導体基板切断用レジンブレード及び半導体基板切断用レジンブレード製造方法
JP2021098260A (ja) レジンブレード
JP2006062009A (ja) レジンボンド薄刃砥石
JP5729809B2 (ja) 凝集砥粒
JP2021142598A (ja) 切断用ブレードおよび切断用ブレードの製造方法
JP5451245B2 (ja) 切断ブレード
JP5485017B2 (ja) 切断用ブレード
JP2008238304A (ja) 切断電着ブレード
JP2006123129A (ja) 薄刃砥石及びその反り矯正方法
CN106475883A (zh) 切削磨具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878680

Country of ref document: EP

Kind code of ref document: A1